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A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

August 2014



c©2014
Rafael S. González D’León
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This thesis is concerned with the connection between Lie algebras with multiple

brackets and the topology of partially ordered sets. From a partially ordered set

(poset) one obtains a simplicial complex, called the order complex, whose faces are

the chains of the poset. There is a long tradition of using topological properties

of the order complex to study various geometric and algebraic structures.

It is a classical result that the multilinear component of the free Lie algebra is

isomorphic (as a representation of the symmetric group) to the top (co)homology

of the order complex of the proper part of the poset of partitions Πn tensored with

the sign representation. We generalize this result in order to study the multilinear

component of the free Lie algebra on n generators with multiple compatible Lie

brackets. We consider the poset of weighted partitions Πw
n , introduced by Dotsenko

and Khoroshkin in their study of a certain pair of dual operads and we introduce

a new poset of weighted partitions Πk
n that allows us to generalize the result. The

maximal intervals of Πw
n provide a generalization of the lattice Πn of partitions,

which we show possesses many of the well-known properties of Πn; the new poset

Πk
n is a generalization of both Πn and Π

w
n . Indeed, Π

1
n � Πn and Π

2
n � Πw

n .

An important combinatorial tool for studying the topology of the order

complex is provided by the theory of shellability. We prove that the poset Πk
n with

a top element added is EL-shellable and hence Cohen-Macaulay. This enables us

in the case k = 2 to use the poset theoretic Möbius function to recover results of

Dotsenko-Khoroshkin and Liu giving the dimension of the multilinear component



of the free doubly bracketed Lie algebra Lie2(n) as nn−1. We show that the Möbius

invariant of each maximal interval of Πw
n is given up to sign by the number of rooted

trees on node set {1, 2, . . . , n} having a fixed number of descents. Moreover, we

construct a nice combinatorial basis for the homology of these intervals consisting

of fundamental cycles indexed by such rooted trees, generalizing Björner’s NBC

basis for the homology of Πn. We also show that the characteristic polynomial of

Πw
n has a nice factorization analogous to that of Πn.

EL-shellability and other properties of the more general poset Πk
n enable us to

answer questions posed by Liu on free multibracketed Lie algebras. In particular,

we obtain various dimension formulas and multicolored generalizations of the

classical Lyndon and comb bases for the multilinear component of the free Lie

algebra. We obtain and rely on an interesting bijection between the colored

Lyndon trees and the colored combs. This bijection is a generalization of the

classical bijection between the classical Lyndon trees and combs.

The multilinear component of the free multibracketed Lie algebra decomposes

in a natural way into more refined components according to the number of brackets

of each type used in its generators. Indeed, for a weak composition μ = (μ1, μ2, . . . )

we consider the component Lie(μ) whose generators contain μj brackets of type

j for each j. We prove that the generating function of dimLie(μ) is an e-

positive symmetric function, that is, it has positive coefficients in the basis of

elementary symmetric functions. We give various combinatorial descriptions of

the e-coefficients in terms of leaf-labeled binary trees and in terms of the Stirling

permutations introduced by Gessel and Stanley.

We also use poset theoretic techniques to obtain a plethystic formula for the

Frobenius characteristic of the representation of the symmetric group on the

multilinear component of the free multibracketed Lie algebra.
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Chapter 1

Introduction

There is a long tradition of using topological properties of the order complex of

partially ordered sets to study various geometric and algebraic structures. This

thesis is concerned with the connection between Lie algebras with multiple brackets

and the topology of a family of partially ordered sets of weighted set partitions.

We start by discussing classical results on the multilinear component of the free

Lie algebra and the poset of partitions Πn and we proceed to describe how this

work generalizes the classical results to the free multibracketed Lie algebras.

1.1 The free Lie algebra

Recall that a Lie bracket on a vector space V is a bilinear binary product [·, ·] :

V × V → V such that for all x, y, z ∈ V ,

[x, y] + [y, x] = 0 (Antisymmetry), (1.1.1)

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity). (1.1.2)

Throughout this paper let k denote an arbitrary field. The free Lie algebra on

[n] := {1, 2, . . . , n} (over the field k) is the k-vector space generated by the

1



2

elements of [n] and all the possible bracketings involving these elements subject

only to the relations (1.1.1) and (1.1.2). Let Lie(n) denote the multilinear

component of the free Lie algebra on [n], i.e., the subspace generated by

bracketings that contain each element of [n] exactly once. We call these bracketings

bracketed permutations. For example [[2, 3], 1] is a bracketed permutation in

Lie(3), while [[2, 3], 2] is not. For any set S, the symmetric group SS is

the group of permutations of S. In particular we denote by Sn := S[n] the

group of permutations of the set [n]. The symmetric group Sn acts naturally

on Lie(n) making it into an Sn-module. A permutation τ ∈ Sn acts on

the bracketed permutations by replacing each letter i by τ(i). For example

(1, 2) [[[3, 5], [2, 4]], 1] = [[[3, 5], [1, 4]], 2]. Since this action respects the relations

(1.1.1) and (1.1.2), it induces a representation of Sn on Lie(n). It is a classical

result that

dimLie(n) = (n− 1)!.

Although the Sn-module Lie(n) is an algebraic object it turns out that the

information needed to completely describe this object is of combinatorial nature.

1.2 The poset of partitions Πn

A (set) partition of [n] is a disjoint collection {B1, . . . , Bt} of subsets (called blocks)

of [n] such that ∪t
j=1Bj = [n]. We will very often use the notation B1|B2| · · · |Bt to

denote a partition of [n]. For two partitions {A1, A2, ..., As} and {B1, B2, ..., Bt}

of [n] we define the order relation

{A1, A2, ..., As} ≤ {B1, B2, ..., Bt}
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13|2

1|2|3

123

12|3 1|23

Figure 1.1: Π3

if every block Aj is contained in some block Bi and we say that {A1, A2, ..., As} is a

refinement of {B1, B2, ..., Bt}. We denote by Πn the partially ordered set (or poset

for short) of partitions of [n] ordered by refinement, see Figure 1.1 for the Hasse

diagram of Π3 (the set brackets and commas have been omitted in the figure).

The poset Πn has a bottom element

0̂ := {{1}, {2}, . . . , {n}}

and a maximal element 1̂ = {[n]}. The covering relations are given by

{A1, A2, ..., As}� {B1, B2, ..., Bt}

if {B1, B2, ..., Bt} is obtained from {A1, A2, ..., As} by merging exactly two blocks,

i.e., {B1, B2, ..., Bt} = {A1, A2, ..., As}\{Ai, Aj}∪{Ai∪Aj} for two different blocks

Ai and Aj. For example 143|27|5|8� 143|257|8 since the block 257 is obtained by

merging the blocks 27 and 5 while the rest of the blocks remain equal.

It is well-known that the Möbius invariant of Πn is given by

μΠn(0̂, 1̂) = (−1)n−1(n− 1)!,
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and that the characteristic polynomial (see [40, Example 3.10.4]) by

χΠn(x) = (x− 1)(x− 2) . . . (x− n+ 1). (1.2.1)

To every poset P one can associate a simplicial complex Δ(P ) (called the order

complex ) whose faces are the chains (totally ordered subsets) of P . See Appendix

A for a review of poset topology and poset (co)homology.

The symmetric group Sn acts naturally on Πn and this action induces

isomorphic representations of Sn on the unique nonvanishing reduced simplicial

homology H̃n−3(Πn) and cohomology H̃n−3(Πn) of the order complex Δ(Πn) of

the proper part Πn := Πn \ {0̂, 1̂} of Πn. It is a classical result that

Lie(n) �Sn H̃n−3(Πn)⊗ sgnn, (1.2.2)

where sgnn is the sign representation of Sn.

Equation (1.2.2) was observed by Joyal [28] by comparing a computation of the

character of H̃n−3(Πn) by Hanlon and Stanley (see [38]), to an earlier formula of

Brandt [11] for the character of Lie(n). Joyal [28] gave a proof of the isomorphism

using his theory of species. The first purely combinatorial proof was obtained

by Barcelo [2] who provided a bijection between known bases for the two Sn-

modules (Björner’s NBC basis for H̃n−3(Πn) and the Lyndon basis for Lie(n)).

Later Wachs [44] gave a more general combinatorial proof by providing a natural

bijection between generating sets of H̃n−3(Πn) and Lie(n), which revealed the

strong connection between the two Sn-modules. Connections between Lie type

structures and various types of partition posets have been studied in other places

in the literature, see for example [3], [4], [24], [21], [17], [43], [12], [30].

The moral of equation (1.2.2) is that we can describe Lie(n) and understand

its algebraic properties by studying and applying poset theoretic techniques to the
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combinatorial object Πn. This observation will play a central role throughout this

thesis.

1.3 Free doubly bracketed Lie algebra

Two Lie brackets [•, •]1 and [•, •]2 on a vector space V are said to be compatible if

any linear combination of the brackets is also a Lie bracket on V , that is, satisfies

relations (1.1.1) and (1.1.2). As pointed out in [14, 29], compatibility is equivalent

to the mixed Jacobi condition: for all x, y, z ∈ V,

[x, [y, z]2]1 + [z, [x, y]2]1 + [y, [z, x]2]1+ (Mixed Jacobi) (1.3.1)

[x, [y, z]1]2 + [z, [x, y]1]2 + [y, [z, x]1]2 = 0.

Let Lie2(n) be the multilinear component of the free Lie algebra on [n] with

two compatible brackets, that is, the multilinear component of the k-vector space

generated by (mixed) bracketings of elements of [n] subject only to the five

relations given by (1.1.1) and (1.1.2), for each bracket, and (1.3.1). For each

i, let Lie2(n, i) be the subspace of Lie2(n) generated by bracketed permutations

with exactly i brackets of the first type and n− 1− i brackets of the second type.

The symmetric group Sn acts naturally on Lie2(n) and since this action preserves

the number of brackets of each type, we have the following decomposition into

Sn-submodules:

Lie2(n) =
n−1⊕
i=0

Lie2(n, i). (1.3.2)

Note that interchanging the roles of the two brackets makes evident the Sn-

module isomorphism
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Lie2(n, i) �Sn Lie2(n, n− 1− i)

for every i. Also note that in particular Lie(n) is isomorphic to the submodules

Lie2(n, i) when i = 0 or i = n− 1.

It was conjectured by Feigin and proved independently by Dotsenko-

Khoroshkin [14] and Liu [29] that

dimLie2(n) = nn−1. (1.3.3)

In [29] Liu proves the conjecture by constructing a combinatorial basis for

Lie2(n) indexed by rooted trees giving as a byproduct the refinement

dimLie2(n, i) = |Tn,i|, (1.3.4)

where Tn,i is the set of rooted trees on vertex set [n] with i descending edges (a

parent with a greater label than its child).

The Dotsenko-Khoroshkin proof [14, 15] of Feigin’s conjecture was operad-

theoretic; they used a pair of functional equations that apply to Koszul operads to

compute the SL2×Sn-character of Lie2(n). They also proved that the dimension

generating polynomial has a nice factorization:

n−1∑
i=0

dimLie2(n, i)ti =
n−1∏
j=1

((n− j) + jt). (1.3.5)

Since, as was proved by Drake [16], the right hand side of (1.3.5) is equal to

the generating function for rooted trees on node set [n] according to the number

of descents of the tree, it follows that for each i, the dimension of Lie2(n, i) equals
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the number of rooted trees on node set [n] with i descents. (Drake’s result is a

refinement of the well-known result that the number of trees on node set [n] is

nn−1.)

1.4 The poset of weighted partitions Πw
n

Although Dotsenko and Khoroshkin [14] did not use poset theoretic techniques in

their ultimate proof of (1.3.3), they introduced the poset of weighted partitions

Πw
n as a possible approach to establishing Koszulness of the operad associated

with Lie2(n), a key step in their proof. In this thesis we explore properties for Πw
n

analogous to the ones for Πn described in Section 1.2.

A weighted partition of [n] is a set {Bv1
1 , Bv2

2 , ..., Bvt
t } where {B1, B2, ..., Bt} is

a partition of [n] and vi ∈ {0, 1, 2, ..., |Bi| − 1} for all i. The poset of weighted

partitions Πw
n is the set of weighted partitions of [n] with order relation given by

{Aw1
1 , Aw2

2 , ..., Aws
s } ≤ {Bv1

1 , Bv2
2 , ..., Bvt

t } if the following conditions hold:

• {A1, A2, ..., As} ≤ {B1, B2, ..., Bt} in Πn

• if Bk = Ai1 ∪Ai2 ∪ ...∪Ail then vk − (wi1 +wi2 + ...+wil) ∈ {0, 1, ..., l− 1}.

Equivalently, we can define the covering relation by

{Aw1
1 , Aw2

2 , ..., Aws
s }� {Bv1

1 , Bv2
2 , ..., Bvt

t }

if the following conditions hold:

• {A1, A2, . . . , As}� {B1, B2, . . . , Bt} in Πn

• if Bk = Ai ∪ Aj, where i 	= j, then vk − (wi + wj) ∈ {0, 1}

• if Bk = Ai then vk = wi.
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1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 10|231

Figure 1.2: Weighted partition poset for n = 3

As an example, Πw
3 is illustrated in Figure 1.2.

The poset Πw
n has a minimum element

0̂ := {{1}0, {2}0, . . . , {n}0}

and n maximal elements

{[n]0}, {[n]1}, . . . , {[n]n−1}.

We write each maximal element {[n]i} as [n]i. Note that for all i, the maximal

intervals [0̂, [n]i] and [0̂, [n]n−1−i] are isomorphic to each other, and the two

maximal intervals [0̂, [n]0] and [0̂, [n]n−1] are isomorphic to Πn.

The basic properties of Πn mentioned in Section 1.2 have nice weighted analogs

for the intervals [0̂, [n]i]. For instance, the Sn-module isomorphism (1.2.2) can be

generalized. The symmetric group acts naturally on each Lie2(n, i) and on each

open interval (0̂, [n]i).

It follows from operad theoretic results of Vallette [43] and Dotsenko-

Khoroshkin [15] that the following Sn- module isomorphism holds:

Lie2(n, i) �Sn H̃n−3((0̂, [n]i))⊗ sgnn . (1.4.1)
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Note that this reduces to (1.2.2) when i = 0 or i = n− 1.

In this thesis we give an alternative proof of (1.4.1) by presenting an explicit

bijection between natural generating sets of H̃n−3((0̂, [n]i)) and Lie2(n, i), which

reveals the connection between these modules and generalizes the bijection that

Wachs [44] used to prove (1.2.2). With (1.4.1), we take a different path to

proving the Liu and Dotsenko-Khoroshkin formula (1.3.5), one that employs poset

theoretic techniques.

An EL-labeling of a poset (defined in Section 4.1) is a labeling of the edges of

the Hasse diagram of the poset that satisfies certain requirements. Such a labeling

has important topological and algebraic consequences, such as the determination

of the homotopy type of each open interval of the poset. The so called ascent-free

maximal chains give a basis for cohomology of the open intervals. A poset that

admits an EL-labeling is said to be EL-shellable. See [6], [8] and [46] for further

information.

We prove that the augmented poset of weighted partitions

Π̂w
n := Πw

n ∪ {1̂}

is EL-shellable by providing an interesting weighted analog of the Björner-Stanley

EL-labeling of Πn (see [6]). In fact our labeling restricts to the Björner-Stanley

EL-labeling on the intervals [0̂, [n]0] and [0̂, [n]n−1]. A consequence of shellability

is that Π̂w
n is Cohen-Macaulay, which implies a result of Dotsenko and Khoroshkin

[15], obtained through operad theory, that all maximal intervals [0̂, [n]i] of Πw
n are

Cohen-Macaulay. (Two prior attempts [14, 41] to establish Cohen-Macaulayness

of [0̂, [n]i] are discussed in Remark 4.1.8.) The ascent-free chains of our EL-labeling

provide a generalization of the Lyndon basis for cohomology of Πn (i.e. the basis

for cohomology that corresponds to the classical Lyndon basis for Lie(n)).
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Theorem 1.4.1 (Theorem 4.1.4, Corollary 4.1.7 Theorem 4.1.9). The poset Π̂w
n :=

Πw
n ∪ {1̂} is EL-shellable and hence Cohen-Macaulay. Consequently, for each i =

0, . . . , n − 1, the order complex Δ((0̂, [n]i)) has the homotopy type of a wedge of

|Tn,i| spheres.

Direct computation of the Möbius function of Πw
n , which exploits the

recursive nature of Πw
n and makes use of the compositional formula, shows

that (−1)n−1
∑n−1

i=0 μΠw
n
(0̂, [n]i)ti equals the right hand side of (1.3.5). From this

computation and the fact that Π̂w
n is EL-shellable (and thus the maximal intervals

of Πw
n are Cohen-Macaulay), we conclude that

n−1∑
i=0

dim H̃n−3((0̂, [n]
i))ti =

n−1∏
j=1

((n− j) + jt). (1.4.2)

The Liu and Dotsenko-Khoroshkin formula (1.3.5) is a consequence of this and

(1.4.1).

By (1.4.2) and Drake’s result mentioned above, the dimension of H̃n−3((0̂, [n]
i))

is equal to the number of rooted trees on [n] with i descents. We construct a nice

combinatorial basis for H̃n−3((0̂, [n]
i)) consisting of fundamental cycles indexed

by such rooted trees, which generalizes Björner’s NBC basis for H̃n−3(Πn). Our

proof that these fundamental cycles form a basis relies on Liu’s [29] generalization

for Lie2(n, i) of the classical Lyndon basis for Lie(n) and our bijective proof of

(1.4.1). Indeed, our bijection enables us to transfer bases for Lie2(n, i) to bases for

H̃n−3((0̂, [n]i)) and vice verse. We first transfer Liu’s generalization of the Lyndon

basis to H̃n−3((0̂, [n]i)) and then use the natural pairing between homology and

cohomology to prove that our proposed homology basis is indeed a basis. (We

also obtain an alternative proof that Liu’s generalization of the Lyndon basis is

a basis along the way.) By transferring the basis for H̃n−3((0̂, [n]i)) that comes
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from the ascent-free chains of our EL-labeling to Lie2(n, i), we obtain a different

generalization of the Lyndon basis that has a somewhat simpler description than

that of Liu’s generalized Lyndon basis.

We also show that the Möbius invariant of the augmented poset of weighted

partitions Π̂w
n is given by

μΠ̂w
n
(0̂, 1̂) = (−1)n(n− 1)n−1

and that the characteristic polynomial of Πw
n factors nicely as

χΠw
n
(x) = (x− n)n−1. (1.4.3)

1.5 Free multibracketed Lie algebras

Liu posed the following natural question.

Question 1.5.1 (Liu [29], Question 11.7 ). Is it possible to define Liek(n) for any

k ≥ 1 so that it has nice dimension formulas like those for Lie(n) and Lie2(n)?

What are the right combinatorial objects for Liek(n), if it can be defined?

The results developed in this thesis provide an answer to this question.

Let N denote the set of nonnegative integers and P the set of positive integers.

We say that a set B of Lie brackets on a vector space is compatible if any linear

combination of the brackets in B is a Lie bracket. We now consider compatible

Lie brackets [·, ·]j indexed by positive integers j ∈ P and define LieP(n) to be the

multilinear component of the multibracketed free Lie algebra on [n]; that is, the

k-vector space generated by (mixed) bracketed permutations of [n] subject only to

the relations given by (1.1.1) and (1.1.2), for each bracket, and the compatibility

relations for any set of brackets. For example, [[[2, 5]2, 3]1, [1, 4]1]3 is a generator
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of LieP(5).

A weak composition μ of n is a sequence of nonnegative integers (μ(1), μ(2), . . . )

such that |μ| :=∑i≥1 μ(i) = n. Let wcomp be the set of weak compositions and

wcompn the set of weak compositions of n. For μ ∈ wcompn−1, define Lie(μ)

to be the subspace of LieP(n) generated by bracketed permutations of [n] with

μ(j) brackets of type j for each j. For example Lie(0, 1, 2, 0, 1) is generated by

bracketed permutations of [5] that contain one bracket of type 2, two brackets of

type 3, one bracket of type 5 and no brackets of any other type.

As before, Sn acts naturally on Lie(μ) by replacing the letters of a bracketed

permutation. Interchanging the roles of the brackets reveals that for every ν, μ ∈

wcomp, such that ν is a rearrangement of μ, we have that Lie(ν) �Sn Lie(μ). In

particular, if μ has a single nonzero component, Lie(μ) is isomorphic to Lie(n).

If μ has at most two nonzero components then Lie(μ) is isomorphic to Lie(n, i)

for some 0 ≤ i ≤ n− 1.

For μ ∈ wcomp define its support supp(μ) = {j ∈ P | μ(j) 	= 0} and for a

subset S ⊆ P let

LieS(n) :=
⊕

μ∈wcompn−1

supp(μ)⊆S

Lie(μ).

Note that Liek(n) := Lie[k](n) generalizes Lie(n) = Lie1(n) and Lie2(n).

The isomorphisms (1.2.2) and (1.4.1) provide a way to study the algebraic

objects Lie(n) and Lie2(n) by applying poset topology techniques to Πn and Π
w
n .

In particular the dimensions of the modules can be read from the structure of the

posets and the bases for the cohomology of the posets can be directly translated

into bases of Lie(n) and Lie2(n). It is then natural to look for a poset whose

cohomology allows us to analyze Liek(n).
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1.6 The poset of weighted partitions Πk
n

We introduce a more general poset of weighted partitions Πk
n where the weights are

given by weak compositions supported in [k]. A (composition)-weighted partition

of [n] is a set {Bμ1

1 , Bμ2

2 , ..., Bμt
t } where {B1, B2, ..., Bt} is a set partition of [n] and

μi ∈ wcomp|Bi|−1 with supp(μi) ⊆ [k]. For ν, μ ∈ wcomp, we say that μ ≤ ν if

μ(i) ≤ ν(i) for every i. Since weak compositions are infinite vectors we can use

component-wise addition and subtraction, for instance, we denote by ν + μ, the

weak composition defined by (ν + μ)(i) := ν(i) + μ(i).

The poset of weighted partitions Πk
n is the set of weighted partitions of [n] with

order relation given by {Aμ1

1 , Aμ2

2 , ..., Aμs
s } ≤ {Bν1

1 , Bν2
2 , ..., Bνt

t } if the following

conditions hold:

• {A1, A2, ..., As} ≤ {B1, B2, ..., Bt} in Πn and,

• If Bj = Ai1 ∪ Ai2 ∪ ... ∪ Ail then νj ≥ (μi1 + μi2 + ...+ μil) and |νj − (μi1 +

μi2 + ...+ μil)| = l − 1

Equivalently, we can define the covering relation {Aμ1

1 , Aμ2

2 , ..., Aμs
s } �

{Bν1
1 , Bν2

2 , ..., Bνt
t } by:

• {A1, A2, . . . , As}� {B1, B2, . . . , Bt} in Πn

• if Bj = Ai1 ∪Ai2 then νj − (μi1 + μi2) = er for some r ∈ [k], where er is the

weak composition with a 1 in the r-th component and 0 in all other entries.

• if Bk = Ai then νk = μi.

See Figure 1.3 below for an example of Πk
n.

The poset Πk
n has a minimum element

0̂ := {{1}(0,...,0), {2}(0,...,0), . . . , {n}(0,...,0)}
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1(0,0,0)|2(0,0,0)|3(0,0,0)

12(1,0,0)|3(0,0,0) 13(1,0,0)|2(0,0,0) 1(0,0,0)|23(1,0,0) 12(0,1,0)|3(0,0,0) 13(0,1,0)|2(0,0,0) 1(0,0,0)|23(0,1,0) 12(0,0,1)|3(0,0,0) 13(0,0,1)|2(0,0,0) 1(0,0,0)|23(0,0,1)

123(2,0,0) 123(1,1,0) 123(1,0,1) 123(0,2,0) 123(0,1,1) 123(0,0,2)

Figure 1.3: Weighted partition poset for n = 3 and k = 3

and
(
k+n−2
n−1

)
maximal elements

{[n]μ} for μ ∈ wcompn−1 and supp(μ) ⊆ [k].

We write each maximal element {[n]μ} as [n]μ for simplicity. Note that for every

ν, μ ∈ wcompn−1 with supp(ν), supp(μ) ⊆ [k], such that ν is a rearrangement of

μ, the maximal intervals [0̂, [n]ν ] and [0̂, [n]μ] are isomorphic to each other. In

particular, if μ has a single nonzero component, these intervals are isomorphic to

Πn. If supp(μ) ⊆ [2] then these intervals are isomorphic to maximal intervals of

Πw
n . Indeed, we can think of a composition (i, n− 1− i) as being the weight i in

Πw
n . Hence Π

1
n � Πn and Π2

n � Πw
n . We will derive results for the more general

poset Πk
n when possible and specialize these results to Π

w
n when the results for the

case k = 2 have nicer combinatorial formulas and interpretations than the ones

for the general case.

The symmetric group acts naturally on each open interval (0̂, [n]μ). Using

Wachs’ technique in Chapter 2 we give an explicit isomorphism that proves the

following theorem.

Theorem 1.6.1. For μ ∈ wcompn−1,

Lie(μ) �Sn H̃n−3((0̂, [n]μ))⊗ sgnn . (1.6.1)
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Theorem 1.6.1 is a generalization of equations (1.2.2) and (1.4.1). It reduces to

equation (1.2.2) when supp(μ) ⊆ [1] and to equation (1.4.1) when supp(μ) ⊆ [2].

We use Theorem 1.6.1 to give information about Lie(μ) by studying the algebraic

and combinatorial properties of the poset Πk
n.

In [15] Dotsenko and Khoroshkin prove using operad-theoretic techniques that

the operad related to Liek(n) is Koszul. This implies using Vallette’s theory of

operadic partition posets [43] that the maximal intervals [0̂, [n]μ] of Πk
n are Cohen-

Macaulay. In Section 4.1 we prove a stronger property.

Theorem 1.6.2. The poset Π̂k
n := Πk

n ∪ {1̂} is EL-shellable and hence Cohen-

Macaulay. Consequently, for each μ ∈ wcompn−1, the order complex Δ((0̂, [n]μ))

has the homotopy type of a wedge of (n− 3)-spheres.

Using Vallette’s theory, Theorem 1.6.2 gives a new proof of the fact that the

operads Liek and kCom considered in [15] are Koszul.

The set of ascent-free maximal chains of this EL-labeling provides a basis for

H̃n−3((0̂, [n]μ)) and hence, by the isomorphism of Theorem 1.6.1, also a basis for

Lie(μ). This basis is a multicolored generalization of the classical Lyndon basis for

Lie(n). We also construct a multicolored generalization of the classical comb basis

for Lie(n) and use our multicolored Lyndon basis to show that our construction

does indeed yield a basis for Lie(μ).

We consider the generating function

Ln(x) :=
∑

μ∈wcompn

dimLie(μ)xμ, (1.6.2)

where xμ = x
μ(1)
1 x

μ(2)
2 · · · . Since for any rearrangement ν of μ it happens that

Lie(ν) �Sn Lie(μ) it follows that (1.6.2) belongs to the ring of symmetric functions

ΛZ. The following theorem gives a characterization of this symmetric function.
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Theorem 1.6.3. We have

∑
n≥1

∑
μ∈wcompn−1

dimLie(μ)xμy
n

n!
=

[∑
n≥1

(−1)n−1hn−1(x)
yn

n!

]<−1>

,

where hn is the complete homogeneous symmetric function and (·)<−1> denotes

the compositional inverse of a formal power series.

It follows from our construction of the multicolored Lyndon basis for Lie(μ)

that the symmetric function Ln(x) is e-positive; i.e., the coefficients of the

expansion of Ln(x) in the basis of elementary symmetric functions are all

nonnegative. We give various combinatorial interpretations of these coefficients

in this thesis. Two of the interpretations involve binary trees and two involve the

Stirling permutations introduced by Gessel and Stanley in [18]. We will now give

one of the binary tree interpretations (Theorem 1.6.4). The others are given in

Theorems 5.1.1 and 5.3.3.

We say that a planar labeled binary tree with label set [n] is normalized if the

leftmost leaf of each subtree has the smallest label in the subtree. See Figure 1.4

for an example of a normalized tree and Section 4.2 for the proper definitions. We

denote the set of normalized binary trees with label set [n] by Norn.

1 3

4 8

5

2

6 7

Figure 1.4: Example of a normalized tree

We associate a type (or integer partition) to each Υ ∈ Norn in the following

way: Let πComb(Υ) be the finest (set) partition of the set of internal nodes of Υ

satisfying
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• for every pair of internal nodes x and y such that y is a right child of x, x

and y belong to the same block of πComb(Υ).

We define the comb type λComb(Υ) of Υ to be the (integer) partition whose parts

are the sizes of the blocks of πComb(Υ). In Figure 1.4 the associated partition is

λComb(Υ) = (3, 2, 1, 1). The following theorem gives a direct method, alternative

to Theorem 1.6.3, for computing the dimensions of Lie(μ).

Theorem 1.6.4. For all n,

∑
μ∈wcompn−1

dimLie(μ)xμ =
∑

Υ∈Norn

eλComb(Υ)(x),

where eλ is the elementary symmetric function associated with the partition λ.

To prove Theorem 1.6.4 we use another normalized tree type λLyn, related to

our colored Lyndon basis for Lie(μ), which came from the EL-labeling of [0̂, [n]μ].

We use the colored Lyndon basis to show that Theorem 1.6.4 holds with λComb

replaced by λLyn. We then construct a bijection on Norn which takes λ
Lyn to λComb.

This bijection makes use of Stirling permutations and leads to two versions of

Theorem 1.6.4 involving Stirling permutations.

In terms of these combinatorial objects, the dimension of Liek has a simple

description as an evaluation of the symmetric function (1.6.2).

Corollary 1.6.5. For all n and k,

dimLiek(n) =
∑

Υ∈Norn

eλComb(Υ)(

k times︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . . ).

From equation (1.3.5), it follows that the polynomial
∑n−1

i=0 dimLie2(n, i) ti

has only negative real roots and hence it has a property known as γ-positivity,

i.e, when written in the basis ti(1 + t)n−1−2i it has positive coefficients. Note that
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this polynomial is actually Ln−1(t, 1, 0, 0, . . . ). The property of γ-positivity of this

polynomial is a consequence of the e-positivity of Ln(x).

A more general question is to understand the representation of Sn on Lie(μ).

The characters of the representation of Sn on Lie(n) and Lie2(n) were computed

in ([11, 38] and [14]). Here we consider

∑
μ∈wcompn−1

chLie(μ)xμ, (1.6.3)

where chLie(μ) denotes the Frobenius characteristic in variables y = (y1, y2, . . . )

of the representation Lie(μ). The generating function of (1.6.3) belongs to the

ring ΛR of symmetric functions in y with coefficients in the ring of symmetric

functions R = ΛQ in x. The following result generalizes Theorem 1.6.3.

Theorem 1.6.6. We have that

∑
n≥1

∑
μ∈wcompn−1

chLie(μ)xμ = −
(
−
∑
n≥1

hn−1(x)hn(y)
)[−1]

,

where (·)[−1] denotes the plethystic inverse in the ring of symmetric power series

in y with coefficients in the ring ΛQ of symmetric functions in x.

To prove Theorem 1.6.6 we use Theorem 1.6.1 and the Whitney (co)homology

technique developed by Sundaram in [42], and further developed by Wachs in [45].

The thesis is organized as follows: In Chapter 2 we describe generating sets of

Lie(μ) and H̃n−3((0̂, [n]μ)) in terms of labeled binary trees with colored internal

nodes. The description makes transparent the isomorphism of Theorem 1.6.1,

which we prove using Wachs’ technique, as in [44]. In Chapter 3 we use the

recursive definition of the Möbius invariant of Πk
n to prove an analogue of Theorem

1.6.3 for the poset Πk
n, that together with the results of Chapter 2 imply Theorem

1.6.3. When we apply the same procedure to the special case of Πw
n we are able to
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conclude further results, including a description of the Möbius invariant in terms

of rooted trees. We use this description to prove the factorization formula (1.4.3)

for the characteristic polynomial of Πw
n . In Chapter 4 we prove Theorem 1.6.2,

and we give a description of the ascent-free maximal chains of the EL-labeling.

Theorems 1.6.3 and the version of Theorem 1.6.4 in which λComb is replaced by

λLyn, are presented in Chapter 5 as corollaries of results in the previous chapters.

In Chapter 5 we also prove Theorem 1.6.4 and we use the language of Stirling

permutations to give two additional combinatorial descriptions of the dimension

of Lie(μ). In Chapter 6 we present the colored Lyndon basis and the colored comb

basis for Lie(μ) and H̃n−3((0̂, [n]μ)). We also give the basis for H̃n−3((0̂, [n]
i))

indexed by rooted trees, and we provide results on bases for H̃n−2(Πk
n \ {0̂}) in

terms of the two families of colored binary trees. We present in Chapter 7 results

on Whitney numbers of the first and second kind and on Whitney cohomology. In

Chapter 8 we prove Theorem 1.6.6.



Chapter 2

The isomorphism

Lie(μ) �Sn
H̃n−3((0̂, [n]μ))⊗ sgnn

In this chapter we establish the isomorphism of Theorem 1.6.1. We will use this

isomorphism to study Lie(μ) by understanding the algebraic and combinatorial

properties of the maximal intervals [0̂, [n]μ] of Πk
n.

The generators of Lie(μ) and H̃n−3((0̂, [n]μ)) can be described in terms of trees.

A tree is a simple connected graph that is free of cycles. A tree is said to be rooted

if it has a distinguished node or root. For an edge {x, y} in a tree T we say that

x is the parent of y, or y is the child of x, if x is in the unique path from y to

the root. A node that has children is said to be internal, otherwise we call a node

without children a leaf. A rooted tree is said to be planar if for every internal

node its set of children has been totally ordered. In the following we will be only

considering trees that are rooted and planar and so when using the word tree we

mean a planar rooted tree.

A binary tree is a tree for which every internal node has a left and a right

child. A colored binary tree is a binary tree for which each internal node x has

been assigned an element color(x) ∈ P. For a colored binary tree T with n leaves

20



21

and σ ∈ Sn, we define the labeled colored binary tree (T, σ) to be the colored tree

T whose jth leaf from left to right has been labeled σ(j). For μ ∈ wcompn−1

we denote by BT μ the set of labeled colored binary trees with n leaves and μ(j)

internal nodes with color j for each j. We call these trees μ-colored binary trees.

We will often denote a colored labeled binary tree by Υ = (T, σ). If Υ is a colored

labeled binary tree, we use Υ̃ to denote its underlying uncolored labeled binary

tree. It will also be convenient to consider trees whose label set is more general

than [n]. For a finite subset A of positive integers with |A| = |μ| + 1, let BT A,μ

be the set of μ-colored binary trees whose leaves are labeled by a permutation of

A. If (S, α) ∈ BT A,μ and (T, β) ∈ BT B,ν , where A and B are disjoint finite sets,

and j ∈ P then (S, α)j∧(T, β) denotes the tree in BT A∪B,μ+ν+ej whose left subtree

is (S, α), right subtree is (T, β), and the color of the root is j.

2.1 A combinatorial description of Lie(μ)

We give a description of the generators and relations of Lie(μ). We can represent

the bracketed permutations that generate Lie(μ) with labeled colored binary trees.

More precisely, let (T1, σ1) and (T2, σ2) be the left and right labeled subtrees of

the root r of (T, σ) ∈ BT μ. Then define recursively

[T, σ] =

⎧⎪⎨⎪⎩
[
[T1, σ1], [T2, σ2]

]
j

if color(r) = j and n > 1

σ if n = 1.

(2.1.1)

Clearly [T, σ] is a bracketed permutation of Lie(μ). See Figure 2.1.

Recall that we call a set B of Lie brackets on a vector space compatible if

any linear combination of the brackets in B is a Lie bracket. As it turns out the

description of the relations in Lie(μ) are simplified by the following proposition.
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Blue= 1
Red= 2
Brown= 3

8

7

6

5

4

32

1 1

23 4

56

7

8

9 [[[[3, 4]1, 6]2, [1, 5]3]1, [[[2, 7]1, 9]2, 8]3]2

Figure 2.1: Example of a labeled colored binary tree (T, 346152798) ∈ BT (3,3,2)

and [T, 346152798] ∈ Lie(3, 3, 2)

Proposition 2.1.1. A set of Lie brackets is compatible if and only if the brackets

in the set are pairwise compatible.

Proof. Assume that the brackets {[·, ·]j | j ∈ S} are pairwise compatible. Hence

for any i, j ∈ S we have that the relation (1.3.1) holds. Now for scalars αj ∈ k

and a finite subset {i1, . . . , ik} ⊆ S define

〈·, ·〉 =
k∑

j=1

αj[·, ·]ij .

By relations (1.1.2) and (1.3.1) and bilinearity of the brackets, we have

0 =
k∑

j=1

α2
j ([x, [y, z]ij ]ij + [z, [x, y]ij ]ij + [y, [z, x]ij ]ij)

+
∑
l<j

αlαj([x, [y, z]ij ]il + [z, [x, y]ij ]il + [y, [z, x]ij ]il

+ [x, [y, z]il ]ij + [z, [x, y]il ]ij + [y, [z, x]il ]ij)

=
k∑

l,j=1

αlαj[x, [y, z]il ]ij + αlαj[z, [x, y]il ]ij + αlαj[y, [z, x]il ]ij

= 〈x, 〈y, z〉〉+ 〈z, 〈x, y〉〉+ 〈y, 〈z, x〉〉.
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This implies that 〈·, ·〉 satisfies relation (1.1.2). It follows from the definition that

〈·, ·〉 also satisfies the relation (1.1.1) and hence it is a Lie bracket.

For the converse note, from the definition of compatibility, that all the brackets

in a compatible set of Lie brackets are pairwise compatible.

Thus we see that Lie(μ) is subject only to the relations (1.1.1) and (1.1.2), for

each bracket j, and (1.3.1) for any pair of brackets i 	= j ∈ [k]. If the characteristic

of k is not 2 we can even say that Lie(μ) is subject only to relations (1.1.1) and

(1.3.1) for any pair of brackets i, j ∈ [k] (including i = j).

We denote by Υ1
j
∧Υ2, the labeled colored binary tree whose left subtree is Υ1,

right subtree is Υ2 and root color is j, with j ∈ P. If Υ is a labeled colored binary

tree then α(Υ)β denotes a labeled colored binary tree with Υ as a subtree. The

following result is an easy consequence of relations (1.1.1) and (1.1.2) for each j,

and (1.3.1) for each pair i 	= j.

Proposition 2.1.2. The set {[T, σ] | (T, σ) ∈ BT μ} is a generating set for Lie(μ),

subject only to the relations for i 	= j ∈ supp(μ)

[α(Υ1
j
∧Υ2)β] + [α(Υ2

j
∧Υ1)β] = 0 (2.1.2)

[α(Υ1
j
∧(Υ2

j
∧Υ3))β] − [α((Υ1

j
∧Υ2)

j
∧Υ3)β] (2.1.3)

− [α(Υ2
j
∧(Υ1

j
∧Υ3))β]

= 0

[α(Υ1
j
∧(Υ2

i
∧Υ3))β] + [α(Υ1

i
∧(Υ2

j
∧Υ3))β] (2.1.4)
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− [α((Υ1
j
∧Υ2) i∧Υ3)β] − [α((Υ1

i
∧Υ2)j∧Υ3)β]

− [α(Υ2
j
∧(Υ1

i
∧Υ3))β] − [α(Υ2

i
∧(Υ1

j
∧Υ3))β]

= 0.

2.2 A generating set for H̃n−3((0̂, [n]μ))

The top dimensional cohomology of a pure poset P , say of length �, has a

particularly simple description. LetM(P ) denote the set of maximal chains of P

and letM′(P ) denote the set of chains of length �− 1. We view the coboundary

map δ as a map from the chain space of P to itself, which takes chains of length d

to chains of length d+1 for all d. Since the image of δ on the top chain space (i.e.

the space spanned byM(P )) is 0, the kernel is the entire top chain space. Hence

top cohomology is the quotient of the space spanned byM(P ) by the image of the

space spanned by M′(P ). The image of M′(P ) is what we call the coboundary

relations. We thus have the following presentation of the top cohomology

H̃�(P ) = 〈M(P )| coboundary relations〉.

Recall that H̃�(P ) denotes the �th reduced cohomology of the order complex Δ(P )

of P . The reader can visit Section A.3 in the Appendix for a more extensive

treatement on poset cohomology.

Recall that the postorder listing of the internal nodes of a binary tree T is

defined recursively as follows: first list the internal nodes of the left subtree in

postorder, then list the internal nodes of the right subtree in postorder, and finally

list the root. The postorder listing of the internal nodes of the binary tree of

Figure 2.1 is illustrated in Figure 2.2a.

Given s blocks Aμ1

1 , Aμ2

2 , . . . , Aμs
s in a weighted partition α and ν ∈ wcomps−1,
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by ν-merge these blocks we mean remove them from α and replace them by the

block (
⋃

Ai)
∑

μi+ν . For (T, σ) ∈ BT A,μ, let π(T, σ) = Aμ.

Definition 2.2.1. For (T, σ) ∈ BT μ and t ∈ [n − 1], let Tt = Lt
jt
∧Rt be the

subtree of (T, σ) rooted at the tth node listed in postorder. The chain c(T, σ) ∈

M([0̂, [n]μ]) is the one whose rank t weighted partition is obtained from the rank

t−1 weighted partition by ejt-merging the blocks π(Lt) and π(Rt). See Figure 2.2b.

8

7

6

5

4

32

1 1

23 4

56

7

8

9

(a) (T, σ) ∈ BT (3,3,2)

1(0,0,0)|2(0,0,0)|3(0,0,0)|4(0,0,0)|5(0,0,0)|6(0,0,0)|7(0,0,0)|8(0,0,0)|9(0,0,0)

1(0,0,0)|2(0,0,0)|34(1,0,0)|5(0,0,0)|6(0,0,0)|7(0,0,0)|8(0,0,0)|9(0,0,0)

1(0,0,0)|2(0,0,0)|346(1,1,0)|5(0,0,0)|7(0,0,0)|8(0,0,0)|9(0,0,0)

15(0,0,1)|2(0,0,0)|346(1,1,0)|7(0,0,0)|8(0,0,0)|9(0,0,0)

13456(2,1,1)|2(0,0,0)|7(0,0,0)|8(0,0,0)|9(0,0,0)

13456(2,1,1)|27(1,0,0)|8(0,0,0)|9(0,0,0)

13456(2,1,1)|279(1,1,0)|8(0,0,0)

13456(2,1,1)|2789(1,1,1)
123456789(3,3,2)

(b) c(T, σ)

Figure 2.2: Example of postorder (internal nodes) of the binary tree of Figure 2.1
and the chain c(T, σ)

Not all maximal chains in M([0̂, [n]μ]) can be described as c(T, σ). For some

maximal chains postordering of the internal nodes is not enough to describe the

process of merging the blocks. We need a more flexible construction in terms of

linear extensions (cf. [44]). Let v1, . . . , vn−1 be the postorder listing of the internal

nodes of T and let ji = color(vi) for all i ∈ [n− 1]. A listing vτ(1), vτ(2), ..., vτ(n−1)

of the internal nodes such that each node precedes its parent is said to be a linear

extension of T . We will say that the permutation τ induces the linear extension.

In particular, the identity permutation ε induces postorder which is a linear

extension. Denote by e(T ) the set of permutations that induce linear extensions

of the internal nodes of T . For each τ ∈ e(T ), we extend the construction of

c(T, σ) by letting c(T, σ, τ) be the chain in M([0̂, [n]μ]) whose rank t weighted
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partition is obtained from the rank t− 1 weighted partition by ejτ(t)-merging the

blocks π(Lτ(t)) and π(Rτ(t)), where Li
ji∧Ri is the subtree rooted at vi. In particular,

c(T, σ) = c(T, σ, ε). From each maximal chain we can easily construct a binary

tree and a linear extension that encodes the merging instructions along the chain.

Thus, any maximal chain can be obtained in this form.

Lemma 2.2.2 ([44, Lemma 5.1]). Let T be a binary tree. Then

1. ε ∈ e(T )

2. If τ ∈ e(T ) and τ(i) > τ(i+ 1) then τ(i, i+ 1) ∈ e(T ),

where τ(i, i + 1) denotes the product of τ and the transposition (i, i + 1) in the

symmetric group.

Proof. Postorder ε is a linear extension since in postorder we list children before

parents. Now, τ(i) > τ(i+1) means that vτ(i+1) is listed in postorder before vτ(i),

and so vτ(i+1) cannot be an ancestor of vτ(i). This implies that τ(i, i+ 1) is also a

linear extension.

For any colored labeled binary tree (T, σ), the chains obtained with any two

different linear extensions are cohomologous in the sense of Lemma 2.2.3 below.

The number of inversions of a permutation τ ∈ Sn is defined by inv(τ) :=

|{(i, j) | 1 ≤ i < j ≤ n, τ(i) > τ(j)}| and the sign of τ is defined by sgn(τ) :=

(−1)inv(τ). For T ∈ BT n,μ, σ ∈ Sn, and τ ∈ e(T ), write c̄(T, σ, τ) for c(T, σ, τ) :=

c(T, σ, τ) \ {0̂, [n]μ} and c̄(T, σ) for c(T, σ) := c(T, σ) \ {0̂, [n]μ}.

Lemma 2.2.3 (cf. [44, Lemma 5.2] ). Let (T, σ) ∈ BT μ, τ ∈ e(T ). Then in

H̃n−3((0̂, [n]μ)),

c̄(T, σ, τ) = sgn(τ)c̄(T, σ).
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Proof. We proceed by induction on inv(τ). If inv(τ) = 0 then τ = ε and the result

is trivial. If inv(τ) ≥ 1, then there is some descent τ(i) > τ(i+ 1) and by Lemma

2.2.2, τ(i, i+1) ∈ E(T ). Since inv(τ(i, i+1)) = inv(τ)− 1, by induction we have,

c̄(T, σ, τ(i, i+ 1)) = sgn(τ(i, i+ 1))c̄(T, σ) = − sgn(τ)c̄(T, σ).

We have to show then that

c̄(T, σ, τ) = −c̄(T, σ, τ(i, i+ 1)).

By the proof of Lemma 2.2.2 we know that the internal nodes vτ(i) and vτ(i+1)

are unrelated in T and so π(Lτ(i)), π(Rτ(i)), π(Lτ(i+1)) and π(Rτ(i+1)) are pairwise

disjoint sets which are all blocks of the rank i − 1 partition in both c̄(T, σ, τ)

and c̄(T, σ, τ(i, i + 1)). The blocks π(Lτ(i)
jτ(i)
∧ Rτ(i)) and π(Lτ(i+1)

jτ(i+1)
∧ Rτ(i+1)) are

blocks of the rank i+ 1 partition in both c̄(T, σ, τ) and c̄(T, σ, τ(i, i+ 1)). Hence

the maximal chains c̄(T, σ, τ) and c̄(T, σ, τ(i, i+ 1)) only differ at rank i. So if we

denote by c either of these maximal chains with the rank i partition removed we

get, using equation (A.3.2), a cohomology relation given by

δ(c) = (−1)i(c̄(T, σ, τ) + c̄(T, σ, τ(i, i+ 1)))

as desired.

We conclude that in cohomology any maximal chain c ∈M(Πk
n) is cohomology

equivalent to a chain of the form c(T, σ). More precisely, in cohomology c̄ =

±c̄(T, σ).

We will make further use of the elementary cohomology relations that are

obtained by setting the coboundary (given in (A.3.2)) of a codimension 1 chain
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in (0̂, [n]μ) equal to 0. There are three types of codimension 1 chains, which

correspond to the three types of intervals of length 2 (see Figure 2.3). Indeed, if

c̄ is a codimension 1 chain of (0̂, [n]μ) then c = c̄ ∪ {0̂, [n]μ} is unrefinable except

between one pair of adjacent elements x < y, where [x, y] is an interval of length

2. If the open interval (x, y) = {z1, . . . , zk} then it follows from (A.3.2) that

δ(c̄) = ±(c̄ ∪ {z1}+ · · ·+ c̄ ∪ {zk}).

By setting δ(c̄) = 0 we obtain the elementary cohomology relation

(c̄ ∪ {z1}) + · · ·+ (c̄ ∪ {zk}) = 0.

Type I: Two pairs of distinct blocks of x are merged to get y. The open interval

(x, y) equals {z1, z2}, where z1 is obtained by er-merging the first pair of

blocks and z2 is obtained by es-merging the second pair of blocks for some

r, s ∈ [k]. Hence the Type I elementary cohomology relation is

c̄ ∪ {z1} = −(c̄ ∪ {z2}).

Type II: Three distinct blocks of x are 2er-merged to get y, where r ∈ [k]. The open

interval (x, y) equals {z1, z2, z3}, where each weighted partition zi is obtained

from x by er-merging two of the three blocks. Hence the Type II elementary

cohomology relation is

(c̄ ∪ {z1}) + (c̄ ∪ {z2}) + (c̄ ∪ {z3}) = 0.

Type III: Three distinct blocks of x are (er + es)-merged to get y, where r 	= s ∈ [k].

The open interval (x, y) equals {z1, z2, z3, z4, z5, z6}, where each weighted
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partition zi is obtained from x by either er-merging or es-merging two of the

three blocks. Hence the Type III elementary cohomology relation is

(c̄∪ {z1}) + (c̄∪ {z2}) + (c̄∪ {z3}) + (c̄∪ {z4}) + (c̄∪ {z5}) + (c̄∪ {z6}) = 0.

For Υ ∈ BT μ, let I(Υ) denote the set of internal nodes of Υ. Recall that Υ1
j
∧Υ2

denotes the labeled colored binary tree whose left subtree is Υ1, right subtree is

Υ2 and root color is j, where j ∈ [k]. If Υ is a labeled colored binary tree then

α(Υ)β denotes a labeled colored binary tree with Υ as a subtree. The following

result generalizes [44, Theorem 5.3].

Theorem 2.2.4. The set {c̄(T, σ) | (T, σ) ∈ BT μ} is a generating set for

H̃n−3((0̂, [n]μ)), subject only to the relations for i 	= j ∈ supp(μ)

c̄(α(Υ1
j
∧Υ2)β)− (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2

j
∧Υ1)β) = 0 (2.2.1)

c̄(α(Υ1
j
∧(Υ2

j
∧Υ3))β) + (−1)|I(T3)|c̄(α((Υ1

j
∧Υ2)

j
∧Υ3)β) (2.2.2)

+ (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2
j
∧(Υ1

j
∧Υ3))β)

= 0

c̄(α(Υ1
j
∧(Υ2

i
∧Υ3))β) + c̄(α(Υ1

i
∧(Υ2

j
∧Υ3))β) (2.2.3)

+ (−1)|I(T3)|
(
c̄(α((Υ1

j
∧Υ2) i∧Υ3)β) + c̄(α((Υ1

i
∧Υ2)j∧Υ3)β)

)
+ (−1)|I(Υ1)||I(Υ2)|

(
c̄(α(Υ2

j
∧(Υ1

i
∧Υ3))β) + c̄(α(Υ2

i
∧(Υ1

j
∧Υ3))β)

)
= 0.
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Bμ1

1 |Bμ2

2 |Bμ3

3 |Bμ4

4

B1B
μ1+μ2+er
2 |B3B

μ3+μ4+es
4

B1B
μ1+μ2+er
2 |Bμ3

3 |Bμ4

4 Bμ1

1 |Bμ2

2 |B3B
μ3+μ4+es
4

(a) Type I

Bμ1

1 |Bμ2

2 |Bμ3

3

B1B2B
μ1+μ2+μ3+2er
3

B1B
μ1+μ2+er
2 |Bμ3

3 Bμ1

1 |B2B
μ2+μ3+er
3B1B

μ1+μ3+er
3 |Bμ2

2

(b) Type II

Bμ1

1 |Bμ2

2 |Bμ3

3

B1B2B
μ1+μ2+μ3+er+es
3

B1B
μ1+μ2+er
2 |Bμ3

3B1B
μ1+μ3+er
3 |Bμ2

2 Bμ1

1 |B2B
μ2+μ3+er
3 B1B

μ1+μ2+es
2 |Bμ3

3 B1B
μ1+μ3+es
3 |Bμ2

2B
μ1

1 |B2B
μ2+μ3+es
3

(c) Type III

Figure 2.3: Intervals of length 2
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Proof. It is an immediate consequence of Lemma 2.2.3 that {c̄(Υ)|Υ ∈ BT μ}

generates Hn−3((0̂, [n]μ)).

Relation (2.2.1): This is also a consequence of Lemma 2.2.3. Indeed, first note

that

c(α(Υ2
j
∧Υ1)β) = c(α(Υ1

j
∧Υ2)β, τ),

where τ is the permutation that induces the linear extension that is just like

postorder except that the internal nodes of Υ2 are listed before those of Υ1. Since

inv(τ) = |I(Υ1)||I(Υ2)|, relation (2.2.1) follows from Lemma 2.2.3. (Note that

since Lemma 2.2.3 is a consequence only of the Type I cohomology relation, one

can view (2.2.1) as a consequence only of the Type I cohomology relation.)

Relation (2.2.2): Note that the following relation is a Type II elementary

cohomology relation:

c̄(α(Υ1
j
∧(Υ2

j
∧Υ3))β) + c̄(α((Υ1

j
∧Υ2)

j
∧Υ3)β, τ1)

+ c̄(α(Υ2
j
∧(Υ1

j
∧Υ3))β, τ2) = 0,

where τ1 is the permutation that induces the linear extension that is like postorder

but that lists the internal nodes of Υ3 before listing the root of Υ1 ∧ Υ2, and τ2

is the permutation that induces the linear extension that is like postorder but

lists the internal nodes of Υ1 before listing the internal nodes of Υ2. So then

inv(τ1) = |I(Υ3)| and inv(τ2) = |I(Υ1)||I(Υ2)|, and using Lemma 2.2.3 we obtain

relation (2.2.2).

Relation (2.2.3): Note that the following relation is a Type III elementary

cohomology relation:
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c̄(α(Υ1
j
∧(Υ2

i
∧Υ3))β) + c̄(α(Υ1

i
∧(Υ2

j
∧Υ3))β)

+ c̄(α((Υ1
j
∧Υ2) i∧Υ3)β, τ1) + c̄(α((Υ1

i
∧Υ2)j∧Υ3)β, τ1)

+ c̄(α(Υ2
j
∧(Υ1

i
∧Υ3))β, τ2) + c̄(α(Υ2

i
∧(Υ1

j
∧Υ3))β, τ2)

= 0,

where as in the previous case, τ1 is the permutation that induces the linear

extension that is like postorder but that lists the internal nodes of Υ3 before

listing the root of Υ1 ∧ Υ2, and τ2 is the permutation that induces the linear

extension that is like postorder but lists the internal nodes of Υ1 before listing the

internal nodes of Υ2. So then inv(τ1) = |I(Υ3)| and inv(τ2) = |I(Υ1)||I(Υ2)|, and

using Lemma 2.2.3 we obtain relation (2.2.3).

To complete the “only” part of the proof, we need to show that these relations

generate all the cohomology relations. We prove this in Proposition 6.1.2.

2.3 The isomorphism

The symmetric group Sn acts naturally on Πk
n. Indeed, let σ ∈ Sn act on the

weighted blocks of Πk
n by replacing each element x of each weighted block of π with

σ(x). Since the maximal elements of Πk
n are fixed by each σ ∈ Sn and the order

is preserved, each open interval (0̂, [n]μ) is an Sn-poset. Hence (see Section A.3

of the Appendix) we have that H̃n−3((0̂, [n]μ)) is an Sn-module. The symmetric

group Sn also acts naturally on Lie(μ). Indeed, let σ ∈ Sn act by replacing letter

x of a bracketed permutation with σ(x). Since this action preserves the number

of brackets of each type, Lie(μ) is an Sn-module for each μ ∈ wcompn−1. In this
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section we obtain an explicit sign-twisted isomorphism between the Sn-modules

H̃n−3((0̂, [n]μ)) and Lie(μ).

Define the sign of a binary tree T recursively by

sgn(T ) =

⎧⎪⎪⎨⎪⎪⎩
1 if I(T ) = ∅

(−1)|I(T2)| sgn(T1) sgn(T2) if T = T1 ∧ T2,

where I(T ) is the set of internal nodes of the binary tree T . The sign of a colored

(labeled or unlabeled) binary tree is defined to be the sign of the binary tree

obtained by removing the colors and leaf labels.

Theorem 2.3.1. For each μ ∈ wcompn−1, there is an Sn-module isomorphism

ϕ : Lie(μ)→ H̃n−3((0̂, [n]μ))⊗ sgnn determined by

ϕ([T, σ]) = sgn(σ) sgn(T )c̄(T, σ),

for all (T, σ) ∈ BT μ.

Before proving the theorem we make a few preliminary observations. The

following lemma, which is implicit in [44, Proof of Theorem 5.4], is easy to prove.

For T a binary tree, a(T )b denotes a binary tree with T as a subtree.

Lemma 2.3.2. For all binary trees T1, T2, T3,

1. sgn(a(T1 ∧ T2)b) = (−1)|I(T1)|+|I(T2)| sgn(a(T2 ∧ T1)b)

2. sgn(a((T1 ∧ T2) ∧ T3)b) = (−1)|I(T3)|+1 sgn(a(T1 ∧ (T2 ∧ T3))b)

3. sgn(a(T2 ∧ (T1 ∧ T3))b)=(−1)|I(T1)|+|I(T2)| sgn(a(T1 ∧ (T2 ∧ T3))b).

For a word w denote by l(w) the length or number of letters in w. We also

have the following easy relation, which we state as a lemma.
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Lemma 2.3.3. For uw1w2v ∈ Sn, where u , w1 , w2 , v are subwords,

sgn(uw1w2v) = (−1)l(w1)l(w2) sgn(uw2w1v).

Proof of Theorem 2.3.1. The map φ maps generators onto generators and clearly

respects the Sn action. We will prove that the map φ extends to a well defined

homomorphism by showing that the relations in Proposition 2.1.2 map onto to

the relations in Theorem 2.2.4. Since the relations in Theorem 2.2.4 span all the

relations in cohomology, this also implies that the map is an isomorphism.

For each Υj in the relations of Proposition 2.1.2, let wj and Tj be such that

Υj = (Tj, wj). Let u be the permutation labeling the portion a of the tree

corresponding to the preamble α, and let v be the permutation labeling the portion

b of the tree corresponding to the tail β. Using Lemmas 2.3.2 and 2.3.3 we have

the following.

Relation (2.1.2):

φ([α(Υ2
j
∧Υ1)β]) = sgn(uw2w1v) sgn(a(T2 ∧ T1)b)c̄(α(Υ2

j
∧Υ1)β)

= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

· (−1)l(w1)l(w2)+|I(T1)|+|I(T2)|c̄(α(Υ2
j
∧Υ1)β)

= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

· (−1)(|I(T1)|+1)(|I(T2)|+1)+|I(T1)|+|I(T2)|c̄(α(Υ2
j
∧Υ1)β)
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= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

· (−1)|I(T1)||I(T2)|+1c̄(α(Υ2
j
∧Υ1)β).

Hence,

φ([α(Υ1
j
∧Υ2)β]) + φ([α(Υ2

j
∧Υ1)β]) = sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

·
(
c̄(α(Υ1

j
∧Υ2)β)− (−1)|I(T1)||I(T2)|c̄(α(Υ2

j
∧Υ1)β)
)
.

Relations (2.1.3) and (2.1.4):

φ([α((Υ1
j
∧Υ2) i∧Υ3)β]) = sgn(uw1w2w3v) sgn(a((T1 ∧ T2) ∧ T3)b)

· c̄(α((Υ1
j
∧Υ2) i∧Υ3)β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)|I(T3)|+1c̄(α((Υ1
j
∧Υ2) i∧Υ3)β).

φ([α(Υ2
j
∧(Υ1

i
∧Υ3))β]) = sgn(uw2w1w3v) sgn(a(T2 ∧ (T1 ∧ T3))b)

· c̄(α(Υ2
j
∧(Υ1

i
∧Υ3))β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)l(w1)l(w2)+|I(T1)|+|I(T2)|c̄(α(Υ2
j
∧(Υ1

i
∧Υ3))β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)|I(T1)||I(T2)|+1c̄(α(Υ2
j
∧(Υ1

i
∧Υ3))β).



36

Hence,

φ([α(Υ1
j
∧(Υ2

i
∧Υ3))β])− φ([α((Υ1

j
∧Υ2) i∧Υ3)β])− φ([α(Υ2

j
∧(Υ1

i
∧Υ3))β]) (2.3.1)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

·
(
c̄(α(Υ1

j
∧(Υ2

i
∧Υ3))β) + (−1)|I(T3)|c̄(α((Υ1

j
∧Υ2) i∧Υ3)β)

+ (−1)|I(T1)||I(T2)|c̄(α(Υ2
j
∧(Υ1

i
∧Υ3))β)

)
.

By setting i = j in (2.3.1) we conclude that relation (2.1.3) maps to relation

(2.2.2). By adding (2.3.1) with another copy of (2.3.1) after the roles of i and

j have been switched, we are also able to conclude that relation (2.1.4) maps to

relation (2.2.3).



Chapter 3

Möbius invariant of Πw
n and Πk

n

The reader is referred to the Appendix A for a review of poset topology and poset

(co)homology. For further poset topology terminology not defined here the reader

could also visit [40] and [46].

For u ≤ v in a poset P , the open interval {w ∈ P | u < w < v} is denoted by

(u, v) and the closed interval {w ∈ P | u ≤ w ≤ v} by [u, v]. A poset is said to be

bounded if it has a minimum element 0̂ and a maximum element 1̂. For a bounded

poset P , we define the proper part of P as P := P \ {0̂, 1̂}. A poset is said to be

pure (or ranked) if all its maximal chains have the same length, where the length

of a chain s0 < s1 < · · · < s� is �. If P is pure and has a minimal element 0̂,

we can define a rank function ρ by requiring that ρ(0̂) = 0 and ρ(β) = ρ(α) + 1

whenever α � β in P . For example Πk
n is a pure poset with rank function given

by ρ(α) = n − |α| for every α ∈ Πk
n. The length �(P ) of a poset P is the length

of its longest chain. For a bounded poset P , let μP denote its Möbius function

(see Appendix A for the definition). The reason for the nonstardard notation μP

is that we have been using the symbol μ to denote a weak composition. The rank

generating function FP (x) is defined by FP (x) =
∑

u∈P xρ(u).
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For α = {Aμ1

1 , . . . , Aμs
s } ∈ Πk

n, let μ(α) =
∑s

i=1 μi. The following proposition

about the structure of Πk
n will be used in the computations below.

Proposition 3.0.4. For all α = {Aμ1

1 , . . . , Aμs
s } ∈ Πk

n and ν ∈ wcompn−1 such

that ν − μ(α) ∈ wcomp|α|−1,

1. [α, 1̂] and Π̂k
s are isomorphic posets,

2. [α, [n]ν ] and [0̂, [|α|]ν−μ(α)] are isomorphic posets,

3. [0̂, α] and [0̂, [|A1|]μ1 ]× · · · × [0̂, [|As|]μs ] are isomorphic posets.

Proposition 3.0.4 is a general statement that is satisfied by any partition poset

associated to a set operad (see [43]) replacing the composition μ by an element of

the given operad (see also [32]).

3.1 A formula for the Möbius invariant of the

maximal intervals of Πk
n

Recall that xμ = x
μ(1)
1 · · · xμ(k)

k and (·)<−1> denotes compositional inverse. We use

the recursive definition of the Möbius function μ̄P and the compositional formula

to derive the following theorem.

Theorem 3.1.1. We have that

∑
n≥1

∑
μ∈wcompn−1

supp(μ)⊆[k]

μ̄Πk
n
(0̂, [n]μ)xμy

n

n!
=

[∑
n≥1

hn−1(x1, . . . , xk)
yn

n!

]<−1>

,

where hn is the complete homogeneous symmetric polynomial.
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Proof. By the recursive definition of the Möbius function we have that

δn,1 =
∑

μ∈wcompn−1

supp(μ)⊆[k]

xμ
∑

0̂≤α≤[n]μ

μ̄Πk
n
(α, [n]μ)

=
∑
α∈Πk

n

xμ(α)
∑

μ∈wcompn−1

μ≥μ(α)
supp(μ)⊆[k]

μ̄Πk
n
(α, [n]μ)xμ−μ(α).

Now using Proposition 3.0.4

δn,1 =
∑
α∈Πk

n

xμ(α)
∑

ν∈wcomp|α|−1

supp(ν)⊆[k]

μ̄Πk
|α|
(0̂, [|α|]ν)xν

=
∑
α∈Πn

|α|∏
i=1

h|αi|−1(x1, ..., xk)
∑

ν∈wcomp|α|−1

supp(ν)⊆[k]

μ̄Πk
|α|
(0̂, [|α|]ν)xν .

The last statement implies using the compositional formula see ([39, Theorem 5.1.4])

that the two power series are compositional inverses.

3.2 The case k = 2: Πw
n

When we let k = 2, x1 = t and x2 = 1 in Theorem 3.1.1, we obtain an interesting

product formula for the generating polynomial
∑n−1

i=0 μ̄Πw
n
(0̂, [n]i)ti.

Proposition 3.2.1. For all n ≥ 1,

n−1∑
i=0

μ̄Πw
n
(0̂, [n]i)ti = (−1)n−1

n−1∏
i=1

((n− i) + it). (3.2.1)

Consequently,
n−1∑
i=0

μ̄Πw
n
(0̂, [n]i) = (−1)n−1nn−1.
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Proof. Setting k = 2, x1 = t and x2 = 1 in Theorem 3.1.1, we obtain that

U(x) =
∑
n≥1

hn−1(t, 1)
xn

n!
=
∑
n≥1

tn − 1

t− 1

xn

n!
=

etx − ex

t− 1

and

W (x) =
∑
n≥1

n−1∑
j=0

μ̄Πw
n
(0̂, [n]j)tj

xn

n!

are compositional inverses. It follows from [19, Theorem 5.1] that the

compositional inverse of U(x) is given by

∑
n≥1

(−1)n−1

n−1∏
i=1

((n− i) + it)
xn

n!
.

(See [16, Eq. (10)].) This yields (3.2.1).

Let T be a rooted tree on node set [n]. A descent of T is a node x that has

a smaller label than its parent pT (x). We call the edge {x, pT (x)} a descent edge.

We denote by Tn,i the set of rooted trees on node set [n] with exactly i descents.

In [16] Drake proves that

n−1∑
i=0

|Tn,i|ti =
n−1∏
i=1

((n− i) + it). (3.2.2)

The following result is a consequence of this and Proposition 3.2.1.

Corollary 3.2.2. For all n ≥ 1 and i ∈ {0, 1, . . . , n− 1},

μ̄Πw
n
(0̂, [n]i) = (−1)n−1|Tn,i|.

We can use Proposition 3.0.4 and Corollary 3.2.2 to compute the Möbius

function on other intervals. A rooted forest on node set [n] is a set of rooted

trees whose node sets form a partition of [n]. We associate a weighted partition
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α(F ) with each rooted forest F = {T1, . . . , Tk} on node set [n], by letting

α(F ) = {Aw1
1 , . . . , Awk

k } where Ai is the node set of Ti and wi is the number

of descents of Ti. For lower intervals we obtain the following generalization of

Corollary 3.2.2.

Corollary 3.2.3. For all α ∈ Πw
n ,

μ̄Πw
n
(0̂, α) = (−1)n−|α||{F ∈ Fn : α(F ) = α}|,

where Fn is the set of rooted forests on node set [n].

Next we consider the full poset Π̂w
n . To compute its Möbius invariant we will

make use of Abel’s identity (see [39, Ex. 5.31 c]),

(x+ y)n =
n∑

k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k. (3.2.3)

Proposition 3.2.4.

μ̄Π̂w
n
(0̂, 1̂) = (−1)n(n− 1)n−1.

Proof. We proceed by induction on n. If n = 1 then

μ̄Π̂w
1
(0̂, 1̂) = −1 = (−1)1(1− 1)1−1

since Π̂w
1 is the chain of length 1.

Let n ≥ 1 and let α ∈ Πw
n \ {0̂}. Since the interval [α, 1̂] in Π̂w

n is isomorphic

to Π̂w
|α| (cf. Proposition 3.0.4), we can assume by induction that

μ̄Π̂w
n
(α, 1̂) = (−1)|α|(|α| − 1)|α|−1.
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Hence by the recursive definition of the Möbius function we have,

μ̄Π̂w
n
(0̂, 1̂) = −

∑
α∈Π̂w

n \0̂

μ̄Π̂w
n
(α, 1̂)

= −1−
n−1∑
k=1

∑
α∈Πw

n
|α|=k

μ̄Π̂w
n
(α, 1̂)

= −1−
n−1∑
k=1

∑
α∈Πw

n
|α|=k

(−1)k(k − 1)k−1

= −1−
n−1∑
k=1

(
n

k

)
kn−k(−1)k(k − 1)k−1 (by (7.1.6))

= −1 +
n∑

k=0

(
n

k

)
kn−k(1− k)k−1 − (1− n)n−1. (3.2.4)

By setting x = 1, y = 0, z = 1 in Abel’s identity (3.2.3), we get

1 =
n∑

k=0

(
n

k

)
(1− k)k−1kn−k.

Substituting this into (3.2.4) yields the result.

Remark 3.2.5. In Section 3.3 we compute the characteristic polynomial of Πw
n

and use it to give a second proof of Proposition 3.2.4.

3.3 The characteristic polynomial of Πw
n

For a pure poset with a 0̂ the characteristic polynomial is defined as

χP (x) =
∑
α∈P

μ̄(0̂, α)xρ(P )−ρ(α).

Recall that the characteristic polynomial of Πn factors nicely (see equation

(1.2.1)). We prove that the same is true for Πw
n .
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Theorem 3.3.1. For all n ≥ 1, the characteristic polynomial of Πw
n is given by

χΠw
n
(x) :=

∑
α∈Πw

n

μ̄Πw
n
(0̂, α)xn−1−ρ(α) = (x− n)n−1.

We will need the following result.

Proposition 3.3.2 (see [39, Proposition 5.3.2]). Let Fk
n be the number of rooted

forests on node set [n] with k rooted trees. Then

|Fk
n | =
(
n− 1

k − 1

)
nn−k.

Proof of Theorem 3.3.1. We have

χΠw
n
(x) =
∑
α∈Πw

n

μ̄(0̂, α)x|α|−1

=
n∑

k=1

∑
α∈Πw

n
|α|=k

μ̄(0̂, α)xk−1

=
n∑

k=1

(−1)n−k|Fk
n |xk−1 (by Corollary 3.2.3)

=
n∑

k=1

(−1)n−k

(
n− 1

k − 1

)
nn−kxk−1 (by Proposition 3.3.2)

=
n−1∑
k=0

(
n− 1

k

)
(−n)n−1−kxk

= (x− n)n−1.

Theorem 3.3.1 yields an easier way to calculate μ̄Π̂w
n
(0̂, 1̂).
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Second proof of Proposition 3.2.4 . By the recursive definition of Möbius function,

μ̄Π̂w
n
(0̂, 1̂) = −

∑
α∈Πw

n

μ̄(0̂, α)

= −χΠw
n
(1)

= −(1− n)n−1

= (−1)n(n− 1)n−1.



Chapter 4

Homotopy type of the intervals of

Πk
n

In this chapter we use the theory of EL-shellability introduced by Björner [6] and

further developed by Björner and Wachs [8], to determine the homotopy type of

the maximal intervals of Πk
n.

4.1 EL-labeling

Let P be a bounded poset. An edge labeling is a map λ̄ : E(P )→ Λ, where E(P )

is the set of edges of the Hasse diagram of a poset P and Λ is a fixed poset. We

denote by

λ̄(c) = λ̄(x0, x1)λ̄(x1, x2) · · · λ̄(xt−1, xt),

the word of labels corresponding to a maximal chain c = (0̂ = x0 � x1 � · · · �

xt−1 � xt = 1̂). We say that c is increasing if its word of labels λ̄(c) is strictly
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increasing, that is, c is increasing if

λ̄(x0, x1) < λ̄(x1, x2) < · · · < λ̄(xt−1, xt).

We say that c is ascent-free (or decreasing, or falling) if its word of labels λ̄(c)

has no ascents, i.e. λ̄(xi, xi+1) 	< λ̄(xi+1, xi+2), for all i = 0, . . . , t − 2. An edge-

lexicographical labeling (EL-labeling, for short) of P is an edge labeling such that

in each closed interval [x, y] of P , there is a unique increasing maximal chain, and

this chain lexicographically precedes all other maximal chains of [x, y].

A classical EL-labeling for the partition lattice Πn is obtained as follows. Let

Λ = {(i, j) ∈ [n−1]× [n] | i < j} with lexicographic order as the order relation on

Λ. If x�y in Πn then y is obtained from x by merging two blocks A and B, where

minA < minB. Let λ̄(x, y) = (minA,minB). This defines a map λ̄ : E(Πn)→ Λ

(Note that λ̄ in this section is an edge labeling and not an integer partition). By

viewing Λ as the set of atoms of Πn, one sees that this labeling is a special case

of an edge labeling for geometric lattices, which first appeared in Stanley [37] and

was one of Björner’s [6] initial examples of an EL-labeling. We generalize this

labeling by providing one for Πk
n that reduces to the Björner-Stanley EL-labeling

when k = 1.

Definition 4.1.1 (Poset of labels). For each a ∈ [n], let Γa := {(a, b)u | a < b ≤

n + 1, u ∈ [k]}. We partially order Γa by letting (a, b)u ≤ (a, c)v if b ≤ c and

u ≤ v. Note that Γa is isomorphic to the direct product of the chain a + 1 <

a + 2 < · · · < n + 1 and the chain 1 < 2 < · · · < k. Now define Λk
n to be the

ordinal sum Λk
n := Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γn (see Figure 4.1).

Definition 4.1.2 (EL-labeling). If x � y in Πk
n then y is obtained from x by

er-merging two blocks A and B for some r ∈ [k], where minA < minB.
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(1, 2)1

(1, 3)1

(1, 4)1

(1, 2)2

(1, 3)2

(1, 4)2

(1, 2)3

(1, 3)3

(1, 4)3

(2, 3)1

(2, 4)1 (2, 3)2

(2, 4)2 (2, 3)3

(2, 4)3

(3, 4)1

(3, 4)2

(3, 4)3

Figure 4.1: Λ3
3

Let

λ̄(x� y) = (minA,minB)r.

This defines a map λ̄ : E(Πk
n) → Λk

n. We extend this map to λ̄ : E(Π̂k
n) → Λn by

letting λ̄([n]μ � 1̂) = (1, n + 1)1, for all μ ∈ wcompn−1 with supp(μ) ⊆ [k] (See

Figure 4.2).

Remark 4.1.3. Recall that when μ has a single nonzero entry (equal to n−1), the

interval [0̂, [n]μ] is isomorphic to Πn. Note that λ̄ reduces to the Björner-Stanley

EL-labeling on those intervals.

1̂

1(0,0,0)|2(0,0,0)|3(0,0,0)

12(1,0,0)|3(0,0,0) 13(1,0,0)|2(0,0,0) 1(0,0,0)|23(1,0,0) 12(0,1,0)|3(0,0,0) 13(0,1,0)|2(0,0,0) 1(0,0,0)|23(0,1,0) 12(0,0,1)|3(0,0,0) 13(0,0,1)|2(0,0,0) 1(0,0,0)|23(0,0,1)

123(2,0,0) 123(1,1,0) 123(1,0,1) 123(0,2,0) 123(0,1,1) 123(0,0,2)

(1, 2)1 (1, 3)1 (2, 3)1 (1, 2)2 (1, 3)2 (2, 3)2 (1, 2)3 (1, 3)3 (2, 3)3

(1, 4)1 (1, 4)1 (1, 4)1 (1, 4)1 (1, 4)1 (1, 4)1

(1, 3)1
(1, 2)1(1, 2)1

(1, 3)2

(1, 2)2

(1, 2)2 (1, 3)1 (1, 2)1 (1, 2)
1

(1, 3)3 (1, 2)3 (1, 2)3 (1, 3)1 (1, 2)1 (1, 2)1

(1, 3)2(1, 2)2

(1, 2)2(1, 3)
3

(1, 2)3

(1, 2)3
(1, 3)2 (1, 2)2

(1, 2)2
(1, 3)3

(1, 2)3
(1, 2)3

Figure 4.2: Labeling λ̄ on Π̂3
3
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Theorem 4.1.4. The labeling λ̄ : E(Π̂k
n)→ Λn defined above is an EL-labeling of

Π̂k
n.

Proof. We need to show that in every closed interval of Π̂k
n there is a unique

increasing chain (from bottom to top), which is also lexicographically first. Let ρ

denote the rank function of Π̂k
n. We divide the proof into 4 cases:

1. Intervals of the form [0̂, [n]μ]. Since, from bottom to top, the last step of

merging two blocks includes a block that contains 1, all of the maximal chains

have a final label of the form (1,m)u, and so any increasing maximal chain

has to have label word (1, 2)u1(1, 3)u2 · · · (1, n)un−1 with u1 ≤ u2 ≤ · · · ≤ un−1

and ui ∈ [k] for all i. This label word is lexicographically first and the only

chain with this label word is (listing only the nonsingleton blocks)

0̂� 12eu1 � 123eu1+eu2 � · · ·� 123 · · ·nμ.

2. Intervals of the form [0̂, α] for ρ(α) < n−1. Let Aμ1

1 , . . . , Aμk

k be the weighted

blocks of α, where minAi < minAj if i < j. For each i, let mi = minAi. By

the previous case, in each of the posets [0̂, Aμi

i ] there is only one increasing

manner of merging the blocks, and the labels of the increasing chain belong

to the label set Γmi
. The increasing chain is also lexicographically first.

Consider the maximal chain of [0̂, α] obtained by first merging the blocks

of the increasing chain in [0̂, Aμ1

1 ], then the ones in the increasing chain in

[0̂, Aμ2

2 ], and so on. The constructed chain is still increasing since the labels

in Γmi
are less than the labels in Γmi+1

for each i = 1, . . . , k − 1. It is not

difficult to see that this is the only increasing chain of [0̂, α] and that it is

lexicographically first.
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3. The interval [0̂, 1̂]. An increasing chain c of this interval must be of the form

c′ ∪{1̂}, where c′ is the unique increasing chain of some interval [0̂, [n]μ]. By

Case 1, the label word of c′ ends in (1, n)u for some u. For c to be increasing,

u must be 1. But u = 1 only in the interval [0̂, [n](n−1)eu1 ]. Hence the unique

increasing chain of [0̂, [n](n−1)eu1 ] concatenated with 1̂ is the only increasing

chain of [0̂, 1̂]. It is clearly lexicographically first.

4. Intervals of the form [α, β] for α 	= 0̂. We extend the definition of Πk
n to

Πk
S, where S is an arbitrary finite set of positive integers, by considering

partitions of S rather than [n]. We also extend the definition of the labeling

λ̄ to Π̂k
S. Now we can identify the interval [α, 1̂] with Π̂k

S, where S is the set

of minimum elements of the blocks of α, by replacing each block A of α by

its minimum element and subtracting the weight of A from the weight of the

block containing A in each weighted partition of [α, 1̂]. This isomorphism

preserves the labeling and so the three previous cases show that there is a

unique increasing chain in [α, β] that is also lexicographically first.

Theorem 1.6.2 is then a corollary of Theorem 4.1.4 and the following theorem

linking lexicographic shellability and topology.

Theorem 4.1.5 (Björner and Wachs [9]). Let λ̄ be an EL-labeling of a bounded

poset P . Then for all x < y in P ,

1. the open interval (x, y) has the homotopy type of a wedge of spheres, where

for each r ∈ N the number of spheres of dimension r is the number of ascent-

free maximal chains of the closed interval [x, y] of length r + 2.
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2. the set

{c̄ | c is an ascent-free maximal chain of [x, y] of length r + 2}

forms a basis for cohomology H̃r((x, y)), for all r.

Since the Möbius invariant of a bounded poset P equals the reduced Euler

characteristic of the order complex of P (Corollary A.2.2), Proposition A.2.3 and

Theorem 4.1.5 imply the following corollary.

Corollary 4.1.6. Let P be a pure EL-shellable poset of length n. Then

1. P has the homotopy type of a wedge of spheres all of dimension n−2, where

the number of spheres is |μP (0̂, 1̂)|.

2. P is Cohen-Macaulay, which means that H̃i((x, y)) = 0 for all x < y in P

and i < l([x, y])− 2.

In [15] Dotsenko and Khoroshkin use operad theory to prove that all intervals

of Πw
n are Cohen-Macaulay. The following extension of their result is a consequence

of Theorem 4.1.4.

Corollary 4.1.7. For every k ≥ 1, the poset Π̂k
n is Cohen-Macaulay. In particular,

the poset Π̂w
n is Cohen-Macaulay.

Remark 4.1.8. In a prior attempt to establish Cohen-Macaulayness of each

maximal interval [0̂, [n]i] of Πw
n , it is argued in [14] that the intervals are totally

semimodular and hence CL-shellable1. In [41] it is noted that this is not the case

and a proposed recursive atom ordering2 of each maximal interval [0̂, [n]i] is given

1CL-shellability is a property more general the EL-shellability, which also implies Cohen-
Macaulaynes; see [8], [9] or [46]

2See [8], [9] or [46] for the definition of recursive atom ordering. The property of admitting
a recursive atom ordering is equivalent to that of being CL-shellable.
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in order to establish CL-shellability. In [41, Proof of Proposition 3.9] it is claimed

that given any linear ordering {i1, j1}, {i2, j2}, · · · , {im, jm} of the atoms of Πn

(the singleton blocks have been omitted), the linear ordering

{i1, j1}0, {i1, j1}1, {i2, j2}0, {i2, j2}1 · · · {im, jm}0, {im, jm}1 (4.1.1)

satisfies the criteria for being a recursive atom ordering of [0̂, [n]i], where 1 ≤ i ≤

n−2. We note here that one of the requisite conditions in the definition of recursive

atom ordering fails to hold when n = 4 and i = 2. Indeed, assume (without loss

of generality) that the first two atoms in the atom ordering of [0̂, [4]2] given in

(4.1.1) are {1, 2}0 and {1, 2}1. Then the atoms of the interval [{1, 2}1, [4]2] that

cover {1, 2}0 are {1, 2, 3}1 and {1, 2, 4}1. So by the definition of recursive atom

ordering one of these covers must come first in any recursive atom ordering of

[{1, 2}1, [4]2] and the other must come second. But this contradicts the form of

(4.1.1) applied to the interval [{1, 2}1, [4]2] which requires the atom {1, 2, 3}2 to

immediately follow the atom {1, 2, 3}1 and the atom {1, 2, 4}2 to immediately

follow the atom {1, 2, 4}1. The proof of Proposition 3.9 of [41] breaks down in the

second from last paragraph.

By Theorem 4.1.4, Proposition 3.2.4, Corollary 3.2.2 and Corollary 4.1.6 we

have,

Theorem 4.1.9. For all n ≥ 1,

1. Πw
n \{0̂} has the homotopy type of a wedge of (n−1)n−1 spheres of dimension

n− 2,

2. (0̂, [n]i) has the homotopy type of a wedge of |Tn,i| spheres of dimension n−3

for all i ∈ {0, 1, . . . , n− 1}.
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Moreover, we have the following result.

Corollary 4.1.10. For 0 ≤ i ≤ n− 1,

dim H̃n−2(Πw
n \ 0̂) = (n− 1)n−1

dim H̃n−3((0̂, [n]i)) = |Tn,i|

dim
n−1⊕
i=0

H̃n−3((0̂, [n]i)) = nn−1.

Theorem 2.3.1 and Corollary 4.1.10 yield the following result.

Corollary 4.1.11 (Liu [29], Dotsenko and Khoroshkin [15]). For 0 ≤ i ≤ n− 1,

dimLie2(n, i) = |Tn,i|.

4.2 The ascent-free maximal chains from the EL-

labeling

Although we do not have a simple general formula for the homotopy type of

the maximal intervals (0̂, [n]μ) of Πk
n like those appearing in Theorem 4.1.9 and

Corollary 4.1.10 for the case k = 2, we will use the ascent-free maximal chains of

the EL-labeling of Theorem 1.6.2 to give a plaesant combinatorial formula.

We will describe the ascent-free maximal chains of the maximal intervals

[0̂, [n]μ] given by the EL-labeling of Theorem 4.1.4. A Lyndon tree is a labeled

binary tree (T, σ) such that for each internal node x of T , the smallest leaf label

of the subtree Tx rooted at x is in the left subtree of Tx and the second smallest

label is in the right subtree of Tx. An alternative characterization of a Lyndon

tree is given in Proposition 4.2.1 below.

For each internal node x of a labeled binary tree, let L(x) denote the left child

of x and R(x) denote its right child. For each node x of a labeled binary tree
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(T, σ) define its valency v(x) to be the smallest leaf label of the subtree rooted at

x. A Lyndon tree is depicted in Figure 4.3 illustrating the valencies of the internal

nodes.

We say that a labeled binary tree is normalized if the leftmost leaf of each

subtree has the smallest label in the subtree. This is equivalent to requiring that

for every internal node x,

v(x) = v(L(x)).

Note that a normalized tree can be thought of simply as a labeled nonplanar

binary tree (or a phylogenetic tree) that has been drawn in the plane following

the convention above. We denote the set of normalized labeled binary trees on

label set [n] by Norn and the set of normalized binary trees on some arbitrary finite

subset A of P by NorA. It is well-known that there are (2n−3)!! := 1 ·3 · · · (2n−3)

phylogenetic trees on [n] and so |Norn| = (2n− 3)!!.

The following alternative characterization of a Lyndon tree is easy to verify.

Proposition 4.2.1. Let (T, σ) be a labeled binary tree. Then (T, σ) is a Lyndon

tree if and only if it is normalized and for every internal node x of T we have

v(R(L(x)) > v(R(x)). (4.2.1)

1

2
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Figure 4.3: Example of a Lyndon tree. The numbers above the lines correspond
to the valencies of the internal nodes
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We will say that an internal node x of a labeled binary tree (T, σ) is a Lyndon

node if (4.2.1) holds. Hence Proposition 4.2.1 says that (T, σ) is a Lyndon tree if

and only if it is normalized and all its internal nodes are Lyndon nodes.

A colored Lyndon tree is a normalized binary tree such that for any node x

that is not a Lyndon node it must happen that

color(L(x)) > color(x). (4.2.2)

For μ ∈ wcompn−1, let Lynμ be the set of colored Lyndon trees in BT μ and Lynn =

∪μ∈wcompn−1
Lynμ. Note that equation (4.2.2) implies that the monochromatic

Lyndon trees are just the classical Lyndon trees.

The set of bicolored Lyndon trees for n = 3 is depicted in Figure 4.4.
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Figure 4.4: Set of bicolored Lyndon trees for n = 3

We will show that the ascent-free maximal chains of the EL-labeling of [0̂, [n]μ]

given in Theorem 4.1.4 are of the form c(T, σ, τ), where (T, σ) ∈ Lynμ and τ is the

linear extension of the internal nodes of T , which we now describe: It is easy to

see that there is a unique linear extension of the internal notes of (T, σ) ∈ BT μ in

which the valencies of the nodes weakly decrease. Let τT,σ denote the permutation

that induces this linear extension.
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Theorem 4.2.2. The set {c(T, σ, τT,σ) | (T, σ) ∈ Lynμ} is the set of ascent-free

maximal chains of the EL-labeling of [0̂, [n]μ] given in Theorem 4.1.4.

Proof. We begin by showing that c := c(T, σ, τ) is ascent-free whenever (T, σ) ∈

Lynμ and τ = τT,σ . Let xi be the ith internal node of T in postorder. Then by

the definition of τT,σ,

v(xτ(1)) ≥ v(xτ(2)) ≥ · · · ≥ v(xτ(n−1)), (4.2.3)

where v is the valency. For each i, the ith letter of the label word λ̄(c) is given by

λ̄i(c) = (v(L(xτ(i))), v(R(xτ(i))))
ui = (v(xτ(i)), v(R(xτ(i))))

ui ,

where ui = color(xτ(i)). Note that since (T, σ) is normalized, v(R(xτ(i))) 	=

v(R(xτ(i+1))) for all i ∈ [n − 1]. Now suppose the word λ̄(c) has an ascent at

i. Then it follows from (4.2.3) that

v(xτ(i)) = v(xτ(i+1)), v(R(xτ(i))) < v(R(xτ(i+1))), and ui ≤ ui+1. (4.2.4)

The equality of valencies implies that xτ(i) = L(xτ(i+1)) since (T, σ) is normalized

and τ is a linear extension. Hence by (4.2.4),

v(R(L(xτ(i+1)))) < v(R(xτ(i+1))).

It follows that xτ(i+1) is not a Lyndon node. So by the coloring restriction on

colored Lyndon trees

ui = color(xτ(i)) = color(L(xτ(i+1))) > color(xτ(i+1)) = ui+1,
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which contradicts (4.2.4). Hence the chain c is ascent-free.

Conversely, assume c is an ascent-free maximal chain of [0̂, [n]μ]. Then c =

c(T, σ, τ) for some bicolored labeled tree (T, σ) and some permutation τ ∈ Sn−1.

We can assume without loss of generality that (T, σ) is normalized. Since c is

ascent-free, (4.2.3) holds. This implies that τ is the unique permutation that

induces the valency-decreasing linear extension, namely τT,σ.

If all internal nodes of (T, σ) are Lyndon nodes we are done. So let i ∈ [n− 1]

be such that xτ(i) is not a Lyndon node. That is

v(R(L(xτ(i)))) < v(R(xτ(i))).

Since (T, σ) is normalized and (4.2.3) holds, L(xτ(i)) = xτ(i−1). Hence,

v(R(xτ(i−1))) < v(R(xτ(i))). Since (T, σ) is normalized we also have v(L(xτ(i−1))) =

v(L(xτ(i))). Since c is ascent-free we must have that

color(xτ(i−1)) > color(xτ(i)),

which is precisely what we need to conclude that (T, σ) is a colored Lyndon tree.

From Theorem 4.1.5, Theorem 4.2.2 and Corollary 4.1.6, we have the following

corollary.

Corollary 4.2.3. For all n ≥ 1 and for all μ ∈ wcompn−1 with supp(μ) ⊆ [k],

the order complex Δ((0̂, [n]μ)) has the homotopy type of a wedge of |Lynμ| spheres

of dimension n− 3. Consequently,

dim H̃n−3((0̂, [n]μ)) = |Lynμ|
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and

μ̄Πk
n
(0̂, [n]μ) = (−1)n−1|Lynμ|.



Chapter 5

The dimension of Lie(μ)

In this chapter we present various formulas for the dimension of Lie(μ). We begin

by using the isomorphism between Lie(μ) and H̃n−3((0̂, [n]μ)) of Theorem 2.3.1

to transfer information on H̃n−3((0̂, [n]μ)) obtained in the last two chapters to

Lie(μ).

Theorem 5.0.4 (Theorem 1.6.3). We have

∑
n≥1

∑
μ∈wcompn−1

dimLie(μ)xμy
n

n!
=

[∑
n≥1

(−1)n−1hn−1(x)
yn

n!

]<−1>

,

Proof. From Corollary 4.2.3 we have that

μ̄Πk
n
(0̂, [n]μ) = (−1)n−1 dim H̃n−3((0̂, [n]μ)).

The theorem now follows from Theorems 2.3.1 and 3.1.1 when we let k get large.

We have a combinatorial description for the dimension of Lie(μ).

58
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Theorem 5.0.5. For all n ≥ 1 and μ ∈ wcompn−1,

dimLie(μ) = |Lynμ|.

Proof. We know from Corollary 4.2.3 that dim H̃n−3((0̂, [n]μ)) = |Lynμ|. Hence,

the isomorphism of Theorem 2.3.1 proves the theorem.

5.1 Lyndon type of a normalized tree

With a normalized tree Υ ∈ Norn we can associate a (set) partition πLyn(Υ) of

the set of internal nodes of Υ, defined to be the finest partition satisfying the

condition:

• for every internal node x that is not Lyndon, x and L(x) belong to the same

block of πLyn(Υ).

For the tree in Figure 5.1, the shaded rectangles indicate the blocks of πLyn(Υ).

Note that the coloring condition (4.2.2) implies that in a colored Lyndon tree

Υ there are no repeated colors in each block B of the partition πLyn(Υ) associated

with Υ. Hence after choosing a set of |B| colors for the internal nodes in B there

is a unique way to assign the different colors such that the colored tree Υ is a

colored Lyndon tree (the colors must decrease towards the root in each block of

πLyn(Υ)).

Define the Lyndon type λLyn(Υ) of a normalized tree (colored or uncolored)

Υ to be the (integer) partition whose parts are the block sizes of the partition

πLyn(Υ). For the tree Υ in Figure 5.1, we have λLyn(Υ) = (3, 2, 2, 1).

Let eλ(x) be the elementary symmetric function associated with the partition

λ.
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Figure 5.1: Example of a colored Lyndon tree of type (3,2,2,1). The numbers
above the lines correspond to the valencies of the internal nodes

Theorem 5.1.1. For all n,

∑
μ∈wcompn−1

dimLie(μ)xμ =
∑

Υ∈Norn

eλLyn(Υ)(x). (5.1.1)

Proof. For a colored labeled binary tree Ψ we define the content μ(Ψ) of G as the

weak composition μ where μ(i) is the number of internal nodes of Ψ that have

color i. Recall that Ψ̃ denotes the underlying uncolored labeled binary tree of Ψ.

Note that the comments above imply that for Υ ∈ Norn, the generating function

of colored Lyndon trees associated with Υ is

∑
Ψ∈Lynn
Ψ̃=Υ

xμ(Ψ) = eλLyn(Υ)(x). (5.1.2)

Indeed the internal nodes in a block of size i in the partition πLyn(Υ) can be colored

uniquely with any set of i different colors and so the contribution from this block

of πLyn(Υ) to the generating function in (5.1.2) is ei(x).

By Theorem 5.0.5,

∑
μ∈wcompn−1

dimLie(μ)xμ =
∑

μ∈wcompn−1

|Lynμ|xμ
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=
∑

Ψ∈Lynn

xμ(Ψ)

=
∑

Υ∈Norn

∑
Ψ∈Lynn
Ψ̃=Υ

xμ(Ψ)

=
∑

Υ∈Norn

eλLyn(Υ)(x),

with the last equation following from (5.1.2).

5.2 Stirling permutations

A Stirling permutation on the set [n] is a permutation of the multiset

{1, 1, 2, 2, · · · , n, n} such that for all m ∈ [n], all numbers between the two

occurrences of m are larger than m. The set of Stirling permutations on [n]

will be denoted by Qn. For example, the permutation 12332144 is in Qn but

43341122 is not since 3 is between the two ocurrences of 4. Stirling permutations

were introduced by Stanley and Gessel in [18] and have been also studied by

Bóna, Park, Janson, Kuba, Panholzer and others (see [10, 33, 26, 22]). For an

arbitrary subset A := {a1, a2, . . . , an} of positive integers, we denote by QA,

the set of Stirling permutations of A; that is, permutations of the multiset

{a1, a1, a2, a2, . . . , an, an}, satisfying the condition above.

It is known that |Qn−1| = (2n − 3)!!. So this set of Stirling permutations is

equinumerous with the set Norn of normalized binary trees with label set [n]. We

will present an explicit bijection between these two sets. Moreover, this bijection

has some nice properties that allow us to translate the results of Chapter 4 to the

language of Stirling permutations and to ultimately prove Theorem 1.6.4.
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5.2.1 Type of a Stirling permutation

A segment u of a Stirling permutation θ = θ1θ2 · · · θ2n is a subword of θ of the

form u = θiθi+1 · · · θi+�, i.e., all the letters of u are adjacent in θ. A block in

a Stirling permutation θ is a segment of θ that starts and ends with the same

letter. For example, 455774 is a block of 12245577413366. We define Bθ(a) to be

the block of θ that starts and ends with the letter a, and define B̊θ(a) to be the

segment obtained from Bθ(a) after removing the two occurrences of the letter a.

For example, Bθ(1) = 1224557741 in θ = 12245577413366 and B̊θ(1) = 22455774.

We call (a, b) an ascending adjacent pair if a < b and the blocks Bθ(a) and

Bθ(b) are adjacent in θ, i.e., θ = θ′Bθ(a)Bθ(b)θ
′′. An ascending adjacent sequence

of θ of length k is a subsequence a1 < a2 < · · · < ak such that (aj, aj+1) is an

ascending adjacent pair for j = 1, . . . , k − 1. Similarly, for a Stirling permutation

θ ∈ Qn we call (a, b) a terminally nested pair if a < b and the block Bθ(b) is

the last block in B̊θ(a), i.e., B̊θ(a) = θ′Bθ(b) for some Stirling permutation θ′. A

terminally nested sequence of θ of length k is a subsequence a1 < a2 < · · · < ak

such that (aj, aj+1) is a terminally nested pair for j = 1, . . . , k − 1.

We can associate a type to a Stirling permutation θ ∈ Qn in two ways. We

define the ascending adjacent type λAA(θ), to be the partition whose parts are the

lengths of maximal ascending adjacent sequences; and we define the terminally

nested type λTN(θ), to be the partition whose parts are the lengths of maximal

terminally nested sequences. We will show that these two types are equinumerous

in Qn.

Example 5.2.1. If θ = 158851244667723399, then the maximal ascending

adjacent sequences are 1239, 467, 5 and 8; then λAA(θ) = (4, 3, 1, 1), which is

a partition of n = 9. Also the maximal terminally nested sequences are 158, 27,

3, 4, 6 and 9; then λTN(θ) = (3, 2, 1, 1, 1, 1), which is also a partition of n = 9.
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It is easy to see that every Stirling permutation has a unique factorization

θ = Bθ(a1)Bθ(a2) · · ·Bθ(a�) into adjacent blocks. We call this factorization the

block factorization of θ. For example, 12245577413366 has a block factorization

1224557741 − 33 − 66. A Stirling factorization of a Stirling permutation θ is a

decomposition θ = θ1θ2 · · · θ�, such that θi is a Stirling permutation for all i. Note

that the block factorization of θ is the finest Stirling factorization.

Denote by κ(a) := ak, the largest letter of the maximal terminally nested

sequence a = a1 < a2 < · · · < ak of Bθ(a) that contains a. In θ =

158851244667723399, we have for example that κ(1) = 8, κ(2) = 7 and κ(7) = 7.

We define the following two types of restricted Stirling factorizations:

• The ascending adjacent factorization of θ is the Stirling factorization θ =

θ1θ2 in which θ1 is the shortest nonempty prefix of θ such that if θ1 = αBθ(a)

and θ2 = Bθ(b)β then a > b. For example if θ = 133155442662, then the

ascending adjacent factorization of θ is 133155− 442662.

• The terminally nested factorization of θ is the Stirling factorization θ = θ1θ2

in which θ1 is the shortest nonempty prefix of θ such that if θ1 = Bθ(a)α and

θ2 = Bθ(b)β then κ(a) > b. In the case of θ = 133155442662, the terminally

nested factorization of θ is 13315544− 2662.

An irreducible AA-word is a Stirling permutation that has no nontrivial

ascending adjacent factorization. It is not difficult to see that an irreducible AA-

word is a Stirling permutation of the form

Bθ(a1)Bθ(a2) · · ·Bθ(ak) = a1τ1a1 a2τ2a2 · · · ak−1τk−1ak−1 akτkak, (5.2.1)

where a1 < a2 < · · · < ak and τi are Stirling permutations for each i.

An irreducible TN-word is a Stirling permutation that has no nontrivial
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terminally nested factorization. It is not difficult to see that an irreducible TN-

word is a Stirling permutation of the form

Bθ(a)α (5.2.2)

where κ(a) < a′ for any letter a′ in α. Equivalently, an irreducible TN-word is a

Stirling permutation of the form

a1τ1a2τ2ak−1τk−1akakak−1 · · · a2a1τk (5.2.3)

where a1 < a2 < · · · < ak and τi are Stirling permutations for each i with ak < a′

for any letter a′ in τk.

The complete ascending adjacent (terminally nested) factorization of θ is the

factorization θ = θ1θ2 · · · θl that we obtain by factoring θ into θ1θ2 by the ascending

adjacent (resp., terminally nested) factorization and then recursively applying the

same procedure to θ2.

Let A be a subset of the positive integers. We define a map ξ : QA → QA

recursively as follows:

1. If θ = mm then ξ(θ) = mm.

2. If θ is an irreducible AA-word a1τ1a1a2τ2a2 · · · ak−1τk−1ak−1akτkak then

ξ(θ) = a1ξ(τ1)a2ξ(τ2) · · · ak−1ξ(τk−1)akakak−1 · · · a2a1ξ(τk).

3. If θ = θ1θ2 · · · θl is the complete ascending adjacent factorization of θ then

ξ(θ) = ξ(θ1)ξ(θ2) · · · ξ(θl).
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Step (2) guarantees that ξ is well-defined. Indeed, in an irreducible AA-word

of the form given in (2), we have as < as+1 < · · · < ak for any s. Hence, we are

inserting only letters that are greater than as between the two occurrences of as.

The map ξ is in fact a bijection and it is not difficult to check that its inverse

ξ−1 : QA → QA is defined by:

1. If θ = mm then ξ−1(θ) = mm.

2. If θ is an irreducible TN-word a1τ1a2τ2 · · · ak−1τk−1akakak−1 · · · a2a1τk then

ξ−1(θ) = a1ξ
−1(τ1)a1a2ξ

−1(τ2)a2 · · · ak−1ξ
−1(τk−1)ak−1akξ

−1(τk)ak.

3. If θ = θ1θ2 · · · θl is the complete terminally nested factorization of θ then

ξ−1(θ) = ξ−1(θ1)ξ−1(θ2) · · · ξ−1(θl).

Step (2) guarantees that ξ−1 is well-defined since in an irreducible TN-word, ak < b

for any letter b in τk.

Example 5.2.2. Consider θ = 233772499468861551. Its complete ascending

factorization is 23377249946886− 1551; then

ξ(θ) = ξ(23377249946886− 1551)

= ξ(23377249946886)− ξ(1551)

= 2ξ(3377)4ξ(99)6642ξ(88)− 11ξ(55)

= 237734996642881155.
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Note that the maximal ascending adjacent sequences of θ are (246, 37, 1, 5, 8, 9)

which are also the maximal terminally nested sequences of ξ(θ). These

observations hold in general.

Proposition 5.2.3. The map ξ : QA → QA is a well-defined bijection that

satisfies:

1. (i, j) is an ascending adjacent pair in θ if and only if (i, j) is a terminally

nested pair in ξ(θ),

2. λTN(ξ(θ)) = λAA(θ).

Proof. Note that if θ = θ1θ2 · · · θl is the complete ascending adjacent factorization

of a Stirling permutation θ, then an ascending adjacent pair can only occur within

one of the factors θi. Similarly, if θ = θ1θ2 · · · θl is the complete terminally

nested factorization of a Stirling permutation θ, then a terminally nested pair

can only occur within one of the factors θi. Hence, without loss of generality, as a

consequence of step (3) in the definitions of ξ and ξ−1, we can assume that the word

θ is an irreducible AA-word or an irreducible TN-word. Then the first assertion

follows directly from step (2) in the definitions of ξ and ξ−1 and induction on the

length of θ. The second assertion is an immediate consequence of the first.

From Proposition 5.2.3 we see that λAA and λTN are equidistributed on Qn.

5.3 A bijection between normalized trees and

Stirling permutations

Let Q̂n be the set of permutations θ ∈ Qn where θ1 = θ2n = 1. There is a natural

bijection red : Q̂n → Qn−1 obtained by removing the leading and trailing 1 from
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θ = 1θ′1 and then reducing the word θ′ by decreasing every letter in {2, . . . , n}

by one. For example, red(12332441) = 122133. In greater generality, for A a

subset of the positive integers, let Q̂A be the set of Stirling permutations of A

such that both the first and last letter of the permutation is minA. Define the

map1 γ̃ : NorA → Q̂A recursively by:

1. If Υ = (•,m) then γ̃(Υ) = mm.

2. If Υ is of the form

m Υ1

Υ2

Υj−1

Υj

,

then γ̃(Υ) = mγ̃(Υ1)γ̃(Υ2) · · · γ̃(Υj−1)γ̃(Υj)m.

The function γ̃ is well-defined since the tree is normalized. Indeed, m is the

minimal letter and we always obtain a word with values greater than m between

the two occurrences of m. Proceeding by induction on the number of internal

nodes of Υ, we have that the words γ(Υi) are Stirling permutations for each i and

so it is γ(Υ).

It is not difficult to check that the inverse γ̃−1 : Q̂A → NorA can also be defined

recursively by

1. If θ = mm then γ̃−1(mm) = (•,m).

2. If θ = Bθ(m) and B̊θ(m) = Bθ(a1)Bθ(a2) · · ·Bθ(aj−1)Bθ(aj), then

γ̃−1(θ) =

m γ̃−1(Bθ(a1))

γ̃−1(Bθ(a2))

γ̃−1(Bθ(aj−1))

γ̃−1(Bθ(aj))

.

1The same map has appeared before in [13].
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The tree defined in the step above is clearly normalized. So we can encode any

normalized binary tree with a permutation in Q̂n. See Figure 5.2 for an example

of the bijection.

1
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4

7
2

6

3

4

7

5

12355366244771
γ̃

γ̃−1

Figure 5.2: Example of the bijection γ̃

We give an alternative description of γ̃. First we extend the leaf labeling of

Υ ∈ Norn to a labeling θ that includes the internal nodes. For each internal

node x, let θ(x) be the smallest leaf label in the right subtree of the subtree of Υ

rooted at x; for each leaf x, let θ(x) be the leaf label of x (See Figure 5.2). Let

x1, . . . , x2n−1 be the listing of all the nodes of Υ (internal and leaves) in postorder

and let θ(Υ) := θ(x1)θ(x2) . . . θ(x2n−1).

Proposition 5.3.1. For all Υ ∈ Norn,

γ̃(Υ) = θ(Υ)θ(x1)

where x1 is the leftmost leaf of Υ.

Proof. If Υ = (•,m) is a single node then γ̃(Υ) = mm = θ(Υ)θ(x1). If Υ has

internal nodes, it can be expressed as

Υ = (. . . (((x1, v(x1)) ∧Υ1) ∧Υ2) ∧ · · · ∧Υj)

(like the one in step (2) of the definition of γ̃).



69

Let yi denote the parent of the root of Υi for each i. As a consequence of the

definition of θ, we have that θ(yi) = θ(zi), where zi is the smallest leaf of Υi. By

induction, using the definition of γ̃,

γ̃(Υ) = v(x1)γ̃(Υ1) . . . γ̃(Υj)v(x1)

= θ(x1)θ(Υ1)θ(y1) . . . θ(Υj)θ(yj)θ(x1)

= θ(Υ)θ(x1).

The last step holds since the postorder traversal of Υ lists first x1, followed by

postorder traversal of Υ1 followed by y1, followed by postorder traversal of Υ2

followed by y2, and so on.

To remove the unnecessary leading and trailing ones in γ̃(Υ), we consider

instead the map γ : Norn → Qn−1 defined by γ(Υ) := red(γ̃(Υ)) for each Υ ∈ Norn.

We invite the reader to recall the definition of comb type λComb(Υ) of a

normalized tree Υ given in Chapter 1 before Theorem 1.6.4 and the definition of

Lyndon type λLyn(Υ) given in Section 5.1. Recall also the definition of ascending

adjacent and terminally nested pairs of a Stirling permutation θ ∈ Qn, and the

associated types λAA(θ) and λTN(θ), given in the first part of this section. We

give an equivalent characterization of these pairs. An ascending adjacent pair of

θ ∈ Qn is a pair (a, b) such that a < b and in θ the second occurrence of a is the

immediate predecessor of the first occurrence of b. A terminally nested pair of

θ ∈ Qn is a pair (a, b) such that a < b and in θ the second occurrence of a is the

immediate successor of the second occurrence of b.

For any node (internal or leaf) x of Υ we define the (reduced valency)

vr(x) := v(x)− 1.
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Proposition 5.3.2. The map γ : Norn → Qn−1 is a well-defined bijection that

satisfies for each Υ ∈ Norn and internal node x of Υ,

1. x is a non-Lyndon node of Υ if and only if (vr(R(L(x))), vr(R(x))) is an

ascending adjacent pair in γ(Υ). Moreover, every ascending pair of γ(Υ) is

of the form (vr(R(L(x))), vr(R(x))) for some internal node x of Υ;

2. x has a right child R(x) that is also an internal node if and only if

(vr(R(x)), vr(R(R(x)))) is a terminally nested pair in γ(Υ). Moreover, every

terminally nested pair of γ(Υ) is of the form (vr(R(x)), vr(R(R(x)))) for

some internal node x of Υ;

3. λAA(γ(Υ)) = λLyn(Υ);

4. λTN(γ(Υ)) = λComb(Υ).

Proof. Let Υ ∈ Norn and let xi be the ith node of Υ listed in postorder. We use

the alternative characterization of γ̃ given in Proposition 5.3.1. We claim that:

Claim 1: The pair (θ(xi), θ(xi+1)) is an ascending adjacent pair of γ̃(Υ) if and only

if xi is a left child that is not a leaf and its parent p(xi) satisfies θ(p(xi)) > θ(xi).

(The latter condition is equivalent to p(xi) being a non-Lyndon node.)

Claim 2: (θ(xi+1), θ(xi)) is a terminally nested pair of γ̃(Υ) if and only if xi is a

right child that is not a leaf.

We say that θ ∈ Qn has a first occurrence of the letter θi at position i if θj 	= θi

for all j < i. We say that θ ∈ Qn has a second occurrence of the letter θi at

position i if there is a j < i such that θj = θi. Before proving these claims we first

observe that in the word γ̃(Υ) = θ(Υ)θ(x1) (Proposition 5.3.1), there is a first

occurrence of a letter at position i if xi is a leaf and a second occurrence of a letter

if xi is an internal node. The proof of the two claims follows from the following

four cases that in turn are consequences of this observation.
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Case 1: Let xi be a left child that is not a leaf. Then xi+1 is the leftmost leaf of

the right subtree of the subtree of Υ rooted at p(xi). By the observation above,

the position i of γ̃(Υ) contains the second occurrence of a letter while the position

i+ 1 contains the first occurrence of a letter. Note that θ(p(xi)) = θ(xi+1).

Case 2: Let xi be a left child that is a leaf. Then xi+1 is the smallest leaf of

the right subtree of the subtree of Υ rooted at p(xi). Hence, positions i and i+ 1

contain first occurrences of letters in γ̃(Υ) and θ(xi) < θ(xi+1) = θ(p(xi)).

Case 3: Let xi be a right child that is not a leaf. Then by postorder xi+1 = p(xi)

and positions i and i+ 1 contain second occurrences of letters in γ̃(Υ). Note that

θ(xi) > θ(xi+1).

Case 4: Let xi be a right child that is a leaf. Then by postorder xi+1 = p(xi) and

by the definition of θ we have that θ(xi) = θ(p(xi)) = θ(xi+1).

It is not difficult to see that the two claims imply (1) and (2) after applying

the definitions of red and vr. Parts (3) and (4) are immediate consequences of

parts (1) and (2), respectively.

We have now four different combinatorial interpretations of the coefficients

of the symmetric function Ln(x) :=
∑

μ∈wcompn
dimLie(μ)xμ in the elementary

symmetric function basis. Theorem 5.3.3 below includes Theorem 1.6.4.

Theorem 5.3.3. For all n,

∑
μ∈wcompn−1

dimLie(μ)xμ =
∑

Υ∈Norn

eλLyn(Υ)(x)

=
∑

θ∈Qn−1

eλAA(θ)(x)

=
∑

θ∈Qn−1

eλTN(θ)(x)

=
∑

Υ∈Norn

eλComb(Υ)(x).
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Proof. The first equality comes from Theorem 5.1.1, the third equality is

a consequence of Proposition 5.2.3, and the second and fourth equality are

consequences of Proposition 5.3.2.

For a permutation θ ∈ Qn we define the initial permutation init(θ) ∈ Sn to

be the subword of θ formed by the first occurrence of each of the letters in θ. For

example, init(233772499468861551) = 237496815.

Proposition 5.3.4. For any θ ∈ Qn and Υ = (T, σ) ∈ Norn,

1. init(ξ(θ)) = init(θ)

2. σ = init(γ̃(Υ)).

Proof. In the definition of ξ, the relative order of the initial occurrence of the letters

is not changed; which proves (1). We consider the alternative characterization of

γ̃ of Proposition 5.3.1. Recall that θ(xi) is a first occurrence of a letter in θ(Υ) if

and only if xi is a leaf of Υ. Hence, part (2) follows from the fact that postorder of

the nodes of Υ restricted to the leaves is just left to right reading of the leaves.

We have the following diagram of bijections:

Norn Qn−1 Qn−1 Norn
γ

γ−1

ξ

ξ−1

γ−1

γ

The following theorem is a generalization of the classical bijections between

Lyndon trees, combs and permutations in Sn−1. See Figure 5.3 for a complete

example of the bijections.

Corollary 5.3.5. The map γ−1ξγ is a bijection on Norn that translates between

the Lyndon type and comb type. Moreover, the bijection preserves the permutation

of leaf labels for each tree.
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Proof. By Propositions 5.2.3 and 5.3.2,

λComb(γ−1ξγ(Υ)) = λTN(ξγ(Υ))

= λAA(γ(Υ))

= λLyn(Υ).

Proposition 5.3.4 implies that the order of the leaf labels is preserved.

1

2 3

5

6 4 7

1

2

3 5

6

4

7

1235536624477112335526647741

124425513366122441553663

γ̃γ̃−1 γ̃γ̃−1

redred−1 redred−1

ξ

ξ−1

Figure 5.3: Example of the bijections γ̃, red and ξ

We can combine Theorem 1.6.3 with Theorem 5.3.3 and conclude the following

e-positivity result.

Theorem 5.3.6. We have

[∑
n≥1

(−1)n−1hn−1(x)
yn

n!

]<−1>

=
∑
n≥1

∑
Υ∈Norn

eλ(Υ)(x)
yn

n!

=
∑
n≥1

∑
θ∈Qn−1

eλ(θ)(x)
yn

n!
,
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where λ(Υ) is either the Lyndon type or the comb type of the normalized tree Υ

and λ(θ) is either the AA type or the TN type of the Stirling permutation θ.

In [20] the author gives another proof of Theorem 5.3.6 that does not involve

poset topology and instead involves a nice interpretation of the compositional

inverse of exponential generating functions given by B. Drake in [16].

5.4 A remark about colored Stirling permutations

We can also define colored Stirling permutations in analogy with the case of colored

normalized binary trees. An AA colored Stirling permutation Θ = (θ, c) is a

Stirling permutation θ ∈ Qn together with a map c : [n] → P such that for

every occurrence of an ascending adjacent pair (a, b) in θ, c satisfies the condition

c(a) > c(b).

Example 5.4.1. If θ = 233772499468861551, the map c : [9]→ P defined by the

pairs (i, c(i)):

{(1, 1), (2, 3), (3, 3), (4, 2), (5, 2), (6, 1), (7, 1), (8, 2), (9, 1)}

is an AA coloring, but

{(1, 1), (2, 2), (3, 3), (4, 3), (5, 2), (6, 1), (7, 1), (8, 2), (9, 1)}

is not since 24 is an adjacent ascending pair but c(2) = 2 < 3 = c(4).

In the same manner we define a TN colored Stirling permutation to the pair

Θ = (θ, c), where c satisfies c(a) > c(b) whenever (a, b) is a terminally nested pair.

For μ ∈ wcompn, we say that a colored Stirling permutation (θ, c) is μ-colored
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if μ(i) = |c−1(i)| for all i. We denote by QAA
μ the set of AA μ-colored Stirling

permutations of [n] and QTN
μ the set of TN μ-colored Stirling permutations of [n].

Corollary 5.4.2 (of Corollary 4.2.3 ). For all n ≥ 1 and μ ∈ wcompn−1

μ̄Πk
n
(0̂, [n]μ) = (−1)n−1|QAA

μ | = (−1)n−1|QTN
μ |.

Consequently,

dim H̃n−3((0̂, [n]μ)) = |QAA
μ | = |QTN

μ |.

Proof. Note that the bijection γ : Norn → Qn−1 extends naturally to a bijection

Lynμ
∼= QAA

μ and the bijection ξ : Qn−1 → Qn−1 extends naturally to a bijection

QAA
μ
∼= QTN

μ . Thus the result is a corollary of Corollary 4.2.3.

By Theorem 2.3.1,

Corollary 5.4.3. For all n ≥ 1 and μ ∈ wcompn−1

dimLie(μ) = |QAA
μ | = |QTN

μ |.



Chapter 6

Combinatorial bases

In this chapter we discuss various bases for Lie(μ), H̃n−3((0̂, [n]μ)) and Hn−2(Πk
n \

{0̂}). We also present a basis for the homology H̃n−3((0̂, [n]
i)) of maximal intervals

of Πw
n that generalizes a known basis for H̃n−3(Πn) due to Björner [7].

6.1 Colored Lyndon basis

Recall from Theorem 4.1.5 that the ascent-free maximal chains of the EL-labeling

of [0̂, [n]μ] yield a basis for the cohomology H̃n−3((0̂, [n]μ)). Hence, Theorem

4.2.2 gives a description of this basis in terms of colored Lyndon trees. The

following result gives a simpler version of this basis. By applying the isomorphism

of Theorem 2.3.1, one gets a corresponding basis for Lie(μ), which reduces to the

classical Lyndon basis for Lie(n) when μ has a single nonzero component.

Theorem 6.1.1. The set {c̄(T, σ) | (T, σ) ∈ Lynμ} is a basis of H̃n−3((0̂, [n]μ))

and the set {[T, σ] | (T, σ) ∈ Lynμ} is a basis for Lie(μ).

Proof. By Theorem 4.2.2 and Theorem 4.1.5, the set {c̄(T, σ, τT,σ) | (T, σ) ∈ Lynμ}

is a basis of H̃n−3((0̂, [n]μ)). Lemma 2.2.3 implies that we can replace τT,σ by any

76
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other linear extension and still obtain a basis for H̃n−3((0̂, [n]μ)). In particular,

we can replace it by postorder.

Theorem 6.1.1 already implies that the set of maximal chains coming from

colored Lyndon trees spans H̃n−3((0̂, [n]μ)); however, in order to complete the proof

of Theorem 2.2.4, and conclude that the relations in the theorem generate all the

cohomology relations, we will show that we can represent any c̄ ∈ H̃n−3((0̂, [n]μ))

as a linear combination of chains in {c̄(T, σ) | (T, σ) ∈ Lynμ} using only the

relations in Theorem 2.2.4.

Proposition 6.1.2. The relations in Theorem 2.2.4 generate all the cohomology

relations in H̃n−3((0̂, [n]μ)).

Proof. We use a “straightening” strategy using the relations of Theorem 2.2.4 in

order to prove the result. Recall that for an internal node x of a normalized binary

tree Υ ∈ Norn, we define the valency v(x) to be the smallest of the labels in the

subtree of Υ rooted at x. We define a valency inversion in Υ ∈ Norn to be a pair

of internal nodes (x, y) such that:

• x is in the subtree rooted at the left child of y,

• v(R(x)) < v(R(y)).

Let valinv(Υ) denote the number of valency inversions in Υ. Note for example

that a Lyndon tree is a normalized binary tree such that valinv(Υ) = 0.

A coloring inversion is a pair of internal nodes (x, y) in Υ such that

• v(x) = v(y),

• x is in the subtree rooted at the left child of y,

• color(x) < color(y).
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We denote by colinv(Υ), the number of coloring inversions in Υ.

Define the inversion pair of Υ to be (valinv(Υ), colinv(Υ)). We order these

pairs lexicographically; that is, we say

(valinv(Υ), colinv(Υ)) < (valinv(Υ′), colinv(Υ′)),

if either valinv(Υ) < valinv(Υ′) or valinv(Υ) = valinv(Υ′) and colinv(Υ) <

colinv(Υ′). Note that if the inversion pair of Υ is (0, 0) then Υ is a colored

Lyndon tree since in particular its underlying uncolored tree is a Lyndon tree.

Now let Υ ∈ BT μ be a colored normalized binary tree that is not a colored

Lyndon tree. Then Υ must have a subtree of the form: (Υ1
i
∧Υ2)j∧Υ3, with v(Υ2) <

v(Υ3) and i ≤ j. We will show that c̄(Υ) can be expressed as a linear combination

of chains associated with colored normalized binary trees with smaller inversion

pair.

Case i = j: Using relation (2.2.2) (and relation(2.2.1)) we have that

c̄(α((Υ1
i
∧Υ2) i∧Υ3)β) = ±c̄(α(Υ1

i
∧(Υ2

i
∧Υ3))β)± c̄(α((Υ1

i
∧Υ3) i∧Υ2)β).

(The signs in the relations of Theorem 2.2.4 are not relevant here and have

therefore been suppressed.)

Let p(Υj) denote the parent of the root of the subtree Υj in Υ. We then have

that

valinv(α((Υ1
i
∧Υ2) i∧Υ3)β)− valinv(α(Υ1

i
∧(Υ2

i
∧Υ3))β) ≥ 1,

since the pair (p(Υ2), p(Υ3)) and any other valency inversion between an internal

node of Υ1 and p(Υ3) are valency inversions in the former tree but not in the later
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and no other change occurs to the set of valency inversions. We also have that

valinv(α((Υ1
i
∧Υ2) i∧Υ3)β)− valinv(α((Υ1

i
∧Υ3) i∧Υ2)β) ≥ 1,

since the pair (p(Υ2), p(Υ3)) and any other valency inversion between an internal

node of Υ2 and p(Υ3) are valency inversions in the former tree but not in the later

and no other change occurs to the set of valency inversions.

Case i < j: Using relation (2.2.3) (and relation (2.2.1)) we have that

c̄(α((Υ1
i
∧Υ2)j∧Υ3)β) =± c̄(α((Υ1

j
∧Υ2) i∧Υ3)β)

± c̄(α(Υ1
j
∧(Υ2

i
∧Υ3))β)

± c̄(α(Υ1
i
∧(Υ2

j
∧Υ3))β)

± c̄(α((Υ1
i
∧Υ3)j∧Υ2)β)

± c̄(α((Υ1
j
∧Υ3) i∧Υ2)β).

Just as in the previous case, all the labeled colored trees on the right hand

side of the equation, except for the first, have a smaller number of valency

inversions than that of the tree in the left hand side. The first labeled colored

tree c̄(α((Υ1
j
∧Υ2) i∧Υ3)β) has the same number of valency inversions as that of

c(α((Υ1
i
∧Υ2)j∧Υ3)β). However the coloring inversion number is reduced by one

and so the inversion pair is reduced.

From the two cases above we conclude that if Υ ∈ BT μ is a colored normalized

binary tree then c̄(Υ) can be expressed as a linear combination of chains, associated

to colored normalized binary trees, of smaller inversion pair. Hence by induction

on the inversion pair, c̄(Υ) can be expressed as a linear combination of chains of
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the form c̄(Υ′) where Υ′ ∈ Lynμ. Also since by relation (2.2.1) any Υ ∈ BT μ is of

the form ±c̄(Υ′), where Υ′ is a colored normalized binary tree, the same is true

for any Υ ∈ BT μ.

Since the set {c̄(Υ) | Υ ∈ BT μ} is a spanning set for H̃n−3((0̂, [n]μ)), we have

shown using only the relations in Theorem 2.2.4 that {c̄(Υ) | Υ ∈ Lynμ} is also

a spanning set for H̃n−3((0̂, [n]μ)). The fact that {c̄(Υ) | Υ ∈ Lynμ} is a basis

(Theorem 6.1.1), proves the result.

6.2 Colored comb basis

A colored comb is a normalized colored binary tree that satisfies the following

coloring restriction: for each internal node x whose right child R(x) is not a leaf,

color(x) > color(R(x)). (6.2.1)

Let Combn be the set of colored combs in BT n and Combμ be the set of the

μ-colored ones. Note that in a monochromatic comb every right child has to be a

leaf and hence they are the classical left combs that yield a basis for Lie(n) (see

[44, Proposition 2.3]). Figure 6.1 illustrates the bicolored combs for n = 3.

2
1

1 2

3 1 2

3

1 2

3

1 2

3

1 3

2

1 3

2

1 3

2 1 3

2

2 3

1

Figure 6.1: Set of bicolored combs for n = 3
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Remark 6.2.1. Note that the coloring condition (6.2.1) is closely related to the

comb type of a normalized tree defined in Chapter 1 before Theorem 1.6.4. The

coloring condition implies that in a colored comb Υ there are no repeated colors

in each block B of the partition πComb(Υ) associated to Υ. So after choosing |B|

different colors for the internal nodes of Υ in B, there is a unique way to assign

the colors such that Υ is a colored comb (the colors must decrease towards the

right in each block of πComb(Υ)). In Figure 6.2 this relation is illustrated.

1
2
3 n

N

n

n

n

nn

N 2

31 4

56

7

9

8

Figure 6.2: Example of a colored comb of comb type (2, 2, 1, 1, 1, 1)

Theorem 6.2.2. There is a bijection

Lynμ
∼= Combμ.

Proof. This is a consequence of Corollary 5.3.5. Indeed, the bijection γ−1ξγ that

translates between the Lyndon type and comb type on Norn extends naturally to

a bijection Lynμ
∼= Combμ.

We obtain the following corollary from Corollary 4.2.3.

Corollary 6.2.3. For all n ≥ 1 and μ ∈ wcompn−1,

μ̄Πk
n
(0̂, [n]μ) = (−1)n−1|Combμ|
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and

dim H̃n−3((0̂, [n]μ)) = |Combμ|.

By Theorem 5.0.5 or Theorem 2.3.1 we have,

Corollary 6.2.4. For all n ≥ 1 and μ ∈ wcompn−1

dimLie(μ) = |Combμ|.

Proposition 6.2.5. The set {c̄(T, σ) : (T, σ) ∈ Combμ} spans H̃n−3((0̂, [n]μ)), for

all μ ∈ wcompn−1.

Proof. We prove this result by “straightening” via the relations in Theorem 2.2.4.

Define the weight w(T ) of a colored binary tree T to be

w(T ) =
∑

x∈I(T )

r(x),

where I(T ) is the set of internal nodes of T and r(x) is the number of internal

nodes in the right subtree of x. We say that a node y of T is a right descendent of a

node x if y is a descent of x that can be reached from x along a path of right edges.

Next we define an inversion of T to be a pair of internal nodes (x, y) of T such that

y is a right descendent of x and color(x) < color(y). Let inv(T ) be the number of

inversions of T . The weight-inversion pair of T is (w(T ), inv(T )). We order these

pairs lexicographically, that is we say (w(T ), inv(T )) < (w(T ′), inv(T ′)) if either

w(T ) < w(T ′) or w(T ) = w(T ′) and inv(T ) < inv(T ′). For Υ = (T, σ) ∈ BTn, let

w(Υ) := w(T ) and inv(Υ) := inv(T ). Also define the weight-inversion pair of Υ

to be that of T .

It follows from (2.2.1) that the chains of the form c̄(Υ), where Υ is a normalized

colored binary tree in BT μ, span H̃n−3((0̂, [n]μ)). Hence to prove the result we
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need only show that if Υ ∈ BT μ is a normalized colored binary tree that is not

a colored comb then c̄(Υ) can be expressed as a linear combination of chains of

the form c̄(Υ′), where Υ′ is a normalized colored binary tree in BT μ such that

(w(Υ′), inv(Υ′)) < (w(Υ), inv(Υ)) in lexicographic order. It will then follow by

induction on the weight-inversion pair that c̄(Υ) can be expressed as a linear

combination of chains of the form c̄(Υ′), where Υ′ ∈ Combμ.

Now let Υ ∈ BT μ be a normalized colored binary tree that is not a colored

comb. Then Υ must have a subtree of one of the following forms: Υ1
j
∧(Υ2

j
∧Υ3) or

Υ1
i
∧(Υ2

j
∧Υ3) with i < j ∈ [k]. We will show that in all these cases c̄(Υ) can be

expressed as a linear combination of chains with a smaller weight-inversion pair.

Case 1: Υ has a subtree of the form Υ1
j
∧(Υ2

j
∧Υ3). We can therefore express Υ as

α(Υ1
j
∧(Υ2

j
∧Υ3))β. Using relation (2.2.2) (and relation (2.2.1)) we have that

c̄(α(Υ1
j
∧(Υ2

j
∧Υ3))β) = ±c̄(α((Υ1

j
∧Υ2)j∧Υ3)β)± c̄(α((Υ1

j
∧Υ3)j∧Υ2)β).

(The signs in the relations of Theorem 2.2.4 are not relevant here and have

therefore been suppressed.)

It is easy to see that

w(α((Υ1
j
∧Υ2)j∧Υ3)β) = w(α((Υ1

j
∧Υ3)j∧Υ2)β)

= w(α(Υ1
j
∧(Υ2

j
∧Υ3))β)− |I(Υ3)| − 1.

Hence c̄(Υ) can be expressed as a linear combination of chains of smaller weight,

and therefore of smaller weight-inversion pair.

Case 2: Υ has a subtree of the form Υ1
i
∧(Υ2

j
∧Υ3). Using relation (2.2.3) (and

relation (2.2.1)) we have that
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c̄(α(Υ1
i
∧(Υ2

j
∧Υ3))β) = ±c̄(α(Υ1

j
∧(Υ2

i
∧Υ3))β)

±c̄(α((Υ1
i
∧Υ2)j∧Υ3)β)

±c̄(α((Υ1
j
∧Υ2) i∧Υ3)β)

±c̄(α((Υ1
i
∧Υ3)j∧Υ2)β)

±c̄(α((Υ1
j
∧Υ3) i∧Υ2)β).

Just as in Case 1, all the labeled colored trees on the right hand side of the

equation, except for the first, have weight smaller than that of α(Υ1
i
∧(Υ2

j
∧Υ3))β.

The first labeled colored tree α(Υ1
j
∧(Υ2

i
∧Υ3))β has the same weight as that of

α(Υ1
i
∧(Υ2

j
∧Υ3))β. However the inversion number is reduced, that is

inv(α(Υ1
j
∧(Υ2

i
∧Υ3))β) = inv(α(Υ1

i
∧(Υ2

j
∧Υ3))β)− 1.

Hence the weight-inversion pair for the first colored labeled tree is less than that

of Υ := α(Υ1
i
∧(Υ2

j
∧Υ3))β just as it is for the other colored labeled trees on the

right hand side of the equation. We conclude that c̄(Υ) can be expressed as a

linear combination of chains of smaller weight-inversion pair.

Theorem 6.2.6. {c̄(T, σ) | (T, σ) ∈ Combμ} is a basis for H̃n−3((0̂, [n]μ)) and

{[T, σ] | (T, σ) ∈ Combμ} is a basis for Lie(μ).

Proof. Corollary 6.2.3 and Proposition 6.2.5 imply that the set {c̄(T, σ) | (T, σ) ∈

Combμ} is a basis for H̃n−3((0̂, [n]μ)). Then, Theorem 2.3.1 implies that {[T, σ] |

(T, σ) ∈ Combμ} is a basis for Lie(μ).
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6.3 Bases for cohomology of the full weighted

partition poset

In this section we use colored combs and colored Lyndon trees to construct bases

for H̃n−2(Πk
n \ {0̂}).

For a chain c in Πk
n, let

c̆ := c \ {0̂}.

The codimension 1 chains of Πk
n \ {0̂} are of the form c̆, where c is either

1. unrefinable in some maximal interval [0̂, [n]μ] except between one pair of

adjacent elements x < y, where [x, y] is an interval of length 2 in [0̂, [n]μ], or

2. unrefinable in [0̂, x], where x is a weighted partition of [n] consisting of

exactly two blocks.

The former case yields the cohomology relations of Types I, II and III given in

Section 2.2, with c̄ replaced by c̆. The latter case yields the additional cohomology

relation:

Type IV: The two blocks of x are er-merged to get a single-block partition zr. The

open interval (x, 1̂) is equal to {z1, z2, . . . , zk}, see Figure 6.3. Hence the

Type IV elementary cohomology relation is

(c̆ ∪ {z1}) + (c̆ ∪ {z2}) + · · ·+ (c̆ ∪ {zk}) = 0.

The reader can verify, using the cohomology relations of Type I (with c̄ replaced

by, c̆), that the proof of Lemma 2.2.3 goes through for H̃n−2(Πk
n \ {0̂}). Hence

H̃n−2(Πk
n \ {0̂}) is generated by chains of the form c̆(Υ) where Υ ∈ BT n. The

reader can also check, using the relations of Types I, II, and III, that the relations
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Bμ1

1 |Bμ2

2

1̂

B1B
μ1+μ2+e1
2 B1B

μ1+μ2+e2
2 B1B

μ1+μ2+ek−1

2 B1B
μ1+μ2+ek
2· · ·

Figure 6.3: Type IV cohomology relation

in Theorem 2.2.4 hold (with c̄ replaced by c̆). It follows from the cohomology

relation of Type IV that

c̆(Υ1
1
∧Υ2) + c̆(Υ1

2
∧Υ2) + · · ·+ c̆(Υ1

k
∧Υ2) = 0. (6.3.1)

for all A ⊆ [n] and for all Υ1 ∈ BT A and Υ2 ∈ BT [n]\A.

Denote the root of a colored binary tree T by root(T ), and define

BT k
n :=

⋃
μ∈wcompn−1

supp(μ)⊆[k]

BT μ,

Combkn :=
⋃

μ∈wcompn−1

supp(μ)⊆[k]

Combμ,

Lynkn :=
⋃

μ∈wcompn−1

supp(μ)⊆[k]

Lynμ.

Theorem 6.3.1. The set

{c̆(T, σ) | (T, σ) ∈ Lynkn, color(root(T )) 	= 1}

is a basis for H̃n−2(Πk
n \ {0̂}).

Proof. From the EL-labeling of Theorem 4.1.4 we have that all the maximal chains
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of Π̂k
n have last label (1, n + 1)1. Then for a maximal chain to be ascent-free it

must have a second to last label of the form (1, a)j for a ∈ [n] and j ∈ [k]\{1}. By

Theorem 4.2.2, we see that the ascent-free chains correspond to colored Lyndon

trees such that the color of the root is different from 1. It therefore follows from

Theorem 4.1.5 and Lemma 2.2.3 (with c̄ replaced by c̆) that the set is a basis for

H̃n−2(Πk
n \ 0̂).

Proposition 6.3.2. The set

{c̆(T, σ) | (T, σ) ∈ Combkn, color(root(T )) 	= k}

spans H̃n−2(Πk
n \ {0̂}).

Proof. We prove, by induction on the number k(Υ) of internal nodes of Υ with

color k, that if Υ is a normalized tree in BT k
n then c̆(Υ) can be expressed as a

linear combination of chains of the form c̆(Υ′), where Υ′ is a colored comb such

that color(root(Υ′)) ∈ [k − 1]. Note that if k(Υ) = 0, using the relations in

Theorem 2.2.4 (with c̄ replaced by c̆), we can use the straightening algorithm in

the proof of Proposition 6.2.5 to express c̆(Υ) as a linear combination of chains

of the form c̆(Υ′), where Υ′ is a colored comb with k(Υ′) = 0. Now let Υ be any

normalized tree in BT k
n with k(Υ) internal nodes colored k. Again, using the

relations in Theorem 2.2.4, we can express c̆(Υ) as a linear combination of chains

of the form c̆(Υ′), where Υ′ is a colored comb. If Υ′ has its root colored k, we can

use relation (6.3.1) to express c̆(Υ′) as a linear combination of chains associated

with trees Υ′
i that look like Υ

′ except that color(root(Υ′
i)) = i ∈ [k − 1]. Then

k(Υ′
i) = k(Υ) − 1 and by induction, each c̆(Υi) is a linear combination of chains

associated with colored combs whose roots have a color in [k − 1]. The same is
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thus true for each c̆(Υ′) and for c̆(Υ). Hence {c̆(T, σ) | (T, σ) ∈ Combkn, col(root(T )) 	=

k} spans.

Theorem 6.3.3. The set

{c̆(T, σ) | (T, σ) ∈ Comb2n, color(root(T )) = 1}

is a basis of H̃n−2(Πw
n \ {0̂}).

Proof. Note that Corollaries 4.1.10 and 6.2.3 together imply that |Comb2n| =

nn−1 from every n. To construct a bicolored comb T ∈ Comb2n, such that

color(root(T )) = 1, we can choose the right subtree, which is a leaf, in n − 1

different ways, and the left subtree, which is a bicolored comb in Comb2n−1, in

(n − 1)n−2 different ways. Since by Corollary 4.1.10 we know that (n − 1)n−1 is

the dimension of H̃n−2(Πw
n \ {0̂}), the theorem follows from Proposition 6.3.2.

Conjecture 6.3.4. The set

{c̆(T, σ) | (T, σ) ∈ Combkn, color(root(T )) 	= k}

forms a basis for H̃n−2(Πk
n \ {0̂}).

We can combine Theorem 6.3.1 and the exact same idea of the proof of

Proposition 6.1.2 to show that the setB = {c̆(T, σ) | (T, σ) ∈ Lynkn, color(root(T )) 	=

k} spans H̃n−2(Πk
n \{0̂}) by using only the relations of Theorem 2.2.4 and relation

(6.3.1). We conclude that these are the only relations in a presentation of

H̃n−3(Πk
n \ {0̂}) since B is a basis. We summarize with the following result.

Theorem 6.3.5. The set {c̆(Υ) : Υ ∈ BT k
n} is a generating set for H̃n−3(Πk

n\{0̂}),

subject only to the relations of Theorem 2.2.4 (with c̄ replaced by c̆) and relation

(6.3.1).
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6.4 Splitting tree basis for homology for the k =

2 case

In this section we construct a basis for homology of each maximal interval (0̂, [n]i)

of Πw
n , which generalizes Bjorner’s NBC basis for Πn. Our basis consists of certain

naturally constructed fundamental cycles. To prove that these fundamental cycles

form a basis, we make use of a generalization of the Lyndon basis due to Liu [29],

which is different from our colored Lyndon basis. The basis we use is actually a

twisted version of the one in [29] and has an easier description; the two bases are

related by a simple bijection.

For convenience, in this section we refer to the colors 1 and 2 as blue and red

respectively.

6.4.1 Liu’s bicolored Lyndon basis

We need to define a different valency from that of the previous sections. This

valency is referred to in [29] as the graphical root. Recall that given an internal

node x of a binary tree, L(x) denotes the left child of x and R(x) denotes the right

child. For each node x of a bicolored labeled binary tree (T, σ), define its valency

v(x) recursively as follows:

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
label of x if x is a leaf

min{v(L(x)), v(R(x))} if x is a blue internal node

max{v(L(x)), v(R(x))} if x is a red internal node.

A Liu-Lyndon tree is a bicolored labeled binary tree (T, σ) such that for each

internal node x of T ,
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1. v(L(x)) = v(x)

2. if x is blue and L(x) is blue then

v(R(L(x))) > v(R(x))

3. if x is red then L(x) is red or is a leaf; in the former case,

v(R(L(x))) < v(R(x)).

Note that condition (1) is equivalent to the condition that v(L(x)) < v(R(x))

if x is blue and v(L(x)) > v(R(x)) if x is red. Note also that every subtree of a

Liu-Lyndon tree is a Liu-Lyndon tree. The set of Liu-Lyndon trees for n = 3 is

depicted in Figure 6.4.

Red
Blue

2 3

1 3 2

1

1 3

2

2 1

3

1 3

2

2 1

3

3 1

2 3 1

2

1 2

3

Figure 6.4: Set of Liu-Lyndon trees for n = 3

Let Liun,i be the set of Liu-Lyndon trees in BT n,i. When i = 0, all internal

nodes are blue and it follows from the definition that Liun,0 is the set of Lyndon

trees on n leaves. When i = n − 1, all internal nodes are red and it follows from

the definition that Liun,n−1 consists of labeled binary trees obtained from Lyndon

trees by replacing each label j by label n+ 1− j.
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In [29] Liu proves that {[T, σ] : (T, σ) ∈ Liun,i} is a basis for Lien,i by using

a perfect pairing between Lien,i and another module that she constructs. In the

next section, we will use the natural pairing between cohomology and homology

of (0̂, [n]i) to prove this result.

We will need a bijection of Liu [29]. Let A be a finite subset of the positive

integers and let 0 ≤ i ≤ |A| − 1. Extend the definitions of Tn,i and Liun,i by

letting TA,i be the set of rooted trees on node set A with i descents and LiuA,i be

the set of Liu-Lyndon trees with leaf label set A and i red internal nodes. Define

ψ : TA,i → LiuA,i recursively as follows: if |A| = 1, let ψ(T ) be the labeled binary

tree whose single leaf is labeled with the sole element of A. Now suppose |A| > 1

and rT ∈ A is the root of T . Let x be the smallest child of rT that is larger than

rT . If no such node exists let x be the largest child of rT . Let Tx be the subtree

of T rooted at x and let T \ Tx be the subtree of T obtained by removing Tx from

T . Now let

ψ(T ) = ψ(T \ Tx) col∧ ψ(Tx),

where

col =

⎧⎪⎪⎨⎪⎪⎩
blue if x > rT

red if x < rT .

It will be convenient to refer to descent edges of T (i.e., edges {x, pT (x)},

where x < pT (x)) as red edges, and nondescent edges (i.e., edges {x, pT (x)},

where x > pT (x)) as blue edges. Hence ψ takes blue edges to blue internal nodes

and red edges to red internal nodes. Consequently ψ(T ) ∈ BT A,i if T ∈ TA,i. By

induction we see that the valuation of the root of ψ(T ) is equal to the label of the

root of T . It follows from this that ψ(T ) ∈ LiuA,i. It is not difficult to describe

the inverse of ψ and thereby prove the following result.
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Proposition 6.4.1 ([29]). For all finite sets A and 0 ≤ i ≤ |A|, the map

ψ : TA,i → LiuA,i

is a well-defined bijection.

Remark 6.4.2. It follows from Corollary 4.1.10, Theorem 6.2.6, Theorem 6.1.1

and Proposition 6.4.1 that

|Tn,i| = |Comb(i,n−1−i)| = |Lyn(i,n−1−i)| = |Liun,i|.

It would be desirable to find nice bijections between the given sets like that of

Proposition 6.4.1 and Theorem 6.2.2 when we let μ = (i, n−1− i). We leave open

the problem of finding a bijection between Tn,i and Comb(i,n−1−i) or Lyn(i,n−1−i).

6.4.2 The tree basis for homology

We now present a generalization of Björner’s NBC basis for homology of Πn (see

[7, Proposition 2.2]). Recall that in Section 3.2, we associated a weighted partition

α(F ) with each forest F = {T1, . . . , Tk} on node set [n], by letting

α(F ) = {Aw1
1 , . . . , Awk

k },

where Ai is the node set of Ti and wi is the number of descents of Ti.

Let T be a rooted tree on node set [n]. For each subset E of the edge set

E(T ) of T , let TE be the subgraph of T with node set [n] and edge set E.

Clearly TE is a forest on [n]. We define ΠT to be the induced subposet of Πw
n

on the set {α(TE) : E ⊆ E(T )}. See Figure 6.5 for an example of ΠT . The

poset ΠT is clearly isomorphic to the boolean algebra Bn−1. Hence Δ(ΠT ) is
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the barycentric subdivision of the boundary of the (n − 2)-simplex. We let ρT

denote a fundamental cycle of the spherical complex Δ(ΠT ), that is, a generator

of the unique nonvanishing integral simplicial homology of Δ(ΠT ). Note that

ρT =
∑

c∈M(ΠT )±c̄.

3

4 1

2

(a) T

12342

131|241 1341|20 10|2341

131|20|40 10|241|30 10|20|340

10|20|30|40

(b) ΠT

Figure 6.5: Example of a tree T with two descent edges (red edges) and the
corresponding poset ΠT

The set {ρT : T ∈ Tn,0} is precisely the interpretation of the Björner NBC basis

for homology of Πn given in [44, Proposition 2.2], and the set {ρT : T ∈ Tn,n−1}

is a variation of this basis. Björner’s NBC basis is dual to the Lyndon basis

{c̄(Υ) : Υ ∈ Lynn} for cohomology of Πn (using the natural pairing between

homology and cohomology). While it is not true in general that {ρT : T ∈ Tn,i}

is dual to any of the generalizations of the bases given in the previous sections,

we are able to prove that it is a basis by pairing it with the Liu-Lyndon basis for

cohomology.

Theorem 6.4.3. The set {ρT : T ∈ Tn,i} is a basis for H̃n−3((0̂, [n]
i)) and the set

{c̄(Υ) : Υ ∈ Liun,i} is a basis for H̃n−3((0̂, [n]i)).

Our main tool in proving this theorem is Proposition A.3.2 (of the Appendix),

which involves the bilinear form 〈, 〉 defined in (A.3.1). In order to apply

Proposition A.3.2 we need total orderings of the sets Tn,i and Liun,i. Recall Liu’s

bijection ψ : Tn,i → Liun,i given in Proposition 6.4.1. We will show that any linear

extension {T1, T2, . . . , T|Tn,i|} of a certain partial ordering on Tn,i provided by Liu
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[29] yields a matrix 〈ρTj
, c̄(ψ(Tk))〉1≤j,k≤|Tn,i| that is upper-triangular with diagonal

entries equal to ±1. Theorem 6.4.3 will then follow from Proposition A.3.2 and

Theorem 4.1.9 (2).

We define Liu’s partial ordering ≤Liu of TA,i recursively. For |A| ≤ 2, the set

TA,i has only one element. So assume that |A| ≥ 3 and that ≤Liu has been defined

for all TB,j where |B| < |A|. Let T, T ′ ∈ TA,i. We say that T � T ′ if there exist

edges e of T and e′ of T ′ such that the following conditions hold

• e and e′ have the same color,

• e′ contains the root of T ′,

• α(TE(T )\{e}) = α(T ′
E(T ′)\{e′})

• T1 ≤Liu T ′
1,

• T2 ≤Liu T ′
2,

where T1 and T2 are the connected components (trees) of the forest obtained by

removing e from T , and T ′
1 and T ′

2 are the corresponding connected components

(trees) of the forest obtained by removing e′ from T ′.

Now define ≤Liu to be the transitive closure of the relation � on TA,i. It follows

from [29, Lemma 8.12] that this relation is the same as the relation ≤op that was

defined in [29, Definition 7.11] and was proved to be a partial order in [29, Lemma

7.13].

Lemma 6.4.4. Let T, T ′ ∈ Tn,i and let ψ : Tn,i → Liun,i be the bijection of

Proposition 6.4.1. If c(ψ(T ′)) ∈M(ΠT ) then T ≤Liu T
′.

Proof. First note that if Υ1
col
∧Υ2 is a bicolored labeled binary tree such that

c(Υ1
col
∧Υ2) is a maximal chain in ΠT then there is an edge e of T whose color

equals col and whose removal from T yields a forest whose connected components



95

(trees) T1 and T2 satisfy: c(Υ1) is a maximal chain in ΠT1 and c(Υ2) is a maximal

chain in ΠT2 .

Now recalling the definition of ψ, let x be the child of the root rT ′ of T ′, for

which

ψ(T ′) = ψ(T ′ \ T ′
x)

col
∧ ψ(T ′

x),

where col equals the color of the edge {x, rT ′}. Let e be the edge of T whose

removal yields the subtrees T1 and T2 such that c(ψ(T ′ \ T ′
x)) ∈ M(ΠT1) and

c(ψ(T ′
x)) ∈ M(ΠT2). Then the color of e is the same as that of the edge {x, rT ′}.

By induction we can assume that

T1 ≤Liu T ′ \ T ′
x and T2 ≤Liu T ′

x.

Since e and e′ := {x, rT ′} satisfy the conditions of the definition of �, we have

T � T ′, which implies the result.

Proof of Theorem 6.4.3. Let T1, . . . , Tm be any linear extension of ≤Liu on

Tn,i, where m = |Tn,i|. It follows from Lemma 6.4.4 that the matrix

M := 〈ρTj
, c̄(ψ(Tk))〉1≤j,k≤m is upper-triangular, where 〈, 〉 is the bilinear form

defined in (A.3.1). Since c(ψ(T )) is a maximal chain of ΠT for all T ∈ Tn,i, the

diagonal entries of M are equal to ±1. Hence M is invertible over Z or any field.

The result now follows from Propositions 6.4.1 and A.3.2 and Theorem 4.1.9

(2).

Remark 6.4.5. Theorems 2.3.1 and 6.4.3 yield an alternative proof of Liu’s result

that {[T, σ] : (T, σ) ∈ Liun,i} is a basis for Lien,i.



Chapter 7

Whitney numbers and Whitney

(co)homology

In this chapter we discuss weighted Whitney numbers and Whitney (co)homology

of Πw
n and Πk

n.

7.1 Whitney numbers and weighted uniformity

Let P denote a pure poset with a minimum element 0̂. Denote by Int(P ) the set

of closed intervals [x, y] in the poset P . For some unitary commutative ring R (for

example k[x] or k[x1, . . . , xk]) we say that a weight function �P : Int(P )→ R is

P -compatible if

• for any α ∈ P , �P (α, α) = 1 and,

• θ ≤ α ≤ β in P implies �P (θ, β) = �P (θ, α)�P (α, β).

Equivalently, let k[Int(P )] be the unitary commutative algebra over k generated

by intervals [α, β] ∈ Int(P ) subject to the relations:

96



97

• [α, α] = 1 for any α ∈ P , and

• [θ, β] = [θ, α][α, β] for all θ ≤ α ≤ β in P .

Then a P -compatible weight function is just an algebra homomorphism �P :

k[Int(P )]→ R. The poset Πk
n has a natural Π

k
n-compatible weight function �Πk

n
.

Indeed, we define the map �Πk
n
: k[Int(P )]→ k[x1, . . . , xk] by letting �Πk

n
(0̂, 0̂) =

1 and �Πk
n
(0̂, α) = x

w(1)
1 · · · xw(k)

k for any α = {Aμ1

1 , . . . , Aμs
s } ∈ Πk

n, with w =

μ(α) =
∑s

i=1 μi. This extends to any interval [α, β], by setting �Πk
n
(α, β) =

�Πk
n
(0̂, β)

�Πk
n
(0̂, α)

(clearly a monomial in k[x1, . . . , xk]), and to k[Int(P )] by linearity.

The weighted Whitney numbers wj(P,�P ) and Wj(P,�P ) of the first and

second kind are defined as:

wj(P,�P ) =
∑
α∈P

ρ(α)=j

μP (0̂, α)�P (0̂, α),

Wj(P,�P ) =
∑
α∈P

ρ(α)=j

�P (0̂, α).

Note that if �P is the trivial P -compatible function defined by �P (α, α
′) = 1

for all α ≤ α′ ∈ P , then wj(P ) := wj(P,�P ) and Wj(P ) := Wj(P,�P ) are the

classical Whitney numbers of the first and second kind respectively.

Recall that for each α ∈ Πk
n, we have ρ(α) = n − |α|. For a partition λ � n,

with �(λ) = r and where a part of size i occurs mi(λ) times, let λ � (1r) denote

the partition obtained from λ by decreasing each of its parts by 1. Recall the

symmetric function

Ln(x) :=
∑

μ∈wcompn

dimLie(μ)xμ, (7.1.1)
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and for a partition λ = (λ1, . . . , λr), define

Lλ(x) := Lλ1(x) · · ·Lλr(x).

Note that Lλ(x) is a homogeneous symmetric function of degree |λ|. Define

m(λ)! :=
∏n

s=1 ms(λ)!.

Proposition 7.1.1. For all n ≥ 1, the weighted Whitney numbers of Πk
n are given

by

wr(Π
k
n, �Πk

n
) = (−1)r

∑
λ	n

�(λ)=n−r

(
n

λ

)
1

m(λ)!
Lλ�(1n−r)(x1, . . . , xk), (7.1.2)

Wr(Π
k
n, �Πk

n
) =
∑
λ	n

�(λ)=n−r

(
n

λ

)
1

m(λ)!
hλ�(1n−r)(x1, . . . , xk), (7.1.3)

where hλ denotes the complete homogeneous symmetric function associated with

the partition λ.

Proof. We want to construct a weighted partition α that has underlying

(unweighted) set partition π ∈ Πn. For a block of size s in π, any monomial

x
μ(1)
1 · · · xμ(k)

k with |μ| = s − 1 is a valid weight, so the contribution of this block

corresponds to the complete homogeneous symmetric polynomial hs−1(x1, . . . , xk).

Then π has a contribution of hλ(π)�(1|π|), where λ(π) denotes the integer partition

whose parts are equal to the block sizes of π, proving equation (7.1.3).

By Proposition 3.0.4, intervals of the form [0̂, α] are isomorphic to products

of maximal intervals of smaller copies of Πk
n. Following a similar argument as in

(7.1.3), using the fact that the Möbius function is multiplicative and Theorem

2.3.1, equation (7.1.2) follows.
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Proposition 7.1.2. For all n ≥ 1, the Whitney numbers of Πw
n are given by

wr(Π
w
n ) = (−1)r

(
n− 1

r

)
nr (7.1.4)

Wr(Π
w
n ) =

(
n

r

)
(n− r)r. (7.1.5)

Proof. Equation (7.1.4) follows from Theorem 3.3.1. To prove (7.1.5) let Rn(r) =

{α ∈ Πw
n | ρ(α) = r}. We need to show

|Rn(r)| =
(

n

n− r

)
(n− r)r. (7.1.6)

A weighted partition in Rn(r) can be viewed as a partition of [n] into n − r

blocks, with one element of each block marked (or distinguished). To choose such

a partition, we first choose the n − r marked elements. There are
(

n
n−r

)
ways to

choose these elements and place them in n − r distinct blocks. To each of the

remaining r elements we allocate one of these n − r blocks. We can do this in

(n− r)r ways. Hence (7.1.6) holds.

Definition 7.1.3. A pure poset P of length � with minimum element 0̂ and with

rank function ρ, is said to be uniform if there is a family of posets {Pi | 0 ≤ i ≤ �}

such that for all x ∈ P , the upper order ideal Ix := {y ∈ P | x ≤ y} is isomorphic

to Pi, where i = �− ρ(x).

We refer to (P0, . . . , P�) as the associated uniform sequence. It follows from

Proposition 3.0.4 that P = Πk
n is uniform with Pi = Πk

i+1 for i = 0, . . . , n− 1.

Note that a P -compatible weight function �P induces, for any x ∈ P , an Ix-

compatible weight function �Ix , the restriction of �P to k[Int(Ix)]. For a uniform

poset P , we say that a P -compatible weight function �P is uniform if for any two

elements x, y ∈ P such that ρ(x) = ρ(y) and for any poset isomorphism f : Ix →
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Iy, the induced weight functions �Ix and �Iy satisfy �Ix(z, z
′) = �Iy(f(z), f(z

′))

for all z ≤ z′ ∈ Ix. For example, the Π
k
n-compatible weight function �Πk

n
defined

before is uniform. It is clear that for a uniform poset P with associated uniform

sequence (P0, . . . , P�) and uniform P -compatible weight function �P there is a

well-defined induced Pi-compatible weight function �Pi
for each i. The following

proposition is a weighted version of a variant of [40, Exercise 3.130 (a)].

Proposition 7.1.4. Let P be a uniform poset of length �, with associated uniform

sequence (P0, . . . , P�) and a uniform P -compatible weight function �P . Then the

matrices [wi−j(Pi, �Pi
)]0≤i,j≤� and [Wi−j(Pi, �Pi

)]0≤i,j≤� are inverses of each other.

Proof. For a fixed α ∈ P with ρ(α) = �− i we have by the recursive definition of

the Möbius function and the uniformity of P

δi,j =
∑
β∈P

ρ(β)=�−j

�P (α, β)
∑

x∈[α,β]
μP (α, x)

=
�∑

s=0

∑
x∈P

ρ(x)=�−s

μP (α, x)�P (α, x)
∑
β≥x

ρ(β)=�−j

�P (x, β)

=
�∑

s=0

∑
x̃∈Pi

ρ(x̃)=i−s

μPi
(0̂, x̃)�Pi

(0̂, x̃)
∑
β̃∈Ps

ρ(β)=s−j

�Ps(0̂, β̃)

=
�∑

s=0

wi−s(Pi, �Pi
)Ws−j(Ps, �Ps).

From the uniformity of the pair (Πk
n, �Πk

n
) and Proposition 7.1.1, we have the

following consequence of Proposition 7.1.4.

Corollary 7.1.5. The matrices A =

[
(−1)i−j

∑
λ	i

�(λ)=j

(
i
λ

)
1

m(λ)!
Lλ�(1j)(x)

]
0≤i,j≤n−1

and B =

[∑
λ	i

�(λ)=j

(
i
λ

)
1

m(λ)!
hλ�(1j)(x)

]
0≤i,j≤n−1

are inverses of each other.
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When x1 = x2 = 1 and xi = 0 for i ≥ 3, these matrices have a simpler

form. From the uniformity of Πw
n and Proposition 7.1.2, we have the following

consequence of Proposition 7.1.4.

Theorem 7.1.6. The matrices A = [(−1)i−j
(
i−1
j−1

)
ii−j]1≤i,j≤n and B =

[
(
i
j

)
ji−j]1≤i,j≤n are inverses of each other.

This result is not new and an equivalent dual version (conjugated by the matrix

[(−1)jδi,j]1≤i,j≤n) was already obtained by Sagan in [34], also by using essentially

Proposition 7.1.4, but with a completely different poset. So we can consider this

to be a new proof of that result (see also [27]).

It can be shown that when x1 = 1 and xi = 0 for i ≥ 2, Corollary 7.1.5 reduces

to the following classical result since Π1
n = Πn.

Theorem 7.1.7 (see [40]). Let s(i, j) and S(i, j) denote respectively, the Stirling

numbers of the first and of the second kind. The matrices A = [s(i, j)]1≤i,j≤n and

B = [S(i, j)]1≤i,j≤n are inverses of each other.

7.1.1 Relation with the poset of pointed partitions

Chapoton and Vallette [12] consider another poset that is quite similar to the poset

of weighted partitions, namely the poset of pointed partitions. A pointed partition

of [n] is a partition of [n] in which one element of each block is distinguished. The

covering relation is given by

{(A1, a1), (A2, a2), ..., (As, as)}� {(B1, b1), (B2, b2), ..., (Bt, bt)},

where ai is the distinguished element of Ai and bi is the distinguished element of

Bi for each i, if the following conditions hold:

• {A1, A2, . . . , As}� {B1, B2, . . . , Bt} in Πn
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• if Bk = Ai ∪ Aj, where i 	= j, then bk ∈ {ai, aj}

• if Bk = Ai then bk = ai.

Let Πp
n be the poset of pointed partitions of [n]. It is easy to see that there is a

rank preserving bijection between Πw
n and Πp

n. It follows that both posets have

the same Whitney numbers of the second kind. Since both posets are uniform, it

follows from Proposition 7.1.4 that both posets have the same Whitney numbers

of the first kind and thus the same characteristic polynomial. The following result

of Chapoton and Vallette [12] is therefore equivalent to Theorem 3.3.1.

Corollary 7.1.8 (Chapoton and Vallette [12]). For all n ≥ 1, the characteristic

polynomial of Πp
n is given by

χΠp
n
(x) = (x− n)n−1. (7.1.7)

Consequently,

μ
Π̂p

n
(0̂, 1̂) = (−1)n(n− 1)n−1.

One can also compute the Möbius function for all intervals of Πp
n from (7.1.7).

Indeed, since all n maximal intervals are isomorphic to each other, the Möbius

invariant can be obtained from (7.1.7) by setting x = 0 and then dividing by n.

This yields for all i,

(−1)nμ
Π̂p

n
(0̂, ([n], i)) = nn−2,

which is the number of trees on node set [n]. The Möbius function on other

intervals can be computed from this since all intervals of Πp
n are isomorphic to

products of maximal intervals of “smaller” posets of pointed partitions.
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7.2 Whitney (co)homology

Whitney homology was introduced by Baclawski in [1] giving an affirmative answer

to a question of Rota about the existence of a homology theory on the category of

posets where the Betti numbers for geometric lattices are given by the Whitney

numbers of the first kind. Whitney homology was later used to compute group

representations on the homology of Cohen-Macaulay posets by Sundaram [42] and

generalized to the non-pure case by Wachs [45] (see also [46]).

Whitney cohomology (over the field k) of a poset P with a minimum element

0̂ can be defined for each integer r as follows:

WHr(P ) :=
⊕
x∈P

H̃r−2((0̂, x);k).

In the case of a Cohen-Macaulay poset this formula becomes

WHr(P ) :=
⊕
x∈P

ρ(x)=r

H̃r−2((0̂, x);k). (7.2.1)

Note that

dimWHr(P ) = |wr(P )|. (7.2.2)

where wr(P ) is the classical rth Whitney number of the first kind.

Define ∧rLiek(n) to be the multilinear component of the rth exterior power

of the free Lie algebra on [n] with k compatible brackets. From the definition of

∧rLiek(n) and equation (7.1.1) we can derive the following proposition.
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Proposition 7.2.1. For 0 ≤ r ≤ n− 1 and k ≥ 1,

dim∧rLiek(n) =
∑
λ	n

�(λ)=r

(
n

λ

)
1

m(λ)!
Lλ�(1r)(1

k). (7.2.3)

Consequently, if ∧Liek(n) is the multilinear component of the exterior algebra of

the free Lie algebra with k compatible brackets on n generators then

dim∧Liek(n) =
∑
λ	n

(
n

λ

)
1

m(λ)!
Lλ�(1�(λ))(1

k). (7.2.4)

Equivalently,

dim∧Liek(n) = n![xn] exp

(∑
i≥1

Li−1(1
k)
xi

i!

)
, (7.2.5)

where [xn]F (x) denotes the coefficient of xn in the formal power series F (x) and

exp(x) =
∑

n≥1

xn

n!
(see [39, Theorem 5.1.4]).

Note that since, by equation (7.2.2), dimWHr(Πk
n) equals the signless rth

Whitney number of the first kind |wr(Π
k
n)|, Propositions 7.1.1 and 7.2.1 imply

that the dimensions of dimWHn−r(Πk
n) and ∧rLiek(n) are equal.

Corollary 7.2.2. For 0 ≤ r ≤ n− 1 and k ≥ 1,

dim∧rLiek(n) = dimWHn−r(Πk
n). (7.2.6)

dim∧Liek(n) = dimWH(Πk
n). (7.2.7)

where WH(Πk
n) := ⊕r≥0WHr(Πk

n).

If a group G acts as a group of automorphisms on a poset P , this action induces
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a representation of G on WHr(P ) for every r. Thus the action of Sn on Π
k
n turns

WHr(Πk
n) into an Sn-module for each r. Moreover, the symmetric group Sn acts

naturally on ∧rLiek(n) giving it the structure of an Sn-module. We will present

an equivariant verion of Corollary 7.2.2 in Theorem 7.2.3 below.

In [3] Barcelo and Bergeron proved the following Sn-module isomorphism for

the poset of partitions:

WHn−r(Πn) �Sn ∧rLie1(n)⊗ sgnn . (7.2.8)

In [44] Wachs shows that an extension of her correspondence between generating

sets of H̃n−3(Πn) and Lie(n)⊗ sgnn can be used to prove this result. We use the

same technique to prove:

WHn−r(Πk
n) �Sn ∧rLiek(n)⊗ sgnn . (7.2.9)

A colored binary forest is a sequence of colored binary trees. Given a colored

binary forest F with n leaves and σ ∈ Sn, let (F, σ) denote the labeled colored

binary forest whose ith leaf from left to right has label σ(i). Let BFn,r be the

set of labeled colored binary forests with n leaves and r trees. If the jth labeled

colored binary tree of (F, σ) is (Tj, σj) for each j = 1, . . . r then define

[F, σ] := [T1, σ1] ∧ · · · ∧ [Tr, σr],

where now ∧ denotes the wedge product operation in the exterior algebra. The

set {[F, σ] : (F, σ) ∈ BFn,r} is a generating set for ∧rLiek(n).

The set BFn,r also provides a natural generating set for WHn−r(Πk
n). For

(F, σ) ∈ BFn,r, let c(F, σ) be the unrefinable chain of Π
k
n whose rank i partition is

obtained from its rank i− 1 partition by coli-merging the blocks Li and Ri, where
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coli is the color of the ith postorder internal node vi of F , and Li and Ri are the

respective sets of leaf labels in the left and right subtrees of vi.

We have the following generalization of Theorem 2.3.1 and [44, Theorem 7.2].

The proof is similar to that of Theorem 2.3.1 and is left to the reader.

Theorem 7.2.3. For each r, there is an Sn-module isomorphism

φ : ∧rLiek(n)→ WHn−r(Πk
n)⊗ sgnn

determined by

φ([F, σ]) = sgn(σ) sgn(F )c̄(F, σ), (F, σ) ∈ BFn,r,

where if F is the sequence T1, . . . , Tr of colored binary trees then

sgn(F ) := (−1)I(T2)+I(T4)+···+I(T2�r/2�) sgn(T1) sgn(T2) . . . sgn(Tr).

When k = 1 it is proved in [3] that

dim∧Lie(n) = dimWH(Πn) = n!.

The case k = 2 can be derived from the discussion above.

Corollary 7.2.4. For 0 ≤ r ≤ n− 1,

dim∧n−rLie2(n) = dimWHr(Πw
n ) =

(
n− 1

r

)
nr.

Moreover if ∧Lie2(n) is the multilinear component of the exterior algebra of the
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free Lie algebra on n generators and WH(Πw
n ) = ⊕r≥0WHr(Πw

n ) then

dim∧Lie2(n) = dimWH(Πw
n ) = (n+ 1)n−1.

Proof. Since dimWHr(Πw
n ) equals the signless rth Whitney number of the first

kind |wr(Π
w
n )|, the result follows from Theorem 7.2.3, equation (7.1.4), and the

binomial formula.

For a result that is closely related to Corollary 7.2.4, see [5, Theorem 2].



Chapter 8

The Frobenius characteristic of

Lie(μ)

In this chapter we prove Theorem 1.6.6. We use a technique developed

by Sundaram [42], and further developed by Wachs [45], to compute group

representations on the (co)homology of Cohen-Macaulay posets using Whitney

(co)homology. We introduce and develop first the concepts and results necessary

to prove Theorem 1.6.6 in Sections 8.1 and 8.2; we give a proof of the theorem

in Section 8.3. For information not presented here about symmetric functions,

plethysm and the representation theory of the symmetric group see [31], [35], [25]

and [39, Chapter 7].

8.1 Wreath product modules and plethysm

In the following we follow closely the exposition and the results in [45].

Let R be a commutative ring containing Q and let ΛR denote the ring of

symmetric functions with coefficients in R with variables (y1, y2, . . . ). The power-

108
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sum symmetric functions pk are defined by p0 = 1 and

pk = yk1 + yk2 + · · · for k ∈ P.

For a partition λ � n, pλ denotes the power-sum symmetric function associated

to λ, i.e., pλ = pλ1pλ2 · · · pλ�(λ)
, where �(λ) is the number of nonzero parts of λ.

It is well-known that the set {pλ | λ � n} is a basis for the component Λn
R of ΛR

consisting of homogeneous symmetric functions of degree n.

Let Q[[z1, z2, . . . ]] be the ring of formal power series in variables (z1, z2, . . . ).

If g ∈ Q[[z1, z2, . . . ]] then plethysm pk[g] of pk and g is defined as:

pk[g] = g(zk1 , z
k
2 , . . . ). (8.1.1)

The definition of plethysm is then extended to pλ multiplicatively and then to all

of ΛR linearly with respect to R.

It follows from (8.1.1), that if f ∈ Λn
R and g ∈ Q[[z1, z2, . . . ]], the following

identity holds:

f [−g] = (−1)nω(f)[g]. (8.1.2)

where ω(·) is the involution in ΛR that maps pi(y) to (−1)i−1pi(y).

For (perhaps empty) integer partitions ν and λ such that ν ⊆ λ (that is

ν(i) ≤ λ(i) for all i), let Sλ/ν denote the Specht module of shape λ/ν and sλ/ν the

Schur function of shape λ/ν. Recall that sλ/ν is the image in the ring of symmetric

functions of the specht module Sλ/ν under the Frobenius characteristic map ch,

i.e., chSλ/ν = sλ/ν .

We will use the following standard results in the theory of symmetric functions

and the representation theory of the symmetric group, respectively.
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Proposition 8.1.1 (cf. [31] and [45]). Let ν be a non empty integer partition and

let {fi}i≥1 be a sequence of formal power series fi ∈ Z[z1, z2, . . . ] such that the

sum
∑

i fi exists as a formal power series. Then

sλ

[∑
i≥1

fi

]
=

∑
∅=ν0⊆ν1⊆···⊆νj−1�νj=λ

j≥1

j∏
i=1

sνi/νi−1
[fi].

Proposition 8.1.2 (cf. [25] and [45]). Let λ � � and let (m1,m2, . . . ,mt) be a

sequence of nonnegative integers whose sum is �. Then the restriction of the S�-

module Sλ to the Young subgroup ×t
i=1Smi

decomposes into a direct sum of outer

tensor products of Smi
-modules as follows,

Sλ ↓S�
×Smi

=
⊕

∅=ν0⊆ν1⊆···⊆νt=λ
|νi|−|νi−1|=mi

t⊗
i=1

Sνi/νi−1 .

Recall that the wreath product of the symmetric groups Sm and Sn, denoted

Sm[Sn], is the normalizer of the Young subgroup

m times︷ ︸︸ ︷
Sn × · · · ×Sn of Smn. Each

element of Sm[Sn] can be represented as an (m + 1)-tuple (σ1, . . . , σm; τ) with

τ ∈ Sm and σi ∈ Sn for all i ∈ [m].

From an Sn-module W we can construct a representation W̃⊗m of Sm[Sn] on

the vector space W⊗m :=

m times︷ ︸︸ ︷
W ⊗ · · · ⊗W with action given by

(σ1, . . . , σm; τ)(w1 × · · · × wm) := σ1wτ−1(1) × · · · × σmwτ−1(m),

and from an Sm-module V we can construct a representation V̂ of Sm[Sn] with

action given by

(σ1, . . . , σm; τ)(v) := τv,
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called the pullback of V from Sm to Sm[Sn]. The wreath product module V [W ]

of the Sm-module V and the Sn-module W is the Sm[Sn]-module

V [W ] := W̃⊗m ⊗ V̂ , (8.1.3)

where ⊗ denotes inner tensor product.

Proposition 8.1.3 ([31]). Let V be an Sm-module and W an Sn-module. Then

ch
(
(V ⊗W ) ↑Sm+n

Sm×Sn

)
= chV chW,

ch
(
V [W ] ↑Smn

Sm[Sn]

)
= chV [chW ],

where ↑∗∗ denotes induction.

8.2 Weighted integer partitions

Now let Φ be a finitary totally ordered set and let || · || : Φ → P be a map. We

call a finite multiset λ̃ = (λ̃1 ≥Φ λ̃2 ≥Φ · · · ≥Φ λ̃j) of Φ a Φ-partition of length

�(λ̃) := j. We also define |λ̃| := ∑j ||λ̃j|| and say that λ̃ is a Φ-partition of n

if |λ̃| = n. Denote the set of Φ-partitions by Par(Φ) and the set of Φ-partitions

of length � by Par�(Φ). For φ ∈ Φ, we denote by mφ(λ̃), the number of times φ

appears in λ̃.

Let V be an S�-module, Wφ be an S||φ||-module for each φ ∈ Φ and λ̃ a Φ-

partition with � parts. Note that ×φ∈ΦSmφ(λ̃)
[S||φ||] is a finite product since λ̃ is

a finite multiset. The module

⊗
φ∈Φ

˜
W

⊗mφ(λ̃)

φ ⊗ V̂ λ̃,
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is the inner tensor product of two ×φ∈ΦSmφ(λ̃)
[S||φ||]-modules. The first module

is the outer tensor product
⊗

φ∈Φ
˜

W
⊗mφ(λ̃)

φ of the Smφ(λ̃)
[S||φ||]-modules

˜
W

⊗mφ(λ̃)

φ

(cf. Section 8.1) and the second module is the pullback V̂ λ̃ of the restricted

representation V ↓S�
×φ∈ΦSmφ(λ̃)

to ×φ∈ΦSmφ(λ̃)
[S||φ||] through the product of the

natural homomorphisms Smφ(λ̃)
[S||φ||]→ Smφ(λ̃)

given by (σ1, . . . , σmφ(λ̃)
; τ) �→ τ .

The following theorem generalizes [45, Theorem 5.5] and the proof follows the

same idea.

Theorem 8.2.1. Let V be an S�-module and Wφ be an S||φ||-module for each

φ ∈ Φ. Then

∑
λ̃∈Par�(Φ)

ch

⎛⎜⎝(⊗
φ∈Φ

˜
W

⊗mφ(λ̃)

φ ⊗ V̂ λ̃

)&⏐⏐⏐⏐
S|λ̃|

×φ∈ΦSmφ(λ̃)[S||φ||]

⎞⎟⎠ zλ̃ = ch(V )

[∑
φ∈Φ

ch(Wφ)zφ

]
,

where zφ are indeterminates with zλ̃ := zλ̃1
· · · zλ̃�

.

Proof. Note that restriction, induction, pullback, ch and plethysm in the outer

component are all linear and inner tensor product is bilinear. Thus it is enough to

prove the theorem for V equal to an irreducible S�-module S
η (the Specht module

associated to the partition η � �). Since the set Φ is a finitary totally ordered set,

we can denote by φi, the ith element in the total order of Φ. Consider λ̃ ∈ Par�(Φ)

and let t := max{i | φi ∈ λ̃}. Now using Proposition 8.1.2 and the definition of a

wreath product module in equation (8.1.3) yields

t⊗
i=1

˜
W

⊗mφi (λ̃)

φi ⊗ Ŝη
λ̃
=

t⊗
i=1

˜
W

⊗mφi (λ̃)

φi ⊗

⎛⎜⎜⎜⎝ ⊕
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t⊗
i=1

Ŝνi/νi−1

⎞⎟⎟⎟⎠
=

⊕
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

(
t⊗

i=1

˜
W

⊗mφi (λ̃)

φi ⊗
t⊗

i=1

Ŝνi/νi−1

)
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=
⊕

∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t⊗
i=1

(
˜

W
⊗mφi (λ̃)

φi ⊗ Ŝνi/νi−1

)

=
⊕

∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t⊗
i=1

Sνi/νi−1 [Wφi ].

We induce and then apply the Frobenius characteristic map ch. Then using

Proposition 8.1.3 and the transitivity property of induction of representations,

we have that

ch

⎛⎜⎝( t⊗
i=1

˜
W

⊗mφi (λ̃)

φi ⊗ Ŝη
λ̃

)&⏐⏐⏐⏐
S|λ̃|

×t
i=1Sm

φi
(λ̃)[S||φi||]

⎞⎟⎠

=ch

⎛⎜⎜⎜⎝ ⊕
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

(
t⊗

i=1

Sνi/νi−1 [Wφi ]

)&⏐⏐⏐⏐
S|λ̃|

×t
i=1Sm

φi
(λ̃)[S||φi||]

⎞⎟⎟⎟⎠
=

∑
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

ch

⎛⎜⎝( t⊗
i=1

Sνi/νi−1 [Wφi ]

)&⏐⏐⏐⏐
S|λ̃|

×t
i=1Sm

φi
(λ̃)[S||φi||]

⎞⎟⎠

=
∑

∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

ch

⎛⎜⎝
⎛⎜⎝( t⊗

i=1

Sνi/νi−1 [Wφi ]

)&⏐⏐⏐⏐
×t

i=1Sm
φi

(λ̃)||φi||

×t
i=1Sm

φi
(λ̃)[S||φi||]

⎞⎟⎠&⏐⏐⏐⏐
S|λ̃|

×t
i=1Sm

φi
(λ̃)||φi||

⎞⎟⎠

=
∑

∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

ch

⎛⎜⎝
⎛⎜⎝ t⊗

i=1

⎛⎜⎝Sνi/νi−1 [Wφi ]

&⏐⏐⏐⏐
Sm

φi
(λ̃)||φi||

Sm
φi

(λ̃)[S||φi||]

⎞⎟⎠
⎞⎟⎠&⏐⏐⏐⏐

S|λ̃|

×t
i=1Sm

φi
(λ̃)||φi||

⎞⎟⎠
=

∑
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t∏
i=1

ch

(
Sνi/νi−1 [Wφi ]

&⏐⏐Sm
φi

(λ̃)||φi||

Sm
φi

(λ̃)[S||φi||]

)

=
∑

∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t∏
i=1

sνi/νi−1
[chWφi ].
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Now note that sνi/νi−1
[chWφzφ] = sνi/νi−1

[chWφ]z
|νi|−|νi−1|
φ and that sνi/νi−1

= s∅ =

1 if νi = νi−1. And using Proposition 8.1.1, we obtain

∑
λ̃∈Par�(Φ)

ch

⎛⎜⎝(⊗
i≥1

˜
W

⊗mφi (λ̃)

φi ⊗ Ŝη
λ̃

)&⏐⏐⏐⏐
S|λ̃|

×t
i=1Sm

φi
(λ̃)[S||φi||]

⎞⎟⎠ zλ̃

=
∑

λ̃∈Par�(Φ)

∑
∅=ν0⊆ν1⊆···⊆νt=η

|νi|−|νi−1|=mφi (λ̃)

t∏
i=1

sνi/νi−1
[chWφizφi ]

=
∑

∅=ν0⊆ν1⊆···⊆νj−1�νj=η
j≥1

j∏
i=1

sνi/νi−1
[chWφizφi ]

=sη

[∑
i≥1

chWφizφi

]

=chSη

[∑
φ∈Φ

chWφzφ

]
.

8.3 Using Whitney (co)homology to compute

(co)homology

The technique of Sundaram [42] to compute characters of G-representations on

the (co)homology of pure G-posets is based on the following result:

Lemma 8.3.1 ([42] Lemma 1.1). Let P be a bounded poset of length � ≥ 1 and let

G be a group of automorphisms of P . Then the following isomorphism of virtual

G-modules holds

�⊕
i=0

(−1)iWH i(P ) ∼=G 0.
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Recall that if a group G of automorphisms acts on the poset P , this action

induces a representation of G on WHr(P ) for every r. From equation (7.2.1),

when P is Cohen-Macaulay, WHr(P ) breaks into the direct sum of G-modules

WHr(P ) ∼=P

⊕
x∈P/∼
ρ(x)=r

H̃r−2((0̂, x);k)
&⏐G
Gx
, (8.3.1)

where P/ ∼ is a set of orbit representatives and Gx the stabilizer of x.

Let μ ∈ wcompn−1. We want to apply Lemma 8.3.1 to the dual poset [0̂, [n]μ]∗

of the maximal interval [0̂, [n]μ], which by Theorem 1.6.2 is Cohen-Macaulay. In

order to compute WHr([0̂, [n]μ]∗), by equation (8.3.1), we need to specify a set of

orbit representatives for the action of Sn on [0̂, [n]
μ]∗. For this we consider the set

Φ = {φ ∈ wcomp | supp(φ) ⊆ [k]}

and the map ||φ|| := |φ| + 1 for φ ∈ wcomp (cf. Section 8.2). We fix any finitary

total order on Φ. For any Φ-partition λ̃ of n of length � we denote by αλ̃, the

weighted partition {Aλ̃1
1 , . . . , Aλ̃�

� } of [n] whose blocks are of the form

Ai =

[
i∑

j=1

||λ̃j||
]
\
[

i−1∑
j=1

||λ̃j||
]
.

Recall that for ν, μ ∈ wcomp, we say that μ ≤ ν if μ(i) ≤ ν(i) for every i and

we denote by ν+μ, the weak composition defined by (ν+μ)(i) := ν(i)+μ(i). Let

Parμ(Φ) := {λ̃ ∈ Par(Φ) | |λ̃| = ||μ|| ,
∑
i

λ̃i ≤ μ}.

It is not difficult to see that {αλ̃ | λ̃ ∈ Parμ(Φ)} is a set of orbit representatives

for the action of Sn on [0̂, [n]
μ]∗. Indeed, any weighted partition β ∈ [0̂, [n]μ]∗ can
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be obtained as β = σαλ̃ for suitable λ̃ ∈ Parμ(Φ) and σ ∈ Sn. It is also clear that

αλ̃ 	= σαλ̃′ for λ̃ 	= λ̃′ ∈ Parμ(Φ) and for every σ ∈ Sn. Observe that the partition

αλ̃ has stabilizer ×φSmφ(λ̃)
[S||φ||]. By equation (8.3.1) applied to [0̂, [n]

μ]∗,

WHr([0̂, [n]μ]∗) ∼=Sn

⊕
λ̃∈Parμ(Φ)

�(λ̃)=r

H̃r−3((αλ̃, [n]
μ))
&⏐Sn

×φ∈ΦSmφ(λ̃)[S||φ||]
. (8.3.2)

Note that if r = 2 then the open interval (αλ̃, [n]
μ) is the empty poset. Hence

H̃r−3((αλ̃, [n]
μ)) is isomorphic to the trivial representation of ×φ∈ΦSmφ(λ̃)

[S||φ||].

If r = 1 then αλ̃ = [n]μ. In this case we use the convention that H̃r−3((αλ̃, [n]
μ))

is isomorphic to the trivial representation of ×φ∈ΦSmφ(λ̃)
[S||φ||] (see also Section

A.3 of the Appendix).

We apply Lemma 8.3.1 together with equation (8.3.2) to obtain the following

result.

Lemma 8.3.2. For n ≥ 1 and μ ∈ wcompn−1 we have the following Sn-module

isomorphism

1Snδn,1
∼=Sn

⊕
λ̃∈Parμ(Φ)

|λ̃|=n

(−1)�(λ̃)−1H̃�(λ̃)−3((αλ̃, [n]
μ))
&⏐Sn

×φ∈ΦSmφ(λ̃)[S||φ||]
, (8.3.3)

where 1Sn denotes the trivial representation of Sn.

Lemma 8.3.3. For all λ̃ ∈ Par(Φ) with |λ̃| = n and ν ∈ wcomp�(λ̃)−1, the following

×φ∈ΦSmφ(λ̃)
[S||φ||]-module isomorphism holds:

H̃�(λ̃)−3((αλ̃, [n]
ν+

∑
λ̃j)) ∼=
(⊗

φ∈Φ

˜(1S||φ||)
⊗mφ(λ̃)

)
⊗ ̂

H̃�(λ̃)−3((0̂, [�(λ̃)]ν))λ̃.
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Proof. The poset [0̂, [�(λ̃)]ν ] is a ×φ∈ΦSmφ(λ̃)
[S||φ||]-poset with the action

given by the pullback through the product of the natural homomorphisms

Smφ(λ̃)
[S||φ||] → Smφ(λ̃)

. There is a natural poset isomorphism between

[αλ̃, [n]
ν+

∑
λ̃j ] and [0̂, [�(λ̃)]ν ]. Indeed, for a weighted partition {Bμ1

1 , . . . , Bμt
t } ≥

αλ̃ = {Aλ̃1
1 , . . . , Aλ̃�

� }, each weighted block B
μj

j is of the form Bj = Ai1∪Ai2∪...∪Ais

and μj = uj +
∑

k λ̃ik , where |uj| = s− 1 and
∑

j uj ≤ ν. Let

Γ : [αλ̃, [n]
ν+

∑
λ̃j ]→ [0̂, [�(λ̃)]ν ]

be the map such that Γ({Bμ1

1 , . . . , Bμt
t }) is the weighted partition in which each

weighted block B
μj

j is replaced by {i1, i2, . . . , is}uj . The map Γ is an isomorphism

of posets that commutes with the action of ×φ∈ΦSmφ(λ̃)
[S||φ||]. The isomorphism

of ×φ∈ΦSmφ(λ̃)
[S||φ||]-posets induces an isomorphism of the ×φ∈ΦSmφ(λ̃)

[S||φ||]-

modules H̃�(λ̃)−3((αλ̃, [n]
ν+

∑
λ̃j)) and

̂
H̃�(λ̃)−3((0̂, [�(λ̃)]ν))λ̃. The result follows since⊗

φ∈Φ
˜(1S||φ||)

⊗mφ(λ̃) is the trivial representation of ×φ∈ΦSmφ(λ̃)
[S||φ||].

Let R be the ring of symmetric functions ΛQ in variables x = (x1, x2, . . . ).

There is a natural inner product in ΛR defined for arbitrary partitions λ and ν,

by

〈pλ, pν〉 = δλ,ν ,

and then extended linearly to ΛR. This inner product defines a notion of

convergence. Indeed, for a sequence of symmetric functions fn ∈ ΛR, n ≥ 1,

we say that {fn}n≥1 converges if for every partition ν there is a number N such

that 〈fn, pν〉 = 〈fm, pν〉 whenever n,m ≥ N . We use Λ̂R to denote the completion

of the ring of ΛR with respect to this topology. It is not difficult to verify that Λ̂R

consists of the class of formal power series in two sets of variables, x = (x1, x2, . . . )

and y = (y1, y2, . . . ), that can be expressed as
∑

λ cλ(x)pλ(y), where cλ(x) ∈ ΛQ.
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Given a formal power series F (y) =
∑

λ cλ(x)pλ(y) in Λ̂R and a formal power

series g ∈ Q[[z1, z2, . . . ]], we can extend the definition of plethysm from symmetric

functions to formal power series in Λ̂R by

F [g] :=
∑
λ

cλ(x)pλ[g].

The reader can check that Λ̂R, together with plethysm and the plethystic unit

p1(y), has the structure of a monoid.

Let G(y) and F (y) be in Λ̂R. The power series G(y) is said to be a plethystic

inverse of F (y) with respect to y, if F (y)[G(y)] = p1(y). It is straightforward to

show that if this is the case, then F (y) is unique and also G(y)[F (y)] = p1(y).

Thus G(y) and F (y) are said to be plethystic inverses of each other with respect

to y, and we write G(y) = F [−1](y). Note that

∑
μ∈wcompn−1

ch H̃n−3((0̂, [n]μ))xμ =
∑

λ	n−1

ch H̃n−3((0̂, [n]λ))mλ(x) ∈ ΛR,

wheremλ is the monomial symmetric function associated to the partition λ. Hence

the left hand side of equation (8.3.4) below is in Λ̂R.

Theorem 8.3.4. We have

∑
n≥1

(−1)n−1
∑

μ∈wcompn−1

ch H̃n−3((0̂, [n]μ))xμ =
(∑
n≥1

hn−1(x)hn(y)
)[−1]

(8.3.4)

Proof. For presentation purposes let us use temporarily the notation Gλ̃ :=

×φ∈ΦSmφ(λ̃)
[S||φ||]. We also use the convention that

H̃�(λ̃)−3((αλ̃, [n]
μ)) = 0
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whenever αλ̃ � [n]μ. Applying the Frobenius characteristic map ch (in y variables)

to both sides of equation 8.3.3, multiplying by xμ and summing over all μ ∈

wcompn−1 with supp(μ) ⊆ [k] yields

h1(y)δn,1 =
∑

μ∈wcompn−1

supp(μ)⊆[k]

xμ ch

⎛⎜⎜⎜⎝ ⊕
λ̃∈Parμ(Φ)

|λ̃|=n

(−1)�(λ̃)−1H̃�(λ̃)−3((αλ̃, [n]
μ))
&⏐Sn

Gλ̃

⎞⎟⎟⎟⎠
=
∑

μ∈wcompn−1

supp(μ)⊆[k]

xμ
∑

λ̃∈Parμ(Φ)

|λ̃|=n

(−1)�(λ̃)−1 ch
(
H̃�(λ̃)−3((αλ̃, [n]

μ))
&⏐Sn

Gλ̃

)

=
∑

λ̃∈Par(Φ)

|λ̃|=n

(−1)�(λ̃)−1
∑

ν∈wcomp�(λ̃)−1

supp(ν)⊆[k]

xν+
∑

λ̃r ch
(
H̃�(λ̃)−3((αλ̃, [n]

ν+
∑

λ̃r))
&⏐Sn

Gλ̃

)
.

Using the shorthand notation

Hμ
n := H̃n−3((0̂, [n]μ)),

Lemma 8.3.3 and summing over all n ≥ 1 we have

h1(y)

=
∑

λ̃∈Par(Φ)

(−1)�(λ̃)−1
∑

ν∈wcomp�(λ̃)−1

supp(ν)⊆[k]

xν+
∑

λ̃r ch

⎛⎝(⊗
φ∈Φ

˜(1S||φ||)
⊗mφ(λ̃) ⊗ Ĥν

�(λ̃)

λ̃

)&⏐⏐⏐⏐
S|λ̃|

Gλ̃

⎞⎠

=
∑
�≥1

(−1)�−1
∑

λ̃∈Par�(Φ)

∑
ν∈wcomp�−1

supp(ν)⊆[k]

xν+
∑

λ̃r ch

⎛⎝(⊗
φ∈Φ

˜(1S||φ||)
⊗mφ(λ̃) ⊗ Ĥν

�

λ̃

)&⏐⏐⏐⏐
S|λ̃|

Gλ̃

⎞⎠

=
∑
�≥1

(−1)�−1
∑

ν∈wcomp�−1

supp(ν)⊆[k]

xν
∑

λ̃∈Par�(Φ)

x
∑

λ̃r ch

⎛⎝(⊗
φ∈Φ

˜(1S||φ||)
⊗mφ(λ̃) ⊗ Ĥν

�

λ̃

)&⏐⏐⏐⏐
S|λ̃|

Gλ̃

⎞⎠ .
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Now we use Theorem 8.2.1 with zφ = xφ,

h1(y) =
∑
�≥1

(−1)�−1
∑

ν∈wcomp�−1

supp(ν)⊆[k]

xν ch(Hν
� )

⎡⎢⎢⎣ ∑
φ∈wcomp

supp(φ)⊆[k]

h||φ||(y)x
φ

⎤⎥⎥⎦

=

⎛⎜⎜⎝∑
�≥1

(−1)�−1
∑

ν∈wcomp�−1

supp(ν)⊆[k]

ch(Hν
� )x

ν

⎞⎟⎟⎠
[∑

j≥1

hj(y)hj−1(x1, . . . , xk)

]
.

The last step uses the definition of the complete homogeneous symmetric

polynomial hj−1(x1, . . . , xk). To complete the proof we let k get arbitrarily

large.

Proof of Theorem 1.6.6. We have

p1(y) =

⎛⎝∑
n≥1

(−1)n−1
∑

μ∈wcompn−1

ch H̃n−3((0̂, [n]μ))xμ

⎞⎠[∑
n≥1

hn−1(x)hn(y)

]

=

⎛⎝−∑
n≥1

∑
μ∈wcompn−1

ω
(
ch H̃n−3((0̂, [n]μ))

)
xμ

⎞⎠[−∑
n≥1

hn−1(x)hn(y)

]

=

⎛⎝−∑
n≥1

∑
μ∈wcompn−1

ch
(
H̃n−3((0̂, [n]μ))⊗Sn sgnn

)
xμ

⎞⎠[−∑
n≥1

hn−1(x)hn(y)

]

=

⎛⎝−∑
n≥1

∑
μ∈wcompn−1

chLie(μ)xμ

⎞⎠[−∑
n≥1

hn−1(x)hn(y)

]
.

The first two equalities above follow from Theorem 8.3.4 and from equation (8.1.2),

respectively. Recall that for an Sn-module V we have that

ch(V ⊗Sn sgnn) = ω(chV ),
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which proves the third equality. Finally the last equality makes use of Theorem

2.3.1.

In the case k = 2, Theorem 1.6.6 specializes to the following result when x1 = t,

x2 = 1 and xi = 0 for i ≥ 3.

Theorem 8.3.5. For n ≥ 1,

∑
n≥1

n−1∑
i=0

chLie2(n, i) ti = −
(
−
∑
n≥1

tn − 1

t− 1
hn(y)
)[−1]

.

For a closely related result obtained using operad theoretic arguments, see [14].

One should also be able to approach Theorem 1.6.6 via operad theory.

And we obtain a well-known classical result when x1 = 1, xi = 0 for i ≥ 2.

Theorem 8.3.6. For n ≥ 1,

∑
n≥1

chLie(n) = −
(
−
∑
n≥1

hn(y)
)[−1]

.

We show that Theorem 1.6.6 reduces to Theorem 1.6.3 after applying an

appropiate specialization. Recall that R = ΛQ and consider the map E : Λ̂R →

R[[y]] defined by:

E(pi(y)) = yδi,1

for i ≥ 1 and extended multiplicatively, linearly and taking the corresponding

limits to all of Λ̂R. It is not difficult to check that E is a ring homomorphism since

E is defined on generators. Moreover, we show in the following proposition that

the specialization E maps plethysm in Λ̂R to composition in R[[y]].
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Proposition 8.3.7. For all F,G ∈ Λ̂R,

E(F [G]) = E(F )(E(G)).

Proof. Using the definition of plethysm and using the convention xk =

(xk
1, x

k
2, . . . ),

pν(y)

[∑
λ

cλ(x)pλ(y)

]
=

�(ν)∏
i=1

pνi(y)

[∑
λ

cλ(x)pλ(y)

]

=

�(ν)∏
i=1

∑
λ

cλ(x
νi)pλ(y

νi)

=

�(ν)∏
i=1

∑
λ

cλ(x
νi)

�(λ)∏
j=1

pλj
(yνi)

=

�(ν)∏
i=1

∑
λ

cλ(x
νi)

�(λ)∏
j=1

pλjνi(y). (8.3.5)

Note that E(pλjνi(y)) = yδλjνi,1 = yδλj ,1δνi,1. Then if ν has at least one part νi of

size greater than 1, equation (8.3.5) implies

E

(
pν(y)

[∑
λ

cλ(x)pλ(y)

])
= 0 = E(pν(y))

(
E

(∑
λ

cλ(x)pλ(y)

))
,

since E(pν(y)) = 0. If ν = (1m), then

E

(
pν(y)

[∑
λ

cλ(x)pλ(y)

])
= E

⎛⎝�(ν)∏
i=1

∑
λ

cλ(x
νi)

�(λ)∏
j=1

pλjνi(y)

⎞⎠
= E

⎛⎝ m∏
i=1

∑
λ

cλ(x)

�(λ)∏
j=1

pλj
(y)

⎞⎠
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=

⎛⎝E
⎛⎝∑

λ

cλ(x)

�(λ)∏
j=1

pλj
(y)

⎞⎠⎞⎠m

= E(p(1m)(y))

⎛⎝E
⎛⎝∑

λ

cλ(x)

�(λ)∏
j=1

pλj
(y)

⎞⎠⎞⎠ .

We just proved that E (pν(y) [G]) = E (pν(y)) [E(G)] for any G ∈ Λ̂R. The proof

of the proposition follows by extending this result to all of Λ̂R by linearity and

taking limits.

Since E(p1(y)) = y, we conclude that E is a monoid homomorphism

(Λ̂R, plethysm, p1)→ (R[[y]], composition, y).

The specialization E can be better understood under the definition of the

Frobenius characteristic map. Let V be a representation of Sn and χV its

character, then

ch(V ) =
1

n!

∑
σ∈Sn

χV (σ)pλ(σ)(y),

where λ(σ) is the cycle type of the permutation σ ∈ Sn.

We have that

E(chV ) =
1

n!
E

(∑
σ∈Sn

χV (σ)pλ(σ)(y)

)
= χV (id)

yn

n!
= dimV

yn

n!
.

In particular since hn(y) = ch(1Sn), the Frobenius characteristic of the trivial

representation of Sn, we have that E(hn(y)) =
yn

n!
. Therefore Theorem 1.6.6

reduces to Theorem 1.6.3 after we apply the specialization E.

Theorem 1.6.6 gives an implicit description of the character for the

representation of Sn on Lie(μ); Theorem 8.3.5 gives a description of the

character of Lie2(n, i). Dotsenko and Khoroshkin in [14] computed an explicit
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product formula for the SL2 × Sn-character of Lie2(n). From this one can

get the coefficients (as polynomials in t) of pλ in the symmetric function∑n−1
i=0 chLie2(n, i) ti.

Question 8.3.8. Can we find explicit character formulas for the representation

of Sn on Lie(μ) for general μ ∈ wcompn−1? What are the multiplicities of the

irreducibles?

Since
∑

μ∈wcompn−1
chLie(μ)xμ is a symmetric function in x with coefficients

that are symmetric functions in y, we can write

∑
μ∈wcompn−1

chLie(μ)xμ =
∑

λ	n−1

Cλ(y)eλ(x),

where Cλ(y) is a homogeneous symmetric function of degree n with coefficients in

Z.

By Theorem 5.3.3, E(Cλ(y)) equals the number cn,λ of trees Υ ∈ Norn of comb

type (or Lyndon type) λ(Υ) = λ. We propose the following conjecture.

Conjecture 8.3.9. The coefficients Cλ(y) are Schur positive.

The conjecture basically asserts that Cλ(y) is the Frobenius characteristic of

a representation of dimension cn,λ. An approach to proving the conjecture is to

find such a representation.



Appendix A

Notation and techniques

We recall basic notation and techniques in poset topology as well as background

information about the ring of symmetric functions.

A.1 Partially ordered sets

A partially ordered set or poset is a pair (P,≤), where P is a set and ≤ is a relation

on P satisfying for every x, y, z ∈ P the following properties:

• x ≤ x (Reflexivity),

• x ≤ y and y ≤ x implies x = y (Antisymmetry), and

• x ≤ y and y ≤ z implies x ≤ z (Transitivity).

By abuse of notation we normally refer to P meaning both the poset and its

underlying set when the context makes the difference clear. For poset terminology

not defined here see [40], [46]. The notation x < y is used as a shorthand for x ≤ y

and x 	= y and x ≥ y is used for y ≤ x. We say that y covers x or that x is covered

by y (denoted by x� y) if x < y and there is no z ∈ P such that x < z < y. We

denote E(P ) to the set of all covering relations of P . We can think of a covering
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a

b

c

d

e

f

Figure A.1: Example of the Hasse diagram of a poset.

relation x� y as an arrow from x pointed to y. The Hasse diagram of a poset is

the directed graph (P, E(P )) whose vertex set is P and directed edge set is E(P ).

As a convention, a Hasse diagram is drawn so that the edges are directed upward,

that is, if x < y in P then y is drawn higher than x. The Hasse diagram of the

poset on the set {a, b, c, d, e, f} whose covering relations are b�a, b�d, a� c, b� c

and e � f is illustrated in Figure A.1. The dual poset P ∗ is the poset with the

same underlying set as P but with x ≤P ∗ y whenever y ≤P x. For u ≤ v in a

poset P , the open interval {w ∈ P : u < w < v} is denoted by (u, v) and the

closed interval {w ∈ P : u ≤ w ≤ v} by [u, v]. A poset is said to be bounded if it

has a minimum element 0̂ (i.e., 0̂ ≤ x for all x ∈ P ) and a maximum element 1̂

(i.e., x ≤ 1̂ for all x ∈ P ). For a bounded poset P , we define the proper part of P

as the induced subposet (a subset of P with all the relations) P := P \ {0̂, 1̂}. A

poset is said to be pure ( graded or ranked) if all its maximal chains have the same

length, where the length of a chain s0 < s1 < · · · < sn is n. The length l(P ) of a

poset P is the length of its longest chain. For a graded poset P with a minimum

element 0̂, the rank function ρ : P → N is defined by ρ(s) = l([0̂, s]). The rank

generating function FP (x) is defined by FP (x) =
∑

u∈P xρ(u).

We say that a map f : P → Q between posets P and Q is order preserving or

a poset map if x ≤P y implies f(x) ≤Q f(y). In particular, an order preserving

bijection f : P → Q whose inverse is order preserving is called an isomorphism
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a

b

c

d

e

f

Figure A.2: Example of the order complex of the poset in Figure A.1

of posets and P and Q are said to be isomorphic posets. In general, we would be

interested in poset properties that are preserved under isomorphisms also known as

invariants. For example, the rank generating function FP (x) is a poset invariant.

A (finite) simplicial complex is a pair (V, C) where V is a finite set and C is a

class of subsets of V satisfying:

• {x} ∈ C for every x ∈ V , and

• If A ⊆ B and B ∈ C then A ∈ C.

To every poset P we can associate a simplicial complex Δ(P ) with vertex set P

and whose faces are the chains of P . Δ(P ) is called the order complex of P and

it is the fundamental link between posets and topology. In Figure A.2 the order

complex of the poset in Figure A.1 is illustrated. Note that the points correspond

to the six chains of length 0 ({a, b, c, d, e, f}), the edges to the six chains of length

1 ({b < a, b < d, b < c, a < c, d < c, e < f}) and the shaded regions to the two

chains of length 2 ({b < a < c, b < d < c}).

A.2 The Möbius function

Let k be a field. Denote by Int(P ) the set of closed intervals [x, y] in the poset P .

The Möbius function is the function μ̄ = μ̄P : Int(P )→ C defined recursively

as:
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a

−1

0̂

1

1̂

2

c

−1

b

−1

Figure A.3: Example of μ̄(0̂, t)

μ̄(x, x) = 1, for all x ∈ P

μ̄(x, y) = −
∑

x≤z<y

μ̄(x, z), for all x < y ∈ P. (A.2.1)

Or equivalently,

μ̄(x, x) = 1, for all x ∈ P

μ̄(x, y) = −
∑

x<z≤y

μ̄(z, y), for all x < y ∈ P. (A.2.2)

For a bounded poset P , we define the Möbius invariant

μ̄(P ) = μ̄P (0̂, 1̂).

In the Figure A.3 the Möbius numbers μ̄(0̂, t) for all t ∈ P are shown in red.

Note that in the example μ̄(P ) = μ̄P (0̂, 1̂) = 2.

The importance of the Möbius function in poset topology is highlighted by the

strong connection with a topological invariant given in Corollary A.2.2 below.

Theorem A.2.1 (P. Hall [23]). Let P be a finite bounded poset and let ci denote

the number of chains of length i in P with c−1 = 1 (the empty chain). Then
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μ̄P (0̂, 1̂) = −c−1 + c0 − c1 + c2 − c3 + · · · . (A.2.3)

Theorem A.2.1 can be restated using the order complex of P .

Corollary A.2.2.

μ̄P (0̂, 1̂) = χ̃(Δ(P )) (A.2.4)

where χ̃(Δ) denotes the reduced Euler characteristic of the simplicial complex Δ.

For the basic example of Figure A.3 note that the poset P is formed by 3

incomparable elements. Hence we have c0 = 3 and −c−1 + c0 = −1 + 3 = 2 =

μ̄(0̂, 1̂). Also Δ(P ) is the simplicial complex formed by 3 disjoint points whose

reduced Euler characteristic χ̃(Δ(P )) = 2.

The following consequence of the Euler-Poincaré formula is a standard result

in topology.

Proposition A.2.3. If a simplicial complex Δ has the homotopy type of a wedge

of m spheres of dimension d, then

χ̃(Δ) = (−1)dm.

For a pure poset with a 0̂ the characteristic polynomial is defined as

χP (x) =
∑
α∈P

μ̄(0̂, α)xρ(P )−ρ(α).

For the example of Figure A.3 we have χP (x) = x2 − 3x+ 2 = (x− 1)(x− 2).
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A.3 Homology and Cohomology of a Poset

We give a brief review of poset (co)homology with group actions. For further

information see [46].

Let P be a finite poset of length �. The reduced simplicial (co)homology of P

is defined to be the reduced simplicial (co)homology of its order complex Δ(P ).

We will review the definition here by dealing directly with the chains of P , and

not resorting to the order complex of P .

Let k be an arbitrary field. The (reduced) chain and cochain complexes

· · ·
∂r+1−−→←−−
δr

Cr(P )
∂r−−→←−−
δr−1

Cr−1(P )
∂r−1−−→←−−
δr−2

· · ·

are defined by letting Cr(P ) be the k-module generated by the chains of length

r in P . Note that C−1(P ) is generated by the empty chain, and Cr(P ) = (0) if

r < −1 or r > �. The boundary maps ∂r : Cr(P )→ Cr−1(P ) are defined on chains

by

∂r(α0 < α1 < · · · < αr) =
r∑

i=0

(−1)i(α0 < · · · < α̂i < · · · < αr)

where α̂i means that the element αi is omitted from the chain.

Define the bilinear form 〈, 〉 on⊕�
r=−1 Cr(P ) by

〈c, c′〉 = δc,c′ , (A.3.1)

where c, c′ are chains of P , and extend by linearity. This allows us to define the

coboundary map δr : Cr(P )→ Cr+1(P ) by

〈δr(c), c′〉 = 〈c, ∂r+1(c
′)〉.
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Equivalently,

δr(α0 < · · · < αr) =
r+1∑
i=0

(−1)i
∑

α∈(αi−1,αi)

(α0 < · · · < αi−1 < α < αi < · · · < αr),

(A.3.2)

where α−1 = 0̂ and αr+1 = 1̂ of the augmented poset P̂ in which a minimum

element 0̂ and a maximum element 1̂ have been adjoined to P .

Let r ∈ Z. Define the cycle space Zr(P ) := ker ∂r and the boundary space

Br(P ) := im ∂r+1. Homology of the poset P in dimension r is defined by

H̃r(P ) := Zr(P )/Br(P ).

Define the cocycle space Zr(P ) := ker δr and the coboundary space Br(P ) :=

im δr−1. Cohomology of the poset P in dimension r is defined by

H̃r(P ) := Zr(P )/Br(P ).

For x ≤ y, consider the open interval (x, y) of P . Note that if y covers x

then (x, y) is the empty poset whose only chain is the empty chain. Therefore

H̃r((x, y)) = H̃r((x, y)) = 0 unless r = −1, in which case H̃r((x, y)) =

H̃r((x, y)) = k. If y = x then we adopt the convention that H̃r((x, y)) =

H̃r((x, y)) = 0 unless r = −2, in which case H̃r((x, y)) = H̃r((x, y)) = k.

Proposition A.3.1. Let P be a finite poset of length � whose order complex has

the homotopy type of a wedge of m spheres of dimension �−2. Then H̃�−2(P ) and

H̃�−2(P ) are isomorphic free k-modules of rank m.

The following proposition gives a useful tool in identifying bases for top

homology and top cohomology modules.
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Proposition A.3.2 (see [46, Theorem 1.5.1], [36, Proposition 6.4]). Let P be a

finite poset of length � whose order complex has the homotopy type of a wedge of m

spheres of dimension �. Let {ρ1, ρ2, ..., ρm} ⊆ Z�(P ) and {γ1, γ2, ..., γm} ⊆ Z�(P ).

If the matrix (< ρi, γj >)i,j∈[m] is invertible over k then the sets {ρ1, ρ2, ..., ρm}

and {γ1, γ2, ..., γm} are bases for H̃�(P ;k) and H̃�(P ;k) respectively.

Let G be a finite group. A G-poset is a poset P together with a G-action on

its elements that preserves the partial order; i.e., x < y =⇒ gx < gy in P .

Now assume that k is a field. Let P be a G-poset of length �. Since g ∈ G

takes r-chains to r-chains, g acts as a linear map on the chain space Cr(P ) (over

k). It is easy to see that for all g ∈ G and c ∈ Cr(P ),

g∂r(c) = ∂r(gc) and gδr(c) = δr(gc).

Hence g acts as a linear map on the vector spaces H̃r(P ) and on H̃r(P ). This

implies that whenever P is a G-poset, H̃r(P ) and H̃r(P ) are G-modules. The

bilinear form 〈·, ·〉, induces a pairing between H̃r(P ) and Hr(P ), which allows

one to view them as dual G-modules. For G = Sn we have the Sn-module

isomorphism

H̃r(P ) �Sn H̃r(P ) (A.3.3)

since dual Sn-modules are isomorphic.

Example A.3.3. The symmetric group Sn acts naturally on Πn by permuting

the letters of [n] and this action induces isomorphic representations of Sn on the

unique nonvanishing reduced simplicial homology H̃n−3(Πn) of the order complex

Δ(Πn) and on the unique nonvanishing simplicial cohomology H̃n−3(Πn).
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A.4 The ring of symmetric functions

For information not presented here about symmetric functions and the

representation theory of the symmetric group see [31], [35], [25] and [39, Chapter

7].

Let R be a commutative ring containing Q and y = {y1, y2, . . . } an infinite set

of variables. Let R[[y]] := R[[y1, y2, . . . ]] denote the ring of formal power series in

the y variables. We call a monomial, a term of the form

yμ := yμ1

1 yμ2

2 · · · ,

where μ ∈ wcomp. If |μ| = n we say that yμ has degree n.

Example A.4.1. If μ = (0, 3, 1, 0, 2) then yμ = y32y3y
2
5 is a monomial of degree 6.

We say that f(y) ∈ R[[y]] is homogeneous of degree n if every monomial in f

has the same degree n.

Example A.4.2.

∑
i≥1
j≥1

y2i yj = y31 + y21y2 + y22y1 + · · ·

is homogeneous of degree 3.

Now let f(y) ∈ R[[y]] be homogeneous of degree n. We say that f is a

symmetric function if

f(x1, x2, . . . ) = f(xσ(1), xσ(2), . . . )

for every permutation σ ∈ SP. Let Λ
n
R denote the vector space of homogeneous
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symmetric functions of degree n and let

ΛR := Λ0
R ⊕ Λ1

R ⊕ Λ2
R ⊕ · · · .

Note that multiplication in R[[y]] gives a map

Λi
R × Λj

R → Λi+j
R

that makes ΛR into a graded ring called the ring of symmetric functions. It is

known that the dimension of each homogeneous component Λn
R equals the number

of (number) partitions of n.

We describe known bases for Λn
R. For a partition λ � n the monomial

symmetric function mλ is defined by

mλ :=
∑

μ∈wcompλ

yμ,

where wcompλ is the set of rearrangements of λ. For every n ≥ 0, the elementary

symmetric function en, the complete homogeneous symmetric function hn and the

power sum symmetric function pn are defined by

e0 = h0 = p0 := 1,

en :=
∑

i1<i2<···<in

yi1yi2 · · · yin = m(1n),

hn :=
∑
λ	n

mλ,

pn :=
∑
i≥1

yni ,

where (1n) :=

n times︷ ︸︸ ︷
(1, 1, . . . , 1). For a family of symmetric functions u0, u1, . . . ,



135

1 1 2

2 2

3

4

Figure A.4: Example of a SSYT of shape λ = (3, 2, 1, 1) and content μ = (2, 3, 1, 1).

we denote by uλ, the symmetric function defined multiplicatively as uλ :=

uλ1uλ2 · · · uλ�(λ)
; the symmetric functions eλ, hλ and pλ are defined in this manner.

Theorem A.4.3. The sets

{mλ | λ � n}, {eλ | λ � n}, {hλ | λ � n} and {pλ | λ � n}

are bases for Λn
R.

There is yet another important basis for the space of homogeneous symmetric

functions. For a partition λ � n, the Ferrers diagram of λ is a two dimensional left

justified arrangement of cells (rows and columns) where row i contains λi cells for

each i. A SemiStandard Young Tableau (SSYT) is a filling of the Ferrers diagram

of λ with positive integers that are weakly increasing in the rows and strictly

increasing in the columns. In Figure A.4 a SSYT T of shape sh(T ) = (3, 2, 1, 1)

and content μ(T ) = (2, 3, 1, 1) (two 1’s, three 2’s, one 3 and one 4) is illustrated.

For a SSYT T of shape λ and content μ let yT := yμ (in Figure A.4 yT =

y21y
3
2y3y4). For λ � n, the Schur symmetric function sλ is defined by

sλ :=
∑

T a SSYT
sh(T )=λ

yT . (A.4.1)

Theorem A.4.4. The set {sλ | λ � n} is a basis for Λn
R.
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It is well-known (see for example [25]) that the irreducible representations of

the symmetric group Sn are also indexed by number partitions λ � n. For a

partition λ � n we denote by Sλ the irreducible Specht module indexed by λ.

Let V be a representation of Sn and χV its character, the Frobenius

characteristic map is defined

ch(V ) =
1

n!

∑
σ∈Sn

χV (σ)pλ(σ)(y),

where λ(σ) is the cycle type of the permutation σ ∈ Sn.

The map ch is a ring isomorphism between the ring of virtual representations

of Sn and the ring of symmetric functions. The definition of both the Specht

modules and the Schur functions can be extended to Ferrers diagrams with skew

shapes. For (perhaps empty) integer partitions ν and λ such that ν ⊆ λ (that

is ν(i) ≤ λ(i) for all i), let Sλ/ν denote the Specht module of shape λ/ν and

sλ/ν the Schur function of shape λ/ν. Then sλ/ν is the image in the ring of

symmetric functions of the (not necesssary irreducible) specht module Sλ/ν under

the Frobenius characteristic map ch.

Theorem A.4.5. For every pair of partitions μ ⊆ λ,

chSλ/ν = sλ/ν .
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