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I study different types of statistical solutions (Hopf, Foias, , Vishik-Fursikov) for

nonlinear evolution equations. As a test equation, I use the nonlinear Schrödinger

equation with power-like nonlinearity in the case where the proofs of uniqueness

are not available. When there is no uniqueness in the original equation, statistical

solutions are not unique. For autonomous differential equations, there is a formal

semigroup property. I propose to look for statistical solutions with an analogous

property. For statistical solutions, this should be the homogeneous Markov property.

I call such solutions Markov statistical solutions.

The proofs of the existence of the Markov statistical solutions rely on the Markov

selection theorem. N.V. Krylov was the first to realize the importance of the Markov

selection in the context of Markov processes. D.W. Stroock, and S.R.S. Varadhan

re-framed Krylov’s selection in the context of solutions of the martingale problem.

Recently, their results have been used by F. Flandoli and M. Romito, and Goldys

et al., for the analysis of the Navier-Stokes equation with additive noise. I use the

Markov selection theorem to prove the existence of Markov statistical solutions. I give

a new proof of the Markov selection theorem. This proof has prompted me to look

back at the set-valued solutions of deterministic equations, where the analog of the

homogeneous Markov property should be the semigroup property. It turned out that

no theorems of existence of selections satisfying the semigroup property were known.

I state and prove a selection theorem for measurable selections with the semigroup

property. Such result is important in its own right. I use it here to give a second

proof of the existence of Vishik-Fursikov measures.
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Introduction

The motion of a deterministic mechanical system is governed by a differential equation

which has the symbolic form
du

dt
= F (u) , (1)

where u(t) is a set of parameters that completely characterizes the state of the system

at time t. If the number of parameters is very large or if they cannot be measured

accurately, it is useful to study probability distributions on the space of states of the

system and their evolution in time resulting from the individual motions. Over the

last seventy years, several different forms of equations for evolution of probability

measures have been proposed, most notable, by E. Hopf, C. Foias, , and M. I. Vishik

and A. Fursikov. The solutions of those equations are called statistical solutions of

the original equation (1).

If solutions of (1) are unique and St : a 7→ St(a) is the corresponding evolution of

the initial state a, then, the evolution of any given probability distribution on initial

states is unique: S∗t : µ0 7→ µt = µ0(S−1
t (·)). If there is no uniqueness for (1), one

can study the corresponding equations (Hopf, Foias,) for probability measures from

the point of view of existence, uniqueness, and the properties of solutions.

I study different types of statistical solutions for nonlinear evolution equations.

As a test equation (1) I use the nonlinear Schrödinger equation (NLS) with power-like

nonlinearity in the case where the proofs of uniqueness are not available. When there

is no uniqueness in the original equation, statistical solutions are not unique. For
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autonomous differential equations like (1), there is a formal semigroup property. I

propose to look for statistical solutions with an analogous property. For statistical

solutions, this should be the homogeneous Markov property. I call such solutions

Markov statistical solutions.

The proofs of the existence of the Markov statistical solutions rely on the Markov

selection theorem. N.V. Krylov [21] was the first to realize the importance of the

Markov selection in the context of Markov processes. D.W. Stroock, and S.R.S. Varad-

han [29] re-framed Krylov’s selection in the context of solutions of the martingale

problem. Recently, their results have been used by F. Flandoli and M. Romito [10],

and Goldys et al. [15], for the analysis of the Navier-Stokes equation with additive

noise. I use the Markov selection theorem to proof the existence of Markov statis-

tical solutions. I give a new proof of the Markov selection theorem. This proof has

prompted me to look back set-valued solutions of deterministic equations, where the

analog of the homogeneous Markov property should be the semigroup property. It

turned that no theorems of existence of selections satisfying the semigroup property

were known. I state and prove a selection theorem for measurable selections with the

semigroup property. Such result is important in its own right. I use it here to give a

second proof of the existence of Vishik-Fursikov measures.

Outline of the Thesis

In Chapter 1 I describe the Cauchy problem associated with the nonlinear Schrödinger

equation (1.10). With the help of some a priori estimates I define the concept of weak

solutions to (1.10) and find a suitable function space for solutions.

In Chapter 2 a measurable semigroup selection theorem is proved. This is one of

the main results of my thesis.
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Chapter 3 is devoted to the Hopf equation, and the associated Hopf statistical

solutions. Existence, but not uniqueness, of such solutions is presented. An ex-

plicit example of the Hopf equation for the Burgers equation is given as well. The

Foias, equation is also presented. The Foias, statistical solution of an ODE with non-

uniqueness is presented.

In Chapter 4 I introduce Vishik-Fursikov measures, as described by C. Foias, et

al. [13]. The existence of such solutions to NLS is proved.

In Chapter 5, I introduce a new notion of the Markov statistical solutions, and I

use the Markov selection theorem as presented by Goldies et al. to obtain a Markov

statistical solution to NLS. Then, I give a new proof of the Markov selection theorem

of N.V. Krylov [21], and D. Stroock and S.R.S. Varadhan [29], which is close in spirit

to the abstract selection theorem of Chapter 2.



Chapter 1

Nonlinear Schrödinger Equation

1.1 Function Spaces over Riemannian Manifolds

In this thesis, the main results are illustrated with the semilinear Schrödinger equation

on a closed Riemmanian manifold (M, g) of dimension d. The Lebesgue spaces Lp(M)

and the L2-Sobolev spaces Hs(M) are defined in a more or less standard way. The

Lp-norm of a function ξ is denoted ‖ξ‖p, where

‖ξ‖pp =
∫
M
|ξ(x)|pdx , (1.1)

where dx is the volume element on M . In L2(M) the inner product is denoted by

(ξ, η),

(ξ, η) =
∫
M
ξ(x) η(x) dx .

Denote by ∆ the Laplace-Beltrami operator on M (in analysis, ∆ is negative

definite.)

Theorem 1.1.1. For a closed d-manifold M , there exists a complete orthonormal

basis W = {w0, w1, . . . } of L2 formed by eigenfunctions of the Laplace-Beltrami op-
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erator, −∆wi = λiwi, for i = 0, 1, . . . , with the eigenvalues

λ0 = 0 < λ1 ≤ λ2 ≤ · · · → ∞ .

Every function u ∈ L2(M) can be represented by its Fourier series

u =
∑
k≥0

ûkwk ,

where ûk = (u,wk). In terms of Fourier coefficients

(u, v) =
∞∑
k=0

ûkv̂k .

and

‖u‖2
2 =

∞∑
k=0
|ûk|2 .

The Sobolev space Hs(M), for s ∈ R, is made of (as a distribution, if s < 0)

Fourier series

u =
∑
k≥0

ûkwk ,

such that

‖u‖2
Hs =

∞∑
k=0
〈λk〉2s|ûk|2 <∞ ,

where 〈λ〉 = (1 + λ2)
1
2 . The dual of Hs(M) with respect to L2(M) is the space

H−s(M). The duality pairing between Hs(M) and H−s(M) is

〈u, v〉 =
∑
k≥0

ûk v̂k .

As it is usual for Hilbert spaces, we will define the finite dimensional projection

Pm as follows.
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Definition 1.1.1. For any integer m > 0, define the projection operator Pm, acting

in the whole scale of Sobolev spaces Hs, s ∈ R, as

Pm[φ] =
m∑
k=0

φ̂kwk (1.2)

for any φ = ∑
k≥0 φ̂kwk ∈ Hs. If the context allows we will simply denote φm instead

of Pm[φ].

Lemma 1.1.2. If s ∈ R, and φ ∈ Hs, then, φm → φ as n→∞, strongly in Hs.

In what follows we write MT = [0, T ]×M , and identify L2([0, T ]→ L2(M)) with

the space L2(MT ). Similarly, M∞ = [0,∞)×M .

The following Lemma will be useful, see [23].

Lemma 1.1.3 (Friedrichs). Let (uk) be a sequence in L2([0, T ]→ H1(M)) such that

uk −⇀ u as k →∞, then uk → u in L2(MT ) as k →∞.

Proof. Since um −⇀ u in L2([0, T )→ H1) we have

um −⇀ u ∈ L2(MT ) , (1.3)

and

∇um −⇀ ∇u ∈ L2(MT ) . (1.4)

For any φ ∈ H1, the finite-dimensional projections φm converge φm → φ strongly

in H1 to φ. Also,

‖∇φm‖2
2 =

m∑
n=0

λn|(φ,wn)|2 ≤
∑
n≥0

λn|(φ,wn)|2 = ‖∇φ‖2
2 . (1.5)
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Since λn →∞, for any ε > 0 there exists an Mε such that 1
λn
< ε for any n > Mε.

Then, for m > Mε, we have

‖φ− φm‖2
2 =

∑
n>m

|(φ,wn)|2 ≤ ε
∑
n>m

λn|(φ,wn)|2 ≤ ε‖∇φ‖2
2 . (1.6)

For any k > 0 consider the following

∫ T

0
‖u(t)− uk(t)‖2

2dt =
∫ T

0

∑
n≤m
|(u(t)− uk(t), wn)|2dt+

∫ T

0

∑
n>m

|(u(t)− uk(t), wn)|2dt

≤
∫ T

0

∑
n≤m
|(u(t)− uk(t), wn)|2dt+ ε‖∇(u− uk)‖2

L2(MT ) .

(1.7)

Since ∇uk −⇀ ∇u in L2(MT ), then the L2(MT ) norm of ∇(u − uk) is uniformly

bounded, hence the second term can be made arbitrarily small by picking a sufficiently

small ε. For a fixed m > Mε the first term goes to 0 as k →∞, due (1.3). Thus,

∫ T

0

∥∥∥u(t)− uk(t)
∥∥∥2

2
dt→ 0

as k →∞, i.e. uk → u in L2(MT ).

In the case of the Lp spaces, for p > 2, the family of eigenfunctions {w0, w1, · · ·}

forms a Schauder basis, see [35, Part II.B.5]. The following is a conclusion of [35,

Proposition II.B.6],

Lemma 1.1.4. If p > 2, and φ ∈ Lp, then φm → φ, strongly in Lp as m→∞.

Moreover, there is a constant Cp, such that, for any φ ∈ Lp

‖φm‖p ≤ Cp‖φ‖p . (1.8)

The following two results are of great importance in the treatment of evolution

equations and can be found in [30, Chapter III, Lemma 1.1. and 1.2].
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Lemma 1.1.5. Let X be a given Banach space with dual X∗ and let u and g be

two functions belonging to L1([a, b] → X). Then, the following three conditions are

equivalent

1. u is a.e. equal to a primitive function of g,

u(t) = ξ +
∫ t

0
g(s) ds , ξ ∈ X, t ∈ [a, b] .

2. For each test function φ ∈ D((a, b)),

∫ b

a
u(s)φ′(s) ds = −

∫ b

a
g(s)φ(s) ds .

3. For each η ∈ X∗,
d

dt
〈u(t), η〉 = 〈g(t), η〉 ,

in the scalar distribution sense on (a, b).

If (1-3) are satisfied u, in particular, is a.e. equal to a continuous function from [a, b]

into X.

Lemma 1.1.6. Let V ⊂ H ⊂ V ∗ be a Gel’fand triple and let 〈f, g〉 be the pairing

between V and V ∗ that agrees with the inner product in H. If u ∈ L2([a, b]→ V ) and

ut ∈ L2([a, b]→ V ∗), then u ∈ C([a, b]→ H) and

d

dt
‖u(t)‖2

H = 2 Re〈ut(t), u(t)〉 a.e. t . (1.9)
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1.2 Cauchy Problem of the Nonlinear Schrödinger

Equation

In this chapter we consider the Cauchy problem for the nonlinear Schrödinger equation

(NLS)

iut(t, x) + ∆u(t, x)− |u(t, x)|(p−2)u(t, x) = 0 (1.10)

on a closed Riemannian d-manifoldM , d ≥ 1. The exponent p it is assumed to satisfy

p ≥ 2.

Let u(0, x) = φ(x) be the initial condition for (1.10). First, I will derive basic a

priori estimates. Assume there is a solution u(t, x) of (1.10) sufficiently regular to

perform the following operations. Multiply (1.10) by u(t, x) and integrate over M to

obtain ∫
M
iut(t, x)u(t, x)−∇u(t, x)∇u(t, x)− |u(t, x)|pdx = 0 . (1.11)

Take the conjugate of (1.10), and multiply by u(t, x) to obtain

∫
M
−iut(t, x)u(t, x)−∇u(t, x)∇u(t, x)− |u(t, x)|pdx = 0 . (1.12)

Finally, take the difference of the last two equations to obtain

d

dt

∫
M
|u(t, x)|2dx = 0 , (1.13)

which represents the conservation of mass for NLS:

‖u(t)‖2 = ‖u(0)‖2 , ∀t ≥ 0 . (1.14)
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Next, multiply (1.10) by ut(t, x) and integrate over M to obtain

∫
M
i|ut(t, x)|2 −∇u(t, x)ut,x(t, x)− |u(t, x)|p−2u(t, x)ut(t, x)dx = 0 . (1.15)

Take the conjugate of (1.10) and multiply by ut(t, x) to obtain

∫
M
−i|ut(t, x)|2 −∇u(t, x)ut,x(t, x)− |u(t, x)|p−2u(t, x)ut(t, x)dx = 0 . (1.16)

Sum the last two equations, and divide by two, to obtain

d

dt

∫
M

1
2 |∇u(t, x)|2 + 1

p
|u(t, x)|pdx = 0 , (1.17)

which represents the conservation of energy for NLS.

Definition 1.2.1 (Energy space and energy functional). The space V = H1∩Lp will

be called the energy space. The norm in V is

‖ξ‖V = max{‖∇ξ‖2, ‖ξ‖p} . (1.18)

The dual space of V is V ∗ = H−1 + Lq, with 1
p

+ 1
q

= 1, and norm

‖ξ‖V ∗ = inf
{
‖f‖H−1 + ‖g‖q

∣∣∣ f + g = ξ , f ∈ Ḣ−1 , g ∈ L
p

p−1

}
. (1.19)

The energy functional E : V → R is defined as

E[ξ] = 1
2‖∇ξ‖

2
2 + 1

p
‖ξ‖pp .

It follows from (1.17) that for sufficiently smooth solution u of (1.10) we have,

E[u(t)] = E[u(0)] , ∀t ≥ 0 . (1.20)
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Weak solutions we define next will satisfy the conservation of mass property (1.14),

but instead of the conservation of energy (1.20), we require the energy inequality,

E[u(t)] ≤ E[u(0)] , ∀t ≥ 0 . (1.21)

This would imply that u ∈ L∞([0, T ] → V ). Since the Laplacian maps Ḣ1 to

Ḣ−1, we see from (1.10) that ut ∈ L∞([0,∞]→ V ∗). Clearly, u ∈ L2([0, T ]→ V ). In

view of Lemma 1.1.6 we conclude that u ∈ C([0, T ]→ L2).

Pick a regular enough test function η(x). Multiply (1.10) by η(x), and integrate

over M using integration by parts when possible to obtain

∫
M
iut(t, x) η(x)−∇u(t, x)∇η(x)− |u(t, x)|p−2u(t, x) η(x)dx = 0 , (1.22)

and rewrite (1.22) as

(ut(t), η) = −i(∇u(t),∇η)− i
〈
|u(t)|p−2u(t), η

〉
, (1.23)

where the pairing 〈·, ·〉 is between the spaces Lq and Lp, with 1
p

+ 1
q

= 1. Given

t ∈ [0, T ], integrate from 0 to t to obtain

(u(t), η) = (u(0), η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (1.24)

For this equation to make sense, it is sufficient to have η ∈ V . We get to our first

definition of a weak solution on the interval [0, T ].

Definition 1.2.2. Given φ ∈ V and T > 0, a function u : [0, T ]→ V will be said to

be a weak solution of (1.10) with intial condition φ, if it satisfies the following:

1. The function u belongs to C([0, T ]→ L2) ∩ L∞([0, T ]→ V ).
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2. For any η ∈ V ,

(u(t), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (1.25)

3. The mass is conserved, i.e., for any t ∈ [0, T ], ‖u(t)‖2 = ‖φ‖2.

4. The energy inequality

E[u(t)] ≤ E[φ] , ∀t ≥ 0 ,

is satisfied.

1.2.1 Construction of Weak Solutions

We use Faedo-Galerkin method to construct weak solutions to (1.10). For any m > 0

we will define a new finite dimensional Cauchy problem associated with (1.10). The

solutions of this new problem will approximate the weak solution, and converge to it

in the appropriate limit.

The Faedo-Galerkin approximations are the functions of the form

um(t, x) =
m∑
n=0

umn (t)wn(x) , (1.26)

satisfying

d

dt
(um(t), wn) = −i (∇um(t),∇wn)− i

〈
|um(t)|p−2um(t), wn

〉
, (1.27)

for all n = 0, . . . ,m, with the initial conditions

(um(0), wn) = (φ,wn) . (1.28)
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Consider the map F : V → V ∗ defined by

F (ξ) = i∆ξ − |ξ|p−2 ξ ,

and define Fm(ξ) = Pm(F (Pm(ξ))). Then, (1.27) and (1.28) can be written as the

finite-dimensional Cauchy problem

d

dt
um(t) = Fm(um(t)) , um(0) = φm . (1.29)

Equation (1.29) is a system of m + 1 first-order ODEs. To see this more clearly

notice that

〈
|um(t, x)|p−2um(t, x), wn

〉
=

m∑
j1=0

m∑
j2=0
· · ·

m∑
jp−1=0

umj1
(t)umj2

(t) · · · umjp−2
(t)umjp−1

(t)Γnj1,j̄2,··· ,j̄p−2,jp−1
,

(1.30)

where

Γnj1,j̄2,··· ,j̄p−2,jp−1
=
(
wj1wj2 · · ·wjp−2wjp−1 , wn

)
,

a quantity that depends solely on the manifoldM and the familyW . Equation (1.30)

is just a polynomial in m+ 1 variables, hence continuous, and locally Lipschitz. For

n = 0, 1, . . . ,m, define the map Fm
n : Cm+1 → C, as

Fm
n (z0, z1, . . . , zm) =

(
Fm

(
m∑
k=0

zk wk

)
, wn

)
.

The system (1.29) is,

d

dt
umn (t) = Fm

n (um0 (t), um1 (t), . . . , umm(t)) , n = 0, 1, . . . ,m , (1.31)
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where, explicitly,

Fm
n (um1 (t), um1 (t), . . . , umm(t)) = iλnu

m
n (t)

− i
m∑
j1=1

m∑
j2=1
· · ·

m∑
jp−1=1

umj1
(t)umj2

(t) · · · umjp−2
(t)umjp−1

(t)Γnj1,j̄2,··· ,j̄p−2,jp−1
,

(1.32)

for n = 0, 1, . . . ,m. By Picard–Lindelöf theorem, there is a unique local in time um

satisfying the system (1.29). In order to extend this solution for all t ≥ 0, we show

that
m∑
n=0
|ûmn (t)|2 = ‖um(t)‖2

2

is a priori bounded.

Rewrite (1.29) in the form

i
d

dt
(um(t), wn) = (∇um(t),∇wn) +

〈
|um(t)|p−2um(t), wn

〉
, (1.33)

and

− i d
dt

(wn, um(t)) = (∇wn,∇um(t)) +
〈
wn, |um(t)|p−2um(t)

〉
, (1.34)

take the difference, multiply by 〈um(t), wn〉 and sum over n = 0, 1, . . . ,m to obtain

d

dt
‖um(t)‖2

2 = 0 . (1.35)

Hence, the Galerkin approximations satisfy the conservation of mass, i.e.,

‖um(t)‖2 = ‖φm‖2 , ∀t ≥ 0 , (1.36)

and

‖um(t)‖2 ≤ ‖φ‖2 , ∀t ≥ 0 . (1.37)
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This proves that the solution to (1.29) can be extended to a global in time solution.

Since um is of the form

um(t, x) =
m∑
n=0

ûmn (t)wn(x) ,

with ûmn (t) = (um(t), wn), then um(t, ·) is a C∞(M) function. Thus, the functions

∇um(t) and ∆um(t) exist in the classical sense. For n = 0, 1, . . . ,m, the following

integral equation is satisfied by the Galerkin approximations,

(um(t), wn) = (φm, wn)− i
∫ t

0
(∇um(s),∇wn) +

〈
|um(s)|p−2um(s), wn

〉
ds . (1.38)

Remark 1.2.1. For future reference, for m > 0, denote by Smt the map V → V such

that the path t 7→ Smt (a) is the unique solution of (1.29) starting at Pm(a).

In addition, sum (1.33) and (1.34), multiply by d
dt
〈um(t), wn〉 and sum over n =

0, 1, . . . ,m to obtain

1
2
d

dt
‖∇um(t)‖2

2 + 1
p

d

dt
‖um(t)‖pp = 0 . (1.39)

Hence, the Galerkin approximations satisfy the conservation of energy, i.e.,

E[um(t)] = E[φm] , ∀t ≥ 0 . (1.40)

Let us summarize the bounds on the approximate solutions um. For each m > 0

the initial condition of the system (1.27) satisfies

‖φm‖2 ≤ ‖φ‖2 , ‖∇φm‖2 ≤ ‖∇φ‖2 and ‖φm‖Lp ≤ Cp‖φ‖Lp , (1.41)

where Cp is the constant defined in Lemma 1.1.4. In turn, this means that the energy

of φm can be estimated as

E[φm] ≤ Cp
pE[φ] . (1.42)
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As a result of the conservation of mass and energy, together with (1.41) and (1.42),

we have the following:

• The family (um)m≥0 is uniformly bounded in L2, i.e., for any t > 0,

‖um(t)‖2 = ‖φm‖ ≤ ‖φ‖2 . (1.43)

• The family (∇um)m≥0 is uniformly bounded in L2, i.e., for any t > 0,

‖∇um(t)‖2 ≤
√

2E[um(t)] =
√

2E[φm] .p E[φ]
1
2 , (1.44)

with constant 2 1
2C

p

2
p .

• The family (um)m≥0 is uniformly bounded in Lp, i.e., for any t > 0,

‖um(t)‖p ≤
p

√
pE[um(t)] = p

√
pE[φ] .p E[φ]

1
p , (1.45)

with constant p
1
pCp.

The last two can be combined to show that the family (um)m≥0 is uniformly

bounded in V , i.e., for any t > 0,

‖um(t)‖V ≤ C
p

2
p exp(E[φ]/e) . (1.46)

The bounds described in (1.43), (1.44) and (1.45) give us a hint of what function

spaces to consider, in particular,

• the family of functions (um)m≥0 belongs to the space L∞([0,∞)→ L2), i.e.,

‖um‖L∞([0,∞)→L2) = ess sup
t≥0

‖um(t)‖2 ≤ ‖φ‖L2 . (1.47)
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• the family of functions (um)m≥0 belongs to the space L∞([0,∞)→ V ), i.e.,

‖um‖L∞([0,∞)→V ) = ess sup
t≥0

‖um(t)‖V ≤ C
p

2
p exp(E[φ]/e) . (1.48)

Limiting Argument For the limiting argument we use the space L1([0,∞)→ V ∗)

and its dual, the space L∞([0,∞) → V ). This setting allow us to use the Banach-

Alaoglu theorem, which helps to tame the nonlinearity.

Lemma 1.2.2. Given a bounded sequence um in L∞([0,∞)→ V ), we can extract a

subsequence umk and find u ∈ L∞([0,∞)→ V ) such that

(a) umk
?−⇀ u ∈ L∞([0,∞)→ V ).

(b) umk → u ∈ L2(MT ), for any T > 0, i.e., in L2
loc(M∞).

(c) umk(t, x)→ u(t, x) for a.e. (t, x) ∈M∞.

Proof. By means of the Banach-Alaoglu Theorem (see [6]) we can extract a subse-

quence umk and find u ∈ L∞([0,∞)→ V ) such that

umk ?−⇀ u

in L∞([0,∞)→ V ). Since V = Ḣ1 ∩ Lp, the weak-? convergence of umk means that

umk −⇀ u

in L2([0, T ] → H1), for any T > 0. Due to Lemma 1.1.3 we conclude that umk → u

strongly in the space L2(MT ), for any T > 0, i.e., the sequence (umk)k>0 satisfies (a)

and (b).

Let T = 1, from the strong convergence of umk → u in the space L2(MT ) we

can extract a subsequence that converges almost everywhere in MT . Extract further

subsequences with T = 2, 3, . . . and so on.
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Consider the subsequence in the diagonal, and recall it umk . For any MT with

T = 1, 2, . . . , the sequence (umk)k>0 converges almost everywhere inMT , i.e., for each

T there exists a null set mT ⊂MT , such that umk(t, x)→ u(t, x) for (t, x) ∈MT \mT .

The countable union of null-sets is also a null set, hence, the sequence (umk)k>0

satisfies (a), (b) and (c).

The limiting argument is summarized in the following.

Lemma 1.2.3. For any φ ∈ V there is a path u : [0,∞)→ V , such that

u ∈ L∞([0,∞)→ V ) ∩ C([0,∞)→ L2) ,

that satisfies

(u(t), v) = (φ, v)−i
∫ t

0
(∇u(s),∇v)+

〈
|u(s)|p−2u(s), v

〉
ds , ∀v ∈ V , ∀t ≥ 0 . (1.49)

Proof. Thanks to the bound described in (1.48) there is a subsequence umk and u ∈

L∞([0,∞)→ V ) satisfying (a), (b) and (c) of Lemma 1.2.2.

For T > 0, take any η ∈ L∞([0, T ]→ R), and wn ∈ W . Define

w(s, x) = η(s)wn(x) ,

a function in L1([0,∞)→ V ). Since umk → u a.e. inMT , we apply Egorov’s theorem.

For any ε > 0, there is a set mT ⊂ MT , such that, |mT | < ε and umk → u uniformly

on MT \mT . We have

∫
mT

|umk(s, x)|p−1|w(s, x)| dx ds ≤
(∫

mT

|umk(s, x)|p dx ds
) p−1

p
(∫

mT

|η(s)wn(x)|p dx ds
) 1
p

≤ T
p−1
p ‖umk‖p−1

L∞([0,∞)→V )

(∫
mT

|η(s)wn(x)|p dx ds
) 1
p

.
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Since η ∈ L∞([0, T ]→ R) and wn ∈ C∞(M),

∫
mT

|η(s)wn(x)|p dx ds→ 0 , as |mT | → 0 .

At the same time, ‖umk‖L∞([0,∞)→V ) is uniformly bounded, then,

∫
mT

|umk(s, x)|p−1|w(s, x)| dx ds→ 0 , as |mT | → 0 .

The function u enjoys the same limit. By the uniform convergence on MT \mT , we

have, as k →∞,

∫ ∞
0

∫
M
|umk(s, x)|p−2umk(s, x)w(s, x)ds dx→

∫ ∞
0

∫
M
|u(s, x)|p−2u(s, x)w(s, x)ds dx .

(1.50)

Consider now, ∫ ∞
0

∫
M
∇umk(t, x)∇w(t, x)dtdx , (1.51)

since umk
?−⇀ u ∈ L∞([0,∞)→ V ) we have ∇umk

?−⇀ ∇u ∈ L∞([0,∞)→ L2), hence

∫ ∞
0

∫
M
∇umk(t, x)∇w(t, x)dtdx→

∫ ∞
0

∫
M
∇u(t, x)∇w(t, x)dtdx . (1.52)

For t > 0, let η(s) = 1[0,t](s), the indicator function of the interval [0, t]. Fix

n > 0, with w(s, x) = 1[0,t](s)wn(x) we have

∫ t

0

〈
|umk(s)|p−2umk(s), wn

〉
ds→

∫ t

0

〈
|u(s)|p−2u(s), wn

〉
ds ,

and ∫ t

0
(∇umk(s),∇wn) ds→

∫ t

0
(∇u(s),∇wn) ds .
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For all mk > n, the function umk satisfies (1.38), i.e.

(umk(t), wn) = (φmk , wn)− i
∫ t

0
(∇umk(s),∇wn) +

〈
|umk(s)|p−2umk(s), wn

〉
ds . (1.53)

In the limit we obtain, for a.e. t ∈ [0, T ]

(u(t), wn) = (φ,wn)− i
∫ t

0
(∇u(s),∇wn) +

〈
|u(s)|p−2u(s), wn

〉
ds , (1.54)

where the right hand side is an absolutely continuous function, and the left hand side

is only defined almost everywhere in time because we use the convergence obtained

in (c) of Lemma 1.2.2.

We can improve (1.54), for any v ∈ V , let vm = Pmv, i.e.,

vm =
m∑
n=0

(v, wn)wn .

For any n, multiply (1.54) by (v, wn) and sum over n = 0, . . . ,m, to obtain, for

almost every t ≥ 0,

(u(t), vm) = (φ, vm)− i
∫ t

0
(∇u(s),∇vm) +

〈
|u(s)|p−2u(s), vm

〉
ds . (1.55)

Recall that vm → v, strongly in V , that includes vm → v in L2, Lp and ∇vm → ∇v

in L2, hence we can pass to the limit in (1.55) to obtain, for any v ∈ V ,

(u(t), v) = (φ, v)− i
∫ t

0
(∇u(s),∇v) +

〈
|u(s)|p−2u(s), v

〉
ds . (1.56)

In view of Lemma 1.1.5 the map t 7→ u(t) has a weak derivative with respect

to t, taking values in V ∗. Hence, we can apply Lemma 1.1.6 to conclude that u ∈

C([0,∞) → L2). Again, this just means that, for almost every t ∈ [0, T ], u is
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equal to a continuous function [0, T ]→ L2, nevertheless, we can always construct the

representative element that is continuous, and we will assume u is that one.

Conservation Laws We turn now to the study of the conservation laws satisfied

by the path constructed in Lemma 1.2.3. In particular, we are interested in the

conservation laws enjoyed by the Galerkin approximations, i.e., the conservation of

mass (1.36) and energy (1.40).

For any k > 0, the function umk satisfies the conservation of mass (1.36) and

energy (1.40). From the convergence obtained in (c) of Lemma 1.2.2 we have that,

for almost every t ≥ 0,

‖umk(t)− u(t)‖2 → 0 as k →∞ .

Since φmk → φ in L2, for almost every t ≥ 0, we have

‖umk(t)‖ = ‖φmk‖ → ‖u(t)‖2 = ‖φ‖ as k →∞ .

Finally, using the fact that u ∈ C([0,∞)→ L2) we have, for every t ≥ 0,

‖u(t)‖2 = ‖φ‖2 . (1.57)

Regarding the conservation of energy, we have that for n, thanks to (1.54), the

map t 7→ (umk(t), wn) is absolutely continuous, for all mk > n. Moreover, because of

the convergence in (c) of Lemma 1.2.2 we have (umk(t), wn) → (u(t), wn) for almost
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every t ≥ 0. Notice that for any mk > n,

|(umk(t+ ∆t)− umk(t), wn)| ≤
∫ t+∆t

t

∣∣∣(∇umk(s),∇wn) + 〈|umk(s)|p−2umk(s), wn〉
∣∣∣ds

≤ ‖wn‖V
∫ t+∆t

t
‖∇umk(s)‖2 + ‖umk(s)‖p−1

p ds

≤ ‖wn‖V
(
(2E[φ])

1
2 + (pE[φ])

p−1
p

)
∆t .

In particular, for fixed n, the family ((umk(t), wn))mk>n is equicontinuous. Together

with the continuity of t 7→ (u(t), wn), this ensures that the almost everywhere con-

vergence of

(umk(t), wn)→ (u(t), wn) ,

can be improved to convergence for all t ≥ 0.

For a fixed t, the family of functions umk(t) is bounded in the norm of V . Hence, on

a subsequence we have weak convergence, and thanks to the convergence (umk(t), wn)→

(u(t), wn) for any wn ∈ W , we know that the limit is u(t). Due to the weak lower

semi-continuity of the norm we have

‖u(t)‖p ≤ lim inf
k→∞

‖umk(t)‖p , (1.58)

and

‖∇u(t)‖2 ≤ lim inf
k→∞

‖∇umk(t)‖2 . (1.59)

As a result,

E[u(t)] ≤ lim inf
k→∞

E[φmk ] = E[φ] . (1.60)

The absence of strong convergence does not allow us to establish a full conservation

law, we replace it with the energy inequality.

Weak Continuity with Respect to V We still can improve the regularity of the

solutions, in particular we want to show that the solution constructed in the previous
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paragraphs is weakly continuous from [0, T ] to V , i.e., for any w ∈ V ∗, the map

t 7→ 〈u(t), w〉

is continuous. In what follows we will denote by Vw the space V endowed with the

weak topology.

In what follows we will use the space VR defined as,

Definition 1.2.3. For R > 0, define

VR = { ξ ∈ V | E[ξ] ≤ R } .

As a subset of V , VR sits inside a ball of radius CR = max{
√

2R, p
√
pR } . Moreover,

since VR is convex and closed in the strong topology of V , by Mazur’s Lemma, it is

closed in the weak topology of V .

The closed ball of radius CR, denoted by BCR ⊂ V , is compact in the weak

topology thanks to the Banach-Alaoglu theorem. Moreover, since V is separable, the

weak topology in BCR is metrizable (see [25, Theorem 2.6.23].) We will construct a

metric that induces the weak topology in VR as follows:

• Fix a sequence (hk)k≥0, dense in BV ∗ , the unit ball inside V ∗, such that (hk) ⊂ V

as well.

• Define, for any v, w ∈ VR,

dR(v, w) =
∞∑
k=0

2−k|(v − w, hk)| .

In this form, VR turns into a compact metric space, and the topology induced by

the metric is the weak topology innherited from V .
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Proposition 1.2.4. Given φ ∈ V , the path constructed in Lemma 1.2.3 is weakly

continuous with respect to V .

Proof. Let R > 0 be such that E[φ] < R. From the energy inequality we have that

u(t) remains in VR for all t ≥ 0. Moreover, u satisfies (1.56). In particular, for any

w ∈ V and ∆t we have

|(u(t+ ∆t)− u(t), w)| ≤
∫ t+∆t

t
|(∇u(s),∇w)|+

∣∣∣〈|u(s)|p−2u(s), w
〉∣∣∣ds (1.61)

let AR = ((2R) 1
2 + (pR)

p−1
p ) then

|(u(t+ ∆t)− u(t), w)| ≤ (‖w‖VAR) ∆t . (1.62)

Pick any ε > 0. We want to show that for sufficiently small ∆t we have

dR(u(t+ ∆t), u(t)) < ε ,

which means continuity with respect to the topology induced by dR which is the weak

topology in V .

Pick N such that CR2−(N−1) < ε
2 . Then

dR(u(t+ ∆t), u(t)) <
N∑
k=0

2−k∆t‖hk‖VAR + CR
∞∑

k=N+1
2−(k−1)

< ∆tAR
N∑
k=0

2−k‖hk‖V + 2−(N−1)CR .

(1.63)

Since N is now fixed, we can pick ∆t such that ∆tAR
∑N
k=0 2−k‖hk‖V < ε

2 to conclude

that

dR(u(t+ ∆t), u(t)) < ε (1.64)

for sufficiently small ∆t.
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We get to our first useful definition of weak solution of (1.10). For reasons that

will be clear in the following chapter we will use two different types of solutions.

Definition 1.2.4 (Weak solution with the energy inequality). For any φ ∈ V , a

function u : [0,∞)→ V will be called a weak solution of (1.10) satisfying the energy

inequality with the initial condition φ, if it satisfies the following:

1. The function u belongs to C([0,∞)→ L2) ∩ L∞([0,∞)→ V ).

2. The function u belongs to C([0,∞)→ Vw), i.e., u is weakly continuous in V .

3. For any η ∈ V and t ≥ 0,

(u(t), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (1.65)

4. The mass of u is conserved, i.e.,

‖u(t)‖2 = ‖φ‖2 ∀t ≥ 0 . (1.66)

5. The energy of u satisfies the following inequality, i.e.,

E[u(t)] ≤ E[φ] ∀t ≥ 0 . (1.67)

Definition 1.2.5 (Weak solution with bounded energy). Given R > 0, for any φ ∈

VR, a function u : [0,∞)→ VR will be called a weak solution of (1.10) with bounded

energy and initial condition φ, if it satisfies the following:

1. The function u belongs to C([0,∞)→ L2).

2. The function u belongs to C([0,∞)→ Vw).
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3. For any η ∈ V and t ≥ 0,

(u(t), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (1.68)

4. The mass of u is conserved, i.e.,

‖u(t)‖2 = ‖φ‖2 ∀t ≥ 0 . (1.69)

Notice that a weak solution that satisfies the energy inequality is also a weak

solution with bounded energy, but the opposite is not true.

Summarizing we obtain the following existence theorem:

Theorem 1.2.5. Given φ ∈ V , there exists at least one weak solution with the energy

inequality with the initial condition φ. If φ ∈ VR, there exists at least one weak solution

with the energy bounded by R with the initial condition φ.

In the case when p = 4, i.e., the cubic NLS the existence, uniqueness and continuity

of data has been extensively studied by J. Bourgain [5], J. Ginibre [14], and others,

a more extensive bibliography can be found in [26].

1.3 Set-Valued Maps of Weak Solutions

From now on we assume that d ≥ 3 and p > 2 is such that uniqueness of weak

solutions is not known. In this section we discuss the properties of the sets of weak

solutions. These results will be used in the study of statistical solutions and semiflow

selections.

Let Ω be the set of weakly continuous paths from [0,∞) to V , endowed with the

compact-open topology. Given R > 0, the set of paths in Ω taking values in VR is

denoted by ΩR and inherits the topology from Ω.
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Definition 1.3.1. For any a ∈ V , define S(a) ⊂ Ω as the set of all the weak solutions

of NLS with the energy inequality with the initial condition a.

Definition 1.3.2. Given R > 0, and a ∈ VR ⊂ ΩR, let SR(a) denote the set of all

weak solutions of NLS with energy bounded by R with the initial condition a.

Lemma 1.3.1. Let (un) be a sequence in Ω such that un → u ∈ Ω as n → ∞ in

the topology of Ω. If (un) is uniformly bounded in L∞([0,∞) → V ), then un
?−⇀ u

in L∞([0,∞) → V ), un → u in L2
loc([0,∞) → L2), and un(t) → u(t) strongly in L2.

Moreover, (un) admits a subsequence that converges almost everywhere in M∞.

Proof. Notice that the convergence in the compact-open topology of Ω means in

particular that for any t ≥ 0 the sequence un(t) converges weakly to u(t) as n→∞.

Since (un) is uniformly bounded in L∞([0,∞) → V ), there is a constant C such

that ‖un(t)‖V ≤ C.

Let ϕ be any element in L1([0,∞)→ V ∗). Consider the pairing 〈un(t), ϕ(t)〉, for

which we have

|〈un(t), ϕ(t)〉| ≤ C‖ϕ(t)‖V ∗ , a.e. t ∈ [0,∞) . (1.70)

In the other hand, since un(t) −⇀ u(t) for any t, we have

〈un(t), ϕ(t)〉 → 〈u(t), ϕ(t)〉 , a.e. t ∈ [0,∞) . (1.71)

Since the map t 7→ ‖ϕ(t)‖V ∗ is integrable on [0,∞), due to Lebesgue’s dominated

convergence theorem we have

∫ ∞
0
〈un(t), ϕ(t)〉dt→

∫ ∞
0
〈u(t), ϕ(t)〉dt as n→∞ . (1.72)

Hence, un ?−⇀ u in L∞([0,∞) → V ). Using Friedrichs’s Lemma 1.1.3 we can obtain

that un → u in L2
loc([0,∞)→ L2).
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For each t ≥ 0 we already have that un(t) −⇀ u(t) in V , using Rellich’s lemma

then implies un(t)→ u(t) in L2.

Finally, let T = 1, since un → u in L2(M1) we can extract a subsequence converg-

ing almost everywhere to u in M1. Extract further subsequences letting T = 2, 3, . . . .

The diagonal sequence then converges almost everywhere in M∞.

We can now show that both sets S(a) and SR(a) are compact in Ω.

Proposition 1.3.2. For any a ∈ V , the sets S(a) and SR(a) are compact subset of

Ω. Moreover, given any weakly compact set K ⊂ VR the set

SR(K) =
⋃
a∈K

SR(a)

is compact as well.

Proof. Consider first the case for S(a). Since any u ∈ S(a) satisfies the energy

inequality (1.67), the set S(a) is a subset of ΩR, with R = E[a]. Also, u satisfies

the integral equation (1.65), and the constants associated with the inequality (1.63)

depend only on E[a], hence, the set S(a) is equicontinuous. Since VR is a compact

metric space, and the set S(a) is equicontinuous, we can apply the Arzelà–Ascoli

Theorem. Hence, S(a) is relatively compact inside ΩR, thus in Ω.

It remains to show that S(a) is closed in the topology of Ω. Assume (un)n>0

is a sequence of paths in S(a) converging to u in the topology of Ω. By means of

Lemma 1.3.1 we have that un → u weakly-? in L∞([0,∞) → V ) and strongly in

L2
loc([0,∞)→ L2). For any t ≥ 0, un(t)→ u(t) weakly in V and strongly in L2, and

(un) admits a subsequence (unk) that converges almost everywhere in M∞. Thanks

to the almost everywhere convergence of (unk) we have the convergence described

in (1.50) and (1.52). Hence, in the limit as k →∞, the path u satisfies (1.65). Since,

for any t ≥ 0, un(t)→ u(t) strongly in L2, and weakly in V , the convergence of mass
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and the energy inequality are preserved in the limit. Hence, u is a weak solution with

the energy inequality starting at a, then S(a) is closed.

For SR(a) the proof is similar. Any element u ∈ SR(a) satisfies the integral

equation (1.68). Again, the constants associated with the inequality (1.63) depend

only on R, hence, the set SR(a) is equicontinuous. As before, SR(a) is relatively

compact inside ΩR, thus in Ω. Assume (un)n>0 is a sequence of paths in SR(a)

converging to u in the topology of Ω. By means of Lemma 1.3.1 we have that un →

u weakly-? in L∞([0,∞) → V ) and strongly in L2
loc([0,∞) → L2). For any t ≥

0, un(t) → u(t) weakly in VR and strongly in L2, and (un) admits a subsequence

(unk) that converges almost everywhere in M∞. Thanks to the almost everywhere

convergence of (unk) we have the convergence described in (1.50) and (1.52). Hence,

in the limit as k →∞, the path u satisfies (1.68). Since, for any t ≥ 0, un(t)→ u(t)

strongly in L2, and weakly in V , the convergence of mass and the energy bound are

preserved in the limit. Hence, u is a weak solution with the energy bounded by R

starting at a, then SR(a) is closed.

To prove the second statement, notice that SR(K) is again equicontinuous. The

constants of (1.63) depend only on R, thus SR(K) is relatively compact. If un → u in

Ω, then un(0) −⇀ u(0) weakly in V , but this does not affect the limit to the integral

equation (1.68).



Chapter 2

Selection with Semigroup Property

Let X be a set, and let Ω be the space of all one-sided infinite paths in X, i.e., the

maps w : [0,+∞) → X. Let S = (S(a))a∈X be a family of subsets of Ω such that

each S(a) is a subset of Ωa = {w ∈ Ω : w(0) = a}. Think of S(a) as of Kneser’s

integral funnel, the set of all possible solutions of some differential equation with

the same initial condition a at time t = 0. A selection of the family S is a map

u : [0,+∞) × X → X such that u(·, a) ∈ S(a) for every a ∈ X (a selection picks a

solution for every initial condition). We say that the selection u has the semigroup

property, or that u is a semiflow selection, if

u(t2, u(t1, a)) = u(t2 + t1, a), ∀t1, t2 ≥ 0 ∀a ∈ X .

The main result in this chapter is Theorem 2.2.2. This theorem guarantees the

existence of measurable selections with the semigroup property. This is a new selec-

tion theorem for set-valued maps. The theorem is used later to obtain measurable

semiflows for the NLS.

30
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2.1 Notation and Basic Concepts

2.1.1 Space of Continuous Paths

Let X be a Polish space, i.e., a complete separable metrizable space. Endow X with a

metric ρ. Then, (X, ρ) is a complete separable metric space. The space of continuous

paths in X, i.e., continuous maps from [0,∞) to X, is denoted by Ω. We endow Ω

with a metric. Define the following family of pseudometrics:

dT (u, v) = sup
t∈ [0,T ]

ρ(u(t), v(t)) , T > 0 . (2.1)

The metric on Ω is then

d(u, v) =
∞∑
k=0

2−k dk(u, v)
1 + dk(u, v) . (2.2)

This metric induces the compact-open topology. With this metric the space Ω is

again a complete separable metric space, see [19, Example A.10]. For any a ∈ X, the

set of paths in Ω starting at a is denoted by Ωa.

The Borel σ-algebra generated by the topology of X is denoted by B and the Borel

σ-algebra of Ω is denoted by F .

For elements in the space Ω we define the following operations of splicing and

shifting of paths.

Definition 2.1.1 (Splicing of paths). Given a path w ∈ Ω, a time t ≥ 0, and v ∈ Ω

with v(0) = w(t) define w Ct v as

(w Ct v)(s) =


w(s) s < t

v(s− t) s ≥ t

∀s ≥ 0 (2.3)

Notice that w Ct v ∈ Ω.
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Definition 2.1.2. For t ≥ 0, denote the usual shift on paths by θt : Ω→ Ω, defined

as

θt(w) = w(t+ ·) (2.4)

2.1.2 Set-valued Maps and Hyperspaces

We give now some basic facts on set-valued maps and their properties. In what follows

(A,A) is a measurable space, i.e., A is a set, and A is a σ-algebra of subsets of A.

Definition 2.1.3 (Hyperspace). For a Polish space X, the set of all of its non-empty

compact subsets is called the hyperspace of all of its compact subsets, and is denoted

by Hk(X). If X is also a vector space, or a subset of a vector space, the hyperspace

of all of its compact and convex subsets is denoted by Hck(X).

In cases where we don’t need to specify which one we are using we just refer to

a hyperspace as to a set of subsets of the space in question, in this case X, and we

denote it by H(X).

Given a subset K ⊂ X the following two sets of subsets are of great importance:

K+ = {C ∈ H(X) |C ⊂ K } , (2.5)

and

K− = {C ∈ H(X) |C ∩K 6= ∅ } . (2.6)

Definition 2.1.4 (Vietoris topology). The Vietoris topology on H(X) is generated

by all the sets of the form A+ and A− with A ⊂ X open.

One of the usual metrics defined on set of subsets is the Hausdorff metric. This

is a standard construction, see [18, Definition 1.1.].
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Definition 2.1.5 (Hausdorff metric). If (X, ρ) is a metric space, the Hausdorff metric

is defined as follows. For any A,C ⊂ X, let

h∗(A,C) = sup
a∈A

ρ(a, C) ,

and

h∗(C,A) = sup
c∈C

ρ(c, A) .

Finally, the metric is

h(A,C) = max{h∗(A,C) , h∗(C,A)} .

The following is an important result concerning Hk(X). See Chapter 1: Proposi-

tion 1.6, Theorem 1.30 and Corollary 1.26 in [18]

Proposition 2.1.1. If (X, ρ) is a complete separable metric space, then, the Haus-

dorff metric topology and the Vietoris topology coincide, and (Hk(X), h) is a complete

separable metric space.

The Borel σ-algebra generated by these topologies allow us to study measurable

set-valued maps. The Borel σ-algebra generated by the Vietoris (or Hausdorff) topol-

ogy on Hk(X) is denoted by N .

In what follows, we consider set-valued maps of the form F : a 7→ F (a) ⊂ X,

where F (a) is compact (and convex) in X. It is convenient to view such maps as

single-valued with values in the hyperspace Hk(X) (resp. Hck(X)).

In the hyperspace Hk(X), the definition of a measurable map reduces to the

following, see Chapter 2: Proposition 1.10 in [18].
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Definition 2.1.6 (Measurable set-valued map). Amap F from (A,A) to (Hk(X),N ),

i.e., F : A→ Hk(X), is called measurable if

{ a ∈ A |F (a) ∩ C 6= ∅ } ∈ A , ∀closed C ⊂ X .

Definition 2.1.7 (Selections). Given a set-valued map F : a 7→ F (a), a selection of

F is a single-valued function f : A→ X such that

f(a) ∈ F (a) ∀a ∈ A . (2.7)

If such a function exists we say that F admits a selection.

One of the most important selection theorems is due to K. Kuratowski and C. Ryll-

Nardzewski [22]. We restrict ourselves to the hyperspace Hk(X), but the theorem

also applies in the case of the hyperspace of closed sets.

Theorem 2.1.2. If (A,A) is a measurable space, and if X a Polish space, any mea-

surable set-valued map F : A→ Hk(X) admits a measurable selection.

In the proof of our selection theorem, we need certain construction related to

maximizers of continuous functions.

Definition 2.1.8 (Set of maximizers). For a compact set K and a real-valued con-

tinuous function ξ on K, denote by Vξ[K] the set

Vξ[K] =
{
α ∈ K

∣∣∣∣ ξ(α) = max
β∈K

ξ(β)
}
. (2.8)

We will refer to Vξ[K] as the set of maximizers. It is clear that Vξ[K] is a compact

set.
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Given a set-valued map F : A → Hk(X) and a continuous function ξ on X,

consider a new set-valued map

a 7→ Vξ[F (a)].

Abusing notation, we will denote this map by Vξ[F ].

The following is an useful result, see Parthasarathy [27, Chapter 4, Lemma 4.3]

Lemma 2.1.3. Assume X is compact. Given a continuous function ξ on X, if the

set-valued map F : A→ Hk(X) is measurable then Vξ[F ] is also measurable.

Recall the definition of upper semi-continuous set-valued functions, see [18, Re-

mark 2.4].

Definition 2.1.9. Let F be a set-valued mapX → H(Y ). F is upper semi-continuous

(u.s.c.) at a ∈ X if for every neighborhood NY of F (a) ⊂ Y , there exists a neighbor-

hood NX of a such that

F (NX) =
⋃

x∈NX
F (x) ⊂ NY .

F is u.s.c. if it is u.s.c. at every point a ∈ X.

The following is an important result concerning u.s.c functions, see [18, Corol-

lary 2.20]

Proposition 2.1.4. Assume X and Y are complete separable metric spaces. If F :

X → Hk(Y ) is u.s.c. and K ⊂ X is compact, then

F (K) =
⋃
a∈K

F (a)

is compact in Y .

As a consequence, we have.

Corollary. Assume X and Y are complete separable metric spaces equipped with their

Borel σ-algebras. Let F : X → Hk(Y ) be u.s.c. Then, F is measurable.
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Proof. For any subset C ⊂ Y , closed in the topology of Y , let

Ĉ = { a ∈ X |F (a) ∩ C 6= ∅ } .

To show that F is measurable it is enough to show that Ĉ is a measurable set.

We will show that Ĉ is closed in the topology of X.

Assume (an) is a sequence in Ĉ, and an → a as n → ∞ in X. For each n we

have F (an) ∩ C 6= ∅, hence, we can pick yn ∈ F (an) ∩ C for each n. Notice that the

set {a} ∪ (an) is a compact set in X, hence F ({a} ∪ (an)) is a compact subset of Y .

Since (yn) is a sequence in F ({a} ∪ (an)), we can extract a convergent subsequence,

hence, there is y ∈ Y such that ynk → y in the topology of Y as k → ∞. Now, for

the subsequence ynk we have, ank → a while ynk ∈ F (ank) and ynk → y. Since F is

u.s.c. we conclude that y ∈ F (a). Hence, the set Ĉ is closed.

2.2 Selection of Semiflows

Let X be a compact metric space. Consider a set-valued map C : X → Hk(Ω). The

following properties encode certain dynamical structure that will be exploited later.

Definition 2.2.1. For a set-valued map C : X → Hk(Ω), consider the following

properties:

S1 For any a the set C(a) is a compact subset of Ωa.

S2 The map C is measurable, i.e., for any closed setK ∈ Ω the set { a ∈ X | C(a) ∩K 6= ∅ }

is a Borel set in X.

S3 The map C is compatible with the shift operator, i.e.,

w ∈ C(a) =⇒ θt(w) ∈ C(w(t)) , ∀t ≥ 0 ,∀a ∈ X . (2.9)
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S4 The map C is compatible with the splicing of paths i.e.,

w ∈ C(a) , v ∈ C(w(t)) =⇒ w Ct v ∈ C(a) , ∀t ≥ 0 ,∀a ∈ X . (2.10)

A selection of the map C is a map u from X to Ω, that maps a to a path u(a)

starting at x. This path is described by t 7→ u(a)(t) = u(t, a) (notice the change of

order in the variables, we do this to keep some consistency with other sections of this

thesis.)

Before stating the main theorem in this section, we present first an useful lemma.

Lemma 2.2.1. Given a set-valued map C : X → Hk(Ω), a number λ > 0 and a

function ϕ ∈ Cb(X), define

ζ(w) =
∫ ∞

0
e−λsϕ(w(s))ds . (2.11)

If C satisfies properties S1-S4, then the set-valued map Vζ [C] satisfies the proper-

ties S1-S4.

Proof. That properties S1-S2 are satisfied is the result of Lemma 2.1.3 and the fact

that the set of maximizers of a continuous function on a compact set is compact as

well.

To establish S3, pick a path w ∈ Vζ [C(a)]. We need to show that θt(w) is a

maximizer in C(w(t)) for any t ≥ 0. Let v be any path in C(w(t)). Then, we know

that the spliced path w Ct v is in C(a). Since w is a maximizer of ζ in C(a), then

ζ(w) ≥ ζ(w Ct v), which implies

∫ ∞
t

e−λsϕ(w(s))ds ≥
∫ ∞
t

e−λsϕ(v(s− t))ds = e−λt
∫ ∞

0
e−λsϕ(v(s))ds = e−λtζ(v) .

Since

ζ(θt(w)) =
∫ ∞

0
e−λsϕ(w(t+ s))ds = e−λt

∫ ∞
t

e−λsϕ(w(s))ds ,
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we have

ζ(θt(w)) ≥ ζ(v) .

This is true for all v ∈ C(w(t)). Hence, θt(w) is a maximizer of ζ in C(w(t)).

It remains to check property S4 for Vζ [C]. Let w be a maximizer in C(a) and let

v be a maximizer in C(w(t)). Consider the spliced path w Ct v, then

ζ(w Ct v) =
∫ t

0
e−λsϕ(w(s))ds+

∫ ∞
t

e−λsϕ(v(s− t))ds

=
∫ t

0
eλsϕ(w(s))ds+ e−λtζ(v)

=
∫ t

0
eλsϕ(w(s))ds+ e−λtζ(θt(w))

= ζ(w) .

Since w is assumed to be a maximizer of ζ in C(a), the path w Ct v must be a

maximizer as well. Note that ζ(v) = ζ(θt(w)) because θt(w) is a maximizer as was

shown above.

The main result in this chapter is the existence of a selection with the semigroup

property, i.e.,

u(t+ s, a) = u(t, u(s, a)) , u(0, a) = a , ∀a ∈ X , ∀t, s ≥ 0 . (2.12)

Theorem 2.2.2. Given a set-valued map C taking values in subsets of Ω, if C satisfies

properties S1-4, then, C admits a selection with the semigroup property (2.12)

Proof. Fix a dense and countable subset Λ of (0,∞), and fix a countable family of

separating functions Φ ⊂ Cb(X). Consider the Cartesian product Λ × Φ, which is

a countable set, and fix an enumeration (λn, ϕn)n>0 of Λ × Φ. Associate with each

(λn, ϕn) the following continuous function on Ω

ζn(w) =
∫ ∞

0
e−λnsϕ(w(s))ds . (2.13)
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Define recursively C0 = C, and Cn+1 = Vζn+1 [Cn]. Thanks to Lemma 2.2.1 each

set-valued map Cn satisfies properties S1-S4.

For each a ∈ X, the sequence of compact sets (Cn(a))n≥0 is monotone decreasing,

hence the intersection is not empty, we denote it by C∞(a),

C∞(a) =
⋂
n≥0
Cn(a) .

By theorem 8.4 in [1], the set-valued map C∞ is measurable.

Take any two elements w1, w2 ∈ C∞(a). Since both belong to each Cn+1(a), both

maximize the functions ζn over the set Cn(a), hence

ζn(w1) = ζn(w2) , ∀n ≥ 0 .

Since the sequence (λn, ϕn)n>0 is an enumeration of Λ× Φ, then

∫ ∞
0

e−λsϕ(w1(s))ds =
∫ ∞

0
e−λsϕ(w2(s))ds , ∀λ ∈ Λ ,∀ϕ ∈ Φ . (2.14)

From the uniqueness of the Laplace transform and the continuity of w1 and w2 we

have

ϕ(w1(s)) = ϕ(w2(s)) , ∀ϕ ∈ Φ ,∀s ≥ 0 . (2.15)

Finally, since the family of functions Φ is separating, (2.15) implies that

w1(s) = w2(s) , ∀s ≥ 0 .

Then w1 = w2 and the set C∞(a) is a singleton. This is true for any a ∈ X.

The map C∞ satisfies the properties S1-S4. Its only possible selection is measur-

able by the Kuratowski and Ryll-Nardzewski selection Theorem 2.1.2. Denote this
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selection by u(·, a). By property S1,

θt[u(·, a)] ∈ C∞u(t,a) , (2.16)

and the only element in C∞u(t,a) is the path u(·, u(t, a)), hence

u(t+ s, a) = u(s, u(t, a)) , u(0, a) = a , ∀t, s ∈≥ 0 ,∀a ∈ X . (2.17)

I refer to [7] for a variation of Theorem 2.2.2 on more general spaces. A similar

result can be obtained for non-autonomous case, see [8].

2.3 Application of the Semigroup Selection to NLS

We are going to apply the Theorem 2.2.2 to the set-valued map of weak solutions of

NLS defined in Chapter 1. Fix R > 0, the set VR = { ξ ∈ V |E[ξ] ≤ R } is a compact

metric space space with the relative weak topology coming from V . VR with weak

topology will play the role of X. ΩR is the space of continuous paths in VR, with the

compact-open topology. The space Hk(ΩR) is the hyperspace of all compact subsets

of ΩR.

In Section 1.3 we defined the set-valued map SR : VR → Hk(ΩR), which maps

initial conditions a ∈ VR to the set of all weak solutions of NLS with energy bounded

by R starting at a. By Proposition 1.3.2 the map SR takes values in Hk(ΩR).

Proposition 2.3.1. The map SR is u.s.c.

Proof. Since SR takes values in compact subsets of ΩR, and, for any U ⊂ VR the set

SR(U) is relatively compact (see the proof of Proposition 1.3.2), by Proposition 2.23

in [18], it is enough to show that, if an −⇀ a, and un ∈ SR(an) with un → u in ΩR

then u ∈ SR(a).
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By Lemma 1.3.1 we have that un → u weak-? in L∞([0,∞)→ V ) and strongly in

L2
loc([0,∞) → L2), and, for any t ≥ 0, un(t) → u(t) weakly in V and strongly in L2.

Then, there is a subsequence (unk) that converges almost everywhere inM∞. Thanks

to the almost everywhere convergence of (unk) we have the convergence described in

(1.50) and (1.52), moreover we have that an −⇀ a. Hence, in the limit as k →∞, the

path u satisfies (1.49).

Since un(t) → u(t) strongly in L2 and weakly in V , the convergence of mass is

preserved in the limit, and, for any t ≥ 0, we have that E[u(t)] ≤ lim infn→∞E[un(t)],

hence E[u(t)] ≤ R, hence un(t) ∈ VR. Therefore, u is a weak solution with energy

bounded by R starting at a. Thus, SR is u.s.c.

Proposition 2.3.2. The set-valued map SR is measurable.

Proof. Follows from Corollary 2.1.2.

To apply our selection theorem we need to check all the properties S1-S4. So far

we have properties S1,S2. Let us show first that the map SR has the property S3.

Lemma 2.3.3. If u ∈ SR(a), then θt(u) ∈ SR(u(t)).

Proof. The path u satisfies

(u(t+ r), η) = (φ, η)− i
∫ t+r

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (2.18)

Then,

(u(t+ r), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds

− i
∫ t+r

t
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds .

(2.19)

Since

(u(t), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds , (2.20)
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and u(t+ r) = (θtu)(r), we have

((θtu)(r), η) = (u(t), η)− i
∫ r

0
(∇(θtu)(s),∇η) +

〈
|(θtu)(s)|p−2(θtu)(s), η

〉
ds . (2.21)

Thus, θtu satisfies the integral equality (1.68) with the initial condition u(t).

The path u preserves the mass of a, hence θtu preserves the mass as well. Finally,

the energy of θtu is automatically bounded as well by R. Hence, θtu is a weak

solution of (1.10) with energy bounded by R with the initial condition u(t), thus

θtu ∈ SR(u(t)).

Let us show that SR has the property S4.

Lemma 2.3.4. For any a ∈ VR, if u ∈ SR(a) and v ∈ SR(u(t)), then, uCt v ∈ SR(a).

Proof. Both u and v satisfies the integral equation (1.68). Set w = uCt v.

For r < t, the path w agrees with u, hence

(w(r), η) = (φ, η)− i
∫ r

0
(∇w(s),∇η) +

〈
|w(s)|p−2w(s), η

〉
ds . (2.22)

The path u satisfies

(u(t), η) = (φ, η)− i
∫ t

0
(∇u(s),∇η) +

〈
|u(s)|p−2u(s), η

〉
ds . (2.23)

For r > t we have

(v(r − t), η) = (u(t), η)− i
∫ r−t

0
(∇v(s),∇η) +

〈
|v(s)|p−2v(s), η

〉
ds . (2.24)

After a change of variable we have

(w(r), η) = (u(t), η)− i
∫ r

t
(∇w(s),∇η) +

〈
|w(s)|p−2w(s), η

〉
ds , (2.25)
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Replacing (u(t), η) with (2.23) we get

(w(r), η) = (φ, η)− i
∫ t

0
(∇w(s),∇η) +

〈
|w(s)|p−2w(s), η

〉
ds

− i
∫ r

t
(∇w(s),∇η) +

〈
|w(s)|p−2w(s), η

〉
ds .

(2.26)

Finally,

(w(r), η) = (φ, η)− i
∫ r

0
(∇w(s),∇η) +

〈
|w(s)|p−2w(s), η

〉
ds . (2.27)

Hence, w satisfies (1.68)

Since u and v take values in VR, then, the path w takes values in VR. The path w

is continuous, both in L2 and weakly in VR. Hence w ∈ SR(a).

We can now apply the selection theorem.

Theorem 2.3.5. For fixed R > 0, there is a Caratheodory map u : VR× [0,∞)→ VR,

measurable in the first variable and continuous in the second, such that, for any

a ∈ VR, the path t 7→ u(t, a) is a weak solution of (1.10), of type II, with initial

condition a, and u satisfies

u(t+ s, a) = u(s, u(t, a)) , ∀t, s ∈ [0,∞) ,∀a ∈ VR . (2.28)

Proof. Apply Theorem 2.2.2 to the set-valued map a 7→ SR(a).



Chapter 3

Hopf Equation

In the seminal work “Statistical hydromechanics and functional calculus”

[16], E. Hopf described a general framework to study the evolution of probability

distributions of initial conditions for the Navier-Stokes equations.

When the existence, uniqueness and continuous dependence on the initial condi-

tions for an evolution equation can be obtained, if a probability distribution on the

space of initial conditions is given, one can study how this distribution evolves ac-

cording to the equation. E. Hopf proposed to study the evolution of the characteristic

functional of the probabilities and described a general equation in terms of variations

satisfied by such functionals. This equation is known as the Hopf equation.

The first rigorous study of the Hopf equation for Navier-Stokes in two dimensions

was given by O.A. Ladyzhenskaya and A.M. Vershik [24].

3.1 Abstract Derivation of Hopf Equation

Consider an abstract Cauchy problem

u̇(t, a) = F (u(t, a)) , u(0, a) = a , (3.1)

44
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where a belongs to a separable real Hilbert space X, and F maps X into itself. We

think of (3.1) as a deterministic description of some physical process. Suppose it is

known that (3.1) has a solution t 7→ u(t, a), for every a ∈ X, and that the map

St : a 7→ u(t, a) is sufficiently nice. If the initial conditions are distributed randomly

according to a probability distribution µ0, then the push-forward

µt(A) = µ0(S−1
t (A))

will describe the distribution of the physical system at time t. Hopf proposed to look

at the corresponding characteristic functionals, obtained as the Fourier transform,

Φ(t, w) =
∫
X
ei(a,w)µt(da) =

∫
X
ei(u(t,a),w)µ0(da) . (3.2)

The characteristic functional Φ satisfies the equation

∂tΦ(t, w) =
∫
X
ei(u(t,a),w)i(u̇(t, a), w)µ0(da) (3.3)

which reduces to

∂tΦ(t, w) = i
∫
X
ei(a,w)(F (a), w)µt(da) . (3.4)

If X is a complex Hilbert space the characteristic functional is defined as

Φ(t, w) =
∫
X
eiRe((a,w))µt(da) ,

and the equation is

∂tΦ(t, w) = i
∫
X
eiRe((a,w)) Re ((F (a), w))µt(da) . (3.5)



46

Definition 3.1.1. A family of measures µt is said to be a Hopf statistical solution

of (3.1) if its characteristic functional satisfies (3.4) (resp. (3.5)).

In some cases equation (3.4) can be rewritten in terms of Φ alone. If X is finite

dimensional, we interpret (3.4) as a partial differential equation. A simple example

of this case follows.

Example 3.1.1. Let X = R and consider the Cauchy problem

u̇(t) = −u(t) , u(0) = u0 .

The solution is u(t) = u0e
−t. Let St be the flow defined as St(a) = ae−t. Let µ0 be a

probability measure on the measurable space (R,BR). For any t > 0, define µt as the

push-forward of µ0 through the map St i.e.,

µt(A) = µ0(St−1(A)) .

The characteristic functional is

Φ(t, w) =
∫
R
ei awµt(da) =

∫
R
ei ae

−twµ0(da) . (3.6)

Take a derivative with respect to t to obtain

∂tΦ(t, w) = −i
∫
R
ei awae−twµ0(da) = −iw

∫
R
ei awaµt(da) , (3.7)

and with respect to w,

∂wΦ(t, w) = i
∫
R
ei awae−tµ0(da) = i

∫
R
ei awaµt(da) . (3.8)
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Hence, the Hopf equation is

∂tΦ(t, w) + w∂wΦ(t, w) = 0 , Φ(0, ·) = Φ0 . (3.9)

Equation (3.9) is a linear first order differential equation with the solution

Φ(t, w) = Φ0(we−t) . (3.10)

If X is a infinite dimensional space, the Hopf equation can be formally interpreted

as an equation in variations. Consider the following example.

Example 3.1.2. Let L2 be the space of square integrable functions on the circle, i.e.,

L2 = L2(T). Consider the Burgers’ equation

∂tu(t, x) = ν∆u(t, x)− 1
2∂x(u(t, x)2) (= F (u)) , u(0, ·) = u0 ∈ L2 . (3.11)

A careful analysis of such an equation was given by Hopf in [17]. Let St(a) = u(t, a)

be the flow of Burgers’ equation starting at the initial condition a ∈ L2.

Let µ0 be a probability measure on the space L2. The characteristic functional is

Φ(t, w) =
∫
L2
ei (a,w)µt(da) =

∫
L2
ei (u(t,a),w)µ0(da) , (3.12)

where w ∈ L2, and (·, ·) is the inner product in L2. Using the Fourier transform of

w and u(t, a), we can write

Φ(t, w) =
∫
L2
ei
∑

n∈Z
anwnµt(da) =

∫
L2
ei
∑

n∈Z
un(t,a)wnµ0(da) , (3.13)

where

wm(t) = 1
2π

∫ 2π

0
w(x)e−imxdx . (3.14)
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The derivative of Φ with respect to t is

∂tΦ(t, w) = i
∫
L2
ei
∑

n∈Z
un(t,a)wn

∑
n∈Z

u̇n(t, a)wnµ0(da)

= i
∫
L2
ei (a,w)(F (a), w)µt(da) .

(3.15)

Since F (a) = ν∆a− 1
2∂xa

2, we can compute (F (a), w) as

(F (a), w) =
∑
n∈Z
−νn2unwn −

i

2
∑
n∈Z

nwn
∑

j+k=n
ujuk . (3.16)

Which means

∂tΦ(t, w) =− iν
∑
n∈Z

n2wn

∫
L2
ei (u(t,a),w)un(t, a)µ0(da)

+ 1
2
∑
n∈Z

nwn
∑

n=j+k

∫
L2
ei (u(t,a),w)uj(t, a)uk(t, a)µ0(da) ,

(3.17)

hence,

∂tΦ(t, w) =− iν
∑
n∈Z

n2wn

∫
L2
ei (a,w)anµt(da)

+ 1
2
∑
n∈Z

nwn
∑

n=j+k

∫
L2
ei (a,w)ajakµt(da) .

(3.18)

The derivative of Φ with respect to wn is

∂wnΦ(t, w) = i
∫
L2
ei (a,w)anµt(da) , (3.19)

and the second derivative of Φ with respect to wj and wk is

∂wj ,wkΦ(t, w) = −
∫
L2
ei (a,w)ajakµt(da) . (3.20)
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We can now write the Hopf equation as

∂tΦ(t, w) = −ν
∑
n∈Z

n2wn∂wnΦ(t, w)− 1
2
∑
n∈Z

nwn
∑

n=j+k
∂wj ,wkΦ(t, w) . (3.21)

We interpret this equation as a variational equation written in “Fourier coordinates”.A

more rigorous analysis is necessary to answer the following:

• Can we define the derivatives ∂wnΦ and ∂wj ,wkΦ?

• Do the series in the equation (3.21) converge?

Hopf himself has written a similar equation for the Navier-Stokes equations in

[16]. A rigorous analysis of that equation in two dimensions is given by Vershik and

Ladyzhenskaya in [24].

The Hopf equations in Φ alone can be obtained for partial differential equations

with algebraic nonlinearities. In those cases the equations are linear PDE’s on infinite

dimensional domains.

The Hopf equation by itself is worth being studied in the usual sense of existence

and uniqueness, but this seems to be a difficult task.

It has been noticed by C. Foias, and G. Prodi [12], Foias, [11], Vishik and Komech

[34] and Vishik and Fursikov [32] that the Hopf equation in the form (3.4) is much

easier to analyze. In addition, one can prove the existence of solutions to (3.4) without

uniqueness in the underlying equation (3.1). Moreover, the integral version of (3.4)

Φ(t, w)− Φ(0, w) = i
∫ t

0

∫
X
ei (a,w)(F (a), w)µs(da)ds , (3.22)

is easier to establish.

We are going to construct Hopf statistical solutions to NLS. The Banach space

V = Ḣ1 ∩ Lp as defined in Chapter 1 is reflexive and separable. In what follows we

work with regular probability measures in the measurable space (V,B), where B is
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the Borel σ-algebra generated by the weak topology of V . Note that, at the same

time, B is the Borel σ-algebra generated by the strong topology. See Appendix A for

some of the basic results.

Definition 3.1.2. Given a regular probability measure µ0 on (V,B), a family of

regular probability measures (µt)t≥0 on (V,B) is a Hopf statistical solution with the

initial condition µ0 for NLS, if it satisfies the following:

1. For any v ∈ V ,

Φ(t, v)− Φ(0, v) = i
∫ t

0

∫
V
eiRe((a,v)) Im

(
(∇a,∇v) +

〈
|a|p−2a, v

〉)
µs(da)ds ,

(3.23)

2. For any v1, v2 ∈ V ,

|Φ(t, v1)− Φ(t, v2)| . ‖v1 − v2‖V ∗ . (3.24)

3. For any t ≥ 0, ∫
V
E[a]µt(da) ≤

∫
V
E[a]µ(da) (3.25)

We proved the following existence result.

Theorem 3.1.1. Let µ0 be a regular probability measure on (V,B). If µ0 has finite

mean energy, i.e., ∫
V

E[a]µ0(da) <∞ . (3.26)

Then, there exists a Hopf statistical solution (µt)t≥0 for the NLS equation with initial

condition µ0.
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3.2 Proof of Theorem 3.1.1

We first prove the existence of a Hopf statistical solution for probability measures

supported on VR for some R > 0. Recall that VR is a compact metric space when

considered as a subspace of V with the inherited weak topology. We assume the

measure µ0 has finite mean energy, i.e.,

ME =
∫
V
E[a]µ0(da) <∞ .

For any m > 0, let µm0 be the push-forward of µ0 through the map Pm, i.e.,

µm0 (A) = µ0({ a ∈ V |Pm(a) ∈ A }) , ∀A ∈ B .

Thanks to (1.42), Pm maps VR into VR′ , with R′ = RCp
p , hence, for any m > 0, the

measure µm0 is supported in VR′ . Moreover, µm0 −⇀ µ0 in the topology associated with

strongly continuous functions, i.e.,

∫
V
f(a)µm0 (da) m→∞−−−→

∫
V
f(a)µ0(da) , ∀f ∈ Cb(V ) . (3.27)

For any t ≥ 0 and m > 0, let µmt be the push-forward of µm0 through the map Smt

(see Remark 1.2.1), i.e.,

µmt (A) = µm0 ({ a ∈ Vw |Smt (a) ∈ A }) , ∀A ∈ B .

The finite-dimensional flow Smt preserves the energy, hence

∫
V
E[a]µmt (da) =

∫
V
E[a]µm0 (da) .
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For any m > 0, the characteristic functional of the family (µmt )t≥0 is

Φm(t, v) =
∫
V
ei Re(〈v,a〉) µmt (da) , ∀t ≥ 0 ,∀v ∈ V ∗ . (3.28)

Since µmt is carried by V m, and 〈v, am〉 = 〈vm, am〉, we have

Φm(t, v) =
∫
V
ei Re(〈vm,am〉) µmt (da) , ∀t ≥ 0 , ∀v ∈ V ∗ . (3.29)

The flow (t, a) 7→ Smt (a) satisfies (1.32), hence

∂tΦm(t, v) =
∫
V
ei Re(〈vm,am〉)i Re (〈vm, Fm(am)〉)µmt (da) , (3.30)

where Fm is the map defined in Section 1.2.1. Recall that Fm(a) = Pm(F (Pm(a))),

where F (a) = i∆a− i |a|p−2a, then

∂tΦm(t, v) =
∫
V
ei Re(〈vm,am〉)i Re

(
−i (∇am,∇vm)− i

〈
|am|p−2am, vm

〉)
µmt (da) .

(3.31)

Thus,

∂tΦm(t, v) = i
∫
V
ei Re(〈vm,am〉) Im

(
(∇am,∇vm) +

〈
|am|p−2am, vm

〉)
µmt (da) . (3.32)

Finally, integrate over [0, t] to obtain

Φm(t, v)− Φm(0, v) =

i
∫ t

0

∫
V
ei Re(〈vm,am〉) Im

(
(∇am,∇vm) +

〈
|am|p−2am, vm

〉)
µms (da) ds .

(3.33)

We have shown that for any m > 0 the family of measures (µmt )t≥0 is a Hopf

statistical solution for the Galerkin approximation.
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The domain of the characteristic functionals Φm is [0,∞)×V ∗. By analyzing first

the restriction of them to [0,∞)× V we can prove the following.

Lemma 3.2.1. The family (Φm) is uniformly bounded and equicontinuous when re-

stricted to [0,∞)×V . Hence, (Φm) admits a subsequence that converges to a function

Φ on compact subsets of [0,∞) × V . Moreover, the functional Φ can be extended to

[0,∞)× V ∗.

Proof. Notice that, for any m > 0,

|Φm(t, v)| ≤
∫
V
µmt (da) = µmt (V ) = 1 , (3.34)

hence, the family (Φm) is uniformly bounded.

For any m > 0, Φm satisfies

∂tΦm(t, v) =
∫
V
ei Re(〈vm,am〉)i Re (〈vm, Fm(am)〉)µmt (da) . (3.35)

Then,

|∂tΦm(t, v)| ≤
∫
V
|(∇am,∇vm)|+ |〈|am|p−2am, vm〉|µmt (da)

≤ ‖vm‖V
∫
V
‖∇am‖2 + ‖am‖p−1

p µmt (da)

≤ ‖vm‖V
∫
V

(
1

2(p− 1) + p− 1
2 ‖∇am‖2

2 + p− 1
p
‖am‖pp + 1

p

)
µmt (da)

≤ ‖vm‖V
∫
V

1 + (p− 1)E[am]µmt (da)

where we have used Young’s inequality in the third step. Thanks to the conservation

of energy for Galerkin approximations and the inequality (1.42), we have

|∂tΦm(t, v)| ≤ Cp‖v‖V
(
1 + Cp

p(p− 1)ME

)
. (3.36)
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Hence,

|Φm(t+ ∆t, v)− Φm(t, v)| ≤ Cp
(
1 + Cp

p(p− 1)ME

)
‖v‖V ∆t . (3.37)

At the same time, for any t ≥ 0, we have

|Φm(t, v1)− Φm(t, v2)| ≤
∫
V
|ei Re(〈a,v1−v2〉) − 1|µmt (da)

≤
∫
V
|Re (〈a, v1 − v2〉)|µmt (da)

≤ ‖v1 − v2‖V ∗
∫
V
‖a‖V µmt (da)

≤ ‖v1 − v2‖V ∗
∫
V

3
2 + E[a]µmt (da) .

(3.38)

This,

|Φm(t, v1)− Φm(t, v2)| ≤ ‖v1 − v2‖V ∗
(3

2 + Cp
pME

)
. (3.39)

Thanks to the bounds (3.37) and (3.39) we conclude that the family (Φm) is

equicontinuous.

We apply Arzelà–Ascoli to extract from (Φm) a subsequence (Φmk) that converges

uniformly on compact subsets of [0,∞) × V to a function Φ. In particular, for any

t ≥ 0 and v ∈ V

Φmk(t, v) k→∞−−−→ Φ(t, v) .

Finally, the functional Φ continues to satisfy (3.39). Since V is dense in V ∗ we

can extend Φ to [0,∞)× V ∗ by linearity.

Lemma 3.2.2. The sequence of probability measures µmk

t whose characteristic func-

tionals Φmk converge to Φ, converges weakly to the measure µt, whose characteristic

functional is Φ.

Proof. Recall that any family of probability measures supported on a compact metric

space is relatively weak compact. The space VR′ is a compact metric space when

endowed with the weak topology inherited from V . The family (µnt ) is supported on
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VR′ , hence is relatively weak compact. Since Φmk → Φ by Lemma 3.2.1, the results

follows from Theorem A.0.5.

We still need to show that the limit obtained in Lemma 3.2.2 satisfies (3.23). We

will show this in several steps.

Lemma 3.2.3. For any v ∈ V , the map a 7→ (∇a,∇v) + 〈|a|p−2a, v〉 is weakly

sequentially continuous.

Proof. Take any sequence an −⇀ a in V . For the first term is enough to see that

∇an −⇀ ∇a in L2, hence

(∇an,∇v)→ (∇a,∇v) .

By Rellichs’s lemma we have that an → a strongly in L2. Hence, (an) admits a

subsequence (ank) such that ank → a almost everywhere.

Consider now the term 〈|an|p−2an, v〉, i.e.,

∫
M
|an(x)|p−2an(x)v(x)dx .

Thanks to Egorov’s theorem, for any δ > 0 there is a closed set Ωδ ⊂ M , such that

an → a uniformly on Ωδ and d(Ωδ) < δ.

Notice that

∫
Ωc
δ

|an(x)|p−2an(x)v(x)dx ≤
(∫

Ωc
δ

|an(x)|pdx
) p−1

p
(∫

Ωc
δ

|v(x)|pdx
) 1
p

≤ ‖an‖p−1
p

(∫
Ωc
δ

|v(x)|pdx
) 1
p

.

(3.40)

Similarly, ∫
Ωc
δ

|a(x)|p−2a(x)v(x)dx ≤ ‖a‖p−1
p

(∫
Ωc
δ

|v(x)|pdx
) 1
p

. (3.41)
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Since v is a fixed element in V , by the Lebesgue Theorem, we have

∫
Ωc
δ

|v(x)|pdx δ→0−−→ 0 .

Hence, for any ε > 0, we can find a δ > 0 small enough such that

∫
Ωc
δ

∣∣∣|an(x)|p−2an(x)− |a(x)|p−2a(x)
∣∣∣ v(x)dx < ε

2 . (3.42)

For any fixed δ > 0, since an → a uniformly on Ωδ, for sufficiently large n we have

∫
Ωδ

∣∣∣|an(x)|p−2an(x)− |a(x)|p−2a(x)
∣∣∣ v(x)dx <

ε

2 . (3.43)

Then, for any ε > 0 we can find n large enough such that

∫
V

∣∣∣|an(x)|p−2an(x)− |a(x)|p−2a(x)
∣∣∣ v(x)dx < ε . (3.44)

The weak topology of an infinite dimensional Banach space is not first countable,

hence, it is not immediately obvious that a sequentially continuous functions is also

continuous. When restricted to any weak-compact subset of V we have the following

result.

Lemma 3.2.4. If f : V → C is a weakly sequentially continuous map, then the

restriction of f to VR, for any R > 0, is continuous in the subspace topology of VR

induced from the weak topology.

Proof. Recall that for any R > 0, the set VR is a compact metric space, and the

topology induced by its metric is equal to the subspace topology with respect to the

weak topology on V . If f is restricted to VR it remains to be sequentially continuous

on VR, hence continuous.
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Proposition 3.2.5. The family of probability measures (µt)t≥0 obtained in Lemma 3.2.2

is a Hopf statistical solution for the NLS equation.

Proof. Recall that the weak convergence of µm0 −⇀ µ0 is with respect to the strong

topology of V . In particular, the map a 7→ E[a] is strongly continuous and, therefore,

∫
V
E[a]µm0 (da)→

∫
V
E[a]µ0(da) .

Since the set VR is weak-closed, the set { a ∈ V |E[a] > R } is weak-open, hence

the map a 7→ E[a] is weak lower semi-continuous.

Recall that we have obtained the convergence of probability measures µmk

t −⇀ µt

with respect to the weak topology of V . Due to the preservation of the energy of the

finite-dimensional flow we have

ME = lim
k→∞

∫
V
E[a]µmk

0 (da) = lim
k→∞

∫
V
E[a]µmk

t (da) . (3.45)

Since a 7→ E[a] is weak lower semi-continuous, and thanks to µmk

t −⇀ µt with respect

to the weak topology of V we have

∫
V
E[a]µt(da) ≤ lim inf

k→∞

∫
V
E[a]µmk

t (da) = ME , (3.46)

hence, ∫
V
E[a]µt(da) ≤

∫
V
E[a]µ0(da) .

According to Definition 3.1.2 it only remains to show that the family of probability

measures satisfies (3.23). Fix v ∈ V , and let

f(a) = (∇a,∇v) +
〈
|a|p−2a, v

〉
,
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and

fm(a) = (∇a,∇vm) +
〈
|a|p−2a, vm

〉
.

Then,

|fm(a)− f(a)| <
(
‖∇a‖2 + ‖a‖p−1

p

)
‖vm − v‖V . (3.47)

Hence, fm → f uniformly on bounded sets of V as m→∞.

For each m > 0, the family of probability measures (µmt )t≥0 satisfies (3.33). More-

over, for any m > 0, and t ≥ 0 the probability measure µmt is supported in the

weak-compact subset V m ∩ VR′ of V . Hence, for each s ≥ 0,

∫
V
ei Re(〈vm,am〉) Im (fm(am)) µms (da) =

∫
V
ei Re(〈vm,a〉) Im (fm(a)) µms (da) . (3.48)

For all m > 0, and t ≥ 0, the probability measure µmt is supported in the weak-

compact subset VR′ ⊂ V . Hence, the weak convergence of µmk

t −⇀ µt, as k →∞, can

be considered to happen in the space of probability measures on (VR′ ,BVR′ ).

The uniform convergence of (fm) together with the weak convergence of µmt −⇀ µt

for any t ≥ 0, ensures that we can pass to the limit as m→∞, hence

∫
V
ei Re(〈vm,a〉) Im (fm(a)) µmt (da) m→∞−−−−→

∫
V
ei Re(〈v,a〉) Im (f(a)) µt(da) . (3.49)

Thus, (µt)t≥0 is a Hopf statistical solution for the NLS equation according to the

Definition 3.1.2.

The passage to a regular probability measure µ0 that is not supported in any VR

requires the following.
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Lemma 3.2.6. Let (αn)n>0 be a sequence of non-negative numbers such that

∑
n>0

αn = 1 .

Let (µn0 )n>0 be a sequence of regular probability measures on (V,B). Assume that the

mean energy of (µn0 ) is uniformly bounded, i.e.,

sup
n> 0

∫
V
E[a]µn0 (da) = M <∞ .

Moreover, let (µnt )t≥0 be a Hopf statistical solution for the NLS equation with initial

condition µn0 . Then, the family of probability measures

(∑
n>0

αn µ
n
t

)
t≥0

,

is a Hopf statistical solution for the NLS equation with initial condition

∑
n>0

αn µ
n
0 .

Proof. First, we need to clarify why the probability measures can be defined as infinite

convex sums. The following argument works for any sequence of probability measures.

For any sequence (µn) of probability measures, the sequence (νN) defined by

νN =
N∑
n=1

αn µ
n

converges in total variation to a measure µ. Indeed, for any B ∈ B, the sequence

(νN(B)) is Cauchy, thanks to |νK(B)− νN(B)| ≤ ∑K
n=N+1 αn for N < K. Hence, for

any B ∈ B define µ(B) as the limit of the Cauchy sequence (νN(B)). The convergence

of the characteristic functionals follows.
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Apply the previous argument to µn0 and (µnt )t≥0 to obtain that both ∑n>0 αn µ
n
0

and ∑n>0 αn µ
n
t , for any t ≥ 0 are well-defined probability measures.

Since the convergence µn0 → µ0 is in total variation we have

lim
n→∞

∫
V
E[a]µn0 (da) =

∫
V
E[a]µ0(da) = ME .

Moreover, for any t ≥ 0,

∫
V
E[a]µt(da) = lim

n→∞

∫
V
E[a]µnt (da) ≤ lim

n→∞

∫
V
E[a]µn0 (da) = ME .

Hence, ∫
V
E[a]µt(da) ≤

∫
V
E[a]µ0(da) .

Finally, each of the Hopf statistical solutions (µnt )t≥0 satisfies (3.23). The passage

to the infinite convex sum is possible thanks to the uniform integrability of the term

ei Re(〈a,v〉) Im ((∇a,∇v) + 〈|a|p−2a, v〉), i.e., for any N > 0 we have

N∑
n=1

αn
∣∣∣ei Re(〈a,v〉) Im

(
(∇a,∇v) + 〈|a|p−2a, v〉

)∣∣∣ ≤ ‖v‖V (1 + (p− 1)E[a]) (3.50)

which is uniformly integrable because

sup
n>0

∫
V
E[a]µn0 (da) ≤M ,

and the energy inequality. Hence, an application of the dominated convergence the-

orem yields

lim
N→∞

N∑
n=1

αn

∫ t

0

∫
V
ei Re(〈a,v〉) Im

(
(∇a,∇v) + 〈|a|p−2a, v〉

)
µns (da) ds =

∫ t

0

∫
V
ei Re(〈a,v〉) Im

(
(∇a,∇v) + 〈|a|p−2a, v〉

)
µs(da) ds

(3.51)
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Let µ0 be a regular probability measure, not necessarily supported in some VR.

Find a increasing sequence of positive numbers (Rn), such that α1 = µ(VR1) > 0, and

αn+1 = µ(VRn+1 \ VRn) > 0 , ∀n > 0 .

For any B ∈ B, let

µ1(B) = 1
α1

µ0(B ∩ VR1) ,

and

µn+1(B) = 1
αn+1

µ0 (B ∩ (VRn+1 \ VRn)) , ∀n > 0 .

Notice that

µ0(B) =
∑
n>0

αn µ
n(B) , ∀B ∈ B .

Each µn is supported in VRn . Obtain the corresponding Hopf statistical solutions

for each µn, and apply Lemma 3.2.6 to obtain a Hopf statistical solution with initial

condition µ0.

3.3 Foias, Equation and Statistical Solutions

In [11] C. Foias, proposed a slightly different approach to statistical solutions. Instead

of ei(a,w) he is using a more general test functional φ(t, a). Define

L(t, φ) =
∫
X
φ(t, a)µt(da) =

∫
X
φ(t, u(t, a))µ0(da) . (3.52)
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Similarly to the Hopf equation the following must be satisfied for an appropriate set

of test functionals

d

dt
L(t, φ) =

∫
X
∂tφ(t, a) + 〈∂aφ(t, a), F (a)〉µt(da). (3.53)

Definition 3.3.1. A family of measures µt is said to be a Foias, statistical solution

of (3.1) if (3.53) is satisfied for some appropriate set of test functionals.

In general if the solutions of (3.1) are unique, the statistical solutions are unique

as well. However, if the solutions of (3.1) are not unique, there is no uniqueness for

the statistical solutions (see [32]), and there is no natural way to select some solution

out of many. Here is an instructive example:

Example 3.3.1. Consider the Cauchy problem for the equation

ẋ = H(x) (3.54)

where the Heaviside function H is defined as H(x) = 1 if x > 0 and H(x) = 0 if

x ≤ 0. The solutions of this equation corresponding to the initial conditions x(t0) = 0

are not unique.

Here is a family of Foias, statistical solutions to (3.54):

µt(dx) = ρ(t)δ0(dx) + γ(t− x)1[0,t]dx , (3.55)

where ρ(t) = 1−
∫ t

0 γ(s) ds and γ(s) is an arbitrary continuous function.

3.3.1 The Homogeneous Markov Property

For autonomous equations such as (3.1) there is a formal semigroup property. The

question is: Is there a similar property for statistical solutions? In the next chap-
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ter I introduce the notion of Markov statistical solutions. These solutions have the

homogeneous Markov property which is the analog of the semigroup property.

In Example 3.3.1 the solutions with the homogeneous Markov property are

µt(dx) = e−αtδ0(dx) + αe−α(t−x)1[0,t]dx , α ≥ 0. (3.56)

Intuitively this is obtained by noticing that the paths stay for a random time at the

origin, and then they branch. That random time should be exponential in order to

satisfy the Markov property.

In general, to state the homogeneous Markov property, we need to look at other

forms of statistical solutions for (3.1) since neither Hopf nor Foias, statistical solutions

can capture the condition for the Markov property.



Chapter 4

Vishik-Fursikov Measures

Vishik and Fursikov introduced a new type of statistical solutions in [33] and [32].

These are, generally speaking, probability measures in some space of paths. In com-

parison, both Hopf and Foias, statistical solutions are families of measures indexed by

a “time” variable.

4.1 Abstract Construction

Let X be a Polish space, and Ω = C([0,∞) → X) endowed with the compact-open

topology, i.e.Ω is the space of continuous paths from [0,∞) to X with the topology

of uniform convergence on compact subsets of [0,∞). The space Ω is a Polish space,

see Section 2.1.1. For any t ≥ 0, let πt be the map Ω → X such that πt(w) = w(t).

Let F be the Borel σ-algebra of Ω generated by the compact-open topology. For any

t ≥ 0, let Ft = σ({ πs | s ≤ t }). We view (Ft)t≥0 as a filtration. The space Ω is one of

the usual path spaces where the theory of random processes is well studied, see [29,

Section 1.3] and [9].

Consider an abstract Cauchy problem

u̇(t, a) = F (u(t, a)) , u(0, a) = a ∈ X , (4.1)

64
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where F maps X into itself. Assume some notion of solution of (4.2) is defined, and

solutions are continuous paths, i.e., elements of Ω. We will study probability measures

on (Ω,F).

Definition 4.1.1 (Abstract Vishik-Fursikov Measure). A probability measure P on

(Ω,F) is said to be a Vishik-Fursikov measure if it is carried by paths that are

solutions of (4.2), i.e.

P ({solutions of (4.2)}) = 1 .

Moreover, if a probability measure µ0 is given and P (π−1
0 (·)) = µ0 then P is said to

be the Vishik-Fursikov measure of NLS with the initial condition µ0.

We interpret any Vishik-Fursikov measure as a random process where the paths

are almost surely (a.s.) solutions of (4.2), i.e., if P is a Vishik-Fursikov measure, there

exists a set N ⊂ Ω such that P (N) = 0 and for any u 6∈ N , u is a solution of (4.2).

In that sense it is useful to describe P as the family of probabilities (Px)x∈X , where

Px such that each is supported in the set {w ∈ Ω |w(0) = x }, and Px are related to

the probability measure P via the equation

P [ · | F0 ](w) = Pw(0) P -a.s.

Definition 4.1.2. A family of probability measures (Px)x∈X on (Ω,F) is said to be

a Vishik-Fursikov family if for any x ∈ X the probability measure Px is carried by

paths that are solutions of (4.2) with initial condition x.

Let (Px)x∈X be a Vishik-Fursikov family. Given a measure µ0 on (X,B), we can

define a Vishik-Fursikov measure P on (Ω,F) by

P (A) =
∫
X
Px(A)µ0(dx) , ∀A ∈ F .
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4.2 Vishik-Fursikov Measures for NLS

For the NLS equation we were able to obtain solutions that are continuous with re-

spect to L2 with the strong topology and V with the weak topology, see Section 1.2.1.

We are interested in the space V since it allows us to make sense of expressions of

the form

(∇u(t),∇v) + 〈|u(t)|p−2u(t), v〉 , ∀v ∈ V .

Sadly, V is not metrizable under the weak topology and we are forced to consider the

spaces of the form VR with R > 0 fixed.

Thus, fix R > 0. Consider the compact metric space VR and the space of con-

tinuous paths ΩR = C([0,∞)→ VR) endowed with the compact-open topology. The

σ-algebras F and Ft for t ≥ 0 are defined as before. We use the notation BΩR instead

of F whenever we want to explicitly state the difference between paths taking values

in VR or V .

Adapting Definitions 4.1.1 and 4.1.2 to the case of the NLS equation, we call a

probability measure P on (ΩR,BΩR) a Vishik-Fursikov measure for the NLS equation

if P is carried by a set of weak solutions of NLS with the energy bounded by R. If

a probability measure µ0 on (VR,BVR) is given, and if P (π−1
0 (·)) = µ0 then P is a

Vishik-Fursikov measure for the NLS with the initial condition µ0.

A family of probability measures (Pa)a∈VR on (ΩR,BΩR) is a Vishik-Fursikov family

of the NLS equation if, for any a ∈ VR, Pa is carried by a set of weak solutions of

NLS with the energy bounded by R and the initial condition a, i.e., for any a ∈ X,

there is a set Γa ⊂ ΩR such that Pa(Γa) = 1 and for any u ∈ Γa, u is a weak solution

of the NLS equation with the energy bounded by R.

Recall the Definition 1.3.2 of the sets SR(a). For any a ∈ VR, the set SR(a) is

a compact subset of ΩR, see Proposition 1.3.2.The space ΩR is a complete metric
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space, and SR(a) itself is a complete metric space. The space of probability measures

P (SR(a)) is a compact metric space.

For a ∈ VR, denote by CR(a) the set of probability measures supported in SR(a),

i.e., CR(a) = P(SR(a)).

As a set-valued map a 7→ CR(a) takes values in compact subsets of P(ΩR). We

have the following result.

Lemma 4.2.1. The set-valued map a 7→ CR(a) is u.s.c.

Proof. Suppose an −⇀ a in VR, Pn ∈ CR(an), and Pn
?−⇀ P in P(ΩR). Then, it is

known, see [2, Theorem 2.8]

supp(P ) ⊂
∞⋂
n=1

⋃
k>n

supp(Pn) ,

and recall that the map a 7→ SR(a) is u.s.c. Hence, P ∈ CR(a).

The existence of Vishik-Fursikov families is a result of the existence of a measurable

selection for the map CR.

Lemma 4.2.2. There is a Vishik-Fursikov family of probability measures for the NLS

equation.

Proof. The set-valued map a 7→ CR(a) takes values in the hyperspace of compact

subsets of P(SR(VR)) ⊂ P(ΩR), which is a compact metric space by itself. By

Proposition 1.3.2 and Corollary 2.1.2 the map CR is measurable. Thanks to Theo-

rem 2.1.2 the map CR admits a measurable selection. Any measurable selection of

CR is a family Pa ∈ CR(a), hence Pa is carried by weak solutions of NLS with energy

bounded by R starting at a. The family (Pa)a∈X is a Vishik-Fursikov family for the

NLS equation.

The beautiful aspect of having a Vishik-Fursikov family is that allow us to build

Vishik-Fursikov measures from any possible initial condition µ0.
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Lemma 4.2.3. Given a probability measure µ0 on (VR,BVR) there is a Vishik-Fursikov

measure for the NLS with initial condition µ0.

Proof. Let (Pa) be a Vishik-Fursikov family obtained as a measurable selection of CR.

Define probability P on (ΩR,BΩR) by the formula:

P (A) =
∫
VR
Pa(A)µ0(da) , ∀A ∈ BΩR .

The probability measure P is carried by

⋃
a∈VR

supp(Pa) ,

which is a subset of weak solutions of the NLS equation with energy bounded by R.

Moreover, thanks to the way P is defined we have P (π−1
0 (·)) = µ0. Hence, P is a

Vishik-Fursikov probability measure for the NLS with the initial condition µ0.

4.2.1 Another Construction of Vishik-Fursikov Probability

Measures

Return back to the abstract Cauchy problem

u̇(t, a) = F (u(t, a)) , u(0, a) = a ∈ X , (4.2)

where F maps X into itself.

There is a different way to construct an abstract Vishik-Fursikov probability mea-

sure for (4.2) if it is known that there is a measurable semiflow generated by solutions

of (4.2).

Proposition 4.2.4. Assume X is a Polish space with the Borel σ-algebra B, and

Ω is the space of continuous paths C([0,∞) → X) equipped with the compact-open
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topology, with its Borel σ-algebra F . Assume there is a Caratheodory map u(t, x) with

the semigroup property:

u(t+ s, x) = u(t, u(s, x)) , ∀t ≥ 0 s ≥ 0 , x ∈ X ,

such that t 7→ u(t, x) solves (4.2) with the initial condition x ∈ X. Then, given any

probability measure µ0 there is a Vishik-Fursikov probability measure supported in the

paths of the semiflow u with the initial probability measure µ0.

Proof. Since the map x 7→ u(·, x) is measurable, define the push-forward of µ0 from

(X,B) to (Ω,F) as

P (A) = µ0({x ∈ X |u(·, x) ∈ A }) ∀A ∈ F .

Here is a different, simpler proof of the existence of Vishik-Fursikov measures for

the NLS.

Corollary. The NLS has a Vishik-Fursikov probability measure.

Proof. Use the measurable semiflow selection Theorem 2.2.2 on the set-valued map

SR : VR → Hk(ΩR) to obtain a measurable semiflow u(t, x) and apply Proposi-

tion 4.2.4.



Chapter 5

Markov Selection

Consider a Polish space X and the space of continuous paths Ω = C([0,∞) → X)

with the compact-open topology. Given a set-valued map a 7→ C(a) ⊂ P(Ω), a

measurable selection Pa ∈ C(a) defines a random process. In some cases, such random

process can be a Markov process. In [21] N. V. Krylov gave the first construction

of a measurable Markov selection. D. W. Stroock and S. R. S. Varadhan presented

a similar construction in the context of solutions to the martingale problem in [29].

In recent papers, F. Flandoli and M. Romito [10]; and B. Goldys et al [15], proved

related versions of the Markov selection Theorem and applied it to the stochastic

Navier-Stokes and porous media equation with additive Gaussian noise.

To prove the existence of Markov statistical solutions, in application of the NLS,

I use the results of Flandoli and Romito. This is done in Section 5.2. In Section 5.3,

I give a new abstract form of the Markov selection theorem, Theorem 5.3.6, which is

closer in spirit to the work of Krylov.

5.1 Basic Notation

Throughout this chapter X is a Polish space. Let Ω = C([0,∞)→ X) endowed with

the compact-open topology.
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We will need the following construction, see [29, Theorem 6.1.2]. Given t ≥ 0, a

probability measure P ∈ P(Ω), and a Ft-measurable map Q(·) : Ω→ P(Ω), such that

Qw is supported by {u ∈ Ω |u(0) = w(t) }. Define P ⊗t Q as the unique probability

measure satisfying

P ⊗t Q(A ∩ θ−1
t (B)) =

∫
A
Qw(B)P (dw) , ∀A ∈ Ft , B ∈ F . (5.1)

In particular, P ⊗t Q satisfies

P ⊗t Q(A) = P (A) , ∀A ∈ Ft ,

and

P ⊗t Q
[
θ−1
t (·)

∣∣∣Ft ] (w) = Qw P -a.s.

Recall the notation of the hyperspace of subsets of a set, H(·). We are interested

in the weak-? topology of P(Ω), thus Hk(P(Ω)) denotes the hyperspace of weak-?

compact subsets of P(Ω). The hyperspace of convex and weak-? compact subsets of

a topological vector space X is denoted by Hck(X).

5.2 Markov Statistical Solutions

We start with the definition of a Markov selection.

Definition 5.2.1 (Markov selection). Consider a set-valued map C : X → H(P(Ω)).

A measurable selection Pa ∈ C(a) is said to be a Markov selection if, for any a ∈ X,

it satisfies

Pa
[
θ−1
t (·)

∣∣∣Ft ] (w) = Pw(t) , Pa-a.s. (5.2)
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Consider the abstract Cauchy problem

u̇(t, a) = F (u(t, a)) , u(0, a) = a ∈ X , (5.3)

where F maps X into itself.

In the context of random processes, the property analogous to the semigroup

property is the homogeneous Markov property. It is possible to have Vishik-Fursikov

measure without the homogeneous Markov property.

I propose to study the Vishik-Fursikov measures with the homogeneous Markov

property in order to recover the autonomy of the system in the sense of statistical

solutions.

Definition 5.2.2 (Markov statistical solution). A Vishik-Fursikov family (Pa)a∈X for

the equation (5.3) will be called a Markov statistical solution of (5.3) if it has the

Markov property (5.2).

The following theorem is a slight variation of the Markov selection as presented

by F. Flandoli and M. Romito [10], and Goldys et al. [15]. A proof is presented as a

corollary of Theorem 5.3.6 in Corollary 5.3.

Theorem 5.2.1. Let C be a measurable set-valued map from X to Hck(P(Ω)) with

the following three properties:

MS1 For any a ∈ X, any probability measure P ∈ C(a) is supported in {w ∈ Ω |w(0) = a }.

MS2 For any a ∈ X, if P ∈ C(a) and t ≥ 0 there exists a P -null set N ∈ Ft, such

that

P
[
θ−1
t (·)

∣∣∣Ft ] (w) ∈ C(w(t)) , ∀w /∈ N

MS3 For any a ∈ X, if P ∈ C(a) and Q(·) is a Ft-measurable selection of w 7→ C(w(t)),

then

P ⊗t Q ∈ C(a) .
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Then, C admits a Markov selection.

Here is an application of this theorem to statistical solutions of the NLS.

Theorem 5.2.2. There exists a Markov statistical solution of the NLS.

Proof. Fix R > 0. Define the set-valued map a 7→ CR(a) via

CR(a) = P(SR(a)) .

This map is measurable, takes values in weak-? compact and convex subsets of P(ΩR),

and satisfies MS1. See Section 4.2.

Let us prove that CR satisfies MS2. For any a ∈ VR, take any P ∈ CR(a). The

support of P is a closed set inside SR(a). Recall that Ω is a Polish space, hence

the σ-algebra Ft is countably generated. From the properties of regular conditional

probability (see [29, Theorem 1.1.8]), there is a set N ∈ Ft such that N c ⊆ SR(a) and,

for w /∈ N , the probability measure P [ · | Ft ] (w) has its support inside the closed set

{u ∈ Ω |u(s) = w(s) , 0 ≤ s ≤ t }
⋂
SR(a) .

Recall that if u ∈ SR(a) then θt(u) ∈ SR(u(t)). Thus

{u ∈ Ω |u(0) = w(t) }
⋂
θt(SR(a)) ⊆ SR(w(t)) .

Hence,

P
[
θ−1
t (·)

∣∣∣Ft ] (w) ∈ CR(w(t)) , ∀w /∈ N .

Finally, let us prove that CR satisfies MS3. Take t ≥ 0. For any a ∈ VR, let P be

any element in CR(a) and Qw a Ft-measurable selection of w 7→ CR(w(t)). From the
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properties of P ⊗t Q there is a set N ∈ Ft such that N c ⊆ SR(a) and

(P ⊗t Q)
[
θ−1
t (·)

∣∣∣Ft ] (w) = Qw , ∀w /∈ N .

Notice that

supp(Qw) ⊆ SR(w(t)) , ∀w /∈ N ,

then

{w Ct v | v ∈ supp(Qw) } ⊆ {w Ct v | v ∈ SR(w(t)) } ⊆ SR(a) , ∀w /∈ N .

Moreover, ⋃
w/∈N
{w Ct v | v ∈ SR(w(t)) } ⊆ SR(a) .

Since

P ⊗t Q

 ⋃
w/∈N
{w Ct v | v ∈ SR(w(t)) }

 = 1 ,

supp(P ⊗t Q) ⊆ SR(a), which implies P ⊗t Q ∈ CR(a).

By Theorem 5.2.1 CR admits a Markov selections. Any Markov selection is mea-

surable, hence it is a Vishik-Fursikov family, and it has the Markov property, so, this

is a Markov statistical solution.

5.3 Markov Selection Theorem

Our approach to prove the existence of a Markov selection is closer in spirit to the

original construction due to N. V. Krylov [21]. We will use a theorem of V. Strassen

that captures the import aspects of the required convexity of the set-valued map.
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Given a set-valued map C : X → Hck(P(Y )), let h(·) be the support function of

the convex set C(·), i.e.

ha[f ] = sup
P ∈C(a)

∫
Y
f(y)P (dy) , ∀a ∈ X , f ∈ Cb(Ω) .

We say that h(·) is the support function of C. If X is a σ-algebra on X and the map

C is X -measurable then, for any f ∈ Cb(X), x 7→ hx[f ] is X -measurable.

Definition 5.3.1 (Markov kernel). Let (X,X ) and (Y,Y) be two measurable spaces.

A Markov kernel from (X,X ) to (Y,Y) is a function Q : X × Y → [0, 1] such that,

• for any a ∈ X, Q(a, ·) is a probability measure on Y , and,

• for any B ∈ Y , Q(·, B) is a X -measurable function.

A Markov kernel from (X,X ) to (Y,Y) transforms probability measures on (X,X )

into probability measures on (Y,Y). Indeed, if µ is a probability measure on (X,X ),

a probability measure on (Y,Y) can be defined as

ν(B) =
∫
X
Q(a,B)µ(da) , ∀B ∈ Y ,

and we denote this as ν = Q · µ.

Assume now that Y is a Polish space and Y is its Borel σ-algebra. The following

result of V. Strassen [28, Theorem 3] will be useful.

Theorem 5.3.1 (Strassen). Let C be a measurable set-valued map X → Hck(P(Y ))

with the support function h(·). Let µ be a probability measure on (X,X ) and let ν be

a probability measure on (Y,Y). In order that there exist a Markov kernel Q from

(X,X ) to (Y,Y) such that

ν = Q · µ
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and

Q(x, ·) ∈ C(x) , for µ-a.e. x ∈ X ,

it is necessary and sufficient that

∫
Y
f(y) ν(dy) ≤

∫
X
hx[f ]µ(dx) , ∀f ∈ Cb(Y ) .

In what follows, let X be a Polish space, and let Ω be C([0,∞) → X) with the

compact-open topology. Recall that, for t ≥ 0, the maps πt and θt are defined as

πt(w) = w(t) and θt(w) = w(t + ·). For any t ≥ 0, let Ft = σ({ πs | 0 ≤ s ≤ t }),

a filtration on Ω, and let F be the Borel σ-algebra generated by the compact-open

topology of Ω. Notice that F = σ({ πt | t ≥ 0 }).

Definition 5.3.2. Let C be a measurable set-valued map X → Hck(P(Ω)) with

support function h(·). For any f ∈ Cb(Ω) and t ≥ 0 the map w 7→ hw(t)[f ] is σ(πt)-

measurable. Given any probability measure P ∈ P(Ω), the map defined as

f 7→
∫

Ω
hw(t)[f ]P (dw)

is also a support function, see [28]. It defines a convex subset of P(Ω) that we will

denote by KC(P, t), i.e.

KC(P, t) =
{
Q ∈ P(Ω)

∣∣∣∣Q[f ] ≤
∫

Ω
hw(t)[f ]P (dw) , ∀f ∈ Cb(Ω)

}
(5.4)

Lemma 5.3.2. Let C be a measurable set-valued map X → Hck(P(Ω)). For any

t ≥ 0 and any probability measure P on (Ω,Ft), the following two are equivalent:

1. Q ∈ KC(P, t).
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2. There exists a Markov kernel Q(·) from (Ω,Ft) to (Ω,F) and a P -null set N ∈ Ft

such that

Qw ∈ Cw(t) , ∀w /∈ N

and

Q =
∫

Ω
Qw(·)P (dw) .

Proof. This is just a direct application of Strassen’s theorem from (Ω,Ft) to (Ω,F).

1) =⇒ 2). Take Q ∈ KC(P, t), then

∫
Ω
f(w)Q(dw) ≤

∫
Ω
hw(t)[f ]P (dw) , ∀f ∈ Cb(Ω) .

By Strassen’s theorem there is a P -null set N ∈ Ft, and a Markov kernel Q(·) from

(Ω,Ft) to (Ω,F), such that

Qw ∈ Cw(t) , ∀w /∈ N ,

and

Q =
∫

Ω
Qw(·)P (dw) .

2) =⇒ 1). If such a kernel Q(·) exists, then, by Strassen’s theorem

∫
Ω
f(w)Q(dw) ≤

∫
Ω
hw(t)[f ]P (dw) , ∀f ∈ Cb(Ω) .

Hence, Q ∈ KC(P, t).

We will need certain family of linear bounded functionals on P(Ω). For λ > 0 and

ϕ ∈ Cb(X), let ζλ,ϕ be a functional on P(Ω), defined as

ζλ,ϕ(P ) =
∫

Ω

∫ ∞
0

e−λsϕ(w(s)) dsP (dw) .
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For t > 0, let ζtλ,ϕ be the functional on P(Ω) defined by

ζtλ,ϕ(P ) =
∫

Ω

∫ t

0
e−λsϕ(w(s)) dsP (dw) .

Definition 5.3.3. Assume (X, ρ) is a metric space. A collection of functions M ⊂

Cb(X) is said to strongly separates points if for every x ∈ X and δ > 0 there exists a

finite set {h1, . . . , hk} ⊂M such that

inf
y,: ρ(x,y)≥δ

max
1≤ i≤ k

|hi(y)− hk(x)| > 0 .

Let Φ ⊂ Cb(X) be a countable set of functions that strongly separates points

of X and is closed under multiplications. Regarding the existence of such sets, see

Lemma A.0.6. Let Λ be a countable and dense subset of (0,∞). Let (ϕn, λn) be an

enumeration of Φ × Λ. Denote by ζn the functional defined as ζn = ζλn,ϕn ; similarly

let ζtn = ζtλn,ϕn for any t ≥ 0. An important property satisfied by these functionals is

ζ(P ) = ζt(P ) + e−λtζ(θtP ) , t ≥ 0 .

Lemma 5.3.3. Let ζ be one of the functions ζλ,ϕ. If C is a measurable set-valued

map X → Hck(P(Ω)) then

Vζ [KC(P, t)] = KVζ [C](P, t) , ∀P ∈ P(Ω) , t ≥ 0 .

Proof. Let us proof first that

KVζ [C](P, t) ⊆ Vζ [KC(P, t)] , ∀P ∈ P(Ω) , t ≥ 0 .
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Thanks to Lemma 5.3.2, if Q1 ∈ KVζ [C](P, t) and Q2 ∈ KC(P, t), there are maps

w 7→ Q1(w, ·) ∈ Vζ [C(w(t))]

w 7→ Q2(w, ·) ∈ C(w(t))
P -a.s. (5.5)

such that

ζ(Q1) =
∫

Ω
ζ(Q1(w))P (dw) , (5.6)

and

ζ(Q2) =
∫

Ω
η(Q2(w))P (dw) . (5.7)

Since ζ(Q1(w)) ≥ ζ(Q2(w))P -a.s. , then ζ(Q1) ≥ ζ(Q2), and Q1 ∈ Vζ [KC(P, t)].

Suppose now that

Vζ [KC(P, t)] 6⊂ KVζ [C](P, t) ,

Let Q1 be an element in Vζ [KC(P, t)] but not in KVζ [C](P, t). Due to Lemma 5.3.2

there is a map

w 7→ Q1(w) ∈ C(w(t)) P -a.s.

such that

ζ(Q1) =
∫

Ω
ζ(Q1(w))P (dw) . (5.8)

The set

N =
{
w ∈ Ω

∣∣∣Q1(w) ∈ C(w(t))
⋂
Vζ [C(w(t))]c

}
is such that P (N) > 0, and N ∈ Ft.

Take any other element Q2 ∈ KVζ [C](P, t). There is a map

w 7→ Q2(w) ∈ Vζ [C(w(t))] P -a.s.
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such that

ζ(Q2) =
∫

Ω
ζ(Q2(w))P (dw) . (5.9)

Define

w 7→ Qw =


Q1(w) w /∈ N

Q2(w) w ∈ N
, (5.10)

Since Q(w) ∈ C(w(t))P -a.s. due to Lemma 5.3.2, the probability measure Q defined

as Q = Q(·) · P is an element in KC(P, t).

Since P (N) > 0,

ζ(Q)− ζ(Q1) =
∫
N

(ζ(Q2(w))− ζ(Q1(w))P (dw) > 0 . (5.11)

Then, Q1 /∈ Vζ [KC(P, t)], which is a contradiction.

Let C be a measurable set-valued map X → Hck(P(Ω)), let P be a probability

measure in P(Ω) and t ≥ 0, define

ΓC(P, t, a) =
{
Q ∈ C(a)

∣∣∣ θtQ ∈ KC(P, t) ; ζtn(Q) ≥ ζtn(P ) ,∀n > 0
}
.

Definition 5.3.4 (Krylov map). A measurable set-valued map C : X → Hck(P(Ω))

will be called a Krylov map if it satisfies the following properties.

K1 For every a ∈ X, if P ∈ C(a) then

P ({w ∈ Ω |w(0) = a }) = 1 .

K2 For every a ∈ X, if P ∈ C(a) and t ≥ 0 then

θtP ∈ KC(P, t) .
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K3 For every a ∈ X, if P ∈ C(a) and t ≥ 0 then

θt(ΓC(P, a, t)) = KC(P, t) .

Lemma 5.3.4. Let ζ be one of the functions ζλ,ϕ. If C : X → Hck(P(Ω)) is a Krylov

map, the set-valued map a 7→ Vζ [C(a)] is also a Krylov map.

Proof. Let C be a Krylov map and consider the set-valued map Vζ [C] : x 7→ Vζ [C(x)].

By [27, Lemma 4.3] the map is measurable, and clearly compact and convex valued.

To verify that this map is Krylov, we check properties K1 - K3 of Definition 5.3.4.

Property K1 is immediately satisfied.

To check K2, pick any P ∈ Vζ [C(x)] and an t ≥ 0. We want to show that θtP ∈

KVζ [C](P, t). In view of Lemma 5.3.3, we need ζ(θtP ) ≥ ζ(Q) for all Q ∈ KC(P, t).

Condition K3 for C implies that if Q ∈ KC(P, t), then there exists Q′ ∈ ΓC(P, t, x)

such that θtQ′ = Q. Since Q′ ∈ C(x) and P maximizes ζ on C(x), we have

ζ(P ) ≥ ζ(Q′) ,

which we re-write as

ζt(P ) + e−λtζ(θtP ) ≥ ζt(Q′) + e−λtζ(Q) .

On the other hand, since Q′ ∈ ΓC(P, t, x),

ζt(P ) ≤ ζt(Q′) .

Combine this with the previous inequality to obtain

ζ(θtP ) ≥ ζ(Q) ,
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which implies θtP ∈ Vζ [KC(P, t)], and property K2 follows.

It remains to show that

θt
(
ΓVζ [C](P, t, x)

)
= KVζ [C](P, t) (5.12)

provided P ∈ Vζ [C(x)]. Take any Q ∈ KVζ [C](P, t). Then Q ∈ KC(P, t), and, by

condition K3 for C, there exists Q′ ∈ ΓC(P, t, x) such that θtQ′ = Q. Since both θtP

and Q belong to Vζ [KC(P, t)], we have ζ(θtP ) = ζ(Q) = ζ(θtQ′). Then

ζ(Q′)− ζ(P ) = ζt(Q′) + e−λtζ(θtQ′)− ζt(P )− e−λtζ(θtP ) = ζt(Q′)− ζt(P ) .

Now recall that Q′ ∈ ΓC(P, t, x) which implies ζt(Q′) ≥ ζt(P ). Thus, ζ(Q′) ≥ ζ(P ).

Since P maximizes ζ on C(x), so does Q′. Then Q′ ∈ ΓVζ [C](P, t, x). Inclusion ⊂ in

(5.12) is obvious. Indeed, let P ∈ Vζ [C(x)] and suppose Q′ ∈ ΓVζ [C](P, t, x). Then

θtQ
′ ∈ KVζ [C](P, t) right from the definition of ΓVζ [C](P, t, x).

Lemma 5.3.5 (Separating lemma). Let C : X → Hck(P(Ω)) be a Krylov map.

Assume that, for any x ∈ X, and P1, P2 ∈ C(x) we have

∫
Ω
f(u(t))P1(du) =

∫
Ω
f(u(t))P2(du) , ∀f ∈ Cb(X) , t ≥ 0 .

Then, for any x ∈ X, C(x) is a singleton.

Proof. The probability measures

pt(x, ·) = P (π−1
t (·)) , ∀t ≥ 0 (5.13)
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on X are independent of the choice of probability measure P ∈ C(x). Take one such

P . An integral form of equation (5.13) is

∫
X
ϕ(y) pt(x, dy) =

∫
Ω
ϕ(w(t))P (dw) , ∀ϕ ∈ Cb(X) . (5.14)

By property K2, θtP ∈ KC(P, t). Then Strassen’s theorem guarantees that there

exists a Markov kernel Qw such that

∫
Ω
g(w) θtP (dw) =

∫
Ω

∫
Ω
g(v)Qw(dv) P (dw)

for any g ∈ Cb(Ω), and Qw ∈ C(w(t)) P -a.s. , and the map w 7→
∫
g(v)Qw(dv) is

Ft-measurable. Take g(w) = ϕ(πs(w)), where ϕ ∈ Cb(X) and s ≥ 0. Then the above

equality reads

∫
Ω
ϕ(w(s+ t))P (dw) =

∫
Ω

∫
Ω
ϕ(πs(v))Qw(dv) P (dw) .

Using (5.13) and (5.14), we can re-write it as follows:

∫
X
ϕ(y) ps+t(x, dy) =

∫
Ω

∫
X
ϕ(y) ps(w(t), dy) P (dw) =

∫
X

∫
X
ϕ(y) ps(z, dy) pt(x, dz) .

In other words, the measures pt(x, ·) satisfy the Chapman-Kolmogorov equation,

ps+t(x, dy) =
∫
X
ps(z, dy) pt(x, dz) . (5.15)
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The fact that θtP ∈ KC(P, t) for all t ≥ 0 and equation (5.14) justify the following

calculation, where ψ1 and ψ2 are arbitrary functions from Cb(X):

∫
ψ1(w(t))ψ2(w(t+ s))P (dw) =

∫
ψ1(w(0))ψ2(w(s)) (θtP )(dw) =∫ (∫

ψ1(v(0))ψ2(v(s))Qw(dv)
)
P (dw) =

∫
ψ1(w(t))

(∫
ψ2(v(s))Qw(dv)

)
P (dw) =∫

ψ1(w(t))
(∫

X
ψ2(x2) ps(w(t), dx2)

)
P (dw) =∫

X
ψ1(x1)

(∫
X
ψ2(x2) ps(x1, dx2)

)
pt(x, dx1) .

More generally, we obtain

∫
Ω
ψ1(w(t1))ψ2(w(t2)) · · ·ψn(w(tn))P (dw) =∫

Xn

ψ1(x1)ψ2(x2) · · ·ψn(xn) pt1(x, dx1) pt2−t1(x1, dx2) · · · ptn−tn−1(xn−1, dxn) .

This shows that the values of the measure P on sets of the form

{w ∈ Ω |w(t1) ∈ A1, . . . , w(tn) ∈ An, where 0 ≤ t1 < · · · ≤ tn, A1, . . . , An ∈ B } ,

are independent of the choice of P from C(x). Hence, C(x) is a singleton.

Theorem 5.3.6. If C : X → Hck(P(Ω)) is a Krylov map, then C admits a Markov

selection.

Proof. Define a sequence of Krylov maps recursively by setting C0 = C and Cn+1 =

Vζn+1 [Cn]. For every x ∈ X, the sets Cn(x) form a decreasing sequences of nested

convex compacta, hence their intersection, C∞(x), is a non-empty convex compact.

Thus we obtain a reducted set-valued map C∞ : x 7→ C∞(x). This map is again

Krylov. We prove next that each set C∞(x) is a singleton.

Suppose P1, P2 ∈ C∞(x). Then ζn(P1) = ζn(P2) for all n. The way the functionals

ζn were defined, we first conclude (by taking into account uniqueness of the Laplace
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transform) that equality

∫
Ω
ϕ(w(t))P1(dw) =

∫
Ω
ϕ(w(t))P2(dw) , ∀t ≥ 0, (5.16)

is satisfied for all functions ϕ from the countable set Φ of bounded continuous func-

tions on X that strongly separates points and are closed under multiplication. By

Theorem 11 in [3], the set Φ separates probability measures, then P1(π−1
t (·)) =

P2(π−1
t (·)). By Lemma 5.3.5, C∞(x) is a singleton.

The family of measures Px ∈ C∞(x), x ∈ X, satisfies

θtPx(·) =
∫

Ω
Pw(t)(·)Px(dw) , ∀t ≥ 0 ,

which implies (5.2), hence it is Markov.

Corollary. Markov selection Theorem 5.2.1 follows from Theorem 5.3.6

Proof. We check that conditions MS1 - MS3 in the statement of theorem 5.2.1

guarantee that conditionsK1 - K3 for the map C to be Krylov are satisfied. Property

K1 is justMS1. To verifyK2, we use assumptionMS2. Pick x ∈ X and a P ∈ C(x).

From the definition of conditional probability,

P (A ∩ θ−1
r (B)) =

∫
A
P [θ−1

r (B)|Fr](w)P (dw)

for A ∈ Ft and B ∈ F . If A = Ω,

θtP (B) =
∫
P [θ−1

t (B)|Ft](w)P (dw) .

Assumption MS2 and Strassen’s theorem then shows that θtP ∈ KC(P, t), hence

property K2 is satisfied. Notice here that we need the construction of KC(P, t) to
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use P restricted to Ft and not just to σ(πt), because w 7→ P [θ−1
t (B)|Ft](w) is Ft-

measurable but not σ(πt)-measurable.

Finally, with P ∈ C(x), any element in KC(P, t) comes from some measurable

selection Q· of the set-valued map w 7→ C(w(s)). According to MS3, P ⊗t Q ∈ C(x),

and

θt(P ⊗t Q)(·) =
∫
Qw(·)P (dw) .

Therefore, θt(P ⊗sQ) ∈ KC(P, t). Since P (A) = (P ⊗tQ)(A) for any A ∈ Ft, we have

ζtn(P ) = ζtn(P ⊗s Q). Hence, P ⊗s Q ∈ ΓC(P, t, x). Thus, KC(P, t) = θt(ΓC(P, t, x))

and property K3 is satisfied.
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Appendix A

Probability Measures on

Topological Spaces

We are mostly interested on probability measures on Banach spaces with the weak

and weak-? topology. Recall that this space is not metrizable. The usual literature

in probability theory is presented for metric spaces, extra care is needed to use some

of the fundamental results in this cases. We follow the definitions and results of [4],

[20], [25] and [31].

Definition A.0.1. Let X be a topological space, and let B be its Borel σ-algebra.

A Borel measure on (X,B) is said to be regular if for any set B ∈ B the measure

satisfies

µ(B) = sup {µ(F ) |B ⊇ F is closed } . (A.1)

Definition A.0.2. Let X be a topological space, and let B be its Borel σ-algebra. A

Borel measure on (X,B) is said to be tight if for any ε > 0 there is a compact subset

Kε ⊆ X such that µ(Kε) > 1− ε.

Definition A.0.3. Let X be a topological space, and let B be its Borel σ-algebra.

A Borel measure on (X,B) is said to be a Radon measure, if for any B ∈ B and

ε > 0 there is a compact subset Kε ⊆ B such that µ(B \Kε) < ε.
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Lemma A.0.1. If X is a separable Banach space, then the Borel σ-algebras associated

with the weak and the strong topologies agree.

We will denote the Borel σ-algebra by B whenever the contexts allows.

Lemma A.0.2. Let X be a reflexive and separable Banach space. If µ is a finite

Borel measure on X, then µ is tight. Moreover, if µ is regular with respect to the

weak topology, then µ is also a Radon measure.

Proof. Let Br be the closed ball of radius r > 0 in X, i.e.Br = {x ∈ X | ‖x‖X ≤ r } .

Since X is reflexive, the set Br is weak-compact thanks to the Banach-Alaoglu theo-

rem.

Let A1 = B1 and for any n ≥ 1 let An+1 = Bn+1 \ Bn. Notice that the space X

can be exhausted with the disjoint family (An)n≥1. Since the measure is countably

additive we have
∞∑
n=1

µ(An) = µ(X) <∞ .

For any ε > 0, there exists some N such that

∞∑
n=N+1

µ(An) < ε ,

hence µ(BN) > 1− ε and BN is compact.

Assume now that µ is regular. For any B ∈ B let Fε be a weak-closed set such

that µ(B \ Fε) < ε
2 and let Kε be a weak-compact set such that µ(Kε) > 1− ε

2 .

Consider the set C = Fε ∩Kε ⊂ B a weak-compact set satisfying µ(B \ C) < ε,

hence µ is Radon.

Theorem A.0.3. Let X be a reflexive and separable Banach space. If (µn) is a

tight sequence of regular probability measures, then it admits a weak convergent sub-

sequence.
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Proof. If X is separable and reflexive, for any r > 0 the closed ball of radius r,

Br, is weak-compact. Moreover, when endowed with the subspace topology it is a

metrizable topological space. See [25]. Assume all Br have been endowed with a

metric.

From the Banach-Steinhaus theorem, any weak-compact subsetK ⊂ X is bounded,

hence it is a subset of Br for some r > 0. Moreover, since Br is a metric space, then

K is a compact metric space as well.

From Lemma A.0.2 the family of regular probability measures is a family of Radon

measures. Since X is completely regular, see [25], and due to Theorem 8.6.7 in [4] we

conclude that the sequence (µn) admits a weakly convergent subsequence.

Recall that, given a separable Banach space X, its dual X∗ when endowed with

either the weak or weak-? topology is a completely regular locally convex topological

space, see [25]. We use this fact to rewrite must of the results needed from [31] that

usually hold for completely regular topological spaces.

Theorem A.0.4. Let X be a separable Banach space, and let µ1 and µ2 be probability

measures on (X∗,BX∗). If µ̂1(x) = µ̂1(x) for any x ∈ X, then µ1 = µ2.

The following results is essential in analyzing the weak-convergence of measures

on infinite-dimensional topological vector spaces. For a more general result, see [31,

Chapter IV, Theorem 3.1].

Theorem A.0.5. Let X be a separable and reflexive Banach space. Let (µn) be a

sequence of probability measures on (X,B), regular with respect to the weak topology

of X. Let (µ̂n) be the corresponding sequence of characteristic functionals of (µn).

Finally, let Φ be a functional X∗ → C.

If the sequence (µn) is weakly relatively compact, and (µ̂n) converges pointwise

to Φ, then the whole sequence (µn) is weakly convergent to a measure µ, moreover

µ̂ = Φ.
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Proof. Let µ be any limit of the sequence (µn), i.e.there is a subsequence µnk weakly

convergent to µ.

For any y ∈ X, the map x 7→ ei Re(〈x,y〉) is continuous with respect to the weak-?

topology of X, on the subsequence µnk we have

µ̂nk(y) =
∫
X∗
ei Re(〈x,y〉)µnk(dx) k→∞−−−→

∫
X∗
ei Re(〈x,y〉)µ(dx) = µ̂(y) .

Since the sequence µ̂n converges pointwise to Φ, we have µ̂(y) = Φ(y). This is

true for any limit point of (µn), due to Theorem A.0.4 any two limits are the same,

hence (µn) has only one limit point.

Lemma A.0.6. Let (X, ρ) be a complete separable metric space. There exists a

countable family of bounded uniformly continuous functions, closed under multiplica-

tion which strongly separates points of X.

Proof. Consider the following functions {gyn,k(·) = (1 − kρ(·, yn) ∨ 0}, where k ∈ N

and yn runs through the dense sequence in X. This family itself strongly separates

points, see example after Lemma 4 in [3]. Define Φ as the family of functions gyn,k

and all of their finite products.
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