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We take a new approach to Lorentzian splitting geometry, revamping and

generalizing the classical notion of ‘horosphere’ from hyperbolic geometry. We

begin with a broad definition of Lorentzian sphere, which, in particular, gives

an achronal boundary. Using an achronal decomposition of Penrose, we define

the achronal limit of a sequence of monotonic achronal boundaries, and then

a horosphere as an achronal limit of spheres whose centers approach infinity.

As achronal limits are themselves achronal boundaries, our horospheres are C0

hypersurfaces by construction. In particular, this resolves, in an elegant and

geometric way, the poor regularity of the Busemann function in the Lorentzian

setting. Moreover, we show that such horospheres exhibit intrinsic support mean

convexity properties, and using the maximum principle of [2], several splitting

results are given under the timelike convergence condition, including applications

to a conjecture of R. Bartnik (inspired by S.-T. Yau), related to the rigidity of the

Hawking-Penrose singularity theorems. In particular, we construct two concrete

examples, the ray and Cauchy horospheres, and give a proof of the conjecture

in terms of the latter, under the additional assumption that a certain ‘max-min’

condition hold on its base Cauchy surface. Finally, turning attention to spacetimes

with positive cosmological constant, we develop a notion of limit mean convexity

and corresponding ‘maximum principle’ for achronal limits, and use these to prove

a rigid singularity result for asymptotically de Sitter spacetimes.



Dedicated to

Basilia and Arturo Amor

and Arturo Amor Jr.

iii



Acknowledgements

I would like to thank all of the many inspiring and supportive teachers I have had

throughout my studies, including especially Tedi Draghici, Abdelhamid Meziani,

David Futer, Jon Wolfson, Ming-Liang Cai, and of course, my advisor, Greg

Galloway. Working with Dr. Galloway these past few years has, in the first place,

been a profound pleasure. But moreover, his vision, guidance, and encouragement

have been absolutely fundamental to the creation, development, and ultimate

realization of the work below. I would also like to thank my committee for

their service and support, which has extended critically far beyond my thesis

and defense. Finally, I would like to thank my family and friends, including my

‘extended family’ in the Math Department.

iv



Table of Contents

List of Figures vii

1 Introduction 1

1.1 Spacetime Cheat Sheet . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Lorentzian Manifolds and Spacetimes . . . . . . . . . . . . . 5

1.1.2 Causal Curves, Futures, Pasts, and Diamonds . . . . . . . . 6

1.1.3 Limit Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.4 Strong Causality and Global Hyperbolicity . . . . . . . . . . 11

1.1.5 Achronal Sets and Edge Points . . . . . . . . . . . . . . . . 13

1.1.6 Cauchy Developments and Cauchy Surfaces . . . . . . . . . 15

1.1.7 Completeness and Singularities . . . . . . . . . . . . . . . . 18

2 Achronal Limits 19

2.1 Pasts, Futures, and Achronal Boundaries . . . . . . . . . . . . . . . 19

2.2 Achronal Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Hausdorff Closed Limits . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Spheres and Horospheres 29

3.1 Distance and Maximal Curves . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 The Maximal Limit Curve Lemma . . . . . . . . . . . . . . 33

3.2 Causal Completeness and Boundedness . . . . . . . . . . . . . . . . 35

v



3.3 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Horospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Ray and Cauchy Horospheres . . . . . . . . . . . . . . . . . 48

4 Convexity and Rigidity 53

4.1 Support Mean Curvature . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Maximal Segments . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Support Maximum Principle . . . . . . . . . . . . . . . . . . 59

4.2 Rigidity Under Timelike Convergence . . . . . . . . . . . . . . . . . 60

4.2.1 Compact Horospheres . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Cauchy Horospheres . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Limit Mean Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 A Limit Mean Convexity Lemma . . . . . . . . . . . . . . . 69

4.3.2 A Limit Maximum Principle . . . . . . . . . . . . . . . . . . 75

4.4 Rigidity under Λ > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Asymptotically de Sitter Spacetimes . . . . . . . . . . . . . 83

Appendix 90

4.5 One-Sided Hessian Bounds . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Tipping Over . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.2 Horospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 The Raychaudhuri Equation . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Normal Half-Splitting Lemma . . . . . . . . . . . . . . . . . . . . . 95

vi



List of Figures

1.1 A spacetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The edge of an achronal set. . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Achronal decompositions. . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 An achronal limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 A sphere as a harp of radial segments. . . . . . . . . . . . . . . . . 42

3.2 Ray horosphere monotonicity. . . . . . . . . . . . . . . . . . . . . . 49

3.3 Cauchy horosphere monotonicity. . . . . . . . . . . . . . . . . . . . 51

4.1 A ray as a flower of (support) spheres. . . . . . . . . . . . . . . . . 56

vii



Chapter 1

Introduction

In the early 1980’s, S.-T. Yau posed the ‘Lorentzian splitting problem’ in [30],

i.e., the problem of establishing a Lorentzian analogue of the Cheeger-Gromoll

splitting theorem of Riemannian geometry. Approaches to this have involved the

introduction of the Lorentzian Busemann function, and a study of its level sets,

the now standard Lorentzian ‘horospheres’ (cf. [6], [11], [16], and [22]). While

these tools have seen very effective application, the Busemann function in the

Lorentzian setting suffers characteristically from poor analytic properties, and its

regularity theory is considerably more complicated and less complete than in the

Riemannian case, (cf. [18]).

The Lorentzian splitting problem was motivated, in part, by the question of

rigidity in the Hawking-Penrose singularity theorems. The positive resolution of

the splitting theorem did not, however, settle this question. This is due, again, to

a distinctively Lorentzian issue, namely that, while one can in context produce a

causal line, there is a danger that, during construction, this line does not remain

‘upright’, i.e., timelike, and tips over to a null line.

In 1988, Bartnik realized the rigidity question concretely as Conjecture 2 in

[4], which may stated as follows:

1
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Conjecture 1 (Bartnik Splitting Conjecture). Let (M, g) be a spacetime and

suppose that:

1) M has a compact Cauchy surface S.

2) M satisfies the timelike convergence condition, i.e., Ric(X,X) ≥ 0 for all

timelike X.

3) M is timelike geodesically complete.

Then M splits, i.e., (M, g) ≈ (R × N,−dt2 + h), for some compact Riemannian

manifold (N, h).

In fact, the first result towards this conjecture appeared in [14], four years

prior. There, the splitting is established under an additional ‘no observer horizons’

condition. This was in turn improved upon in [4].

Using only conditions 1) and 3) of Conjecture 1, it is easy to construct a

complete causal line. If the line is timelike, then by condition 2), the Lorentzian

splitting theorem takes over and splits the spacetime. However, in [9], a spacetime

is constructed which is timelike geodesically complete, with compact Cauchy

surfaces, but which contains no timelike lines. Consequently, for such a strategy

to work, the curvature condition should somehow play an active role in the

construction of the line itself.

Having proven to be powerful splitting tools, it is natural to approach

Conjecture 1 via Busemann functions. We recall that, fixing any unit speed

timelike geodesic ray, γ : [0,∞)→M , the associated Busemann function bγ is the

limit function

bγ(x) = lim
k→∞

[
k − d(x, γ(k))

]
The geometry is now somewhat buried, but the 0-level set of the pre-Busemann

function bk(x) = k − d(x, γ(k)) is the past point sphere of radius k from γ(k),
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i.e., {bk = 0} = S−k (γ(k)). These are the ‘prehorospheres’ associated to the

standard horosphere {bγ = 0}. The convergence, in general, of these sets,

however, is a rather murky question in the Lorentzian setting. The analytic

difficulties for the Lorentzian Busemann function may be said to begin with

the reversal of the triangle inequality in the Lorentzian case. As an interesting

consolation, however, this reversed triangle inequality nonetheless implies a type

of ‘causal monotonicity’ for the prehorospheres {S−k (γ(k))}. In approaches to

Conjecture 1, we have also considered a variation of the standard Busemann

function. This variation gave certain advantages over the standard construction,

but was ultimately seen to suffer from similar regularity issues. Again, however,

the associated prehorospheres were observed to obey a certain causal monotonicity.

The approach taken here is to forget the functions, and focus on the spheres.

The classical ‘horosphere’ of hyperbolic geometry is the limit of a monotonic

sequence of spheres, which meets infinity. The philosophy here is that the correct

notion of horosphere should indeed, in the first place, be a limit sphere, in our

case, ‘centered’ at past or future infinity. Moreover, in hopes of developing a

robust and flexible splitting tool, we were inspired to keep this notion very general.

This is somewhat akin to a paper of Wu generalizing Busemann functions in the

Riemannian setting (cf. [29]).

Below, we give a broad definition of sphere, whose center may be a point,

any compact set, or more generally, a set which exhibits causal completeness

(cf. [15]). Focusing on the globally hyperbolic case, such spheres are achronal

boundaries. Achronal boundaries satisfy many important structural properties,

and in particular, are edgeless, achronal C0 hypersurfaces. Moreover, as shown

by Penrose in [25], every achronal boundary ‘causally separates’ spacetime in a

useful and unique way. This separating property gives a notion of monotonicity

for achronal boundaries and, in turn, allows for an elegant notion of achronal
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limit for monotonic sequences of such boundaries. We then define a horosphere

as an achronal limit of monotonic spheres, with centers approaching infinity, or

more specifically, with radii → ∞. As achronal limits are themselves achronal

boundaries, our spheres and horospheres are edgeless, achronal C0 hypersurfaces.

Exploiting the auxiliary structure of spheres, namely that they come with

intrinsic ‘radial’ maximal segments tied to each point, we show that, taking limits,

a past horosphere S−∞, for example, admits a future ‘radial’ S−∞-ray from each

point. Such radial rays endow horospheres with intrinsic support mean convexity

properties, and using the maximum principle of [2], we give various splitting results

for abstract horospheres under the timelike convergence condition.

In addition, we construct two important concrete classes of horospheres. The

monotonicity of {S−k (γ(k))} mentioned above is used to recast the standard

Lorentzian Busemann horosphere, {bγ = 0}, as the ray horosphere, S−∞(γ). This

resolves, for one, the issue of having to contend with the tedious regularity and

convexity theory of the set {bγ = 0}. We also consider an analogous construction,

with a Cauchy surface S in place of the ray γ, to produce the Cauchy horosphere,

S−∞(S). Among several applications to Conjecture 1, we use S−∞(S) to give a proof

of the conjecture in the case that a certain ‘max-min’ condition hold on S.

Finally, turning attention to the positive cosmological constant case, we

develop a notion of limit mean convexity, and use the Dirichlet solutions of Bartnik

in [3] to establish a corresponding ‘(pseudo)-maximum principle’ for achronal

limits. We use these to establish, in particular, a rigid singularity result for

asymptotically de Sitter spacetimes, related to results in [8] and [1].



5

1.1 Spacetime Cheat Sheet

For completeness and convenience, we compile in this preliminary section some

basic Lorentzian geometry and causal theory needed below. We note the standard

references: [21], [25], [23], [28], [5]. Because of their central role in the theory to

follow, two topics are left out of this introductory section. Achronal boundaries

are introduced in Section 2.1. The Lorentzian distance function is introduced in

Section 3.1.

1.1.1 Lorentzian Manifolds and Spacetimes

The simplest and most important spacetime is Minkowski space, Mn+1. This may

be defined as Rn+1 ≈ R × Rn ≈ {(t = x0, x1, ..., xn)}, together with the scalar

product

〈x, y〉 = −x0y0 +
n∑
i=1

xiyi

We think of the first coordinate t = x0 as designating a moment in time and the

remaining coordinates (x1, ..., xn) as designating a location in space.

Lorentzian geometry is based on Minkowski space in the same way that

Riemannian geometry is based on Euclidean space. In particular, by a smooth

Lorentzian manifold M = (Mn+1, g) we mean a smooth (n + 1)-dimensional

manifold, with n ≥ 1, furnished with a smooth Lorentzian metric, g, i.e., a smooth,

nondegenerate symmetric (0, 2)-tensor of constant index ν = 1. (More generally,

for a semi-Riemannian manifold, we allow any dimension and any constant index

0 ≤ ν ≤ dimM .) At each point p ∈ M of a Lorentzian manifold, the tangent

space TpM admits an orthonormal basis [e0, e1, ..., en], with respect to which the

metric gp at p is given by
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gp(X, Y ) = −X0Y 0 +
n∑
i=1

X iY i

for all X, Y ∈ TpM . Hence, each tangent space of a Lorentzian manifold M is

isomorphic to Minkowski space; (TpM, gp) ≈Mn+1.

The causal character of a vector X ∈ TM is defined as follows:

X is timelike if g(X,X) < 0

X is null if g(X,X) = 0

X is spacelike if g(X,X) > 0

We say X is causal if it is either timelike or null.

A Lorentzian manifold is time-orientable if it admits a smooth, everywhere-

timelike vector field, a choice, T , of which is called a time-orientation. The natural

time-orientation on Mn+1, for example, is ∂t. A general Lorentzian manifold is

either time-orientable or has a double-cover which is.

Definition 1.1.1. By a spacetime, we will mean a smooth, connected, time-

oriented Lorentzian manifold M = (Mn+1, g, T ).

Unless otherwise indicated, M shall henceforth denote a spacetime.

1.1.2 Causal Curves, Futures, Pasts, and Diamonds

The time-orientation T on a spacetime M is interpreted as pointing towards the

‘future’ and determines the time-orientation of a causal vector X as follows:

X is future-directed if g(T,X) ≤ 0

X is past-directed if g(T,X) ≥ 0

We say that a smooth curve β is timelike, (resp. null, causal, spacelike) if its

tangent vector field β′ is everywhere timelike (resp. null, causal, spacelike). More
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Figure 1.1: A spacetime M with time orientation T .

generally, by a future-directed (resp. past-directed) timelike (resp. null, causal)

curve, we shall mean a piecewise-smooth curve α : I → M , whose tangents,

including one-sided tangents at any break points or endpoints, are all future-

directed (resp. past-directed) timelike (resp. null, causal). Clearly, α is future-

directed iff −α is past-directed. We will often refer simply to a ‘causal curve α’,

for example, ignoring its time-orientation.

A future-directed (causal) curve α : (c, d) → M , with −∞ ≤ c < d ≤

∞, is future-inextendible if limt→d− α(t) does not exist and past-inextendible if

limt→c+ α(t) does not exist. A causal curve is inextendible (or endless) if it is both

future- and past-inextendible.
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Any semi-Riemannian manifold, and hence every spacetime M admits a unique

torsion-free, metric-compatible connection, ∇, called the Levi-Civita connection.

A curve α in M is called a geodesic if it is non-accelerating, i.e., if α′′ = ∇α′α
′ = 0.

By a pregeodesic we mean a curve which admits a geodesic reparameterization.

The geodesics, (strictly speaking, the images thereof), in Minkowski space, Mn+1,

are precisely the straight lines segments. It follows from the definition and

metric-compatibility, that every geodesic in a spacetime is either timelike, null,

or spacelike.

Recall that a subset U of a vector space is convex if, for any two points v, w ∈ U ,

the (unique) line segment vw joining them is contained entirely in U . Analogously,

given a semi-Riemannian manifold M , we say a subset U ⊂ M is convex if any

two points p, q ∈ U are joined by a unique geodesic segment contained entirely in

U , in which case we denote this segment by pq. Every semi-Riemannian manifold,

and hence every spacetime admits arbitrarily small convex neighborhoods around

each of its points. Note that Mn+1 is itself convex in the sense of semi-Riemannian

manifolds.

The length of a causal curve segment, α : [a, b] → M , where α is piecewise

smooth with breaks a = t0 < t1 < ... < tm = b, is given by L(α) =
∑m

i=1

∫ ti
ti−1
|α′|dt.

The following result is fundamental to causal theory and says, in particular, that

causal geodesics locally maximize length:

Proposition 1.1.2. Let U ⊂M be a convex neighborhood.

(1) If there is a timelike (resp. causal) curve in U from p to q, then pq is timelike

(resp. causal).

(2) If pq is timelike, then L(pq) ≥ L(α) for any causal curve segment in U

joining p and q, with equality iff α is a reparametrization of pq.
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The causal curves of a spacetime M define two fundamental ‘orders’ on M .

For p, q ∈M , we write:

p� q if there is a future-directed timelike curve segment from p to q

p ≤ q if there is a future-directed causal curve segment from p to q

We define the chronological future and past of a point p ∈M , respectively, by

I+(p) = {q ∈M : p� q}

I−(p) = {q ∈M : q � p}

and the causal future and past of p ∈M , respectively, by

J+(p) = {q ∈M : p ≤ q}

J−(p) = {q ∈M : q ≤ p}

For a general subset S ⊂M , we define

I±(S) =
⋃
p∈S

I±(p), J±(S) =
⋃
p∈S

J±(p)

Proposition 1.1.3. If q ∈ J+(p) \ I+(p), then any causal curve from p to q is a

null pregeodesic.

Corollary 1.1.4. The relations � and ≤ are transitive. Further, if either p �

q ≤ r or p ≤ q � r, then p� r.

Given any open set U ⊂ M and p ∈ U , we define I+(p, U) to be the set

of points q ∈ U such that there is a future-directed timelike curve α within U

from p to q. In other words, I+(p, U) is the chronological future of p in the open

Lorentzian submanifold U ⊂M . I−(p, U) and J±(p, U) are defined similarly.
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Proposition 1.1.5. For a convex neighborhood U of p, we have:

(1) I±(p, U) is open in U and hence also in M .

(2) J±(p, U) is the closure in U of I±(p, U).

For any subset S ⊂M we have:

(3) int J±(S) = I±(S). In particular, I±(S) is open.

(4) ∂J±(S) = ∂I±(S). Hence, J±(S) ⊂ I±(S) with equality iff J±(S) is closed.

For any p, q ∈M , we will refer to I+(p)∩ I−(q) as a timelike diamond, and to

J+(p)∩J−(q) as a causal diamond. Note that timelike diamonds are always open.

1.1.3 Limit Curves

A C0 curve α : I →M is said to be future-directed causal if for all t0 ∈ I, there is

an open interval neighborhood t0 ∈ I0 ⊂ I and a convex normal neighborhood U0

of α(t0), with α(I0) ⊂ U0, such that, for all [t1, t2] ∈ I0, α(t2) ∈ I+(α(t1), U0).

The Limit Curve Lemma is a fundamental tool in causal theory. We state

it here as follows. We note that every smooth manifold admits a complete

Riemannian metric.

Lemma 1.1.6 (Limit Curve Lemma). Fix a complete Riemannian metric h on

M . Let αk : [0,∞) → M be a sequence of future-inextendible causal curves

parameterized with respect to h arc length. Given any limit point p of the

sequence of base points {αk(0)}, there is a future-inextendible C0 causal curve

α : [0,∞) → M from α(0) = p, and a subsequence {αkj} converging locally

uniformly to α, i.e., on any compact parameter interval [0, T ], αkj : [0, T ] → M

converges uniformly to α : [0, T ] → M . (We note that, in general, α is not

parameterized with respect to h arc length.)
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We shall also need the related fact that the (Lorentzian) arc length functional,

(which extends to C0 causal curves), is upper semicontinuous in the following

sense:

Proposition 1.1.7. If a sequence of causal curves αk : [a, b] → M converge

uniformly to a causal curve α : [a, b]→M , then L(α) ≥ lim supL(αk).

The Limit Curve Lemma may be used to prove the following extension of

Proposition 1.1.3:

Proposition 1.1.8. Let S ⊂ M be closed. Then each x ∈ ∂I+(S) \ S lies on

a null geodesic contained in ∂I+(S) which either has a past endpoint on S or is

past-inextendible in M .

1.1.4 Strong Causality and Global Hyperbolicity

A spacetime M is said to be causal (resp. chronological) if it admits no nontrivial

closed causal (resp. timelike) curves. Consequently, M is causal if and only if

(M,≤) is a partially ordered set. M is said to be ‘strongly causal’ if it admits

no ‘almost-closed’ causal curves. This is made precise using the notion of causal

convexity. We say an (arbitrary) subset V ⊂M is causally convex if every causal

curve with endpoints in V is contained entirely in V . Equivalently, V ⊂ M is

causally convex if no causal curve meets V in disconnected sets. It is easy and

convenient to reformulate this in terms of diamonds:

Lemma 1.1.9. An (arbitrary) subset V ⊂M is causally convex iff V contains all

of its diamonds, i.e., iff J+(p) ∩ J−(q) ⊂ V whenever p, q ∈ V .

Causal convexity is often defined only for open neighborhoods, but as we will

see, this property is meaningful for other kinds of sets, (cf. Lemmas 1.1.13 and

4.3.1). Note that any (timelike or causal) diamond is causally convex.
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We say strong causality holds at p ∈ M if p admits arbitrarily small causally

convex open neighborhoods. A subset H ⊂M is strongly causal if strong causality

holds at each point p ∈ H. We note the following:

Lemma 1.1.10 (Escape Lemma). If K ⊂M is compact and strongly causal, then

every future-inextendible (resp. past-inextendible) curve must eventually leave K

and never return.

We say a causal curve α from p to q is maximal if L(α) ≥ L(β) for all causal

curves β joining p to q. (This will be rephrased in Section 3.1.) Strong causality

is related to the existence of maximal geodesic segments.

Lemma 1.1.11. Let p ≤ q and suppose that J+(p)∩ J−(q) is strongly causal and

compact. Then there is a maximal causal geodesic joining p to q.

Motivated by Lemma 1.1.11, we distinguish an important class of spacetimes:

Definition 1.1.12. A spacetime M is said to be globally hyperbolic if it is strongly

causal and has compact causal diamonds, J+(p) ∩ J−(q).

Hence, by Lemma 1.1.11, any two causally related points in a globally

hyperbolic spacetime are joined by a maximal causal geodesic segment.

We say a subset H ⊂ M is globally hyperbolic if it is strongly causal and, for

all p, q ∈ H, the causal diamond J+(p) ∩ J−(q) is compact and contained in H.

Hence, while global hyperbolicity is not inherited by arbitrary subsets, we have

the following:

Lemma 1.1.13. If H ⊂ M is globally hyperbolic and V ⊂ H is causally convex,

then V is globally hyperbolic.

Global hyperbolicity has many important consequences. For the moment we

note the following:
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Proposition 1.1.14. Let M be globally hyperbolic and A,B ⊂M are compact.

(1) J±(A) is closed. In particular, J±(A) = I±(A).

(2) J+(A) ∩ J−(B) is compact.

Lemma 1.1.15. If M is globally hyperbolic, the relation p ≤ q is closed on M ,

i.e., if pk → p and qk → q, with pk ≤ qk for all k, then p ≤ q.

1.1.5 Achronal Sets and Edge Points

Achronality will play a central role in the theory to follow. We say a set A ⊂ M

is achronal (acausal) if no two points of A can be joined by a timelike (causal)

curve. The edge of an achronal set A ⊂M is defined as follows: A point p ∈ A is

in edgeA, if every neighborhood U of p contains a timelike curve from I−(p, U) to

I+(p, U) which does not meet A. We note that an achronal set consists entirely

of topological boundary points (in the manifold topology). Nonetheless, the edge

of an achronal set is a type of boundary.

Lemma 1.1.16. If A is achronal, then A = A ∪ edgeA.

A

edgeA

Figure 1.2: An achronal set A which ‘almost kisses’ itself.
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The following consequence of achronality will be especially important below:

Proposition 1.1.17. If ∅ 6= A ⊂ M is achronal, then A is a C0 hypersurface iff

A∩edgeA = ∅. In particular, any edgeless achronal set is a closed C0 hypersurface.

Moreover, we have the following specialization of Proposition 1.1.8:

Corollary 1.1.18. Let S ⊂M be closed and achronal. Then each x ∈ ∂I+(S)\S

lies on a null geodesic contained in ∂I+(S) which either has a past endpoint on

edgeS or is past-inextendible in M .

Proof. As this fact, (in this precise form), does not appear to be immediately

available in most of the standard references, we include a proof. Fixing x ∈

∂I+(S) \ S, by Proposition 1.1.8, we may suppose x is the future endpoint of a

null geodesic η : [0, 1] → ∂I+(S), with η(0) = s ∈ S and η(1) = x. Furthermore,

we may suppose η leaves S immediately, i.e., η ∩ S = {η(0)} = {s}. We want to

show s ∈ edgeS. Suppose otherwise, that there is a neighborhood U of s such that

each timelike curve in U from I−(s, U) to I+(s, U) meets S. Let p ∈ I−(s, U) and

q ∈ I+(s, U). Then I+(p, U) ∩ I−(q, U) is an open neighborhood of s and hence

meets η(ε) for some ε > 0. Hence, there is a timelike curve α− in U from p to η(ε)

and a timelike curve α+ in U from η(ε) to q. The concatenation, α = α− + α+ is

a timelike curve in U from p ∈ I−(s, U) to q ∈ I+(s, U), and hence must meet S,

i.e., either α− or α+ meets S. Suppose the latter. Then, since η(ε) 6∈ S, we have

α+ \{η(ε)} meets S at some point s′ ∈ S. But then, we have s ≤ η(ε) << s′, and,

hence s << s′, by Corollary 1.1.4, which violates the achronality of S. Hence α−

meets S, in particular, α− \ {η(ε)} meets S. But this implies η(ε) ∈ I+(S), and

hence x ∈ I+(S), contradicting x ∈ ∂I+(S). Hence s ∈ edgeS.
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1.1.6 Cauchy Developments and Cauchy Surfaces

Note that we may write the causal past and future of a set S ⊂ M , J−(S) and

J+(S), also called the past and future domains of influence of S, respectively, as

follows:

J+(S) = {q ∈M : some past-directed causal curve from q meets S}

J−(S) = {p ∈M : some future-directed causal curve from p meets S}

We may define the (total) domain of influence of S as J(S) = J+(S) ∪ J−(S).

(Similarly, we let I(S) = I−(S) ∪ I+(S)).

For S ⊂ M achronal, we define the past and future domain of dependence of

S, respectively, by

D+(S) = {q ∈M : every past-inextendible causal curve from q meets S}

D−(S) = {p ∈M : every future-inextendible causal curve from p meets S}

The (total) domain of dependence of S is D(S) = D+(S) ∪ D−(S). The words

‘Cauchy development ’ are often used in place of ‘domain of dependence’. Hence,

D+(S) is also called the future Cauchy development of S, for example, and D(S)

is the (full) Cauchy development of S.

The past and future Cauchy horizons of S are defined, respectively, by

H+(S) = D+(S) \ I−(D+(S))

H−(S) = D−(S) \ I+(D−(S))

The (total) Cauchy horizon of S is H(S) = H+(S) ∪H−(S).
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We have the following:

Proposition 1.1.19. Let S ⊂M be achronal.

(1) S ⊂ D±(S) ⊂ S ∪ I+(S) ⊂ J±(S).

(2) H±(S) is achronal.

(3) edgeH±(S) ⊂ edgeS, with equality holding iff S is closed.

(4) H±(S) \ edgeS ⊂ J±(S).

(5) ∂D±(S) = S ∪H±(S) and ∂D(S) = H(S).

As an immediate corollary to Propositions 1.1.17 and 1.1.19, we have:

Corollary 1.1.20. If S ⊂ M is achronal, then H±(S) \ edgeS, if nonempty, is

an edgeless achronal C0 hypersurface.

The following is an analog of Proposition 1.1.18 for Cauchy horizons:

Proposition 1.1.21. Suppose S ⊂ M is achronal. Then any point p ∈ H+(S) \

edgeS is the future endpoint of a null geodesic contained entirely in H+(S) which

either has a past endpoint on edge S or is past-inextendible.

Regarding the structure of Cauchy developments, we have:

Proposition 1.1.22. Let S ⊂ M be achronal. Then intD(S), if nonempty, is

globally hyperbolic. Moreover, if S is an acausal hypersurface, then D(S) is open.

Moreover, we have:

Proposition 1.1.23. Let ∅ 6= S ⊂M be achronal.

(1) D−(S) = J−(S) ⇐⇒ H−(S) = ∅, in which case S = ∂I−(S).

(2) M = D(S) = J(S) ⇐⇒ H(S) = ∅, in which case ∂I−(S) = S = ∂I+(S).
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Definition 1.1.24. Let ∅ 6= S ⊂ M be achronal. We say S is a past Cauchy

surface if H−(S) = ∅. Future Cauchy surfaces are defined time-dually. We say S

is a (full) Cauchy surface if H(S) = ∅, or equivalently, if D(S) = M .

Hence, a nonempty achronal set is a Cauchy surface iff it is both a past and

future Cauchy surface. As we will show in Section 2.1, it follows from Proposition

1.1.23 that (past, future) Cauchy surfaces are edgeless. Hence, by Proposition

1.1.17, we have:

Corollary 1.1.25. Any (past, future) Cauchy surface is an edgeless achronal C0

hypersurface.

The definition of ‘Cauchy surface’ has many variations in the literature. Often,

they are defined by (some version of) the following:

Proposition 1.1.26. Let S ⊂M be achronal. Then S is a Cauchy surface for M

iff every inextendible causal curve in M meets S. In this case, every inextendible

causal curve also meets I−(S) and I+(S).

We note also the following property (related to causal completeness below):

Proposition 1.1.27. Let S be a past Cauchy surface. Then, for every p ∈ J−(S),

the set J+(p) ∩ J−(S) is compact.

Using Propositions 1.1.21 and 1.1.27 and Lemma 1.1.10, we have:

Proposition 1.1.28. Any compact, edgeless achronal set S ⊂ M must be a

Cauchy surface for M .
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We have the following basic topological facts regarding Cauchy surfaces:

Theorem 1.1.29. Let S be a Cauchy surface for M and let X be any smooth

complete timelike vector field on M . Then M splits topologically as M ≈ R × S,

where the t-curves are precisely the (timelike) integral curves of X. Furthermore,

any two Cauchy surfaces for a spacetime are homeomorphic.

Finally, we note the following fundamental result relating Cauchy developments

and global hyperbolicity:

Theorem 1.1.30 (Geroch). A spacetime M is globally hyperbolic iff it admits a

Cauchy surface.

1.1.7 Completeness and Singularities

A geodesic γ : I → M is complete if I = R. We say M is geodesically complete if

every geodesic in M extends to a complete geodesic. Less stringently, we say M is

future timelike (resp. null) geodesically complete if every future-directed timelike

(resp. null) geodesic γ is extendible as such to γ : I → M with [a,∞) ⊂ I, for

some a ∈ R. Past timelike and null completeness is understood time-dually. We

say M is timelike (resp. null) geodesically complete if it is both future and past

timelike (resp. null) geodesically complete.

By a singularity in M , we will usually mean the existence of a (future or past)

incomplete timelike or null geodesic, in which case we may say M is singular.



Chapter 2

Achronal Limits

2.1 Pasts, Futures, and Achronal Boundaries

In this section we review some of the basic theory of achronal boundaries as

developed by Penrose in [25]. In particular, we recall (and give a new proof of) an

‘achronal decomposition’ result in [25], Proposition 2.1 below, which is perhaps

somewhat less standard, but will play a central role in the theory to follow.

To begin, we say P ⊂ M is a past set if P = I−(S) for some S ⊂ M , and

define future sets, F , time-dually. The following is immediate from the definitions

and Proposition 1.1.5:

Lemma 2.1.1. Past and future sets are open. The union of past sets is a past

set, and similarly for future sets.

For (nonsentimental) reasons which will be clear below, we will often focus

attention on pasts, though, as always, time-dual statements exist for those not

mentioned explicitly.

19
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We first note the following:

Lemma 2.1.2 (Past Sets). Let P ⊂M . The following are equivalent:

i) P is a past set.

ii) P = I−(P ).

iii) P is open and I−(P ) ⊂ P .

iv) M \ P is a future set.

Proof. Noting that, for any set S ⊂ M , intS ⊂ I±(S), the equivalence of i),

ii), and iii) is straighforward. i) ⇐⇒ iv): Suppose that P is a past set and

let x 6∈ P . Were I+(x) to meet P , then I+(x) would meet P and we would

have x ∈ I−(P ) = P . Hence, I+(x) ⊂ M \ P . Since x was arbitrary, we have

I+(M \ P ) ⊂M \ P and hence, by the time dual of i) ⇐⇒ iii), M \ P is a future

set. The converse is the time dual.

Definition 2.1.3. The boundary of a past or future set, if non-empty, is called

an achronal boundary.

Hence, an achronal boundary is a set of the form ∅ 6= A = ∂I±(S), for some S ⊂

M . By Lemma 2.1.2, if A = ∂I±(S) for some S ⊂M , then A = ∂I∓(M \ I±(S)).

Hence, there is no distinction between the boundary of a past or a future, and all

achronal boundaries may, for example, be expressed in the form A = ∂I+(S).

Lemma 2.1.4. Let A = ∂I+(S).

1) I+(A) ⊂ I+(S).

2) I−(A) ⊂M \ I+(S).
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Proof. Let a ∈ A = ∂I+(S). 1) If b ∈ I+(a), then I−(b) is an open neighborhood

of a and hence meets I+(S), and thus b ∈ I+(S). This shows I+(A) ⊂ I+(S). 2)

Now fix any c ∈ I−(a). By 1), we know c 6∈ A. Were c ∈ I+(S), then a, being in

the future of c, would be in the future of S, contradicting A ∩ I+(S) = ∅. Hence

c ∈M \ I+(S). Thus we have I−(A) ⊂M \ I+(S).

It follows from Lemma 2.1.4 that every achronal boundary is achronal and

edgeless. Hence we have the following corollary to Proposition 1.1.17:

Corollary 2.1.5. Achronal boundaries are edgeless achronal C0 hypersurfaces.

We now take a new approach to the achronal decomposition result given in

[25], Proposition 2.1 below, which here follows from a few additional observations

on the structure of past sets. For convenience, we begin by rephrasing Lemma

2.1.4 as follows:

Corollary 2.1.6. Let P be a past set and x ∈ ∂P . Then I−(x) ⊂ P .

We have the following regarding the structure of pasts:

Lemma 2.1.7. Let ∅ 6= P 6= M be a past set in a (connected) spacetime M and

let {Pi}i∈I be the connected components of P . Then each Pi is a past set and ∂P

is the disjoint union of the boundaries {∂Pi}i ∈I , each of which is nonempty;

∂P =
⋃
i∈I

∂Pi

Proof. Since I−(p) is (path) connected for any p ∈M , it follows that I−(Pi) ⊂ Pi.

Since Pi is necessarily open, it follows from Lemma 2.1.2 that Pi is a past set.

Since M is connected, ∂Pi 6= ∅, and since the sets Pi are pairwise disjoint, so are

their boundaries, by Corollary 2.1.6. Now, of course we have ∂Pi ⊂ Pi ⊂ P . But
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since ∂Pi ∩ Pj 6= ∅ is impossible, we must have ∂Pi ⊂ ∂P . Hence ∪i∈I∂Pi ⊂ ∂P .

Conversely, let p ∈ ∂P . Let α : [0, ε)→M be a past timelike curve segment from

p = α(0). Then α \ {α(0)} is connected and contained in P and hence must be

contained in some Pi. It follows that p ∈ ∂Pi.

The following gives a uniqueness property for achronal boundaries:

Lemma 2.1.8 (Achronal Boundary Uniqueness). Let P and Q be nonempty past

sets with ∂P = ∂Q. Then P = Q.

Proof. If ∂P = ∂Q = ∅, then P = Q = M . Hence, suppose ∂P = ∂Q 6= ∅. Let

{Pi}i∈I be the connected components of P and {Qj}j∈J the connected components

of Q. Pick any P -component, P0 := Pi0 . Then by Lemma 2.1.7, we have ∅ 6=

∂P0 ⊂ ∂P , and since ∂P = ∂Q, there is a Q0 := Qj0 with ∂P0 ∩ ∂Q0 6= ∅. Then

by Lemma 2.1.6, P0∩Q0 6= ∅. But since ∂P0 can not meet Q0, and vice versa, we

have P0 = Q0. This shows P ⊂ Q, and by symmetry, we have P = Q.

Combining Lemmas 2.1.2, 2.1.4, and 2.1.8, we have:

Proposition 2.1.9 (Achronal Decomposition). Given any achronal boundary A,

there exists a unique past set P = PA and a unique future set F = FA such that

∂P = A = ∂F . The triple {P,A, F} forms a (mutually disjoint) partition of M ,

M = P ∪ A ∪ F,

with I+(A) ⊂ F and I−(A) ⊂ P . Any curve from P to F must meet A, in a

unique point if the curve is timelike.

Henceforth, given an achronal boundary A, we shall often speak of the sets

P = PA and F = FA without explicit reference to Proposition 2.1. We note that

every Cauchy surface S is an achronal boundary with P = I−(S) and F = I+(S).
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PP

Figure 2.1: Achronal decompositions.

2.2 Achronal Limits

As may be seen in Figure 2.1, the inclusions I−(A) ⊂ P and I+(A) ⊂ F in

Proposition 2.1 may be strict, in general.

Definition 2.2.1 (Proper Boundaries). We say that an achronal boundary A is

past proper provided P = I−(A), or equivalently, if ∂I−(A) = A. Future proper

achronal boundaries are defined time-dually. We say A is proper if it is both past

and future proper.

Lemma 2.2.2. Let A and B be achronal boundaries with associated unique past

and future sets {PA, FA} and {PB, FB}, respectively.

1) PA ⊂ PB ⇐⇒ FB ⊂ FA

2) If A is past proper, then J−(A) = A ∪ I−(A) = I−(A) = PA.

3) If A and B are past proper, then

PA ⊂ PB ⇐⇒ J−(A) ⊂ J−(B) ⇐⇒ A ⊂ J−(B)

Proof. 1) By Proposition 2.1, PA ⊂ PB ⇐⇒ B ∪ FB ⊂ A ∪ FA. But since FB is

open, if FB∩A 6= ∅, then FB∩PA 6= ∅, which implies FB∩PB 6= ∅, a contradiction.

So FB ⊂ FA. The converse is the time dual of this. 2) A ∪ I−(A) ⊂ J−(A) ⊂

I−(A) = ∂I−(A) ∪ I−(A) = A ∪ I−(A). 3) Follows from I−(A) ⊂ I−(B) ⇐⇒

J−(A) ⊂ J−(B), which follows from 2) by taking closures and interiors.
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We will say a sequence of achronal boundaries {Ak} is monotonic if either {Pk}

is increasing, i.e., Pk ⊂ Pk+1 or {Pk} is decreasing, i.e., Pk+1 ⊂ Pk. Note that by

Lemma 2.2.2, {Pk} is increasing iff {Fk} is decreasing, and vice-versa.

Definition 2.2.3 (Achronal Limits). Let {Ak} be a monotonic sequence of

achronal boundaries.

1) If {Pk} is increasing, we define the future achronal limit, A∞, of {Ak} by

A∞ = ∂

(⋃
k

Pk

)

2) If {Fk} is increasing, we define the past achronal limit, A∞, of {Ak} by

A∞ = ∂

(⋃
k

Fk

)

A∞

Pk

Pk+1

Figure 2.2: A future achronal limit.

We note, again, that when {Pk} is increasing, for example, we have equivalently

that {Fk} is decreasing. In this case, the future achronal limit is given by either:
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A∞ = ∂

(⋃
k

Pk

)
= ∂

(⋂
k

F k

)

Similarly, when {Pk} is increasing, the past achronal limit is given by:

A∞ = ∂

(⋃
k

Fk

)
= ∂

(⋂
k

P k

)

Moreover, when {Pk} is increasing, we note that, by Lemma 2.1.1, P∞ := ∪kPk is

an (open) past set, and hence A∞ = ∂P∞, (if nonempty), is an achronal boundary.

Similarly, when {Pk} is decreasing, A∞ = ∂F∞, with F∞ = ∪kFk an (open) future

set. In particular, we have the following:

Corollary 2.2.4. Any nonempty achronal limit, A∞, is an achronal boundary,

and hence an edgeless achronal C0 hypersurface.

We say a sequence of points {xk} is future causal if xk ≤ xk+1. If such a

sequence converges, we call x = limxk the future (causal) limit of {xk}. Past

causal sequences and limits are understood time-dually.

Proposition 2.2.5 (Sequential Characterization of Achronal Limits). Let A∞

be the future (resp. past) achronal limit of {Ak}. Then any limit point of a

sequence ak ∈ Ak is contained in A∞. Moreover, fixing any point a ∈ A∞ and

any timelike curve α through a, a is the future (resp. past) causal limit of the

(eventual) sequence ak = α ∩ Ak.

Proof. Suppose a ∈ M is a limit point of a sequence ak ∈ Ak, with akj → a. Let

U be any neighborhood of a. For large j, we have akj ∈ U . Then for large j, since

U meets Akj = ∂Pkj , it meets Pkj and hence also ∪kPk = P∞. Also, U intersects

I+(a) at some point y, and since I−(y) is open and contains a, it contains akj for
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all sufficiently large j. Thus, y ∈ I+(Akj) ⊂ Fkj for all large j, and consequently,

y /∈ ∪kPk = P∞. It follows that a ∈ ∂P∞ = A∞. Hence, A∞ contains all limit

points of sequences ak ∈ Ak.

Now let a ∈ A∞ and let α : I →M be any future pointing timelike curve with

0 ∈ I and α(0) = a. Fix T > 0 with −T ∈ I. We have α|[−T,0) ⊂ I−(A∞) ⊂ P∞ =

∪kPk and a 6∈ Pk. Thus, for all sufficiently large k, α is a timelike curve from

α(−T ) ∈ Pk to α(0) = a ∈ Ak ∪ Fk. It follows then from Proposition 2.1 that for

each sufficiently large k, there is a unique tk ∈ (−T, 0] such that ak := α(tk) ∈ Ak.

By achronality, ak = α∩Ak. The fact that {Pk} is increasing implies that {tk}must

be (weakly) increasing in k, and hence that {ak} is future increasing. Suppose that

tk 6→ 0, i.e., that tk ≤ 2δ < 0. Then α(δ) ∈ I−(A∞) ⊂ P∞, and hence α(δ) ∈ Pk for

large k. On the other hand, α(δ) ∈ I+(Ak) ⊂ Fk for large k, which is not possible

since Pk ∩ Fk = ∅. So we have tk → 0, and thus ak = α(tk)→ α(0) = a.

2.3 Hausdorff Closed Limits

We show in this section that achronal limits are a special case of so-called Hausdorff

closed limits. In fact, the latter not only provide a convenient framework for, but

also allow for a generalization of much of the theory to follow. The definitions

below were introduced by Hausdorff in [20], and used, with some small variations

in [7] and [5]. See also [24].

Definition 2.3.1 (Hausdorff Closed Limits). Let {Sk} be an infinite sequence of

nonempty subsets of a topological space X. The Hausdorff upper and lower limits

of {Sk} may be defined, respectively, by

Sup
∞ = lim{Sk} = {p : each neighborhood of p meets infinitely many Sk’s}

Slow
∞ = lim{Sk} = {p : each neighborhood of p misses only finitely many Sk’s}
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Hence, lim{Sk} ⊂ lim{Sk}. In the case of equality, the common limit is called the

Hausdorff closed limit of {Sk}, which we denote by S∞ = lim{Sk}.

It is straightforward to check that Sup
∞ and Slow

∞ are closed. Hence, when it

exists, the Hausdorff closed limit S∞ is indeed closed. Moreover, it is easy to

verify the following characterizations:

Lemma 2.3.2 (Sequential Characterization of Hausdorff Limits). Let {Sk} be a

sequence of subsets of a metric space X.

(1) Sup
∞ = lim{Sk} is precisely the set of limit points of sequences sk ∈ Sk.

(2) Slow
∞ = lim{Sk} is precisely the set of limits of sequences sk ∈ Sk.

In particular, if S∞ exists, then any limit point of a sequence sk ∈ Sk is in S∞

and every point in S∞ is the limit of some (convergent) sequence s̃k ∈ Sk.

Hence, by Proposition 2.2.5, achronal limits are Hausdorff closed limits:

Corollary 2.3.3. The Hausdorff closed limit of a monotonic sequence of achronal

boundaries {Ak} exists and coincides with its achronal limit. Hence, we may write

either as A∞ = lim{Ak}.

The following fails for arbitrary Hausdorff lower limits:

Lemma 2.3.4 (Local Uniform Convergence). Let Sup
∞ be the Hausdorff upper limit

of {Sk} and let K be any compact set. For any neighborhood U of Sup
∞ ∩K, there

is a k0 ∈ N, such that, for all k ≥ k0,

Sk ∩K ⊂ U ∩K.

Proof. Otherwise, for each j ∈ N, we can find sj ∈ Skj ∩ K with sj 6∈ U . As

{sj} ⊂ K, the sequence {sj} has a limit point s∞ ∈ K. But by Lemma 2.3.2, we
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have s∞ ∈ Sup
∞ , which contradicts the fact that {sj} never enters the neighborhood

U .

Corollary 2.3.5. Hausdorff closed limits, and hence also achronal limits, converge

locally uniformly (as in Lemma 2.3.4).



Chapter 3

Spheres and Horospheres

Starting in Section 3.3, we will assume global hyperbolicity throughout the

remainder, though we will continue to state this explicitly at times.

3.1 Distance and Maximal Curves

For p, q ∈ M , we denote by Ωc
p,q the set of future-directed causal curve segments

from p to q. Motivated by Proposition 1.1.2, the (Lorentzian) distance between

p, q ∈M is defined by

d(p, q) :=

 sup{L(α) : α ∈ Ωc
p,q} q ∈ J+(p)

0 q 6∈ J+(p)

Unlike Riemannian distance, d is not continuous, or even finite-valued, in

general. Moreover, d fails every property of being a metric (in the sense of metric

spaces). We do, however, have the following:

29
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Proposition 3.1.1. d : M ×M → [0,∞] is lower semicontinous and satisfies the

reverse triangle inequality: For x ≤ y ≤ z,

d(x, y) + d(y, z) ≤ d(x, z) (3.1.1)

Much of the theory below is based on considering, more generally, distance to,

from, or between subsets of M . For S ⊂M , we define the distance to S by

d(p, S) := sup{d(p, s) : s ∈ S}

Similarly, the distance from S is defined by d(S, q) := sup{d(s, q) : s ∈ S}. More

generally, given two subsets A,B ⊂ M , we define the distance between A and B

by d(A,B) := sup{d(a, b) : a ∈ A, b ∈ B}.

Distance-realizing curves play a central role below. A causal curve segment α

from p to q is maximal if L(α) = d(p, q), i.e., if α is a ‘longest’ causal curve from

p to q. We first note the following important consequence of Proposition 1.1.2:

Corollary 3.1.2. Any maximal causal curve is a pregeodesic, that is, (up to

parametrization), such curves are either timelike or null geodesics.

The proof of Corollary 3.1.2 involves a local ‘corner-cutting’ argument based

on Proposition 1.1.2. Since this type of argument is used so many times below,

we give an example here:

Lemma 3.1.3 (Corner-Cutting). Suppose that α is a maximal future causal curve

segment from o to p, and β is a maximal future causal curve segment from p to q.

If, for example, the concatenation α + β fails to glue together to form a geodesic

from o to q, then there is a longer causal curve from o to q.

Proof. Let U be a convex neighborhood of p. Let p− ∈ α∩U and p+ ∈ β∩U , with

p− << p << p+. Note that the concatenation α + β must fail to be a geodesic
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by having a ‘sharp corner’ at p. Hence, by Proposition 1.1.2, there is a curve in

U from p− to p+ which is strictly longer than that provided by α + β. Following

α up from o, but then ‘cutting the corner’ from p− to p+ along this new segment,

and thereafter continuing up along β to q gives a strictly longer curve from o to

q.

We note that, as demonstrated by a null spiral segment on the Lorentzian

cylinder, (R×S,−dt2 + dθ2), a non-maximal geodesic may split into two maximal

halves. Hence, a concatenation as in Lemma 3.1.3 may form a geodesic, yet still

fail to maximize.

Continuing with distance-realizing curves, we say a causal curve segment α

from S ⊂ M to q ∈ J+(S), which we will call an S-segment, is maximal (as an

S-segment) if L(α) = d(S, q), i.e., if α is a ‘longest’ causal curve from S to q. Note

that this implies that α realizes the distance from S to any of its points. We use

the same language for curves joining p ∈ J−(S) to S.

By a future ray we mean a future-inextendible causal curve γ : [0, d) → M ,

each segment of which is maximal. More generally, for any S ⊂M , a future S-ray

is a future-inextendible causal curve γ : [0, d) → M from γ(0) ∈ S, each segment

of which is maximal as an S-segment. Past S-rays are understood time-dually.

Note that γ is a ray iff it is a {γ(0)}-ray. Finally, by a causal line we mean an

inextendible causal curve, each segment of which is maximal.

We will make use of the following observations regarding maximal segments

from achronal boundaries:

Lemma 3.1.4. Let A be an achronal boundary and η : [0, T ] → M , η(0) ∈ A, a

future-directed null curve segment. If η is maximal as an A-segment, then η ⊂ A.

Consequently, any null future A-ray is necessarily contained in A.
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Proof. Let P and F be the unique past and future sets associated to A, as in

Proposition 2.1. Then η ⊂ J+(A) ⊂ A ∪ F . Suppose that η(c) ∈ F for some

c ∈ (0, b]. Letting p ∈ I−(η(0)) ⊂ P , we have p ∈ I−(η(c)). Letting α be a

timelike curve from p ∈ P to η(c) ∈ F , then, as in Proposition 2.1, α must meet

A. Consequently, we have η(c) ∈ I+(A), and hence d(A, η(c)) > 0 = L(η|[0,c]),

contradicting the maximality of η. Hence η must remain in A.

As a consequence to Proposition 1.1.26 and Lemma 3.1.4, we have:

Corollary 3.1.5. If S is a Cauchy surface, then any S-ray is timelike.

While maximal segments do not, in general, join to form maximal segments,

we have the following:

Lemma 3.1.6. Let A be an achronal boundary. Let a ∈ A and suppose that

α : [−R, 0] → M is a maximal future-directed A-segment ending at α(0) = a and

β : [0, T ] → M is a maximal future-directed A-segment from β(0) = a. Then

γ = α + β : [−R, T ] → M is a future-directed maximal segment. In this case, α

and β are either both timelike or both null, in which case, γ is timelike or null,

respectively. Consequently, if A admits both a past and future A-ray from the same

point, then these join to form a line.

Proof. If α is null, then α ⊂ A by Lemma 3.1.4. Then, by a corner cutting

argument, β must also be null, with β ⊂ A. Hence, γ(−R) ∈ J−(γ(T )), but

since these two points are in A, we have γ(−R) 6∈ I−(γ(T )). Then by Proposition

1.1.3, γ is a null pregeodesic. Hence, L(γ) = 0 = d(γ(−R), γ(T )), so γ is also

maximal. Now suppose α is timelike. Then β must also be timelike, and since A is

achronal, we must have α(−R) ∈ P and β(T ) ∈ F , with P and F as in Proposition

2.1. Let σ : [t−, t+] → M be any causal curve from α(−R) = γ(−R) ∈ P to
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β(T ) = γ(T ) ∈ F . Then, as in Proposition 2.1, σ must meet A at some (possibly

non-unique) point σ(t0). We have:

L(σ) = L(σ[t−,t0]) + L(σ[t0,t+]) ≤ L(α) + L(β) = L(γ)

Hence, γ is maximal. The statement about rays joining to form a line follows.

Regarding distance and maximal segments, we have the following standard

result:

Theorem 3.1.7. Suppose M is globally hyperbolic. Then (p, q) 7→ d(p, q) is finite

and continuous on M ×M . Furthermore, for p ≤ q, there exists a maximal causal

geodesic segment γ ∈ Ωc
p,q, i.e., L(γ) = d(p, q).

We will derive an analog to Theorem 3.1.7 for q → d(S, q) in Section 3.2.

3.1.1 The Maximal Limit Curve Lemma

The following lemma collects various standard constructions, and is the key to

proving Theorem 3.4.4.

Lemma 3.1.8 (Maximal Limit Curve Lemma). Let M be a noncompact spacetime

and let {Sk} be a sequence of subsets with Hausdorff closed limit S∞. Suppose that

for each k, αk is a maximal future Sk-segment from xk ∈ Sk to yk ∈ J+(Sk). If

the base points {xk} have a limit point p ∈ S∞ and the endpoints yk → ∞, then

any limit curve α of {αk} from p is a future S∞-ray.

Proof. We fix a complete Riemannian metric h on M and let αk : [0, Tk] → M

be the parameterization of αk with respect to h arc length, with αk(0) = xk

and αk(Tk) = yk. Extend each αk arbitrarily so that each is future-inextendible

and still parameterized with respect to h arc length, αk : [0,∞) → M . Let α :
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[0,∞)→M be a future-inextendible causal C0 limit curve of {αk} from α(0) = p,

as in Lemma 1.1.6, with a subsequence {αkj} converging locally uniformly to α.

Recall that ‘yk → ∞’ iff the tail of {yk} lies outside every compact set, i.e.,

given any compact set K ⊂ M , there is an index k0 such that, for all k ≥ k0,

yk 6∈ K. Note that, since h is Riemannian, this implies Tk →∞.

Let T ≥ 0 and z ∈ S∞. Then there is a sequence zk ∈ Sk with zk → z, and for

sufficiently large j, αkj(T ) is defined. By the maximality of the αkj ’s, the upper

semicontinuity of Lorentzian arc length, (Prop 1.1.7), and the lower semicontinuity

of Lorentzian distance, we have:

L(α[0,T ]) ≥ lim supL(αkj)

= lim sup d(Skj , αkj(T ))

≥ lim inf d(Skj , αkj(T ))

≥ lim inf d(zkj , αkj(T ))

≥ d(z, α(T ))

Hence, for all T ≥ 0, α : [0, T ]→M is maximal as a future S∞-segment, and thus

α : [0,∞)→M is a future S∞-ray.

We note first that S∞ = lim{Sk} may be replaced in Lemma 3.1.8 by the

Hausdorff lower limit, lim{Sk}. In fact, that was the version given in [19] under the

name ‘Sk-segment Lemma’. As stated, however, Lemma 3.1.8 fails for Hausdorff

upper limits. Lemma 3.1.8 captures many typical constructions, including rays

from a point, asymptotes and other co-rays to a curve, as well as S-rays for more

general sets S. For example, Lemma 3.1.8 may be used to establish the following

standard fact:
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Lemma 3.1.9. Every compact Cauchy surface S admits a past S-ray and a future

S-ray, which (by Lemma 3.1.5) are necessarily timelike.

Proof. Fix a complete Riemannian metric h on M . Fixing any future-inextendible

timelike curve β : [0,∞) → M , parameterized with respect to h arc length, β

must enter the timelike future of S. Hence, for large k, let αk : [0, Tk] → M be a

maximal S-segment to yk := β(k) and let xk = αk(0) ∈ S. By Lemma 1.1.10, we

have yk →∞, and by compactness, {xk} has a limit point p ∈ S. Hence, applying

Lemma 3.1.8 with Sk = S = S∞, any limit curve α of {αk} from p is a future

S-ray. By time-dualizing, one produces a past S-ray, η.

Remark 3.1.10. Being future maximal, the curves {αk} and α in Lemma 3.1.8 are

either timelike or null geodesics, or rather, may be parameterized as such. Hence,

it is natural to compare the limit curve α with the geodesic limit of the αk’s. In

[18], Galloway and Horta observed that, if α is timelike, then, roughly speaking,

the two notions of limits agree. This fact will be important to the convexity and

rigidity of horospheres. See Lemma 4.5.4 below for an application.

3.2 Causal Completeness and Boundedness

To get the desired generalization of Theorem 3.1.7 for d(S, ·), we need to impose

conditions on the ‘center’ set S. The following notion was first introduced in [15].

Definition 3.2.1 (Causal Completeness). A subset S ⊂ M is said to be future

causally complete if for all p ∈ J+(S), the closure in S of J−(p) ∩ S is compact.

Past causal completeness is defined time-dually. S is causally complete if it is both

past and future causally complete.
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We note that compact sets, in particular (single) points are causally complete.

Moreover, by Proposition 1.1.27, Cauchy surfaces are (past and future) causally

complete. In general, if S is either future or past causally complete, then S is

necessarily closed:

Lemma 3.2.2. If S is future causally complete, then S is closed.

Proof. Suppose otherwise, that for some sequence {sk} ⊂ S, we have sk → x ∈

M − S. Let y ∈ I+(x). Then for all large k, sk ∈ J−(y) ∩ S, and, in particular,

y ∈ J+(S). However, the closure in S of J−(y) ∩ S contains the tail of {sk}, but

not its limit, x, and hence is not compact.

In the globally hyperbolic setting, causal completeness may be rephrased as

follows:

Lemma 3.2.3. Let M be globally hyperbolic and S ⊂M closed. Then the following

are equivalent:

(i) S is future causally complete.

(ii) J−(p) ∩ S is compact for all p ∈ J+(S).

(iii) J−(p) ∩ J+(S) is compact for all p ∈ J+(S).

Proof. Let p ∈ J+(S). Since S is closed, and since by Lemma 1.1.14, J−(p) is

closed, we have clS(J−(p)∩S) = clM(J−(p)∩S) = J−(p)∩S. Hence, (i)⇐⇒ (ii).

The equivalence (ii)⇐⇒ (iii) follows from Lemma 1.1.14 and the relations:

J−(p) ∩ S ⊂ J−(p) ∩ J+(S) = J−(p) ∩ J+(J−(p) ∩ S)



37

We note the following:

Lemma 3.2.4. Let M be globally hyperbolic. If S is future causally complete, then

J+(S) is closed.

Proof. Let qk ∈ J+(S) converge to q ∈ M . Let q+ ∈ I+(q). Then, for all large

k, we have qk ∈ J−(q+), and in particular, q+ ∈ J+(S). Since qk ∈ J+(S), each

qk ∈ J+(sk) for some sk ∈ S. Then, for all large k, sk ∈ J−(q+) ∩ S, which is

compact. Hence {sk} has a limit point s∞ ∈ S. By Lemma 1.1.15, sk ≤ qk for all

(large) k implies s∞ ≤ q, and hence, q ∈ J+(S).

We are now ready to prove a useful analog of Theorem 3.1.7:

Lemma 3.2.5. Let M be globally hyperbolic. If S is future causally complete, then

x→ d(S, x) is finite-valued and continuous on M , and given any q ∈ J+(S), there

is a maximal future S-segment α from S to q, i.e., L(α) = d(S, q).

Proof. Theorem 3.1.7 will be used throughout. First note that S is closed. Let

q ∈ J+(S). By Lemma 3.2.3, J−(q) ∩ S is compact. Let xk ∈ J−(q) ∩ S such

that d(xk, q) → d(S, q). Then {xk} has a limit point p ∈ S, and by continuity

of d on M × M , we have d(p, q) = limj→∞ d(xkj , q) = d(S, q). In particular,

d(S, q) < ∞. Furthermore, by Lemma 1.1.14, p ≤ q, hence, p is joined to q

by a maximal causal geodesic segment α, which must also be maximal as an S-

segment, L(α) = d(p, q) = d(S, q). Note that, since J+(S) is closed (by Lemma

3.2.4), d(S, ·) is continuous on the open set M\J+(S), where it vanishes identically.

Hence it remains to show continuity at q ∈ J+(S). Note that for this, it suffices to

show that for any sequence qk → q, we have limj→∞ d(S, qkj) = d(S, q), for some

subsequence {qkj}, (since this would apply to a supremum-realizing sequence as

well as an infimum-realizing sequence). Fix q+ ∈ I+(q) ⊂ J+(S). Then J−(q+)∩S
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is compact. For all large k, we have qk ∈ J−(q+) and hence J−(qk)∩S ⊂ J−(q+)∩S.

Let pk ∈ J−(q+) ∩ S with d(pk, qk) = d(S, qk), where pk is chosen arbitrarily for

any qk 6∈ J+(S). By compactness of J−(q+) ∩ S, {pk} has a subsequence {pkj}

converging to some p∞ ∈ J−(q+) ∩ S. Note that (by future causal completeness),

there is a p0 ∈ S with d(p0, q) = d(S, q). By continuity on M × M , we have

limj→∞ d(S, qkj) = limj→∞ d(pkj , qkj) = d(p∞, q) ≤ d(S, q) = d(p0, q). On the

other hand, we have d(p0, qkj) ≤ d(S, qkj) = d(pkj , qkj), the limit of which gives

d(p0, q) ≤ d(S, q). Hence limj→∞ d(S, qkj) = d(S, q).

Note that, for closed subsets of a globally hyperbolic spacetime, past causal

completeness is inherited to the past:

Lemma 3.2.6. Let M be globally hyperbolic. If C is past causally complete and

S ⊂ J−(C) is closed, then S is past causally complete.

Proof. Let x ∈ J−(S). Then, since J+(x)∩S is a closed subset of J+(x)∩J−(C),

it is compact. Hence by Lemma 3.2.3, S is past causally complete.

In globally hyperbolic spacetimes, causal completeness has an important effect

on ‘causal horizons’, e.g., ∂I+(S) and H+(S). We first note the following corollary

to Proposition 1.1.8 and Lemma 1.1.10:

Corollary 3.2.7. Let M be globally hyperbolic and S ⊂M past causally complete.

Then each x ∈ ∂I−(S) \ S is the past endpoint of a null geodesic contained in

∂I−(S) which has a future endpoint on S.

Proof. Let x ∈ ∂I−(S) \ S. By Proposition 1.1.8, x is the past endpoint of a

null geodesic η ⊂ ∂I−(S), which is either future-inextendible or has a future

endpoint on S. Since, by (the time-dual of) Lemma 3.2.4, J−(S) is closed, we

have η ⊂ J+(x)∩ ∂I−(S) ⊂ J+(x)∩ J−(S). By the past causal completeness of S
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and Lemma 3.2.3, the latter set is compact. Hence, by the ‘escape’ Lemma 1.1.10,

η must have a future endpoint on S.

Corollary 3.2.8. Let M be globally hyperbolic and suppose ∅ 6= S ⊂M is achronal

and edgeless. If S is past causally complete, then S = ∂I−(S), i.e., S is a past

proper achronal boundary.

Proof. Suppose otherwise that x ∈ ∂I−(S) \ S. Then by Corollaries 1.1.18 and

3.2.7, x is the past endpoint a null geodesic with future endpoint on edgeS. But

S is edgeless. Hence S = ∂I−(S).

Similar to Corollary 3.2.7, we have the following corollary to Proposition 1.1.21:

Corollary 3.2.9. Let M be globally hyperbolic and suppose S ⊂ M is achronal

and edgeless. Then S is past causally complete iff H−(S) = ∅.

Proof. Suppose first that S is past causally complete. Suppose to the contrary

that there is a p ∈ H−(S). Then by Proposition 1.1.21, p is the past endpoint

of a null geodesic η ⊂ H−(S) which is future-inextendible. But this impossible

by Lemma 1.1.10, since η ⊂ J+(p) ∩ H−(S) ⊂ J+(x) ∩ J−(S). The converse is

Proposition 1.1.27.

The following will be used throughout to ‘causally control’ subsets of a globally

hyperbolic spacetime M :

Definition 3.2.10 (Causal Boundedness). We say a subset A ⊂ M is future

bounded if there is a Cauchy surface S in M such that A ⊂ J−(S). Past

boundedness is defined time-dually.
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This notion is very closely related with causal completeness:

Lemma 3.2.11. Let M be globally hyperbolic and ∅ 6= S ⊂ M closed. Then S is

future bounded iff S is past causally complete.

Proof. First suppose S is future bounded by a Cauchy surface Σ, i.e., S ⊂ J−(Σ).

Since Σ is (past) causally complete, then S is past causally complete, by Lemma

3.2.6. Now suppose S is past causally complete. Let A = ∂I−(S). We first note

that A is nonempty. To see this, observe that since S 6= ∅, we have I−(S) 6= ∅.

Hence A = ∅ iff M = I−(S) = J−(S). If this were the case, then the future of any

point would be compact, by Lemma 3.2.3, contradicting the Escape Lemma 1.1.10.

Hence, A 6= ∅ is closed, achronal and edgeless. Furthermore, by Corollary 3.2.7, we

have A ⊂ J−(S). Hence, by Lemma 3.2.6, A is also past causally complete. Then

by Corollary 3.2.9, A is a past Cauchy surface, i.e., H−(A) = ∅ and D−(A) =

J−(A). Let M̃ = M − J−(A). Let p, q ∈ M̃ , and let x ∈ J+(p) ∩ J−(q). Then

x ∈ M̃ , since otherwise, if x ∈ J−(A), then p ∈ J−(x) ⊂ J−(A). Furthermore,

J−(A) is closed, by Lemma 3.2.4. It follows that M̃ is an open, globally hyperbolic

(sub)spacetime. Hence, by Theorem 1.1.30, M̃ admits a Cauchy surface, Σ. Let,

for example, β : (−∞,∞)→M be a future-directed, inextendible causal curve in

M . If β ⊂ M̃ , then β must meet Σ. Otherwise, if β meets J−(A) = D−(A), it

must meet A, at some point β(t0) ∈ A. By past causal completeness, (c.f. Lemma

3.2.3), J+(β(t0)) ∩ J−(A) is compact. Hence, by the Escape Lemma, 1.1.10, β

must, at some point, leave A and never return. Hence, there is some t1 ≥ t0 with

β(t1) ∈ A and β : (t1,∞) → M̃ . Since limt→t+1
β(t) does not exist in M̃ , β(t1,∞)

is inextendible in M̃ . Consequently, β(t1,∞), and hence β must meet Σ. Since

β was arbitrary, Σ meets every inextendible causal curve in M . It follows that

Σ is a Cauchy surface for M , (c.f. Proposition 1.1.26). Finally, fix any x ∈ S.



41

Let α : [0,∞) → M be any future-inextendible causal curve from x ∈ S. Then,

by past causal completeness, there is some s0 ≥ 0, for which α(s0) ∈ J−(S) and

α(s0,∞) ⊂M \ J−(S) ⊂M \ J−(A). Hence, the future end of α meets Σ, which

means x ∈ J−(Σ). Since x ∈ S was arbitrary, we have S ⊂ J−(Σ).

3.3 Spheres

From now on, we assume global hyperbolicity throughout.

Definition 3.3.1 (Spheres). For C ⊂ M past causally complete and r > 0, we

define the past sphere from (the center) C of radius r by

S−r (C) := {x ∈ J−(C) : d(x,C) = r}

Future spheres are defined time-dually, from future causally complete centers.

We note that one can similarly define a sphere of radius r = 0. By past causal

completeness, this gives S−0 (C) = ∂I−(C). All of the properties given below for

spheres of positive radius have analogs for spheres of radius zero. Conversely,

these results may be viewed as an extension of basic causal theoretic results like

Proposition 1.1.8. In any case, we will restrict attention to r > 0.

As noted above, (single) points and Cauchy surfaces are causally complete to

both the future and past. For p ∈M , we call S±r (p) a point sphere. For S ⊂M a

Cauchy surface, we call S±r (S) a Cauchy sphere. Cauchy spheres are not Cauchy

surfaces in general, but see Lemma 3.3.5 below.

The simplest examples, point spheres in Minkowski space, will be surprisingly

useful to keep in mind. We note from the outset that a sphere is really more than

just the set S−r (C) itself. By definition, each p ∈ S−r (C) satisfies d(p, C) = r, and

hence, by Lemma 3.2.5, p is joined to C by a maximal C-segment, which we call
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a ‘radial segment’, (see Lemma 3.3.2). We may think of this as a taught string

from p to C. Hence, we may think of S−r (C) and C as bounding a ‘harp’ of such

strings, as in Figure 3.1.

C

S−r (C)

Figure 3.1: A sphere and its center form a harp of radial segments.

Lemma 3.3.2 (Radial Segments). Each x ∈ S−r (C) is joined to C by a future

timelike geodesic segment of length r which maximizes both the distance to C and

from S−r (C). We refer to these as radial segments.

Proof. By past causal completeness, any x ∈ S−r (C) ⊂ J−(C) is joined to C by

a maximal C-segment of length r. If such a segment did not also maximize the

distance from S−r (C), then using a ‘corner-cutting’ argument, we could construct a

curve from S−r (C) to C of length strictly larger than r, contradicting the definition

of S−r (C).

We note that, as in Figure 3.1, there may be several radial segments emanating

from the same point x ∈ S−r (C), and possibly also several such segments ending
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at the same point c ∈ C. It follows from corner-cutting, however, that radial

segments never touch at interior points.

We list several properties of spheres:

Lemma 3.3.3 (Past Spheres). Let C ⊂ M be past causally complete and r > 0

and suppose S = S−r (C) 6= ∅. Then S is a closed, edgeless acausal C0 hypersurface.

Furthermore, S is past causally complete. Thus, H−(S) = ∅ and S = ∂I−(S).

Proof. By Lemma 3.2.5, d(·, C) is continuous, hence S is closed. Then by Lemma

3.2.6, S is past causally complete. It follows more or less by definition that S is

achronal and edgeless. Hence S is a C0 hypersurface by Corollary 1.1.17, and by

Corollaries 3.2.9 and 3.2.8, H−(S) = ∅ and S = ∂I−(S). To see that S = S−r (C)

is further acausal, let y ∈ S and z ∈ J−(y)−{y}. By the past causal completeness

of C, let β be a maximal timelike C-segment from C to y. Then, by “cutting the

corner” in a neighborhood of y, one can produce a causal curve from C to z which

is strictly longer than β. Hence, d(z, C) > L(β) = d(y, C) = r, so z 6∈ S.

Lemma 3.3.4 (Past Sphere Foliation). Let C ⊂ M be past causally complete.

Then the timelike past of C is foliated by its past spheres,

I−(C) =
⋃
r > 0

S−r (C)

and we have

S−a (S−r (C)) = S−r+a(C)

Hence, for r ≤ s, we have d(S−s (C), S−r (C)) = s− r, (when nonempty), and every

radial S−s (C)-segment restricts to a radial S−r (C)-segment.

Proof. Recall that, by Lemma 3.3.3, each sphere S−r (C) is past causally complete.

Hence, S−a (S−r (C)) is well-defined. To show that ‘radius is additive’, first let
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x ∈ S−a (S−r (C)). By Lemma 3.2.5, x is joined to some y ∈ S−r (C) by a timelike

segment of length a. As y is similarly joined to C by a segment of length r, we

have d(x,C) ≥ r+a. Then, letting α be a maximal future C-segment from x to C,

α must pass through S−r (C). The portion of α before S−r (C) is bounded in length

by a and the portion after by r, thus d(x,C) ≤ r + a, so d(x,C) = r + a, i.e.,

x ∈ S−r+a(C). Now let x ∈ S−r+a(C). Then there is a maximal C-segment α from

x to C of length r+ a. As any portion of α ending at C must also be C-maximal,

the point x′ ∈ α from which the remaining portion of α has length r is a maximal

C-segment of length r, and hence x′ ∈ S−r (C), so d(x, S−r (C)) ≥ d(x, x′) = a.

But, of course, d(x, S−r (C)) ≤ a, since otherwise, one could produce a curve from

x to C of length greater than r + a. Thus, d(x, S−r (C)) = a, i.e., x ∈ S−a (S−r (C)).

Hence, S−a (S−r (C)) = S−r+a(C). The rest of the statement follows from this. For

example, for s > r,

d(S−s (C), S−r (C)) = d(S−s−r(S
−
r (C)), S−r (C)) = s− r

The following will also be used below:

Lemma 3.3.5 (Compact Cauchy Spheres). Suppose S is a compact Cauchy

surface for M . If M is future timelike geodesically complete, then every future

Cauchy sphere S+
r (S) from S is a compact Cauchy surface.

Proof. Let Sr := S+
r (S). By Proposition 1.1.28 it suffices to show that Sr is

compact. Fix a complete Riemannian metric h on M . Since Sr is closed, if it is

noncompact, there is a sequence xk ∈ Sr with xk → ∞. Let αk : [0, Tk] → M be

future maximal S-segment from αk(0) ∈ S to αk(Tk) = xk, parameterized with

respect to h arc length. Hence, Tk → ∞. Since S is compact, αk(0) has a limit
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point p ∈ S and, fixing any causal limit curve α : [0,∞) → M of {αk} from

p = α(0), as in Lemma 1.1.6, we have that α is an S-ray, by Lemma 3.1.8. Hence,

by Lemma 3.1.5, α is timelike, and hence future complete, by assumption. Thus, α

must meet Sr = S+
r (S) at some point α(Tr). But this means α(Tr + 1) ∈ I+(Sr).

Then, αk(Tr + 1) (sub)converges to α(Tr + 1), which contradicts αk(Tr + 1) ≤

αk(Tk) ∈ Sr, for large k.

3.4 Horospheres

Let {S−k = S−rk(Ck)} be a sequence of (nonempty) past spheres, with each Ck past

causally complete. By Lemma 3.3.3, each S−k is a past proper achronal boundary,

and hence has associated past and future sets, Pk and Fk, as in Proposition 2.1,

with Pk = I−(S−k ), and by Lemma 2.2.2, Pk = J−(S−k ). Recall that we say {S−k }

is monotonic if either {Pk} is increasing or decreasing, or equivalently, if {Fk} is

decreasing or increasing, respectively.

Definition 3.4.1 (Horospheres). Let {S−k = S−rk(Ck)} be a monotonic sequence

of past spheres with radii rk →∞.

1) If {Pk} = {I−(S−k )} is increasing, we obtain the future achronal limit:

S−∞ = ∂

(⋃
k

Pk

)
= ∂

(⋃
k

I−(S−k )

)

2) If {Pk}, or equivalently {J−(S−k )} is decreasing, and hence {Fk} increasing,

we obtain the past achronal limit:

S−∞ = ∂

(⋃
k

Fk

)
= ∂

(⋂
k

J−(S−k )

)
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In either case, (if nonempty), we refer to S−∞ = lim{S−k } as the past horosphere

associated to the sequence of prehorospheres, {S−k }. Future horospheres, S+
∞,

are constructed time-dually, namely, as (past or future) achronal limits of future

spheres, {S+
k }.

Since horospheres are achronal boundaries by construction, (being nonempty

by definition), we have the following immediate corollary to Proposition 1.1.17:

Corollary 3.4.2. Horospheres are edgeless, achronal C0 hypersurfaces.

In particular, horospheres are achronal limits, and hence Hausdorff closed

limits. Thus, by either Proposition 2.2.5 or Lemma 2.3.2, we have:

Corollary 3.4.3. Let S−∞ be a past horosphere, with prehorospheres {S−k }. Then

any limit point of a sequence sk ∈ S−k is in S−∞ and every point in S−∞ is the limit

of some (convergent) sequence s̃k ∈ S−k .

We think of S−∞ itself as a sphere, in particular, as a past sphere of ‘infinite

radius centered at infinity’. In fact, much of the horosphere theory developed here

is motivated by this simple analogy. We begin with an analog of Lemma 3.3.2.

Theorem 3.4.4 (Radial Rays). Let S−∞ be a past horosphere. Then S−∞ admits a

future (timelike or null) S−∞-ray from each point. We call these radial rays.

Proof. The main ingredient is the Maximal Limit Curve Lemma, Lemma 3.1.8.

Let p ∈ S∞. Then there is a sequence pk ∈ Sk with pk → p, and by Lemma 3.3.2,

a maximal future radial segment αk from pk to qk ∈ Ck of length L(αk) = rk.

Recall that we assume M is globally hyperbolic. Hence, Lorentzian distance is

continuous, as in Theorem 3.1.7. It follows that qk → ∞. Using Lemma 1.1.6

to produce a limit curve α of {αk} from p, Lemma 3.1.8 ensures α is a future

S−∞-ray.
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Hence, just as a sphere and its center form a ‘harp’ of maximal radial segments,

a horosphere S−∞ is one end of a harp of radial S−∞-rays, which are strung, at the

other end, to infinity.

In general, some (or all) of the radial rays from a horosphere S−∞ may be

null. By Lemma 3.1.4, such null rays lay flat against S−∞. On the other hand,

any timelike radial S−∞-ray must leave (the achronal set) S−∞ immediately. The

following, which may be seen as an analog to Lemma 3.3.3, addresses this issue:

Theorem 3.4.5 (Bounded Horospheres). Suppose a past horosphere S−∞ is future

bounded. Then S−∞ admits a timelike future S−∞-ray from each point, and in

general, every (future or past) S−∞-ray is timelike. Consequently, S−∞ is acausal.

Furthermore, S−∞ is past causally complete, and hence S−∞ = ∂I−(S−∞) and

H−(S−∞) = ∅, i.e., S−∞ is a past Cauchy surface.

Proof. Fix a Cauchy surface Σ ⊂ M with S−∞ ⊂ J−(Σ). By Theorem 3.4.4, there

is a future S−∞-ray, γp, from each p ∈ S−∞, which is either timelike or null. By

Lemma 3.1.4, if γp is null, then γp ⊂ S−∞. But by Proposition 1.1.26, γp must

meet I−(Σ), and hence must leave S−∞. Thus, each future S−∞-ray is necessarily

timelike. Now suppose η is a past S−∞-ray from p ∈ S−∞. Fixing a future S−∞-ray,

γp, from p, by Lemma 3.1.6, η and γp join together to form a line, and, as γp is

necessarily timelike, hence also must η be. Hence every (future or past) S−∞-ray

is timelike and S−∞ admits a timelike future S−∞-ray from each point. That S−∞

is acausal then follows by ‘corner-cutting’. Let y ∈ S−∞ and let γy : [0, `) → M

be a future S−∞-ray from y, necessarily timelike, parameterized with respect to

(Lorentzian) arc length. Suppose there is some z ∈ S−∞ with y 6= z ≤ y. Since

S−∞ is achronal, z ∈ ∂I−(y) and z is joined to y by a null geodesic. But then,

for any 0 < a < `, we can find a curve from z to γy(a) of length greater than
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a, by ‘cutting the corner’ near y. But this contradicts the maximality of γy|[0,a]

as an S−∞-segment. Hence, S−∞ is acausal. Note that S−∞ is closed by definition

and hence past causally complete, by either Lemma 3.2.6 or Lemma 3.2.11. Then

H−(S) = ∅ by Lemma 3.2.9 and S−∞ = ∂I−(S−∞) by Lemma 3.2.8.

3.4.1 Ray and Cauchy Horospheres

In this section we construct two important concrete classes of horospheres. The ray

horosphere is built as a limit of point spheres with centers taken along a ray, and

mimics the standard Busemann level-set construction. The Cauchy horosphere is

built instead from a Cauchy surface, S, and its sequence of future Cauchy spheres.

Ray Horospheres

Suppose γ : [0,∞) → M is a future complete, unit speed timelike geodesic ray.

Define the sequence of ray prehorospheres by:

S−k := S−k (γ(k))

By Lemma 3.3.3, each S−k is a past proper achronal boundary, and hence comes

with corresponding unique past and future sets, Pk = I−(S−k ) and Fk, with ∂Pk =

S−k = ∂Fk and M = Pk ∪ S−k ∪ Fk, as in Proposition 2.1. As in Lemma 2.2.2, we

have P k = J−(S−k ).

We now observe that, as a result of the reverse triangle inequality, the sequence

{S−k } is monotonic, with increasing pasts, {I−(S−k )}, as in Figure 3.2. To see this,

let x ∈ S−k = S−k (γ(k)). Then x ≤ γ(k) ≤ γ(k + 1), and hence, by the reverse

triangle inequality, (3.1.1),

d(x, γ(k + 1)) ≥ d(x, γ(k)) + d(γ(k), γ(k + 1)) = k + 1
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γ(k)

γ(k + 1)

S−k (γ(k))

S−k+1(γ(k + 1))

Figure 3.2: Ray horosphere monotonicity.

Consequently, x ∈ J−(S−k+1(γ(k + 1))) = J−(S−k+1). Hence, S−k ⊂ J−(S−k+1), and

as in Lemma 2.2.2, the sequences {J−(S−k )} and {Pk} = {I−(S−k )} are increasing.

Hence we have a well-defined achronal limit, S−∞(γ) = lim{S−k }, with S−∞(γ) non-

empty, as γ(0) ∈ S−k for all k implies γ(0) ∈ S−∞. We repeat some of these facts in

the following definition:

Definition 3.4.6 (Ray Horosphere). Let γ : [0,∞) → M be a future complete,

unit speed timelike geodesic ray. Then the sequence of ray prehorospheres, {S−k } :=

{S−k (γ(k))} is monotonic, with increasing pasts {Pk} = {I−(S−k )} and we define

the ray horosphere associated to γ to be the future achronal limit,

S−∞(γ) := ∂

(⋃
k

I−(S−k )

)
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We list several properties:

Proposition 3.4.7 (Ray Horospheres). S−∞(γ) is a closed, edgeless achronal C0

hypersurface which admits a future S−∞(γ)-ray from each point and S−∞ ⊂ I−(γ) . If

S−∞(γ) is future bounded by a Cauchy surface, then all S−∞(γ)-rays are timelike and

S−∞(γ) is an acausal past Cauchy surface, i.e., H−(S−∞(γ)) = ∅, with S−∞ ⊂ I−(γ).

In general, γ is itself a timelike S−∞-ray. In particular, γ(0) ∈ S−∞(γ) 6= ∅.

Proof. We observed above that γ(0) ∈ S−∞. To see why γ is an S−∞(γ)-ray, suppose

otherwise, that for some y ∈ S−∞(γ) and some t > 0, we have d(y, γ(t)) > t.

Then, fixing any integer k0 > t, we have, for all k ≥ k0, d(y, γ(k)) ≥ d(y, γ(t)) +

d(γ(t), γ(k)) > t+(k− t) = k. Hence, y ∈ I−(S−k ) for all large k. This contradicts

y ∈ S−∞(γ). That S−∞(γ) ⊂ I−(γ) follows from the fact that for all k, S−k =

S−k (γ(k)) ⊂ I−(γ(k)) ⊂ I−(γ) and, say, Corollary 3.4.3. The rest follows from

Theorems 3.4.4 and 3.4.5.

The following is an easy consequence of the definitions and Corollary 3.4.3:

Lemma 3.4.8. Let γ : [0,∞) → M be a future complete S-ray from a Cauchy

surface S. Then, for all k, we have S−k (γ(k)) ⊂ J−(S), and hence, also S−∞(γ) ⊂

J−(S). In particular, S−∞(γ) is future bounded by S.

Cauchy Horospheres

For this construction, we begin with a Cauchy surface, S ⊂ M . The idea is

to replace the sequence of center points, {γ(k)}, in the construction of the ray

horosphere, with the sequence of future Cauchy spheres {S+
k (S)}, then similarly,

take a limit of past spheres from this sequence. In view, for example, of Conjecture

1, we will focus on the case that M is future timelike geodesically complete, and S
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is compact. Hence, by Lemma 3.3.5, each S+
k (S) is a Cauchy surface. In particular,

each S+
k (S) is past causally complete.

We define the sequence of Cauchy prehorospheres by

S̃k := S−k (S+
k (S))

Again, each S̃k is a past proper achronal boundary, with corresponding past and

future sets, P̃k = I−(S̃k) and F̃k, with ∂P̃k = S̃k = ∂F̃k and M = P̃k ∪ S̃k ∪ F̃k,

and the closures of the pasts are given by P̃k = J−(S̃k).

Like the ray prehorospheres, the sequence of Cauchy prehorospheres is

monotonic, but in the opposite direction, as in Figure 3.3.

S+
k+1(S)

S+
k (S)

S−k (S+
k (S))

S−k+1(S+
k+1(S))

Figure 3.3: Cauchy horosphere monotonicity.

To see this, let x ∈ S̃k+1. Hence, d(x, S+
k+1(S)) = k + 1. Let α be any future

timelike curve from x to S+
k+1(S) which realizes this distance. Then there is a

unique point xk := α ∩ S+
k (S). Let α−k be the portion of α before xk and α+

k the

portion after. By (the time-dual of) Lemma 3.3.4, d(S+
k (S), S+

k+1(S)) = 1, and
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hence L(α+
k ) ≤ 1. Thus, we have:

L(α−k ) = L(α)− L(α+
k ) ≥ (k + 1)− 1 = k

Hence, d(x, S+
k (S)) ≥ L(α−k ) ≥ k, which implies x ∈ J−(S̃k) = J−(S−k (S+

k (S))).

Since x was arbitrary, this shows S̃k+1 ⊂ J−(S̃k). By Lemma 2.2.2, this is

equivalent to {J−(S̃k)} and {P̃k} = {I−(S̃k)} decreasing, or {F̃k} increasing.

Hence, we have a well-defined achronal limit, S−∞(S) = lim{S̃k}. Moreover, letting

γ be any future S-ray, (by Lemma 3.1.9), we have γ(0) ∈ S̃k for all k and hence

γ(0) ∈ S−∞(S) 6= ∅. Again, we repeat some of this in the following definition, and

in Proposition 3.4.10 below:

Definition 3.4.9 (Cauchy Horosphere). Suppose M is future timelike geodesically

complete and admits a compact Cauchy surface S. Then the sequence of Cauchy

prehorospheres, {S̃k} := {S−k (S+
k (S))} is monotonic, with decreasing pasts {P̃k} =

{I−(S̃k)}, or equivalently, increasing associated future sets, {Fk}, and we define

the Cauchy horosphere associated to S to be the past achronal limit,

S−∞(S) := ∂

(⋃
k

F̃k

)
= ∂

(⋂
k

J−(S̃k)

)

The definitions and discussion above, along with Theorem 3.4.5, give:

Proposition 3.4.10 (Cauchy Horospheres). Let M be future timelike geodesically

complete with compact Cauchy surface S. Then the Cauchy prehorospheres, S̃k,

and hence also the Cauchy horosphere S−∞(S) are future bounded by S, i.e.,

S−∞(S) ⊂ J−(S). Consequently, S−∞(S) is an acausal past Cauchy surface, i.e.,

H−(S−∞) = ∅, which admits a future complete timelike S−∞(S)-ray from each point.

Furthermore, for any future S-ray γ, we have γ(0) ∈ S ∩ S−∞(S). In particular,

S−∞(S) 6= ∅.



Chapter 4

Convexity and Rigidity

4.1 Support Mean Curvature

Before we get to the more general notion of support mean curvature, we begin

by recalling the smooth model case. Let Σn ⊂ (Mn+1, g) be a smooth, spacelike

hypersurface, with future timelike unit normal field u. We denote the second

fundamental form of Σ by B, i.e., for X, Y ∈ TpM , B(X, Y ) = g(∇Xu, Y ) =

−g(∇XY, u). Recall that B is symmetric, with B(X, u) = 0. The mean curvature

H of Σ is the trace (along Σ) of its second fundamental form, H = trΣB. Hence,

H : Σ→ R and fixing any local orthonormal basis [E1, ..., En] for TpΣ, we have

H(p) =
n∑
i=1

g(∇Eiu,Ei)|p

We say a spacelike hypersurface Σ is maximal if its mean curvature vanishes, i.e.,

if HΣ = 0.

Example 4.1.1 (Minkowski Point Spheres and Time Slices). Past and future

point spheres in Mn+1 are smooth spacelike hypersurfaces with constant mean

curvature given by

53
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H(S+
r (p)) =

n

r
and H(S−r (p)) = −n

r

Every time slice, St := {t}×Rn ⊂Mn+1, is maximal; H(St) = 0. (Note that each

such slice may be viewed as a Cauchy sphere from the 0-slice.)

We now review the generalization of these concepts to ‘rough’ spacelike

hypersurfaces via the notion of mean curvature in the sense of support

hypersurfaces, (cf. [12]).

First, by a C0 spacelike hypersurface S ⊂ M , we mean a set which is locally

acausal-and-edgeless, i.e., for every p ∈ S, there is a neighborhood U of p such

that S ∩ U is acausal and edgeless in U . In this case, necessarily edgeS ∩ S = ∅,

and it follows from Proposition 1.1.17 that S is a C0 hypersurface. We note that

a C0 spacelike hypersurface S may fail to be acausal and/or edgeless globally. On

the other hand, any (globally) acausal and edgeless set S ⊂ M is, of course, a

C0 spacelike hypersurface. In particular, spheres and bounded horospheres are C0

spacelike hypersurfaces.

Given two C0 spacelike hypersurfaces S, S ′ ⊂ M which meet at a point p ∈

S ∩ S ′, we say S ′ is locally to the past of S near p if for some neighborhood U of

p in which S is acausal and edgeless, we have S ′ ∩U ⊂ J−(S, U). In this case, we

also call S ′ a past support hypersurface for S at p.

Definition 4.1.2 (Support Mean Curvature). Let S ⊂ M be a C0 spacelike

hypersurface. With a ∈ R, we say S has support mean curvature ≥ a at p ∈ S if

for all ε > 0, there is a smooth (at least C2) past support spacelike hypersurface

Sp,ε for S at p with mean curvature Hp,ε satisfying

Hp,ε(p) ≥ a− ε
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Similarly, we say a C0 spacelike hypersurface S has support mean curvature ≤ a

at p ∈ S if for all ε > 0, there is a smooth future support spacelike hypersurface

Sp,ε for S at p with mean curvature Hp,ε satisfying Hp,ε(p) ≤ a + ε. We say a C0

spacelike hypersurface S has support mean curvature ≥ a (resp. ≤ a) if S has

support mean curvature ≥ a (resp. ≤ a) at every point p ∈ S.

Example 4.1.3. The C0 spacelike hypersurface {t = 1
2
|x|} in M1+1 has support

mean curvature ≥ 0.

4.1.1 Maximal Segments

We have noted above that a sphere occurs naturally as a ‘harp’ of maximal radial

segments, and similarly, a horosphere as a harp of radial rays. (cf. Lemma 3.3.2

and Theorem 3.4.4). Here we make the dual observation, that a maximal segment

occurs as a ‘flower’ of support spheres, and that when the segment extends to a

ray, what grows is a ‘support horosphere’, as in figure 4.1. In fact, this special

case is precisely the construction of a ray horosphere.

Lemma 4.1.4 (Blooming Petal Structure). Let M be a globally hyperbolic

spacetime and fix p ∈ M . Let α : [0, b) → M be a past-inextendible, unit speed

timelike geodesic from α(0) = p, and for each t ∈ (0, b), set S+
t := S+

t (α(t)). Then

α is maximal up to t = r iff p ∈ S+
t for all t < r. Furthermore, in this case, the

family {S+
t }t<r is monotonic, with increasing futures, and

⋂
t<r S

+
t = {p}.

Proof. α is maximal up to t = r iff, for all t < r, we have d(α(t), α(0)) = t, or

equivalently, α(0) ∈ S+
t (α(t)) = S+

t . Monotonicity follows exactly as for the ray

horosphere. Similarly, the fact that the petals only touch at the stem follows from

corner-cutting. See, for example, Figure 3.2.



56

α

S+
∞(α)

Figure 4.1: A fully bloomed flower of (support) spheres.

Lemma 4.1.4 generalizes to S-segments, for arbitrary S. We state the following

version specialized for C0 spacelike hypersurfaces.

Lemma 4.1.5 (Maximal Segments and Support Spheres). Let M be a globally

hyperbolic spacetime, and S ⊂M a C0 spacelike hypersurface. Let α : [0, b)→M

be a past-inextendible, unit speed timelike geodesic from p = α(0) ∈ S, and for

each t ∈ (0, b), set S+
t := S+

t (α(t)). Then α|[0,r] is maximal as an S-segment iff

S∩J+(S+
t ) = S∩S+

t = {p}, for all t < r. In this case, for each t < r, S+
t restricts

locally to a smooth future support hypersurface for S at p.

Proof. The equivalence follows from the definitions and corner-cutting. Suppose

α|[0,r] is maximal. Then, for all t < r, α(t) is not a cut point from α(0).

Consequently, distance from α(t) is smooth near p = α(0), and also its level

set S+
t = S+

t (α(t)) = {x : d(α(t), x) = t} is smooth and spacelike near p ∈ S+
t .

(For a discussion of timelike cut loci, see, for example, [27]). That S never enters
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the timelike future of S+
t implies that S+

t is locally to the future of S near p.

Let, for example, S be an acausal C0 spacelike hypersurface and shoot a past

geodesic α from p ∈ S. Lemma 4.1.5 says that α is maximal so long as its flower

of support spheres has ‘room to bloom’. Once one of its petals touches S − {p},

α ceases to maximize. Conversely, when α is known to maximize up to a distance

r, we get a (local) smooth support sphere of radius almost-r at the base point p.

By standard Raychaudhuri comparison analysis, lower ‘timelike’ Ricci

curvature bounds imply mean curvature bounds for smooth spacelike point

spheres. This gives the following result:

Lemma 4.1.6 (Maximal Segments and Support Mean Convexity). Let Mn+1 be

a globally hyperbolic spacetime, and S a C0 spacelike hypersurface. Let α be a

past-inextendible, unit-speed timelike geodesic from p = α(0) ∈ S.

0) Suppose that Ric(X,X) ≥ 0, for all timelike vectors X. If α : [0, r]→ M is

maximal as an S-segment, then S has support mean curvature ≤ n
r

at p. If

α is a complete past S-ray, then S has support mean curvature ≤ 0 at p.

λ) Now suppose (only) that Ric(X,X) ≥ −λ2n, for all timelike unit vectors

X, with λ > 0. If α : [0, r] → M is maximal as an S-segment, then S has

support mean curvature ≤ λn coth(λr) at p. If α is a complete past S-ray,

then S has support mean curvature ≤ λn at p.

Proof. Suppose that α|[0,r] is a maximal S-segment. Then, by Lemma 4.1.5, for

each 0 < t < r, the future sphere S+
t restricts to a smooth, spacelike support

hypersurface for S at p. By standard Riccati comparison theory, (cf. Theorem 4.2

in [10], which holds equally well in the Lorentzian case), S+
t has (smooth) mean

curvature ≤ n/t near p in case 0), and (smooth) mean curvature ≤ λn coth(λt)
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near p in case λ). The first part of both cases then follows by taking t arbitrarily

close to r. When α is a complete past S-ray, we may take t→∞ in both cases to

complete the proof.

For convenience, the following is stated for past spheres. Using Lemmas 4.1.6

and 3.3.2, we get:

Corollary 4.1.7 (Support Mean Convexity of Spheres). Let Mn+1 be a globally

hyperbolic spacetime. Let C ⊂M be past causally complete and r > 0, and suppose

that S−r (C) is nonempty.

0) If Ric(X,X) ≥ 0 for all timelike vectors X, then S−r (C) has support mean

curvature ≥ −n/r.

λ) If Ric(X,X) ≥ −λ2n for all timelike unit vectors X, with λ > 0, then S−r (C)

has support mean curvature ≥ −λn coth(λr).

In the appropriate setting, the extension to horospheres is straightforward:

‘simply take r →∞’. However, for the support version of the maximum principle,

Theorem 4.1.10 below, a bit more is needed. In [2], a somewhat stronger version

of support mean curvature is given, which includes ‘one-sided Hessian bounds’.

To avoid a detour at this point, we leave a discussion of this technical condition to

Section 4.5 in the appendix. As explained in [2], however, the issue typically boils

down to having a well-behaved set of support normals. In Lemma 4.5.5, we show

that this is the case for (appropriate) horospheres. In conjunction with Corollary

4.1.7, this gives:

Proposition 4.1.8 (Support Mean Convexity of Horospheres). Let Mn+1 be

globally hyperbolic and suppose S−∞ is a past horosphere such that all future S−∞-rays
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are timelike and future complete, (for example, if M is future timelike geodesically

complete and S−∞ is future bounded).

0) If Ric(X,X) ≥ 0 for all timelike vectors X, then S−∞ has support mean

curvature ≥ 0 with one-sided Hessian bounds.

λ) If Ric(X,X) ≥ −λ2n for all timelike unit vectors X, with λ > 0, then S−∞

has support mean curvature ≥ −λn with one-sided Hessian bounds.

Proof. The support mean curvature bounds are immediate from Lemma 4.1.6 and

Theorem 3.4.4. The one-sided Hessian bounds follow from Lemma 4.5.5 in the

appendix and, for example, Proposition 3.5 in [2].

4.1.2 Support Maximum Principle

Smooth spacelike hypersurfaces satisfy the following maximum principle, (cf. [12]

and references therein):

Theorem 4.1.9 (Smooth Maximum Principle). Suppose Σ1,Σ2 ⊂M are smooth

spacelike hypersurfaces such that, for some a ∈ R,

i) Σ2 is locally to the future of Σ1 near p ∈ Σ1 ∩ Σ2.

ii) Σ1 has mean curvature H1 ≥ a.

iii) Σ2 has mean curvature H2 ≤ a.

Then for some neighborhood U of p, Σ1 ∩ U = Σ2 ∩ U and this intersection is a

smooth spacelike hypersurface with H = a.

In [2], the following ‘rough’ version of Theorem 4.1.9 was established. (Again,

we refer the reader to Section 4.5 for the definition of ‘support mean curvature

with one-sided Hessian bounds’.)
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Theorem 4.1.10 (Support Maximum Principle [2]). Suppose S1, S2 ⊂M are C0

spacelike hypersurfaces such that, for some a ∈ R,

i) S2 is locally to the future of S1 near p ∈ S1 ∩ S2.

ii) S1 has support mean curvature ≥ a with one-sided Hessian bounds.

iii) S2 has support mean curvature ≤ a.

Then for some neighborhood U of p, S1 ∩ U = S2 ∩ U and this intersection is a

smooth spacelike hypersurface with H = a.

4.2 Rigidity Under Timelike Convergence

In this section we establish several splitting results for spacetimes satisfying the

timelike convergence condition:

Ric(X,X) ≥ 0, for all timelike vectors X (4.2.1)

We begin with a half-splitting result, an extension (in essence) of Theorem C

in [17] to C0 spacelike hypersurfaces:

Proposition 4.2.1 (Half-Splitting). Let M be a globally hyperbolic, future timelike

geodesically complete spacetime which satisfies the timelike convergence condition,

(4.2.1). Suppose S is a connected, acausal, future causally complete C0 spacelike

hypersurface with support mean curvature ≤ 0. If S admits a future S-ray, then S

is a smooth, maximal, geodesically complete spacelike hypersurface and (J+(S), g)

splits via the normal exponential map,

(J+(S), g) ≈ ([0,∞)× S,−dt2 ⊕ h),

where h is the induced metric on S.
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Proof. Since S is future causally complete, it is closed, and hence, being a C0

hypersurface, must be edgeless. Thus, by (the time dual of) Lemma 3.2.9, S is a

future Cauchy surface and J+(S) = D+(S). Then, by restricting attention to the

open subspacetime D(S) if necessary, we may assume without loss of generality

that S is a (full) Cauchy surface for M . Fix a future S-ray, γ. Then γ is timelike,

by Corollary 3.1.5, and hence future complete by assumption. Hence the past

ray horosphere S−∞(γ) from γ is well-defined, and as in Lemma 3.4.8, is future

bounded by S. Thus, S−∞(γ) admits a future complete timelike S−∞(γ)-ray from

each point, and by Lemma 4.1.8, has support mean curvature ≥ 0 with one-sided

Hessian bounds. Let S− be the connected component of S−∞(γ) containing γ(0).

Hence S ∩ S− is closed and nonempty. Since S− ⊂ S−∞(γ) ⊂ J−(S), the support

maximum principle, Theorem 4.1.10, implies that S ∩ S− is also open in both

S and S−, and hence, S = S−, and further that S = S− is a smooth spacelike

hypersurface with mean curvature H = 0. Note that S− ⊂ S−∞(γ) admits a future

complete timelike S−∞(γ)-ray from each point, which is necessarily a S−-ray. Hence,

S admits a future complete timelike S-ray from each point, and since S is smooth,

these are precisely the future normal geodesics from S. Then, as in Lemma 4.7.1

in the appendix, (N+(S), g) splits as ([0,∞) × S,−dt2 + h), where the normal

future N+(S) is the future image of the normal exponential map E of S. Then,

adapting Theorem 3.68 in [5], using the warped product structure and future

causal completeness of S, we get that S is geodesically complete. Then, since

geodesics in a product are products of geodesics, and by the geodesic completeness

of S, no future-directed causal geodesic can ever leave ([0,∞) × S,−dt2 + h). It

follows that J+(S) = N+(S).
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Using Proposition 4.2.1 we get a full splitting result for horospheres:

Theorem 4.2.2 (Horosphere Splitting). Let M be a globally hyperbolic, timelike

geodesically complete spacetime satisfying the timelike convergence condition, i.e.,

Ric(X,X) ≥ 0, for all timelike vectors X, and suppose S−∞ is a past horosphere

which is future bounded. If S−∞ admits a past S−∞-ray, then S−∞ is a smooth

spacelike, geodesically complete Cauchy surface along which M splits, i.e.,

(M, g) ≈ (R× S−∞,−dt2 + h),

where h is the induced metric on S−∞.

Proof. Since S−∞ is future bounded, it is an acausal, past causally complete C0

spacelike hypersurface, (by Corollary 3.4.2 and Theorem 3.4.5). By Proposition

4.1.8, S−∞ has support mean curvature ≥ 0 (with one-sided Hessian bounds).

Let S− be the connected component of S−∞ which contains γ(0). Then by (the

time dual of) Proposition 4.2.1, S− is a smooth, maximal, geodesically complete

spacelike hypersurface, and (J−(S−), g) ≈ ((−∞, 0],−dt2 + h). Since S− is

smooth, (and since every S−∞-ray is also an S−-ray), it follows that the future

radial rays from S−, (as in Theorem 3.4.4), are precisely the normal geodesics

from S−, which, by assumption, are complete. Then, as in Lemma 4.7.1, N+(S−)

splits as desired, but again by this product structure and the geodesic completeness

of S−, it follows that N+(S−) = J+(S−). Hence, the normal image of S− coincides

with its domain of influence, N(S−) = J(S−), and splits as (R×S−,−dt2 +h). As

this product is geodesically complete, (by the product structure and the geodesic

completeness of S−), it follows by Propositions 1.1.21 and 1.1.23 that H(S−) is

empty, and hence D(S−) = J(S−) = M . In particular, S− is a Cauchy surface

for M . Finally, suppose x ∈ S−∞ \ S−. Then x ∈ I±(S−), since S− is a Cauchy

surface, but this violates the achronality of S−∞. Hence, S− = S−∞.
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4.2.1 Compact Horospheres

As a consequence of Proposition 1.1.28, we have the following:

Lemma 4.2.3. Let S∞ be a (future or past) horosphere. Then the following are

equivalent:

i) S∞ is compact.

ii) S∞ is a compact Cauchy surface.

iii) S∞ is both future and past bounded by compact Cauchy surfaces.

Proof. Suppose, for example, that S−∞ is compact. Then S−∞ is a Cauchy surface

by Proposition 1.1.28, and hence is future and past bounded by itself. Conversely,

if S−∞ ⊂ J+(S−) ∩ J−(S+), for some compact Cauchy surfaces S− and S+, then

S−∞ must be compact, by Lemma 1.1.14.

Recall that Lemma 3.1.9 ensures that a compact Cauchy surface S admits both

a future and past S-ray. Combining this with Lemma 4.2.3, we have the following

corollary to Theorem 4.2.2:

Corollary 4.2.4 (Compact Horospheres). Let M be a globally hyperbolic, timelike

geodesically complete spacetime which satisfies the timelike convergence condition,

(4.2.1). Let S∞ be a (future or past) horosphere in M . If S∞ is compact, then S∞

is a smooth spacelike Cauchy surface along which M splits, i.e.,

(M, g) ≈ (R× S∞,−dt2 + h),

where h is the induced metric on S∞.

4.2.2 Cauchy Horospheres

As can be seen from Corollary 4.2.4, compactness is a particularly consequential

property for horospheres. In this section, we specialize to Cauchy horospheres and
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give a sufficient condition for the compactness of S−∞(S) via a ‘max-min condition’

on its base Cauchy surface S.

We first note that since S−∞(S) is automatically future bounded by S, as in

Proposition 3.4.10, we have the following corollary to Lemma 4.2.3:

Corollary 4.2.5. Let M be future timelike geodesically complete with compact

Cauchy surface S. Then S−∞(S) is a compact Cauchy surface iff it is past bounded.

Definition 4.2.6 (Max-Min Condition). Let M be future timelike geodesically

complete with compact Cauchy surface S. For each k ∈ N, let Sk := S+
k (S). We

say the max-min condition holds on S if there is an R > 0, such that for all k ∈ N,

max
x∈S

d(x, Sk)−min
x∈S

d(x, Sk) < R

We note that, by definition of Sk = S+
k (S), we have maxx∈S d(x, Sk) = k. The

max-min condition is easily seen to hold for any Cauchy surface in a Lorentzian

warped product (R×N,−dt2 + f 2(t)h), with f : R→ (0,∞) and (N, h) compact

Riemannian. In particular, it holds for any Cauchy surface in de Sitter space.

Lemma 4.2.7. Let M be timelike geodesically complete with compact Cauchy

surface S. If the max-min condition holds on S, then S−∞(S) is past bounded and

hence is a compact Cauchy surface.

Proof. Suppose that maxx∈S d(x, Sk) − minx∈S d(x, Sk) < R, for some R > 0.

Note that S−R (S) is a compact Cauchy surface by Lemma 3.3.5. We will show

that S̃k ⊂ J+(S−R (S)). Suppose otherwise, that there is some x1 ∈ S̃k and x2 ∈

S−R (S), with x1 << x2. By definition of S−R (S), there is a timelike curve of

length R from x2 to x3 ∈ S. Then, there is a timelike curve from x3 to x4 ∈

S+
k (S) of length at least minx∈S d(x, S+

k (S)). Concatenating these curves, we get
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a curve from x1 ∈ S̃k = S−k (S+
k (S)) to x4 ∈ S+

k (S) of length strictly greater

than R + minx∈S d(x, S+
k (S)), and hence, maxx∈S d(x, S+

k (S)) ≥ d(x1, S
+
k (S)) >

R + minx∈S d(x, S+
k (S)), a contradiction. The conclusion follows from Lemma

4.2.3.

Combining Lemma 4.2.7 and Corollary 4.2.4 we have:

Theorem 4.2.8 (Max-Min Splitting). Let M be a timelike geodesically complete

spacetime satisfying the timelike convergence condition, and suppose that S is a

compact Cauchy surface for M . If the max-min condition holds on S, then S−∞(S)

is a smooth, compact spacelike Cauchy surface along which M splits, i.e.,

(M, g) ≈ (R× S−∞(S),−dt2 + h),

where h is the induced metric on S−∞(S).

In [13], a splitting result is obtained under the ‘S-ray condition’, that some

Cauchy surface S admits a future ray S-ray γ for which S ⊂ I−(γ). We note the

following:

Lemma 4.2.9. Let M be timelike geodesically complete, S ⊂M a compact Cauchy

surface, and S−∞ = S−∞(S) its associated Cauchy horosphere. If γ is a timelike

future S-ray such that S ⊂ I−(γ), then the max-min condition holds on S.

Proof. Parameterize γ with respect to arc length. Since S ⊂ I−(γ) and S is

compact, we have S ⊂ I−(γ(k0)) for some k0 ∈ N. Then, for any x ∈ S ⊂

I−(γ(k0)), and k0 ≤ k, the reverse triangle inequality gives d(x, γ(k0)) + (k −

k0) ≤ d(x, γ(k)), and rewriting, we get k − d(x, γ(k)) ≤ k0 − d(x, γ(k0)). As

the right hand side is a continuous function on the compact set S, it is bounded

above by some 0 ≤ R, and we get, k − d(x, γ(k)) ≤ R, for all k0 ≤ k. Since
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d(x, γ(k)) ≤ d(x, S+
k (S)), we have k ≤ d(x, S+

k (S))+R. Taking the minimum over

x ∈ S, we get k ≤ mk +R.

4.2.3 Lines

In this section we present an alternative proof to Theorem 4.2.2, when specialized

to Cauchy horospheres, based on the Lorentzian splitting theorem, ([11], [16],

[22]).

The version of the Lorentzian splitting theorem we will use is the following:

Theorem 4.2.10 (Lorentzian Splitting Theorem). Let M be a globally hyperbolic

spacetime which satisfies the timelike convergence condition, Ric(X,X) ≥ 0, for

all timelike vectors X. If M admits a complete timelike line, then (M, g) splits as

(R×N,−dt2 + h), where (N, h) is a complete Riemannian manifold.

We will also use the following, which shows in particular, that the compactness

of S−∞(S) in Theorem 4.2.12 below is necessary for splitting:

Lemma 4.2.11. Suppose (M, g) ≈ (R×N,−dt2 + h), where (N, h) is a compact

Riemannian manifold. Then for any Cauchy surface S in M , its associated Cauchy

horosphere S−∞(S) is compact.

Proof. Since N is a Cauchy surface for M , S must also be compact. So S−∞(S)

is well defined. Since S is compact, it is past bounded by some t-slice, which we

may take to be N itself, i.e., S ⊂ J+(N). Since Ñk = N−k (N+
k (N)) = N , it follows

that S̃k ⊂ J+(N)∩ J−(S), and hence also S−∞(S) ⊂ J+(N)∩ J−(S). Thus S−∞(S)

is a compact Cauchy surface, as in Lemma 4.2.3.
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Combining this with Theorem 3.4.4 and Lemma 3.1.6 yields the following:

Theorem 4.2.12. Let M be a future timelike geodesically complete spacetime,

satisfying Ric(X,X) ≥ 0 for all timelike vectors X. Suppose M admits a compact

Cauchy surface S and that its associated Cauchy horosphere S−∞(S) admits a

complete past S−∞(S)-ray. Then S−∞(S) is a smooth, compact spacelike Cauchy

surface, along which M splits.

Proof. Let η : [0,∞) → M be a complete past geodesic S−∞(S)-ray. By Theorem

3.4.5, η must be timelike. By Theorem 3.4.4, S−∞(S) admits a future complete

timelike S−∞(S)-ray γ : [0,∞) → M , from γ(0) = η(0), and by Lemma 3.1.6, γ

and η join to form a complete timelike line. The Lorentzian splitting theorem

then splits M as: (M, g) ≈ (R×N,−dt2 +h), with (N, h) a complete Riemannian

manifold. As N must be a Cauchy surface for M , we have that N is compact.

Hence, by Lemma 4.2.11, S−∞(S) is compact. Consequently, the time coordinate t

achieves a maximum on S−∞(S), which, without loss of generality, we may take to

be t = 0. Hence, S−∞(S) ⊂ J−(N), and there is at least one point p ∈ N ∩ S−∞(S).

Let S− be the connected component of S−∞(S) which contains p. As N is maximal

in M , i.e., has mean curvature H = 0, and since S−∞(S) has mean curvature

≥ 0 (with one-sided Hessian bounds), it follows from Theorem 4.1.10 that the

intersection N ∩S− is open in both N and S−. Since, in general, Cauchy surfaces

are connected, so must N be. It follows that N = S−. Hence, S− is a Cauchy

surface, from which it follows that N = S− = S−∞(S).

4.3 Limit Mean Curvature

In this section we develop a notion of weak mean convexity for achronal limits,

A∞ = lim{Ak}, which may not have their own (useful) support surfaces, but which
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may nonetheless benefit from the support surfaces of their limiting boundaries, Ak.

This is analogous to what is used in [8].

We first observe that achronal boundaries are causally convex:

Lemma 4.3.1. Let A be an achronal boundary. If α is a causal curve segment

with endpoints on A, then α ⊂ A (and α is necessarily a null pregeodesic segment).

Proof. Let P and F be the past and future sets associated to A, as in Proposition

2.1. Since I+(A) ⊂ F , we have J+(A) ⊂ F = A ∪ F , and similarly, J−(A) ⊂

A ∪ P . Suppose α : [0, 1] → M is future causal with α(0), α(1) ∈ A. Then

α ⊂ J+(α(0)) ⊂ J+(A) ⊂ A ∪ F . But similarly, α ⊂ J−(α(1)) ⊂ J−(A) ⊂ A ∪ P .

Since P and F are disjoint, we have α ⊂ A. (Since A is achronal, α is a null

pregeodesic segment, by Proposition 1.1.3.)

The following consequence of Lemma 4.3.1 is used in Definition 4.3.3 below:

Corollary 4.3.2. An achronal boundary is a C0 spacelike hypersurface (i.e.,

locally acausal-and-edgeless) iff it is (globally) acausal.

The following is similar to Definition 1 in [8]:

Definition 4.3.3 (Limit Mean Curvature). Let A∞ be the (future or past)

achronal limit of a sequence of achronal boundaries, {Ak}, each of which is acausal.

We say A∞ has limit mean curvature ≥ a (resp. ≤ a) if Ak has support mean

curvature ≥ ak (resp. ≤ ak) and ak → a.

By Corollary 4.1.7, and its time dual, we have:

Lemma 4.3.4 (Limit Mean Convexity of Horospheres). Let Mn+1 be globally

hyperbolic and let S−∞ be a past horosphere and S+
∞ a future horosphere. Then we

have the following:
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0) If Ric(X,X) ≥ 0 for all timelike vectors X, then S−∞ has limit mean

curvature ≥ 0 and S+
∞ has limit mean curvature ≤ 0.

λ) If Ric(X,X) ≥ −λ2n for all timelike unit vectors X, with λ > 0, then S−∞

has limit mean curvature ≥ −λn and S+
∞ has limit mean curvature ≤ λn.

Remark 4.3.5. Note that, contrary to Proposition 4.1.8, there is no completeness

assumption in Lemma 4.3.4. This feature of limit mean curvature becomes critical

in the singular setting, where one must necessarily do without the assumption of,

say, (full) future or past completeness.

4.3.1 A Limit Mean Convexity Lemma

The following is a key component in the proof of the ‘limit maximum principle’,

Lemma 4.3.9, below.

Lemma 4.3.6 (Limit Mean Convexity Lemma). Let Mn+1 be a globally hyperbolic

spacetime such that, for some λ ≥ 0, Ric(X,X) ≥ −λ2n for all timelike unit

vectors X. Let A∞ ⊂ M be an achronal limit with limit mean curvature ≥ λn,

(resp. ≤ λn), and suppose that W is a domain in A∞ with W acausal and

D(W ) compact. Let Σ ⊂ D(W ) be a smooth, achronal spacelike hypersurface

with edge Σ = edgeW and mean curvature HΣ = λn. Then Σ ⊂ J+(W ). In

particular, Σ ⊂ J+(A∞), (resp. Σ ⊂ J−(W ) ⊂ J−(A∞)):

Σ

A∞
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Proof. We consider the case λ > 0. The proof for λ = 0 is completely analogous,

with only minor modifications.

Suppose to the contrary that Σ meets I−(W ). Hence, the picture,

schematically, is as below. We encourage the reader to picture also {Ak},

the sequence of achronal boundaries approaching A∞:

D(W )

W

A∞

Σ

The idea of the proof is as follows. We perturb (most of) Σ to get a smooth

hypersurface with mean curvature strictly less than λn. That A∞ has limit mean

curvature ≥ λn, means Ak has support mean curvature ≥ λn + ck, with ck → 0.

Then, ‘sliding down’ a past support hypersurface for Ak, for large enough k, gives

a past support hypersurface for the perturbed Σ, with mean curvature arbitrarily

close to λn, producing a contradiction. (The curvature condition is used to control

the mean curvature during sliding.) This will involve a bit of careful setup first.

To begin, we first note that D(W ) is open by Proposition 1.1.22. Since Σ,W ⊂

D(W ), the closures Σ and W are compact, and hence the distance ` := d(Σ,W ) ≥

d(Σ,W ) > 0 is realized by points p ∈ Σ and q ∈ W . But since Σ = Σ∪edge Σ and

W = W ∪ edgeW , and since edge Σ = edgeW , we must have p ∈ Σ and q ∈ W

and thus,

` = d(p, q) = d(Σ,W )
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Since W is acausal and compact, its ‘signed distance function’,

δ(x) := d(W,x)− d(x,W ),

is continuous on all of M , and we have:

δ(x) =


+ x ∈ I+(W )

0 x 6∈ I−(W ) ∪ I+(W )

− x ∈ I−(W )

Hence, for any a > 0, the set {|δ| < a} is an open neighborhood of W (and

by achronality, all of A∞). Using a (proper) Whitney Embedding, and Sard’s

Theorem, Σ admits an exhaustion by smooth compact domains. Then, using

the fact that Σ ∩ {|δ| ≥ `/4} = Σ ∩ {|δ| ≥ `/4} is compact, let Σ0 ⊂ Σ be

a smooth compact domain with ∂Σ0 ⊂ {|δ| < `/4} and p ∈ Σ0. Hence, still

d(Σ0,W ) = d(p, q) = `.

Σ0

{|δ| < `/4}

For sufficiently small f ∈ C∞(Σ0), with f |∂Σ0 = 0, let H(f) denote the mean

curvature of the surface Σf : x→ expxfNx where N is the future unit normal to

Σ0. The mean curvature operator H has linearization, (cf. [3]):

H′(0) = 4− (Ric(N,N) + |B|2)

where B denotes the second fundamental form of Σ0. Since,
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Ric(N,N) + |B|2 ≥ −λ2n+
H2

n
= −λ2n+ λ2n = 0,

H′(0) is invertible. Thus, by the inverse function theorem, for sufficiently small

ε > 0, there exists a smooth compact spacelike hypersurface Σε ⊂ D(W ), with

∂Σε = ∂Σ0 and mean curvature HΣε = λn(1− ε), and such that

`ε := d(Σε,W ) = d(pε, qε) ≥
7

8
`

for some pε ∈ int Σε and qε ∈ W .

Σε

{|δ| < `/4}

Applying Proposition 1.1.26 to D(W ), for example, one observes that J+(Σε)∩

∂D(W ) ⊂ I+(W ) ⊂ I+(W ). Furthermore, since Σε and D(W ) are compact, so is

J+(Σε) ∩ ∂D(W ) (using Proposition 1.1.14).

J+(Σε) ∩ ∂D(W )
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Hence, the signed distance function δ of W achieves a positive minimum δ0 > 0

on J+(Σε) ∩ ∂D(W ). Let δ1 := min{δ0, `/4}. By Lemma 2.3.4, we may choose k1

sufficiently large so that

Ak ∩D(W ) ⊂ {|δ| < δ1} ∩D(W ), for all k ≥ k1

Thus, for all k ≥ k1, we have

J+(Σε) ∩
(
Ak ∩ ∂D(W )

)
⊂

(
J+(Σε) ∩ ∂D(W )

)
∩
(
Ak ∩ ∂D(W )

)
⊂ {δ ≥ δ0} ∩ {|δ| < δ1}

⊂ {δ ≥ δ1} ∩ {|δ| < δ1}

= ∅

Hence for large k, Σε can only see Ak ∩D(W ) within the interior D(W ):

J+(Σε) ∩
(
Ak ∩D(W )

)
⊂ Ak ∩D(W ), for all k ≥ k1 . (4.3.2)

We now show that, for large k, the distance between the compact sets Σε

and Ak ∩D(W ) remains bounded away from 0 and ∞, and is realized by points

pk ∈ int Σε and qk ∈ Ak∩D(W ). Let σ : [0, `ε]→M be a future-directed maximal

timelike unit-speed geodesic segment from σ(0) ∈ Σε to σ(`ε) ∈ W , realizing the

distance d(Σε,W ) = `ε. Since W ⊂ A∞, σ is a timelike curve from Σε to A∞. To

cover both cases, A∞ is a past/future achronal limit, extend σ slightly to the future

to a timelike curve, σ : [0, L] → M , with `ε < L. Then, as in Proposition 2.2.5,

there is an integer kε ≥ k1 such that (the extended) σ meets Ak for all k ≥ kε.

Hence, for k ≥ kε ≥ k1, we have σ ∩ Ak ∩D(W ) ⊂ {|δ| < δ1} ⊂ {|δ| < `/4}, and

it follows that:

d(Σε, Ak ∩D(W )) ≥ `ε −
`

4
≥ 7`

8
− `

4
=

5`

8
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Now, for each k ≥ kε, by compactness, we may find points pk ∈ Σε and qk ∈

Ak ∩ D(W ) such that `k := d(pk, qk) = d(Σε, Ak ∩ D(W )). But since kε ≥ k1,

it follows from (4.3.2) that we must have qk ∈ Ak ∩ D(W ). Furthermore, since

∂Σε ⊂ {|δ| < `/4}, it follows that we must have pk ∈ int Σε. Then, letting

`W := d(Σε, D(W )), we have, for all k ≥ kε,

`k = d(pk, qk) = d(Σε, Ak ∩D(W )) = d(int Σε, Ak ∩D(W )),

with,

5`

8
≤ `k ≤ `W

Again, the idea of the last part of the proof, which will also be used in Lemmas

4.3.9 and 4.4.2 below, is to take the support hypersurfaces for Ak at qk, and ‘slide

them down’ to support hypersurfaces for Σε at pk. Let Vk ⊂ J−(Ak) ∩D(W ) be

a (small) smooth spacelike past support hypersurface for Ak at qk. Since A∞ has

limit mean curvature ≥ λn, by choosing k ≥ kε sufficiently large, we can take

HVk(qk) ≥ λn(1 − 1
2
εk), for εk > 0 arbitrarily small. Let σk : [0, `k] → M be

a maximal past directed unit speed timelike geodesic from σk(0) = qk ∈ Ak to

σk(`k) = pk ∈ Σε. Since σk maximizes the distance to Ak, and Vk ⊂ J−(Ak), then

σk also maximizes the distance to Vk. Consequently, Vk has no focal points along

σk, except possibly the endpoint σk(`k). We may, in fact, push this (potential) focal

point into the past by ‘bending’ Vk slightly to the past, keeping pk fixed. To carry

this out, one can, for example, let V̂k ⊂ J−(Vk) be a small spacelike paraboloid (in

appropriate coordinates) from Vk which opens to the past from qk ∈ Vk ∩ V̂k. This

gives a strict inequality on the corresponding second fundamental forms, and one

may adapt Proposition 2.3 in [10], for example, to see that this inequality ensures
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that the first focal point, if any, along σk comes strictly later, (further in the past),

for V̂k than for Vk. Furthermore, by taking this paraboloid to be sufficiently flat,

(relative to Vk), we can ensure, for example, that HV̂k
(pk) ≥ λn(1− εk).

It follows then that the past normal exponential map E of V̂k is a

diffeomorphism on some neighborhood of [0, `k] × {pk}, and hence, for some

neighborhood Ṽk of pk in V̂k, the past slice E({t} × Ṽk) is a smooth spacelike

hypersurface for all t ∈ [0, `k]. Letting θ(t) denote the mean curvature of this slice

at σk(t), the Raychaudhuri equation, together with the curvature condition, give:

θ′(t)− θ2(t)

n
≥ Ric(∂t, ∂t) ≥ λ2n

Using the initial condition, θ(0) ≥ λn(1 − εk), a standard comparison argument

gives: θ(t) ≥ λn tanh(ck − t) for all t ∈ [0, `k], where ck := tanh−1(1 − εk), (cf.

[10]). Hence, letting V ′k := E({`k} × Ṽk), then the mean curvature of V ′k satisfies:

HV ′k
(pk) ≥ λn tanh(ck − `k) ≥ λn tanh(ck − `W )

Furthermore, for every x ∈ V ′k , we have, d(x,Ak) ≥ d(x, V̂k) ≥ `k, by construction.

Hence, V ′k can not meet I+(Σε). Consequently, V ′k serves as a smooth past support

hypersurface for Σε at pk. But by taking εk sufficiently small, we can make ck−`W

arbitrarily large so as to ensure that HV ′k
(pk) > λn(1−ε) = HΣε(pk), contradicting

the basic inequality BΣε(pk) ≥ BV ′k
(pk).

4.3.2 A Limit Maximum Principle

We will use the following notation below. By a (timelike) diamond neighborhood,

Ip, around p ∈ M , we mean a diamond Ip := I+(p−) ∩ I−(p+), for some p− <<

p << p+. We denote the corresponding causal diamond by Jp, i.e., Jp := J+(p−)∩
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J−(p+). Hence, always p ∈ Ip ⊂ Jp, so that p ∈ int Jp.

Because causally convex neighborhoods contain their diamonds, (c.f. Lemma

1.1.9), we have the following:

Lemma 4.3.7. If strong causality holds at p ∈ M , then for any neighborhood U

of p, there is a timelike diamond neighborhood Ip of p with p ∈ Ip ⊂ Jp ⊂ U .

Moreover, one may establish an ‘avoidance lemma’ for small diamonds. That

is, if J is a sufficiently small diamond and x 6∈ J , then there is an inextendible

curve through x which misses J . Consequently, such diamonds are ‘closed’ under

Cauchy developments:

Lemma 4.3.8 (Dependence-Trapping Diamonds). Let M be globally hyperbolic

and fix p ∈ M . Then for any neighborhood U of p in M , there is a diamond

neighborhood Ip of p, with p ∈ Ip ⊂ Jp ⊂ U such that for any achronal set A ⊂ Jp,

we have D(Ap) ⊂ Jp.

We are ready to establish the following ‘maximum principle’ for limit mean

curvature:

Lemma 4.3.9 (Limit Maximum Principle). Let (Mn+1, g) be a globally hyperbolic

spacetime satisfying, for some λ ≥ 0, Ric(X,X) ≥ −λ2n for all timelike unit

vectors X. Let A∞ and B∞ be two achronal limits meeting at p ∈ A∞ ∩B∞ such

that, near p, both achronal limits are acausal, with B∞ locally to the future of

A∞ (see proof). If A∞ has limit mean curvature ≥ λn and B∞ has limit mean

curvature ≤ λn, then for some neighborhood U of p in M , A∞ ∩ U = B∞ ∩ U is

a smooth, acausal spacelike hypersurface with H = λn.

Proof. Explicitly, we assume that there is a neighborhood U0 of p in M such that

A∞ ∩ U0 and B∞ ∩ U0 are acausal, and B∞ ∩ U0 ⊂ J+(A∞ ∩ U0);
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B∞

A∞

p

U0

As in Lemma 4.3.6, the proof involves some careful setup. We first establish

a domain of dependence within U0. Using Lemma 4.3.8, let I0 be a ‘dependence-

trapping’ diamond neighborhood of p with p ∈ I0 ⊂ J0 ⊂ U0. Let V0 be a domain

in A∞ around p with V0 ⊂ A∞ ∩ I0. Then D(V0) ⊂ J0 ⊂ U0.

B∞

A∞

U0

D(V0)

Since V0 ⊂ A∞ ∩ I0 ⊂ A∞ ∩U0, we have that V0 is acausal. Hence, by Proposition

1.1.22, D(V0) is an open, globally hyperbolic subspacetime, with Cauchy surface

V0. Recall that our (ambient) spacetime M is equipped with a time orientation,

T , a smooth, global timelike vector field. Let h be a complete Riemannian metric

on D(V0). Let T ′ be the restriction of T to D(V0) and set T0 := T ′/||T ′||h. It

follows that T0 is a smooth, complete timelike vector field on D(V0). Hence, as



78

in Proposition 1.1.29, we have a homeomorphism Φ : R × V0 → D(V0), where,

for each q0 ∈ V0, the t-curve, φq0(t) = Φ(t, q0) is the T0-integral curve through q0.

This map will be used throughout the proof to relate the various (achronal) sets

in D(V0) with which we will work.

The rest of the setup involves a pair of nested diamonds in D(V0). First, using

Lemma 4.3.7, let I1 be a diamond around p with p ∈ I1 ⊂ J1 ⊂ D(V0). By global

hyperbolicity, J1 is compact. Furthermore, since J1 is causally convex (contains all

of its diamonds), it is a globally hyperbolic subset of M , (cf. Lemma 1.1.13). Now,

using Lemma 4.3.8, let I2 be a smaller, ‘dependence-trapping’ diamond around p

with p ∈ I2 ⊂ J2 ⊂ I1 ⊂ J1. Hence, we have J2 ⊂⊂ J1.

Now let VB be a small domain around p in B∞, with VB homeomorphic to an

open ball in Rn, and VB ⊂ B∞ ∩ I2. Hence, D(VB) ⊂ J2 ⊂⊂ J1. The projection

π2 ◦ Φ−1|VB : VB → V0 is continuous, and one-to-one, by achronality. It follows

by invariance of domain that its image, VA := π2 ◦ Φ−1|VB(VB), is a domain in

V0 around p. By shrinking VB if necessary, (as a ball), we may suppose also

VA ⊂ A∞ ∩ I2. Hence also D(VA) ⊂⊂ J1. We can forget about J2 at this point

and just remember D(VA), D(VB) ⊂⊂ J1.

VA

VB

D(V0)

J1



79

We emphasize that the points of VA and VB are in one-to-one correspondence

via the (timelike) integral curves of T0. Hence, fixing any q ∈ VA, there is a

unique point q′ ∈ VB on the T0-integral curve through q. (Including the possibility

q′ = q.) We will denote this kind of correspondence via the integral curves of T0

by VB ≈T0 VA, and will use it below on other sets. Note that, in this case, since

B∞ is to the future of A∞ in U0, the point q′ ∈ VB above, either equals q, or is a

future point on the integral curve through q.

We will show VA = VB. We have p ∈ VA ∩ VB. Fix x ∈ VA − {p}. Then,

since VA is homeomorphic to VB, which is homeomorphic to a (hyper)-ball, we can

choose a domain WA in VA with WA ⊂ VA and x ∈ WA −WA = edgeWA. Let

WB be the corresponding domain in VB, i.e., WB ≈T0 WA. In fact, since WA ⊂ VA

and WB ⊂ VB, we have also edgeWB ≈T0 edgeWA.

Since D(WA) ⊂ D(VA) ⊂⊂ J1, with J1 globally hyperbolic, it follows that

(WA, J1) is a ‘standard data set’ as defined by Bartnik in [3]. Then, since WA

is acausal, [3, Theorem 4.1] produces a smooth, achronal spacelike hypersurface

ΣA ⊂ D(WA) of constant mean curvature HΣA = λn, with edge ΣA = edgeWA

and ΣA ≈T0 WA. By Lemma 4.3.6, we have ΣA ⊂ J+(WA). Similarly, now

using (WB, J1) as the ‘standard data set’, [3, Theorem 4.1] and Lemma 4.3.6

give a smooth, achronal spacelike hypersurface ΣB ⊂ J−(WB) of constant mean

curvature HΣB = λn, with edge ΣB = edgeWB and ΣB ≈T0 WB. Note that, since

edgeWA = edgeΣA and edgeWB = edgeΣB, we have edge ΣB ≈T0 edge ΣA.

We now show that ΣB cannot enter I−(ΣA). Suppose otherwise and let

pB ∈ ΣB and qA ∈ ΣA such that ` = d(ΣB,ΣA) = d(pB, qA) > 0. By

the achronality of ΣA and ΣB, and the causal relations on the boundaries, it

follows that pB 6∈ edge ΣB and qA 6∈ edge ΣA, so pB ∈ ΣB, qA ∈ ΣA and

` = d(ΣB,ΣA) = d(ΣB,ΣA) = d(pB, qA).
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ΣA

ΣB

WB

WA

Hence, the past sphere S−` = S−` (ΣA) meets ΣB at pB ∈ ΣB ∩ S−` . Fix an

arbitrary intersection point z ∈ ΣB∩S−` . Since S−` is acausal and edgeless, D(S−` )

is an open neighborhood of z. If ΣB entered I−(S−` ), we could produce a curve from

ΣB to S−` of positive length, and hence a curve from ΣB to ΣA of length strictly

greater than `. Hence, ΣB cannot enter I−(S−` ), and near z ∈ ΣB ∩ S−` ⊂ D(S−` ),

we have ΣB locally to the future of S−` . Furthermore, for such a z, there is some

y ∈ ΣA such that ` = d(z,ΣA) = d(z, y). But since y ∈ edge ΣA ⊂ J−(edge ΣB)

would lead to a violation of the achronality of ΣB, we have y ∈ ΣA. Then, by

an argument similar to that in Lemma 4.3.6, (starting with ΣA as a past support

hypersurface for itself, (bending to the past), and sliding down to S−` ), we can

show that S−` has support mean curvature ≥ λn at z ∈ ΣB ∩ S−` . Let S− be the

connected component of S−` which contains pB. It follows from Theorem 4.1.10,

that the intersection ΣB ∩ S− is open in ΣB. Since S− is closed, this intersection

is also closed in ΣB. Since ΣB is homeomorphic to the (connected) domain WB,

ΣB is connected, and hence, ΣB ∩ S− = ΣB, i.e., ΣB ⊂ S−. But since S− is

closed, this implies edge ΣB ⊂ S− ⊂ I−(ΣA), which again leads to an achronality

violation.

Hence, ΣB does not meet I−(ΣA). It follows that ΣA and ΣB are ‘sandwiched’

between WA and WB, with p ∈ ΣA ∩ ΣB, and ΣB to the future of ΣA.



81

ΣA
ΣB

WB

WA

p

The (smooth) maximum principle then gives that ΣA ∩ΣB is open in both ΣA

and ΣB. Suppose ΣA ∩ ΣB is not closed in ΣA. Then ΣA ∩ ΣB has a limit point

p0 ∈ ΣA \ ΣB. Then p0 ∈ ΣB \ ΣB = edge ΣB. But since edge ΣB ⊂ J+(edge ΣA),

p0 ∈ ΣA ∩ edge ΣB leads to an achronality violation. Hence, ΣA ∩ ΣB is closed

in ΣA, and by connectedness, ΣA ⊂ ΣB. By symmetry, it follows that ΣA = ΣB.

Hence, edgeWA = edge ΣA = edge ΣB = edgeWB. Thus, the above procedure

‘sews’ A∞ and B∞ together along the edges of WA and WB.

WB

WA

p

ΣA = ΣB

In particular, we have x ∈ edgeWA = edgeWB ⊂ VB. Since x ∈ VA − {p} was

arbitrary, (and since p ∈ VA ∩ VB), we have VA ⊂ VB, and since VA ≈T0 VB, this

means VA = VB. It follows that WA = WB = ΣB = ΣA. Hence, near p, A∞ and

B∞ agree and are smooth and spacelike, with mean curvature λn.
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4.4 Rigidity under Λ > 0

In this section we consider spacetimes (Mn+1, g), with n > 2, which obey the

Einstein equation,

Rij −
1

2
Rgij + Λgij = 8πTij , (4.4.3)

with positive cosmological constant Λ > 0, where the energy-momentum tensor

Tij is assumed to satisfy the strong energy condition,

(Tij −
1

n− 1
Tgij)X

iXj ≥ 0 (4.4.4)

for all timelike vectors X, where T = Ti
i.

Setting Λ = n(n− 1)λ2/2, the strong energy condition (4.4.4) is equivalent to,

Ric(X,X) ≥ −λ2n, for all timelike unit vectors X (4.4.5)

We begin with the following past singularity result, which is in some sense

analogous to Proposition 4.2.1.

Proposition 4.4.1 (Limit Mean Rigidity). Let Mn+1 be a globally hyperbolic

spacetime such that, for some λ ≥ 0, Ric(X,X) ≥ −λ2n for all timelike unit

vectors X. Let S∞ ⊂ M be a past causally complete achronal limit and suppose

that S∞ is acausal with limit mean curvature ≥ λn. Suppose also that S∞ admits

a past S∞-ray, γ, and let S0
∞ be the connected component of S∞ containing γ(0).

Then either S∞ admits a past incomplete timelike S∞-ray, or S0
∞ is a smooth,

geodesically complete spacelike past Cauchy surface with mean curvature H = λn

and J−(S0
∞) splits as:

(J−(S0
∞), g) ≈ ((−∞, 0]× S0

∞,−dt2 + e2λth),

where h denotes the induced metric on S0
∞.
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Proof. Observe that, since S∞ is acausal, every S∞-ray, future or past, is timelike.

Assume all past S∞-rays are past complete. Hence γ is timelike and past complete.

Construct S+
∞(γ). By Lemma 4.3.4, S+

∞(γ) has limit mean curvature ≤ λn. Let

S+ be the connected component S+
∞(γ) containing γ(0). Hence, the intersection

S0
∞∩S+ is nonempty and closed. Since S0

∞ is acausal, it follows that S+ must also

be locally acausal and to the future of S0
∞ near any intersection point x ∈ S0

∞∩S+.

Hence, by Lemma 4.3.9, S0
∞ = S+ is a smooth spacelike hypersurface with mean

curvature H = λn. Hence, by (both parts of) Lemma 4.7.1, we have that the

normal past, N−(S0
∞) splits as ((−∞, 0] × S0

∞,−dt2 + e−2λth). Then, again, by

adapting the proof of Theorem 3.68 in [5], using the past causal completeness of

S0
∞ and the warped product structure, we get that S0

∞ is geodesically complete.

Hence, it follows from Theorem 3.69 in [5] that N−(S0
∞) = J−(S0

∞).

4.4.1 Asymptotically de Sitter Spacetimes

Recall that de Sitter space, Sn1 := {x ∈ Mn+1 : g(x, x) = 1}, the unit

‘pseduosphere’ in Minkowksi space, is the simply connected Lorentzian space form

of constant curvature 1. In particular, de Sitter satisifes (4.4.5) with λ = 1.

Furthermore, we note that de Sitter space is both timelike and null geodesically

complete.

de Sitter space admits the following warped product structure:

Sn1 ≈ (R× Sn−1,−dt2 + cosh2 t gSn−1)

Each t-slice, St := {t} × Sn−1 ⊂ Sn1 , has constant mean curvature:

Ht := H(St) = n
(cosh t)′

cosh t
= n tanh t
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Hence, the ‘waistline’, S0 = {t = 0}, is maximal, and the mean curvature of the

slice St increases to n (resp. decreases to −n), as t approaches ∞ (resp. −∞). In

fact, a brief computation shows,

Ht = n+O(e−2t) (4.4.6)

Theorem 4.4.3 below will show, in effect, that if the mean curvature converges to

n any faster, there will be past singularities.

We begin the following lemma:

Lemma 4.4.2. Let Mn+1 be a future timelike geodesically complete spacetime

satisfying Ric(X,X) ≥ −n for all timelike unit vectors X. Suppose S is a compact

Cauchy surface for M such that each future Cauchy sphere S+
k (S) has support

mean curvature ≥ ak, where, letting nk := min{n, ak}, we have

nk = n+ o(e−2k) (4.4.7)

Then the Cauchy horosphere S−∞(S) has limit mean curvature ≥ n.

Proof. Let Sk := S+
k (S) and recall that the sequence of Cauchy prehorospheres is

defined by S̃k := S−k (S+
k (S)). Fix any x̃k ∈ S̃k. By definition, d(x̃k, Sk) = k, and

x̃k is joined to some xk ∈ Sk by a past-directed Sk-maximal unit speed timelike

geodesic segment αk : [0, k]→M , with αk(0) = xk and αk(k) = x̃k.

Let Σk be a smooth past support hypersurface for Sk at xk with mean curvature

HΣk(x) ≥ ak − 1
2
e−3k. Perturbing Σk slightly to the past, keeping xk fixed, as in

Lemma 4.3.6, we obtain a smooth past support hypersurface Σ̂k for Sk at xk with

mean curvature HΣ̂k
(x) ≥ ak− e−3k ≥ nk− e−3k, such that Σ̂k has no focal points

along αk, and hence, such that the past normal exponential map E from Σ̂k is

smooth on [0, k] × Σ̃k, for some neighborhood Σ̃k of xk in Σ̂k. Letting θk(t) be

the mean curvature of the slice E({t} × Σ̃k) at αk(t), then θ = θk(t) satisfies the
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Raychauduri inequality θ′ ≥ Ric(α′k, α
′
k)+θ2/n. By the curvature condition, since

αk is unit speed timelike, this gives θ′ ≥ θ2/n− n, or, letting Θ := θ/n,

Θ′(t) ≥ Θ2(t)− 1, Θ(0) ≥ nk − e−3k

n

Since |(nk−e−3k)/n| < 1, the elementary comparison solution is tanh(bk− t), with

bk = tanh−1

(
nk − e−3k

n

)
=

1

2
ln

(
n+ nk − e−3k

n− nk + e−3k

)

Thus we have,

θk(k) ≥ n tanh(bk − k)

= n
e2bk − e2k

e2bk + e2k

= n
(n+ nk − e−3k)− (n− nk + e−3k)e2k

(n+ nk − e−3k) + (n− nk + e−3k)e2k

= n
(n+ nk − e−3k)− (n− nk)e2k − e−k

(n+ nk − e−3k) + (n− nk)e2k + e−k
=: θ̃k

Note that using the asymptotic assumption (4.4.7), we have limk→∞ θ̃k = n.

Because Σ̂k ⊂ J−(Sk), it follows that the slice E({k} × Σ̃k) is a smooth past

support hypersurface for S̃k at αk(k) = x̃k. Since x̃k was arbitrary, we have

shown that S̃k has mean curvature ≥ θ̃k in the support sense. Since θ̃k → n, the

conclusion follows.
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Theorem 4.4.3. Let Mn+1 be a future timelike geodesically complete spacetime

satisfying Ric(X,X) ≥ −n for all timelike unit vectors X. Suppose S is a compact

Cauchy surface for M such that each future Cauchy sphere S+
k (S) has support

mean curvature ≥ ak, where, letting nk := min{n, ak}, we have nk = n+ o(e−2k).

Let S−∞(S) be the past Cauchy horosphere associated to S and suppose that S−∞(S)

admits a past S−∞(S)-ray γ. Then either

(1) S−∞(S) admits a past incomplete timelike S−∞(S)-ray, or

(2) S−∞(S) is a smooth, compact spacelike Cauchy surface with mean curvature

H = n and, letting h denote the induced metric on S−∞(S), M splits as:

(M, g) ≈ (R× S−∞(S),−dt2 + e2th)

In either case, M is past timelike incomplete. In the latter case, M is also past

null incomplete.

Proof. Since S−∞(S) is inherently future bounded by S, it is acausal and all S−∞(S)-

rays, future or past, are timelike. We will suppose every past S−∞-ray is complete

and show (2). By Lemma 4.4.2, S−∞(S) has limit mean curvature ≥ n. Then,

letting S− be the connected component of S−∞(S) which contains γ(0), Proposition

4.4.1 gives that S− is a smooth, geodesically complete, spacelike past Cauchy

surface, with mean curvature H = n, and:

(J−(S−), g) ≈ ((−∞, 0]× S−,−dt2 + e2th)

Note that the future radial rays from S−∞ are all timelike and future complete.

Since S− is smooth, there must only be one such ray from each point p ∈ S−,

and it must be the future normal geodesic from p ∈ S−. Hence, the future

normal exponential map E is a diffeomorphism onto the future image N+(S−) =
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E([0,∞) × S−). The standard comparison argument via the Raychaudhuri

equation gives Ht ≤ n for the future normal slice Nt := E({t}×S−). But the usual

argument does not give Ht = n. To get the splitting to the future, we will identify

Nt with a portion of (what is essentially) the Cauchy horosphere associated to

the Cauchy surface St := S+
t (S). Like S−∞, this horosphere will inherit limit mean

curvature ≥ n from the sequence {S+
k (S)}, and we can run our arguments again

to get H = n for this horosphere, (locally), and hence Ht = n for the slice Nt.

As in (the time dual of) Lemma 3.3.4, we have S+
k (S) = S+

k−t(S
+
t (S)) =

S+
k−t(St), and hence, S−k−t(S

+
k (S)) = S−k−t(S

+
k−t(St)). The same monotonicity

argument for the usual Cauchy prehorospheres shows that the sequence

{J−(S−k−t(S
+
k (S)))} = {J−(S−k−t(S

+
k−t(St)))} is decreasing. Letting S̃k−t :=

S−k−t(S
+
k (S)), consider the horosphere

S−∞−t := ∂

(⋂
k

J−(S̃k−t)

)

Recall that the (usual) Cauchy prehorospheres, S̃k, are constructed as follows:

shoot S k units to the future to S+
k (S), then pull this back k units to S̃k =

S−k (S+
k (S)). The new prehorospheres S̃k−t = S−k−t(S

+
k (S)) take S, shoot it k units

to the future, but then pull back only k− t units. Hence, roughly speaking, S−∞−t

is constructed by shooting S ‘∞ units’ to the future, and then pulling it back by

only ‘∞− t units’. Alternatively, since S̃k−t = S−k−t(S
+
k (S)) = S−k−t(S

+
k−t(St)), we

can also view this (essentially) as the Cauchy horosphere associated to the Cauchy

surface St = S+
t (S).

In any case, we want to show Nt ⊂ S−∞−t. We first note that, as with the usual

prehorospheres, S̃k−t = S−k−t(S
+
k−t(St)) is future bounded by St. Let x∞ ∈ S− ⊂

S−∞ and fix a sequence xk ∈ S̃k with xk → x∞. Since xk ∈ S̃k = S−k (S+
k (S)), there

is a future maximal unit speed timelike geodesic segment, σk : [0, k]→M , joining
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σk(0) = xk to σk(k) ∈ S+
k (S). Then xk−t := σk(t) ∈ S−k−t(S

+
k (S)) = S̃k−t. Letting

x−1 ∈ I−(x∞), we have xk−t ∈ J+(x−1)∩ J−(St), for large k. Hence, the sequence

{xk−t} has a limit point, x∞−t, which must be contained in S−∞−t, by Proposition

2.2.5. Since S−∞−t is future bounded, it admits a timelike future S−∞−t-ray η from

x∞−t. Since t = d(σk(0), σk(t)) = d(xk, xk−t) → d(x∞, x∞−t), there is a maximal

geodesic segment β : [0, t] → M from x∞ to x∞−t. Finally, since d(S̃k, S̃k−t) = t,

we have d(S−∞, S
−
∞−t) = t. It follows that the concatenation σ = β+η is an S−∞-ray

from x∞ ∈ S−. Since σ is also an S−-ray, paramterizing σ as a unit speed geodesic,

we have σ(t) = x∞−t. This shows Nt ⊂ S−∞−t.

Replacing e2k by e2(k−t) = e2k−2t in the calculation in Lemma 4.4.2, that is,

sliding the past support hypersurface for S+
k (S) down for a time k − t instead

of k, shows that S−∞−t has limit mean curvature ≥ n. Recall that Nt ⊂ S−∞−t

has (smooth) mean curvature Ht ≤ n. Hence, working locally, and viewing Nt as

the (constant) achronal limit of itself, Lemma 4.3.9 gives Nt has constant mean

curvature Ht = n. Since t > 0 was arbitrary, all future normal slices have constant

mean curvature H = n. Plugging this back into the Raychaudhuri equation, the

characterization of the equality case gives that each slice Nt is totally umbillic

with Bt = h, where h is the induced metric on Nt. Then, as in Lemma 4.7.1,

this gives N+(S−) ≈ ([0,∞) × S−,−dt2 + e2th). As in Remark 3.71 of [5], and

the related discussion, which cites also [26], this warped product structure means

that N+(S−) is future null and timelike geodesically complete. Hence, any future

causal geodesic starting from S− can never leave N+(S−). Since any y ∈ J+(S−)

is joined to some s ∈ S− by a future causal geodesic segment from s ∈ S−, we

have y ∈ N+(S−). Hence, J+(S−) = N+(S−), and J(S−) = N(S−), with

(J(S−), g) ≈ ((−∞,∞)× S−,−dt2 + e2th)
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In particular, H+(S−) ⊂ J+(S−) ⊂ N+(S−), but by Theorem 3.69 in [5], S− is

a Cauchy surface for N(S−) = J(S−). Hence, H+(S−) = ∅. Recalling that also

H−(S−) = ∅, we have that S− is a Cauchy surface for M . By achronality, this

means S−∞ = S−, which gives the conclusion.



Appendix

4.5 One-Sided Hessian Bounds

The following is the second half of Definition 3.3 in [2]:

Definition 4.5.1 (Support Mean Curvature with One-Sided Hessian Bounds).

Let S be a C0 spacelike hypersurface and a ∈ R. We say S has support mean

curvature ≥ a with one-sided Hessian bounds if, fixing any compact subset K ⊂ S,

there is a compact set K̂ ⊂ TM and a constant CK > 0 such that for all q ∈ K

and all ε > 0, there is a C2 past support hypersurface Sq,ε for S at q such that

i) The future unit normal field, ηq,ε, of Sq,ε satisfies: ηq,ε(q) ∈ K̂

ii) The mean curvature, Hq,ε, of Sq,ε satisfies: Hq,ε(q) ≥ a− ε

iii) The second fundamental form, Bq,ε, of Sq,ε satisfies: Bq,ε(q) ≥ −CK

As discussed in [2], when the support surfaces Sq,ε are smooth point past spheres,

one-sided Hessian bounds boil down to the support normals being ‘locally

compact’, or equivalently, that no sequence of such normals ‘tips over’. We

make this precise in the next subsection.
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4.5.1 Tipping Over

Note that while it is impossible for a sequence of timelike unit vectors to have a null

limit vector, such a sequence may ‘become null’ in the sense that the sequence of

directions may approach a null direction. To make this precise, fix a Riemannian

metric h on M . For each X ∈ TM , we define the direction of X, (with respect to

h), by

X̃ :=
X

||X||h

X̃

X

Definition 4.5.2. We will say a sequence {Xk} of timelike unit vectors tips over

at p ∈ M if π(Xk) = pk → p and g(X̃k, X̃k) → 0, where π : TM → M is the

standard projection.

We say a set of vectors Z ⊂ TM is locally compact if, over any compact

K ⊂M , the subset ZK := Z ∩ π−1(K) is compact.

Lemma 4.5.3. Let N be a set of future timelike unit vectors. If N is locally

compact, then no sequence in N tips over. If N is closed, the converse holds.
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Proof. First suppose that N is locally compact. Suppose otherwise that there is

a sequence Xk ∈ N which tips over at some p ∈ M . Let U be a neighborhood

of p with K = U compact. Then NK contains the tail of {Xk} and is compact

by assumption. Hence, {Xk} has a limit point (vector) X∞ ∈ NK . Hence, for

some subsequence {Xkj}, we have Xkj → X∞ and hence also ||Xkj ||h → ||X∞||h.

Furthermore, since Xk 6= 0 6= X∞, we have

X̃kj =
Xkj

||Xkj ||h
−→ X∞
||X∞||h

= X̃∞

Then, 0 = limj→∞ g(X̃kj , X̃kj) = g(X̃∞, X̃∞), which means X∞ is null,

contradicting X∞ ∈ NK ⊂ N . Hence, no sequence in N tips over.

Now, suppose N is closed and contains no sequence which tips over. Suppose

that N is not locally compact. Hence, for some compact K ⊂ M , the subset

NK contains a sequence {Xk} which has no limit point in NK . The direction

sequence {X̃k} is contained in the h-unit bundle over K, and hence must have

a limit point, X̃∞, which must be future pointing causal. If X̃∞ is timelike,

then X∞ := ||X̃∞||−1
g X̃∞ is timelike unit and, fixing a subsequence X̃kj with

limj→∞ X̃kj = X̃∞, we have:

Xkj =
X̃kj

||X̃kj ||g
−→ X̃∞

||X̃∞||g
= X∞

Hence, X∞ is a limit point of {Xk}. But since N is closed by assumption, so is

NK = N ∩ π−1(K). Hence, X∞ ∈ NK , a contradiction. Suppose then that X̃∞

is null. But then, 0 = g(X̃∞, X̃∞) must be a limit point of {g(X̃k, X̃k)}, which

means a subsequence of {Xk} tips over at some p ∈ K. Hence, N must be locally

compact after all.
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4.5.2 Horospheres

We will need the following fact, extracted and specialized from [18]:

Lemma 4.5.4 (Timelike Maximal Limit Curves vs Geodesic Limits). Let γk :

[0,∞) → M be a sequence of future complete, unit speed timelike geodesic rays.

Let h be a complete Riemannian metric on M and let αk : [0,∞) → M be the

reparameterization of γk with respect to h arc length. Suppose that α : [0,∞)→M

is a timelike limit curve of {αk}, and without loss of generality, suppose that (the

full sequence), {αk} converges locally uniformly to α. Then, α is maximal and

hence may be reparameterized as a unit speed timelike geodesic ray, γ : [0, T )→M ,

with T ∈ (0,∞], which then satisfies γ′k(0)→ γ′(0).

Lemma 4.5.5 (Horosphere Support Normals). Let M be a globally hyperbolic

spacetime and suppose that S−∞ is a past horosphere such that all future S−∞-rays

are timelike and future complete. Let N be the set of the initial tangent vectors of

all future S−∞-rays, parameterized as unit speed geodesics. Then N is closed and

no sequence in N tips over. Hence, N is locally compact.

Proof. Note that N is a set of timelike unit vectors. Let {γ′k(0)} be a sequence

from N with limk→∞ γ
′
k(0) = X∞ ∈ TM . Fixing a complete Riemannian metric

h on M , let αk be the reparameterization of γk with respect to h arc length and

let α∞ be a limit curve of {αk}. Since each αk is a future S−∞-ray, so is α∞,

by the Maximal Limit Curve Lemma 3.1.8, (applied using the constant sequence

Sk = S−∞). Hence, α∞ is timelike. Then, reparameterizing α∞ as a geodesic, γ∞,

by Lemma 4.5.4, γ′∞(0) is a limit point of {γ′k(0)}. Hence, X∞ = γ′∞(0) ∈ N .

This shows that N is closed. A similar argument will show that no sequence in N

can tip over. Suppose otherwise, that there is a sequence {γ′k(0)} ∈ N which tips
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over at p ∈ S−∞. Then, as above, letting α∞ ≈ γ∞ be a limit curve of {αk} ≈ {γk},

γ′∞(0) is a limit point of {γ′k(0)}. But then γ′∞(0)/||γ′∞(0)||h is a timelike limit

point of {γ′k(0)/||γ′k(0)||h}, hence {γ′k(0)}, in fact, does not tip over. By Lemma

4.5.3, N is locally compact.

4.6 The Raychaudhuri Equation

The following version of the Raychaudhuri equation is convenient for most of our

applications:

Lemma 4.6.1 (Raychaudhuri to the Future). Suppose that S ⊂Mn+1 is a smooth

spacelike hypersurface with future unit normal field N , and that for some a, b >

0, the normal exponential map E is a diffeomorphism from (−a, b) × S onto a

(normal) neighborhood of S. For each p ∈ S, let γp(t) := expp(tN) = E(t, p)

denote the t-curve through p. For each t ∈ (−a, b), denote the corresponding t-

slice by Nt := E({t} × S). Let B and H denote the second fundamental form

and mean curvature, respectively, of the {t}-slices, with respect to the future unit

normal, ∂t := E∗(∂t). Fix any p ∈ S and let θ(t) = H(γp(t)) be the mean curvature

of the slice Nt at γp(t). Then we have:

θ′(t) +
θ2(t)

n
+ Ric(∂t, ∂t)γp(t) ≤ θ′(t) + |B|2γp(t) + Ric(∂t, ∂t)γp(t) = 0 (4.6.8)

with equality at t iff, at the point γp(t), B is a multiple of the induced metric ht

of the slice Nt.

Remark 4.6.2 (Raychaudhuri to the Past). In fact, we mostly use the

Raychaudhuri equation to the past. Using the reverse setup, (i.e., N → −N), so
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that γp(t) is now past-directed, and the future unit normal field of the slices is

−∂t, we have:

θ′ − θ2

n
− Ric(∂t, ∂t) ≥ θ′ − |B|2 − Ric(∂t, ∂t) = 0, (4.6.9)

with the same characterization of the equality case.

4.7 Normal Half-Splitting Lemma

Lemma 4.7.1 (Normal Half-Splitting). Let Mn+1 be a globally hyperbolic

spacetime and suppose S ⊂ M is a smooth spacelike hypersurface such that

all future normal geodesics from S are future complete S-rays. Then, letting h

denote the induced metric on S, we have the following:

0) If M satisfies Ric(X,X) ≥ 0 for all timelike vectors X, and S has mean

curvature H = 0, then the normal future (N+(S), g) is isometric (via the

normal exponential map) to

([0,∞)× S,−dt2 + h)

λ) If M satisfies Ric(X,X) ≥ −λ2n for all timelike unit vectors X, with λ > 0,

and S has mean curvature H = −λn, then the normal future (N+(S), g) is

isometric (via the normal exponential map) to

([0,∞)× S,−dt2 + e−2tλh)

Proof. The proof is fairly standard. Because the future normal geodesics to S are

future complete S-rays, the future normal exponential map gives a diffeomorphism,

N+(S) ≈ [0,∞) × S. Let Nt := E({t} × S) be the future normal t-slice. By the

Gauss lemma, we have
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(N+(S), g) ≈ ([0,∞)× S,−dt2 + ht)

where, for each t ≥ 0, ht is a metric on Nt ≈ S. In particular, ∂t is a future unit

normal for Nt. Fix p ∈ S and let γp(t) = expp(tN) be the future-directed normal

geodesic through p. Then, as in Lemma 4.6.8, we have:

θ′(t) +
θ2(t)

n
+ Ric(∂t, ∂t) ≤ θ′(t) + |B|2 + Ric(∂t, ∂t) = 0,

where B and θ are the second fundamental form and mean curvature, respectively,

of the slice Nt at γp(t).

0) First suppose Ric(X,X) ≥ 0 for all timelike X. Then, θ′ ≤ −θ2/n. Since

θ(0) = 0, this implies that θ(t) ≤ 0 for all t ≥ 0. Suppose that for some t0 > 0, we

have θ(t0) < 0. Then we have θ(t) < 0, for all t > t0. In particular, for such t, we

have θ(t) 6= 0, and dividing by −θ2 and integrating, we get θ−1(t) ≥ (t+C0)/n, or

θ(t) ≤ n

t+ C0

, for some constant C0 and all t > t0. Since θ(t0) < 0, we must have

C0 < −t0. But this implies limt→−C+
0
θ(t) = −∞, contradicting the fact that N−C0

is smooth. Hence we must have θ(t) = 0 for all t ≥ 0. Since γp was arbitrary, this

shows that each slice Nt is maximal. Plugging this back into the Raychaudhuri

equation, we get that the second fundamental form of Nt vanishes. Let X = ∂x

and Y = ∂y be coordinate vector fields on S. Then ∂t ht(X, Y ) = ht(∇tX, Y ) +

ht(X,∇tY ) = ht(∇X∂t, Y )+ht([∂t, X], Y )+ht(X,∇Y ∂t)+ht(X, [∂t, Y ]) = 0, where

the bracket terms vanish because ∂t, X, and Y are all coordinate vector fields,

and the remaining terms vanish because B = 0. Hence ht(X, Y ) = h0(X, Y ) =

h(X, Y ), which gives the splitting.

λ) Now suppose that Ric(X,X) ≥ −λ2n, for all timelike unit vectors X, with

λ > 0. Thus, dividing by λ2n and setting Θ(t) := θ(t)
λn

, we have Θ(0) = −1 and

the Raychaudhuri equation gives: Θ′(t) ≤ 1−Θ2(t). Then, by Riccati comparison
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theory, (cf. [10]), we get Θ(t) ≤ −1 for all t ≥ 0. Suppose that Θ(t0) = −(1+δ) for

some t0, δ > 0. Then again by Riccati comparison, we get Θ(t) ≤ coth(t+C0) for

all t > t0, where C0 = coth−1(Θ(t0)) < 0, which leads to a blow up at t = −C0 > 0,

contradicting the smoothness of Θ on [0,∞). Hence, for all t ≥ 0, we have

Θ(t) = −1, i.e., θ(t) = −λn. Plugging this back into the Raychaudhuri equation,

we get that λ2n ≤ |B|2 ≤ λ2n. By the characterization of the equality case, (c.f.

Lemma 4.6.8), follows that B = −λht. Again, letting X = ∂x and Y = ∂y be

coordinate vector fields on S, we have ∂t ht(X, Y ) = ht(∇tX, Y ) + ht(X,∇tY ) =

ht(∇X∂t, Y ) +ht([∂t, X], Y ) +ht(X,∇Y ∂t) +ht(X, [∂t, Y ]) = −2λht(X, Y ). Hence

ht(X, Y ) = e−2λth0(X, Y ) = e−2λth(X, Y ), which gives the splitting.
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