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We consider n - dimensional (n ≥ 4) flexible quasi-affine varieties X, that are

varieties on which the group generated by all one-parameter unipotent subgroups of

Aut(X) acts transitively. We prove that for any subvariety Γ of X, isomorphic to

a line, every SLn - automorphism of the normal bundle of Γ is induced by a global

automorphism of X. We also extend this result also to automorphisms of jet bundles

on Γ.
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CHAPTER 1

Preliminaries

1.1 Notations

• An
k - the n dimensional affine space over the base field k

• C - the field of complex numbers

• Aut(X) - the group of automorphisms of the variety X

• SAut(X) - the special automorphism group of the variety X

• k[X] - the ring of regular functions of the variety X.

• k(X) - the field of rational functions of the variety X.

• Xreg - the Zariski open subset of regular points of the variety X

• Der(A) - the set of derivations on the ring A

• DerA(B) - the set of derivations on the ring B that vanish on a subring A of

the ring B

• LND(A) - the set of all locally nilpotent derivations on the ring A

• LNDA(B) - the set of locally nilpotent derivations on the ring B that vanish on

a subring A of the ring B.

• δ - stands for locally nilpotent derivation

1
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• ker(δ) - the kernel of the locally nilpotent derivation δ

• Ga(k) - the algebraic (k,+) action

• AG - the subring (respectively subfield) of the invariant elements of the ring

(respectively field) A under the action of the group G

• X → X �G - the algebraic quotient

• X → X/G - the geometric quotient

• Mn(R) - the n× n matrices with entries in the ring R

• GLn(R) - the general linear group over the ring R

• SLn(R) - the special linear group over the ring R

• En(R) - the group of standard elementary transformations over the ring R

• SLn(A,q) - the principal congruence subgroup corresponding to the ideal q of

the ring A

• En(A,q) - the group of q− standard elementary transformations corresponding

to the the ideal q of the ring A

• Cq - the group of universal Mennicke symbols corresponding to the ideal q of

the ring A

• Spec(A) - the spectrum of the ring A

• Hol(M) - the ring of holomorphic functions on a complex manifold M

• div(~F ) - the divergence of the vector forms ~F

• Fj - the set of n tuples of homogeneous j forms in n variables, with coefficients

in a ring (respectively field)

• F0
j - the set of n tuples of homogeneous j forms in n variables, with coefficients

in a ring (respectively field), and with divergence zero
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1.2 Introduction

In this thesis the extension problem for curves with infinitesimal neighborhoods in

flexible varieties is considered. In general, the extension problem can be formulated

in the following way: given Y1, Y2 - subvarieties of a variety X,

ϕ : Y1
∼−→ Y2

- an isomorphism, is ϕ a restriction of a global automorphism of X?

The extension problem started from the work of Abhyankar-Moh-Suzuki where

the following fact was established:

Theorem 1.2.1. [AM75], [Suz74] Given two plane curves isomorphic to a line, one

can be transferred to another by a global automorphism of A2
k.

Later on, Jelonek proved the following result for a smooth subvariety Y in An
k :

Theorem 1.2.2. [Jel87] Let Y be a closed subvariety in An
k of dimension dim(Y ) =

k, and

ϕ : Y → An
k

be an embedding. If n ≥ 4k+2 then there exists an automorphism of An
k , that restricts

to ϕ on Y.

The more general case for non-smooth subvarieties was done in the works of

S.Kaliman and V. Srinivas [Sri91]:

Theorem 1.2.3. [Kal91] [Sri91] Let ϕ : Y1 → Y2 be an isomorphism of two closed

subvarieties of An
k . If n > max(2 dim(Y1) + 1, dim(TY1)), where TY1 is the Zariski

tangent bundle of Y1, then ϕ extends to an automorphism of An
k .

We want to consider the extension for varieties X, that are different from affine

spaces An
k . Such varieties should possess a rich automorphism group. We consider

one big class of such varieties, which are called flexible varieties.
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Through out this paper, we fix an algebraically closed field k of characteristic

zero. Flexible varieties have the following characterization. Let X be a variety over

k, and consider the group Aut(X) of automorphisms of the varietyX. The subgroup of

Aut(X), which is the group generated by subgroups of Aut(X) that are isomorphic to

the flows of all Ga− actions, is called the special automorphism group and is denoted

by SAut(X). A flexible variety is a quasi-affine variety of dimension greater or equal

to 2, such that the special automorphism group SAut(X) acts transitively on Xreg,

with Xreg being the Zariski open subset of regular points of X.

For a flexible variety different from An
k , the first result was obtained by Van Santen

(formerly Stampfli) where he considered a variety isomorphic to SLn(k) and proved

the following theorem:

Theorem 1.2.4. [Sta17] Let f, g : k→ SLn(k) be embeddings. If n ≥ 3 then f and

g are the same up to an algebraic automorphism of SLn(k). If n = 2 then f and g are

the same up to a holomorphic automorphism of SLn(k).

We also want to consider the extension problem in the case of subvarieties with

their infinitesimal neighborhoods (so called non-reduced case).

Example 1.2.5. The simplest example of the non-reduced subvariety is the following.

The point p ∈ A1
z, given by the equation {z = 0} is a reduced subvariety (the origin).

In the same time, we can consider the point p′ ∈ A1
z given by the equation {z2 = 0}.

Geometrically p′ also defines the origin, but it is a non-reduced subvariety (the so

called "fat" point).

For the non-reduced case, the only known result for the extension problem, is the

case where the subvariety consists of a finite number of points in a flexible variety.

Let X be a flexible variety, p ∈ X - a point in X, µ = µp - the maximal ideal of p

in k[X]. Consider µ/µm+1, which is called the m− jet at the point p. Note that for

m = 1, µ/µ2 is the cotangent space at the point p and its dual is the tangent space at

p. This case of a finite number of points is considered in the paper of I. Arzhantsev,

H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg
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Theorem 1.2.6. [AFK+13] Let X be a flexible algebraic variety and x1, . . . , xN be a

set of distinct points in X. There exists α ∈ SAut(X) with prescribed automorphisms

of m - jets
µj

µm+1
j

∼−→ µj

µm+1
j

at these points, which preserves a local volume form.

E.g.: for prescribed SLn(k) automorphism for tangent (respectively cotangent)

spaces at these points, there is always a global automorphism of the flexible variety,

that fixes these points and induces these SLn(k) automorphism.

The natural question we ask is the following.

Question 1.2.7. Can we replace the points xj by curves Γj, with vanishing ideals

Ij, and the corresponding cotangent spaces µj/µ2
j at the points xj, respectively the

m− jets µj/µm+1
j , by conormal bundles Ij/I2

j of the curves Γj, respectively m− jet

bundles Ij/Im+1
j ?

The following two main theorems below are proven in this thesis, and the first

one of them gives a positive answer to the question 1.2.7 above. Let X be a flexible

variety with dimension dim(X) ≥ 4, and Γj be lines in X.

Theorem 1.2.8. Given the automorphisms of jet - bundles

ϕ̄j :
Ij

Im+1
j

∼−→ Ij

Im+1
j

, j = 1, . . . , N,

that leave every point of curves Γj fixed, and with Jac(ϕ̄j) = 1 mod Imj , there exists a

global automorphism α ∈ SAut(X) which induces ϕ̄j and leaves every point of curves

Γj fixed.

E.g.: Every SLn(k[Γj]) automorphism of normal (respectively conormal) bundles

of curves Γj, that leave every point of Γj fixed, there exists a global automorphism of

X that induces these automorphisms.

Theorem 1.2.9. Consider the isomorphisms

φ0 : Γ1
∼−→ Γ2,
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ϕ̄ :
I1

Im+1
1

∼−→ I2

Im+1
2

,

that preserves global volume form mod Im1 . Suppose φ0 is induced by a global auto-

morphism Φ of X. Note that Φ need not induce ϕ. Nevertheless, there exists another

global automorphism α ∈ SAut(X), which simultaneously induces φ0 and ϕ̄.

Remark 1.2.10. The theorems above are proven not only for curves isomorphic to

lines, but also for any curves Γj, that are once punctured curves with trivial normal

bundles, whose coordinate rings satisfy the condition SLn

(
k[Γj]

)
= En(k[Γj]). Here

En(k[Γj]) are elementary transformations with coefficients in the ring k[Γj]. Example

Γj ' A1
k.
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1.3 Preliminaries

Synopsis In this section we recall some relevant notions. In particular, the notion

of locally nilpotent derivation (LND) and an algebraic Ga(k)−action. The Theorem

1.3.16 describes the equivalence of these two notions. Locally nilpotent derivations

and Ga(k)−actions allow us to define the notion of a flexible variety, and flexible

varieties are the main objects we work with in this thesis. Certain important prop-

erties of flexible varieties are described as well, and a number of examples show that

flexible varieties represent a huge class of objects. In addition, we recall the notion of

a Mennicke symbol which is closely related to the congruence subgroup problem and

the Theorem of Bass, Milnor and Serre (the Theorem 1.3.56). This theorem plays a

very important role in the proof of the main theorems of the thesis (the Theorem 1.2.8

and the Theorem 1.2.9.) Finally, we briefly recall some facts from the Representation

Theory, which are also relevant to the proofs of the main theorems of the thesis.

1.3.1 Locally Nilpotent Derivations

Definition 1.3.1. Let A be a ring. A mapping ∂ : A→ A which is an endomorphism

of additive group of A and satisfies the Leibniz rule

∂(ab) = ∂(a)b+ a∂(b)

is called a derivation on A.

Notation 1.3.2. The set of all derivations on a ring A is denoted Der(A).

Below are some definitions and theorems related to locally nilpotent derivations

that can be found in [Fre06,Dai03]

Notation 1.3.3. For a derivation ∂ ∈ Der(A) denote by Nil(∂) ⊂ A the following

subset of A

Nil(∂) := {b ∈ B|∃m ∈ N, ∂m(b) = 0}.
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Definition 1.3.4. Let A be a ring and δ ∈ Der(A) be a derivation on A. δ is called a

locally nilpotent derivation (LND) if for every element a in a ring A there exists

a natural number n ∈ N such that δn(a) = 0. Using notation 1.3.3 this means that

Nil(δ) = A.

Notation 1.3.5. The set of all locally nilpotent derivations on A is denoted LND(A).

Definition 1.3.6. Given δ ∈ LND(A), the kernel of δ is

ker(δ) := {a ∈ A|δ(a) = 0}.

Notation 1.3.7. For A ⊂ B - rings, the set of locally nilpotent derivations on B

that vanish on A is denoted LNDA(B) :

LNDA(B) := {δ ∈ LND(B)|A ⊂ ker(δ)}.

Definition 1.3.8. Let A be a ring. A degree function on ring A is a map

deg : A→ N ∪ {−∞} satisfying

a) deg(a) = 0 if and only if a = 0

b) deg(ab) = deg(a) + deg(b)

c) deg(a+ b) ≤ deg(a) + deg(b)

for all a, b ∈ A.

Definition 1.3.9. Given δ ∈ LND(A) it defines a degree function via

degδ(a) = max{n ∈ N|δn(a) 6= 0} if a 6= 0

degδ(0) = −∞

Lemma 1.3.10. Let B be a ring, δ1, δ2 ∈ LND(B). If δ2 ◦ δ1 = δ1 ◦ δ2 then δ1 + δ2 ∈

LND(B).
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Denote δn := δ ◦ δ ◦ . . . ◦ δ the n-times composition of the derivation δ with itself.

It simply follows by induction that

δn(ab) =
n∑
i=0

(
n

i

)
δi(a)δn−i(b) (1.1)

In particular, the formula (1.1) implies that for ∂ ∈ Der(A), Nil(∂) is a subring of A.

Definition 1.3.11. Given a locally nilpotent derivation δ ∈ LND(A) and f ∈ ker(δ),

fδ is called a replica of δ. The formula (1.1) implies that the replica fδ is again a

locally nilpotent derivation.

Example 1.3.12. Let A = k[x, y], then the derivation

δ = (x+ y)

(
∂

∂x
− ∂

∂y

)
is locally nilpotent since

δ2(x) = δ(x+ y) = (x+ y)− (x− y) = 0

and

δ2(y) = δ(−(x+ y)) = −(x+ y) + (x− y) = 0

Example 1.3.13. Let B = A[x1, . . . , xn]. Then an A-derivation ∂ : B → B is called

triangular if ∂(xi) ∈ A[x1, . . . , xi−1] for i = 1, . . . , n. Every triangular derivation is

locally nilpotent: by induction xi ∈ Nil(∂), i = 1, . . . , n, hence Nil(∂) = A.

Definition 1.3.14. Let k be an algebraically closed field of characteristic 0 and X -

a k - variety. An algebraic Ga(k)−action, also called a (k,+) action, is a morphism

α : k×X → X (1.2)

such that

α(0, x) = x ∀x ∈ X

α(t1 + t2, x) = α(t1, α(t2, x)) ∀t1, t2 ∈ k, ∀x ∈ X
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Ga(k) is an algebraic group via

Ga(k) = Spec(k[t])

with the algebraic group structure

Ga(k)×Ga(k)→ Ga(k)

defined by the k− algebra homomorphism

φ : k[t]→ k[x, y],

φ(t) = x+ y.

And the action (1.2) of the group Ga(k) on the variety X, with A = k[X], in terms

of coordinate rings, is given by a k−algebra homomorphism

ρ : A→ A[t], (1.3)

satisfying

1.

A A[t] A
ρ

id

ε0 , (1.4)

with ε0 being evaluation at t = 0

2.
A A[t]

A[t] A[x, y]

ρ

ρ φ̃

ψ

(1.5)

where φ̃ is defined by

φ̃|A = idA, φ̃(t) = x+ y,

and ψ is defined by

ψ(t) = x, ψ|A = φ̃ ◦ ρ.
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Example 1.3.15. The translation

k× An
k → An

k ,

defined by

(t, x1, . . . , xn) 7→ (x1 + t, . . . , xn + t),

is an example of a Ga(k)− action.

Given a k− algebra A and δ ∈ LNDk(A), for each t ∈ k one can define the

exponential map

etδ : A→ A (1.6)

by

etδ(a) = a+
tδ(a)

1!
+

(tδ)2(a)

2!
+ · · · (1.7)

The sum terminated since for some n ∈ N : δn(a) = 0. Obviously

etδ(a+ b) = etδ(a) + etδ(b),

and

etδ(ab) =
∞∑
n=1

tn

n!

n∑
i=0

(
n

i

)
δi(a)δn−i(b) =

=
∞∑
i=0

tiδi(a)

i!

∞∑
j=0

tjδj(b)

j!
= etδ(a)etδ(b),

which gives etδ is a ring homomorphism. Moreover, since

et1δ(et2δ(a)) =
∞∑
m=0

tm1
m!
δm

(
∞∑
n=0

tn2
n!
δn(a)

)
=

=
∞∑
k=0

( ∑
m+n=k

k!

m!n!
tm1 t

n
2

)
δk(a)

k!
=
∞∑
k=0

(t1 + t2)k
δk(a)

k!
= e(t1+t2)δ(a),

it follows that (1.6) is an isomorphism with e−tδ being it’s inverse.

Theorem 1.3.16. [Dai03] Let A be a k− algebra, then there exists a bijection:

LNDk(A)←→ set of Ga(k) actions on Spec(A). (1.8)
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The correspondence (1.8) is the following

1. Given δ ∈ LNDk(A) and t ∈ k define a k - algebra homomorphism

ρ : A→ A[t],

with

ρ(a) = etδ(a).

This gives a Ga(k) action.

2. Vice versa, given an algebraic action (1.3) define a derivation δ by

A A[t] A[t] A
ρ

δ

d/dt ε0 ,

which is locally nilpotent since d/dt is.

Definition 1.3.17. Given a group G acting on a variety X, A = k[X],

AG := {a ∈ A|∀g ∈ G, g.a = a} (1.9)

is called the ring of invariants of the action G.

In case of the G := Ga(k) action associated with a locally nilpotent derivation δ, since

k has characteristic zero, it is obvious that

k[X]G = ker(δ),

since for f ∈ k[X] it follows

f ∈ k[X]G ⇐⇒ etδ(f) = f, ∀t ∈ k, ⇐⇒ f ∈ ker(δ).

1.3.2 Flexible varieties

Definition 1.3.18. Given a group G action on a space X, and a natural number

m ∈ N, the action is called m−transitive, if for any pair of m-tuples (x1, . . . , xm)

and (x′1, . . . , x
′
m) of distinct points in X, there exists g ∈ G such that

g.xi = x′i
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Definition 1.3.19. The action of G on X is called infinite transitive if it is m-

transitive for every m ∈ N.

Definition 1.3.20. Let X be a variety, and consider the group Aut(X) of automor-

phisms of the variety X. The subgroup of Aut(X), which is the group generated by

the elements of all Ga− actions on X, is called the special automorphism group

of the variety X. It is denoted by SAut(X).

Notation 1.3.21. Given Y a closed subvariety of X, denote by SAut (X/Y ) to be

the subgroup of SAut(X) consisting of elements that fix Y pointwise.

Definition 1.3.22. A quasi-affine algebraic variety X, with dim(X) ≥ 2, is said to be

flexible if for every point x ∈ Xreg, Xreg - the set of regular points of X, the tangent

space TxX is spanned by the tangent vectors to the orbits G.x, G ∈ SAut(X).

The following theorem gives equivalent definitions of the notion of flexibility.

Theorem 1.3.23. [AFK+13] Let X be a smooth affine algebraic variety with dim(X) ≥

2. The following are equivalent

1. X is flexible.

2. The group SAutX acts transitively on X.

3. The group SAutX acts infinitely transitively on X.

Given a varietyX, A = k[X], with a groupG acting on it, the inclusion ι : AG ↪→ A

induces a morphism ρ : X → Q, with Q = k[AG], called the algebraic quotient.

Notation 1.3.24. The algebraic quotient is denoted as

X → X �G.

In the case of an affine variety X, its ring of regular functions A = k[X] is a finitely

generated algebra over k. A special case of the Hilbert’s 14th problem asks whether

the AG is a finitely generated algebra over k [Dai07]. In the case when G is a reductive
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group (e.g. GLn, SLn), then AG is a finitely generated k− algebra. This is the theorem

of Hilbert and Mumford [Spr06]. In 1959 Nagata constructed a counterexample to

Hilbert’s conjecture [Nag59]. In 2000 in the paper of Freudenberg [Fre00] it was shown

that a kernel of a certain locally nilpotent derivation in A6
k is not a finitely generated

k− algebra. Thus in general for an affine variety X it’s algebraic quotient X � G

is not necessarily affine. So we are interested in not only affine but also quasi-affine

varieties.

Definition 1.3.25. Quasi-affine algebraic variety is a Zariski open subset of an

affine algebraic variety.

In the work of Winkelmann, it is proved that Y = Spec(AG) is always at least

quasi-affine [Win03].

Definition 1.3.26. Given a variety X and a group G acting on it, the morphism of

varieties

π : X → Y

is called a geometric quotient, if

1. for every y ∈ Y the fiber π−1(y) is an orbit of the action

2. the topology of Y is the quotient topology

3. for any Zariski open subset V ⊂ Y we have an isomorphism

π? : k[V ]
∼−→ k[π−1(V )]G.

Notation 1.3.27. The geometric quotient is denoted as

X → X/G.

Given a group G acting on a variety X, it induces an action on the field of rational

functions k(X) by

g.f(x) = f(g−1.x), x ∈ X, g ∈ G, f ∈ k(X)
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Definition 1.3.28. Given a group G acting on a variety X,

k(X)G := {f ∈ k(X)|∀g ∈ G, g.f = f} (1.10)

is called the field of rational invariants.

Since every rational function f ∈ k(X)G is constant on the orbits, it induces a

function on the orbit space:

f̄(O) := f(x), x ∈ O,

where O is an orbit.

Definition 1.3.29. A rational invariant f ∈ k(X)G is said to separate orbits O1

and O2 if

f̄(O1) 6= f̄(O2).

Definition 1.3.30. A subset S ⊂ k(X)G of the field of rational invariants is said to

separate general orbits(or separate orbits in general position) if there exists

nonempty Zariski open subset U ⊂ X such that for every x1, x2, with non-equal orbits

Ox1 6= Ox2 , there exists f ∈ k(X)G with

f̄(Ox1) 6= f̄(Ox2)

Theorem 1.3.31. (Rosenlicht) [PV94] Given an algebraic action

α : G×X → X

on the irreducible variety X there exists a finite set of rational invariants that separate

general orbits.

In other words, Rosenlicht’s theorem says that on some nonempty Zariski open

subset U ⊂ X we have the geometric quotient

U → U/G
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Definition 1.3.32. Given a category C and an object X in C with a group G acting

on it

α : G×X → X,

a categorical quotient is an object Y ∈ C together with a morphism

π : X → Y

such that

(i) the diagram
G×X X

Y

π◦p2

α

π

commutes, with p2 being the second projection.

(ii) any other morphism X → Z satisfying (i) factors through π :

X Y

Z.

π

Given a flexible variety X, by Rosenlicht’s theorem there exist rational functions

f1, . . . , fm ∈ k(X) that separate orbits in general orbits. These functions give a

rational map

ρ : X → Q.

Since we are considering Ga(k) - action, the functions fi must be regular. If we

suppose that they are not regular, then the map ρ above will have indeterminacy

subset. At this subset the closures of general fibers of ρ must meet. For a Ga(k)-

action the fibers, which are the orbits of the action, are lines. Hence, since they are

not closed their closures must be a projective lines. This is impossible since X a

quasi-affine variety.

Definition 1.3.33. The morphism

ρ : X → Q (1.11)
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given by regular functions k[X]Ga that separate general orbits, and with Q normal,

is called a partial quotient.

Remark 1.3.34. In case if the functions f1, . . . , fm generate the subring k[X]Ga , the

morphism (1.11) is the categorical quotient.

Flexible varieties represent a huge class of objects. Here are some examples that

demonstrate it.

Example 1.3.35. Let X = An
k , with n ≥ 2. Then X is flexible since the group

SAutX acts transitively on X.

The following example is the Theorem of Gromov andWinkelmann [Gro13] [Win90]

Example 1.3.36. Let Y be a closed subvariety in An
k , with codimAnk Y ≥ 2. Then

the pointwise stabilizer subgroup SAut (An
k/Y ) of Y in SAut (An

k) acts transitively on

An
k − Y. This in particular implies that An

k − Y is flexible.

The next example is a generalization of Gromov - Winkelmann’s Theorem. It is

a theorem in the paper [FKZ13]

Example 1.3.37. Let X be a smooth quasi-affine variety with dimX ≥ 2, and Y

be a closed subvariety of X with codimX Y ≥ 2. And let X be a flexible variety.

Then the pointwise stabilizer subgroup SAut(X/Y ) of Y in SAut(X) acts infinitely

transitively on X − Y, which of course implies that X − Y is flexible as well.

Definition 1.3.38. Let X be an affine variety and f ∈ k[X] be a non-constant

regular function. The affine variety

Susp(X, f) := {(u, v, x) ∈ k2 ×X
∣∣∣uv − f(x) = 0}

Example 1.3.39. A suspension over a flexible affine variety is again flexible [AZK12].

Definition 1.3.40. A normal algebraic variety is called toric if it admits a regular

action of algebraic torus T ' (k?)n with an open orbit.

Definition 1.3.41. An affine toric variety X is called non-degenerate if the only

invertible regular functions on X are nonzero constants.

Example 1.3.42. Any non-degenerate affine toric variety is flexible [AZK12].
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1.3.3 Mennicke symbol

Let A be a Dedekind ring and q a nonzero ideal in A. Consider the set of pairs

Wq = {(a, b) ∈ A2 | a = 1 mod q, b = 0 mod q, and (a) + (b) = (1)}

where (a) and (b) are the corresponding ideals of elements a and b, (1) - the unit

ideal.

Definition 1.3.43. Two pairs (a1, b1) and (a2, b2) are called q equivalent, denoted

(a1, b1) ∼q (a2, b2),

if one can be obtain from other by a finite number transformations of the form:

(a, b) 7→ (a, b+ ra) with r ∈ q,

(a, b) 7→ (a+ tb, b) with t ∈ A.

Definition 1.3.44. Let C be a group. A Mennicke symbol on Wq is a function

[ ] : Wq→ C, notation

(a, b) 7→
[
b

a

]
,

satisfying the following two conditions:

MS 1 :

[
0

1

]
= 1, and

[
b1

a1

]
=

[
b2

a2

]
if (a1, b1) ∼q (a2, b2);

MS 2 : If (a1, b1), (a2, b2) ∈ Wq then
[
b1b2

a1

]
=

[
b1

a1

] [
b2

a1

]
Definition 1.3.45. The free group on Wq modulo relations MS 1−MS 2, denoted

by Cq, is called the universal Mennicke symbol.

Lemma 1.3.46 (Lam, Mennicke-Newman). [BMS67] If [ ] : Wq→ C is a Mennicke

symbol, (a1, b), (a2, b) ∈ Wq, then[
b

a1a2

]
=

[
b

a1

] [
b

a2

]
(1.12)
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Let k be an algebraically closed field of characteristic 0. Let A = k[z] be the

ring of polynomials in one variable z over the field k, and q(z) be a polynomial in

k[z]. Consider the ideal q = (q(z)) generated by the polynomial q(z). Consider the

Mennicke symbol Cq.

Lemma 1.3.47. The following hold:

(a) [
f(z)q(z)

1

]
= 1, f(z) ∈ k[z]

(b) [
0

1 + f(z)q(z)

]
= 1, f(z) ∈ k[z];

(c) [
cf2(z)q(z)

1 + f1(z)q(z)

]
=

[
f2(z)q(z)

1 + f1(z)q(z)

]
, c ∈ k, c 6= 0;

Proof. (a) By MS 2 and MS 1[
f(z)q(z)

1

]
=

[
f(z)q(z)− f(z)q(z)

1

]
=

[
0

1

]
= 1;

(b) denote

g :=

[
0

1 + f(z)q(z)

]
, then by MS 2 we have g2 = g =⇒ g = 1;

(c) First note that[
1
c
q(z)

1 + f1(z)q(z)

]
=

[ 1
c
q(z)

1 + f1(z)q(z)− (cf1(z)) ∗ (1
c
q(z))

]
=

=

[
1
c
q(z)

1

]
=

[
0

1

]
= 1,

hence [
cf2(z)q(z)

1 + f1(z)q(z)

]
=

[
cf2(z)q(z)

1 + f1(z)q(z)

] [
1
c
q(z)

1 + f1(z)q(z)

]
=

=

[
f2(z)q2(z)

1 + f1(z)q(z)

]
=

[
f2(z)q(z)

1 + f1(z)q(z)

] [
q(z)

1 + f1(z)q(z)

]
=

=

[
f2(z)q(z)

1 + f1(z)q(z)

]
.
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Proposition 1.3.48 (Exercise). Let A = k[x] and q = (z) ⊂ k[z]. Then the group

of Mennicke symbols Cq for the ideal q is trivial.

Proof. Let (a, b) ∈ Wq. Then a = 1 + zf1(z), b = zf2(z), with f1(z), f2(z) ∈ k[z].

Step 1: f1(z) = g(z)f2(z) + r(z) with deg(r(z)) < deg(f2(z)) or r(z) ≡ 0.[
b

a

]
=

[
zf2(z)

1 + zf1(z)

]
=

[
zf2(z)

1 + z(g(z)f2(z) + r(z))

]
=

=

[
zf2(z)

1 + zg(z)f2(z) + zr(z)− g(z)(zf2(z))

]
=

[
zf2(z)

1 + zr(z)

]
.

(1.13)

If r(z) ≡ 0 then by Lemma 1.3.47 a) [
b

a

]
= 1

and we are done. Otherwise, performing (1.13) we can always achieve

deg(f1(z)) < deg(f2(z)).

Step 2: write

f2(z) = bn2z
n2 + . . .+ b0,

f1(z) = an1z
n1 + . . .+ a0,

then by Step 1 n := n2 − n1 ≥ 1 and

bn2

an1

zn ∈ (z).

Now [
zf2(z)

1 + zf1(z)

]
=

[
zf2(z)− bn2

an1
zn (1 + zf1(z))

1 + zf1(z)

]
=[

z(bn2z
n2 + . . .+ b0)− bn2

an1
zn2−n1(1 + z(an1z

n1 + . . .+ a0))

1 + zf1(z)

]
=

=

z(cn2−1z
n2−1 + . . . c0) + z

(
− bn2

an1
zn2−1−n1)

)
1 + zf1(z)

 =

[
zf̃2(z)

1 + zf1(z)

]

with deg(f̃2(z)) < deg(f2(z)). If it happens that f̃2 ≡ 0 then we are done by Lemma

1.3.47 b). We repeat this performance and reduce the degree of f2(z) until we achieve

deg(f2(z)) ≤ deg(f1(z)).
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Step 3: We repeat subsequently Step 1 and Step 2 until we achieve deg(f2) =

deg(f1) = 0, then [
b

a

]
=

[
b0z

1 + a0z

]
=

[
b0z

1

]
= 1.

Let Mn(A) be the ring of n× n matrices with coefficients in the ring A.

Definition 1.3.49. The standard elementary matrices over the ringA are defined

as:

eij = Idn + rεij, i 6= j, r ∈ A (1.14)

where εij is the matrix with 1 at the position (i, j) and 0 everywhere else.

Remark 1.3.50. Matrices εij satisfy obvious relation

εijεkm = δjkεim

with δjk being the Kronecker symbol.

Notation 1.3.51. The group generated by all standard elementary matrices (1.14)

is denoted by En(A).

Definition 1.3.52. The group generated by standard elementary matrices of the

form

eij = Idn + rεij, i 6= j, r ∈ q

is called the group of standard q - elementary matrices, and is denoted by En(A,q).

Remark 1.3.53. The group En(A,q) is a normal subgroup of En(A).

Proposition 1.3.54. [Bas06] Let n ≥ 3. Given two ideals q1 and q2 in the ring A,

it follows

[En(A,q1),En(A, (q2)] ⊃ En(A,q1q2).

Here [, ] stands for the commutator.
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Definition 1.3.55. Given an ideal q of the ring A, the subgroup SLn(A,q) of the

group SLn(A), defined as

SLn(A,q) := ker{SLn(A)→ SLn(A/q)},

is called the q− principal congruence subgroup.

The following theorem is due to Bass, Milnor and Serre.

Theorem 1.3.56. [BMS67] Let A be a Dedekind ring, q - an ideal in A, and n ≥ 3.

Then

En(A,q) = [SLn(A), SLn(A,q)]. (1.15)

Furthermore, if the group of Mennicke symbols Cq for the ideal q is trivial, then

En(A,q) = SLn(A,q).

Here [, ] stands for the commutator.

Corollary 1.3.57. Let k be an algebraically closed field of characteristic 0, and n -

a natural number, n ≥ 3. Then

En(k[z], (z)) = SLn(k[z], (z)) (1.16)

Proof. The proof follows immediately from Proposition 1.3.48 and Theorem 1.3.56

Corollary 1.3.58. Given a Dedekind ring A, if the Mennicke symbol for this ring is

trivial (meaning it is trivial for the unit ideal), then for n ≥ 3

En(A) = SLn(A).

1.3.4 Some Facts From Representation Theory

Let G be a group, A a ring, and M a free module over A of finite rank. Denote

Aut(M) to be the group of A - module automorphisms of M.
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Definition 1.3.59. A group homomorphism

φ : G→ Aut(M) (1.17)

is called a representation of G on M.

Definition 1.3.60. Given M a representation of G, a submodule N of M is a sub-

representation if it is stable under G. That is, for every element g in G the auto-

morphism φ(g) on M restricts to an automorphism of N.

Definition 1.3.61. A representationM of G is called irreducible if it has no proper

subrepresentations.

Let u1, . . . , un be indeterminants and F 1(u1, . . . , un), . . . , F n(u1, . . . , un) be poly-

nomials in u1, . . . , un with coefficients in A. We denote by F i
j (u1, . . . , un) the homo-

geneous part of F i(u1, . . . , un) of degree j. We make the following notations

• ~u = (u1, . . . , un)

• ~F (~u) = (F 1(~u), . . . , F n(~u))

•

div(~F (~u)) =
∂F 1(~u)

∂u1

+ . . .+
∂F n(~u)

∂un

• ~Fj(~u) =
(
F 1
j (~u), . . . , F n

j (~u)
)

• Fj =
{(
F 1
j (~u), . . . , F n

j (~u)
)}

- the set of n-tuples of homogeneous j-forms in n

variables u1, . . . , un, with coefficients in A.

•

F0
j :=

{
~Fj(~u) ∈ Fj

∣∣∣ div(~Fj(~u)) = 0
}

Remark 1.3.62. The sets Fj and F0
j are A− modules in an obvious way.
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Let us treat ~u as a column vector and the elements of Fj (respectively F0
j ) as the row

vectors. For m ∈ N we have the following SLn(A) action on Fm (respectively F0
m)

defined by

a. ~Fm(~u)) 7→ ~Fm(a~u)a−1,

with a ∈ SLn(A) and ~Fm ∈ Fm (respectively ~Fm ∈ F0
m) This is indeed an action since

for a, b ∈ SLn(A) it follows

(ab).(~Fm(~u)) = ~Fm(ab~u)(ab)−1 = ~Fm(ab~u)b−1a−1 =

= a.(~Fm(b~u)b−1) = a.(b. ~Fm(~u)).

Let us consider this action of SLn(A) on ~Fm ∈ F0
m and write it as a group homomor-

phism

φ : SLn(A)→ Aut(F0
m). (1.18)

Most results in Representation Theory are proven when A is a field and M is a finite

dimensional vector space. The following proposition is a result for this case:

Proposition 1.3.63. [FH13] The representation (1.18) with A = k being a field:

φ : SLn(k)→ Aut(F0
m) (1.19)

is irreducible.



CHAPTER 2

The Extension Problem for Conormal and
Jet Bundles

2.1 The Extension Problem

Synopsis In this section we consider and state the extension problem for smooth

curves Y and Z, with their corresponding m−th infinitesimal neighborhoods Ym and

Zm, in a flexible variety X, and prove some auxiliary propositions. In Proposition

2.1.1 we show that the isomorphism Ym ' Zm between the m−th infinitesimal neigh-

borhoods yields to the isomorphisms between all infinitesimal neighborhoods of lower

orders: Yj ' Zj, j = 0, . . . ,m− 1. In the case of the first infinitesimal neighborhood,

which corresponds to m = 1, we have the extension problem for the conormal bundles

IY /I
2
Y and IZ/I2

Z . The Proposition 2.1.6 allows us to reduce the problem to the one,

in which we consider only one curve Γ. For the sake of convenience of the proof in

later chapters, we state the extension problem in terms of the normal bundle of this

curve Γ, which is represented by the diagram (2.6). In the case of the infinitesimal

neighborhoods of higher orders, that correspond to m > 1, we have the extension

problem for the m−th jet bundles IY /Im+1
Y and IZ/Im+1

Z . And the Proposition 2.1.11

allows us to reduce this problem to the one, in which we again consider only one

curve.

Let X be a flexible variety with a coordinate ring k[X]. And let Y, Z be smooth

closed reduced curves in X, with the defining prime ideals IY and IZ correspondingly,
25
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i.e.

Y = Spec

(
k[X]

IY

)
, Z = Spec

(
k[X]

IZ

)
For a natural number m ∈ N denote

Ym := Spec

(
k[X]

Im+1
Y

)
, Zm := Spec

(
k[X]

Im+1
Z

)
,

in particular Y0 = Y, Z0 = Z. Consider an isomorphism of these infinitesimal neigh-

borhoods:

Ym ' Zm.

In terms of the coordinate rings, this isomorphism is given by

ϕm :
k[X]

Im+1
Y

∼−→ k[X]

Im+1
Z

. (2.1)

Denote ψm := ϕ−1
m .

Proposition 2.1.1. The isomorphism ϕm induces the isomorphisms

ϕi :
k[X]

I i+1
Y

∼−→ k[X]

I i+1
Z

, (2.2)

for i = 0, . . . ,m− 1.

Proof. For the ideals I iY /I
m+1
Y and I iZ/I

m+1
Z of k[X]

Ii+1
Y

and k[X]

Ii+1
Z

correspondingly, let

πY :
k[X]

Im+1
Y

→ k[X]/Im+1
Z

I i+1
Z /Im+1

Z

,

πZ :
k[X]

Im+1
Z

→ k[X]/Im+1
Z

I i+1
Z /Im+1

Z

,

be the natural projection and consider the diagram

k[X]

Im+1
Y

k[X]

Im+1
Z

k[X]/Im+1
Z

Ii+1
Z /Im+1

Z

ϕm

'

πZ

Since the ideals IY and IZ are prime, the ideals IY /Im+1
Y and IZ/I

m+1
Z are the

nilradicals of k[X]/Im+1
Z and k[X]/Im+1

Y correspondingly. The isomorphism ϕm maps
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bijectively nilradical IY /Im+1
Y to nilradical IZ/Im+1

Z , and hence maps bijectively the

corresponding i−th power

(IY /I
m+1
Y )i = I iY /I

m+1
Y

of nilradical IY /Im+1
Y to the corresponding i−th power

(IZ/I
m+1
Z )i = I iZ/I

m+1
Z

of nilradical IZ/Im+1
Z . This implies that the homomorphism πZ ◦ ϕm induces an iso-

morphism ϕ̄ defined and shown on the diagram below:

k[X]

Im+1
Y

k[X]

Im+1
Z

k[X]/Im+1
Y

Ii+1
Y /Im+1

Y

k[X]/Im+1
Z

Ii+1
Z /Im+1

Z

πY

ϕm

'

πZ

ϕ̄

'

By the third isomorphism theorem for rings, we have

k[X]/Im+1
Y

I i+1
Y /Im+1

Y

' k[X]

I i+1
Y

,

k[X]/Im+1
Z

I i+1
Z /Im+1

Z

' k[X]

I i+1
Z

.

This implies the existence of the isomorphisms (2.2), defined on the diagram below:

k[X]/Im+1
Y

Ii+1
Y /Im+1

Y

k[X]/Im+1
Z

Ii+1
Z /Im+1

Z

k[X]

Ii+1
Y

k[X]

Ii+1
Z

'

ϕ̃m

'

'

ϕi
'

2.1.1 Case of Conormal Bundles

Let m = 1, and consider the isomorphism

ϕ1 :
k[X]

I2
Y

∼−→ k[X]

I2
Z

.
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By Proposition 2.1.1 we have the induced isomorphism

ϕ0 :
k[X]

IY

∼−→ k[X]

IZ
,

on the curves. IY /I2
Y is a sheaf of modules over the ring k[X]/IY in the obvious way:

given f ∈ k[X] and u ∈ IY

(f + IY ) · (u+ I2
Y ) 7→ fu+ I2

Y

is well defined. Similarly for IZ/I2
Z .

Remark 2.1.2. Since Y and Z are smooth, for any natural number m, IY /ImY and

IZ/I
m
Z are not just sheaf of modules, but in fact are bundles. And for m = 1, IY /I

2
Y

and IZ/I2
Z are the conormal bundles of the curves Y and Z correspondingly.

Since ϕ1 gives a bijective correspondence between IY /I2
Y and IZ/I2

Z , it induces an

isomorphism of bundles between them:

ϕ̄ :
IY
I2
Y

∼−→ IZ
I2
Z

, (2.3)

in the following way:

ϕ̄((f + IY ) · (u+ I2
Y )) = ϕ0(f + IY )ϕ1(u+ I2

Y ). (2.4)

We are interested in the following problem:

Problem 2.1.3. Given the isomorphism ϕ1, for which the induced isomorphism ϕ0

is a restriction of a global automorphism of X :

Φ : k[X]
∼−→ k[X],

is it the case that the isomorphism ϕ̄ is also induced by a global automorphism of

ambient space X?

Notation 2.1.4. By analogy with the notations above, given a global automorphism

Φ : k[X]
∼−→ k[X],
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we denote by Φ0 and Φ1 the induced isomorphisms

Φi :
k[X]

I i+1
Y

∼−→ k[X]

I i+1
Z

, i = 0, 1,

on the curves and their first infinitesimal neighborhoods correspondingly. And we

denote by Φ̄ the induced isomorphism

Φ̄ :
IY
I2
Y

∼−→ IZ
I2
Z

.

between the conormal bundles of Y and Z.

The Problem 2.1.3 can be reduced to the one, in which we consider only one

curve. Let Γ be a smooth curve in X, with the defining prime ideal I, and consider

the Problem:

Problem 2.1.5. Given the automorphism

α1 :
k[X]

I2

∼−→ k[X]

I2
,

which induces the identity map on Γ :

α0 :
k[X]

I

id−→ k[X]

I
,

and induces the isomorphism

ᾱ :
I

I2

∼−→ I

I2
(2.5)

of the conormal bundle of Γ, is it the case that ᾱ is induced by a global automorphism

of X?

Proposition 2.1.6. A positive solution to the Problem 2.1.5 yields to a positive

solution of the Problem 2.1.3.

Proof. Let

ϕ1 :
k[X]

I2
Y

∼−→ k[X]

I2
Z

,

be an isomorphism on the first infinitesimal neighborhoods of the curves Y and Z,

for which the isomorphism

ϕ0 :
k[X]

IY

∼−→ k[X]

IZ
,
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of the curves is induced by a global automorphism

Φ : k[X]
∼−→ k[X],

i.e. ϕ0 = Φ0. Consider the automorphism ᾱ := Φ̄−1 ◦ ϕ̄ of the bundle IY /I2
Y :

IY
I2
Y

IZ
I2
Z

IY
I2
Y
.

ϕ̄

ᾱ

Φ̄−1

Suppose that ᾱ is induced by a global automorphism

H : k[X]
∼−→ k[X],

i.e. ᾱ = H̄. Then

ϕ̄ = Φ̄ ◦ ᾱ = Φ̄ ◦ H̄ = (Φ ◦H)

meaning that ϕ̄ is induced by a global automorphism Φ ◦H. It remains to note that

Φ0 = ϕ0 = Φ0 ◦ α0 =⇒ Φ−1
0 ◦ Φ0 = Φ−1

0 ◦ Φ0 ◦ α0 =⇒ id = α0.

Since the dual of I/I2 is the normal bundle, we can state the problem 2.1.5 in

terms of the normal bundle NΓ of the curve Γ :

Problem 2.1.7. Given the commutative diagram

NΓ NΓ

Γ Γ

θN

πΓ πΓ

id

(2.6)

with θN being an automorphism of the normal bundle NΓ and πΓ being the natural

projection, is it the case that θn is induced by a global automorphism of X?

It will be proven in Chapter 2.4 that for a certain class of curves (in particular

for lines), given an SLn(k[Γ]) automorphism (2.5), or θN above, it follows that these

automorphisms are induced by a global automorphism of X.
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2.1.2 Case of General Jet Bundles

Let m > 1 and consider the isomorphism

ϕm :
k[X]

Im+1
Y

∼−→ k[X]

Im+1
Z

, (2.7)

which in turn by Proposition 2.1.1 induces isomorphisms

ϕi :
k[X]

I i+1
Y

∼−→ k[X]

I i+1
Z

, (2.8)

for i = 0, . . . ,m − 1. We have the sheaf of modules structure for IY /Im+1
Y over the

ring k[X]/IY in the following way. Let u1, . . . , uk be the generators of the ideal IY :

IY = (u1, . . . , uk).

Then every element of IY /Im+1
Y can be viewed as a polynomial F (u1, . . . , uk), in

variables u1, . . . , uk, with coefficients in the ring k[X]/IY , of degree less then or equal

to m, and without a constant term. F (u1, . . . , uk) uniquely decomposes into it’s

homogeneous parts:

F (u1, . . . , uk) = F1(u1, . . . , uk) + . . .+ Fm(u1, . . . , uk),

with Fj(u1, . . . , uk) - homogeneous polynomial in u1, . . . , uk of degree j. Since IjY /I
j+1
Y

is a sheaf of modules over the ring k[X]/IY , we have an isomorphism

IY

Im+1
Y

' IY
I2
Y

⊕ I2
Y

I3
Y

⊕ . . .⊕ ImY
Im+1
Y

(2.9)

which defines a k[X]/IY sheaf of modules structure for IY /Im+1
Y . Similarly for IZ/Im+1

Z .

In analogy with (2.4), the isomorphisms (2.8) and the isomorphism (2.9) imply that

we have an isomorphism

ϕ̄ :
IY

Im+1
Y

∼−→ IZ

Im+1
Z

.

Definition 2.1.8. Given a smooth subvariety Y of a variety X, with the defining

ideal IY , IY
Im+1
Y

is called the m−th jet bundle of Y.

Consider the following problem
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Problem 2.1.9. Given the isomorphism ϕm (defined in (2.7)), for which the induced

isomorphism ϕ0 on the curves is a restriction of a global automorphism of X, is it the

case that the isomorphism ϕ̄ is also induced by a global automorphism of X?

As with the case m = 1, we can reduce this problem to the one in which we

consider only one subvariety:

Problem 2.1.10. Given the automorphism

αm :
k[X]

Im+1

∼−→ k[X]

Im+1
,

which induces the identity map

α0 :
k[X]

I

id−→ k[X]

I
,

is the automorphism

ᾱ :
I

Im+1

∼−→ I

Im+1

induced by a global automorphism of X?

Proposition 2.1.11. A positive solution to the Problem 2.1.10 yields to a positive

solution to the Problem 2.1.9.

Proof. The proof is just the repetition of the proof of the Proposition 2.1.6.

Next, the isomorphism

ᾱ :
I

Im+1

∼−→ I

Im+1

is induced by some isomorphism

ᾰ : I
∼−→ I.

In other words, we have a commutative diagram

I I

I
Im+1

I
Im+1

ᾰ

πm πm

ᾱ
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with πm being the natural projections. After proving that the Problem 2.1.5 has a

positive solution, we will use this result and prove in Chapter 2.5 that the Problem

2.1.10 has a positive solution, provided

Jac(ᾰ) = 1 mod Im.

By abuse of notation, we may write (as in Theorem 1.2.8)

Jac(ᾱ) = 1 mod Im.

Remark 2.1.12. The propositions 2.1.6 and 2.1.11 imply that once we prove the

Theorem 1.2.8 even for one curve Γ, then the Theorem 1.2.9 will be proven as well.
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2.2 Local Elementary Transformations

Synopsis In this section we consider a smooth curve Γ with a trivial normal

bundle NΓ . This means that NΓ is a free module over the coordinate ring A =

k[Γ] of our curve Γ, and we have a global bases {v1, . . . , vn} for NΓ . We consider

two regular functions q1 and q2 in the ring A with non-intersecting zeros V (q1) and

V (q2) : V (q1) ∩ V (q2) = ∅. On the Zariski open neighborhoods Ui = Γ − V (qi),

we consider vectors {u(i)
1 , . . . , u

(i)
n } that form basis of NΓ on Ui, i = 1, 2. The main

result of the chapter is the following: having qi− standard elementary transformations

En(A, (qi)) in the basis {u(i)
1 , . . . , u

(i)
n }, we can generate all the standard elementary

transformations En(A) for the global bases {v1, . . . , vn}.

Let Γ be a smooth curve in a flexible varietyX, with dim(X) ≥ 4.Denote A := k[Γ]

to be the ring of regular functions of our curve Γ. Since Γ is smooth, it follows that

A is a Dedekind domain. We suppose that the normal bundle NΓ of our curve Γ is

trivial, and we denote it by V := NΓ . Hence V is a free Amodule of rank n ≥ 3. Given

a regular function q ∈ A in the ring A, denote S(q) := S−1A to be the localization of

A with respect to the multiplicative system S = {ql}l≥0, and similarly V(q) := S−1V

to be the localization of V. Let the vectors {v1, . . . , vn} form a basis of V and denote

v̄ := {v1, . . . , vn}. The vectors {u1, . . . , un} ⊂ V form a basis for the A(q) - module

V(q) if and only if there exists n × n matrix C with entries in A such that ū = Cv̄,

where ū = {u1, . . . , un}, and C is an invertible(over A(q)) matrix with entries in A.

Lemma 2.2.1. The following holds: for some natural number m ∈ N we have

C−1SLn(A, (q))C ⊃ SLn(A, (qm)) (2.10)

Proof. Since the matrix C belongs to GLn(A(q)) it follows that det(C) = 0 on the

zeros of q with some fixed power, say m1, i.e. det(C) = qm1 . Take a natural number

m, with m > m1, say m = m1 + 1. We have

C−1 =
1

detC
C?, with C? − the adjoint matrix to the matrix C,
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and for every a ∈ SLn(A, (qm)) we write a as

a = Idn + qmb,

where b is an n× n matrix with coefficients in A. Now

CaC−1 =
1

detC
CaC? =

1

detC
C(Idn + (a− Idn))C? =

= Idn + C
1

detC
(a− Idn)C? = Idn + q(CbC?) =

= Idn mod (q) ∈ SLn(A, (q)).

Hence

CSLn(A, (qm))C−1 ⊂ SLn(A, (q)),

and as a result

C−1SLn(A, (q))C ⊃ SLn(A, (qm))

Let S1 = {x1, . . . , xk1} and S2 = {y1, . . . , yk2} be disjoint sets consisting of finitely

many points on our curve Γ, given by zeros of regular functions q1, q2 ∈ A : S1 = V (q1),

S2 = V (q2), S1 ∩ S2 = ∅. Suppose ū(i) = {u(i)
1 , . . . , u

(i)
n } ⊂ V form a basis for the

localization V(qi). Then ūi = Civ̄, with Ci being an invertible(over A(qi)) matrix with

entries in A. Change of basis in V(qi) is given by a qi−elementary transformation

e ∈ En(A, qi) on ūi. Such a transformation yields to a transformation C−1
i eCi of our

global basis v̄, i = 1, 2. Consider the group

G =< C−1
1 En(A, (q1))C1, C

−1
2 En(A, (q2))C2 > (2.11)

generated by all such transformations.

Theorem 2.2.2. Let n ≥ 3. Then there exists a natural number l ∈ N such that

G ⊃ En(A, (qli)), i = 1, 2. (2.12)

Proof. By Theorem 1.3.56 we have

En(A, (qi)) = [SLn(A), SLn(A, (qi))], i = 1, 2.
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Hence

G ⊃ C−1
i En(A, (qi))Ci = C−1

i [SLn(A), SLn(A, (qi))]Ci. (2.13)

Given a commutator [a, b] = aba−1b−1 of matrices a and b and a matrix c, one has

c−1[a, b]c = c−1aba−1b−1c = (c−1ac)(c−1bc)(c−1a−1c)(c−1b−1c) =

= (c−1ac)(c−1bc)(c−1ac)−1(c−1bc)−1 = [c−1ac, c−1bc].

Hence

C−1
i [SLn(A), SLn(A, (qi))]Ci = [C−1

i SLn(A)Ci, C
−1
i SLn(A, (qi))Ci].

And the formula (2.13) continues

G ⊃ [C−1
i SLn(A)Ci, C

−1
i SLn(A, (qi))Ci] ⊃

⊃ [C−1
i SLn(A, (qi))Ci, C

−1
i SLn(A, (qi))Ci].

(2.14)

By Lemma 2.2.1 there exist natural numbers m1,m2 ∈ N such that

C−1
1 SLn(A, (q1))C1 ⊃ SLn(A, (qm1

1 )),

C−1
2 SLn(A, (q2))C2 ⊃ SLn(A, (qm2

2 )).

Put m = max(m1,m2), then

C−1
i SLn(A, (qi))Ci ⊃ SLn(A, (qmi )), i = 1, 2

Now the formula (2.14) gives

G ⊃ [SLn(A, (qmi )), SLn(A, (qmi ))] ⊃ [En(A, (qmi )),En(A, (qmi ))]. (2.15)

By Proposition 1.3.54

[En(A, (qmi )),En(A, (qmi ))] ⊃ En(A, (q2m
i )), (2.16)

which gives

G ⊃ En(A, (q2m
i )).

Putting l = 2m the Theorem is proved.
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Theorem 2.2.3. Let n ≥ 3, then

G ⊃ En(A). (2.17)

Proof. Let f ∈ A be any regular function and consider any elementary matrix

e = Idn + fεij ∈ En(A).

By Theorem 2.2.2 there exists a natural number l ∈ N such that

G ⊃ En(A, (qli)), i = 1, 2. (2.18)

Since V (q1) ∩ V (q2) = ∅ by Nullstellensatz there exist f1, f2 ∈ A such that

f1q
l
1 + f2q

l
2 = f. (2.19)

Then
e = Idn + fεij = Idn + f1q

m
1 εij + f2q

m
2 εij =

= (Idn + f1q
m
1 εij)(Idn + f2q

m
2 εij) ∈ G.

(2.20)

Corollary 2.2.4. If the coordinate ring A of the curve Γ has the property

En(A) = SLn(A),

then

G ⊃ SLn(A).

Corollary 2.2.5. If Γ is isomorphic to a line then the group G generates SLn(A).

Proof. In this case A = k[Γ] = k[z] - the polynomial ring in one variable z. Since k[z]

is Euclidean

En(A) = SLn(A)

and the result follows.

Remark 2.2.6. Even if A is a principal ideal domain(PID), in general En(A) is not

equal to SLn(A).
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Definition 2.2.7. A PID A is called special if En(A) = SLn(A).

Theorem 2.2.8. [Lam06] Let A be a special PID and S ⊂ A be a multiplicatively

closed subset. Then the localization S−1A is a special PID.

Definition 2.2.9. A curve which is birationally equivalent to a line is called a ra-

tional curve.

Corollary 2.2.10. If Γ is a rational curve with A = k[Γ], then the group G generates

SLn(A).

Proof. A is a localization of the polynomial ring in one variable.
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2.3 One Property of Pullbacks

Synopsis In this section we prove an auxiliary result that we will use in Chapter

2.4, where we solve the extension problem for the case of the conormal bundle. More

specifically, we consider a smooth once punctured curve Γ in our flexible varietyX, and

a partial quotient morphism ρδ, corresponding to some locally nilpotent derivation δ.

We can remove a finitely many points S from Γ, and obtain an isomorphism of Γ−S

onto its image under the morphism ρδ. The main result, which is the Theorem 2.3.1,

says the following: every regular function on Γ, that vanishes on S with high enough

multiplicity, is a pullback of a regular function on the curve Γδ, which is the image of

Γ under the partial quotient morphism ρδ.

Let Γ be a smooth once punctured curve in a flexible variety X, and

ρδ : X → Qδ

be a partial quotient morphism associated with a locally nilpotent derivation δ.Denote

Γδ := ρδ(Γ)

to be the image of Γ. We have the following commutative diagram

Γ X

Γδ Qδ

ρδ ρδ (2.21)

After removing a finitely many points, denote this subset of points by S, from our

curve Γ, we have an isomorphism

ρδ

∣∣∣
Γ?

: Γ?
∼−→ Γ?δ ,

where Γ? = Γ − S and Γ?δ = ρδ(Γ
?) are the Zariski open and dense subsets of Γ and

Γδ correspondingly. Thus we are given the following commutative diagram:

Γ∗ Γ X

Γ∗δ Γδ Qδ

' ρδ ρδ (2.22)

Our aim is to prove the following theorem:
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Theorem 2.3.1. There exists a natural number m0 such that for every m ≥ m0 and

every regular function f ∈ k[Γ], that vanishes at every point x ∈ S = Γ − Γ? with

multiplicity m, it follows that

f ∈ ρ? (k[Γδ]) (2.23)

First consider the case when k = C is the field of complex numbers. We start

with the following proposition, which is given here because of lack of references.

Proposition 2.3.2. Let

ρ : ∆→ V

be a bijective holomorphic map, where ∆ = {z : |z| < 1} - unit disc on the complex

plane and V ⊂ Cn is a closed affine curve with y being the only singular point of

V . Then there exists a natural number m0 such that for every m ≥ m0 and every

holomorphic function f ∈ Hol(∆) with the property that f(0) = 0 with multiplicity

m, it follows that that

f = f̃ ◦ ρ

with f̃ ∈ Hol(V ) being holomorphic.

Proof. The map ρ induces the inclusion of rings

ρ? : Hol(V ) ↪→ Hol(∆).

Let µ̃ ⊂ Hol(V ) be the maximal ideal of the point y and

µ := ρ?(µ̃)

be its image in Hol(∆). Consider the semigroup Π ⊂ N, defined by the following

property:

∀l ∈ Π ∀f ∈ Hol(∆), f(0) = 0with order l, =⇒ f ∈ µ

We have to prove the following:

∃m0 ∈ Π ∀m ≥ m0 =⇒ m ∈ Π
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Case 1: gcd(Π) = 1.

Then there exist r, l ∈ Π with gcd(r, l) = 1. Every m ≥ m0 := rl can be written

as m = ar+ bl with a, b ∈ N. Let f ∈ Hol(∆) and f(0) = 0 with multiplicity m. Then

locally around 0

f(z) = zmg(z),

with g(0) 6= 0. Write

f(z) = z(ar+bl)g(z) = (zr)a(zlg1(z))b,

with g1(z) = (g(z))1/b. We have

zr = ρ?(f̃r), zlg1(z) = ρ?(f̃l),

for some f̃r, f̃l ∈ µ̃. Finally

ρ?
(
f̃ar f̃

b
l

)
=
(
ρ?(f̃r)

)a (
ρ?(f̃l)

)b
= (zr)a(zlg1(z))b = f(z).

Case 2: gcd(Π) = d > 1.

Let ϕ1(z) have zero of order k at the origin, then k = k0d for some k0 ∈ N and

ϕ1(z) = zkh(z), with h(z) ∈ Hol(∆) and h(0) 6= 0.

Now

ρ(z) = (ϕ1(z), . . . , ϕn(z)),

with ϕi(z) ∈ Hol(∆), i = 1, . . . , n. We can assume that ϕ1(z) = zk. This is because

in some open disc ∆ε with sufficiently small radius ε around the origin h(z) 6= 0 for

every z ∈ ∆ε. By the inverse function theorem z = g(ξ) - a biholomrphic function

and we can take the domain for ξ to be ∆ = {ξ : |ξ| < 1}. Then for

ρ1(ξ) := ρ ◦ g(ξ) = (ψ1(ξ), . . . , ψn(ξ))

we have ρ(z) = ρ1(ξ) and ψ1(ξ) = ξk. Now for at leas one j ∈ 2, . . . , n,

ϕj(z) = ajdpz
dp + . . .+ ajiz

i + . . .
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has nonzero coefficient aji 6= 0 with index i which is not divisible by d because oth-

erwise we would have that ρ is a function of zd and this would contradict to the

bijectivity of ρ. Hence there exist functions in µ which have in its Taylor’s series

nonzero coefficients with index non-divisible by d. Consider one such a function

f(z) = ads0z
ds0 + . . .+ aiz

i + . . . ∈ µ

with index t for which at 6= 0, d does not divide t and t − ds0 is minimal. Without

loss of generality we can put ads0 = 1 since the function f(z)/ads0 ∈ µ will have the

same index t with the same properties as above. Now consider the function

f(z)k0 − ϕs01 (z) ∈ µ

We have two possibilities: either at is the next nonzero coefficient after ads0 in f(z)

in which case

f(z)k0 − ϕs01 (z) = (zds0 + atz
t + . . .)k0 − zdk0s0 = atz

ds0(k0−1)+t + . . .

has zero of order ds0(k0−1)+t which is not divisible by d and we have a contradiction,

or ads1 is the next nonzero coefficient after ads0 in f(z) in which case

f(z)k0 − ϕs01 (z) = (zds0 + ads1z
ds1 . . .+ atz

t + . . .)k0 − zdk0s0 =

= ads1z
ds0(k0−1)+ds1 + . . .+ atz

ds0(k0−1)+t + . . .

and

ds0(k0 − 1) + t− ds0(k0 − 1)− ds1 = t− ds1 < t− ds0

- a contradiction. This proves the proposition.

Theorem 2.3.3. [Kal91] Let V be an algebraic variety and f - a rational function

on V. If f is holomorphic in a neighborhood of a point p ∈ V then f is regular at p.

Now we are ready for the proof of the Theorem 2.3.1
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proof of Theorem 2.3.1. Let xδ ∈ Γδ−Γ?δ , then ρ−1(xδ) = {x1, . . . , xk} since Γ is once

punctured. Choose a ball B ⊂ Cn so that xδ ∈ B ∩ (Γδ − Γ?δ) and

Γδ ∩B =
k∑
i=1

Vi,

with each Vi being an irreducible analytic set. That is, Vi is a bijective holomorphic

image of the unit disc ∆ on a complex plane, so we have the normalizations

νi : ∆→ Vi

We can choose analytic neighborhoods Ui around of each point xi, i = 1, . . . , k, so

that

λi : Ui → ∆

is a biholomorphism. By the universal property of normalization these biholomor-

phisms can be chosen so that

ρδ

∣∣∣
Ui

= ν ′i := νi ◦ λi : Ui → Vi.

Consider functions g̃1, . . . , g̃k ∈ Hol(Γδ ∩B) such that

g̃j

∣∣∣∣∣∣ k⋃
i=1,i 6=j

Vi

= 0 and g̃j

∣∣∣∣∣∣
Vj

6= 0.

Then the holomorphic functions

gj := (ν ′j)
?(g̃j)

have zero of some order nj at the point xj. By the proposition 2.3.2

∃mj ∈ N ∀m ≥ mj ∀h ∈ Hol(Uj),

such that h(xj) = 0 with multiplicity m. It follows that

h = (ν ′j)
?(h̃),
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with h̃ ∈ Hol(Vj). Define

m0 = max{m1 + n1, . . . ,mk + nk}.

Consider the function f ∈ k[Γ] which vanishes on Γ − Γ? with multiplicity m ≥ m0.

The inclusion

ρ?δ : C[Γδ] ↪→ C[Γ]

and the isomorphism

ρδ

∣∣∣
Γ?

: Γ?
∼−→ Γ?δ

imply that

f = ρ?δ(f
′), with f ′ ∈ C(Γδ).

Consider

fj := f/gj ∈ Hol(Uj),

then fj(xj) = 0 with multiplicity m− nj ≥ mj, hence

fj = (ν ′j)
?(f̃j), with f̃j ∈ Hol(Vj).

Define

f̃ :=
k∑
i=1

g̃j f̃j,

then

f̃ = (ρδ)?(f) = f ′.

The Theorem 2.3.1 now implies that f ′ is regular at xδ. Since we have finitely many

xδ ∈ Γδ − Γ?δ our theorem is proved for the case k = C. The case of the general k

follows from the Lefshitz principle.
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2.4 Solution of the Extension Problem for the Conor-

mal Bundles

Synopsis In this chapter, using the results of Chapters 2.2 and 2.3, we give the

solution to the extension problem for the conormal bundle of the curve Γ.

Let Γ be a smooth once punctured curve with a trivial normal bundle NΓ in

a flexible variety X, with dim(X) ≥ 4. For convenience we put dim(X) = n + 1,

n ∈ N. Denote A := k[Γ] to be the ring of regular functions of our curve Γ, and

v̄ := {v1, . . . , vn} to be a global basis for the normal bundle NΓ . Consider some

partial quotient morphism

ρ : X → Q

Choose a point zo ∈ Γ. The following follows from the paper [Kal17] (the Theorem

4.2 in this paper): there exists an algebraic family of locally nilpotent derivations

{δα|α ∈ A} such that for every α ∈ A there exists a smooth neighborhood U ′α of

zα := ρα(zo) in Qα := ρα(X) such that we have the natural isomorphism

ρ−1
α (U ′α) ' U ′α × C.

Since our curve is once punctured, it follows that

ρα(Γ) = ρα(Γ)

with ρα(Γ) being the Zariski closure of ρα(Γ). Denote

Γα := ρα(Γ), V ′α = Γα ∩ U ′α, Vα = ρ−1
α (V ′α) ∩ Γ.

The morphism

ρα

∣∣∣
Vα

: Vα → V ′α

is an isomorphism. We can choose α1, . . . , αn+1 ∈ A such that the corresponding

locally nilpotent derivations {δαi
∣∣∣
zo
|i = 1, . . . , n + 1} form a basis of the tangent

space Tzo(X) of X at the point z0.
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For simplicity we will denote

Vi := Vαi , δi := δαi , ρi := ραi , Γi := Γαi .

Set

Γ? :=
n+1⋂
i=1

Vi, Γ∗i = ρi(Γ
∗).

Then we have an isomorphism

ρi

∣∣∣
Γ∗

: Γ∗ → Γ∗i

for each i = 1, . . . , n+ 1. Now δ1, . . . , δn+1 generate sections of the normal bundle

NΓ = TX
∣∣∣
Γ
/TΓ

of the curve Γ, and reducing Γ∗ further if necessary, we can suppose that

δ̄ := {δ1, . . . , δn}

form a basis of NΓ
∣∣∣
Γ∗
. Then

δ̄ = C1v̄,

where C1 is an n× n matrix with coefficients cij in the ring A.

Remark 2.4.1. C1

∣∣∣
Γ∗

is invertible.

For each locally nilpotent derivation δi consider the corresponding partial quotient

morphism

ρi : X → Qi

Let f̃ , h̃ be regular functions in the ring k[Qi] with f̃
∣∣∣
Γi

= 0. Denote

h′ := ρ∗i (h̃), f ′ := ρ∗i (f̃)

be their pullbacks in the ring k[X], and denote

h := ι?(h′), f := ι?(f ′)
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the pullbacks under the inclusion

ι : Γ ↪→ X

Since

ρ∗i (k[Qi]) = ker δi

then h′f ′δi is a locally nilpotent derivation. Hence we can consider the vector flows

for the automorphisms

Φi = exp(h′f ′δi). (2.24)

The following Lemma describes the map of the tangent space of X at a certain point

p ∈ X under the automorphism Φ = exp(fδ) :

Lemma 2.4.2. [AFK+13] Let δ ∈ LNDk(A), X = Spec(A), p ∈ X, f ∈ ker δ,

f(p) = 0, and Φ = exp(fδ). Then for every w ∈ TpX :

dpΦ(w) = w + df(w)δ(p). (2.25)

Using the formula (2.25), we can describe the phase flows of the automorphisms

(2.24). Say for i = 1, we have:

δ1 → δ1

δ2 → δ2 + t[h′δ2(f ′) + f ′δ2(h′)]δ1

...

δn → δn + t[h′δn(f ′) + f ′δn(h′)]δ1.

Taking the restriction to the curve Γ and taking into the account that f̃
∣∣∣
Γi

= 0, which

implies f = 0, we obtain

δ1 → δ1

δ2 → δ2 + th
[
δ2(f ′)

∣∣∣
Γ

]
δ1

...

δn → δn + th
[
δn(f ′)

∣∣∣
Γ

]
δ1.
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Remark 2.4.3. The advantage of this flow is that it fixes every point of Γ, but not

the action on the normal bundle NΓ .

Now let f̃1, . . . , f̃k, k ≥ n, be generators of the defining ideal of Γ1 in k[Q1], and

let h̃1, . . . , h̃k be any regular functions in the ring k[Q1]. As above, we denote by

h′j := ρ∗1(h̃j), f ′j := ρ∗1(f̃j),

their pullbacks in the ring k[X] and by

hj := ι?(h′j), fj := ι?(f ′j)

the pullbacks in the coordinate ring k[Γ]. Then the phase flow of the composition

Φ1 ◦ · · · ◦ Φk = exp(h′1f
′
1δ1) ◦ . . . ◦ exp(h′kf

′
kδ1)

on the curve Γ is given by:

δ1 → δ1

δ2 → δ2 + t
k∑
j=1

hj

[
δ2(f ′j)

∣∣∣
Γ

]
δ1

...

δn → δn + t
k∑
j=1

hj

[
δn(f ′j)

∣∣∣
Γ

]
δ1.

(2.26)

Reducing Γ∗ further we can suppose that the matrix

D1 :=

([
δi(f

′
j)
∣∣∣
Γ

])j=1,...,n−1

i=2,...,n

is invertible over Γ∗. For a given vector

~d = F


d1

d2

...

dn−1

 , with di ∈ A, i = 1, . . . , n− 1,
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and F ∈ A, such that F vanishes on the points Γ−Γ? with high multiplicity m, define
h1

h2

...

hn−1

 := adj(D1)F


d1

d2

...

dn−1


From here it follows that each function hi vanishes on Γ− Γ? with some multiplicity

mi ≥ m. It follows throm the Theorem 2.3.1 of Chapter 2.3, that each such function

is a pullback(under ρi ◦ ι) of a function h̃i ∈ k[Q1]. Then

D1


h1

h2

...

hn−1

 = det(D1)F


d1

d2

...

dn−1


and by (2.26) we have

δ1 → δ1

δ2 → δ2 + t(F det(D1))d1δ1

...

δn → δn + t(F det(D1))dn−1δ1.

In particular if we take
d1

d2

...

dn−1

 = g


1

0
...

0

 , . . . ,

d1

d2

...

dn−1

 = g


0

0
...

1


with g being any function from A, we will have for δ̄ the standard elementary trans-

formation of the form

δ̄ → (Id+ g det(D1)εk1)δ̄, k = 2, . . . , n.
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In the same way we can consider the phase flows for i = 2, . . . , n and we will obtain

the standard elementary transformations

δ̄ → (Id+ g det(Di)εki)δ̄, k = 1, . . . , î, . . . , n.

All these together imply that we have all standard elementary transformations

δ̄ →

Id+ g

 n∏
k=1

det(Dk)

εij
 δ̄,

Considering all removed points and removing more if necessary, we may assume that

the removed points are given by zeros V (q1) of a regular function q1 ∈ A. Thus we

have for δ̄ all standard elementary transformations En(A, (q1)) with coefficients in the

principal ideal (q1).

Remark 2.4.4.
n∏
i=1

detDi divides q1.

Remark 2.4.5.

detC1 divides q1.

Next, we are going to use the following theorem, which is a special case of the

Theorem 6.1 in the paper [Kal17], under our assumptions for X and Γ :

Theorem 2.4.6. [Kal17], Given a partial quotient morphism

ρδ : X → Q,

associated with a locally nilpotent derivation δ, and a finite subset of points S in Γ,

there exists a connected algebraic family A of automorphisms, such that for a general

element α ∈ A and for the closure Γ̄′α of Γ′α = ρδ ◦ α(Γ) in Q, one can find a

neighborhood V ′δ of ρδ(α(S)) such that for Vδ = ρ−1
δ (V ′δ ) ∩ α(Γ), the morphism

ρδ

∣∣∣
Vδ

: Vδ → V ′δ

is an isomorphism.
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This theorem and all the reasoning of this chapter above, imply that for a set

of finite points S = V (q1), we can find a neighborhood Γ − V (q2), with q2 ∈ A,

V (q1)∩V (q2) = ∅, and locally nilpotent derivations ∂1, . . . , ∂n, which form a basis for

the normal basis NΓ on this neighborhood Γ − V (q2). Thus for ∂̄ = {∂1, . . . , ∂n} we

have the q2− standard elementary transformations En(A, (q2)). Now by the Theorem

2.2.3, we can generate all the elementary transformations En(A) of our global bases

v̄, and we have proved the following theorem:

Theorem 2.4.7. Let Γ be a smooth once punctured curve with a trivial normal basis

in a flexible variety X, with dim(X) ≥ 4. Denote by I the ideal of Γ in k[X], and

suppose that the coordinate ring A = k[Γ] satisfies the condition En(A) = SLn(A).

Then every SLn(A) automorphism of the normal bundle NΓ, equivalently every SLn(A)

automorphism

ᾱ :
I

I2

∼−→ I

I2

of the conormal bundle I/I2 of Γ, that induces the identity map on Γ, is induced by

a global automorphism of the ambient space X.

Corollary 2.4.8. Let Γ be a line in a flexible variety X, with dim(X) ≥ 4. Then

every SLn(A) automorphism

ᾱ :
I

I2

∼−→ I

I2

of the conormal bundle of Γ, that induces the identity map on Γ, is induced by a global

automorphism of the ambient space X.
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2.5 Solution of the Extension Problem for Jet Bun-

dles

Synopsis In this last chapter, we prove the extension problem for the case of a

general jet bundle. We summaries our result, which lead to the proof of the two main

theorems of the theses: the Theorem 1.2.8 and the Theorem 1.2.9.

Definition 2.5.1. Let X be a quasi-affine algebraic variety and Y ⊂ X be a closed

subvariety. Let k ∈ N be the minimal natural number for which there exist regular

functions f1, . . . , fk ∈ k[X] that generate the ideal IY of the subvariety Y :

IY = (f1, . . . , fk).

Y is called a strict complete intersection if

k = dim(X)− dim(Y ).

Theorem 2.5.2. (Serre) [Kem80] Let F be a quasi-coherent sheaf on an affine

scheme X. Then H i(X,F) = 0 for i ≥ 1.

Let X be a flexible variety of dimension dim(X) = n+ 1 ≥ 4. Consider a smooth

once punctured curve Γ in X, with a defining ideal

I = (f1, . . . , fk),

whose conormal bundle I/I2 is trivial. First we prove the following theorem.

Theorem 2.5.3. Let X be a quasi-affine algebraic variety and Y ⊂ X be a closed

subvariety witha a trivial conormal bundle IY /I2
Y . There exists a Zariski open neigh-

borhood U of X, containing Y, in which Y is a strict complete intersection:

JY = (h1, . . . , hk),

with JY - the ideal of Y in U, k = codimX Y. Furthermore, we can choose h1, . . . , hk

to be in the coordinate ring k[X].
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Proof. Given a cover {Ui} of X, denote Ii = IY |Ui and Iil = IY |Ui∩Ul . Since the

conormal bundle is trivial, there exists a cover {Ui} of X, there exist f ji ∈ k[Ui],

i = 1, . . . , N, j = 1, . . . , k, such that f i ∈ Ii and

f ji + I2
i = vj

∣∣∣
Ui

+ I2
i .

Hence

f ji

∣∣∣
Ui∩Ul

− f jl
∣∣∣
Ui∩Ul

∈ I2
il

Consider gjil ∈ k[Ui ∩ Uj] with

gjil := f ji

∣∣∣
Ui∩Ul

− f jl
∣∣∣
Ui∩Ul

.

Hence gjil ∈ J2
ij and {gjil} is a 1-cocycle. By Theorem 2.5.2 there exist a collection

gji ∈ k[Ui] such that gji ∈ I2
i and

gjil = gji

∣∣∣
Ui∩Ul

− gjl
∣∣∣
Ui∩Ul

.

Now define the functions in hji ∈ k[Ui] as

hji = f ji − g
j
i .

Note that hji ∈ Ii, and {h
j
l } agree on {Ui ∩ Ul}, and moreover

hj
∣∣∣
Ui

+ I2
i = f ji + I2

i = vj
∣∣∣
Ui

+ I2
i .

Hence {hji} define a global function hj ∈ k[X] with hj ∈ IY , and moreover

hj + I2
Y = vj + I2

Y . (2.27)

Which means that {h1 + I2
Y , . . . , h

k + I2
Y } generate IY /I2

Y . Nevertheless {h1, . . . , hk}

may not generate IY since their zero locus

Y ′ = V (h1, . . . , hk).

may have points outside of Y :

Y ′ = Y ∪ Z,
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with Z being the other components of Y ′. Since {h1+I2
Y , . . . , h

k+I2
Y } generate IY /I2

Y ,

it follows that Y and Z do not intersect:

Φ−1(0) = Y ′ = Y t Z.

Next, consider a function q ∈ k[X] which is 0 on Z and 1 on Y, and define a neigh-

borhood U of X as

U = X − q−1(0).

The map

ϕ : U
(h1|U ,...,hk|U )−−−−−−−−→ kn

is a submersion and Γ = ϕ−1(0), which implies that the ideal JY of Y in U is generated

by h1|U , . . . , hk|U .

This theorem implies that we have the isomorphism JY /J
m+1
Y ' IY /I

m+1
Y . And

since we proved the case of the conormal bundle IY /I2
Y in the previous chapter, the

isomorphism JY /J
m+1
Y ' IY /I

m+1
Y allows us to treat our curve Γ in question as a

strict complete intersection curve.

Next, in addition to the notations from Chapter 2.1, we will use the following

notations

• R := k[X]

• A := k[Γ] = k[X]
I

• Rm := k[X]
Im+1 , in particular R0 = A

• Īm := I
Im+1

• J̄m := Im

Im+1

• AutΓ(Īm) :=
{
ᾱ ∈ Aut(Īm)

∣∣∣α0 = idA

}
• AutΓ(R) :=

{
α ∈ Aut(R)

∣∣∣α0 = idA

}
• G(Īm) :=

{
ᾱ ∈ AutΓ(Īm)

∣∣∣ ∃β ∈ AutΓ(R) with β̄ = ᾱ
}
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Consider the A− module isomorphisms

I ' Ī1 ⊕ J̄2 ⊕ . . .⊕ J̄j ⊕ . . . ,

Īm ' Ī1 ⊕ J̄2 ⊕ . . .⊕ J̄m,
(2.28)

together with the natural projections defined by them. Every ᾱ ∈ AutΓ(Īm) is induced

by some isomorphism ᾰ : I
∼−→ I. Consider the commutative diagram

I I

Īm Īm J̄j

πm

ᾰ

πm

ᾱ ηj

(2.29)

with πm and ηj being the natural projections coming from (2.28).

Remark 2.5.4. It follows from the diagram above that the image of πm ◦ ᾰ does not

depend on the choice of ᾰ and is completely determined by ᾱ. In particular, for ᾱ−1

we can choose ᾰ−1 as the corresponding representative.

Since I is a free A− module on n generators u1, . . . , un, I ' An, ᾰ and πm ◦ ᾰ

is described by where they sends the generators, and in the view of the isomorphism

(2.28) we get:

ᾰ(ui) = H i(u1, . . . , un)

with H i - a polynomial in u1, . . . , un with coefficients in A,

πm ◦ ᾰ(ui) = F i(u1, . . . , un),

with F i = H i mod Im+1 - a polynomial of degree less than or equal to m,

ηj ◦ πm ◦ ᾰ(ui) = F i
j (u1, . . . , un). (2.30)

with F i
j (u1, . . . , un)− the homogeneous component of F i(u1, . . . , un) of degree j. De-

note

Jac(α) = det

∂H i

∂uj


- the jacobian of the Jacobi matrix

J ~H(~u) =
[
∂H i/∂uj

]j=1,...,n

i=1,...,n
.

Additionally, we are going to use the notations introduced in the subsection 1.3.4.



56

Remark 2.5.5. For
~F (~u) = ~H(~u) mod Im+1

it follows

J ~F (~u) = J ~H(~u) mod Im,

hence

Jac(α) mod Im = det

∂F i

∂uj

 mod Im

Our aim is to prove the following theorem

Theorem 2.5.6. Let Γ be a smooth once punctured curve with a trivial normal basis

in a flexible variety X, with dim(X) ≥ 4, and suppose that En(A) = SLn(A). Then

given ᾱ ∈ AutΓ(Īm) with

Jac(ᾰ) = 1 mod Im (2.31)

it follows that ᾱ ∈ G(Īm), i.e. ᾱ is induced by a global automorphism.

First, from now on, we consider the elements of ᾱ ∈ AutΓ(Īm) that satisfy the

condition (2.31). Second, note that for m = 1 the polynomials F 1(~u), . . . , F n(~u) are

linear, hence J ~F (~u) is a constant matrix a with coefficients in A. And Jac(ᾰ) = 1

mod Im implies a ∈ SLn(A). Thus for m = 1 the theorem 2.5.6 is just the Theorem

2.4.7 in Chapter 2.4. Before we start the proof of this theorem, we state an obvious

corollary:

Corollary 2.5.7. Let Γ be a line in a flexible variety X, with dim(X) ≥ 4. Then

given ᾱ ∈ AutΓ(Īm) with

Jac(ᾰ) = 1 mod Im (2.32)

it follows that ᾱ is induced by a global automorphism of the ambient space X.

Now we start the proof of the Theorem 2.5.6 by the sequence of contractions,

lemmas, propositions and theorems presented below. Consider the projections

θj : AutΓ(Īm)→ { maps F1 → Fj},
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defined from (2.30) with

θj(ᾱ) : (u1, . . . , un) 7→ (F 1
j (~u), . . . , F n

j (~u)).

For m = 1 given ᾱ ∈ AutΓ(Ī1), θ1(ᾱ) is given by a matrix a ∈ SLn(A), which defines

the isomorphism

ᾱ :
I

I2
→ I

I2

in terms of the bases {u1 +I2, . . . , un+I2}. For m ≥ 2 consider AutΓ
m(Īm) ⊂ AutΓ(Īm)

defined as

AutΓ
m(Īm) :=

{
ᾱ ∈ AutΓ(Īm)

∣∣∣ θ1(ᾱ) = ~u and θj(ᾱ) = 0 for 2 ≤ j ≤ m− 1
}

In other words,

ᾰ(~u) mod Im+1 = ~F (~u) = ~u+ ~Fm(~u) (2.33)

Lemma 2.5.8. Given ᾱ ∈ AutΓ
m(Īm) with ᾰ(~u) as in (2.33)

Jac(ᾰ) = 1 mod Im

if and only if div(~Fm) = 0.

Proof.

J ~F (~u) = Id+ J ~Fm(~u). (2.34)

Since
∂F i

m(ū)

∂uj

∂F k
m(ū)

∂ul
∈ I2m−2,

and I2m−2 ⊂ Im for m ≥ 2, we have

Jac(ᾰ) mod Im = det(Id+ J ~Fm(ū)) mod Im =

= 1 + tr(J ~Fm(~u)) = 1 + div(~Fm),

and the result follows.

Proposition 2.5.9. Let ᾱ ∈ AutΓ(Īm) and γ̄ ∈ AutΓ
m(Īm). Then we have the follow-

ing
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(a) θj(ᾱ ◦ γ̄) = θj(ᾱ) for j ≤ m− 1,

(b) θm(ᾱ ◦ γ̄) = θm(ᾱ) + θ1(ᾱ) ◦ θm(γ̄),

(c) θm(γ̄ ◦ ᾱ) = θm(ᾱ) + θm(γ̄ ◦ θ1(ᾱ)).

Proof. Given

ᾰ(~u) mod Im+1 = ~F (~u) = ~F1(~u) + . . .+ ~Fm(~u)

and

γ̆(~u) mod Im+1 = ~u+ ~Pm(~u)

we have
(ᾰ ◦ γ̆)(~u) mod Im+1 = ~F (~u+ ~Pm(~u)) mod Im+1 =

= ~F1(~u+ ~Pm(~u)) +
m∑
j=2

~Fj(~u+ ~Pm(~u)) mod Im+1 =

= ~F1(~u) + ~F1(~Pm(~u)) +
m∑
j=2

~Fj(~u) =

= ~F1(~u) + . . .+ ~Fm−1(~u) + (~Fm(~u) + ~F1(~Pm(~u)))

which proves parts (a) and (b). Next,

(γ̆ ◦ ᾰ)(~u) mod Im+1 = ~F (~u) + ~Pm(~F1(~u) + . . .+ ~Fm(~u)) mod Im+1 =

= F̄ (~u) + ~Pm(~F1(~u)),

which proves part (c).

Corollary 2.5.10. If ᾱ, γ̄ ∈ AutΓ
m(Īm), then

θm(ᾱ ◦ γ̄) = θm(γ̄ ◦ ᾱ) = θm(ᾱ) + θm(γ̄).

Proof. Since θ1(ᾱ) is the identity, we have

θm(ᾱ ◦ γ̄) = θm(ᾱ) + θ1(ᾱ) ◦ θm(γ̄) = θm(ᾱ) + θm(γ̄).
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Proposition 2.5.11. Given ᾱ ∈ AutΓ(Īm) and γ̄ ∈ AutΓ
m(Īm), it follows that

ᾱ−1 ◦ γ̄ ◦ ᾱ ∈ AutΓ
m(Īm),

and moreover

θm(ᾱ−1 ◦ γ̄ ◦ ᾱ) = θ−1
1 (ᾱ) ◦ θm(γ̄ ◦ θ1(ᾱ)). (2.35)

Proof. First note that for any ᾱ, β̄ ∈ AutΓ(Īm), it follows that

θ1(ᾱ ◦ β̄) = θ1(ᾱ) ◦ θ1(β̄).

which in particular implies

θ1(ᾱ−1) = θ−1
1 (ᾱ).

Next, denote δ̄ := ᾱ−1 ◦ γ̄ ◦ ᾱ, then

ᾱ ◦ δ̄ = γ̄ ◦ ᾱ (2.36)

For j = 1

θ1(δ̄) = θ1(ᾱ−1) ◦ θ1(γ̄) ◦ θ1(ᾱ) = θ−1
1 (ᾱ) ◦ id ◦θ1(ᾱ) = id .

Next consider
ᾰ(~u) = ~F (~u) = ~F1(~u) + . . .+ ~Fm(~u),

ᾰ−1(~u) = ~H(~u) = ~H1(~u) + . . .+ ~Hm(~u),

γ̆(~u) = ~u+ ~Pm(~u),

then for j = 2, . . . ,m− 1,

θj(δ̄) = θj(ᾱ
−1 ◦ γ̄ ◦ ᾱ) = θj

(
~H[~F (~u) + ~Pm(~F (~u))]

)
=

= θj

(
~H[~F (~u)]

)
= θj(~u) = 0,

therefore δ̄ ∈ AutΓ
m(Rm). Finally, applying the Proposition 2.5.9 part (b) to ᾱ ◦ δ̄ and

part (c) to γ̄ ◦ ᾱ, and using the equality (2.36) we obtain

θm(ᾱ) + θ1(ᾱ) ◦ θm(δ̄) = θm(ᾱ) + θm(γ̄ ◦ θ1(ᾱ)) =⇒

=⇒ θm(δ̄) = θ−1
1 (ᾱ) ◦ θm(γ̄ ◦ θ1(ᾱ)).
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Remark 2.5.12. As mentioned before, θ1(ᾱ) is given by a matrix a ∈ SLn(A), hence

the formula (2.35) the representation (1.18).

Lemma 2.5.13. There exists ᾱ ∈ AutΓ
m(Īm)∩G(Īm), ᾱ 6= id, such that for every h ∈

A and ᾱh ∈ AutΓ
m(Īm), defined by θm(ᾱh) = hθm(ᾱ), it follows that ᾱh ∈ AutΓ

m(Īm) ∩

G(Īm).

Proof. Consider a locally nilpotent derivation δ, and a regular function f ∈ ker δ that

vanishes on Γ with multiplicity one, and a global automorphism

Φ = exp(fmδ).

We have

Φ(ui) = ui + fmδ(ui) = ui + gif
m mod Im+1

with gi ∈ A, and for at least one i, gi 6∈ I. For

~Φm(~u) = (g1f
m, . . . , gnf

m)

we have

div(~Φm(~u)) = g1
fm

∂u1

+ . . .+ gn
fm

∂un
= δ(fm) = 0.

Hence ᾱ, induced by Φ, satisfies ᾱ ∈ AutΓ
m(Īm) ∩G(Īm), ᾱ 6= id. Now for any h ∈ A,

conditions on ᾱh imply

ᾰh(ui) = ui + hgif
m mod Im+1

which is induced by Φh := exp(hfmδ), and the result follows.

We will need the following two well known propositions from the commutative

algebra, that are presented below, to prove the main theorem of this chapter.

Proposition 2.5.14. [Ati18] Let B be a local ring with maximal ideal µ. Let M be

a finitely generated B module and xi, i = 1, . . . , n, be elements of M whose images in

M/µM form a basis of this vector space. Then xi generate M.
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Proposition 2.5.15. [Ati18] Let

ϕ : N →M

be an A - module homomorphism. The following are equivalent

(i) ϕ is an isomorphism

(ii) ϕρ : Nρ →Mρ is an isomorphism for each prime ideal ρ.

(iii) ϕµ : Nµ →Mµ is an isomorphism for each maximal ideal µ.

Denote M := F0
m, and let N be the submodule of M, whose elements come from

global automorphisms.

Theorem 2.5.16. The following holds

N = M.

Proof. Consider the representation (1.18). For every point x on the curve Γ with

maximal ideal µx in the ring A we have the induced representation of the localization

Mµx

φ1 : SLn(Aµx)→ Aut(Mµx), (2.37)

which in turn induces the residual representation

φ2 : SLn

(
Aµx
µxAµx

)
→ Aut

(
Mµx

µxMµx

)
. (2.38)

Construct ᾱ as in Lemma 2.5.13, with θm(ᾱ)(~u) = ~Φm(~u), and

Φ(ui) = ui + fmδ(ui) mod Im+1

For each point x ∈ Γ we can take a locally nilpotent derivation δ so that ~Φm(~u) gives

a nonzero element in Mµx/µxMµx . Since the Aµx/µxAµx is a field, the proposition

1.3.63 gives us that the representation (2.38) is irreducible. Hence,

Nµx

µxNµx

=
Mµx

µxMµx

,
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and the Proposition 2.5.14 implies that

Nµx = Mµx

for every x ∈ Γ. From here the proposition 2.5.15 gives

N = M.

Theorem 2.5.17. Given ~Fm(~u) ∈ F0
m there exists τ̄ ∈ AutΓ

m(Īm) ∩G(Īm) such that

θm(τ̄) = ~Fm(~u)

Proof. Let ᾱ and ᾱh, for h ∈ A, be as in Lemma 2.5.13. By Theorem 2.5.16 there

exist h1, . . . , hk ∈ A, and a1, . . . , ak ∈ SLn(A) such that

~Fm(~u) = h1a1.θm(ᾱ) + . . . hkak.θm(ᾱ),

There exists global automorphisms that induce some γ̄i ∈ AutΓ(Īm) ∩ G(Īm) with

θ1(γ̄i) = ai. Define

τ̄ = (γ̄−1
1 ◦ ᾱh1 ◦ γ̄1) ◦ . . . ◦ (γ̄−1

k ◦ ᾱhk ◦ γ̄k)

Note that τ̄ ∈ G(Īm), and τ̄ ∈ AutΓ
m(Īm) by Proposition 2.5.11. Moreover

θm(τ̄) = θm(γ̄−1
1 ◦ ᾱh1 ◦ γ̄1) + . . .+ θm(γ̄−1

k ◦ ᾱhk ◦ γ̄k) =

= h1a1.θm(ᾱ) + . . . hkak.θm(ᾱ) = θm(β̄).

Corollary 2.5.18. AutΓ
m(Īm) ⊂ G(Īm).

Theorem 2.5.19. The following holds

AutΓ(Īm) ⊂ G(Īm)
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Proof. We know that the result is true for m = 1. From here we proceed by induction.

Suppose

AutΓ(Īm−1) ⊂ G(Īm−1)

and consider β̄ ∈ AutΓ(Īm). By induction hypothesis there exists a global automor-

phism that induces some

γ̄ ∈ AutΓ(Īm) ∩G(Īm)

with

θj(γ̄) = θj(β̄), j = 1, . . . ,m− 1.

Define

λ̄ := β̄ ◦ γ̄−1 =⇒ λ̄ ◦ γ̄ = β̄

Since

θj(γ̄) = θj(β̄), j = 1, . . . ,m− 1,

it follows that λ̄ ∈ AutΓ
m(Īm). By Corollary 2.5.18 λ̄ ∈ G(Īm), hence

β̄ = λ̄ ◦ γ̄ ∈ G(Īm).

Thus we have proved the Theorem 2.5.6, which is a special case of the Theorem

1.2.8 when we consider only one curve Γ in X. And the Theorem 1.2.8 in its gen-

eral statement, where we consider several curves, follows immediately by a simple

induction argument with combination with the Example 1.3.37.
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