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Historically, the notion of generation time was first introduced by Rouquier

[Rou08], in his approach to Representation Theory. Then Orlov [Orl09b]

generalized this idea to the notion of Orlov Spectrum, by considering generation

times over all possible generators. Later in the work of Ballard, Favero and

Katzarkov [BFK12], it appears that this invariant carries deep geometric

information and it is connected to Birational Geometry. In this thesis we

will consider in the case of singularity category of type A and this category

with restricted generations. After realizing them combinatorially we use the

combinatorics to calculate the spectra of them. This is the baby procedure of

creating noncommutative base loci. We will introduce the notion of categorical

Okounkov body to analyze this categorical base loci and demonstrate on the An

example that jump numbers for categorical multiplier ideal sheaves are the Orlov

spectra. The connection established above shall lead to an analogy with the

classical Hodge theory.
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Chapter 1

Introduction

Orlov Spectrum is an invariant of a triangulated category1. Historically, the

notion of generation time was introduced by Rouquier [Rou08], in his approach to

Representation Theory. Then Orlov [Orl09b] generalized this idea to the notion

of Orlov Spectrum, by considering generation times over all possible generators.

He realized that in the case of categories of geometric origin, such as the derived

category of coherent sheaves, this invariant carries deep geometric information.

Based on calculations of Rouquier and himself, Orlov proposed the conjecture that

for any smooth algebraic variety X, the Krull dimension of X and the Rouquier

dimension (i.e. the least number in Orlov Spectrum) of Db(cohX) are equal.

Many examples were verified in above mentioned papers, such as smooth affine

varieties, projective spaces and smooth curves.

Later in the work of Ballard, Favero and Katzarkov [BFK12], connections of

the spectra to Birational Geometry are made. They expected that finding gaps

(i.e. missing numbers) in spectra is a new approach to deal with questions of

rationality, by stating the conjecture that any gap of spectrum of a variety of

dimension n has length no more than n− 2.

1See Appendix A for definition

1
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In this thesis we start with an example - spectra of the singularity category

of type A 2 in chapter 2. Then in chapter 3 we experiment on this example

by imposing obstructing polygons in the corresponding combinatorial picture

of this An category and calculate the spectra after such restrictions on the

generators. In this way in chapter 4 we try to develop categorical linear systems

and base loci based on above examples. We start by conjecturing that such

generation-restricted An category is connected to some localization category.

The obstructing polygons, which correspond to localization functors, become a

noncommutative linear system. The elaborated combinations of polygons become

a noncommutative base locus. To study above structures, we introduce the notions

of categorical Okounkov body and multiplier ideal sheaf. Classical Okounkov

body is studied by Lazarsfeld and Mustaţă [LM09] motivated by earlier idea of

Okounkov [Oko97, Oko96]. It measures how Picard groups in a flag of subvarieties

of X fit together interacting with a big divisor D on X. The categorical Okounkov

body is a way of measuring asymptotic interaction of two endofunctors by a flag

of subcategories. Following approaches of pioneering works by Seidel [Sei14],

Ein, Lazarsfeld, Mustaţă, Nakamaye, Popa [ELM+06], Budur [Bud12], we see

categorical restricted Okounkov body as a way of characterizing the base loci of

a category. At the end we indicate a categorical analogue of the multiplier ideal

sheaf with filtration which we conjecture is related to the Orlov spectrum of the

category.

1.1 Orlov Spectrum

We first recall some definitions and expositions from [Orl09b] and [BFK12].

Let T be a triangulated category.

2See Appendix B
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For a full subcategory I of T , we denote by 〈I〉 the full subcategory of T whose

objects are isomorphic to summands of finite direct sums of shifts of objects in I.

Note also 〈I〉 is the smallest full subcategory containing I which is closed under

isomorphisms, shifts, summands and finite direct sums.

Given two full subcategories, I1 and I2, we denote by I1∗I2 the full subcategory

of objects, X, which fits in a distinguished triangle,

I1 → X → I2 → I1[1], (1.1.1)

with Ii ∈ I1. Further set

I1 � I2 := 〈I1 ∗ I2〉. (1.1.2)

By setting

〈I〉0 := 〈I〉, (1.1.3)

we are able to inductively define

〈I〉n := 〈I〉n−1 � 〈I〉. (1.1.4)

Similarly we define

〈I〉∞ :=
⋃
n≥0

〈I〉n. (1.1.5)

The operations, ∗ and �, were introduced in [BvdB03] where their associativity is

proven, due to the octahedral axiom A.14. It follows from the associativity that

〈I〉n � 〈I〉m = 〈I〉n+m+1. (1.1.6)

Remark 1.1.1. For an object, X ∈ T , we identify X with the full subcategory

consisting of X notationally and in this way we can define similarly 〈X〉n.
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Remark 1.1.2. 〈I〉n+1 is the full subcategory of objects X ∈ T such that there is

a distinguished triangle

X1 → X → X2 → X1[1] (1.1.7)

with X1 ∈ 〈I〉i and X2 ∈ 〈I〉j, where i + j = n, closed under summands of finite

direct sums of shifts, and 〈I〉0 := 〈I〉. Under this convention, the index equals

the number of distinguished triangles allowed to use to obtain new objects from

objects in I.

Definition 1.1.3. Let X be an object of a triangulated category, T . If there is

an n with 〈X〉n = T , we set

gT (X) := min {n ≥ 0 | 〈X〉n = T }. (1.1.8)

Otherwise, we set gT (X) :=∞. We call gT (X) the generation time of X. When

T is clear from context, we omit it and simply write g(X). If 〈X〉∞ equals T , we

say that X is a generator. If g(X) is finite, we say that X is a strong generator.

Definition 1.1.4. The Orlov spectrum of T , denoted OSpec T , is the set

OSpec T := {g(G) | G ∈ T , g(G) <∞} ⊂ Z≥0. (1.1.9)

The Rouquier dimension of T , denoted rdim T , is the infimum of OSpec T .

The ultimate dimension of T , denoted udim T , is the supremum of OSpec T .

Conventionally, both of above notions are defined as ∞ when OSpec T is empty.

It is also convenient to recall the following definitions that appeared in

[ABIM10] and [BFK12].

Definition 1.1.5. Let G be an object of a triangulated category, T . If there is
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an n with X ∈ 〈G〉n, we set

LvlGT (X) := min {n ≥ 0 | X ∈ 〈G〉n}. (1.1.10)

Otherwise, we set LvlGT (X) = ∞. This number is called the level of X with

respect to G, or simply the level of X when G is implicit.

The above two definitions indicate that:

Remark 1.1.6. For a generator G of a triangulated category T ,

g(G) = max
X∈T

LvlG(X) (1.1.11)

Definition 1.1.7. Let I be a subset of Z. We say that I has a gap of length s

if, for some a ∈ Z, [a, a + s + 1] ∩ I = {a, a + s + 1}. We say that a triangulated

category, T , has a gap of length s if OSpec T has a gap of length s.

Definition 1.1.8. Let T be a triangulated category, f : X → Y be a morphism,

and I be a full subcategory. We say that f : X → Y is I ghost if, for all I ∈ I,

the induced map, HomT (I,X) → HomT (I, Y ), is zero. We say that f is I co-

ghost if, for all I ∈ I, the induced map, HomT (Y, I) → HomT (X, I), is zero. If

G is an object of T , we will say that f is G ghost if f is 〈G〉0 ghost and f is G

co-ghost if f is 〈G〉0 co-ghost.

The following lemma appears in [BFK12], as a corollary of earlier work by Kelly

[Kel65], Rouquier [Rou08], Krause, Kussin [KK06] and Oppermann [O+09], It is

a useful tool towards calculating generation time, in particular the lower bound

of generation time.

Lemma 1.1.9 (Ghost/Co-ghost Lemma and Converse). Let T be a k-linear Ext-

finite triangulated category and let G and X0 be objects in T . The following are
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equivalent:

1. X0 ∈ 〈G〉n and X0 /∈ 〈G〉n−1;

2. there exists a sequence,

X0
f1−−→ X1

f2−−→ · · · fn−1−−→ Xn−1
fn−−→ Xn, (1.1.12)

of maps in T such that all the fi are ghost for G and fn ◦ · · · ◦ f1 6= 0.

Furthermore there is no such sequence for n+ 1.

3. there exists a sequence,

Xn
fn−−→ Xn−1

fn−1−−→ · · · f2−−→ X1
f1−−→ X0, (1.1.13)

of maps in T such that all the fi are co-ghost for G and f1 ◦ · · · ◦ fn 6= 0.

Furthermore there is no such sequence for n+ 1.

Proof. [BFK12], page 373.



Chapter 2

Orlov Spectrum of Type An

The triangulated category we are considering in this thesis is the singularity

category associated with isolated hypersurface An singularity 3. It is denoted

by Dgr
sg(An) in the graded case and Dsg(An) in the ungraded case.

Convention. Throughout this thesis k will always denote an algebraically closed

field of characteristic zero and we always mean by T or [1] the translation functor.

Also, the Auslander-Reiten translation will be denoted by τ . Here we also abuse

the notation and identify An with the algebra k[x]/xn+1.

2.1 Graded Case

In the graded case, by [Orl09a] and [Tak05] the triangulated category of

singularities Dgr
sg(An) has a full exceptional sequence and is equivalent to the

bounded derived category of finite dimensional representations of the Dynkin

quiver of type An, denoted Db(repAn). So in this way, we can give a combinatorial

description of the triangulated category 4.

3See Appendix B
4I greatly appreciate Johan Steen for explaining to me this construction.

7
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2.1.1 Quiver Representation

First let us recall basics of the theory of quiver representations. Let Q be a quiver.

Thus, Q is an oriented graph given by a set of vertices Q0, a set of arrows Q1 and

two maps s : Q1 → Q0 and t : Q1 → Q0 taking an arrow to its source vertex

respectively its target vertex. We assume that Q is finite (both Q0 and Q1 are

finite) and acyclic (there are no oriented cycles in Q).

Definition 2.1.1.

• A representation V of Q is a collection {Vi | i ∈ Q0} of k-vector spaces

together with a collection {Vα : Vs(α) → Vt(α) | α ∈ Q1} of k-linear maps.

• A morphism from a representation V to a representation W (both of the

same quiver Q), denoted ϕ : V → W , is a collection {ϕi : ϕi(Vi)→ ϕi(Wi) |

i ∈ Q0} of k-linear maps such that for any arrow α : i→ j we have

Wαϕi = ϕjVα. (2.1.1)

This is equivalent to the commutativity of the following diagram:

Vi Wi

Vj Wj

ϕi

Vα Wα

ϕj

(2.1.2)

• Note that the isomorphisms of representations are exactly the invertible

morphisms, that is, those morphisms ϕ : V → W for which there exists a

morphism ψ : W → V such that ψϕ = 1V and ϕψ = 1W .

Then for a quiver Q, the category of representations of Q, Repk(Q) (or Rep(Q))

is defined as the abelian category whose objects are representations of Q and whose
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morphisms are defined as above. Similarly, the category of finite dimensional

representations of Q is denoted by repk(Q) (or rep(Q)).

Example 2.1.2 (Zero representation). The representation of any quiver Q

which assigns to each vertex the zero space (and consequently to each arrow the

zero map).

Definition 2.1.3.

• A representation W is a subrepresentation of a representation V (both of

the same quiver Q) if the inclusions {Wi ↪−→ Vi | i ∈ Q0} define a morphism

of representations.

• A representation S is an irreducible (or a simple) representation if S has

exactly two subrepresentations, namely the zero representation and S itself.

Example 2.1.4 (Simple representations). For any quiver Q, fix i ∈ Q0, we

can define a representation by assigning each j ∈ Q0

S(i)j =

{
k if i = j
0 if i 6= j

(2.1.3)

and each α ∈ Q1

S(i)α = 0. (2.1.4)

Obviously, they are all simple representations of Q. Indeed, every simple object

is in such form and therefore there exists a one-to-one correspondence between

simples and vertices of Q.

Definition 2.1.5.

• For two representations V and W of a quiver Q we can define a new

representation, called the direct sum of V and W , denoted V ⊕ W , by
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setting (V ⊕ W )(i) = V (i) ⊕ W (i) for each vertex i and (V ⊕ W )(α) =

V (α)⊕W (α) for each arrow α of Q.

• A representation of Q is called (an) indecomposable if it is not isomorphic

to the direct sum of two non-zero representations.

It is well-known that the category Rep(Q) is equivalent to Mod(kQ),

the category of left modules over the path algebra kQ: the vector space

generated by paths in the quiver Q, with multiplication defined by extending the

composition of paths bilinearly, setting vw = 0 whenever s(v) 6= t(w). So in this

sense, we don’t distinguish between indecomposable(simple) representations and

indecomposable(simple) modules. We could also define projective(surjective)

representations which are associated with projective(surjective) modules.

Similarly, this equivalence restricts to the equivalence of rep(Q) and mod(kQ),

the category of finitely generated left modules over kQ.

Remark 2.1.6. The path algebra kQ of a finite quiver Q without oriented cycles

is hereditary, which means that all submodules of projective modules are again

projective. Therefore, the abelian category Mod(kQ)(mod(kQ)) is a hereditary

category: for any two objects X, Y ,

Extn(X, Y ) = 0 (2.1.5)

for any n > 2.

Recall that bounded derived category of an abelian category A, denoted

by Db(A), is obtained from the category of bounded complexes in A by formally

inverting all quasi-isomorphisms, and it is a triangulated category with a natural

translation functor T the shift functor [ · ] : Db(A)→ Db(A): for any complex C•
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and n ∈ Z, C•[n] is the complex having degree m component

(C•[n])m = Cm+n (2.1.6)

for any m ∈ Z and the differentials Cm[n] → Cm+1[n] of which are (−1)n times

the differentials Cm+n → Cm+n+1 in C•.

Remark 2.1.7. The distinguished triangle in Db(A) is the triangle that is

isomorphic in Db(A) to the triangle

X → Y → Cone(f)→ X[1] (2.1.7)

for some map of chain complexes f : X → Y and the mapping cone of f , denoted

Cone(f). In particular, for a short exact sequence 0 → X → Y → Z → 0 in A,

the triangle X → Y → Z → X[1] is distinguished in Db(A).

So now we can accordingly denote the bounded derived category of mod(kQ)

by Db(mod kQ), or Db(kQ) for short. Note it is naturally equivalent to Db(repAn).

The following useful lemma was proven by Happel [Hap88]:

Lemma 2.1.8. Let X• be an indecomposable object in Db(kQ). Then X• is

isomorphic to a stalk complex with indecomposable stalk, namely

· · · → 0→M → 0→ · · · , (2.1.8)

for an indecomposable module M in Db(kQ).

Proof. [Hap88], page 49.

Therefore, we could notationally identify indecomposable module X with stalk

complex concentrated in degree 0 and accordingly define X[n]. Furthermore, to



12

understand the structure of Db(kQ), we have the following theorem in [Len07]:

Theorem 2.1.9. For hereditary category A, the bounded derived category Db(A)

is naturally equivalent to the repetitive category
∨
n∈ZA[n], where each A[n] is a

copy of A, with objects written X[n] for X in A, and morphisms given by

HomDb(A)(X[n], Y [m]) = Extm−nA (X, Y ). (2.1.9)

Here,
∨
n∈ZA[n] stands for the additive closure of the union of all A[i], with only

trivial morphism from A[i] to A[j] for i > j.

Proof. [Len07], page 9.

Remark 2.1.10. Since A is hereditary, by equation 2.1.5 the only nontrivial

morphisms in Db(A) are HomDb(A)(X[n], Y [n]) and HomDb(A)(X[n], Y [n+ 1]).

2.1.2 Representation of An Quiver

Let Q be a quiver such that the underlying graph is a simply-laced Dynkin diagram

of type An. We abuse the notation and call it An as well. Since all such quivers

are derived Morita equivalent - see e.g. [Bon89], we simply consider the quiver

with the orientation:

1• ←− 2• ←− · · · ←− n•. (2.1.10)

Let Γ = (Γ0,Γ1) be the Auslander-Reiten quiver of mod(kAn), in which

Γ0 of vertices is identified with the collection of the isomorphism classes of

indecomposable finite dimensional left kAn-modules and Γ1 of arrows whose

direction and number is given by the dimension of the space of irreducible

morphisms between these isomorphism classes.



13

For each integers 0 ≤ i < j ≤ n, we write Xi,j the indecomposable kAn-module

whose corresponding representation is given by

(
1

0← · · · ←
i

0←
i+1

k ← · · · ←
j

k ←
j+1

0 ← · · · ←
n

0). (2.1.11)

Note that

dimXi,j = j − i. (2.1.12)

Then it is known that Γ0 = {Xi,j | 0 ≤ i < j ≤ n} and Γ is of the following

form:

X0,1

X0,2

X1,2

X0,n−1

X0,n

X1,n−1

X1,n

Xn−2,n

Xn−2,n−1 Xn−1,n

τ

ττ

τττ

ττττ

Figure 2.1: AR-quiver of An

Remark 2.1.11. In above figure, Pi = X0,i are the projective modules; Ii = Xi−1,n

are the injective modules; Si = Xi−1,i are the simple modules. Notice that Xi,j =

Pj/Pi, i < j. In addition, we have the Auslander-Reiten translation τ from non-

projective objects to non-injective objects, such that there exists an almost split

sequence 0→ τM → N →M → 0.

Now we consider the circle with n + 1 points labeled 0, 1, 2, . . . , n counter

clockwise on it. We write c(i, j)(= c(j, i)) the chord between the points i and j.

We denote by Cn+1 the set of chords on the circle.
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•n-1•n•0•1•2
•3

•i
•

j

c(i, j)

Recall that a partition of a set is a pairwise disjoint set of non-empty subsets.

For a finite set, say {0, 1, ..., n} without loss of generality. A non-crossing partition

of it is a partition in which no two such subsets ”cross” each other, i.e., for a and

b belong to one and x and y to another, they cannot be arranged in cyclic order

axby. By Ingalls and Thomas [IT09], there is a lattice isomorphism between non-

crossing partitions of the vertices {0, 1, ..., n} on the circle and wide subcategories

of mod(kAn), i.e. full abelian subcategories closed under extensions where the

inclusion functor is exact. In particular, there is a bijection between vertices of

the Auslander Reiten quiver Γ0 = {Xi,j|0 ≤ i < j ≤ n} - indecomposables Xi,j

and the set of chords Cn+1 = {c(i, j)|0 ≤ i < j ≤ n}.

Φ : Γ0 → Cn+1

Xi,j 7→ c(i, j).

(2.1.13)

So from now on we will use Xi,j to represent the chord c(i, j).

Now let us classify the distinguished triangles in Db(kAn). By Lemma 2.1.8,

the indecomposables in Db(kAn) are simply {Xi,j[n] | n ∈ Z}, after identification

to the stalk complex. Moreover we could extend the Auslander-Reiten Quiver in

Figure 2.1 to the Auslander-Reiten Quiver of Db(kAn).
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X0,1

X0,2

X1,2

X0,n−1

X0,n

X1,n−1

X1,n

Xn−2,n

Xn−2,n−1 Xn−1,n

τ

ττ

τττ

ττττ

X0,1[1]

X0,2[1]

X1,2[1]

X0,n−1[1]

X0,n[1]

X1,n−1[1]

τ

τ

τ

ττ

X0,n[−1]

X1,n−1[−1]

X1,n[−1]

Xn−2,n[−1]

Xn−2,n−1[−1] Xn−1,n[−1]

τ

τ

τ

ττ τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

Figure 2.2: Derived AR-quiver of Db(kAn)

Let f : X → Y be a morphism in Db(kAn). Then by Remark 2.1.7 f could be

extended to a distinguished triangle:

T (Ker f)⊕ coKer f

X Y
f

gh

[1]

(2.1.14)

Also note the only possibilities of nontrivial morphisms are given by Theorem

2.1.9, it suffices to consider the morphism f : Xi,j → Xk,l and f : Xi,j → Xk,l[1].

Let us calculate the cones for both cases.

• For i 6 k < j 6 l, there exists a unique non-trivial morphism of

representations f : Xi,j → Xk,l given by:

fp =

{
id if k < p 6 j

0 otherwise
(2.1.15)
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Therefore it give rise to a nontrivial extension/distinguished triangle:

Xi,k[1]⊕Xj,l

Xi,j Xk,l

f

gh

[1]

(2.1.16)

For k 6 i < l 6 j, we could only have the trivial one:

Xi,j[1]⊕Xk,l

Xi,j Xk,l

f

gh

[1]

(2.1.17)

But we could use the map f ′ : Xk,l → Xi,j to obtain the unique nontrivial

extension/distinguished triangle:

Xk,i[1]⊕Xl,j

Xk,l Xi,j

f ′

g′h′

[1]

(2.1.18)

• f : Xi,j → Xk,l[1] is the trivial map of complexes, which gives rise to only
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trivial extension/distinguished triangle:

Xi,j[1]⊕Xk,l[1]

Xi,j Xk,l[1]
f

gh

[1]

(2.1.19)

In addition, by Remark 2.1.7, a distinguished triangle in Db(kAn) could also

come from an exact sequence in mod(kAn). Without loss of generality, we consider

only the exact sequence as a nontrivial extension of Xi,j and Xk,l which happens,

as we are going to see, only when i 6 k < j 6 l or i 6 k = j 6 l.

• Assume i 6 k < j 6 l. What would fit in the extension

0→ Xi,j → ?→ Xj,l → 0 (2.1.20)

non-trivially? This can be readily seen in the Auslander-Reiten Quiver

(Figure 2.1). Note arrows are irreducible morphisms, while going upward

means injective and downward surjective. So starting from Xi,j, we can go

upstairs to Xi,l and go downstairs to Xj,l. The right candidate to compensate

the extension is Xk,j. They are actually the vertices of a parallelogram:

Xi,j

Xk,j

Xi,l

Xj,l

Therefore we could obtain the extension in mod(kAn):

0→ Xi,j → Xi,l ⊕Xk,j → Xk,l → 0 (2.1.21)
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and pass to the distinguished triangle in Db(kAn):

Xk,l

Xi,j Xi,l ⊕Xk,j

[1] (2.1.22)

• For i 6 j = k 6 l, the dimension of Xi,l equals the sum of the dimensions of

Xj,l and Xk,l. We need nothing to compensate hence obtain the extension

0→ Xi,j → Xi,l → Xj,l = Xk,l → 0 (2.1.23)

and pass to the distinguished triangle:

Xj,l = Xk,l

Xi,j Xi,l

[1] (2.1.24)

• However, if i < j < k < l, the dimension of Xi,l is already larger than the

sum of the dimensions of Xj,l and Xk,l, therefore no way to build a nontrivial

extension.

Now that we classified the triangles in Db(kAn), let us neglect the shifts and

look at the corresponding picture in the circle. Since c(i, j) = c(j, i), we identify

Xi,j with Xj,i as the nontrivial one of them. Then the distinguished triangles

2.1.16, 2.1.18 and 2.1.22 can be interpreted in the following figure:
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•i

•
j

•
k

• l

Xij

Xkl
Xil

Xik

Xkj

Xjl

Figure 2.3: Extension

The indecomposables become chords in the circle. The condition i 6 k <

j 6 l or k 6 i < l 6 j becomes the condition that the chords Xi,j and Xk,l

intersects. Then our classifications above imply that the chords of the sides of

the parallelogram can be given by the extension on the chords of its diagonals.

In other words Xi,l, Xk,j, Xi,k and Xj,l are generated in one step starting from

G = Xi,j ⊕Xk,l. Formally for any one of these sides, say X, LvlG(X) = 1. Using

this fact, an upper bound for each generator can be given by counting the lowest

steps to reach the whole category, namely all diagonals and sides in this picture.

Indeed, the generation pattern is classified into the following three cases:

•i

•
j

•
k

•
l

Xij

Xkl
Xil

Xik

Xkj

Xjl

“cross”

•i

•
j=k

•
l

Xij

Xil
Xjl

“corner”

•i

•
j

•
k

•
l

Xij

Xkl
Xil

Xik

Xkj

Xjl

“zigzag”

Figure 2.4: Generation Patterns
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The “cross” case is what we discussed on previous page using distinguished

triangles 2.1.16, 2.1.18 or 2.1.22; The “corner” case is the special case when i 6 j =

k 6 l, using distinguished triangle 2.1.24; The “zigzag” case is the rotation of the

distinguished triangle 2.1.16, 2.1.16 or 2.1.22, which we knew is also distinguished,

from the axioms of triangulated category ((TR2) in Definition A.3).

Based on these generation patterns, we have the following lemma:

Lemma 2.1.12. An object G of Db(kAn) is a (strong) generator if and only if its

corresponding diagram is path-connected and passes through all vertices.

Proof. Decompose G into a sum of indecomposables and obtain the chordal

diagram by drawing the correspond chords in the circle. Assume that the

diagram has two disjoint path-connected components, by the generation pattern,

only chords within each component could be generated and there is no way to

generate the chords connecting these two components (no nontrivial cone and

extension when two chords are disjoint). Finally since there are only finitely many

indecomposables up to shifts, a generator is automatically strong.

This lemma implies:

Remark 2.1.13. For any generator G of Db(kAn) and any two vertices i and j in

its chordal diagram, there is path of v vertices connecting i and j.

Therefore we could have the following estimate on the level of Xij which is

called the counting formula:

Lemma 2.1.14 (Counting formula).

1. If the path connecting i and j is in the following shape, say “Big Z”,
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•
Av/2−1

i
•· · · •

A1 •
A0

•
B0

•
B1

•· · · •
Bv/2−1

j

then

LvlG(Xij) 6 v/2− 1 (2.1.25)

2. If the path connecting i and j is in the following shape, say “Double Cross”,

3

i
•

1•

4
•

j
•

0

2 •

5
•

then

LvlG(Xij) 6 2 (2.1.26)

3. For any general path connecting i and j, we have

LvlG(Xij) 6 v − 2−#{crosses} (2.1.27)

Proof. (1) Let us apply “zigzag” rule to generate new objects. First use one

distinguished triangle to generate A1B1 by looking at zigzag A1-A0-B0-B1. Then

A2-A1-B1-B2 becomes a new zigzag and we can use another one to generate A2B2.

Continue until we obtain the chord Av/2−1Bv/2−1, i.e. Xij. In total we used

(v/2− 1) triangles, therefore LvlG(Xij) 6 v/2− 1.
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(2)Apply “cross” rule on the cross 0-2-4-5 to generate the chord 2-4. Then

1-2-3-4 becomes a new cross which will generate the chord 0-3. In total we used

two triangles, therefore LvlG(Xij) 6 2.

(3)Any path connecting i and j looks like a chain with c1 single crosses and c2

double crosses as follows

•

• •

••

• •

•

•

i

j

•

•

• •

First, we can use “cross” rule and “double cross” rule to generate all dashed

objects in the path. In total we need to use c1 + 2c2 triangles. Now the path

becomes a chain of v′ = v − 2c1 − 4c2 vertices:

i

j

•C1

•
C2

•
C3

•
C4

•· · · •· · · •
Cv′

Secondly, for such chain, we use “corner” rule to generate new objects. Using

one distinguished triangle, corner C1-C2-C3 produces chord C1C3 and a new corner

C2-C3-C4. Then using another triangle we will produce chord C1C4. Continue until

we obtain the chord C1Cv′ , i.e. Xij. In total we used v′ − 2 triangles.

Therefore, we can use (c1+2c2)+(v′−2) = v−2−(c1+2c2) = v−2−#{crosses}

triangles to generate Xij, which implies LvlG(Xij) 6 v − 2−#{crosses}.
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Corollary 2.1.15. The generation time of any generator G of Db(kAn) is bounded

from above by n− 1.

Proof. Any path contains at most n+1 vertices in the chordal diagram of Db(kAn),

so by Lemma 2.1.14 (3) any object has level no more than n + 1 − 2 = n − 1.

Therefore g(G) 6 n− 1 as desired.

Based on the combinatorial interpretation, we are ready to give a different way

to calculate the Orlov Spectrum of Db(kAn) from that in [BFK12].

Theorem 2.1.16.

OSpec Db(kAn) = {0, 1, ..., n− 1} (2.1.28)

In particular,

g(
n⊕
i=1

Si) = n− 1. (2.1.29)

Proof. By Corollary 2.1.15, OSpec Db(kAn) ⊆ [0, n− 1].

• For G =
n⊕
i=1

Si, then the corresponding chordal diagram is a path:

• 0

• 1

•2•3

•4

•
n-2

•
n-1

•
n

We knew g(G) 6 n− 1 by Corollary 2.1.15. We will use the Ghost Lemma

(Lemma 1.1.9) to show the lower bound of g(G) is also n− 1. Indeed, recall
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that Ii = Xi−1,n are the injectives. Then

I1 → I2 → · · · → In (2.1.30)

with natural morphisms as projections is the desired
n⊕
i=1

Si-ghost sequence,

since each fk : Ik → Ik+1 is
n⊕
i=1

Si-ghost, and their composition is the

nontrivial projection I1 → In. Therefore, we conclude that g(G) =

g(
n⊕
i=1

Si) = n− 1 and n− 1 ∈ OSpec Db(kAn).

• Now for 2 6 p 6 n − 1, consider the generator Gp associated with the

diagram below, i.e. the direct sum of all simples and all diagonals and sides

of the shadowed area. To be precise,

Gp =
n⊕
i=1

Si ⊕
⊕

06i<j6p

Xij (2.1.31)

• 0

• 1

•2•3

•p

•
n-2

•
n-1

•
n

Note we could now use a path of (n + 1) − (p − 1) = n − p + 2 vertices to

connect any two vertices. Thus g(Gp) 6 n− p. And the lower bound is also

n− p by the Gp-ghost sequence:

Ip → Ip+1 → · · · → In. (2.1.32)
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So g(Gp) = n− p and we conclude {1, 2, . . . , n− 2} ⊆ OSpec Db(kAn)

• Last but not least, g(
⊕
i,j

Xi,j) = 0 (because it is a finite direct sum), which

completes the proof.

Indeed, since we classified all generation patterns, this also can be calculated

by considering all possible paths in the diagram. We introduce the notion of the

generation time of a path.

Definition 2.1.17. For any path P connecting i and j in chordal diagram

corresponding to a generator G , the least number of distinguished triangle needed

to generate Xi,j is said to be the generation time of the path P , denoted gG(P )

or g(P ) when G is implicit.

Remark 2.1.18. The counting formula indicates that for a path with v vertices:

• If P = “Big Z”, then g(P ) = v/2− 1.

• If P = “Double Cross”, then g(P ) = 2.

In general, to obtain chord Xi,j means to reduce the vertices of the path to 2

vertices. We observe that “Big Z” (including “zigzag” case), “cross” (including

“Double Cross” case) rules reduce 2 vertices for each distinguished triangle used

while “corner” rule only 1. So we apply the former rules on P until we have a

chain then apply the corner rule. We record the number of distinguished triangles

we used along the way and this number is the generation time of P . Then level

of Xij is nothing else but the least number of the generation times of all possible

paths connecting i and j.

Therefore we have the following second counting formula:
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Theorem 2.1.19 (2nd Counting formula).

1. Assume that P is a path connecting i and j in chordal diagram corresponding

to a generator G. P consists of v vertices, C crosses and D big Z’s, where

each Zd contains 2pd vertices. Then

g(P ) = v − 2−
∑

16d6D

(pd − 1)− C (2.1.33)

2. For a generator G,

LvlG(Xij) = min
P
g(P ), (2.1.34)

where P runs through all possible paths connecting i and j in chordal diagram

corresponding to G.

3. For a generator G,

g(G) = max
i<j

min
Pij

g(Pij), (2.1.35)

Proof. (1) and (2) follow immediately from the discussion above and (3) follows

from Remark 1.1.6.

2.2 Ungraded Case

For the ungraded case, Dsg(An), namely the stable derived category of the ring

An = k[u]/un+1, was fully analyzed in [BFK12] and they proved that

Theorem 2.2.1 ([BFK12]).

OSpec Dsg(An) = {db(n+ 1)/2c
s

e − 1 : s ∈ N} (2.2.36)
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where bαc is the greatest integer less than α, dαe is the least integer greater than

α.

Proof. [BFK12], page 402.

Remark 2.2.2. Combinatorially, notice in the Figure 2.2, the Auslander-Reiten

functor τ acting on the indecomposables (omitting the shifts) is simply the

clockwise rotation by one position. Since Dsg(An) ∼= Db(kAn)/τ (see [Ami07]),

the Orlov Spectrum of Dsg(An) are simply the collection of the generation times

given by the rotation invariant diagrams in previous section.

What is interesting for Dsg(An) is that now the gap appears.

Example 2.2.3 (A8, 1 gap).

OSpec Dsg(A8) = {0, 1, , 3} (2.2.37)

Example 2.2.4 (A18, 2 gaps).

OSpec Dsg(A18) = {0, 1, 2, , 4, , 8} (2.2.38)

And as n goes to infinity, we could obtain as many gaps as we want. This

phenomenon will reoccur in the generation-restricted An case in the next Chapter.

2.3 Estimate on Semi-Orthogonal Decompositions

In this section we discuss the estimate on the generation time if we could describe

a triangulated category as a span of two components. Recall some definitions and

lemmas from [Bon89] and [BK89].
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Let T be a k-linear triangulated category with finite-dimensional morphism

spaces. A functor S : T → T is called a Serre functor, if S is an auto-equivalence

of T and there are isomorphisms

HomT (X,SY ) ∼= HomT (Y,X), (2.3.39)

for X, Y ∈ T .

Recall a full triangulated subcategory I of T is called right (left) admissible

if the inclusion functor has a right (left) adjoint. The right (left) orthogonal

I⊥ (⊥I) of an admissible subcategory is the full category formed by objects B so

that HomT (A,B) = 0 (HomT (B,A) = 0), for any A ∈ I. We say I is admissible

if it is both right and left admissible.

Definition 2.3.1. A semi-orthogonal decomposition of a triangulated

category, T , is a sequence of full triangulated subcategories, A1, . . . ,Am, in

T such that Ai ⊂ A⊥j for i < j and, for every object T ∈ T , there exists a

diagram:

0 Tm−1 · · · T2 T1 T

Am A2 A1

|||

where all triangles are distinguished and Ak ∈ Ak. We shall denote a semi-

orthogonal decomposition by 〈A1, . . . ,Am〉.

A case of particular importance is if each Ai is equivalent to Db(mod k) as

a triangulated category. Let Ai denote the object in T corresponding to k in

Ai. In this case, we call A1, . . . , Am an exceptional collection. If, in addition,

HomT (Ai, Aj[l]) = 0 for l 6= 0, we say that the exceptional collection, A1, . . . , An,

is strong.
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The proofs of the following lemmas can be found in [BK89]:

Lemma 2.3.2. LetA be a full triangulated subcategory of a triangulated category

T with Serre functor. Then the following are equivalent:

1. A is left admissible

2. A is right admissible

3. A is admissible

Lemma 2.3.3. If 〈A1, . . . ,Am〉 is a semi-orthogonal decomposition of a

triangulated category T with Serre functor, then Ai is admissible for all i.

Furthermore, if T = 〈A,B〉 is a semi-orthogonal decomposition, then B = ⊥A.

The following property is a useful tool for us to get the estimate on generation

time:

Proposition 2.3.4. Let I be an admissible subcategory of T , then I and I⊥

generate T in one step.

Proof. Any C ∈ T can be included in a distinguished triangle A → C → B →

A[1], where A ∈ I and B ∈ I⊥. Indeed, we could let A = i!(C), where i! is

a right adjoint of the inclusion functor i. Then the identity morphism A → A

defines a morphism A → C that can be extended to a distinguished triangle

A→ C → B → A[1]. For any A′ ∈ I, we have an exact sequence:

Hom(A′, A) Hom(A′, i!(C)) // Hom(A′, C)

// Hom(A′, B) // Hom(A′, A[1]) // Hom(A′, C[1])

where the first and last morphisms are isomorphisms. This shows Hom(A′, B) = 0

for all A′ ∈ I, hence B ∈ I⊥.
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In particular, for our case T = Db(kAn), we have the following straightforward

theorem:

Theorem 2.3.5. An has semi-orthogonal decompositions

An = 〈Ap, Aq〉, where p+ q = n. (2.3.40)

If we let Xp and Xq be the strong generators of Ap and Aq, with generation

time g(Xp) and g(Xq) respectively. Then Xp ⊕ Xq is a generator for An, whose

generation time is bounded above by g(Xp) + g(Xq) + 1.

• • •

Ap Aq

An

Proof. We have a full exceptional sequence 〈X0,1, X0,2, . . . , X0,n〉.

Therefore 〈X0,1, X0,2, . . . , X0,p〉 is exceptional for all p, which implies that Ap is

an admissible subcategory of An. Similarly, Aq is admissible as well. And it is

obvious that Ap ⊂ A⊥q . The second part of this theorem is immediate, as you

generate them separately and then apply Property 2.3.4.



Chapter 3

Spectra of Generation-Restricted

An

In this chapter, we put some restrictions on the choice of generators of An category

and consider the set of generation time of all qualified generators.

3.1 One-Polygon Case

Let I be a nonempty subset of {0, 1, ..., n} with cardinality |I| = k. We mark points

in I on the circle picture described in previous section. The convex hull of these

k marked point forms a closed k-polygon inside the disk. And we only consider

the generator without an indecomposable summand that has an intersection with

the interior of this polygon. In other words, the indecomposable summand could

either be one side of the polygon, intersect the polygon only at vertices or be

totally disjoint from it. We define the spectrum of this I-restricted An category

by the collection of generation time of all qualified generators, denoted OSpecI An.

Marking 1 point won’t impose any obstruction. When |I| = 2, 3, we have the

following observations.

31
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Remark 3.1.1. Segments, namely marking 2 points, kill only 0 in the spectrum if

it is a diagonal of the (n+ 1)-gon. Otherwise, the spectrum remains unchanged.

Remark 3.1.2. Triangles, namely marking 3 points, kill only 0 in the spectrum for

n > 3. More precisely,

OSpecI An =

 {0, 1} if n = 2

{1, 2, ..., n− 1} if n > 3
(3.1.1)

However, if we impose a n-polygon with n > 4, gap could appear.

Example 3.1.3 (A4 with pentagon).

4

32

1

0

The figures below give us the only two choice of generators up to rotations,

since we require the diagram to be path-connected and pass through all vertices.

4

32

1

0

4

32

1

0

The left one is the direct sum of all sides of pentagon, whose generation time

is 1 since any of the rest indecomposables lies in a distinguished triangle with two

given sides. And the right is the direct sum of all simples, whose generation time
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is 3 by Theorem 2.1.16. Therefore, in this case, the spectrum is {1, 3}, with a gap

at 2.

Similarly, for An we have the following straightforward lemma.

Lemma 3.1.4. If we mark all n + 1 vertices in An chordal diagram, then gap of

maximal length appears. The spectrum in this case is {bn−1
2
c, n− 1}.

Proof. After marking all vertices on the diagram allowed indecomposables

correspond to the sides of the outer (n + 1)-gon. Up to rotations, which doesn’t

change the generation time, the only two choices of generators are the direct

sum of simples, namely G1 =
n⊕
i=1

Si and the direct sum of all indecomposables

corresponding to the n+ 1 sides, namely G2 = I1 ⊕
n⊕
i=1

Si.

For G1, we knew by Theorem 2.1.16 g(G1) = n− 1.

For G2, the longest path connecting 2 vertices is the chain starting from 0 to

the farthest vertex from it, which is the vertex bn+1
2
c. So by counting formula,

g(G2) is bounded above by z = bn+1
2
c + 1 − 2 = bn−1

2
c. It is also a lower bound

since we have a G2-ghost sequence (since 2z + 1 6 n):

X0,z+1 → X1,z+2 → · · · → Xz,2z+1. (3.1.2)

Hence g(G2) = bn−1
2
c.

One may ask: will the spectrum depend on the position of the imposed

polygon? The answer is yes, which can be seen from the following example.

Example 3.1.5 (A9 with octagon).
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I = {1, 2, 3, 5, 6, 7, 8, 9} I ′ = {1, 2, 3, 4, 6, 7, 8, 9}

•

••

•

•

•

• •

•

••0

1

23

•4

5

6

7 8

9

•

••

•

•

•

• •

•

••0

1

23

4

•5

6

7 8

9

OSpecI A9 = {3, 4, , 6, 7, 8} OSpecI′ A9 = {4, , 6, 7, 8}

Figure 3.1: A9 with octagon

To distinguish above two cases, we introduced the notion of mirror points.

Definition 3.1.6. For a subset I of S = {0, 1, ..., n}, we say {x, y} is a pair of

mirror points with respect to I, if

|{i ∈ I| x < i < y}| = |{i ∈ I| i < x or i > y}| (3.1.3)

for x, y ∈ S − I so that x < y.

Remark 3.1.7. Mirror points with respect to I (|I| = k), is a pair of points lying

at antipodal parts of the areas divided by the circle and the k-polygon. They can

only exist in the even polygon case with k < n (so at least 2 points outside I),

since if k is odd, one side in equation 3.1.3 will be odd with another side even.

In fact the position of the polygon only affects the Rouquier dimension by at

most 1. In general, we will prove the following formula for k-gon in An:
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Theorem 3.1.8 (Orlov spectrum restricted by 1 polygon).

OSpecI An =



{bn− 1

2
c} ∪ {n− 1} if k = n+ 1

{bk − 1

2
c, ..., bn− 1

2
c} ∪ {k − 2, ..., n− 1}

if k 6 n with no mirror points

{bk − 1

2
c+ 1, ..., bn− 1

2
c} ∪ {k − 2, ..., n− 1}

if k < n with a pair of mirror points

(3.1.4a)

(3.1.4b)

(3.1.4c)

where k = |I|.

To show this formula, let us first prove the following two lemmas.

Lemma 3.1.9. For |I| = k and k 6 n, denote by GI the sum of all allowed

objects, then

g(GI) =

 b
k−1

2
c if I has no mirror points

bk−1
2
c+ 1 if I has mirror points

(3.1.5)

•

••

•

•

•

• •

•

•

•A

B

•

••

•

•

•

• •

•

•

•C

D

•

••

•

•

•

• •

•

••F•E

Proof. We consider the following cases:

• Assume I is odd. Pick any point vertex not in I (possible since k 6 n) and

denote it by A. Then pick the vertex B in I so that |{i ∈ I| min(A,B) <

i < max(A,B)}| = |{i ∈ I| i < min(A,B) or i > max(A,B)}|, which means
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chord AB divide the k-gon into two parts and these two parts have the same

number of vertices in I.

Note that any two vertices can be connected by a chain of no more than

k−1
2

+ 2 vertices. Therefore for any chord c, LvlG
I

(c) 6 k−1
2

by first counting

formula. Besides LvlG
I

(AB) = k−1
2

by second counting formula. Hence

g(GI) = k−1
2

= bk−1
2
c.

• Assume k is even and I has no mirror points. Pick any point vertex not in

I (possible since k 6 n) and denote it by C. Then pick the vertex D in I so

that |{i ∈ I| min(C,D) < i < max(C,D)}| = |{i ∈ I| i < min(C,D) or i >

max(C,D)}|+ 1.

Note that any two vertices can be connected by a chain of no more than

k
2

+ 1 vertices. Therefore for any chord c, LvlG
I

(c) 6 k
2
− 1 by first counting

formula. Besides LvlG
I

(CD) = k
2
− 1 by second counting formula. Hence

g(GI) = k
2
− 1 = bk−1

2
c.

• Assume I has a pair of mirror points. Denote these two points by E and F.

Then now any two vertices can be connected by a chain of no more than k
2
+2

vertices. Therefore for any chord c, LvlG
I

(c) 6 k
2

by first counting formula.

Besides LvlG
I

(EF ) = k
2

by second counting formula. Hence g(GI) = k
2

=

bk−1
2
c+ 1.

Corollary 3.1.10. For |I| = k and k 6 n,

{bk − 1

2
c+ 1, ..., bn− 1

2
c} ⊆ OSpecI An (3.1.6)
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and

bk − 1

2
c ∈ OSpecI An if I has no mirror points. (3.1.7)

Proof. Every k-gon is contained in a j-gon J , where j > k is odd, thus no mirror

points. Let GJ = sum of all allowed objects, then g(GJ) = j−1
2

. All desired

generation time can be realized this way.

Lemma 3.1.11. If I contains consecutive numbers (here we identify 0 with n+1)

i.e. the k-gon has one side on the boundary of the outer (n+ 1)-gon. Let G′I = ⊕

all allowed objects but this chord, then

g(G′I) = k − 2 (3.1.8)

Proof. Observe any two vertices on the circle can be connected by a path of at

most k points. So by counting formula, g(G′I) 6 k−2. But the level of the missing

chord is k− 2 by second counting lemma. Therefore the generation time is k− 2,

as desired.

Corollary 3.1.12.

{k − 1, ..., n− 1} ⊂ OSpecI An

Proof. Every k-gon is contained in a k+1-gon which has one side on the boundary.

Hence it is contained in a j-gon J with j > k + 1, which has one side on the

boundary. Let G′J = ⊕ all allowed objects but this chord, then g(G′J) = j − 2 as

shown in above lemma. As j can be chosen to be any integer from k+ 1 to n+ 1,

we obtain all desired entries.

Remark 3.1.13.

• If k 6 bn−1
2
c+2, then bn−1

2
c > k−2. So {bk−1

2
c, ..., bn−1

2
c}∪{k−1, ..., n−

1} = {bk−1
2
c, ..., n− 1} and {bk−1

2
c+ 1, ..., bn−1

2
c} ∪ {k − 1, ..., n− 1} =
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{bk−1
2
c + 1, ..., n − 1}. We have already all possible generation times and

no gap in OSpecI An.

• If k > bn−1
2
c+ 3, then n+ 1−k < k, so there are less than k vertices outside

of the k-gon, namely at least one side of the k-gon is on the boundary of the

(n+ 1)-gon. Then Lemma 3.1.11 implies that k − 2 ∈ OSpecI An.

The remark shows that

Corollary 3.1.14. If k 6 bn−1
2
c+ 3, then

OSpecI An =

 {b
k−1

2
c, ..., n− 1} if k-gon has no mirror points

{bk−1
2
c+ 1, ..., n− 1} if k-gon has mirror points

(3.1.9)

This fits in the Theorem 3.1.8, now let us prove the theorem.

Proof of Theorem 3.1.8.

When k = n + 1, the statement in Theorem 3.1.8 is immediate from Lemma

3.1.4.

When k 6 n, according to Corollary 3.1.14, we only consider the case when

k > bn−1
2
c+ 3. Note that we have all desired generation times in the spectrum by

Corollary 3.1.10, Corollary 3.1.12 and Remark 3.1.13. It suffices to show that no

generator has generation time in (bn−1
2
c, k − 2).

For a generator G, assume g(G) ∈ (bn−1
2
c, k − 2). Then its corresponding

chordal diagram must bound a closed k′-polygon (of some vertex possibly the

intersection of a cross) which contains our k-gon (hence k′ > k). Otherwise G

contains all but one edges (not two by path-connectedness) of a k′-gon (k′ > k)

and the missing edge is an edge of the outer n + 1-gon, then G has at least

generation time k − 2 by Lemma 3.1.11. Schematically, the diagram associated
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with G is shown below, where G is a collection of chords connecting all vertices

which has no interior intersection with the k-gon - shaded area (might contain

some edges of the k-gon).

•

•

•

•

dashed line: G

shaded area: k-gon•

•

•

•

•
•

•

•

•

•

•
•

•

•
vertex of k′-gon

not on the circle

vertex of k′-gon

not on the k-gon

Now we claim that g(G) 6 bn−1
2
c, i.e. the level of any chord 6 bn−1

2
c or

equivalently for any two vertices there is a path connecting them having generation

time 6 bn−1
2
c, which contradicts our assumption that g(G) ∈ (bn−1

2
c, k−2). We’ll

use first and second counting formulas to make an estimate.

Notice this k′-gon in the diagram may have some vertices not on the circle (like

shown above). We treat them separately. Let i be the number of the vertices of

k′-gon which is on the circle and i1 the number of the vertices of k′-gon which is

not on the circle, i.e. the intersections of crosses.

Since k′-gon contains k-gon, we have i > k > bn−1
2
c + 3 and outside this i-

gon, we have (n + 1)− i points. If one area outside this i-gon has j points, then

j 6 (n+1)−i implies that (n+1)−j > i > bn−1
2
c+3, therefore j < bn−1

2
c. Notice

the j points in this area along with one edge of the i-gon construct a (j + 2)-gon,

we can regard it as the polygon inside the Aj+1 circle. Hence to generate the

chords inside this (j + 2)-gon, according to Lemma 2.1.14 (3) on the Aj+1 case,

we need at most j triangles, which is less than bn−1
2
c.

Lastly, it remains to consider a chord that intersects the interior of the i-gon.

Assume the chord has endpoints A and B. We claim that Lvl(AB) 6 bn−1
2
c and



40

then the theorem follows. Let us consider the following cases.

• Assume both A and B are on the i-gon:

First we use i1 triangles to complete the sides of the i-gon. Then by Lemma

3.1.4 we need at most b i−2
2
c triangles to generate the diagonals inside i-gon,

including the chord AB. Note each cross that contributes a vertex in i1

contains 2 points on the circle outside i-gon. Therefore 2i1 + i 6 n+1 which

implies i1 6 n+1−i
2

. Therefore, Lvl(AB) 6 i1 + b i−2
2
c 6 n+1−i

2
+ i−2

2
= n−1

2
,

which implies that Lvl(AB) 6 bn−1
2
c since Lvl(AB) ∈ Z.

•

•

•

•

•

•C

•B

•
D •

A

There is a path

connecting A,C

in diagram of G

shaded area: i-gon

•

•

•
•

•

•

•

•

•
•

•

•

• Assume B is on the i-gon but A is in an area of j points outside i-gon

without a cross from i1 (So j 6 n+ 1− i− 2i1):

Denote the closest vertices of i-gon to A by C and D. Notice to be a

generator, G is path-connected. So from A, there is a path of (m + 1)

(m 6 j) points and m1 = number of crosses on the path, to one of C and D

(say C).

Suppose clockwise D and B are l edges of i-gon away, and as a result

counterclockwise C and B are (i − 1 − l) edges of i-gon away. First, use

i1 triangles to complete the sides of the i-gon and m1 triangles to make the

above path a chain of t = (m + 1 − 2m1) vertices. Let us compare two

different paths to generate AB.
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Counterclockwise, we have a chain P1 from A to C then to B of t+(i−1− l)

vertices. Therefore, by Lemma 2.1.19 (1), g(P1) = t + (i − 1 − l) − 2 =

i+m− 2m1 − l.

Clockwise, we use the the path P2 from A to C then to D and B clockwise.

The “big Z” in B − D − C − A will reduce our steps dramatically. After

t− 1 steps, we could generate a chord from A to (t− 1)th position above D.

If we haven’t reach B yet, then use l − (t− 1) = (l − t+ 1)) extra steps. In

total, max{m− 2m1, l} steps. So g(P2) = max{m− 2m1, l}.

We summarize:

Lvl(AB) 6 i1 +m1 + min{g(P1), g(P2)} (3.1.10)

where 
g(P1) = i+m− 2m1 − l

g(P2) = max{m− 2m1, l}
(3.1.11)

subject to conditions:



i > k > bn−1
2
c+ 3

m 6 j 6 n+ 1− i− 2i1

0 6 l 6 i

(3.1.12)

Therefore,

– if 0 6 l 6 m− 2m1:
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Lvl(AB) 6 i1 +m1 + min{i+m− 2m1 − 2− l, m− 2m1}

6 i1 + min{(m−m1) + (i− 2− l), (m−m1)}

6 i1 + (m−m1) 6 i1 +m

6 i1 + n+ 1− i− 2i1 6 n+ 1− i

6 n− bn− 1

2
c − 3 < bn− 1

2
c

(3.1.13)

– if l > m− 2m1:

Lvl(AB) 6 i1 +m1 + min{i+m− 2m1 − 2− l, l}

6 i1 +m1 +
i+m− 2m1 − 2

2

=
i+ 2i1 +m

2
− 1

6
n+ 1

2
− 1 =

n− 1

2

(3.1.14)

Therefore, Lvl(AB) 6 bn−1
2
c since Lvl(AB) ∈ Z.

•

•

•

•

• •

•C

•B

•
D •

E

•
F

•
A

shaded area: (i+ 1)-gon

•

•

•
•

•

•

•

•

•
•

•

•

or •

•

•

•

• •

•C

•B

•
D •

E

•
F

•
A

shaded area: (i+ 1)-gon

•

•

•
•

•

•

•

•

•
•

•

•

• Assume B is on the i-gon but A is in an area of j points outside i-gon with

a cross from i1 (so j 6 n+ 1− i− 2(i1 − 1)):

Denote the vertices of such cross by C, D, E and F . If there is a chain from
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A to C or D, then it is in the same case as above since now m 6 j − 2.

Without loss of generality, we can assume from A there is a path of (m+ 1)

(m 6 j − 2) points and m1 = number of crosses on the path, to E. First,

use (i1 − 1) triangles to complete the sides of the i-gon except CD, 1 extra

triangle to build DE and m1 triangles to make the above path a chain of

t = (m+ 1− 2m1) vertices. Now we have an (i+ 1)-gon as shown in above

figure.

Suppose clockwiseD andB are l edges away, and as a result counterclockwise

E and B are (i − l) edges away. Similarly we have two different paths P1

and P2 to generate AB with g(P1) = (i + m − 2m1 − 1 − l) and g(P2) =

max{m− 2m1, l}.

We summarize:

Lvl(AB) 6 i1 +m1 +min{g(P1), g(P2)} (3.1.15)

where 
g(P1) = i+m− 2m1 − 1− l

g(P2) = max{m− 2m1, l}
(3.1.16)

subject to conditions:



i > k > bn−1
2
c+ 3

m 6 j − 2 6 n+ 1− i− 2i1

0 6 l 6 i

(3.1.17)

Therefore,
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– if 0 6 l 6 m− 2m1:

Lvl(AB) 6 i1 +m1 +min{i+m− 2m1 − 1− l, m− 2m1}

6 i1 +min{(m−m1) + (i− 1− l), (m−m1)}

6 i1 + (m−m1) 6 i1 +m

6 i1 + n+ 1− i− 2i1 6 n+ 1− i 6 bn− 1

2
c

(3.1.18)

– if l > m− 2m1 and l 6 i+m−2m1−2
2

:

Lvl(AB) 6 i1 +m1 +min{i+m− 2m1 − 1− l, l}

6 i1 +m1 +
i+m− 2m1 − 2

2

=
i+ 2i1 +m− 2

2

6
n− 1

2

(3.1.19)

– if l > m− 2m1 and l > i+m−2m1

2
:

Lvl(AB) 6 i1 +m1 +min{i+m− 2m1 − 1− l, l}

6 i1 +m1 +
i+m− 2m1 − 2

2

=
i+ 2i1 +m− 2

2

6
n− 1

2

(3.1.20)

Therefore, Lvl(AB) 6 bn−1
2
c since Lvl(AB) ∈ Z.
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•

•

•

•

•

•C

•
D

•E

•F

•B

•
A

•

•

•
•

•

•

•

•

•
•

•

•

or •

•

•

•

•

•C

•
D

•E

•F

•B

•
A

•

•

•
•

•

•

•

•

•
•

•

•

• Assume A, B are in two disjoint areas of j and j′ points respectively outside

i-gon and the picture is as shown above (the case when any of such area

contains a cross of i1 is similar).

Denote the closest vertices of i-gon to A by C and D and the closest vertices

of i-gon to B by E and F . Then from A, there is a path of (m+ 1) (m 6 j)

points and m1 = number of crosses on the path, to one of C and D (say

C) and from B, there is a path of (r + 1) (r 6 j′) points and r1 = number

of crosses on the path, to one of E and F (say F ). For simplicity, we can

assume m 6 r and ignore those crosses since they can only reduce the level of

AB as we have seen in the previous two cases. Namely the path connecting

A,C is a chain of (m+ 1) vertices and the path connecting B,F a chain of

(r + 1) vertices.

First, use i1 triangles to complete the sides of the i-gon. Suppose clockwise

D and F are l edges of i-gon away, and as a result counterclockwise C and

E are (i− 2− l) edges of i-gon away.

Counterclockwise, we have a chain P1 from A to C, then to F on the i-gon,

then going clockwise to B of m+1+r+1+(i−2−l) vertices. Notice we have a

“Big Z” B−F−E−A, by Lemma 2.1.19 (1), g(P1) = max{r, m+i−2−l} =

max{r, m+ i− 2− l}.
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Clockwise, we use the path P2 from A to C then to D and B clockwise.

Notice we have a “Big Z” B − D − C − A, by Lemma 2.1.19 (1), g(P2) =

max{m, l + r} = max{m, l + r} = l + r.

We summarize:

Lvl(AB) 6 i1 + min{g(P1), g(P2)} (3.1.21)

where 
g(P1) = max{r, m+ i− 2− l}

g(P2) = l + r

(3.1.22)

subject to conditions:



i > k > bn−1
2
c+ 3

m+ r 6 j + j′ 6 n+ 1− i− 2i1

0 6 l 6 i− 1

m 6 r

(3.1.23)

Therefore,

– if i− 2− (r −m) 6 l 6 i− 1:

Lvl(AB) 6 i1 + min{r, l + r}

6 i1 + r

6 n+ 1− i

6 n− bn− 1

2
c − 3 < bn− 1

2
c

(3.1.24)
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– if i−(r−m)
2

6 l 6 i− 3− (r −m):

Lvl(AB) 6 i1 + min{m+ i− 2− l, l + r}

6 i1 +m+ i− 2− l

6
i+ 2i1 +m+ r

2
− 2

<
n− 1

2

(3.1.25)

– if 0 6 l 6 i−(r−m)
2
− 1:

Lvl(AB) 6 i1 + min{m+ i− 2− l, l + r}

6 i1 + l + r

6
i+ 2i1 +m+ r

2
− 1

6
n− 1

2

(3.1.26)

Therefore, Lvl(AB) 6 bn−1
2
c since Lvl(AB) ∈ Z.

By the same argument, Lvl(AB) 6 bn−1
2
c for the second picture as well.

An immediate result of Theorem 3.1.8 is:

Remark 3.1.15. With one degeneration, the spectrum contains at most one gap.

Therefore, to look for more gaps we need to impose more polygons.
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3.2 Two-Polygon Case

Now denote by I and J , the set of vertices index (subsets of {0, 1, ..., n}) of two

polygons. Similarly we could define the set of generation times over all qualified

generators by OSpecI,J . Observe the following lemma:

Lemma 3.2.1. If the interiors of I and J intersect, then OSpecI,J = OSpecI∪J .

Proof. Imposing two polygons or just one polygon which is the convexification of

these polygons, we will have the same condition of choice of indecomposables thus

same set of qualified generators.

The spectrum in above case could be given by Theorem 3.1.8. Therefore we

only need to consider the case while two polygons either disjoint, sharing only a

vertex or sharing only an edge. Without loss of generality, assume that |I| = i >

j = |J |.

If we impose two polygons, we could have more gaps, for instance:

Example 3.2.2 (A25: 2 gaps). Impose a 16-gon and a 12-gon i.e. mark I =

{0, 1, ..., 15} and J = {0, 15, 16, ..., 25}. Then the 26-gon is divided into a 16-gon

and a 12-gon sharing a common edge - the chord X0,15.

•

•

•
•

••••
•

•

•

•

•

•

•

•
•

• • • •
•
•

•

•

• 0

1

2

14

15
16

24

25

16-gon

12-gon

Figure 3.2: A25: 2 gaps



49

Note by Theorem 3.1.8, if we impose only I. Then

OSpecI A25 = {7, 8, 9, 10, 11, 12} ∪ {14, 15, . . . , 24}, (3.2.27)

which has a gap at 13. Now imposing J , the Rouquier dimension is lifted to

8, namely G = sum of all allowed indecomposables has generation time 8. For

any other generator, the diagram need to be path connected and pass through all

vertices. If we take any indecomposable away from G, we have 3 choices. Taking

X0,15, the rest has generation time 12 by Lemma 3.1.4; taking any side of I other

than X0,15, the rest has generation time at least 14 by Lemma 3.1.11; taking any

side of J other than X0,15, the rest has generation time at least 10 by Lemma

3.1.11. Therefore, 9 is a gap. Indeed one can calculate that

OSpecI,J A25 = {8} ∪ {10, 11, 12} ∪ {14, 15, . . . , 24}. (3.2.28)

Therefore we have two gaps at 9 and 13.

Furthermore, it is quite likely that putting more elaborated combinations of

polygons will lead to

Conjecture 3.2.3. In a similar way one can obtain any number of gaps.

In the next chapter we will try to generalize calculations done here to indicate

a general theory. The obstructing polygons correspond to localization functors

- become a base locus of a noncommutative linear system. We will define a

categorical multiplier ideal sheaf and based on the examples done in chapter 2

and chapter 3 we outline a conjectural connection with the Orlov spectra of a

category.



Chapter 4

Hodge Theoretic Analogy

The calculations we have done in previous chapters indicate a generalized theory

of linear systems and base loci in categorical sense. The obstructing polygons

correspond to localization functors and in this way such generation-restricted An

categories correspond to localization categories:

I1-restricted An ←→ An/Γ1 ;

(I1, I2)-restricted An ←→ An/Γ1/Γ2
;

. . .

The structures of such categories can be realized by certain convex bodies, studied

by Lazarsfeld and Mustaţă [LM09] motivated by earlier idea of Okounkov [Oko97,

Oko96]. Many asymptotic invariants of the linear system are encoded in this so

called “Okounkov body”.

50



51

4.1 Categorical Okounkov Bodies

Let us recall first the construction of classical Okounkov bodies in [LM09]. The

construction is defined on an admissible flag of a d-dimensional projective variety

X, namely a flag of irreducible subvarieties:

X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yd = pt, (4.1.1)

where each Yi is non-singular at Yd with codimX Yi = i. Then for any big divisor

D on X, the flag determines a valuation map ν, which maps any nonzero section

s on D to a d-tuple of non-negative integers (ν1, ν2, . . . , νd). Start by setting

ν1 = ordY1(s). Then we set ν2 = ordY2(s1), where s1, on Y1, is a restriction of a

section non-vanishing on Y1 determined by s. So on and so forth, we can obtain

all the remaining νi’s. Then the Okounkov body of D, denoted ∆(D), is the

closed convex hull of
⋃
m>1

1
m
ν(mD).

Now let translate above notions into their analogues in categorical language.

For instance, in our example of An category. The flag of subvarieties becomes the

flag of subcategories

An ⊃ An/Γ1 ⊃ An/Γ1/Γ2
⊃ · · · (4.1.2)

with localization functors:

ϕ : An An/Γ1 An/Γ1/Γ2
· · · .

ϕ1 ϕ2 (4.1.3)

The sections become natural transformations between these localization functors

and restriction functors, and valuations νi are the maximal numbers of liftings

of the natural transformations, which measure how far along one can lift these

natural transformations. For example, in the figure below, we have ν1 = 2, ν2 = 3,
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ν3 = . . . .

· · · An/Γ1 An/Γ1 Id(An/Γ1)

An/Γ1

ϕ1 ϕ1 ϕ1

ν1

· · · An/Γ1/Γ2
An/Γ1/Γ2

An/Γ1/Γ2
Id(An/Γ1/Γ2

)

An/Γ1/Γ2

ϕ2 ϕ2 ϕ2 ϕ2

ν2

. . . . . .

Figure 4.1: ν1 = 2, ν2 = 3, . . .

Now we denote by ϕm the localization functors:

ϕm : An An/Γ1 An/Γ1/Γ2
· · · .

ϕm
1 ϕm

2 (4.1.4)

Then

ν(ϕm) = (ν1, ν2, . . . , νl), (4.1.5)

where l is the number of localizations and νi is the maximal numbers of liftings of

the natural transformation between ϕmi and restriction functor, similar to what is

shown in above figure. Now we define:

Definition 4.1.1 (Categorical Okounkov Body). The categorical Okounkov

body, denoted δ(ϕ), is defined to be the closed convex hull of
⋃
m>1

1
m
ν(ϕm).

Remark 4.1.2. Classical Okounkov body ∆(D) measures how Picard groups in the

flag of subvarieties fit together interacting with D - see e.g. [LM09]. Therefore,

similarly δ(D) measures how restriction functor and localization functor interact

asymptotically in respect of the flag of subcategories.
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In general, the definition of categorical Okounkov body can be extended to a

flag of subcategories R1, R2, . . . , Rl of a category with spherical and restriction

functors and natural transformations between them. Examples of such flags

of categories mainly come from derived categories of flags of subvarieties. For

example:

Example 4.1.3. The cube of categories below is given by quadrics Q1, Q2 and Q3

in P3 and their intersections. Derived categories of Q1, Q1 ∩Q2 and Q1 ∩Q2 ∩Q3

define a flag of categories R1, R2, R3, as shown below.

Db(X) Db(Q2)

Db(Q1) Db(Q1 ∩Q2)

Db(Q3) Db(Q2 ∩Q3))

Db(Q1 ∩Q3) Db(Q1 ∩Q2 ∩Q3)

For a flag of subcategories R1, R2, . . . , Rl of a category we denote by S the

restriction functor and t the spherical functor of a twist by a divisor. Then each

νi is the maximal number of liftings of the natural transformation. For example,

in the figure below, we have ν1 = 2, ν2 = 3, ν3 = . . . . Then we can define the

categorical Okounkov body associated with this flag following Definition 4.1.1.
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· · · {−3R1} {−2R1} {−R1} Id

{−D}

S S S S

t
ν1 = k1 = 2

· · · {−3R2} {−2R2} {−R2} IdR1

{−k1R1 −D}

S S S S

t
ν2 = k2 = 3

. . . . . .

Remark 4.1.4. Definition 4.1.1 is a categorification of the usual definition of

Okounkov body. Namely the classical Okounkov body of a flag of subvarieties and

the categorical Okounkov body of a flag of derived subcategories corresponding

to these subvarieties are the same. Classically ki is the multiplicity with which D

passes through Ri.

Now if we consider the categorical Okounkov bodies associated with the

localization categories of An, the calculations in Example 3.2.2 in previous chapter

indicate the following conjecture:

Conjecture 4.1.5. Orlov spectrum of An/Γ1/Γ2
has a second gap if and only if

the associated Okounkov body δ(ϕ) is non-polyhedral.

We are going to introduce the notion of multiplier ideal sheaf and propose

a more general statement in the coming section. As we are going to see, the

categorical Okounkov body will play an important role in classifying base loci of

the category.
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4.2 Categorical Linear Systems and Base Loci

In this section we are going to define the notions of categorical linear system and

categorical base locus. These two notions are closely connected to the categorical

invariants we’ve been studying in this thesis - Orlov spectra and the gaps.

Assume that C is a category with k functors t1, t2, ..., tk and the identity

functor Id.

Definition 4.2.1. All natural transformations ni : Id→ ti form a noncommutative

linear system of divisors Cone(ni). We call this linear system a categorical linear

system.

Definition 4.2.2. The orthogonal complement of all ti in C is called a categorical

base locus of the linear system generalized by (t1, t2, ..., tk).

Example 4.2.3. For a Landau-Ginzburg model (see e.g. [AKO08])

w : Y → P1, (4.2.6)

where Y is a fibration over P1 with compact fibers, we consider the Fukaya-Seidel

category FS associated with w. Let F be a functor, Id the identity functor and n

a natural transformation n : Id→ F . Then all natural transformations n : Id→ F

form a noncommutative linear system. The common subset of objects (common

subcategory) of two or more natural transformations ni : Id→ F is a base locus.

In our An example the obstructing polygons (marking vertices) correspond

to localization functors. So all natural transformations from identity functor to

localization functor become a noncommutative linear system. The elaborated

combinations of polygons become a noncommutative base locus. So as an analogy,

for the categorical base loci for Fukaya-Seidel categories we can think of natural
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transformations of rotation functors and identity functor as paths around the fiber

at infinity. Intersections of these paths are the categorical base loci i.e. marked

points (localized thimbles) on the fiber at infinity.

Now we are ready to define categorical multiplier ideal sheaf following the

procedure we used in defining categorical Okounkov body. We recall first the

classical definition. Let X be a smooth variety with an effective Cartier divisor

D on it. Then for a log resolution µ : Y → X of D, the multiplier ideal sheaf,

denoted Kα(D) or J(X,αD) is defined to be

Kα(D) = J(X,αD) = µ∗(OY (KY/X − bαµ∗Dc)). (4.2.7)

Remark 4.2.4. µ∗(OY (KY/X) = OX .

We categorify this definition:

Definition 4.2.5. Let C be a category with functor F . Then a sequence of

categorical multiplier ideal sheaves is a sequence of sheaves of categories

J(λ1, . . . , λk) : J(C, λkF ) ⊂ · · · ⊂ J(C, λ1F ) (4.2.8)

defined by a sequence of functors λiF , where each λi, called the jump number,

is the number of possible liftings of the point-like object p.

We denote the image of the functor λiF by Kp,λi . The analogy of categorical

multiplier ideal sheaf with the classical one is demonstrated in the table below.

Classically nx,λi is the dimension of the eigenspace with monodromy ei.λi for

the Mixed Hodge Structure associated with the function f defining D. Kx,λi

measure singularities of the pair (X,D). Categorically np,λi is the dimension of the

eigenspace with monodromy ei.λi for the noncommutative Mixed Hodge Structure
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([KKP]) associated with the category Kp,λi and the functor F . The category Kp,λi

measures the pair (LG model, categorical base loci).

Table 4.1: Categorical Multiplier Ideal Sheaf

CLASSICAL CATEGORICAL

J(X,λkD) ⊂ · · · ⊂ J(X,λ1D) ⊂ OX J(C, λkF ) ⊂ · · · ⊂ J(C, λ1F )

· · · 2mx 1mx Id

Ox(+Dλi)

⊗−Dλi

Kx,λi = Kλi(D), x point in D

· · · 2mp 1mp Id

Fλi

Kp,λi , p point-like object

dimKx,λi = nx,λi dimKp,λi = np,λi

We can generalize this idea to define categorical multiplier ideal sheaf

for several functors (classically several divisors). By restricting to flags of

subcategories we can obtain the Okounkov body associated with it.

In the case when the subcategories J(C, λkF ) ⊂ · · · ⊂ J(C, λ1F ) are

triangulated. By taking triangles we move up within these subcategories and

in this way we can build the Orlov spectrum of C. This point of view is verified

by our An example. We have a sheaf of generators (a sheaf of localized categories)

for which the jump number determines how many sides do we take from the whole

polygon in order to form the forbidden part. The calculations in previous chapter

are recorded in the table below.
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Table 4.2

Spectra Sheaves and Jump numbers

{bn−1
2
c} ∪ {n− 1} λn = n

n+1 generators in Lemma 3.1.4

{(bk−1
2
c), ..., bn−1

2
c}

∪{k − 2, ..., n− 1} λk = k
n+1 generators in Corollary 3.1.10 3.1.12

{0, 1, . . . , n− 1} λ1 = 1
n+1 generators in Theorem 2.1.16

Theorem 3.1.8 now can be interpreted as the following theorem.

Theorem 4.2.6. The multiplier ideal sheaf for the category An and the localization

functor - restricting a k-gon has jump numbers k
n+1

. The sequence of multiplier

ideal sheaves J(λ1, . . . , λk) determines the Orlov spectrum of generation-restricted

An.

Proof. It is a direct consequence of the definition of J(λ1, . . . , λk), Theorem 3.1.8

and Table 4.2.

In this case the categorical multiplier ideal sheaf is a sequence of localizations

J(C, λkF ) ⊂ · · · ⊂ J(C, λ1F ). Marking a polygon corresponds to localizing by

subcategory. The localization by the biggest polygon produces the first nontrivial

category J(C, λkF ) and by the smallest J(C, λ1F ). In the table below we represent

the multiplier ideal sheaf in this case as rotation by angles of λj of the localization

functor F .
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Table 4.3

The Multiplier Ideal Sheaf Functor Localization by An

· · · (−2p) (−p) Id

−λjF

t t t

λjs

•

•
•

•

•

•
•

•

•

D

An j = n− 1
J(n−1

n , D)

•

•
•

•

•

•
•

•

•

D

j = n− 2
J(n−2

n , D)

Now we try to connect the non-polyhedralness of restricted categorical

Okounkov bodies with the appearance of gaps in the Orlov spectra of the category.

Example 3.2.2 suggests the table below:

Table 4.4: Analogies

16-gon

12-gon

Example 3.2.2

2 gaps

•

•

Multiplicities

Structure on

Cat. Base Loci

•
•

restricted Okounkov body is non-polyhedral

In general we conjecture:

Conjecture 4.2.7. Let C be a triangulated category (e.g. Fukaya-Seidel category)

and F is a functor on it.

1. The categorical base locus is the subcategory defined by the vanishing of

restricted categorical Okounkov bodies for F and a flag of categories R1,

. . . , Rl.
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2. The complexity of the categorical base locus of the functor F is measured by

the jump numbers of the categorical multiplier ideal sheaf. These jump

numbers determine the filtration of the mixed noncommutative Hodge

structure associated with categorical base locus of the functor F .

3. The categorical multiplier ideal sheaf of the functor F determines the gaps

of Orlov spectrum of the category C.

If above connection of the Orlov spectra with categorical multiplier ideal

sheaves is established many of the standard properties of the Mixed Hodge

structures will hold - functoriality, strictness, hyperplane sections. We record these

generic expectations in the table below. (This is an example of three-dimensional

Fano manifold X.)

Similar as in An example, here degenerations (adding markings) corresponding

to the canonical multiplier ideal sheaf using the following formula.

(OSpecX1 + OSpecX2 + OSpecX3)m −R (4.2.9)

Here OSpecXi’s are Orlov spectra of the big polytope and the boundary of the

small marked polytope, and R is the number coming from repeating simplexes.

OSpecX1 + OSpecX2 + OSpecX3 denotes the Minkowski sum and (OSpecX1 +

OSpecX2 + OSpecX3)m denotes Minkowski sum with the contributions from

the monodromy around the fiber at infinity, which determines the gap. <

E1, . . . , En,A > is a semi-orthogonal decomposition of X with phantom A - the

subcategory with trivial K-theory.
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Table 4.5: Generic Hodge Theoretic Properties of Orlov Spectra

Functoriality

X X1

X2

X3

OSpecX ⊃
(OSpecX1 + OSpecX2 + OSpecX3)m −R

Minkowski
sum depending
on monodromy

repetition

Hyperplane

Section
X, XH = X ∩H GAP(Db(XH))

> GAP(Db(X))

Strictness
< E1, . . . , En,A >
generic phantom

OSpec(E1, . . . , En,A)
= OSpec(E1, . . . , En)

If above mentioned expectations are established they can become a powerful

computational tool. Conjecturally the gap in the Orlov spectra generically

becomes a number totally computable on the B side of Homological Mirror

Symmetry (HMS) and it is equal to the dimension of some Grassmannians in

the Mixed Hodge Structure of the degeneration of X.

This is rather speculative due to lack of fully developed examples. I expect to

compute more examples in order to provide more credibility to this approach in

future work.
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Appendix A

Triangulated Category

A triangulated category is an additive category equipped with a “translation

functor” and a collection of “distinguished triangles”. The distinguished triangles

in a triangulated category play a similar role to that of the short exact sequences in

abelian categories. A central class of examples is the derived category D(A) of an

abelian category A, which was first introduced by Jean-Louis Verdier[Ver96] in his

Ph.D. thesis, under the supervision of Grothendieck. Motivated by some special

“triangles” structure on a derived category, he wrote down axioms for the basic

properties of these triangles and defined the notion of a triangulated category.

For precise definition, we have the following notions of translation functor and

triangles:

Definition A.1. A translation functor on an additive category D is an additive

automorphism

T : D → D.

Denote X[n] = T n(X) and f [n] = T n(f) for the morphism f : X → Y .

Definition A.2.

• A triangle (X, Y, Z, u, v, w) is a six tuple of objects X, Y , and Z of D and
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morphisms u : X → Y, v : Y → Z and w : Z → X[1], which can be written

in the form:

X
u−→ Y

v−→ Z
w−→ X[1] (A.1)

or

X
u−→ Y

v−→ Z
w−→ · (A.2)

for short.

• A morphism of triangles is a commutative diagram of the form

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

(A.3)

Definition A.3. A triangulated category T is an abelian category D equipped

with a translation functor and a collection of triangles, called distinguished

triangles, satisfying the following axioms:

TR 0: Any triangle isomorphic to a distinguished triangle is distinguished.

TR 1: For any object X, the trivial triangle

X
id→ X → 0→ · (A.4)

is distinguished.

TR 2: Any morphism u : X → Y can be completed to a distinguished triangle

X
u−→ Y → Z → · (A.5)
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for some object Z, which is called a mapping cone of u.

TR 3: Rotations of distinguished triangles are distinguished. i.e.

X
u−→ Y

v−→ Z
w−→ X[1] (A.6)

is distinguished if and only if

Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1] (A.7)

and

Z[−1]
−w[−1]−−−−→ X

u−→ Y
v−→ Z (A.8)

are distinguished.

TR 4: Any map between two morphisms can be extended to a morphism of

triangles between their mapping cones. i.e. there exists some map h (not

necessarily unique) which makes the following diagram commute:

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

(A.9)

TR 5: For any morphisms u : X → Y and v : Y → Z and their composition

vu : X → Z. The three distinguished triangles formed by these three

morphisms can be made into the vertices of a distinguished triangle so that

everything commutes.
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Formally, given distinguished triangles

X
u−→ Y

j−→ Z ′
k−→ · (A.10)

Y
v−→ Z

l−→ X ′
i−→ · (A.11)

X
vu−→ Z

m−→ Y ′
n−→ · (A.12)

there exists a distinguished triangle

Z ′
f−→ Y ′

g−→ X ′
h−→ · (A.13)

such that every face of the following octahedron commutes:

Y ′

X ′

Z ′ Z

X

Y

f

g

k

h

j[1] ◦ i

i

m

l

j v

n

v ◦ u

u

(A.14)

Figure A.1: Octahedral Axiom

Therefore, this axiom is also called the Octahedral Axiom.
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Example A.4. Let A be an abelian category. The derived categories D(A) are

triangulated.

For n ∈ Z and a complex X, the complex X[n] is defined by

X[n]i = Xn+i, (A.15)

with differential

dX[n] = (−1)ndX . (A.16)

A distinguished triangle in D(A) is a triangle isomorphic to the triangle

X → Y → Cone(f)→ X[1] (A.17)

for some map of complexes f : X → Y . In particular, any short exact sequence

0 → X → Y → Z → 0 in A can be completed to a distinguished triangle

X → Y → Z → X[1] in D(A).
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Singularity Category

The singularity category originates from the local theory of singularities as

a matrix factorization introduced in the paper of Eisenbud [Eis80], where he

described MCM modules over local rings using this construction. Later in

[Orl04], Orlov developed the notion of “triangulated category of singularities”. He

associated with a commutative graded Noetherian ring R the graded singularity

category Dgr
sg(R), which is defined as the Verdier quotient of bounded derived

category of graded modules Db(grR) by its full triangulated category of perfect

complexes. It is a graded analogue of the singularity category Dsg(S), which

reflects many properties of the singularities of SpecR.

Let us recall the formal definitions, by looking at the ungraded case first.

Definition B.1.

If S is a commutative Noetherian k-algebra.

• The singularity category of S, denoted Dsg(S), is the Verdier quotient

of the bounded derived category of finitely generated modules Db(modS)

by the subcategory consisting of all bounded complexes of finitely generated

projective modules Db(projS).
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Assume further that S is local with maximal ideal mS, then

• (S,mS) is an isolated singularity if for any prime ideal p 6= mS, Sp is a

regular ring.

• (S,mS) is a hypersurface singularity if S is isomorphic to R/(w), where

(R,mR) is a regular local Noetherian k-algebra and w ∈ mR.

In the case of isolated hypersurface singularity, to study the category Dsg(S),

it is useful to consider the following two constructions. Recall that a S-module

M is called a maximal Cohen-Macaulay (MCM for short) module, if depthM

=dimS.

Remark B.2. M is an MCM module if and only if ExtiR(M,S) = 0, for i 6= 0.

The first construction is the category MCM(S) consisting of the same objects

as MCM(S), the full subcategory of modS of MCM modules and

HomMCM(S)(M,N) = HomS(M,N)/ ∼ (B.1)

where f ∼ g if there exists maps p : M → P and q : P → N with f − g = qp and

P projective, i.e. f − g factors through a projective module.

The second construction is the homotopy category of matrix factorization of

w, HMF(w). The objects are matrix factorizations, which are sequences of

R-modules,

P0
A→ P1

B→ P0, (B.2)

where Pi are finitely generated projective R-modules, AB = w idP1 , and BA =

w idP0 . Write P for a matrix factorization (P0, P1, A,B) and AP BP for the maps

in the matrix factorization. A morphism between two matrix factorizations, P

and Q, consists of R-module maps f0 : P0 → Q0 and f1 : P1 → Q1 making the
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following diagram commute:

P0 P1 P0

Q0 Q1 Q0

AP

f0

BP

f1 f0

AQ BQ

(B.3)

A homotopy between two morphisms f, g : P → Q is a pair of maps h0 : P0 → Q1

and h1 : P1 → Q0 so that f0 − g0 = BQh0 + h1AP and f1 − g1 = AQh1 + h0BP .

Morphisms in HMF(w) are homotopy classes of morphisms between P and Q.

Both of above categories are naturally triangulated. We have the following

result from [Buc87] or [Orl04]:

Theorem B.3. For an isolated hypersurface singularity S, the following categories

are equivalent as triangulated categories:

Dsg(S) ' MCM(S) ' HMF(w). (B.4)

In particular, the triangulated structure of MCM(S) is described in [Buc87] as

follows. Such structure on a additive category is determined by its distinguished

triangles. To describe these, let f : M → N be any S-linear map of MCM

S-modules. Choose an embedding i : M → Q of M into a finitely generated

projective S-module such that its cokernel is still MCM. Then define a mapping-

cone Cone(f) of f as the push-out of f and i, so that there is a commutative

diagram of short exact sequences of S-modules:

0 M Q coKer(i) 0

0 N Cone(f) coKer(i) 0

f

i p

=

i′ p′

(B.5)
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Here coKer(i) represents T (M), the translate of M , and ΩS(coKer(i)) is

represented by M . We call

M N Cone(f) TM = coKer(i)
f i′ −p′ (B.6)

a typical triangle, and its image in MCM(S) yields exactly all distinguished

triangles in MCM(S).

In this thesis, we consider only simple hypersurface singularities, in which case

we have only finitely many indecomposable objects, due to the following theorem

of characterization of singularities:

Theorem B.4. [Knö87] [BGS87] An isolated hypersurface singularity is simple if

and only if it has finite CM-representation type. i.e. there are only finitely many

isomorphism classes of indecomposable maximal Cohen-Macaulay modules.

Recall classification of simple hypersurface singularities up to isomorphisms is

done by Arnold [Arn81]:

Theorem B.5. Let S = k[[x0, ..., xd]] where k is an algebraically closed field of

characteristic zero. Then R = S/(f + x2
2 + ... + x2

d) is a simple hypersurface

singularity if and only if f is equal to one of the following polynomials after a

suitable change of variables:

An : xn+1
0 + x2

1 (n ≥ 1) (B.7)

Dn : xn−1
0 + x0x

2
1 (n ≥ 4) (B.8)

E6 : x4
0 + x3

1 (B.9)

E7 : x3
0x1 + x3

1 (B.10)

E8 : x5
0 + x3

1 (B.11)
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Note that, by Knörrer periodicity [Knö87], any two categories in the following

forms are equivalent:

MCM(S/(f)) ∼= MCM(S[[y, z]]/(f + y2 + z2)) (B.12)

So the question reduces to only dimension 1 and 2. Indeed, they actually would

give us the same spectra by the following fact:

Remark B.6. Let R be a complete regular ring. For any f ∈ R, we have

Dsg(R) = Dsg(R/(f)) ∼= Dsg(R[[y]]/(f + y2)) (B.13)

Now let’s take the gradings into consideration. Assume that A =
⊕

n≥0An

is a graded Noetherian k-algebra with A0 = k. Write grA, for the abelian

category of finitely generated graded A-modules with morphisms the degree zero

A-module homomorphisms. In Db(grA), we have the full thick (extension closed)

triangulated subcategory perf A, consisting of all bounded complexes of finite rank

free A-modules.

Definition B.7. The graded singularity category of A, denoted Dgr
sg(A), is

the Verdier quotient of Db(grA) by perf A.

Similarly we have the description of graded matrix factorization, see [Orl09a].

The definition is a repetition of that of the category of matrix factorizations while

taking care of the grading. Let A = k[x0, . . . , xn]/(f) with f homogeneous of

degree d. A graded matrix factorization P is a sequence of graded free A-

modules:

P0
p0→ P1

p1→ P0(d), (B.14)

where p0 and p1 are morphisms in grA so that p0p1 = p1p0 = f . Morphisms from
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P to Q are pairs of maps, f0 : P0 → Q1 and f1 : P1 → Q1, so that squares in the

diagram

P0 P1 P0(d)

Q0 Q1 Q0(d)

p0

f0

p1

f1 f0(d)

q0 q1

commute. A homotopy between f : P → Q and g : P → Q is a pair of maps

h0 : P0 → P1(−d) and h1 : P1 → Q0 so that f0 − g0 = q1h0 + h1p0 and f1 − g1 =

q0h1 + h0p1. We also have a shift [1] which takes P to matrix factorization

P1
p1→ P0(d)

p0(d)→ P1(d).

Let HMFgr(f) denote the homotopy category of the category of graded matrix

factorizations. In [Orl09a], Orlov proves the following:

Theorem B.8 (Orlov Theorem). There is an equivalence of triangulated

categories:

HMFgr(f) ' Dgr
sg(A). (B.15)

In the case of simple hyper surface singularities, we have the following theorem

[KST07].

Theorem B.9. Let f be a polynomial of type ADE in B.5, and let Q be a

Dynkin quiver of the corresponding type with a fixed orientation. Then we have

the equivalence of the triangulated categories:

HMFgr(f) ' Db(kQ) (B.16)

Therefore, instead of Dgr
sg(A), in practical sense we can consider its equivalent

categories:
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i) Db(kQ), the bounded derived category of finitely generated module over

path algebra of the corresponding Dynkin quiver Q.

ii) Db(repQ), the bounded derived category of finite dimensional representations

of the Dynkin quiver Q.
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