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We develop the continuous time version of the particle model studied in [13]. The evo-

lution is described by a pure jump, continuous time Markov process on the space of words

of length L with a size N alphabet. Words change randomly in search of a preferred state,

here the vector zero. In genome population models, this is the genome presenting selec-

tion advantage [21]; in cancer development, it is a state of a damaged gene by deleterious

mutations, and in epidemiological models the number of infected individuals in the pop-

ulation. In the last two models, the characters in the preferred word have a probability �

of returning among ordinary states. It will turn out to be essential that � depends on the

configuration, leading to an interacting particle system. We investigate the scaling limit

of the empirical measure, and study several types of random perturbations, together with

applications. Chapter 1 presents the mathematical model. Chapter 2 proves the Fluid Limit,

i.e. a Law of Large Numbers for a (random) dynamical system; Chapter 3 determines the

Fluctuation near Equilibria, a fine scale (second order approximation) result; and Chap-

ter 4, titled Generalized Logistic Equation with Noise, explores the relationship between

quasi-stationarity and stable equilibria, a random perturbation question.
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List of Frequently Used Notation and

Symbols

A Infinitesimal generator of a continuous Markov process.

Cb(a, b)
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nite) interval (a, b).

Ck[a, b] Functions with k continuous derivatives up to the boundary.

Ck
c(a, b) Space of functions in Ck(a, b) having compact support.

D([0,1),X)
The Skorohod space of right-continuous with left-limit

paths (rcll, cádlág) endowed with the J1 topology.

Px The probability law of a process starting at x.

S The alphabet ZL
N , L 2 N.

X
A Polish space denoting the state space of an stochastic

process.

Z A word (vector) in the space S .

Z j The jth Component of the vector Z = (Z1, . . . ,ZL).

Zt, (Z j
t )

The process indexed by time t � 0 (its jth component) with

state space S 3 Z.

vi



Z
j(k)

The vector Z, as defined in (1.1), with the jth component

updated with the letter k 2 ZN .

ZN The set {0, 1, ...,N � 1}.
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Chapter 1

Introduction

1.1 Markov Processes in Genetics

We begin this introduction with a brief presentation of the theory of Markov processes used

in connection with the study of genetics, population evolution and biological models.

We follow Norris [17] together with the modern mathematical population genetics

monograph by Ewens [7], and the recent survey by Durrett [6] for a brief history of these

ideas.

A gene represents a configuration of a chromosome, typically evolving under mutation,

which is assumed random in various setups. The term allele means a single state in the set

of possible mutations of a chromosome. The Wright-Fisher model was introduced in the

thirties to study alleles inheritance. In every generation there are a fixed number of alleles

of two types. The type of alleles in a given generation is obtained by selecting randomly

among the types in the previous generation. Evolution follows a Markov chain in the set of

alleles.

1
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The Moran model proposes a birth-and-death model consisting of individuals of two

types, in which, at time n, we choose randomly an individual from the population and add

an individual of the same type, then we choose again an individual from the population and

remove it. This process determines the population at time n + 1.

A very popular tool in the study of genetics evolution is the Theory of branching pro-

cesses. The first model was introduced by Galton and Watson in the 1870s for the study of

family names survival. (For a classical references about this subject we indicate the reader

to Harris [11] and Athreya and Ney [1].) Many other models inspired by this theory have

been developed throughout the years. For instance, Durrett et al. [5, 6], proposes multi-type

branching processes with mutations as an alternative to the study of cancer development.

In his set up, there are several types of cells. Cells of type i follow a birth-and-death pro-

cess, and in addition, give birth to individuals of of type i + 1 at a certain rate, producing

mutations. He examines the time of the first type k mutations.

We find appropriate to mention the excellent book by Ewens (2004) titled Mathematical

Population Genetics, and invite the reader to research it as an introductory reference source

in many contemporary areas of study in the field of genetics. Of particular interest to

us is the use of the theory of di↵usions as an approximation tool of Markov Chains; in

particular, the Wright-Fisher and Moran models, initiated by Feller [8] with the celebrated

Feller di↵usion.

We follow a similar strategy and approximate continuous time Markov processes. How-

ever, our work is focussed on the scaling limit (fluid/hydrodynamic limit) of a generalized

discrete logistic equation and its random perturbations.

Our study of evolutionary population models, with genetics and epidemic interpreta-

tions, is not based on branching processes theory. Instead, the problem of gene mutation

is examined following [21] and expands on the ideas from [13], were evolution is modeled
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via a Markov chain on the space of alleles acting independently except at a special fixation

site. Among other things, we work in continuous time. In the discrete setting the scaling

limit may reach chaotic behavior [16], but that is absent in our setup.

1.2 Previous Work

An important theme in genetic models is scaling, which links the microscopic to the macro-

scopic dynamics and the transition between random and deterministic. A vast literature

exists (see Ewens [7] for genetics and De Masi et al. [4] for scaling limits). We shall focus

on a particular model we develop in the present work. In [21] the expected value of time

needed for a certain gene mutation to occur is calculated explicitly with a combinatorial

argument. The model assume an “in-parallel” evolutionary process. More precisely, evolu-

tion is described as the process of guessing a preferred word of length L with letters from

an alphabet of size N. Here, the “in-parallel” assumption means that if, at any round of

guessing, here done by mutation, we select some letters correctly, then we keep these and

only update the remaining letters. To simplify, the preferred word will be the vector zero.

The characters are independent and as soon as one reaches zero, fixation occurs, and that

character never moves away. This is called the ratchet e↵ect in genetics. The asymptotic

value as L ! 1 of the time for evolution ⌧ is studied, this is defined to be the first time to

reach a prescribed word of length L using an alphabet with N letters. If the time necessary

to reach the preferred word is of large order in L, evolution is not realistic. However, here it

amounts to the maximum of L independent geometric random variables. Naturally, it is the

minimum that is trivial; the maximum proves to have expected time E[⌧] ⇠ N ln(L), which

is “short” in L, and provides an elegant but simple argument for the feasibility of evolution.

An extension of the model in [21] is considered in [13], where fixation is not certain,
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characters having a probability � � 0 to escape zero; the [21] case corresponds simply to

� = 0. It is at this point that the model becomes suitable to other interpretations, as the

accumulation of deleterious e↵ects leading to cancer and the epidemiological view based

on contamination/recovery controlled by the same �. Both are discussed in detail in Section

2.3.

We note that as long as � = constant (uniform model), the characters evolve indepen-

dently. With configuration dependence we enter the realm of interacting particle systems.

Now probability � is allowed to be a function of the whole configuration vector, more

precisely depending on the average of the configuration (interacting case, mean-field).

Theorem 3 in [13] shows that the empirical measure converges to the solution of a dis-

crete logistic equation with possible nonzero steady state. We start our work with Theorem

2.5, which proves the analogue result in continuous time, with limit defined by a general-

ized logistic equation (deterministic).

1.3 Main Results

As we explained, the presence of escape probability � is central to our problem and allows

us to cover, besides evolutionary models (genetics), a cancer development model and the

propagation of infectious diseases (epidemiology).

We develop the continuous time version of the model studied in [13] deriving its fluid

limit, and studying several types of random perturbations, together with applications.

In our setting, the evolution is described by a pure jump, continuous time Markov pro-

cess in which each ordinary letter waits an exponential time and then updates by selecting

a new character in the alphabet uniformly. Those letters matching the characters in the

preferred word have a probability � of returning among ordinary states, and, conditional on
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that, distribute uniformly. The number of particles is L and the alphabet has size N, where

L! 1 is the scaling factor. As before, it will turn out to be essential that � depends on the

configuration, leading to an interacting particle system (cf. De Masi et al. [4] and Landim

[14]).

The thesis presents the mathematical model in Chapter 1 and pursues its study on three

main topics divided into the other chapters: Chapter 2, regarding the Fluid Limit, i.e. a

Law of Large Numbers for a (random) dynamical system; Chapter 3, presenting the Fluc-

tuation near Equilibria, a fine scale (second order approximation) result; and Chapter 4, on

the Generalized Logistic Equation with Noise, exploring the relationship between quasi-

stationarity and stable equilibria, a random perturbation question.

1.3.1 Fluid Limit and Applications to Biology

Our first result, Theorem 2.5, is the continuous version of Theorem 3 in [13]. We show that

the empirical measure converges to the solution of the deterministic generalized logistic

equation (2.8).

Section 2.3, while not listed separately, illustrates the main applications, and could

figure as a main result in in its own right. We believe it provides a simple pattern, yet

rich enough to make sharp di↵erences between regimes of recovery, define the interven-

tion time, intensity of the disease and treatment. Equation (2.8) is analyzed in the light of

population evolutionary models. We interpret the parameters c to be the intensity of treat-

ment, and a to be the intensity of the disease. We let � to follow, as before, the power law

�(u) = cua. This gives enough flexibility to study several regimes when a < 1 and a � 1

with one, respectively two stationary solutions, as well as the complete picture when there

are two equilibrium points. A discussion about recovery, successful treatment, success-
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ful detection, among other topics is presented in Section 2.3.8, which summarizes these

results.

1.3.2 Fluctuation Near Equilibrium

A di↵erent scaling is introduced to study behavior of the system (2.8) around its equilib-

rium points u0. It is shown that, under mild regularity conditions for the direction field

function H(u) introduced in (2.7), the system behaves as an Ornstein-Uhlenbeck di↵usion

(henceforth OU). This is our second main result, stated in Theorem 3.1. It is related to

slow-fast dynamical systems, see Berglund et al. [2], p 9. We note that our peturbation is

not obtained by superposing noise - it comes instead directly from the underlying Markov

process before the scaling factor L goes to infinity.

The value of this approach rests in the fact that, in contrast with the fluid limit case (2.8),

here it is possible to cross a stable point u0 and reach high values even when starting from

below u0. This is important in applications. Of course, the opposite is possible, namely

to cross the singularity from above. For instance, it would be interesting to study the

dependence on noise and other parameters of the probability to escape on the positive side

when the initial value is negative. On the other hand, at stable points, the intensity is

negative and the OU process is recurrent, with well known invariant measure, which allows

many explicit calculations see [3].

1.3.3 Generalized Logistic Equation with Noise

In Section 4 we allow randomness in equation (2.8) in the form of a noise term. To make

clear, the scaling from Subsection 1.3.2 was possible only at equilibrium points. To take

advantage of noise at other points, we need to superpose it in the usual way.
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The influence of such noise is determined by a coe�cient �, taken to be constant in this

treatise but proposed to be depending on space and/or time in future research. This gives

rise to the stochastic di↵erential equation (4.2). We impose boundary conditions related

with the biological interpretation suggested in Chapter 2.

When the noise is absent, a generalized logistic equation governs the limiting process.

For a small noise, the process is a di↵usion absorbed at zero. All equilibria of the ODE,

with the exception of zero, are now absent from the picture. We conjecture that their

presence is felt as points of higher mass for the Quasi Stationary Distribution (qsd) which

is defined in Chapter 4. More specifically, when the noise tends to zero, the qsd, which

depends on the noise (a function of the size of the di↵usion coe�cient), should approach

a discrete distribution concentrated at stable points. Since we only have one interior stable

point, according to Section 2.3.3, the qsd approaches the Dirac distribution at that point.

This is our conjecture given in Theorem 4.1.

Three questions are posed: the question of extinction (reaching the particular state 0)

of the solution process of (4.2); the existence and uniqueness of the quasi-stationary distri-

bution (qsd); and the asymptotic perturbation result described in the preceding paragraph.

The question of extinction is answered in Proposition 4.2. It is shown that the solution

process of (4.2) goes extinct with probability one. A formula for the time of extinction is

included in Proposition 4.3.

To answer the second question we use the theory of Sturm-Liouville compact operators.

Theorem 4.4 proves the existence and uniqueness of the quasi-stationary distribution.

For the last question, numerical analysis is included in order to justify the conjecture

from Theorem 4.1 in Section 4.6.2. Particular solutions of the Sturm-Liouville problem

are computed for di↵erent values of �: a = 0 (linear drift) in Figure 4.3, but we emphasize

the non-linear case depicted in Figure 4.6.
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1.4 Mathematical Model and Notations

This follows a genetic model introduced in [21] aimed at estimating the so called time for

evolution as a function of the genome length. The case was to prove that random mutations

can lock in a certain configuration in logarithmic, and thus, achievable time.

This simple model is extended in [13] by allowing a small probability of mutation

after reaching the preferred evolutionary state, in [13] it is considered the case when all

values are zero. In the present work, the evolutionary biology aspect is not pursued, instead

we shall apply the same mathematical construction to analyze cell pathology and possible

recovery, as well as the parallel epidemiological model.

Consider the set of alleles of length L with N possible types, which are determined by

chromosome structures. Mathematically, this set can be described as the set of words of

length L formed with letters from an alphabet of size N, both positive integers. We will

represent the alphabet as ZN = {0, 1, ...,N � 1}, as N � 1 and the set of words of length

L � 1 using the alphabet by S = ZL
N . This will be the state space of a pure jump continuous

time Markov process (ZL
t )t�0.

For convenience, we chose 0 2 ZN (zero) as the singular value of interest. The evolution

depends on the number of letters equal to this special value.

We denote the vectors, or words, in S by bolded upper case letters (e.g. Z
L
2 ZL

N), while

a component is denoted by regular upper case letters with super indexes (e.g. Z j
2 ZN). For

a given vector Z
L = (Z1, ... ,ZL) 2 S , the notation Z

j(k) represents the vector Z
L with the

jth component updated with the letter k 2 ZN . i.e.

Z
j(k) = (Z1, ..., k|{z}

jth

, ... , ZL) (1.1)
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Let us denote by Z j
t 2 ZN the jth component, 1  j  L of the configuration at time

t � 0 of the vector Z
L
t = (Z1

t , ...,ZL
t ).

In the model, the standard construction via exponential holding times (i.e. Poissoniza-

tion)

Definition 1.1. The evolution of the process is given by the transition matrix (1.2) - (1.4).

• Holding times between jumps are i.i.d. exponentials with intensity �(Z) ⌘ L.

• At a jump time ⌧, one component j, 1  j  L is chosen with probability 1/L

(uniformly) and gets updated;

• conditional on the fact that component Z j
⌧� , 0, it changes uniformly to any value in

the alphabet, including 0, that is

Z j
⌧ = k with probability

1
N
, for all k 2 ZN , (1.2)

• while, conditional on Z j
⌧� = 0, it changes to

Z j
⌧ = k with probability

G(Z⌧�)
N � 1

, when k , 0 , (1.3)

Z j
⌧ = k with probability 1 �G(Z⌧�) , when k = 0 . (1.4)

Here 0  G(V)  1 (to be defined later) is a function depending on the configuration

V
L
2 ZL

N , e.g. V
L = Z⌧�.

In the next chapter we define the infinitesimal generator of the pure jump process

(Proposition 2.7). It is standard to assume (cf. [22]) that the pure jump process (ZL
t (!))t�0
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is defined on a filtered probability space (⌦,F , (Ft)t�0,P), where the filtration (Ft)t�0 sat-

isfies the usual conditions. Moreover, with probability one, the paths of the process belong

to the Skorokhod space D([0,1),RL).

This process will be called the microscopic particle system. To simplify notation, we

suppress the superscript L, as well as the random element ! 2 ⌦, henceforth denoting the

process Z
L
t (!) as Zt.

Remark. We notice that if G(·) is a constant, the components are independent. In [21],

the state equal to the zero vector 0 = (0, ..., 0) 2 S models an ideal state of the random

evolutionary model, the only one where fixation is possible, and the expected time to reach

it is calculated with an exact asymptotic formula as L ! 1. The nonzero value for G was

introduced in [13].

We introduce the associated process Ut = U(Zt) =
PL

j=1 1(Z j
t ,0). This is the process

equal to the number of non-zero components of the vector Zt 2 S . If, in addition, there

exists � : [0, 1]! [0, 1] continuous such that

G(Zt) = �
✓Ut

L

◆
, t � 0 , Zt 2 S , 0  Ut  L , (1.5)

then Ut, t � 0, corresponding to Zt, is a Markov chain on the space {0, 1, ..., L}.

As established in [13], the generating function of the transition probabilities associated

to the process U⌧, at a jump time ⌧ is given by,

E
⇣
sU⌧ |U⌧� = U

⌘
=

 
1
N
+

 
1 �

1
N

!
s
!U ✓

1 � �(
U
L

) + �(
U
L

)s
◆L�U

. (1.6)

In other words, after jump, U⌧ is the sum of two independent binomials, one with
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U = U⌧� trials and probability of success (to remain non-zero) 1 � 1
N , and one with L � U

trials corresponding to the zero components, with probability of success (i.e. to convert

into a non-zero character) equal to �(U
L ). The presence of the factor L at the denominator

indicates dependence on the empirical measure (relative frequency) of the state 0, as in

uL
t = uL(Zt) =

Ut

L
=

1
L

LX

j=1

1(Z j
t ,0) . (1.7)

This points out a mean-field dependence, leading to the natural scaling of a Law of Large

Numbers. When in time-dependent setup and established for dependent particles, such a

scaling limit is known as a fluid limit. The empirical measure of the zero states, here simply
Ut
L , converges in probability to the deterministic solution of an ode (2.8).

This is our first result, Theorem (2.5). It is the continuous time analogue of Theorem

(3) in [13].



Chapter 2

Fluid Limit

2.1 Preliminaries

We begin by stating some general definitions and propositions which are necessary for the

development of the theory presented below.

Definition 2.1. Let (⌦,F ) be a sample space. A family Ft = {Ft | t � 0} of �-algebras such

that for all t � 0, Ft ⇢ F and

0  s < t =) Fs ⇢ Ft

is called a Filtration on (⌦,F ).

In general every process (Xt) induces a filtration F̂t = �̂(Xs , 0  s  t), the �̂-algebra

induced by the truncated process {Xs, 0  s  t}. The notion of a filtration Ft can be

thought as information up to time t.

12
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We prefer to work with processes that take into consideration this information and, in

some cases, might not depend on it. The following definition presents an special type of

processes that behave in the above mention manner.

Definition 2.2 (Martingales). Let (⌦,F ,P) be a probability space. An stochastic process

(Mt)t�0 is a martingale with respect to a filtration Ft if

(i) 8x 2 R, {! : Mt(!)  x} 2 Ft (i.e: Mt is Ft - measurable for all t � 0);

(ii) E(|Mt|) < 1 for every t � 0;

(iii) E(Mt|Ms) = Ms for s  t.

Let X be the state space. In the most general case X can be taken a Polish space, i.e. a

complete separable metric space. In our applications, the state space is a subspace of Rd,

in some cases d = L and in other cases d = 1. In this setup, we assume X has a norm,

denoted by || · ||.

A pure jump Markov process on X is defined by its generatorA. Let p(x, dy), with the

property p(x, {x}) = 0, be a family of probability measures on the state space, measurable

in x, in the sense that

x!
Z

g(y)p(x, dy) is measurable for any g 2 Cb(X)

and �(x) � 0 be measurable functions, uniformly bounded by a constant supx2X �(x) 

||⇤|| < 1. Then, for any g 2 Cb(X), let

Ag(x) = �(x)
Z

(g(y) � g(x))p(x, dy) . (2.1)

It is a standard construction to obtain (Yt)t�0, on a probability space (⌦,F ,P), adapted
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to a filtration (Ft)t�0. filtration Conditional on being at state x, the process has holding time

of intensity �(x) and jumps instantaneously to a random point Y with distribution p(x, dy).

We can assume the filtration satisfies the usual conditions.

Associated to the generator, two fundamental martingales emerge.

Proposition 2.3 (Appendix 1 in [14]). For every g continuous and bounded, the processes

Mg
t = g(Ys) � g(Y0) �

Z t

0
Ag(Ys)ds (2.2)

Ng
t =

�
Mg

t
�2
�

Z t

0

h
Ag2(Ys) � 2g(Ys)Ag(Ys)

i
ds (2.3)

are martingales w.r.t the filtration (Ft)t�0.

This is true for more general Feller processes, but in this case the underlying process

(Yt) is a pure jump process, then

hMg
it =

Z t

0
�(Ys)

Z

X

p(Ys, dy) (g(y) � g(Ys))2 ds. (2.4)

Remark. The integrands in (2.2)-(2.4) depend on the process at time s�, not s; for

example Ys should be Ys� throughout. However, from the Lebesgue-Stieltjes integration by

parts formula, because ds, the Lebesgue measure, is continuous, the values coincide over

the jump.

Pure jump processes, and a large class of Feller processes can be canonically con-

structed on the Skorokhod spaceD([0,1),X) of right-continuous with left-limit paths (rcll,

also known as cádlág). Tightness is the notion of pre-compactness of probability laws de-

fined by Prokhorov’s theorem.
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Definition 2.4. A sequence of processes (YL
·

)L>0 on a Polish space (X, || · ||) with right-

continuous with left limits paths (in the Skorokhod space) is C-tight, if for any T � 0

(i) lim
M!1

lim sup
L!1

P
⇣
||YL

T || > M
⌘
= 0 and (2.5)

(ii) 8 ✏ > 0 lim
�!0

lim sup
L!1

P
⇣

sup
t,t02[0,T ],|t0�t|<�

||YL
t0 � YL

t || > ✏
⌘
= 0 . (2.6)

C-tightness refers to the fact that the family of processes indexed by N > 0 is not only

tight as a family on the Skorokhod space with the J1 topology, but in addition, any limit

point is continuous. This result is standard in proving convergence of pure jump processes

to processes with continuous paths, as either di↵usions or simply solutions of classical

di↵erential equations. See for instance the general treatise [14] and a similar derivation in

[24].

2.2 Statement and Proof of Theorem 2.5 (Fluid Limit)

With �(u) defined in (1.5), let

H(u) :=
 
�

1
N

!
u + �(u)(1 � u) , 0  u  1 . (2.7)

Theorem 2.5. Assume that uL
0 =

U0
L converges in probability, as L ! 1, to the determin-

istic state ū 2 [0, 1] and � = �(u), 0  u  1 from (1.5) is continuous. Then, as L ! 1,

the Markov process with state space [0, 1] equal to u(L)
t = Ut

L for all t � 0, converges in
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distribution to the deterministic process (ut)t�0 on [0, 1], equal to the unique solution of

du
dt
= H(u) , u(0) = ū . (2.8)

Remark. Notice that since 0  �(u)  1, we can see that u(t)  max{ū, N
N+1 }  1.

However, u(t) may reach zero (extinction) in finite time (if zero is not an equilibrium) or

approach it arbitrarily closely.

The proof of Theorem 2.5 will be done in multiple steps.

Step 1. We write the action of the generator A, of the underlying pure jump process

(Zt) defined by (1.2)-(1.4), on the empirical average (uL
t ). I.e. we want to know how the

generator acts on test functions of the form g(Zt) = f (uL(Zt)). Since uL(Zt) 2 [0, 1] by

construction, we may adopt functions f 2 C2([0, 1],R) and consider their extensions to the

space of functions with compact support C2
c (R,R).

Step 2. We find uniform bounds for the formula of the generatorA and for the quadratic

variation of the martingale process M f ,L
t , associated with (uL

t ), given by formula (2.2).

Step 3. We prove that the process (uL
t ) is C-tight as in definition (2.4). This implies that

the sequence of probability laws of the process (uL
·
) has a convergent subsequence to a limit

probability law.

Step 4. In step four, we prove that any limit probability law of the sequence (uL
t ) must

solve the initial value problem (2.8). Existence and uniqueness of solutions for ordinary

di↵erential equations gives that there is a unique accumulation point for (uL
t ). Thus, we

conclude that the sequence (uL
t ) is convergent, to the unique solution of (2.8). The type of

convergence is proven to be in probability, more precise



17

Definition 2.6. A sequence of processes (YL
·

)L>0 on a Polish space (X, || · ||) converges in

probability to (Y·), uniformly in finite time, if for any T > 0, the process t ! (YL
t )t�0 satisfies

that, for every ✏ > 0

lim
L!1

P
⇣

sup
t2[0,T ]

||YL
t � Yt|| > ✏

⌘
= 0 . (2.9)

Step one: Action of the generator

We now apply the general theory to the process (Zt) from Definition 1.1. Let’s denote

by P(Z, Z̃) the transition probability from Z to Z̃. Notice that �(x) are constant equal to

one. The generator of the process Zt, applied to a function F : S ! R, is given by

A
LF(Z) =

X

Z̃2S

P(Z, Z̃)
⇣
F(Z̃) � F(Z)

⌘

=

LX

j=1

N�1X

k=0

P(Z,Z j(k))
⇣
F(Z j(k)) � F(Z)

⌘

=

LX

j=1

N�1X

k=0

1
N

⇣
F(Z j(k)) � F(Z)

⌘
1(Z j,0) +

LX

j=1

N�1X

k=1

G(Z)
N � 1

⇣
F(Z j(k)) � F(Z)

⌘
1(Z j=0) +

+

LX

j=1

(1 �G(Z))
⇣
F(Z j(0)) � F(Z)

⌘
1(Z j=0) .

(2.10)

Proposition 2.7. The matrix

Q(Z, Z̃) = �(Z)P(Z, Z̃) , if Z̃ , Z and � Q(Z,Z) =
X

Z̃,Z

P(Z, Z̃)

is a Q-matrix in the sense of Definition A.6 in the Appendix.
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Proof. The proposition is easy to verify since the state space is finite and the probabilities

are non-negative and the intensities are all constant equal to L. ⇤

We now turn to the process uL
t is Markov with Q-matrix given by (1.6). We recall that

at jump time, the evolution of uL
t depends on the change in the components Z j

⌧�. Each

Z j
⌧� , 0 could become 0 with probability 1

N ; while each Z j
⌧� = 0 could become not zero

with probability �(uL
t ). Hence, provided that there is a change in any component of the

vector Z⌧, the scaled process uL
t might remain unchanged or change by a factor of 1

L . The

precise description is that for a given state Z,

given that Z j , 0

uL(Z j(k)) = uL(Z) if k , 0

uL(Z j(k)) = uL(Z) � 1
L if k = 0

and if Z j = 0
uL(Z j(k)) = uL(Z) + 1

L if k , 0

uL(Z j(k)) = uL(Z) if k = 0

Let uL = uL(Z), and T be the family of functions F such that F(Zt) = f (uL(Zt)) with

f having compact support containing the closed interval [0, 1]. Then it is the case that the

generator acts over the family of test functions T as

A
L f (u) = �

LX

j=1

"
1
N

 
f (uL
�

1
L

) � f (uL)
!

1(Z j
t ,0) + �(uL)

 
f (uL +

1
L

) � f (uL)
!

1(Z j
t =0)

#

= L�
"

1
N

 
f (uL
�

1
L

) � f (uL)
!

uL + �(uL)
 

f (uL +
1
L

) � f (uL)
!

(1 � uL)
#
.

(2.11)

Step two: Uniform bounds forAL f (uL
t ) and ML, f

t

We begin to work on the bound for (2.15). We begin by developing the function f
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around the point uL
t using the Taylor formula with remainder of order two.

f (uL
t ±

1
L

) � f (uL
t ) = ±

1
L

f 0(uL
t ) + R±1 (uL

t ) (2.12)

where R±1 (uL
t ) = 1

2

⇣
±

1
L

⌘2 R 1
0 w f 00(uL

t + (1 � w)(± 1
L )) dw. We note that, since f has compact

support, the integral in the remainder is uniformly bounded, thus R±1 (uL
t ) 2 O( 1

L ). Replacing

into (2.15) and collecting all terms we have

A
L f (u) = L�

"
1
N

 
�

1
L

f 0(uL
t ) + R�1 (uL

t )
!

uL
t + �(uL

t )
 

1
L

f 0(uL
t ) + R+1 (uL

t )
!

(1 � uL
t )
#

= �H(u) f 0(u) + c( f , u, L) , |c( f , u, L)|  c( f )L�1 ,

(2.13)

where c( f , u, L) is the error term, which collects all expressions involving the Taylor re-

mainders R±1 (uL
t ), and c( f ) > 0 is a constant depending only on f , obtained form the re-

mainder of the Taylor formula R±1 (uL
t ) applied to f . We obtain the important uniform bound

onAL f (u),
���AL f (u)

���  �c( f 0) + c( f )L�1 (2.14)

We now focus on the uniform bound for the quadratic variation of the martingale pro-

cess ML, f
t = f (uL

t ) � f (uL
0) �

R t
0 A

L f (uL
s ) ds. Recall that for continuous jump processes the

quadratic variation can be computed by formula (2.4). This formula, combined with (2.15)

gives that the quadratic variation can be expressed by

hML, f
it = �

LX

j=1

2
66664

1
N

 
f (uL

t �
1
L

) � f (uL
t )
!2

1(Z j
t ,0) + �(uL

t )
 

f (uL
t +

1
L

) � f (uL
t )

!2

1(Z j
t =0)

3
77775
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A similar development in Taylor expansion for hML, f
it, as for the generator, gives that

hML, f
it = L�

2
66664

1
N

 
f (uL

t �
1
L

) � f (uL
t )
!2

uL
t + �(uL

t )
 

f (uL
t +

1
L

) � f (uL
t )
!2

(1 � uL
t )

3
77775

= L�
2
66664

1
N

 
1
L

f 0(uL
t ) + R�1 (uL

t )
!2

uL
t + �(uL

t )
 
�

1
L

f 0(uL
t ) + R+1 (uL

t )
!2

(1 � uL
t )
3
77775

=
1
L
�

"
1
N

⇣
f 0(uL

t ) + L R�1 (uL
t )

⌘2
uL

t + �(uL
t )

⇣
� f 0(uL

t ) + L R+1 (uL
t )

⌘2
(1 � uL

t )
#
.

(2.15)

Where the expressions R�1 (uL
t ), R+1 (uL

t ) are the remainders in the Taylor formula (2.12),

hence are of order O( 1
L2 ). Thus, the quadratic variation comprises only jumps of size 1

L . We

concluded that |hML, f
it| <

1
LC, where the constant C depends only on the derivatives of f .

Thus, the bound is uniform in ! and time, and ut 2 [0, 1].

Step three: Tightness of the process uL
t

We now can show that for any test function f 2 T , the process YL
t = f (uL

t ) is C-tight.

Condition (i) in (2.5) is trivial because uL
t 2 [0, 1] and f has compact support without

further restrictions necessary.

Condition (ii) in (2.6) is implied by Markov’s inequality and the fact that AL f (uL
s )

is uniformly bounded by (2.14). So we let � > 0 and on the interval [0,T ], we choose

0  t < t0  T such that � > t0 � t. We have

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

������

Z t0

t
A

L f (uL
s )ds

������ > ✏

1
CCCCCCCCA 

1
✏
E

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

Z t0

t
|A

L f (yL
s )| ds

1
CCCCCCCCA 

1
✏

⇣
�c( f 0) + c( f )L�1

⌘
�.

Hence,

lim
�!0

lim sup
L!1

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

������

Z t0

t
A

L f (uL
s )ds

������ > ✏

1
CCCCCCCCA = 0.
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To obtain (2.6) for the martingale ML, f
t , we apply the Doob’s L2-norm maximal inequal-

ity for the square norm on [t, t0], taking without loss of generality 0  t  t0  T . We use

formula (2.3) for the martingale M f ,L
t0 �M f ,L

t and the uniform bound obtained in (2.2). More

precisely

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���M f ,L
t0 � M f ,L

t

��� > ✏

1
CCCCCCCCA 

1
✏2E

✓���M f ,L
t0 � M f ,L

t

���2
◆
=

1
✏2E

⇣���hM f f , Lit0 � hM f ,L
it

���
⌘


�

✏2L
C.

Hence

lim
�!0

lim sup
L!1

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���M f ,L
t0 � M f ,L

t

��� > ✏

1
CCCCCCCCA = 0.

Proposition 2.8. The processes (uL
t )t�0, indexed by L 2 N, are C-tight.

Proof. We have shown that both the martingale M f ,L
t and the integral term

R t
0 A

L f (uL
s )ds

are C-tight, hence f (uL
t ) is C-tight for any f continuous and with compact support. Since

the process uL
t 2 [0, 1], we can take any f such that f (u)|[0,1] ⌘ id(u)|[0,1], having compact

support. We obtain that (uL
t )t2[0,T ], indexed by L, is C-tight.

⇤

Step four: Limit distribution of the process uL
t

Denote, for ut, t 2 [0,T ], written simply as u·, an rcll path in the Skorokhod space

 (u.) :=
������ f (ut) � f (ū) �

Z t

0
H(us) f 0(us) ds

������ (2.16)

In view of the bounds |c( f , uL
t , L)|  c( f )/L in (2.13), and |hML, f

it| <
1
LC from (2.15),
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toguether with the fact that the process Ng
t , defined in (2.3), is a martingale we obtain that

E[ (uL
·
)] = E

"������ f (uL
t ) � f (ū) �

Z t

0
H(uL

s ) f 0(us) ds �
Z t

0
c( f , uL

s , L)ds +
Z t

0
c( f , uL

s , L)ds
������

#

 E
h
|M f ,L

t |
i
+ E

"������

Z t

0
c( f , uL

s , L)ds
������

#


q
E

h
|M f ,L

t |
2
i
+ Tc( f )

1
L

=

q
E

h
hM f ,L

t i
i
+ Tc( f )

1
L


r
C

1
L
+ Tc( f )

1
L
.

Thus we obtain that

lim
L!1

E
h
 (uL

·
)
i
= 0 . (2.17)

Given that  is a bounded continuous functional on the Skorokhod space (see [24]), let u·

be a limit point of the C-tight family uL
·
. Then E[ (u·)] = 0, implying that, with probability

one, the possibly random continuous process u· satisfies

f (u(t)) � f (ū) �
Z t

0
H(us) f 0(us) ds = 0 .

This identity is valid for any f 2 C2
c (R); in particular taking f (u)|[0,1] ⌘ id(u)|[0,1] with

compact support once again, shows that any possible continuous limiting path solves

ut � ū �
Z t

0
H(us) ds = 0 ,

which is exactly (2.8) in integral form. The function H is continuous, so is u·, thus the

integrand is continuous, implying that ut is di↵erentiable in classical sense. We proved that

any limit point solves the ode (2.8). Moreover, H is a Lipschitz function, having continu-

ous derivative on [0, 1], proving uniqueness of the solution. We proved that any limit point

must be equal to the unique solution to the initial value problem (2.8). Finally, the conver-
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gence takes place in distribution, to a delta function concentrated on the unique solution

of the ode. Convergence in distribution to a delta measure is equivalent to convergence in

probability. Because all along the convergence was uniform in time over [0,T ], T fixed but

arbitrary, we concluded the proof of Definition 2.6, and hence of the theorem.

2.3 Applications to Biological Models

Both the random process Ut (1.6) - microscopic - and its deterministic scaling ut shown in

(2.8) - macroscopic - can be used as population evolution models. Two main setups are

proposed: (i) the cancer development model and (ii) the epidemic model. Then Ut, out of

the total population L, is understood as the set of alleles in non-deleterious states in (i) and

as the non-infected population in (ii). After scaling, ut is the averaged value, consistent with

a law of large numbers for empirical measures, calculated out of a normalized population

of size one.

Equation (2.8) is valid for a general continuous function �(u). Since it is an autonomous

equation, we are interested in stability about the equilibria u, given by the solutions of

H(u) = 0. In both micro - and macroscopic models, we are still interested in the relation

between the solution and the sensitive state 0 (zero). For this reason, we shall adopt models

when �(0) = 0, so that u = 0 is an equilibrium point. In general, since the initial value ū is

non-negative and the equation is autonomous, the solution ut remains non-negative.

Evidently, a state of zero would be absorbing, as the intrinsic condition is that recovery

depends with positive co-relation on the non-deleterious/infected population ut. To satisfy

that assumption, the mathematical model proposed, for both cancer and epidemic examples,
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will be a power law for the probability of recovery

�(u) = cua , for 0  c  1 , a � 0 . (2.18)

The framework is as follows. In the natural state, the population follows (2.18) with

c = 0 (i.e: � ⌘ 0). This is the pre-intervention level. It is assumed hereby that an expo-

nential rate of aging/contamination (cancer and epidemic, respectively) drives the healthy

population down, towards eventual extinction, in the absence of treatment, here represented

by �(u). An empirical level u = ↵ 2 (0, 1) designates the detection threshold. It is only as

soon as u drops below ↵ that tests or symptoms make the disease detectable. At this point,

an intervention takes place, with a specific probability of recovery �(u) (2.18) depending

on the "healthy" proportion of the population u; the strength of the treatment c; and the

intensity or virulence of the disease a.

A couple of observations are in order to motivate the definition of �. First, notice that

this function is increasing in u meaning that, for bigger u our probability of recovery is

greater, consistent with u being the healthy proportion of the population. Also, if we fix

u > 0 and consider a ! 1, then the function �(u) = cua
! 0, thus the probability of

recovery reduces as the intensity of the disease increases.

Equation (2.8) depends on the logistic factor �(u). Since G(Z) from eq. (1.5) belongs to

[0, 1] macroscopically (before letting L! 1), it is the case that �(u) = cua
2 [0, 1] as well.

Thus, to avoid technical complications, we adopt c 2 [0, 1] while u 2 [0, 1]. As explained

in the previous paragraph, for a � 0, the power function is increasing in u but decreasing

in a, again consistent with the model interpretation. The particular cases a = 0 and a = 1

are studied in [13] in a discrete time setting. The continuous time case is briefly discussed

in subsections 2.3.5 (a = 0) and 2.5.1, Proposition 2.11 (a = 1).
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2.3.1 The Intrinsic Parameters

These are parameters intrinsic to a disease and its treatment. They are imbedded in the

recovery probability function �(u), i.e. the intensity of the disease, respectively of the

intervention, as well as N. In the cancer growth model setup, 1/N is the probability of a

deleterious mutation, a feature of aging, and intrinsic to the cell; c is the e↵ectiveness of the

intervention (treatment); a is the cancer type, or aggressiveness. In the epidemic model,

1/N is the contagiousness of the disease (e.g. probability to contract the virus); c is the

strength of a treatment of vaccine, and a is the virulence of the disease.

2.3.2 The Extrinsic Parameters

As opposed to the parameters defining the disease, these parameters are set independently.

We postulate two values ↵, � 2 [0, 1], where u = ↵ is the detectability level and u = � is

the quality of life, a satisfactory health threshold, especially in the cancer setting. In the

epidemic model it is the containment level, at which the population is considered out of an

epidemic state. It is natural to consider ↵ < �. The case ↵ � � is practically trivial and

prophylactic care would prevail, as it allows a priori early detection.

2.3.3 The Equilibrium Values

All cases in the power law model have at least one stable equilibrium in the interval [0, 1).

If c = 0, then u0 = 0 is the only equilibrium value (Subsection 2.3.4). If c > 0, then

(i) If a = 0, there exists only one equilibrium value u2 (Newton’s equation, subsection

2.3.5);

(ii) If a > 1, the number of equilibrium points of the system (2.8) will depend on

the parameter a, varying from only one equilibria to either two or three. In this case the
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point u0 = 0 is always a stable equilibrium. In the case of the presence of just another

non zero-equilibrium point u1, this will be half-stable. Finally, the case of three points

0 = u0 < u1 < u2 < 1, will exhibit u1 as unstable and u2 as stable - see Section 2.4.

(iii) If 0 < a  1, there exist two equilibrium values 0 = u0 = u1 < u2 < 1, where u0 is

unstable and u2 is stable - see Section 2.5.

2.3.4 Natural State of the System c = 0

A natural state of the system is when there is no intervention, i.e. c = 0. In this case, the

only dynamics is due to aging u(t) = u(0)e� 1
N t determined by the exponential rate of decay

1/N, with unique stable equilibrium at u0 = 0 (see Section 1.1 in [9]).

Remark. The equilibrium value u1 is a function of Nc and a, and thus �T is a function

depending on the dynamical system (2.8) and not just on the trivial exponential decay. This

time for detection successfully describes the interplay between the equilibrium point u1 and

the threshold ↵. Notice that if u1 > ↵ the time of intervention is negative, which means that

the detection was late.

We now start analyzing the power law model (2.18) case by case.

2.3.5 Case c > 0, a = 0

This borderline case, when a = 0 and c > 0, the solution is the so called Newton’s equation

(usually of temperature) approaching its unique stable nonzero equilibrium u2 = (1+ 1
Nc )�1

exponentially fast. In our interpretation, this permits an intervention since u2 > 0; yet, it is

successful only if u2 � � as c " 1.
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2.3.6 Case c > 0, a > 0

This is by far the most important case and is treated in detail in Sections 2.4 (a > 1),

respectively 2.5 (0 < a  1). We recall that the equilibrium points of the system (2.8) are

given by the zeroes of the function in (2.7). With the power law,

H(u) = cu f (u) , f (u) := ua�1(1 � u) �
1

Nc
, u 2 [0, 1] . (2.19)

Let u be an equilibrium point of the dynamical system (2.8), then H(u) = 0 which

implies that either u = 0 or, for the non-zero equilibrium points of (2.8), are the solutions

u > 0 of f (u) = 0. It will be shown that there are at most two 0 < u1  u2 < 1 such

solutions.

The analysis of the stability of the equilibrium points of (2.8) will require to determine

the sign of H0 (see, in Section 2.4, p 24 in [18]) or, because we are in dimension one,

equivalently, just the sign of H. We write H and its derivative H0 in terms of f , and focus

essentially on the analysis of the function f . Any result that we obtain for the function f

will easily imply the corresponding consequence for the functions H, H0 via the formulas

H(u) = cu f (u) , H0(u) = c
�
f (u) + u f 0(u)

�
. (2.20)

Without loss of generality, we assume c > 0 and a > 0, since the analysis regards the

system after intervention (c > 0) and a = 0 is trivial because the recovery probability �(u)

does not depend on u. Then 0 = u0  u1 < u2 < 1.
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2.3.7 Time Window for Detection

Let u1 be the unstable equilibrium, where u1 > 0 for a > 1 and u1 = u0 = 0 when a 2 (0, 1].

The simple but important intervention window �T between reaching ↵ and u1 is defined by

�T = Tu1 � T↵ = �N ln(
u1

↵
) , (2.21)

noticing that �T = +1 when u1 = 0. This is important because it prescribes the time

between tests or checkups, obviously meaningful only when a > 1, which corresponds to a

more aggressive disease.

2.3.8 Discussion and Interpretation of the Results

The most complex case, present only when a > 1, is when there are two nonzero stable

points. This is characterized exactly in Proposition 2.9 eq. (2.22) in case (2). The following

discussion can be applied to the other cases, with the corresponding simplifications.

It is the relation between the stable points (equilibria) and ↵, � that decides the outcome

of the treatment c, applied to the disease, identified by the parameter a. From the outset,

we see that ↵ < u1 < �, detection will occur too late. When u2 < �, one can never regain a

satisfactory health level, even after detection. Thus the ideal configuration is u1 < ↵ < � <

u2, as seen below.

• Successful treatment. When u1 < ↵ < � < u2, if detection occurs at a state u 2

(u1,↵), then recovery is achieved as the solution evolves towards u2. Detection occurs if

testing is done at intervals not greater than �T = T↵ � Tu1 = N ln( u1
↵ ).

• Successful detection, insu�cient treatment. Here u1 < ↵ < u2 < �. Detection is

successful but the treatment achieves a state u2 that may be pathological/endemic.
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• Ine↵ective detection, unsuccessful prophylactic treatment. If ↵ < u1 < � < u2.

Detection would be too late, but prophylactic treatment would prevent the disease/epidemic.

• Non intervention case, follow up. If u1 < u2 < ↵ < �, detection is early and a follow

up is required. No treatment should be necessary.

• Ine↵ective detection and treatment. If ↵ < u1 < u2 < �, detection is too late and

treatment would be ine↵ective. The most pessimistic scenario.

• Ine↵ective detection, successful early treatment. If ↵ < � < u1 < u2, detection is

too late and only early treatment would be e↵ective.

While a modulates the aggressiveness of the disease, making � smaller, c would push

it up. For a given a, u2 is increasing, and u1 decreasing, in c. In the first application model

introduced before, the action of increasing c is equivalent to improve the treatment. Since

�(u) is a probability, 0  c  1, thus we could improve treatment up to c = 1. It is of

interest to see the optimal values of u1, u2 we can achieve, as shown, for example in case

a > 1, in Proposition 2.10.

2.4 The case a > 1

Proposition 2.9. If �(u) = cua, a > 1, then the point u0 = 0 is a stable equilibrium point of

the system and, the number of equilibrium points in [0, 1] of the dynamical system (2.8) is

determined by the sign of the number q, defined as

q =
1
a

 
1 �

1
a

!a�1

�
1

Nc
(2.22)

1. if q < 0, the only equilibrium point is u0 = 0.

2. if q > 0, there are 3 equilibrium points 0 = u0 < u1 < u2 < 1.
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The points u0 (seen for u � 0) and u2 are stable, and u1 is unstable.

3. if q = 0, there are two equilibrium points, namely

u0 = 0 and u1 = u2 = um =
a � 1

a
,

where um is the maximizer point of f on [0, 1]; u0 is stable, and um is half-stable.

The above proposition describes a change in behavior of the system (2.8) as the pa-

rameter a ranges in [0, 1]. It is useful to have the phase of portrait of each situation in

mind.

u0

1

u0

u
u0 = H(u)

Figure 2.1: Phase Portrait case q < 0, obtained by selecting a = 5, N = 10, c = 1. The unique
equilibrium point u0 is stable.

Proof. Part 1. Number of equilibrium points. The function f defined in (2.19) satisfies

f (0) = f (1) = � 1
Nc < 0, thus it has an extreme value in the interval (0, 1). The derivative of

the function f is given by

f 0(u) = aua�2
 
a � 1

a
� u

!
, (2.23)

hence it has a unique zero at the point um =
a�1

a on the interval (0, 1). This point is a global

maximum over the interval [0, 1]. Hence the function f , over the same interval, is less or
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u0 u1 u2

1

u0

u

u0 = H(u)

Figure 2.2: Phase Portrait case q > 0, obtained by selecting a = 3, N = 10, c = 1. The equilibrium
points u0, u2 are stable, and u1 is unstable.

u0 um

1

u0

u
u0 = H(u)

Figure 2.3: Phase Portrait case q = 0, obtained by selecting a = 4.2, N = 10, c = 1. The
equilibrium point u0 is stable, and um is half-stable.

equal to the value q given by

q = f
 
a � 1

a

!
=

1
a

 
1 �

1
a

!a�1

�
1

Nc
. (2.24)

The function f is continuous and it is strictly monotone restricted to the intervals [0, um]

and [um, 1]; then f is injective on each of these intervals. If q < 0, the equation f = 0 has

no solutions. If q = 0, a unique solution is obtained at um, and if q > 0, then there are two

solutions that we denote by 0 < u1 < u2 < 1.

Part 2. Stability. For the point u0 = 0 we have that H0(0) = � 1
N < 0, and thus it is

always a stable point.
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In the case q > 0, let’s denote these points by u0 = 0, u1, and u2, with u1 < u2 as

before. We notice that u1 2 (0, um) and that u2 2 (um, 1). Hence, we have from 2.20

that, H0(u1) = cu1 f 0(u1) > 0, and hence u1 is an unstable point. Similarly, we have that

H0(u2) = cu2 f 0(u2) < 0 which means that u2 is a stable point.

In case q = 0, we have that f (um) = f 0(um) = 0. Since f attains global maximum at um

we have that: H(u) = cu f (u) < cu f (um) = 0, 8u 2 [0, 1]. Hence, the point um is half-stable.

⇤

Proposition 2.10. (i) The function q = q(a) is decreasing for a � 1 with maximum value

at a = 1 equal to q(1) = 1 � 1
cN , equal to the limiting value of u1 when a # 1 and minimum

value q(1) = � 1
cN < 0.

(ii) If q(1)  0, the only equilibrium point is u0 = 0 and hence no recovery is possible.

(iii) In case q(1) > 0, for su�ciently small a > 1, since q(a) > 0 the system is in case

(1) of Proposition 2.9.

(iv) Additionally, for such values of a, as the treatment c satisfies c " 1, the values of

u1 # u1(1) and u2 " u2(1), showing that the test of optimality (at c = 1, most e�cient

treatment) is if the double inequality 0  u1(1)  ↵ < �  u2(1) < 1 is satisfied.

(v) The critical values are a� such that u1(a�) = ↵ and a+ = u2(a+) = � solving

a� = 1 �
ln(N(1 � ↵))

ln↵
, a+ = 1 �

ln(N(1 � �))
ln �

. (2.25)

Let a⇤ = a⇤(cN) be the solution of q(a) = 0, always satisfying a⇤ < N. In the interval

a 2 (1, a⇤), the upper critical value u2 sweeps decreasingly the interval (1 � 1
a⇤

), 1 � 1
cN ).

For a given � in this interval, there exists a maximal a = a+ given by (2.25).

Remark. The restriction that c  1 is intrinsic to the power law model �(u) = cua,
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a � 0, since �(U
L ) must be a probability, before scaling. In principle, it appears meaningful

to have monotonicity in c (increasing) for �, and other models may be considered, including

�(u) = cua
^ 1 or a consistent mollification.

Proof. The function a ! q(a) will be decreasing if and only if the function a ! p(a) =

1
a

⇣
1 � 1

a

⌘(a�1)
is decreasing since q is a translation of p. An elementary calculation shows

that the derivative of p is negative when a > 1, which implies 1 � 1
a 2 (0, 1). In detail,

ln(p(a)) = � ln(a) + (a � 1) (ln(a � 1) � ln(a)) ,
d

da
ln(p(a)) = ln

 
1 �

1
a

!
< 0 .

The monotonicity in c of the solutions u1, u2 of f (u) = 0 (equilibria for H(u)) stems

from the monotonicity of f (2.19) on each side of the value um (maximizer). ⇤

2.5 Case a 2 (0, 1]

2.5.1 The case a = 1

We begin with the analysis for the case a = 1. The following proposition is the continuous

version discussed in [13]. We remind the reader that in Proposition 2.10 was introduced

the quantity q(1) = 1 � 1
Nc .

Proposition 2.11. Under the conditions of Theorem 2.5, if a = 1, equivalently � = cu, then

u(t) solves the standard logistic equation

du
dt
= cu(u2 � u) , u(0) = ū . (2.26)

with carrying capacity u2 = q(1). For q(1)  0 the solution converges to zero, and for
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q(1) > 0, the solution converges to the unique nonzero stable stationary state u2. There is

no unstable equilibrium u1.

Proof. The classical solution of the logistic equation (see Section 1.2 in [9])

u(t) = u2

✓
1 + (

u2

ū
� 1)e�cu2t

◆�1
, ū , 0 (2.27)

and u(t) ⌘ 0 when ū = 0, proves the results, considering that the initial value ū 2 [0, 1] by

construction. ⇤

2.5.2 The case a 2 (0, 1)

Proposition 2.12. If �(u) = cua, 0 < a < 1, then there are exactly two equilibrium points

u0 = 0, and u2 in (0, 1) of the dynamical system 2.8. The point u0 is unstable, and u2 is

stable.

u0 um

(1,0)

u0

u

u0 = H(u)

Figure 2.4: Phase Portrait obtained by selecting a = 1
2 , N = 10, c = 1. The equilibrium point u0 is

unstable, and u2 is stable.

Proof. Part 1. Number of equilibrium points. As before u0 = 0 is an equilibrium point.
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Let u > 0, we have that limu!0+ f (u) = +1 and f (1) = � 1
Nc . The continuity of f on

(0, 1] guarantees that f = 0 has a solution on the same interval. Thus, we will have at least

one more equilibrium point on (0, 1).

To determine the precise number of solutions we recall that f 0(u) = aua�2
⇣

a�1
a � u

⌘
.

Since a < 1, then f 0(u) < 0, thus f 0 is strictly decreasing and therefore f injective. Hence,

we obtain only one equilibrium point u2 in (0, 1).

Part 2. Stability. For the point u0 = 0 we notice that, since limu!0+ f (u) = +1, then

for points greater but close enough to zero the expression H(u) = cu f (u) is positive. We

conclude then that u0 = 0 is unstable in this case.

For the analysis of the point u2 we begin by noticing that since f 0 < 0, then in particular

f 0(u2) < 0. Thus, H0(u2) = cu2 f 0(u2) < 0, so u2 is a stable point.

⇤



Chapter 3

Fluctuation Near Equilibrium

In this chapter we will analyze behavior near equilibrium points. We will show that if we

use a di↵erent scaling near equilibria, the process ut behaves as a di↵usion. The study of

the stability of the system is then approached by the investigation of the resulting stochastic

process. We will follow closely Section (2.15) in which the process uL
t =

1
LU = 1

L
P

j 1(Z j
t ,0)

was introduced and studied. We recall that the function H, defined in (2.7), is

H(u) :=
 
�

1
N

!
u + �(u)(1 � u) , 0  u  1 .

In this chapter, the function � is not required to follow the power law �(u) = cua. However,

we require � to be continuous. If, in addition, we want to keep the biological interpretations

then, we will impose the conditions �(0) = 0 and � increasing in u, as explained in Section

2.3. This freedom in the selection of the function � adds generality to our conclusions,

however, it is interesting to keep the power law model in mind as a reference, since we

have great information about the stability of the system (2.8) in such case.

36
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3.1 Introduction to Scaling near Equilibrium and Initial

Values

To describe fluctuations around an equilibrium point u0 of the function H, we introduce a

new process yL
t of the form

yL
t =
p

L(uL
t � u0) , H(u0) = 0 . (3.1)

Throughout we assume the initial condition at time zero

p
L(uL

0 � u0)
p
! y0 2 R , (3.2)

i.e. yL
0 converges in probability to a real value y0. This amounts to studying the fluctuation

process (3.1) when we start from values within o(L�1).

We shall prove that, with the initial condition (3.2), the process yL
t converges in distri-

bution to yt, where (yt) is an Ornsetin-Uhlenbeck process with rate r = H(u0). We note the

convergence is not only for marginals at given time t, but as a process, which is seen as a

random variable on the space of RCLL paths.

3.2 Statement of Theorem 3.1 (Perturbation near Equilib-

rium)

We begin with the statement of the theorem and a brief description of the proof, which

will be broken down in the next subsections. Precisely, we have

Theorem 3.1 (Perturbation near Equilibrium). Let H be defined as in (2.7), with u0 an equi-

librium point of H. With the additional hypothesis that H0 satisfies a Lipschitz condition,

and provided the initial condition (3.2) then, the process (yL
t ) converges in distribution, as
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L! 1, to the linear di↵usion with generator

Ug(x) = �rxg0(x) +
1
2
�2g00(x) , r = �H0(u0) , �2 =

2u0

N
. (3.3)

Thus, the limit is a one-dimensional Ornstein - Uhlenbeck process.

3.3 Proof of Theorem 3.1

The proof of the theorem follows the following strategy. We will show that the scaled

process yL
t is C-tight. Recall that, by Prokhorov’s theorem, tightness is pre-compactness in

the space of probability measures. Denote by LL the probability measures of the processes

yL
·
, indexed by L 2 Z+, with values in the Skorokhod space D([0,1),R) of RCLL paths.

We investigate a limit point L of such probability laws. More specifically, let LL j ) L as

j! 1. We denote by yt the process with probability law L, and we show in Section 3.3.4

that L solves the martingale problem associated with the generator (3.3). This is, for any

g 2 C1c (R), the process

Mg
t = g(yt) � g(y0) �

Z t

0
Ug(ys) ds

is a continuous (Ft) - martingale under the probability measure L . Then, since the coe�-

cients inU are bounded and continuous, the theory of martingale problem of Stroock and

Varadhan guarantees the uniqueness of the process yt. We identify yt to be the Ornstein -

Uhlenbeck process described in theorem 3.1.

Each step in the proof requires several considerations; that is why the proof of the theo-

rem is divided into subsections. In Section 3.3.1 we prove that the process yL
t is uniformly
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bounded in L2. An explicit bound is provided in Proposition (3.2). In Section 3.3.3 we

show that both, the generatorALg(yL
s ) (see Proposition 3.3), and the quadratic variation of

the martingale Mg,L
t (see Proposition 3.4), are uniformly bounded in L2.

Next, we prove tightness. Part (ii) of tightness (2.6) is harder than in Theorem 2.5

because the process (yL
t ) is no longer bounded naturally by the interval [0, 1]. The fluctu-

ations from the limit live on a di↵erent scale and can be arbitrarily large, both positive or

negative. In fact, we show they are well behaved, but still unbounded. Due to the uniform

bound obtained in Proposition 3.2, it is su�cient to prove the modulus of continuity (in

essence, an Arzela-Ascoli equicontinuity condition in probability) on compact sets. More

precisely, let g 2 C1c (R) be an infinitely di↵erentiable function with compact support. The

plan consists in evaluating bounds of the time integral, respectively of the martingale part

of the di↵erential formula (2.2) applied to g(yL
t ). With this in mind, in section (3.3.3) we

prove that the processes ALg(yL
s ) and Mg,L

t are C-tight (see proposition (3.5)). We obtain

that the process yL
t is C-tight (see (3.7)).

Finally, we prove in section 3.3.4 that, for every g 2 C10 (R), the process Mg
t is a contin-

uous (Ft)-martingale under the probability measure L. We then invoke Theorem 4.28 (due

to Stroock & Varadhan (1969)) and Corollary 4.29 in [10]. This concludes our proof.

3.3.1 Uniform L2
Bound

In an e↵ort to prove that the process yL
t is C-tight, we meet with the problem of proving

that yL
t is square integrable. We will encounter such situation in (3.3), when trying to prove

that the generatorALg(yL
t ) is also square integrable. For that reason, we devote this section

to the proof of Proposition (3.2) which, on one hand, gives a uniform bound for E
⇣

yL
t

⌘2
�
,

while on the other, introduces the proof’s technique for the next section.
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Remark: We make an important observation now that will be used through the entire

chapter. Since the process uL
t lives in the interval [0, 1], for each L the process yL

t lives

in the compact interval [�
p

Lu0,
p

L(1 � u0)]. We wish to apply the di↵erential formula

(2.15) obtained in Section 2.5. Thus, we must work with a restricted set of functions,

namely continuous with compact support. At this point we take the bold step to denote by

id any function which coincides with the identity function on the interval [�
p

Lu0,
p

L(1 �

u0)] and that is continuous with compact support. The selection of the function id is not

important for the conclusion of any of the following results, and thus, we feel the reader

will appreciate the simplification.

Due to the initial condition (3.2), the initial value has uniformly bounded second mo-

ment. We prove a slightly stronger result.

Proposition 3.2. Assume that the initial values are random variables and there exists a

positive C, independent of L, such that E[(yL
0)2]  C. Let T > 0 be arbitrary but fixed.

Then the process yL
t is square integrable. Moreover, we have the bounds

E
⇣

yL
t

⌘2
�
 K1 exp (K2 t) 0  t  T. (3.4)

Where K1, K2 are constants independent of t, and are given explicitly by K1 = 3C +

3
⇣
1 + 2

N

⌘
T and K2 = 3T (c1(H))2, where c1(H) is bound of the function H0.

Proof. Apply the di↵erential formula (2.15) to the function id, and expand H around the

point uL
s = u0 + yL

s
p

L
using Taylor formula with remainder in integral form (see (B.1)). We
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get the following bound for the generator, in s, 0  s  t  T

A
LyL

s =

LX

j=1

"
1
N

 
(yL

s �
1
p

L
) � yL

s

!
1(Z j

s , 0) + �(uL
s )

 
(yL

s +
1
p

L
) � yL

s

!
1(Z j

s = 0)
#

=
1
N

 
�

1
p

L

!
LuL

s + �(uL
s )

 
1
p

L

!
L(1 � uL

s )

= H(uL
s )
p

L

= yL
s

Z 1

0
H0(u0 + (1 � w)

yL
s
p

L
)dw.

(3.5)

We obtain that

|A
LyL

s |  c1(H) |yL
s | (3.6)

where c1(H) is the supremum of H0 on [0, 1] which is independent of s and L.

A similar calculation for the quadratic variation of the martingale Mid,L
t , given by for-

mula (2.4), shows

hMid,L
it =

Z t

0

0
BBBBBB@

LX

j=1

2
66664

1
N

 
(yL

s �
1
p

L
) � yL

s

!2

1(Z j
s , 0) + �(uL

s )
 
(yL

s +
1
p

L
) � yL

s

!2

1(Z j
s = 0)

3
77775

1
CCCCCCA ds

=

Z t

0

0
BBBB@

1
N

 
�

1
p

L

!2

LuL
s + �(uL

s )
 

1
p

L

!2

L(1 � uL
s )
1
CCCCA ds

=

Z t

0

 
H(uL

s ) +
2
N

uL
s

!
ds.

Since H(u)  1 in [0, 1], then

E
h
hMid,L

it

i


 
1 +

2
N

!
T 0  t  T. (3.7)

Recall that by formula (2.2) we can write
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yL
t = yL

0 +

Z t

0
A

LyL
s ds + Mid,L

t (3.8)

whereAL
t yL

s is given by the di↵erential formula (3.5). Thus, we obtain that

(yL
t )2
 3

0
BBBB@(yL

0)2 +

 Z t

0

���ALyL
s

��� ds
!2

+
⇣
Mid,L

t

⌘2
1
CCCCA .

Remember also, that

Nid
t =

⇣
Mid

t

⌘2
� hMid,L

it (3.9)

is a martingale. Thus, by Cauchy-Schwarz, Fubini’s Theorem, the initial condition on

E[(yL
0)2], and relations (3.6) and (3.7) we obtain that

E
⇣

yL
t

⌘2
�
 3

 
E

⇣
yL

0

⌘2
�
+ E

"
T

Z t

0

⇣���ALyL
s

���
⌘2

ds
#
+ E

⇣
Mid,L

t

⌘2
�!

 3E
⇣

yL
0

⌘2
�
+ 3(c1(H))2 T

Z t

0
E

⇣
yL

t

⌘2
�

ds + 3E
h
hMid,L

it

i
(3.6)

 3C + 3(c1(H))2 T
Z t

0
E

⇣
yL

t

⌘2
�

ds + 3
 
1 +

2
N

!
T. (2.3), (3.7)

Hence

E
⇣

yL
t

⌘2
�
 K1 + K2

Z t

0
E

⇣
yL

s

⌘2
�

ds

where K1 = 3C + 3
⇣
1 + 2

N

⌘
T , K2 = 3T (c1(H))2.

By Gronwall’s inequality

E
⇣

yL
t

⌘2
�
 K1 exp (K2 t) 0  t  T. (3.10)

⇤
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3.3.2 Modulus of Continuity

Right from the onset we clarify that all functions considered in the remainder of the proof

belong to the family of test functions of the form g(yL
s ) = g

⇣p
L(uL

t � u0)
⌘

where g 2 C3
c (R).

We will apply formula (2.15) to this family in order to obtain an uniform bound forALg(yL
s ).

We recall from (2.2) and (2.4) that the process

ML,g
t = g(yL

s ) � g(yL
0) �

Z t

0
Ag(yL

s )ds

is a martingale and that its quadratic variation is given by the expression

hMg,L
it =

Z t

0

X

y2S

p(yL
s , y)

⇣
g(y) � g(yL

s )
⌘2

ds.

We will use this formula to obtain an uniform bound for the quadratic variation. These

results are stated in the next two propositions.

Proposition 3.3. For every function g 2 C3
c (R) and H 2 C2(R) the generator of the process

yL
t is in L2. Moreover, we have the estimate

E
⇣���ALg(yL

s )
���
⌘2
 C1E

⇣
|yL

s |
⌘2
+C2

where C1 and C2 are constants depending on the functions g, H and their derivative but

not depending on L, t.

Proposition 3.4. For every function g 2 C3
c (R) and every t 2 [0,T ], the quadratic variation

of Mg,L
t is bounded by

���hMg,L
it

��� 
 
M1 +

1
p

L
M2

!
t (3.11)
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where M1, M2 are constants depending on g, H and their derivatives but not depending on

L, t.

Proof. (Proof of proposition (3.3)) We choose a test function g 2 C3
c (R), and apply the

di↵erential formula (2.15). We get the formula

A
Lg(yL

s ) =
LX

j=1

"
1
N

 
g(yL

s �
1
p

L
) � g(yL

s )
!

1(Z j
s , 0) + �(uL

s )
 
g(yL

s +
1
p

L
) � g(yL

s )
!

1(Z j
s = 0)

#

=
1
N

 
g(yL

s �
1
p

L
) � g(yL

s )
!

LuL
s + �(uL

s )
 
g(yL

s +
1
p

L
) � g(yL

s )
!

L(1 � uL
s ).

(3.12)

We develop each di↵erence in the integrand using Taylor expansion of order two around

the point yL
s with remainder in the integral form

g(yL
s ±

1
p

L
) � g(yL

s ) = g0(yL
s )

 
±

1
p

L

!
+

1
2

g00(yL
s )

 
±

1
p

L

!2

+
1
2

 
±

1
p

L

!3 Z 1

0
w2g000

 
yL

s + (±
1
p

L
)(1 � w)

!2

dw.
(3.13)

Replacing these expressions back in (3.12) we obtain that the generator takes the form

A
Lg(yL

s ) =
1
N

0
BBBB@g0(yL

s )
 
�

1
p

L

!
+

1
2

g00(yL
s )

 
�

1
p

L

!21CCCCA LuL
s

+ �(uL
s )

0
BBBB@g0(yL

s )
 

1
p

L

!
+

1
2

g00(yL
s )

 
1
p

L

!21CCCCA L(1 � uL
s ) + R (!, g, L, s) .

Which simplifies to

A
Lg(yL

s ) =
p

L g0(yL
s )H(u0 +

yL
s
p

L
) +

1
2

g00(yL
s )

 
H(uL

s ) +
2
N

uL
s

!
+ R (!, g, L, s) . (3.14)
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Where R (!, g, L, s) is a function obtained by collecting all expressions involving the re-

mainder expressions in the Taylor formulas (3.13).

Since the function g has compact support, it is possible to estimate the remainders

formulas in (3.13). In any case we have that, there is a constant c3(g), depending on the

function g000, such that the remainders are bounded by

������
1
2

 
±

1
p

L

!3 Z 1

0
w2g000

 
yL

s + (±
1
p

L
)(1 � w)

!2

dw.
������ 

1
6

 
1
p

L

!3

c3(g). (3.15)

Now, bound (3.15) together with uL
t 2 [0, 1] imply that the function R (!, g, L, s) can be

estimated by

|R (!, g, L, s)| 
1
6

 
1
p

L

!  
H(uL

s ) +
2
N

uL
s

!
c3(g) 

1
6

1
p

L

 
1 +

2
N

!
c3(g). (3.16)

At this point, we take a close look at expression (3.14) and observe that all summands

involve are bounded except the first one. The last summand is bounded by (3.16) and the

second summand is bounded since g has compact support, while H(uL
s ) and uL

s belong to

[0, 1]. However, in the first summand the factor
p

L gives the impression the this term

is uncontrolled. To sort this misperception, we develop further the function H by Taylor

formula of order one, and we use the fact that H(u0) = 0 at the equilibrium point u0, to

obtain

H(u0 +
yL

s
p

L
) = H(u0)|{z}

=0

+
yL

s
p

L

Z 1

0
H0(u0 + w

yL
s
p

L
)dw. (3.17)

Plugging back into (3.14) we obtain that the generator is

A
Lg(yL

s ) = g0(yL
s )yL

s

Z 1

0
H0(u0 + w

yL
s
p

L
)dw +

1
2

g00(yL
s )

 
H(uL

s ) +
2
N

uL
s

!
+ R (!, g, L, s) .

(3.18)
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Since H0 is continuous, the integral remainder in (3.17) can be bounded by a constant c1(H)

depending on the function H0. Thus, expression (3.18) presents a clean formula for the

generator in which each term in now, by proposition (3.2) and the comments above, clearly

bounded, at least in L2 sense. Denote by c1(g), c2(g) uniform bounds for the function g0

and g00 respectively. More precisely, we obtain the L2 bound

E
⇣
A

Lg(yL
s )
⌘2
�
 E

2
666643

0
BBBB@
⇣
g0(yL

s )c1(H)yL
s

⌘2
+

1
4

 
g00(yL

s )
 
H(uL

s ) +
2
N

uL
s

!!2

+
�
R

�
!, g000, L, s

��2
1
CCCCA
3
77775

 E

2
666643c2

1(g)c2
1(H)

⇣
yL

s

⌘2
+ 3

 
1 +

2
N

!2  
1
4

c2
2(g) + c2

3(g)
1
L

!377775 .

Since L and N can be taken bigger than 1 we obtain that,

E
⇣
A

Lg(yL
s )
⌘2
�
 C1E

⇣
yL

s

⌘2
�
+C2

where C1 = 3c2
1(g)c2

1(H) and C2 = 27
⇣

1
4c2

2(g) + c2
3(g)

⌘
. ⇤

Proof. (Proof of proposition (3.4)) We apply formula (2.4) and obtain that the quadratic

variation can be written as

hMg,L
it =

Z t

0

0
BBBBBBB@

LX

j=1

1
N

 
g(yL

s� �
1
p

L
) � g(yL

s�)
!2

1(Z j
s� , 0) + �(uL

s�)
 
g(yL

s� +
1
p

L
) � g(yL

s�)
!2

1(Z j
s� = 0)

1
CCCCCCCA ds

Which simplifies to the expression

hMg,L
it =

Z t

0

0
BBBB@

1
N

 
g(yL

s� �
1
p

L
) � g(yL

s�)
!2

L uL
t + �(uL

s�)
 
g(yL

s� +
1
p

L
) � g(yL

s�)
!2

L(1 � uL
t )

1
CCCCA ds.

(3.19)



47

We develop the di↵erences in the integrand by Taylor’s formula

g(yL
s ±

1
p

L
) � g(yL

s ) = g0(yL
s )

 
±

1
p

L

!
+ r±(!, g, L, s)

where r±(!, g, L, s) are the remainders of the Taylor expansion of order one in integral form

r±(!, g, L, s) =
 
±

1
p

L

!2 Z 1

0
w g00

 
yL

s + (±
1
p

L
)(1 � w)

!
dw

These expressions are bounded uniformly in time t and ! by

|r±(!, g, L, s)| 
1
2

 
1
p

L

!2

c2(g) (3.20)

Replacing the Taylor expansion in (3.19) we obtain that, the quadratic variation of the

martingale is

hMg,L
it =

Z t

0

0
BBBB@

1
N

 
�

1
p

L
g0(yL

s ) + r�
!2

uL
t L + �(uL

s�)
 

1
p

L
g0(yL

s ) + r+
!2

(1 � uL
t ) L

1
CCCCA ds

=

Z t

0

 ⇣
g0(yL

s )
⌘2

 
H(uL

s ) +
2
N

uL
s

!
+ R̄

�
g000, L, s

�
!
ds

(3.21)

where R̄ (g000, L, s) collects all terms involving the the Taylor remainders. We do not need

to worry to much with the exact form of R̄ (g000, L, s), it is only important to know that

R̄ (g000, L, s) 2 O( 1
p

L
), i.e: there is a constant M2 such that R̄ (g000, L, s)  1

p
L

M2. Thus, we

obtain that

���hMg,L
it

��� 
 
c2

1(g)
 
1 +

2
N

!
+

���R̄
�
g000, L, s

����
!

t 
 
c2

1(g)
 
1 +

2
N

!
+

1
p

L
M2

!
t.
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Hence, by denoting M1 = c2
1(g)

⇣
1 + 2

N

⌘
we obtain

���hMg,L
it

��� 
 
M1 +

1
p

L
M2

!
t.

⇤

3.3.3 Tightness of the Process yL
t

We want now to prove that the process (yL
t )t�0 is C-tight. We already used this procedure in

the proof of Theorem 2.5. We show first that the processes
R t

0 A
Lg(yL

s ) and Mg,L
t are C-tight.

Since the process

g(yL
t ) = g(yL

0) +
Z t

0
A

Lg(yL
s ) + Mg,L

t

we immediately obtain that, for any test function g, the process g(yL
t ) is C-tight. A simple

localization argument then gives that yL
t is C-tight. So we will prove the following three

propositions:

Proposition 3.5. The processes dg,L
t :=

R t
0 A

Lg(yL
s ) ds is C-tight.

Proposition 3.6. The process Mg,L
t is C-tight.

Proposition 3.7. The process yL
t is C-tight.

The two key steps in order to prove (3.5) and (3.6) are to verify (i) and (ii) from Defini-

tion 2.4.

Proof. (Proof of Proposition 3.5) Condition (i) in definition (2.4) is easily satisfied by dg,L
t

since g has compact support. In order to prove condition (ii) for dg,L
t we let � > 0. On the
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interval [0,T ], we choose 0  t < t0  T such that t0 � t < �. For the process dg,L
t we have

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���dg,L
t0 � dg,L

t

��� > ✏

1
CCCCCCCCA 

1
✏2E

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

 Z t0

t
A

Lg(yL
s ) ds

!2
1
CCCCCCCCA by Chebyshev’s inequality


1
✏2E

0
BBBBBBBB@� sup

0t<t0T
t0�t<�

Z t0

t

⇣
A

Lg(yL
s )
⌘2

ds

1
CCCCCCCCA by Cauchy-Schwarz inequality


�

✏2E

 Z T

0

⇣
A

Lg(yL
s )
⌘2

ds
!

by positivity of the integrand

=
�

✏2

Z T

0
E

⇣
A

Lg(yL
s )
⌘2
�

ds by Fubini’s Theorem


3�
✏2

Z T

0

✓
C1E

⇣
yL

s

⌘2
�
+C2

◆
ds by (3.3)


3�
✏2

Z T

0

⇥
C1K1 exp (K2 s) +C2

⇤
ds by (3.2)

=
3�
✏2

"
C1K1

exp (K2 T ) � 1
K2

+C2T
#
.

hence,

lim
�!0

lim sup
L!1

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���dg,L
t0 � dg,L

t

��� > ✏

1
CCCCCCCCA = 0.

⇤

Proof. (Proof of Proposition 3.6) As before, condition (i) in definition (2.4) is easily sat-

isfied by Mg,L
t since g has compact support. Again, we let � > 0. On the interval [0,T ], we

choose 0  t < t0  T such that t0 � t < �. For the process Mg,L
t we have

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���Mg,L
t0 � Mg,L

t

��� > ✏

1
CCCCCCCCA 

1
✏2E

✓���Mg,L
t0 � Mg,L

t

���2
◆

by Doob’s L2-norm maximal inequality

=
1
✏2E

⇣���hMg,L
it0 � hMg,L

it

���
⌘

by (2.3)


�

✏2

 
M1 +

1
p

L
M2

!
by (3.4)
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hence

lim
�!0

lim sup
L!1

P

0
BBBBBBBB@ sup

0t<t0T
t0�t<�

���Mg,L
t0 � Mg,L

t

��� > ✏

1
CCCCCCCCA = 0.

⇤

Proof. (Proof of Proposition 3.7) From (2.2)

g(yL
t ) � g(yL

0) = Mg,L
t + dg,L

t (3.22)

both processes Mg,L
t and dg,L

t are C-tight. Take g(u) = id(u). ⇤

3.3.4 Solution of the Martingale Problem

In this section we want to prove that any limit point (yt) of the sequence (yL
t )L2Z+ , seeing

as a set in the Skorokhod space with the J1 topology, satisfies the stochastic di↵erential

equation

dyt = �H0(u0)ytdt +
2u0

N
dBt (3.23)

In order to do this, we will show that any limit point solves the martingale problem associ-

ated with the generator of the solution process of equation (3.23).

With this in mind, let (yt)t�0 a limit point, seen as a random variable on C([0,T ],R), of

the processes (yL
t )t�0, indexed by L. We begin evaluating an useful bound.

Proposition 3.8. There exist D1, D2 and D3 independent of s and L (but dependent on T)

such that

|A
Lg(yL

s ) �Ug(yL
s )| 

⇣
(D1 + D2|yL

s |)
2 + D3

⌘
L�

1
2 . (3.24)
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Remark. The estimate above, combined with (3.2) shows that

E
h
|A

Lg(yL
s ) �U(yL

s )|
i
 DL�

1
2 .

Where D is a constant that does not depend on s or L, but depends on T .

Proof. From (3.18) and (3.3) we have that

A
Lg(yL

s ) �Ug(yL
s ) = g0(yL

s )yL
s

Z 1

0

 
H0(u0 + w

yL
s
p

L
) � H0(u0)

!
dw

|                                                  {z                                                  }
(I)

+

+
1
2

g00(yL
s )

 
H(uL

s ) +
2
N

uL
s �

2
N

u0
!

|                                  {z                                  }
(II)

+

+ R
�
!, g000, L, s

�
.|             {z             }

(III)

Since H0 satisfies a Lipschitz condition, we obtain in (I) that

������H
0(u0 + w

yL
s
p

L
) � H0(u0)

������ 
������w

yL
s
p

L

������

Hence, if we let c1(g) be a positive bound for 1
2g0, then expression (I) is bounded by

(I) 
1

2
p

L
|g0(yL

s )| (|yL
s |)

2


1
p

L
c1(g) (|yL

s |)
2 (3.25)

In expression (II), we write uL
t = u0 + yL

s
p

L
and develop the function H around the point u0

using Taylor formula with remainder, in integral form, of order one. Thus, obtain that

H(uL
s ) =

yL
s
p

L

Z 1

0
H0

 
u0 + (1 � w)

yL
s
p

L

!
dw
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(II) =
1
2

g00(yL
s )

 
yL

s
p

L

Z 1

0
H0

 
u0 + (1 � w)

yL
s
p

L

!
dw +

2
N

(u0 +
yL

s
p

L
) �

2
N

u0
!

=
1
2

g00(yL
s )

yL
s
p

L

 Z 1

0
H0

 
u0 + (1 � w)

yL
s
p

L

!
dw +

2
N

!

Since H0 satisfies a Lipschitz condition then it is bounded, let c1(H) be a positive bound for

H0, and c2(g) a positive bound for 1
2g00. Then

|(II)|  c2(g)
|yL

s |
p

L

 
c1(H) +

2
N

!
(3.26)

Finally, (3.16) gives

|(III)| =
����R

⇣
!, g(3), L, s

⌘���� 
1
p

L

 
1 +

2
N

!
c3(g). (3.27)

Where c3(g) is a positive bound for g000. Now bounds (3.25), (3.26) and (3.27) give the

desire bound for the di↵erence

|A
Lg(yL

s ) �Ug(yL
s )| 

1
p

L

 
c1(g)(|yL

s |)
2 + c2(g)|yL

s |

 
c1(H) +

2
N

!
+

 
1 +

2
N

!
c3(g)

!
(3.28)

Thus, by completing the square, we can write (3.28) as

|A
Lg(yL

s ) �Ug(yL
s )| 

⇣
(D1 + D2|yL

s |)
2 + D3

⌘
L�

1
2 .

where

D1 =
p

c1(g), D2 =
c2(g)

⇣
c1(H) + 2

N

⌘

2
p

c1(g)
, D3 =

 
1 +

2
N

!
c3(g) �

c2
2(g)

⇣
c1(H) + 2

N

⌘2

c1(g)
.
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⇤

Proposition 3.9. For any g 2 C3
c (R)

g(yt) � g(y0) �
Z t

0
Ug(ys) ds is a (Ft) - martingale (3.29)

whereU is as in (3.3).

Proof. Define Mg,⌘
s,t , g 2 C3

c (R) the di↵erence of expressions from (3.3) taken at two times

0  s  t  T .

Mg,⌘
s,t = g(⌘t) � g(⌘s) �

Z t

s
Ug(⌘s0) ds0 ⌘ 2 D([0,T ],R) . (3.30)

Let  (⌘·) a Fs - measurable function, equal to a finite product of continuous bounded func-

tions applied at a finite number of times s0, 0  s0  s. Define  : D([0,T ],R)! R

 (⌘·) = Mg,⌘
s,t  (⌘·) . (3.31)

 is a bounded, continuous functional, (see [24]). It only remains to prove that E[ (yL
·
)] =

0. So we have

E[ (yL
·
)] = E

" 
g(yL

t ) � g(yL
s ) �

Z t

s
Ug(yL

s0) ds0
!
 (yL

·
)
#

= E

" 
g(yL

t ) � g(yL
s ) �

Z t

s
A

Lg(yL
s0) ds0 +

Z t

s
(AL
�U)g(yL

s0) ds0
!
 (yL

·
)
#

= E
h
(Mg,L

t � Mg,L
s ) (yL

·
)
i
+ E

" Z t

s
(AL
�U)g(yL

s0) ds0
!
 (yL

·
)
#

= E

" Z t

s
(AL
�U)g(yL

s0) ds0
!
 (yL

·
)
#
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where the last equality follows from the fact that Mg,L
t is a martingale. From (3.24) we have

that the error term

���E[ (yL
·
)]
��� 

������E
" Z t

s
(AL
�U)g(ys0) ds0

!
 (yL

·
)
#������  T DL�

1
2 ! 0 as L! 1.

We remind the reader that yL(·) ) y(·) (converges in distribution), as a consequence of

tightness. Again Portmanteau Theorem implies that limL!1 E[ (yL
·
)] = E[ (y·)]. We have

shown the right-hand side limit is zero. Thus,  (y·) = 0 implying that

g(yt) � g(y0) �
Z t

0
Ug(ys) ds

is a continuous (Ft) - martingale, thus the measure induced by the the process yt satisfies

the martingale problem associated with the generator

Ug(x) = �rxg0(x) +
1
2
�2g00(x) , r = �H0(u0) , �2 =

2u0

N
.

The coe�cients of r and �2 are bounded and continuous. By Theorem 4.28 and Corollary

4.29 in Karatzas et al. [10] (due to Stroock & Varadhan (1969) [23]), the martingale prob-

lem is well posed and there is at most one solution to the time-homogeneous martingale

problem. We just proved that any possible limit point L of the laws LL, L > 0 solves the

martingale problem forU. In other words, any limiting process (yt) has probability law L.

The solution to the martingale problem is unique. We conclude that there is only one

limit point. Thus, the sequence of processes yL
t converge in distribution, as L ! 1, to the

the Ornstein-Uhlenbeck process described in Theorem 3.1. This concludes the proof.

⇤



Chapter 4

Generalized Logistic Equation with

Noise

4.1 Overview

We have shown in Section 1.4, Theorem 2.5 that the deterministic limit (ut) is the solution

of the generalized logistic equation

dut = H(ut)dt , u0 = ū , (4.1)

where H(u) is defined in (2.7). In Section 2.3, it is suggested that the process (ut) can be

used as a population evolutionary model. On the scale (1.5) of Theorem 2.5, the noise,

represented by a martingale term, vanishes. This is natural in a law of large numbers.

However, it might be valuable to consider a perturbation of the process ut, with small

noise �dWt, where Wt is a Wiener process. This mesoscale allows considering the root of

our question (escape from a stable state), under the continuum assumption of a SDE. The

process (ut) is not perfectly determined by (4.1), but subject to some random biological

e↵ect. Such influence could be captured by the noise term.

55
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With this in mind, in this chapter we propose the study of the equation

dut = H(ut)dt + �dWt , u0 = ū , (4.2)

where Wt is a standard Brownian motion and � is a constant. The magnitude of � depends

on how much impact we consider the noise has over the deterministic model. We will

denote the solution of equation (4.2) by ut, since this section is self contained and ut cannot

be confused with the solution of the ODE (2.8). In order to avoid technical di�culties we

impose the condition that the function H satisfies a Lipschitz condition. In the case that

�(u) = cua, then the regularity of H is guaranteed by choosing

a 2 {0} [ [1,1) , in eq. (2.18) . (4.3)

Hence, we have existence and uniqueness [10] of the solution of (4.2) and the solution ut is

a di↵usion.

In Section 2.3, we considered the deterministic process ut naturally living in [0, 1] and

having 0 as an absorbing state for the system. In that spirit, we let the process, defined

as the solution of equation (4.2), be absorbing at 0 and reflecting at 1, an assumption we

regard as biologically consistent.

For such problem we begin to question the probability of reaching 0 starting at a given

value in the interval from 0 to 1 (probability of extinction), and the time to reach 0, or time

of extinction ⌧ defined in (4.4), also lifetime of the process, also known as time to ruin

in classical probability theory. These questions are answered in Propositions 4.2 and 4.3,

respectively.

As ⌧ < 1 a.s. we have a dissipative process. It is natural to investigate the existence
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of a quasi-stationary distribution (qsd), denoted by ⌫ in (4.20), for the solution process of

(4.2). In section 4.5 it is shown, via the theory of Sturm-Liouville operators, that the quasi-

invariant distribution exists and it is unique. In section 4.6 some explicit calculations for

the quasi-stationary distribution are presented.

We finalize this chapter with an important result, stated as a conjecture (in that evidence

is provided numerically, and only in special cases). We find it of great interest because of

its random perturbation theory implications.

Theorem 4.1. (Conjecture) Let q✏(x) be the density function of the qsd corresponding to

�2 = ✏. Then, as ✏ ! 0, the measure q✏(x)dx converges weakly to a discrete measure with

atoms at the equilibrium points of H. Moreover, only the stable equilibria have nonzero

mass.

We point the reader to Section 4.6.2 and specifically to the results for a = 1 from Figure

4.6, when H(u) has a square nonlinearity, essentially a perturbation of the logistic equation.

In this we illustrate how the graph of the qsd peaks like a bump function about the value of

the non-zero stable equilibrium.

4.2 Extinction with Probability One

We study now the time of extinction of the di↵usion ut, defined as the first time in which

the process reaches the value 0. Formally,

⌧ = inf
n
t � 0 | ut = 0

o
(4.4)
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For ↵ > 0, define g : [0, 1]! R as

g(u) := Eu
⇥
e�↵⌧ (⌧<1)

⇤
note that we simplified notation g(u) = g(u,↵) . (4.5)

Thus, for u fixed, the function g(u) is the Laplace transform of the time of extinction ⌧.

The detail to keep in mind is that we can obtain the moments of ⌧ by successive derivations

with respect to the parameter ↵. For instance, we are interested in

p0(u) := lim
↵!0+

g(u) = Eu


lim
↵!0+

e�↵⌧ (⌧<1)

�
= Pu[ (⌧<1)] (Probability of Extinction) (4.6)

e0(u) := lim
↵!0+
�
@g
@↵

(u) = Eu


lim
↵!0+

⌧e�↵⌧ (⌧<1)

�
= Eu[⌧] (Expected time of Extinction).

(4.7)

The study of g can be examined in the light of the Feynman-Kac connection. This will be

our method of choice. Since we will need it, we take a moment to notice that, by the Itô

formula, the generator of the process ut is given by

A f (u) = H(u) f 0(u) +
�2

2
f 00(u) , f 2 C2[0, 1] f (0) = 0 , f 0(1) = 0 . (4.8)

We are ready for our first proposition of the chapter. Due to the smoothness of H(u), it is

classic but since it is essential for the rest of the chapter, we give a direct proof.

Proposition 4.2. The probability of extinction (hitting 0), of the process ut defined as the

solution of (4.2), with boundary conditions as in (4.8), is equal to one, for any initial point

0  u  1.

Proof. By the Feynman-Kac Formula we have that the function g satisfies the initial value
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problem

Ag(u) � ↵g(u) = 0,

g(0) = 1,
@g
@u

(1) = 0.
(4.9)

where the boundary conditions are chosen to exhibit that the process is absorbing at 0 and

reflecting at 1. By the formula (4.8), equation (4.9) is equivalent to

H(u)g0(u) +
�2

2
g00(u) � ↵g(u) = 0,

g(0) = 1,
@g
@u

(1) = 0.
(4.10)

If, in equation (4.9), we take limit as ↵ ! 0+, keeping in mind that g is bounded by one,

we obtain

A


lim
↵!0+

g(u)
�
� lim

↵!0+
(↵g(u))

|        {z        }
=0

= 0 (4.11)

Thus, the function p0(u) satisfies the Cauchy problem

H(u)
d

du
[p0(u)] +

�2

2
d2

du2 [p0(u)] = 0,

p0(0) = 1,
d
du

[p0(1)] = 0.
(4.12)

Since the coe�cients in (4.12) are C1[0, 1], there is a unique solution to this boundary

problem. We can check easily that p0
⌘ 1 is the solution, hence Pu(⌧ < 1) = 1. ⇤

We finish this discussion with the general formula for the solution of (4.12) since we

feel that other models, with di↵erent boundary conditions, can be studied later. For in-

stance, we could explore the possibility that the process dies, instead of reflecting, at the
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boundary point u = 1. The general solution of (4.12) is

p0(u) = K1

Z u

0

"
exp

 
�

2
�2

Z x

0
H(y)dy

!
dx

#
+ K0.

It is immediate that the current case corresponds to K1 = 0 and K0 = 1.

4.3 Expected Time of Extinction

Proposition 4.3. The expected time of extinction, of the process ut defined as the solution

of (4.2) which is absorbing at 0 and reflecting at 1, is given by the formula

Eu[⌧] =
2
�2

Z u

0
e �

2
�2

R x
0 H(s)ds

 Z 1

x
e

2
�2

R y
0 H(s)dsdy

!
dx. (4.13)

for every initial point 0  u  1.

Proof. Di↵erentiating equation (4.9) with respect to ↵ we obtain

g(u) + ↵
@g
@↵

(u) �A
@g
@↵

(u) = 0 (4.14)

Taking limit as ↵! 0+ in equation (4.14), we get

lim
↵!0+

g(u) + lim
↵!0+

 
↵
@g
@↵

(u)
!

|           {z           }
=0

+A

"
� lim
↵!0+

@g
@↵

(u)
#
= 0. (4.15)

By proposition (4.2), lim↵!0+ g(u) = Pu(⌧ < 1) = 1. Thus we obtain that e0(u) satisfies the
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initial value problem

H(u)
d

du
[e0(u)] +

�2

2
d2

du2 [e0(u)] = �1,

e0(0) = 0,
d

du
[e0(1)] = 0

(4.16)

To solve (4.16), we multiply by the integrating factor 2
�2 e

2
�2

R u
0 H(s)ds to obtain the equation

d
du

"
e

2
�2

R u
0 H(s)ds d

du
[e0(u)]

#
= �

2
�2 e

2
�2

R u
0 H(s)ds (4.17)

We integrate and apply the boundary condition w0(1) = 0 and obtain

d
du

[e0(u)] =
2
�2 e �

2
�2

R u
0 H(s)ds

Z 1

u
e

2
�2

R x
0 H(s)dsdx (4.18)

The second boundary condition, w(0) = 0, implies that the particular solution is

Eu[⌧] = e0(u) =
2
�2

Z u

0
e �

2
�2

R x
0 H(s)ds

 Z 1

x
e

2
�2

R y
0 H(s)dsdy

!
dx. (4.19)

⇤

Remark.

We recall that

H(u) = �
1
N

u + cua(1 � u) ,
Z x

0
H(u)du = �

1
2N

x2 +
c

a + 1
xa+1
�

c
a + 2

xa+2 .

Even the case a = 0 (a linear di↵usion) is nontrivial, even though classical; but an value

a > 0 gives a highly nonlinear equation. The integrals in expression (4.19) can be quite

complicated for a general function H. For instance, if H(u) has a a positive integer, the

solutions are related with various special functions (Airy, Error, Kummer, etc).
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4.4 Quasi-Stationary Distribution

The di↵usion defined (4.2) possesses a transition kernel p(t, u, v)dv on the state space S =

[0, 1], which generates a (strongly) Feller semigroup S t on C(S ), the Banach space of

continuous functions with the uniform norm. More precisely, for f continuous on S ,

S t f (u) =
Z

S
p(t, u, v) f (v)dv .

A left-hand side positive eigenfunction (here, a Radon measure) of the semigroup is said a

quasi-stationary distribution or qsd for short. There are several ways to identify the qsd’s.

Note that we allow, in general, the possibility of more than one (or, in fact, none) qsd.

However, in the present case uniqueness will be a consequence of the fact that the semi-

group is compact. We adopt the Sturm-Liouville approach to the problem, which is justified

by the smooth kernel, which shows that the semigroup can be extended to L2(S ,w(u)du),

where w(u) > 0, continuous on S . Then, the existence of a largest eigenvalue, with its

unique positive eigenfunction, is a classical result in the theory of second order di↵erential

equations with smooth coe�cients. An alternative approach is to notice that the Krein-

Rutman theorem applies, but we shall not pursue this approach due to the natural setting of

Sturm-Liouville formalism in L2 universally available in dimension one.

The semigroup is strongly continuous, contractive (C0 - semigroup) with an infinitesi-

mal generator (A,D(A)), where A is defined in (4.8). The domain includes smooth func-

tions with continuous derivatives up to the boundary satisfying the boundary conditions we

imposed

D(A) ◆ { f 2 C2(S ) | f 0(1) = 0 and f (0) = 0} .

Then, ⌫ 2 M1(S ) (the space of probability measures) is a qsd for S t if there exists � > 0 such
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that ⌫A = �⌫. Since, the domain (4.4) includes a defining class for probability measures,

this is the same as (4.20).

We begin the study of the quasi-stationary distribution ⌫, directly, as a left eigenvalue

of the generator A. Thus we have to find a positive radon measure ⌫ on S and a number

� < 0 such that

< �⌫(u) � ⌫(u)A, f (u) >= 0 (4.20)

for f a twice continuously di↵erentiable function satisfying f (0) = 0, f 0(1) = 0. If ⌫ exists,

due to the absolute continuity of the transition probability and the smoothness of p(t, u, v),

the qsd is absolutely continuous as well as we see in the proof of Theorem 4.4.

Let the density function be denoted ', thus ⌫(u) = '(u)du, and equation (4.20) takes

the form Z 1

0

 
�'(u) f (u) � '(u)H(u) f 0(u) �

�2

2
f 00(u)'(u)

!
du = 0.

We apply integration by parts and obtain an equation for the formal adjoint operator

Z 1

0

"
�'(u) + (H(u)'(u))0 �

�2

2
'(u)00

#
f (u)du

+
�2

2
'(0) f 0(0) +

"
�2

2
'0(1) � H(1)'(1)

#
f (1) = 0 . (4.21)

Hence, in order to find ⌫, we must solve the second order di↵erential equation with bound-

ary conditions

�'(u) + (H(u)'(u))0 �
�2

2
'00(u) = 0

'(0) = 0 ,
�2

2
'0(1) +

1
N
'(1) = 0

(4.22)

First, we should recast equation (4.22) in Sturm-Liouville form (self-adjoint form),
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whose general theory is summarized in the upcoming Section 4.5. Expanding (H(u)'(u))0 =

H0(u)'(u) + H(u)'0(u) and introducing the integrating factor

⇢(u) = exp
 
�

2
�2

Z u

0
H(x)dx

!
(4.23)

equation (4.22) becomes

�
�
⇢(u)'0(u)

�0
+

"
2
�2⇢(u)H0(u) � �

 
�

2
�2⇢(u)

!#
'(u) = 0

'(0) = 0 ,
�2

2
'0(1) +

1
N
'(1) = 0

(4.24)

We introduce the notation, consistent to the Sturm-Liouville form given in the next

section in eq. (4.31)

q(u) =
2
�2⇢(u)H0(u) , �̃ = �

2
�2� , w(u) = ⇢(u) (4.25)

and, corresponding to the boundary conditions (4.30).

↵ = 1, ↵0 = 0 , � =
1
N
, �0 =

�2

2
. (4.26)

With this notation, equation (4.24) is exactly (4.31).

Theorem 4.4. The process defined by (4.8) has a unique qsd ⌫ having a continuous on

[0, 1], twice di↵erentiable, positive density on (0, 1).

Proof. Existence. Once we have established (4.24), we see from the explicit formulas for

its coe�cients that all conditions of Theorem 4.6 are satisfied, i.e. the coe�cients are

continuous and w(u) > 0 on [0, 1]. Moreover, from (4.22) is equivalent to (4.24), so the left

eigenvalue �̃0, respective eigenfunction  0 from Theorem 4.6 is a C2[0, 1] function, positive
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on (0, 1). The positivity comes from the fact that the operator has a compact resolvent

(Theorem 7.5.4 in [15]); this is directly stated in Theorem 4.6, being the case for all Sturm-

Liouville operators. The function  0 is continuous, thus integrable on [0, 1], which means

⌫(u) = C�1
0  0(u)du is a probability distribution, where C0 > 0 is the normalizing constant.

Uniqueness. Let ⌫(du) be a qsd forA defined in (4.8), i.e. a positive, finite measure on

[0, 1] satisfying the weak equation (4.20). Since the coe�cients of A are C2[0, 1] and the

boundary conditions are classical, one dimensional, the solution p(T � t, u, v), t 2 [0,T ],

for any T > 0 is jointly continuous up to the boundary and of class C2 in (u, v) for s > 0.

This implies that a left-side eigenfunction has a density. To see that, for any � 2 D(A),

e�0 s
Z 1

0
⌫(dv)�(v) =

Z 1

0

Z 1

0
⌫(du)p(s, u, v)�(v)dv

implying that

e�0 s⌫(dv) =
Z 1

0
⌫(du)p(s, u, v) ,

which is a C2 function of v 2 [0, 1]. Notice that (4.20) implies the exponentiation re-

lation for the semigroup shown in the equations from above. We’ve proved that ⌫ is an

L2([0, 1],w(du)) positive eigenfunction of (4.29). The only positive eigenfunction of (4.29)

is, modulo a constant, the eigenfunction  0. This is also unique, since the eigenspace of

�̃0 is one dimensional. It cannot be equal to another eigenfunction, because it would be or-

thogonal; two positive orthogonal functions would be zero almost everywhere. Since both

are also continuous, uniqueness is proven. ⇤

Thus the system (4.24) can be written in the classical context of the Sturm-Liouville
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theory as:

�
�
⇢(u)'0(u)

�0
+

⇣
q(u) � ⇢(u)�̃

⌘
'(u) = 0

'(0) = 0
�2

2
'0(1) +

1
N
'(1) = 0

(4.27)

The generality of equation (4.27) makes the process of solving it explicit very di�cult.

However, this is a Regular Sturm-Liouville Operator. By the theory developed is section

4.5, we get very nice properties for the Sturm-Liouville operator associated with (4.27),

such as compactness, self-adjointness and Fourier expansions of the solution in terms of

orthogonal eigenfunctions. But most important, we get the existence of the quasi-stationary

distribution by Corollary 4.7. Next, we give some numerical computation of the qsd.

4.5 Regular Sturm-Liouville Operators

In this section we review the theory of Regular Sturm-Liouville Operators, following very

closely the corresponding chapter of [15] and [19], the latter especially for the particular

form of Theorem 4.6. Such operators appear in the investigation of second-order di↵eren-

tial equations, in dimension one, defined on a closed interval a  u  b, of the form

�(⇢'0) +
⇣
q � �̃w

⌘
' = 0 (4.28)

together with special boundary conditions. For su�ciently smooth coe�cients, any one

dimensional second order time-homogeneous pde can be put in this form. We ask for

⇢ 2 C1[a, b], q,w 2 C[a, b] and �̃ constant. In addition, we impose ⇢(u) > 0 and w(u) > 0

for every a  u  b.

We shall define the class of Regular Sturm-Liouville operators on the complex Hilbert
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spaceH = L2([a, b],wdu)

H =

(
x(u) :

Z b

a
|x(u)|2w(u)du < 1

)

with inner product

< x, y >=
Z b

a
x(u) ¯y(u)w(u)du .

Definition 4.5. An operator defined on the subspaceD of C2-function ' 2 H of the form

L' =
1
w

⇥
�(⇢'0)0 + q'

⇤
(4.29)

is called a Regular Sturm-Liouville Operator if for every function ' 2 D, satisfies the

boundary conditions

(BC1) ↵'(a) + ↵0'0(a) = 0 (4.30)

(BC2) � '(b) + �0'0(b) = 0 ,

where ↵, ↵0, �, �0 are real numbers such that |↵| + |↵0| > 0, |�| + |�0| > 0.

Remark. The definition implies that the domain of a Regular Sturm-Liouville operator L

includes D. Also, since we trivially have the inclusions C1c [a, b] = C1[a, b] ⇢ D, the

operator L is densely defined.

Given an Sturm-Liouville operator L and a real number �̃, the operator

L' =
1
w

h
�(⇢'0)0 + (q � �̃w)'

i
(4.31)

is a Regular Sturm-Liouville operator if it satisfies the boundary conditions BC1 and BC2.
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A Regular Sturm-Liouville operator is symmetric [15]. Furthermore, for any real num-

ber �̃ in the resolvent of the operator (4.29), the operator (�̃I�L) is invertible, and (�̃I�L)�1

is compact and self-adjoint [15]. It follows that since H is a Hilbert space, any Regular

Sturm-Liouville operator L has at most a countable number of eigenvalues, and that these

must be real. The following theorem provides a better description of the behavior of the

eigenvalues and the corresponding eigenfunctions.

Theorem 4.6. (Theorem 5, 10.8 in [19]) Any regular Sturm-Liouville system has an infinite

sequence of real eigenvalues �̃0 < �̃1 < �̃2 < · · · with limn!1 �̃n = 1. The eigenfunction

 n(u) belonging to the eigenvalue �̃n has exactly n zeros in the interval a < u < b and it is

uniquely determined up to a constant factor.

Corollary 4.7. A regular Sturm-Liouville operator has a unique quasi-invariant distribu-

tion, which is the normalized eigenfunction associated with the smallest eigenvalue �̃0.

Proof. By Theorem 4.6, the eigenfunction  0 does not vanish over the compact interval

[a, b], and it is continuous since it belongs toD. Thus,  0 is integrable and does not change

sign in [a, b]. Hence, we can define a probability measure by normalizing  0 by its integral

over [a, b], this give us the quasi-invariant distribution. ⇤

4.6 Conjecture 4.1 and Numerical Analysis

In this section we explore the application of the software Maple 2017 in order to find the

quasi-stationary distribution. However, without any help, Maple is not able to solve the

problem for us. A procedure is needed in order to guide the software through the process.

The strategy is:
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First, to find a fundamental system for the Sturm-Liouville problem. This is a system

of two linearly independent solutions. Then, we argue as follows, given  1,  2 two linearly

independent solutions of the Sturm-Liouville problem, a real number � is an eigenvalue of

of the operator L if and only if the determinant

Det(�) =

���������

BC1( 1) BC1( 2)

BC2( 1) BC2( 2)

���������
= 0. (4.32)

This is because every solution  is a linear combination  = c1 1 + c2 2. Thus, applying

the boundary conditions we obtain the system of equations

c1BC1( 1) + c2BC1( 2) = 0

c1BC2( 1) + c2BC2( 2) = 0.
(4.33)

If � is an eigenvalue, then Det(�) = 0 since we can find a nontrivial solution of (4.33).

Conversely, if Det(�) = 0, then there are constants c1, c2 that solve (4.33) such that c1c2 , 0.

Thus,  = c1 1 + c2 2 is an eigenfunction corresponding to the eigenvalue �.

We must solve for the smallest solution of equation (4.32). This is the first eigenvalue

�0. We recall that, by (4.6), the set of solutions is countable and bounded below, and that

the corresponding eigenfunction is positive in the interval (0, 1).

Once we obtain �0, we can evaluate any of the equations in (4.33) and solve for one of

the variables, say c2 in terms of c1. Finally, we normalize the eigenfunction  = c1 1 +

c2(c1) 2 to obtain the quasi-invariant distribution.

In order to make numerical computations less complicated, it is necessary to simplify

(4.27) as much as possible. In order to eliminate the first derivative term we introduce the
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change of variables:

 (u) = '(u)
p
⇢(u)

 0(u) = '0(u)
p
⇢(u) + '(u)

⇢0(u)
2
p
⇢(u)

 00(u) = '00(u)
p
⇢(u) + '0(u)

⇢0(u)
p
⇢(u)
+ '(u)(

p
⇢(u))00.

(4.34)

We obtain the new regular problem for  (u),

 00(u) + �̃  (u) = Q(u) (u)

 (0) = 0, �2 0(1) +
1
N
 (1) = 0

(4.35)

where

Q(u) =
q(u) +

p
⇢(u)(

p
⇢(u))00

⇢(u)
=

1
�2 H0(u) +

 
1
�2 H(u)

!2

(4.36)

We define the operator

L := � 00(u) + Q(u) (u) (4.37)

toguether with the boundary operators

BC1( ) =  (0) BC2( ) = �2 0(1) +
1
N
 (1). (4.38)

We will illustrate how to obtain the quasi-invariant distribution for the system (4.35) in the

particular cases, a = 0 and a = 1. The initialization for Maple is:

> with(LinearAlgebra):

> with(Student[Calculus1]):

> with(RootFinding):

> with(MathematicalFunctions):
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> with(PDEtools):

>_EnvAllSolutions := true

4.6.1 Special Case, Explicit Solution a = 0

We analyze the special case in which the parameter a = 0. In this case the function H

takes the simpler form H(u) = � 1
N u + c(1 � u). We write equation (4.35) and the boundary

conditions.

> H(u) := � 1
N u + c(1 � u)

> Q(u) := 1
�2 H0(u) +

⇣
1
�2 H(u)

⌘2

> DE :=  00(u) + �̃ (u) = Q(u) (u)

The general solution of the equation DE is

_C2 exp
 
u(c(u � 2)N + u)

2�2N

!
(c(u � 1)N + u) hypergeom

 
2 + (��2� + 2c)N

4cN + 4
,

3
2
,

(c(u � 1)N + u)2

(cN + 1)�2N

!
+

+ _C1 hypergeom
 
�2N�

4cN + 4
,

1
2
,

(c(u � 1)N + u)2

(cN + 1)�2N

!
.

Where hypergeom (n, d, z) is the generalized hypergeometric function F(n, d, z). This was

obtain by

> sol(u) := rhs(dsolve(DE))

> eq1 := sol(u)
����
u=0
= 0

> eq2 := �2sol0(u)
����
u=1
+ 1

N sol(u)
����
u=1
= 0

We write the system of equations {eq1, eq2} as a matrix, and impose the condition that

the determinant of such matrix is zero. This will provide us with a nontrivial solution for

the constants _C1, _C2.

> M := GenerateMatrix([eq1, eq2], [_C1, _C2])[1]

> EQ := Determinant(M) = 0
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> H := (lambda, N, sigma, c)! lhs(EQ)

We take this moment to evaluate the parameters �, N, �, and c by some particular values

for computational purposes.

> f := simplify(eval(H(lambda, N, sigma, c), [c = 0.02, N = 100, sigma = 1]))

We plot the determinant to check that our results are consistent with the theory.

> plot(f, lambda = 0 .. 500, color = [red], thickness = 2)

Figure 4.1: Graphs of the determinant of the matrix M as a function of � for N = 100, c = 0.02,
� = 1.

We are interested in the smallest eigenvalue. The command fsolve finds all real roots

of the function f on some interval. From graph (4.1) we can see that the first root lies in

(0, 10).

> ev := fsolve(f, lambda = 0 .. 10)

Thus we obtain that the first root is 2.457399838. This is the eigenvalue �0 correspond-

ing with the quasi-stationary distribution. For such value �0, equations eq1 and eq2 are

redundant. We could solve for _C2 in eq1.

> s := eval(solve(eq1, _C2), [lambda = ev, N = 100, sigma = 1, c = 0.02, _C1 = 1])
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We obtain _C2 = .3005649041. The corresponding eigenfunction is, up to a constant,

obtained by

> g := x! eval(sol(x), [lambda = ev, N = 100, sigma = 0.02, c = 1, _C1 = 1, _C2 =

s]) We finally graph the eigenfunction corresponding to the first eigenvalue �0.

> plot(g(x), x = 0 .. 1)

Figure 4.2: Graphs of the quasi-stationary distribution (in red), and the next four eigenfunctions
for a = 0, N = 100, c = 0.02, � = 1

Conjecture 4.1 - Analysis when �! 0

Finally, to obtain the quasi-invariant distribution we need to normalize the eigenfunc-

tion. We compute the area under the curve by

> area := int(ef1(x), x = 0 .. 1, numeric = true).
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Figure 4.3: Graphs of the quasi-stacionary distribution as � ! 0, for a = 0, N = 100, c = 0.02,
� = 1

2i , 1  i  7.

We can see the quasi-stationary distribution converges to the unique equilibrium value.

For N = 100, c = 0.02 and a = 0, by (2.3.5), the stable point is given by

u2 = (1 +
1

Nc
)�1 = .666666̄.

4.6.2 Special Case, Explicit Solution a = 1

We analyze the special case in which the parameter a = 1. In this case the function H takes

the simpler form H(u) = � 1
N u + cu(1 � u). We write equation (4.35) and the boundary

conditions and obtain that it has general solution given by

_C1 exp

0
BBBBBB@

x2
⇣

3
2 + N(x � 3

2 )c
⌘

3�2N

1
CCCCCCA HeunT

0
BBBBBB@

(18�4)1/3�

2c2/3 , 3,�
181/3(cN � 1)2

4(c�)4/3 ,
181/3

⇣
1
2 + c(x � 1

2 )N
⌘

3c2�2/3N

1
CCCCCCA +

+ _C2 exp

0
BBBBBB@

x2
⇣

3
2 + N(x � 3

2 )c
⌘

3�2N

1
CCCCCCA HeunT

0
BBBBBB@

(18�4)1/3�

2c2/3 ,�3,�
181/3(cN � 1)2

4(c�)4/3 ,�
181/3

⇣
1
2 + c(x � 1

2 )N
⌘

3c2�2/3N

1
CCCCCCA .
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Where HeunT (↵, �, �, z) is the solution of the Heun Triconfluent Equation. This is, again,

obtained by

> sol(u) := rhs(dsolve(DE))

> eq1 := sol(u)
����
u=0
= 0

> eq2 := �2sol0(u)
����
u=1
+ 1

N sol(u)
����
u=1
= 0

As before we write the system of equations {eq1, eq2} as a matrix, and impose the

condition that the determinant of such matrix is zero. This will provide us with a nontrivial

solution for the constants _C1, _C2. Plotting the determinant as a function of � we obtain

Figure 4.4: Graphs of the determinant of the matrix M as a function of � for N = 100, c = 0.02,
� = 1.

We apply fsolve again to find all real roots of the function f on (0, 10) and we ob-

tain that the first root is 2.469293165. This is the eigenvalue �1 corresponding with the

quasi-stationary distribution. For such value �1 we obtain _C2 = �.9997542569. The

corresponding eigenfunction is, up to a constant, obtained by

> g := x! eval(sol(x), [lambda = ev, N = 10000, sigma = 1, c = 1, _C1 = 1, _C2 = s])

We finally graph the quasi-invariant measure.
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> plot(g(x), x = 0 .. 1)

Figure 4.5: Graphs of the quasi-stacionary distribution (in red), and the next four eigenfunctions
for a = 1, N = 100, c = 0.02, � = 1.

Figure 4.6: Graphs of the quasi-stacionary distribution as � ! 0, for a = 1, N = 100, c = 0.02,
� = 1

2i , 1  i  7.

This is the behavior of the sequence of points, at which the quasi-stationary distribution

attains maximum, converging to the equilibrium value q(1) = 1 � 1
Nc = 0.5. (see (2.5.1)).



Chapter 5

Future Research

• Refine the numerical calculations using MatLab.

• Prove Conjecture 4.1 under appropriate conditions.

• Investigate both perturbation results in higher dimensions and generalize to state de-

pendent noise.

• Modify the nature of the escape probability from �(u) = cua (power law) to another

monotone law, with some di↵erent tail behavior.

• Investigate the problem of random fixation/escape for a di↵erent mutation mech-

anism. Here we essentially have only two types of characters (zero, for fixation,

and non-zero, for regular) while we could have a random walk on the alphabet

{0, 1, . . . ,N � 1} with the same fixation mechanism.
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Appendix A

Discrete and continuous time Markov

chains

A.1 Markov Chains

In this subsection we briefly present the general definitions of Markov Chains. The theory

between the discrete and continuous cases is very close and the main object driving these

toguether is the jump process Yn introduced before.

Let I ✓ Rn (the state space) and X : ⌦ ! I a random variable. The distribution of X is

the vector µ with components given by

µi = P({! : X(!) = i}) i 2 I.

A matrix P = (pi, j), i, j 2 I is called an Stochastic Matrix if 0  pi, j  1 and

X

i2I

pi, j = 1.

Definition A.1 (Discrete Markov Chain). Consider a countable family of random variables

Xn ! I. Let P = (pi, j) be an stochastic matrix with values on I. The family Xn is a Discrete
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Markov Chain with initial distribution µ and transition matrix P if the random variable X0

has distribution � and

P(Xn+1 = in+1| Xn = in, ..., X0 = i0) = pin, in+1 .

The entries pin, in+1 are called transition probabilities and we write Xn is Markov(µ, P)

for a discrete Markov chain Xn defined as before. We mention that, in order to define

a discrete Markov chain Xn, it’s only needed to prescribe the initial distribution and the

transition matrix P. The process is then completely described since, given that Xn is at

state i, we know what stages it could reach and with what probability. Similarly, for a

continuous process Xt the main object needed to describe its behavior is the generator

matrix or Q-matrix, described in Definition A.6.

A.2 Pure Jump Processes

Markov chain theory is very vast, even when limited to the pure-jump case. We present

concepts, definitions and a few martingale theory results that will be important for our work.

We follow closely Norris [17] for notation and definitions. For a deeper understanding of

the theory we point to the monograph by Roger and Williams [22].

For the rest of the chapter let I be a countable set. We will refer to the elements of the

set I as states, and by I as state space.

Definition A.2 (Pure Jump Continuous Random Processes). By a Pure Jump Continuous

Random Process

(Xt)t�0 = {X(t,!) : 0  t < 1, ! 2 ⌦}

on a stage space I, we mean a family of random variables Xt : ⌦! I satisfying that:
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for all ! 2 ⌦, t � 0, there is an ✏ > 0 such that

Xs = Xt t  s  t + ✏.

The above definition implies that, a pure jump process must remain constant in a par-

ticular state for some period of time, until it “jumps” to a new one. The time the process

spends between two consecutive stages is called a holding time, and the instant in which

the process changes stages is referred as a jump time. The sum of all the holding times is

referred as explosion time. We formalize these notions by giving an explicit relation with

the process (Xt)t�0.

Definition A.3 (Jump Times).

J0 = 0, Jn+1 = inf{t � Jn : Xt , XJn} , n = 0, 1, 2, ...

Definition A.4 (Holding Times).

S n =

8>>>>>><
>>>>>>:

Jn � Jn�1 , Jn�1 < 1

1 , Jn�1 = 1

n = 0, 1, 2, ...

Definition A.5 (Explosion Time).

⇣ =
1X

n=1

S n .

If we add an special state {1} to the set I then, a process Xt is called a minimal process

i↵ Xt = 1, 8t � ⇣. We must introduce another useful process associated with (Xt)t�0, the

discrete process Yn = XJn , n = 0, 1, 2, ... is called the jump process. It turns out that the

jump process is an essential tool in the study of the process Xt.
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Definition A.6. A Q-matrix on the state space I is a matrix Q = (qi, j), i, j 2 I satisfying

that:

• 0  qi, j i , j;

• 0  � qi,i < 1 i 2 I;

•
P

j2I qi, j = 0

The entry �qi,i is denoted for short by qi = q(i).

Out of any Q-matrix Q we can obtain a transition matrix P, called the jump matrix ⇧,

as follows:

⇡i, j =

8>>>>>><
>>>>>>:

qi, j

qi
i , j, qi , 0

0 i , j, qi = 0

⇡i,i =

8>>>>>><
>>>>>>:

0 qi , 0

1 qi = 0

We are now in position to define a continuous Markov process.

Definition A.7 (Continuous Markov Pure Jump Process). A minimal pure jump continuous

processes Xt on I is a Markov Chain with initial distribution µ and matrix Q (Q - matrix)

if its jump chain Yn is Markov(�,⇧) and if for each n � 1, conditional on Y0, ...,Yn�1, its

holding times S 1, ..., S n are independent exponential random variables of parameters q(Y0),

. . . , q(Yn�1) respectively.

We omit the details of the construction of such processes but we refer the reader to

[17] and [24] in case of interest. At this moment it is only important for us to note that a
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continuous time Markov pure jump process Xt on the state space I is completely determined

if we describe the intensities of the holding times and the behavior of Xt at jump times. The

generator matrix of the process is an special case of a more general notion, the generator

of a Markov process. We should discuss a little bit further such theory next since both

presentations will be used later.

Definition A.8 (Generator of a pure jump Markov Process). Let Xt be a continuous time

pure jump Markov process on I ✓ Rn. Let f 2 C(Rn,R). The (infinitesimal) generatorA of

Xt is defined by

A f (i) = lim
t!0

Eu[ f (Xt)] � f (i)
t

; i 2 I ,

whenever it exists. The set of functions f : Rn
! R such that the limit exists is the domain

of the generator and is denoted byDA.

Remark. We note that for a finite state continuous Markov chain

A f (u) =
X

j,i

qi, j( f ( j) � f (i)) .

Martingales Associated to a Continuous Time Process

In general a Markov process does not need to be a martingale, not a martingale is always

a Markov process. However, associated with any Markov process we can define a pair of

martingales that are very useful.

Mg
t = g(Xt) � g(X0) �

Z t

0
Ag(Xs)ds (A.1)

Ng
t =

�
Mg

t
�2
�

Z t

0

h
Ag2(Xs) � 2g(Xs)Ag(Xs)

i
ds (A.2)



83

Lemma A.9. (Simplified version of Lemma 5.1 Appendix 1 in [14]) Let (Xt)t�0 be a con-

tinuous time, pure jump Markov process on a probability space (⌦,F , P) adapted to the

filtration (Ft)t�0. For any test function g(t, x) 2 C2
0([0,1) ⇥ R,R), the processes Mg

t and

Ng
t are Ft-martingales.



Appendix B

A Useful Formula Used in Chapter 3

In Chapter 3, we used several times an estimate of the following type. If f 2 Cc(R) such

that f n+1 exists and is continuous on an open interval containing [u0, u0 + yL
s
p

L
], then by

Taylor’s formula with remainder in the integral form

f (u0 +
yL

s
p

L
) =

nX

k=0

1
k!

f (k)(u0)
 

yL
s
p

L

!k

+ Rn(u0 +
yL

s
p

L
) (B.1)

where

Rn(u0 +
yL

s
p

L
) =

1
n!

 
yL

s
p

L

!n+1 Z 1

0
wn f (n+1)

0
BBBBB@

 
u0 + (1 � w)

yL
s
p

L

!k1CCCCCA dw. (B.2)

The remainder is a process and since f n+1 is bounded on [u0, u0 + yL
s
p

L
], by some constant

c( f ), then Rn satisfies

Rn(u0 +
yL

s
p

L
) 

1
(n + 1)!

 
yL

s
p

L

!n+1

c( f ). (B.3)
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