
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2012-12-05

Universal Classification of Topological Categories
Marta Alpar
University of Miami, alpar@math.miami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Alpar, Marta, "Universal Classification of Topological Categories" (2012). Open Access Dissertations. 884.
https://scholarlyrepository.miami.edu/oa_dissertations/884

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/884?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


 
 
 
 
 
 
 

 
UNIVERSITY OF MIAMI 

 
 
 
 
 

UNIVERSAL CLASSIFICATION OF TOPOLOGICAL CATEGORIES  
 
 
 
 

By 
 

Marta Alpar 
 
 

A  DISSERTATION 
 
 

Submitted to the Faculty  
of the University of Miami 

in partial fulfillment of the requirements for  
the degree of Doctor of Philosophy 

 
 
 
 
 

Coral Gables, Florida 
 

December 2012 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2012 
Marta Alpar 

All Rights Reserved 
 



 
 
 
 

UNIVERSITY OF MIAMI 
 
 
 

A dissertation submitted in partial fulfillment of  
the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 

UNIVERSAL CLASSIFICATION OF TOPOLOGICAL CATEGORIES 
 
 

Marta Alpar 
 
 
 
Approved:  
 
 
________________                    _________________ 
Marvin V. Mielke, Ph.D.             M. Brian Blake, Ph.D 
Professor of Mathematics   Dean of the Graduate School 
 
 
 
 
________________                    _________________ 
Shulim Kaliman, Ph.D.                Victor C. Pestien, Ph.D. 
Professor of Mathematics             Associate Professor of                   
                                                                                    Mathematics 
 
 
________________                      
Shihab S. Asfour, Ph.D.                
Professor of Engineering 

 
 



ALPAR, MARTA (Ph.D., Mathematics)
Universal Classification of Topological Categories (December 2012)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Marvin V. Mielke.
No. of pages in text. (94)

The main purpose of this dissertation is to construct, for various well known

families of topological categories and some of their generalizations, a member of the

family that is universal in the sense that every member of the family is isomorphic

to the pullback, along its so called classifying functor, of the said universal family

member. This is carried out by first constructing a topological category that is

universal for the family of all topological categories and then by defining various

family universal categories by describing their classifying functors. A further refine-

ment is made by placing restrictions on the classifying functors themselves, thus

obtaining various “restricted” families of topological categories along with their

corresponding “restricted universal categories”. These constructions and results

are first described in the more general setting of horizontal structures. We will

show that all horizontal structures can be obtained by pulling back the universal

horizontal structure along an appropriate classifying functor and as a consequence,

by restriction, every topological category can be realized as the pullback, along its

classifying functor, of the universal topological category.
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CHAPTER 1

INTRODUCTION

Topological functors were introduced by Herrlich (in terms of the existence

of certain initial lifts in [10]) and by Wyler (in terms of contravariant functors

to the category of complete lattices in [21]) among others in the early 1970s as a

result of axiomatizing the properties that many categories share: topological and

pretopological spaces [16], filter and stack convergence spaces [18], limit spaces

[17], bornological spaces [1] etc. The most important feature of these categories is

the existence of final (and initial) structures, in particular, for topological spaces

the formation of induced (and coinduced) topologies, which can be viewed as lifting

properties of the underlying set functor U : Top −→ Sets. In general, a functor

E −→ B between categories E and B is said to be a topological functor and E

a topological category over B, if it satisfies certain horizontal lifting conditions.

Several aspects of topological spaces can be extended to topological categories,

which can then serve as“realms” in which to formulate and test various topological

notions.

Many of the familiar examples of topological categories, nearness and uniform

spaces [9], grill spaces [18], along with the examples listed above result from gener-

alizing some particular aspect of the notion of topological space, while others, such

as: the categories of pairs, relations, preorders and families have other origins.

1
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In the second chapter the 2-category of horizontal structures over a category

A (denoted by HA) is defined as a supercategory of topological categories over A.

The so called horizontal morphisms of these horizontal structures behave much like

those morphisms (continuous functions) f̄ : (X, τ) −→ (Y, σ) in Top where σ is

the topology coinduced on Y by f , in the sense that given any other topology ρ on

Y such that f : (X, τ) −→ (Y, ρ) is continuous (f = f̄ in Sets), f factors through

f̄ in Top. Using the Grothendieck construction, HA will be shown to be naturally

equivalent to the functor category CATA. Horizontal structures, just as topological

structures, are pullback stable; this fact will lead to the definition of a contravariant

2-functorH : CAT −→ 2−Cat which assigns HA to a category A, and for a functor

F : A −→ B, H(F ) : HB −→ HA acts via the canonical pullback construction.

The natural (strong-lax) isomorphism
∫

based on the Grothendieck construction

shows that H is a representable 2-functor. The representing object must be a

suitable collection of categories large enough to contain the large categories used

later (in particular the category of posets), but it must be a category itself and as

such an object in CAT; its objects must form a proper class (the objects of CAT

form a conglomerate). This universe of categories will be denoted by ♭CAT. With

♭CAT the representing object forH, the universal object is the image of the identity

functor 1 : ♭CAT −→ ♭CAT under the functor
∫

♭CAT

by the enriched version of the

Yoneda Lemma.
∫

♭CAT

1 will be referred to as the universal horizontal structure

and denoted by CAT∗; the universality of CAT∗ means that every horizontal

structure is isomorphic to a pullback of CAT∗
P−→ ♭CAT along some functor. In

particular, considering functors in CoPA ⊆ ♭CATA, the resulting universal object

is the universal topological category CoP∗; (CoP is the category of cocomplete

posets with cocontinuous functors).
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In the third chapter we will describe the classifying functors for some familiar

topological categories and for their more general versions. The categories discussed

all resemble Top, the category of topological spaces and continuous functions. The

generalization of Top is achieved in two steps. First a topology will be defined on a

suitable poset rather than as a subset τ of the powerset P (X) of some set X; then

the topology will be viewed in terms of its characteristic function χτ : P (X) −→ 2

which will then be replaced by a function T : A −→ M with appropriate proper-

ties. The elements of the poset M give the degree of membership of the elements

of the poset A in the topology defined by T . The definition of T will include

as special cases all of the different versions of fuzzy topologies that appear in the

literature ([4],[8],[19],[24]). The universal member of this family of topological

categories will be identified through its classifying functor.

The fourth chapter deals with categories whose objects are (po)sets with some

kind of convergence structure defined on them. Stack convergence spaces, filter

and local filter convergence spaces, limit spaces and pretopological spaces will be

described through their respective classifying functors. Each convergence structure

is defined via a convergence function q : S(X) −→ P (X) or q : F (X) −→ P (X)

where S(X) and F (X) denote the set of all stacks and filters on X, respectively

and q associates to a stack (filter) the set of points of X to which it converges. To

generalize the categories listed above, P (X) will again be replaced by an appro-

priate poset; as a consequence stacks and filters will become down segments and

ideals of the poset (due to the reverse ordering). The classifying functors will be

subfunctors of one another, since they are obtained by putting restrictions on the

convergence function. There will thus be obtained a restricted family universal

category for each of the convergence types discussed.



CHAPTER 2

FOUNDATIONS

Horizontal Structures

Definition 2.1 cf. Definition 7.1.1 in [3] A 2-category C is defined by the

following data:

(1) a class of objects called 0-cells,

(2) for each pair a, b of 0-cells a category C(a, b) (often required to be small); (the

objects of C(a, b) are called 1-cells and its arrows are called 2-cells),

(3) for each triple a, b, c of 0-cells, a bifunctor

cabc : C(a, b)× C(b, c) −→ C(a, c),

(4) for each 0-cell a, a functor ua : 1 −→ C(a, a).

These data are required to satisfy the usual associativity and unit axioms. Given

1-cells f, g, h in C(a, b) and 2-cells α : f ⇒ g and β : g ⇒ h, the composition of α

and β in the category C(a, b) will be denoted by β ⊙ α, and given 2-cells α : f ⇒ g

in C(a, b) and φ : k ⇒ l in C(b, c)

a

f
$$

g

::
�� ��
�� α b

k
$$

l

::
�� ��
�� φ c

4
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cabc(α, φ) : kf ⇒ lg will be denoted by φ ∗ α. The composition map cabc being a

functor implies that the interchange law (ψ ∗ β)⊙ (φ ∗α) = (β ⊙α) ∗ (ψ⊙φ) holds

for the 2-cells as pictured: a
��

�� ��
�� α

EE�� ��
�� β

// b
��

�� ��
�� φ

FF�� ��
�� ψ

// c .

Depending on possible size restrictions imposed on the collection of objects and

morphisms of categories, we’ll adopt the following notation: CAT will denote the

quasicategory of all categories (as in Definitions 3.49 and 3.50 in[1]), Cat the cat-

egory of all small categories and ♭CAT will denote a category with categories (not

necessarily small) as objects such that ♭CAT is an object in CAT. CAT, Cat and

♭CAT are 2-categories. If A is a 2-category, so are Aop ( 1-cells reversed) and Aco

(2-cells reversed).

Given a category A, the functor category ♭CATA is a 2-category with functors

F : A −→ ♭CAT the 0-cells, natural transformations α : F ⇒ G the 1-cells and for

α, β : F ⇒ G, the 2-cells (modifications) m : α  β are defined as follows: each 1-

cell α : F ⇒ G is a collection of functors (arrows in ♭CAT) {αa : F (a) −→ G(a)}a∈A

and a 2-cell m : α  β is then a collection of natural transformations {ma : αa ⇒

βa}a∈A such that for f : a −→ b in A, 1Gf ∗ma = mb ∗ 1Ff (see diagram below)

where 1Ff and 1Gf are the identity natural transformations on the functors Ff

and Gf respectively, and ∗ denotes the standard horizontal composition of natural

transformations (cf. page 43 in [14]).



6

F (b)

F (a)

G(b)

G(a)ma��

αa

''

βa

77

βb

77
mb��

αb

''

Ff

��

Gf

��

a

b

f

��

Each ma again consists of components (arrows in the category G(a)) corresponding

to objects x of F (a): (ma)x : αa(x) −→ βa(x). (To avoid the clutter of multiple

pairs of parentheses, (ma)x will sometimes be written simply as max: for example,

the image of the arrow (ma)x under a functor φa will be written as φa(max) rather

than φa((ma)x) ). Given functors F,G : A −→ ♭CAT and natural transformations

α, β, γ : F ⇒ G, composition of arrows (2-cells) m : α  β and n : β  γ in

♭CATA(F,G) is defined for a ∈ A by (n ⊙ m)a = na · ma where na · ma is the

standard vertical composition of natural transformations (page 42 in [14]) with the

component for x ∈ F (a) given by the composition of arrows in the category G(a) :

(n⊙m)ax = naxmax : αa(x) −→ γa(x). This definition implies that composition of

arrows in ♭CATA(F,G) is associative. The identity 2-cell 1α : α α on α : F ⇒ G

consists of the collection of identity arrows {1αa(x) | a ∈ A and x ∈ F (a)} in G(a).

Given a triple of objects F,G,M in ♭CATA, the composition functor

cFGM : ♭CATA(F,G) × ♭CATA(G,M) −→ ♭CATA(F,M) is defined for α : F ⇒ G

and φ : G⇒M by the composition of functors; for an object a in A , c
FGM

(α,φ)a =

φa ◦ αa. (Note: cFGM (α,φ) will be denoted by φα; thus (φα)a = φa ◦ αa.)
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The horizontal composition c
FGM

(m,n) = n ∗m of 2-cells m and n as pictured

below

F G Mm��
�O

α

�'

β

7? n��
�O

φ

 (

ψ

6>

is given for an object a in A

F (a)

αa **

βa

44
�� ��
��

**

44
�� ��
�� ma G(a)

φa ++

ψa

33
�� ��
��

++

33
�� ��
�� na M(a)

by (n ∗m)a = na ∗ma : φa ◦ αa ⇒ ψa ◦ βa where na ∗ma is again the horizontal

composition of natural transformations: for x ∈ F (a), (na ∗ma)x is given by the

diagonal arrow of the commutative square below.

(φa ◦ αa)(x)
(na)αa(x)−−−−−−→ (ψa ◦ αa)(x)

φa(max)

y yψa(max)

(φa ◦ βa)(x)
(na)βa(x)−−−−−−→ (ψa ◦ βa)(x)

For c
FGM

to be a functor, it must preserve identities and composition: Given

an identity two cell (1α, 1φ) in ♭CATA(F,G) × ♭CATA(G,M), the component of

c
FGM

(1α, 1φ) corresponding to objects a in A and x in F (a) is 1φa(αa(x)), the identity

arrow on the object φa(αa(x)) in the category M(a), which is the same as the

corresponding component of 1c
FGM

(α,φ) = 1φα. c
FGM

preserving the composition

of 2-cells translates for m1,m2, n1 and n2 as pictured below

F G M
m1��
�O �#

//
;C

m2��
�O

n1��
�O �#

//
;C

n2��
�O;C

to (m2⊙m1)∗ (n2⊙n1) = (n1 ∗m1)⊙ (n2 ∗m2), which for an object a in A becomes

the standard interchange law for the natural transformations (m1)a, (m2)a, (n1)a
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and (n2)a. Given an object F in ♭CATA, the unit 1-cell in ♭CATA(F, F ) is the

identity natural transformation 1F : F ⇒ F consisting of the identity functors

1F (a) : F (a) −→ F (a) for an object a in A and the unit 2-cell on 1F consists of the

identity arrows {1x |x ∈ F (a)}. The associativity and unit axioms hold as a direct

consequence of the definitions involved.

Definition 2.2 Let P : E −→ B be a functor. Given an object b ∈ B, the

categorical fiber of P over b is the subcategory P−1(b) of E defined to have as

objects e ∈ E such that P (e) = b and as morphisms f : e1 −→ e2 in E such that

P (f) = 1b. The morphisms in the categorical fiber over any object are called vertical

morphisms. V (E) will denote the subcategory of E that has the same objects as E,

and its morphisms are the vertical morphisms of E. (V (E) is a subcategory of E,

since composition of vertical morphisms gives vertical morphisms and the identity

morphisms are vertical.)

Definition 2.3 Given a category A and subcategories R and L, (R,L) is called

a splitting of A, if for each f : a −→ b in A, f has a unique decomposition as f = lr

with l ∈ L and r ∈ R.

Definition 2.4 Given P : E −→ B and a splitting (H,V ) of E, (E, V,H) will

be called a horizontal structure over B if it satisfies the following properties: (i) V

is a subcategory of V (E), and (ii) each morphism f : a −→ b in B lifts uniquely

to any given domain in the fiber over a in E, with the lift f in H. The morphisms

of H will be called horizontal morphisms. Then given a horizontal structure over
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B, every morphism t : e1 −→ e2 in E factors uniquely as t = vh with v ∈ V and

h ∈ H, and h is the unique horizontal lift of P (t) to domain e1.

Remarks 2.5 (i) H and V , being subcategories, contain all the identity mor-

phisms of E; condition (ii) in the definition above then implies that H ∩ V =

{1e}e∈E .

(ii) For morphisms f : a −→ b and g : b −→ c in B, if f̄ is the horizontal lift of f

to domain e in E and ḡ is the horizontal lift of g to cod(f̄), then ḡf̄ = gf : H being

a subcategory means that ḡf̄ is in H, therefore both ḡf̄ and gf are horizontal lifts

of gf to the same domain; by the uniqueness of horizontal lifts then, ḡf̄ = gf .

(iii) The horizontal lift of an isomorphism is an isomorphism: Suppose f : a −→ b

is an isomorphism in B, f̄ is its horizontal lift to domain e in E and f−1 is the

horizontal lift of f−1 to domain cod(f̄)
def
= ē ; by (ii) above, f−1f̄ = f−1f = 1a

which means that both f−1f̄ and 1e are horizontal lifts of 1a to domain e; then

by the uniqueness of horizontal lifts, we have that f−1f̄ = 1e and by a similar

argument f̄ f−1 = 1ē. Hence f−1 is the inverse of f̄ in E.

Definition 2.6 Define the 2-category HB of horizontal structures over B as

follows: The 0-cells are horizontal structures (E, V,H)
P−→ B as in Definition 2.4.

The 1-cells are functors Φ : E1 −→ E2 such that for the 0-cells (E1, V1,H1)
P1−→ B

and (E2, V2,H2)
P2−→ B, P1 = ΦP2 and that Φ preserves both the horizontal and

vertical morphisms, i.e., h ∈ H1 ⇒ Φ(h) ∈ H2 and v ∈ V1 ⇒ Φ(v) ∈ V2. (Such

functors also preserve the horizontal-vertical decomposition of arrows.) The 2-cells

of HB are natural transformations α : Φ ⇒ Ψ such that for each object e in E1,
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αe : Φ(e) −→ Ψ(e) is a vertical morphism in V2. For each pair (E1, V1,H1)
P1−→ B

and (E2, V2,H2)
P2−→ B of 0-cells, the 1-cells Φ : E1 −→ E2 and 2-cells α : Φ ⇒ Ψ

must form a category (will be denoted by HB(E1, E2)). Composition of arrows

in the category HB(E1, E2) is defined componentwise: given objects Φ, Ψ, and

Υ and arrows α : Φ ⇒ Ψ and β : Ψ ⇒ Υ in HB(E1, E2), E1

Φ

��
�� ��
�� α

CC

Υ

�� ��
�� β

Ψ // E2 , the

composition β ⊙ α : Φ⇒ Υ is defined for each object e in E1 by (β ⊙ α)e = βeαe :

Φ(e) −→ Υ(e). The associativity of composition of 2-cells then follows from the

associativity of composition of morphisms in E2. Since both αe : Φ(e) −→ Ψ(e)

and βe : Ψ(e) −→ Υ(e) are in V2 and V2 is closed under composition, βeαe is in

V2 as well, so β ⊙ α is well defined. For each triple (Ei, Vi, Hi)
Pi−→ B, i = 1, 2, 3

of 0-cells, we must have a bifunctor c : HB(E1, E2)×HB(E2, E3) −→ HB(E1, E3).

For 1-cells, c is the usual composition of functors. For 2-cells α : Φ1 ⇒ Ψ1 and

β : Φ2 ⇒ Ψ2,

E1

Φ1 ''

ψ1

77
�� ��
�� α E2

Φ2 ''

Ψ2

77
�� ��
�� β E3

c(α, β) = β ∗ α : Φ2Φ1 −→ Ψ2Ψ1 is defined by the usual horizontal composition

of natural transformations, i.e., for each object e of E1, as the diagonal of the

commutative square below:

Φ2Φ1(e)
βΦ1(e)−−−−→ Ψ2Φ1(e)

Φ2(αe)

y yΨ2(αe)

Φ2Ψ1(e)
βΨ1(e)−−−−→ Ψ2Ψ1(e)

The functoriality of c follows from the standard interchange laws for the vertical and

horizontal composition of natural transformations: (δ ∗β)◦ (γ ∗α) = (β ◦α)∗ (δ ◦γ).
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E1

��
�� ��
�� α

CC�� ��
�� β

// E2

��
�� ��
�� γ

CC�� ��
�� δ

// E3

As the unit 1-cells are the identity functors and the unit 2-cell on a 1-cell

Φ : E −→ E is the identity natural transformation given by the identity arrows

1e : e −→ e for any object e of E, the required unit axioms and associativity axioms

hold.

Definition 2.7 (cf. Definition 7.2.1 in [3]) Given two 2-categories A and B, a

functor F : A −→ B on the underlying categories A and B is a 2-functor if for

each pair of objects a and b in A, F induces a functor Fab : A(a, b) −→ B(Fa, Fb)

such that Fab is compatible with composition and units, i.e., such that the following

diagrams commute:

A(a, b)×A(b, c)
cabc−−−−→ A(a, c)

Fab×Fbc

y yFac

B(Fa, Fb)×B(Fb, Fc)
cFaFbFc−−−−−→ B(Fa, Fc)

1
ua //

uFa $$H
HH

HH
HH

HH
H A(a, a)

Faa

��
B(Fa, Fa)

Definition 2.8 (cf. Definition 7.2.2 in [3]) Given two 2-categories A, B and

two 2-functors F,G : A −→ B, a natural transformation α : F ⇒ G is a 2-

natural transformation, if for each pair of objects a, b in A, the following diagram

of categories commutes:
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A(a, b)
Fab−−−−→ B(Fa, Fb)

Gab

y yRα

B(Ga,Gb)
Sα−−−−→ B(Fa,Gb)

Both functors Rα and Sα above act via composition: for f : Fa −→ Fb,

Rα(f) = αb ◦f and for a 2-cell φ in B(Fa, Fb), Rα(φ) = 1αb
∗φ; for g : Ga −→ Gb,

Sα(g) = g ◦ αa and for a 2-cell γ in B(Ga,Gb), Sα(γ) = γ ∗ 1αa .

The purpose of the following (2.9 - 2.11) is to define a 2-functor

K : CATop −→ 2 − Cat, where 2 − Cat is the category of 2-categories, 2-functors

and 2-natural transformations.

Construction 2.9 Given categories A and B, a functor F : A −→ B induces a

2-functor F ∗ : ♭CATB −→ ♭CATA as follows: For a functor T : B −→ ♭CAT,

F ∗(T ) = T ◦F ; given a pair of objects T1, T2 in ♭CATB , F ∗ must define a functor

F ∗1,2 : ♭CATB(T1, T2) −→ ♭CATA(T1 ◦ F, T2 ◦ F ). Given a natural transformation

α : T1 ⇒ T2 with components {αb : T1(b) −→ T2(b) | b ∈ B}, F ∗1,2(α) : T1 ◦ F ⇒

T2 ◦ F is defined to be the natural transformation with (F ∗1,2(α))a = αFa as its

component corresponding to an object a in A. F ∗1,2(α) will be denoted by α
F

. Given

1-cells α, β and a 2-cell m : α β in ♭CATB(T1, T2)

T1 T2m��
�O

α
 (

β

6>

with components the arrows {mbx : αb(x) −→ βb(x)} in T2(b) for b in B and

x ∈ T1(b), the corresponding 2-cell F ∗1,2(m) (denoted below for short by mF )
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T1 ◦ F T2 ◦ Fm
F��

�O

α
F

$,

βF

2:

has components {(mFa)x : αFa(x) −→ βFa(x)} for a in A and x in T1(F (a)).

For an identity 2-cell 1α on α : T1 ⇒ T2, F ∗1,2(1α) has components the identity

arrows αFa(x)
1−→ αFa(x) in T2F (a); F ∗1,2 then preserves identities. Since the

vertical composition of 2-cells is defined componentwise, by composition of arrows

in a category, F ∗1,2 preserves composition as well. The compatibility of F ∗1,2 with

horizontal composition is equivalent to the commutativity of the diagram below

(the subscripts for the composition functor c were omitted).

♭CATB(T1, T2)× ♭CATB(T2, T3)
c−−−−→ ♭CATB(T1, T3)

F∗
1,2×F

∗
2,3

y yF∗
1,3

♭CATA(T1 ◦ F, T2 ◦ F )× ♭CATA(T2 ◦ F, T3 ◦ F )
c−−−−→ ♭CATA(T1 ◦ F, T3 ◦ F )

For a 1-cell (α,φ) in ♭CATB(T1, T2)× ♭CATB(T2, T3), c(α, φ) = φα is defined via

composition of functors; for an object b in B, (φα)b = φb ◦ αb : T1(b) −→ T3(b)

and then F ∗1,3(φα) is the natural transformation with component for a in A the

functor (φα)Fa = φFa ◦αFa : T1F (a) −→ T3F (a). Going the other way around the

diagram gives first the natural transformation (F ∗1,2×F ∗2,3)(α,φ) = (αF , φF ), whose

image under the composition functor c is again φFαF with components φFa ◦ αFa

for an object a in A. The diagram then commutes for 1-cells.

For appropriate 2-cells m and n, the commutativity of the diagram translates

to (n ∗m)F = nF ∗mF . The components of both 2-cells corresponding to an object
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a in A are natural transformations φFa ◦ αFa ⇒ ψFa ◦ βFa (where m : α β and

n : φ ψ). By the definition of n ∗m, (n ∗m)Fa = nFa ∗mFa. The diagram then

commutes for 2-cells as well.

The unit axiom is equivalent to the commutativity of the diagram below:

1
u
T //

u
TF %%LL

LLL
LLL

LLL
CATB(T, T )

F∗
TT

��
CATA(TF, TF )

Since the unit 1-cells have as components the identity functors and the unit 2-cells

have identity arrows as components both of which are preserved by F ∗, the diagram

above does commute. F ∗ : CATB −→ CATA is then a 2-functor.

Lemma 2.10 A natural transformation α : F ⇒ G for the functors

F,G : A −→ B induces a 2-natural transformation α∗ : F ∗ ⇒ G∗ where F ∗, G∗ :

CATB −→ CATA are the 2-functors defined in the previous construction.

Proof. The component α∗
T

of α∗ corresponding to an object T in CATB must be

shown to be a natural transformation (a 1-cell in CATA) α∗T : TF ⇒ TG. The

component (α∗T )a of α∗T corresponding to an object a ∈ A is the functor defined

by the image of the arrow αa : F (a) −→ G(a) in B under the functor T ; (α∗
T

)a =

T (αa) : TF (a) −→ TG(a). Given a pair of objects T1, T2 in ♭CATB , the following

diagram must commute for α∗ to be a 2-natural transformation:
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♭CATB(T1, T2)
F∗

1,2−−−−→ ♭CATA(T1F, T2F )

G∗
1,2

y yRα∗

♭CATA(T1G,T2G)
Sα∗−−−−→ ♭CATA(T1F, T2G)

where Rα∗ and Sα∗ are as in Definition 2.8. For a 1-cell φ : T1 ⇒ T2 and an object

a in A, the commutativity of the diagram means T2(αa) ◦ φ
Fa

= φ
Ga
◦ T1(αa); this

equality follows from the naturality of φ:

T1F (a)
φ

Fa−−−−→ T2F (a)

T1(αa)

y yT2(αa)

T1G(a)
φ

Ga−−−−→ T2G(a)

For a 2-cell m in CATB(T1, T2)

T1 T2m��
�O

φ

 (

ψ

6>

the commutativity of the square above translates to the commutativity of the dia-

gram below:

T1G

T1F

T2G

T1FmF��
�O

φF

"*

ψF

4<

ψG

4<
mG��
�O

φG

"*

α∗
T1

=T1(α)

��

α∗
T2

=T2(α)

��

Since 1T2(α) ∗mF
= m

G
∗ 1T1(α) follows from the definition of 2-cells in CATA, α∗

is a 2-natural transformation.
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Proposition 2.11 The previous two constructions define a 2-functor

K : CATop −→ 2 − Cat with K acting on 0, 1 and 2-cells as follows: K(A) =

♭CATA, K(F ) = F ∗ and K(α) = α∗.

Proof. Given categories A andB, Kmust induce a functorKAB : CAT(A,B) −→

2− Cat(♭CATB , ♭CATA) such that the following diagram commutes:

♭CAT(A,B)× ♭CAT(B,C)
c−−−−→ ♭CAT(A,C)

KAB×KBC

y yKA,C

2-Cat(CATB,CATA)× 2-Cat(CATC ,CATB)
c−−−−→ 2-Cat(CATC ,CATA)

For 1-cells F : A −→ B and G : B −→ C, (GF )∗ = F ∗G∗ holds since for T in

CATC , (GF )∗(T ) = T (GF ) and F ∗(G∗(T )) = F ∗(TG) = (TG)F ; for φ : T1 ⇒ T2

in CATC , both (GF )∗(φ) and F ∗G∗(φ) result in the natural transformation

φGF : T1GF ⇒ T2GF ( as defined in Construction 2.9).

Given 2-cells φ, γ (and then φ∗ and γ∗) as pictured,

A

B

C

CATA

CATB

CATC

F1

��

F2

��

G1

��

G2

��

F∗
2

YY

F∗
1

EE

G∗
2

YY

G∗
1

EE
K //

φ +3

γ +3

φ∗
+3

γ∗
+3

the commutativity of the diagram translates to the equation (γ ∗φ)∗ = φ∗ ∗γ∗. For

T in CATC , by Lemma 2.10, the component of (γ ∗ φ)∗ corresponding to T is the
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natural transformation (γ ∗ φ)∗T : TG1F1 ⇒ TG2F2 that has as the component for

a in A the functor ((γ ∗ φ)∗T )a : TG1F1(a) −→ TG2F2(a) which is the image of the

arrow (γ ∗ φ)a : G1F1(a) −→ G2F2(a) in C under the functor T : ((γ ∗ φ)∗T )a =

T ((γ ∗φ)a), where (γ ∗φ)a is the diagonal of the commutative square (in C) below.

G1F1(a)
γ
F1a //

G1(φa)

��
(γ∗φ)a

%%

G2F1(a)

G2(φa)

��
G1F2(a)

γ
F2a

// G2F2(a)

Since (for i = 1, 2) F ∗i G
∗
i (T ) = TGiFi, by the definition of F ∗i (Construction 2.9)

F ∗i (γ∗
T

) = (γ∗
T

)
Fi

and on the other hand (by Lemma 2.10), (γ∗
T

)
Fi

= T (γ
Fi

) and

φ∗
TGi

= TGi(φ), applying the functor T to the diagram above gives the commutative

square, whose diagonal, by the definition of the horizontal composition of natural

transformations in 2-Cat is ((φ∗ ∗ γ∗)T )a:

TG1F1(a) = F ∗1G
∗
1(T )(a)

T (γ
F1a

)=F∗
1 (γ∗

T )(a)
//

TG1(φa)=φ
∗
TG1

��

((γ∗∗φ∗)T )a

))

TG2F1(a) = F ∗1G
∗
2(T )(a)

TG2(φa)=φ
∗
TG2

��
TG1F2(a) = F ∗2G

∗
1(T )(a)

T (γ
F2a

)=F∗
2 (γ∗

T )(a)
// TG2F2(a) = F ∗2G

∗
2(T )(a)

Thus (γ ∗ φ)∗ = γ∗ ∗ φ∗ since the components of the natural transformations are

equal. KAB must also honor the vertical composition of natural transformations:



18

A
��

�� ��
�� α

EE�� ��
�� β

// B . The component of K(β ⊙ α) = (β ⊙ α)∗ corresponding to an object a

in A and T in CATB is T (βaαa), whereas the corresponding component of K(β)⊙

K(α) = β∗ ⊙ α∗ is T (αa)T (βa); since T is a functor, we have that T (βaαa) =

T (αa)T (βa). As a direct consequence of the definitions involved, all unit axioms

are satisfied as well, and therefore K is well defined.

Definition 2.12 (cf. Definition 7.5.1 in [3]) A 2-functor F : A −→ B is called a

lax 2-functor, if it preserves composition and identities up to coherent 2-cells, i.e.,

for every triple of objects a, b, c in A, there is a natural transformation δabc and for

every object a in A, there is a natural transformation εa such that the following

diagrams commute.

A(a, b)×A(b, c) A(a, c)

B(Fa, Fb)×B(Fb, Fc) B(Fa, Fc)

c //

c //

Fab×Fbc

��

Fac

��

δabc
4<qqqqqq

qqqqqq

1 A(a, a)

1 B(Fa, Fa)

ua //

u
Fa //

Fac

��

εa
;C�����
�����

The natural transformations δ and ε must satisfy the following coherence axioms.

(The component of δabc corresponding to the pair of arrows (f, g) will be denoted

by δf,g rather than (δabc)(f,g).)
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Coherence with composition: for any triple of arrows a
f−→ b

g−→ c
h−→ d in A, we

must have δgf,h ⊙ (1Fh ∗ δf,g) = δf,hg ⊙ (δg,h ∗ 1Ff ).

Coherence with units: δ1a,f ⊙ (1Ff ∗ εa) = 1Ff and δf,1b ⊙ (εb ∗ 1Ff ) = 1Ff (see

diagrams below).

Fh ◦ Fg ◦ Ff Fh ◦ F (g ◦ f)

F (h ◦ g) ◦ Ff F (h ◦ g ◦ f)

1Fh∗δf,g //

δf,hg //

δf,g∗1Ff

��

δgf,h

��

Ff ◦ 1Fa Ff ◦ F (1a)

Ff F (f ◦ 1a)

1Ff∗εa //

1Ff

//

1Ff

��

δ1a,f

��

1Fb ◦ Ff F (1b) ◦ Ff

Ff F (1b ◦ f)

εb∗1Ff //

1Ff

//

1Ff

��

δf,1b

��

F will be called a strong-lax 2-functor when the natural transformations δabc and εa

are natural isomorphisms for any objects a, b and c. (Such functors are also referred

to as pseudo, or weak functors.)

The purpose of the constructions outlined in (2.13 - 2.19) is to define a strong-lax

2-functor H : ♭CAT
op −→ 2− Cat.

Remark 2.13 Given a morphism Φ : [(E1, V1,H1)
P1−→ B] −→ [(E2, V2,H2)

P2−→

B] of horizontal structures over B, if h̄ : x −→ y is the horizontal lift of h : a −→ b

to domain x in E1, then Φ(h̄) : Φ(x) −→ Φ(y) is the horizontal lift of h to domain

Φ(x) in E2: since Φ is assumed to preserve horizontal morphisms, Φ(h̄) is horizontal,

and P1 = P2Φ implies that it covers h, so it is the horizontal lift of h to domain
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Φ(x) by the uniqueness of horizontal lifts. Adopting the notation h̄ for a lift of an

arrow h to a domain in E1, and ¯̄h for the lift of h to a domain in E2, we have that

Φ(h̄) = ¯̄h.

Construction 2.14 Given a functor F : A −→ B and a horizontal structure

(E, V,H)
P−→ B over B, the canonical pullback of E

P−→ B along F defines a

horizontal structure (EF , V F ,HF )
PF

−→ A over A. The objects of EF are pairs

(a, x) where a and x are objects in A and E respectively such that F (a) = P (x);

the morphisms are pairs (f, g) with f a morphism in A and g a morphism in E

such that F (f) = P (g). Composition of morphisms is defined componentwise. The

horizontal structure (EF , V F ,HF ) is given by V F = {(a, x)
(1a,g)−→ (a, y)} with g ∈ V

and by HF = {(a, x)
(f,h)−→ (b, y)} where h is in H. In the pullback square below, the

functors PF and G are defined in the obvious way: PF (a, x) = a, PF (f, g) = f

and similarly G(a, x) = x, G(f, g) = g. It follows from the definitions that both

V F and HF are subcategories of EF , and clearly V F ⊆ V (EF ).

(EF , V F ,HF )
G−−−−→ (E, V,H)

PF

y yP
A

F−−−−→ B

The unique horizontal lift of f : a −→ b in A to domain (a, x) in EF is

(f, Ff) : (a, x) −→ (b, x) where Ff is the unique horizontal lift of Ff : F (a) −→

F (b) to domain x in E; thus x = Cod(Ff). The unique factorization of a morphism

(a, x)
(f,g)−→ (b, y) in EF is (f, g) = (1b, v)(f, h) where vh is the unique factorization

of g in E.
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Remark 2.15 The canonical pullback of E
P−→ A along the identity functor

1A : A −→ A results in an isomorphic copy E1A of E with objects (a, x) such that

P (x) = a and morphisms (f, g) such that P (g) = f ; thus the objects and morphisms

of E1A are of the form (P (x), x) and (P (g), g), respectively.

Lemma 2.16 Given a morphism Φ : E1 −→ E2 of horizontal structures over B

and a functor F : A −→ B, Φ induces a morphism ΦF : EF1 −→ EF2 of the pullback

horizontal structures.

Proof. On objects ΦF (a, x) = (a,Φ(x)) and on morphisms ΦF (f, g) = (f,Φ(g)).

Since ΦF preserves vertical morphisms and P1ΦF = PF , ΦF is a morphism of

horizontal structures, i.e., it is a one cell in HA.

Construction 2.17 Given morphisms Φ,Ψ : E1 −→ E2 of horizontal structures

over B and a natural transformation α : Φ ⇒ Ψ, pulling α back along a functor

F : A −→ B gives a natural transformation αF : ΦF ⇒ ΨF . For an object (a, x)

in EF1 , αF(a,x) = (1a, αx) : ΦF (a, x) = (a,Φ(x)) −→ ΨF (a, x) = (a,Ψ(x)), where

αx : Φ(x) −→ Ψ(x) is the component of the natural transformation α for the object

x in E1; (1a, αx) is clearly a vertical morphism, and for (a, x)
(f,g)−→ (b, y) in EF1 , the

following diagram commutes

(a,Φ(x))
(1a,αx)−−−−−→ (a,Ψ(x))

(f,Φ(g)

y y(f,Ψ(g))

(b,Φ(y))
(1b,αy)−−−−→ (b,Ψ(y))

since by the naturality of α, Ψ(g)αx = αyΦ(g).



22

Construction 2.18 Given a functor F : A −→ B, F gives rise to a 2-functor

HF : HB −→ HA as follows: (E, V,H)
P−→ B is sent to (EF , V F ,HF )

PF

−→ A as

in Construction 2.14. For a pair of objects (Ei, Vi,Hi)
Pi−→ B, i = 1, 2 in HB ,

HF must define a functor HFE1,E2
: HB(E1, E2) −→ HA(EF1 , E

F
2 ). (We’ll write

HF1,2 instead of HFE1,E2
.) For a morphism Φ : E1 −→ E2 of horizontal structures

(an object in HB(E1, E2) as defined in 2.6), HF (Φ) = ΦF as in Lemma 2.16.

For a natural transformation α : Φ ⇒ Ψ (an arrow in HB(E1, E2)), HF (α) =

αF : ΦF −→ ΨF as defined in Construction 2.17. Given arrows Φ
α⇒ Ψ

β⇒ Υ in

HB(E1, E2), (β⊙α)F = (βF ⊙αF ), since for an object (a, x) in EF1 , (β⊙α)F(a,x) =

(1a, (β⊙α)x) = (1a, (βx⊙αx)) = (1a, βx)⊙(1a, αx) = βF(a,x)⊙α
F
(a,x) = (βF⊙αF )(a,x).

For the identity 2-cell 1 : Φ −→ Φ in HB(E1, E2), 1F : ΦF −→ ΦF is clearly the

identity 2-cell in HA(EF1 , E
F
2 ). H(F ) must also satisfy the following compatibility

conditions to be a 2-functor. Compatibility with composition translates into the

commutativity of the following diagram for objects E1, E2 and E3 in HB .

HB(E1, E2)×HB(E2, E3)
c−−−−→ HB(E1, E3)

HF 1,2×HF 2,3

y yHF 1,3

HA(EF1 , E
F
2 )×HA(EF2 , E

F
3 )

c−−−−→ HA(EF1 , E
F
3 )

For the diagram above to commute on the object level, we must have (ΨΦ)F =

ΨFΦF for functors Φ : E1 −→ E2 and Ψ : E2 −→ E3. Given an object (a, x)

in EF1 , (ΨΦ)F (a, x) = (a,ΨΦ(x)) and (ΨFΦF )(a, x) = Ψ(a,Φ(x)) = (a,ΨΦ(x));

similarly for an arrow (f, g) : (a, x) −→ (b, y) in EF1 , since the functors Φ and

Ψ act on the second coordinate, (ΨΦ)F (f, g) = ΨF (ΦF (f, g)) = (f,ΨΦ(g)). For

the diagram to commute for arrows α : Φ1 −→ Ψ1 and β : Φ2 −→ Ψ2 we must
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have βF ∗ αF = (β ∗ α)F . For an object (a, x) in EF1 , the components of the

natural transformations in question are (by Construction 2.17 and Definition 2.6)

as follows: (β ∗α)F(a,x) = (1a, (β ∗α)x) = (1a,Ψ2(αx) ◦ βΦ1(x)) and (βF ∗αF )(a,x) =

ΨF
2 (αF(a,x)) ◦ β

F
ΦF

1 (a,x)
= ΨF

2 (1a, αx) ◦ βF(a,Φ1(x))
= (1a,Ψ2(αx)) ◦ (1a, βΦ1(x)) =

(1a,Ψ2(αx) ◦ βΦ1(x)). Compatibility with units means that for an object E in HB ,

with 1E : E −→ E the identity functor, (1E)F = 1EF and that for a functor Φ

in HB , with 1Φ the identity 2-cell on Φ we have (1Φ)F = 1ΦF . By Lemma 2.16,

(1E)F (a, x) = (a, 1E(x)) = (a, x) for an object (a, x) in EF and similarly for a

morphism (f, g) in EF , (1E)F (f, g) = (f, 1E(g)) = (f, g), so (1E)F = 1EF . By

Construction 2.17, (1Φ)F(a,x) = (1a, (1Φ)x) = (1a, 1Φ(x)) and (1ΦF )(a,x) = (1a, 1Φ(x)),

we have that (1Φ)F = 1ΦF , and the 2-functor HF : HB −→ HA is well defined.

Remark 2.19 For the identity functor 1A : A −→ A the corresponding 2-functor

H1A : HA −→ HA is an isomorphism of categories, since pulling back an object

E1
P1−→ A in HA along the identity functor results in an isomorphic copy E1A

1 of E1

(see Remark 2.15), and for horizontal structures E1 and E2 over A,

H1A : HA(E1, E2) −→ HA(E1A
1 , E1A

2 ) gives a bijection on both the classes of 1-cells

and 2-cells.

Lemma 2.20 A natural transformation θ : F ⇒ G of functors F,G : A −→ B

defines a 2-natural transformation Hθ : HF ⇒ HG where HF , HG : HB −→ HA

are the 2-functors defined in Construction 2.18.

Proof. For an object (E, V,H)
P−→ B of HB , the corresponding arrow HθE :

EF −→ EG is the functor defined as follows: For an object (a, x) in EF , HθE (a, x) =
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(a, x) where x is the codomain of the horizontal lift θa : x −→ x of θa : F (a) −→

G(a) to domain x in E. For a morphism (f, g) : (a, x) −→ (b, y), HθE (f, g) :

(a, x) −→ (b, y) is constructed as follows: let h be the horizontal lift of h = Gf ◦θa =

θb ◦ Ff : F (a) −→ G(b) to domain x in E and Gf be the horizontal lift of Gf to

domain x. We then have both x
θa−→ x

Gf−→ z and h covering h. Since H is a

subcategory and both θa and Gf are in H, so is Gf ◦θa and then by the uniqueness

of horizontal lifts we have Gf ◦ θa = h : x −→ z. We also have x
g−→ y

θb−→ y in E;

let vh∗ be the horizontal-vertical decomposition of θbg. Since P (h∗) = P (vh∗) =

P (θbg) = θbP (g) = θbFf = h, h∗ is also a horizontal lift of h, so h∗ = h̄. Then

z = cod(h∗) = dom(v), and we have x
Gf−→ z

v−→ y. For morphisms then, HθE

is defined by HθE (f, g) = (f, vGf) : (a, x) −→ (b, y). We must still show that

HθE preserves composition and identities. Given morphisms (a, x)
(f,g)−→ (b, y)

(f∗,g∗)−→

(c, t) in EF , we have that Hθ(f
∗, g∗) ◦ Hθ(f, g) = (f∗f, v∗Gf∗ vGf) where v∗ is

the vertical component of the horizontal-vertical decomposition of θcg
∗ (see figure

below) and Hθ(f
∗f, g∗g) = (f∗f, v♯G(f∗f)) where v♯ is the vertical component of

the horizontal-vertical decomposition of θcg
∗g. (θcg

∗g = v♯(G(f∗f) θa).) Thus it

is left to show that v∗Gf∗ vGf = v♯G(f∗f). Let v♭h♭ be the horizontal-vertical

decomposition of Gf∗ vGf . Then Gf∗ vGf = v♭h♭ means that h♭ covers Gf∗Gf =

Gf∗f and it is a horizontal morphism with domain x; the same holds for Gf∗f , so

by the uniqueness of horizontal lifts, h♭ = Gf∗f . Then we have that on one hand

θcg
∗g = v∗Gf∗ θbg = v∗Gf∗ vGf θa = v∗v♭h♭θa = v∗v♭G(f∗f) θa; on the other

hand, it follows from the definition of v♯, that θcg
∗g = v♯G(f∗f)θa. Then by the

uniqueness of horizontal-vertical decompositions, we have that v∗v♭ = v♯, which

then shows that v♯G(f ∗ f) = v∗v♭G(f ∗ f) = v∗v♭h♭ = v∗Gf∗ vGf .



25

EF

EG

• • •
a b cA >

f
>
f∗

·
·(f,g) 55kkk ·

·(f∗,g∗) 66nnnnn HθE
::vvvvv

(a,x)
(b,y)

(c,t)

·
·(f,vGf) 55kkkkkkk
·

·(f∗,v∗Gf∗) 77nnnnnn

(a,x̄)
(b,ȳ)

(c,t̄)

x x̄
θ̄a //

y ȳ
θ̄b //

t t̄
θ̄c //

x

y
g ##F
FF

F

y

tg∗ ##F
FF

F

x̄ z̄
Gf // z̄

ȳ
v��
ȳ ·// ·

t̄
�� v

∗

x̄

ȳ
##
ȳ

t̄
##

x̄ ·
��
G(f∗f)

·
v♭��

v♯

||

F (a) G(a)
θa //

F (b) G(b)
θb //

F (c) G(c)
θc //

F (a)

F (b)
��?

??

F (b)

F (c)
��?

??

G(a)

G(b)
��?

??

G(b)

G(c)
��?

??
F

++

G

33θ
��

��*
**
**
**
**

����
��
��
��
��
��
��
�

E

B

P

��

F (a)

F (b)
Ff ��?

??

F (b)

F (c)
Ff∗ ��?

??

Given an object (a, x) in EF , 1(a,x) = (1a, 1x); we must show that HθE (1a, 1x) =

(1a, 1x). By the definition of HθE , HθE (1a, 1x) = (1a, v1G(a)) where v is the vertical

component of the horizontal vertical decomposition of θa 1x = θa; since θa : x −→ x

can be written as θa = 1xθa, v = 1x. Moreover, 1G(a) being a horizontal lift is in H,

and it is in V as well, since it covers the identity on G(a) in B; therefore 1G(a) = 1x

which shows that v1G(a) = 1x.

For Hθ to define a 2-natural transformation, the following diagram of categories

must commute:

HB(E1, E2)
HF(E1,E2)−−−−−−→ HA(EF1 , E

F
2 )

HG(E1,E2)

y yHA(1,HθE2
)

HA(EG1 , E
G
2 )

HA(HθE1
,1)

−−−−−−−−→ HA(EF1 , E
G
2 )

Following the object (functor) Φ : E1 −→ E2 of HB(E1, E2) first horizontally and

then vertically gives the functor HθE2
ΦF : EF1 −→ EG2 . Given an object (a, x) in
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EF1 , ΦF (a, x) = (a,Φ(x)) andHθE2
(a,Φ(x)) = (a,Φ(x)) where Φ(x) is the codomain

of the horizontal lift of θa : F (a) −→ G(a) to domain Φ(x) in E2; following Φ in the

other direction results in the functor ΦGHθE1
. Now HθE1

(a, x) = (a, x̄) where x̄ is

the codomain of the horizontal lift of θa to domain x in E1, and ΦG(a, x̄) = (a,Φ(x̄)).

Since by Remark 2.13 Φ(x) = Φ(x̄), we have that for objects, HθE2
ΦF = ΦGHθE1

.

For a morphism (f, g) : (a, x) −→ (b, y) in EF1 , on one hand HθE2
ΦF (f, g) =

HθE2
(f,Φ(g)) = (f, v∗Gf) where v∗ is the vertical component of the horizontal-

vertical decomposition of θbΦ(g) and Gf is the horizontal lift of Gf : G(a) −→

G(b) to domain Φ(x̄) in E2; on the other hand ΦGHθE1
(f, g) = ΦG(f, vGf) =

(f,Φ(vGf)) where Gf is the horizontal lift of Gf to domain x̄ in E1 and v is the

vertical component of the horizontal-vertical decomposition of θbg in E1. Since

Φ preserves the horizontal-vertical decomposition of morphisms, the horizontal-

vertical decomposition of ¯̄θbΦ(g) = Φ(θ̄bg) is Φ(vG(f) θ̄a) = Φ(v)G(f) ¯̄θa. Thus

Φ(v) = v∗ and Φ(vG(f)) = v∗G(f); hence HθE2
ΦF = ΦGHθE1

for morphisms

as well. The commutativity of the diagram for 2-cells translates to 1Hθ2
∗ αF =

αG ∗ 1Hθ2
:

EF1

ΦF

((

ΨF

66
�� ��
�� αFEF2

HθE2 ((

HθE2

66
�� ��
�� 1 EG2 and EF1

HθE1 ((

HθE2

66
�� ��
�� 1 EG1

ΦG

((

ΨG

66
�� ��
�� αGEG2 .

Given an object (a, x) of EF1 , the corresponding component of both composite

natural transformations (by Construction 2.17) is (1a, αx̄) : (a,Φ(x̄) −→ (a,Ψ(x̄)).

Corollary 2.21 If the natural transformation θ : F ⇒ G in Lemma 2.20 is a

natural isomorphism, then the components of Hθ are isomorphisms as well.
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Proof. Suppose the components θa : F (a) −→ G(a) of θ are invertible arrows

in B; then given a horizontal structure E
P−→ B, the corresponding component

HθE : EF −→ EG is a functor with its inverse H−1θE : EG −→ EF defined as fol-

lows. For an object (a, y) of EG, H−1θE (a, y) = (a, ȳ) with ȳ = cod(θ−1a ). Then by

part (iii) of Remark 2.5, on the object level HθEH
−1
θE

= 1EG and H−1θE HθE = 1EF .

Given a morphism (f, g) : (a, x) −→ (b, y) in EG H−1θE (f, g)
def
= (f, vFf) where v

is the vertical component of the horizontal-vertical factorization of θ−1b g with θ−1b

the lift of θ−1b : G(b) −→ F (b) to domain y in E. To show that H−1θE HθE = 1EF

on the morphism level, suppose (f, g) : (a, x) −→ (b, y) is a morphism in EF ;

HθE (f, g) = (f, vGf) where v is the vertical component of the horizontal-vertical

factorization of θbg (θb is lifted to domain y to get θb) and H−1θE (f, vGf) = (f, v∗Ff)

where v∗ is the vertical component of the horizontal-vertical decomposition of

θ−1b vGf . Since θbg = vGf θa by the horizontal-vertical factorization of θbg, and

θ−1b vGf = v∗Ffθ−1a (again using the horizontal-vertical factorization of θ−1b vGf),

we have that v∗Ff = θ−1b vGf θa = θ−1b θbg = g. Thus H−1θE HθE = 1EF and by a sim-

ilar argument, HθEH
−1
θE

= 1EG . Hence pulling back a horizontal structure along iso-

morphic functors results in isomorphic horizontal structures: F ∼= G⇒ EF ∼= EG.

Proposition 2.22 The preceding constructions define a strong-lax 2-functor

H : CATop −→ 2-Cat.

Proof. For zero cells, H(A) = HA, the 2-category of horizontal structures over

A (Def. 2.6). For each pair of objects A, B in CAT, we have a functor HA,B :

CAT(A,B) −→ 2 − Cat(HB, HA) defined for F : A −→ B by HA,B(F ) = HF :
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HB −→ HA as in Construction 2.18, and for θ : F ⇒ G (F,G : A −→ B) by

HA,B(θ) = Hθ as in Lemma 2.20. Given F,G,K : A −→ B, α : F ⇒ G and

β : G⇒ K in ♭CAT(A,B), we must have HA,B(βα) = HA,B (β)HA,B(α), or using

the notation of Lemma 2.20, Hβα = HβHα. For an object (a, x) in EF , Hα(a, x) =

(a, x̄) ∈ EG where x̄ is the codomain of the horizontal lift αa of αa : F (a) −→ G(a)

to domain x in E, and Hβ(a, x̄) = (a, ¯̄x) ∈ EK where ¯̄x is the codomain of the

horizontal lift βa of βa : G(a) −→ K(a) to domain x̄ in E. Hβα(a, x) = (a, x̂) ∈ EK

where x̂ is the codomain of the horizontal lift (βα)a of (βα)a : F (a) −→ K(a) to

domain x in E. Since H is assumed to be a subcategory of E, the composition

of horizontal morphisms is horizontal; the uniqueness of horizontal lifts to a given

domain then implies that βa αa = (βα)a and hence ¯̄x = x̂. Given a morphism

(f, g) : (a, x) −→ (b, y) in EF , on one hand Hα(f, g) = (f, vGf) : (a, x̄) −→ (b, ȳ)

where v is the vertical component of the horizontal-vertical decomposition of αbg

and Hβ(f, vGf) = (f, v∗Kf) : (a, ¯̄x) −→ (b, ¯̄y) where v∗ is the vertical component of

the horizontal-vertical decomposition of βb v Gf . On the other hand, Hβα(f, g) =

(f, v̂Kf) : (a, ¯̄x) −→ (b, ¯̄y) where v̂ is the vertical component of the horizontal-

vertical decomposition of (βα)b g = βb αbg (see diagram below). We must show

then that v∗ = v̂: we have that βb αb g = v̂(Kf (βα)a) = v̂Kf βa αa, but also

βb αb g = (βb v Gf)αa = (v∗Kf βa)αa, so v∗ = v̂. For the identity 2-cell 1F :

F −→ F (F : A −→ B), we need to show that H1F = 1HF : EF −→ EF . Clearly

H1F (a, x) = (a, x) since 1x : x −→ x is the horizontal lift of 1 : a −→ a to domain x

in E, and similarly for f : a −→ b and g : x −→ y, H1F (f, g) = (f, vFf) where v is

the vertical component of the horizontal-vertical decomposition of 1yg = g = vFf .
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E

B

EF
EG

EK

• •
a b

A

Hα

JJ

Hβ

JJ

>
f

F

##

K

;;
G //

α��
β��

x

y

g
��:

::
::

: ·

¯̄y

v∗

��

x̄

ȳ
��:

::
::

:

y ȳ
αb

//

·

ȳ

v

��
ȳ ¯̄y

βb

//

¯̄x

¯̄y
��:

::
::

:

F (a) G(a)
αa // G(a) K(a)

βa //

F (b) G(b)
αb // G(b) K(b)

βb //

F (a)

F (b)

Ff ��:
::

::
G(a)

G(b)

Gf

��:
::

::
K(a)

K(b)

Kf

��:
::

::

x x̄
αa // x̄ ¯̄x

βa

**x ¯̄x

(βα)a

""
x̄ ·

Gf

//

;

·Kf //

;

For every triple of objects A,B and C in ♭CAT and functors A
F−→ B

G−→ C,

we have a natural isomorphism δF,G : HF ◦ HG −→ HGF ; the component of δF,G

corresponding to an object E
P−→ C of HC is given by the isomorphism of the

categories (EG)F ∼= E(GF ): The objects of EG
PG

−→ B are pairs (b, x) such that

G(b) = P (x) and then the objects of (EG)F
PF

−→ A are ”pairs” (a, (b, x)) with

F (a) = PG(b, x) = b, so each object (a, (b, x)) ∈ (EG)F is of the form (a, (F (a), x))

and will be identified with (a, x) ∈ E(GF ); since F (a) = b, GF (a) = G(b) = P (x),

so (a, x) is an object in (EG)F . The isomorphism works similarly for morphisms.

For every object A in ♭CAT, we have the natural isomorphism εA : 1HA ⇒ H1A

that for an object E in HA, identifies x in E with (P (x), x) in E1A and similarly

g : x −→ y in E with (P (g), g) : (P (x), x) −→ (P (y), y) in E1A (cf. Remark 2.15).
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For one cells F : A −→ B, H(F ) is a 2-functor defined as in Construction 2.18.

For two cells θ : F ⇒ G, Hθ : HF ⇒ HG is the 2-natural transformation with

components HθE : HF (E) = EF −→ HG(E) = EG defined as in Lemma 2.20.

Definition 2.23 (Definition 1.1 in [20]) Given a functor F : B −→ ♭CAT, the

Grothendieck construction on F, denoted by
∫
B

F , is the category with objects the

pairs (b, x) with b an object of B and x an object of F (b). A morphism f̄ : (b, x) −→

(c, y) of
∫
B

F is a quadruple f̄ = (x, f, α, y) such that f : b −→ c is a morphism in

B and α : Ff(x) −→ y is a morphism in F (c). Composition in
∫
B

F is defined by

(y, g, β, z)◦(x, f, α, y) = (x, gf, β◦Fg(α), z) for morphisms (y, g, β, z) and (x, f, α, y)

in
∫
B

F , such that gf is defined in B. For an object (b, x) in
∫
B

F , 1(b,x) = (x, 1b, 1x, x).

The functor U
F

:
∫
B

F −→ B associated to F : B −→ ♭CAT is defined as U
F

(b, x) = b

for objects and as U
F

(x, f, α, y) = f for morphisms. For U
F

:
∫
B

F −→ B, the

categorical fiber (U
F

)
−1

(b) over an object b is isomorphic to F (b).

Remarks 2.24 (i) Given a functor F : B −→ CAT, let F0 = U0F : B −→ Sets

where U0 : CAT −→ Sets is the functor which sends a category C to its set of

objects. Then with F0 : B −→ Sets ↪→ CAT (where each set is viewed as a discrete

category), for UF :
∫
F0 −→ B each fiber is a discrete category with the identities

as the only morphisms and
∫
F0 is the same category as the ”category of elements

of F0” in the proof of Proposition 1 in [15].

(ii) If F factors through POS (the category of partially ordered sets and order

preserving functions), i.e., F : B −→ POS ↪→ CAT, then a morphism f : b −→ c

in B lifts to a morphism f̄ : (b, x) −→ (c, y) in
∫
B

F iff Ff(x) ≤ y. This so called
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lifting condition is the same when F : B −→ CoP (where CoP is the category of

cocomplete posets; see Definition 2.39). For f̄ = (x, f, α, y), the vertical morphism

α : Ff(x)
≤−→ y is unique, thus f̄ will be written as a triple (x, f, y) and the

composition rule in Definition 2.21 simplifies to (y, g, z) ◦ (x, f, y) = (x, gf, z).

Lemma 2.25 For a functor F : B −→ ♭CAT, (H,V ) defined as follows gives

a splitting of the category
∫
B

F . H consists of all the objects of
∫
B

F and all the

morphisms of the form (x, f, 1Ff(x), Ff(x)) : (b, x) −→ (c, Ff(x)). V is the vertical

subcategory of
∫
B

F ; its morphisms then are of the form (x, 1b, α, y) : (b, x) −→ (b, y).

Proof. A morphism (x, f, α, y) : (b, x) −→ (c, y) in
∫
B

F factors as (x, f, α, y) =

(Ff(x), 1c, α, y)◦(x, f, 1Ff(x), Ff(x)); this factorization of (x, f, α, y) as a horizontal

morphism followed by a vertical, is clearly unique.

Lemma 2.26 The splitting of
∫
B

F given in Lemma 2.25 above defines a horizontal

structure over B.

Proof. The unique horizontal lift of f : b −→ c in B to domain (b, x) in
∫
B

F is

f̄ = (x, f, 1Ff(x), Ff(x)) : (b, x) −→ (c, Ff(x)).

Lemma 2.27 A natural transformation α : F ⇒ G (where F,G : A −→ ♭CAT)

induces a morphism
∫
A
α :
∫
A
F −→

∫
A
G of horizontal structures (Definition 2.6).

Proof.
∫
A
α is defined for (a, x) in

∫
A
F ,
(∫
A
α
)

(a, x) = (a, αa(x)) and for

(x, f, ϱ, y) : (a, x) −→ (b, y) by
(∫
A
α
)

(x, f, ϱ, y) = (αa(x), f, αb(ϱ), αb(y)).
∫
A
α

preserves identities, since for each object a in A, αa : F (a) −→ G(a) is a



32

functor, so we have that for an identity arrow (x, 1a, 1x, x) : (a, x) −→ (a, x),(∫
A
α
)

(x, 1a, 1x, x) = (αa(x), 1a, αa(1a), αa(x)) = (αa(x), 1a, 1αa , αa(x)). To show

that
∫
A
α preserves composition, the following equality must hold for morphisms

(x, f, r, y) : (a, x) −→ (b, y) and (y, g, t, z) : (b, y) −→ (c, z):(∫
A
α
)

[(y, g, t, z) ◦ (x, f, r, y)] =
(∫
A
α
)

(y, g, t, z) ◦
(∫
A
α
)

(x, f, r, y). By the def-

inition of composition in
∫
A
F we have that

(∫
A
α
)

[(y, g, t, z) ◦ (x, f, r, y)] =(∫
A
α
)

(x, gf, t ◦ Fg(r), z) = (αa(x), gf, αc(t ◦ Fg(r)), αc(z)); composing in∫
A
G gives

(∫
A
α
)

(y, g, t, z) ◦
(∫
A
α
)

(x, f, r, y) = (αb(y), g, αc(t), αc(z)) ◦

(αa(x), f, αb(r), αb(y)) = (αa(x), gf, αc(t) ◦ Gg(αb(r)), αc(z). The two morphisms

then are the same if αc(t ◦ Fg(r)) = αc(t) ◦ Gg(αb(r)); this equality follows from

the naturality of α, which implies that αc ◦ Fg = Gg ◦ αb (see diagram below).

F (c)

F (b) G(b)

G(c)

Fg

��

αb //

Gg

��

αc

//

As a direct consequence of the definitions involved UF = UG◦
∫
A

and
∫
A
α preserves

vertical morphisms; it also preserves horizontal morphisms, since(∫
A
α
)

(x, f, 1Ffx, Ffx) = (αa(x), f, αb(1Ffx), αb(y)) = (αa(x), f, 1αbFfx), αb(y)).∫
A
α :
∫
A
F −→

∫
A
G is then a 1-cell in the 2-category HA.

Construction 2.28 A category A induces a 2-functor
∫
A

: ♭CATA −→ HA

as follows: The image of a 0-cell T : A −→ ♭CAT under
∫
A

is
∫
A
T

UT

−→ A, the

Grothendieck construction on T as given in Definition 2.23, and the image of a

1-cell α : T ⇒ S is the functor
∫
A
α defined in the previous lemma. For any pair

of objects T, S in ♭CATA,
∫
A

must give a functor ♭CATA(T, S) −→ HA(
∫
A
T,
∫
A
S)
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which will also be denoted by
∫
A

to avoid multiple subscripts. The image of a 2-cell

m : α β, under the functor
∫
A

will be denoted by
∫
A
m (see diagram below) and

its component

A ♭CAT

T

&&
A ♭CAT

S

88α
��

β
��

m ///o/o

∫
A
T

∫
A
S

∫
A
α

��

∫
A
T

∫
A
S

∫
A
β

��

∫
A
m
+3

∫
A //

corresponding to an object (a, x) in
∫
A
T is the arrow in

∫
A
S given as follows:(∫

A
m
)
(a,x)

= (αa(x), 1a, (ma)x, βa(x)) : (a, αa(x)) −→ (a, βa(x)), which is a vertical

morphism as required by Definition 2.5. For
∫
A

: ♭CATA(T, S) −→ HA(
∫
A
T,
∫
A
S)

to be a functor, it must preserve the vertical composition of 2-cells: given m : α β

and n : β  γ (with α, β, γ : T ⇒ S) we have on one hand for objects

a and x in A and T (a) respectively that
∫
A

(n ⊙ m)(a,x) =
∫
A

(nax ◦ max) =

(αa(x), 1a, nax ◦ max, γa(x)) and ont the other hand (
∫
A
n)(a,x) ⊙ (

∫
A
m)(a,x) =

(βa(x), 1a, nax, γ(x)) ◦ (αa(x), 1a,max, β(x)) = (αa(x), 1a, nax ◦ G(1a)(max), γ(x)).

Since S(1a) = 1Ga is the identity functor on S(a), S(1a)(max) = max and we

have that
∫
A
(n⊙m) =

∫
A
n⊙

∫
A
m holds componentwise.

∫
A

also preserves identity

2-cells:

(∫
A

1α

)
(a,x)

= (αa(x), 1a, (1α)ax, αa(x)) (Def 2.21) where (1α)ax = 1αa(x).

The compatibility of
∫
A

with composition translates into the commutativity of

the following diagram:

♭CATA(T, S)× ♭CATA(S,R)
c−−−−→ ♭CATA(T,R)y y

HA(
∫
A

T,
∫
A

S)×HA(
∫
A

S,
∫
A

R)
c−−−−→ HA(

∫
A

T,
∫
A

R)
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For a 1-cell (α, β) in ♭CATA(T, S) × ♭CATA(S,R) both functors
∫
A

β ◦
∫
A

α

and
∫
A

βα take an object (a, x) in
∫
A

T to (a, βaαa(x)) and an arrow (x, f, ϱ, y) to

(βaαa(x), f, βbαb(ϱ), βbαb(y)). For a 2-cell (m,n) in ♭CATA(T, S) × ♭CATA(S,R)

we must have that
∫
A

n ∗
∫
A

m =
∫
A

(n ∗ m). This equality follows directly form ap-

plying the relevant definitions; for objects a in A and x in T (a), the component

of both 2-cells is the following arrow in
∫
A

R: (βaαa(x), 1a, (n ∗ m)ax, ηaγa(x)) :

(a, βaαa(x)) −→ (a, ηaγa(x)) where α, β, γ and η are as pictured below.

A ♭CAT

T

$$
A ♭CAT

R

::A ♭CATS //
α ��
β ��

γ��
η��

m ///o/o

n
///o/o

∫
A
T

∫
A
S

∫
A
γ

��

∫
A
T

∫
A
S

∫
A
α

��

∫
A
m
+3∫

A //
∫
A
S

∫
A
R

∫
A
η

��

∫
A
S

∫
A
R

∫
A
β

��

∫
A
n
+3

∫
A //

The unit axiom also holds as a consequence of the definitions and hence∫
A

: ♭CATA −→ HA as defined above is a 2-functor.

A functor T : A −→ B is an equivalence of 2-categories when there is a 2-functor

S : B −→ A and 2-natural isomorphisms TS ∼= 1B and ST ∼= 1A.

Lemma 2.29 The 2-functor
∫
A

of Construction 2.28 is an equivalence of the

2-categories ♭CATA and HA for any category A.

Proof. A 2-functor
∫ −1
A

: HA −→ ♭CATA will be defined along with natural

isomorphisms θ and λ, such that
∫
A
◦
∫ −1
A

θ⇒ 1HA
and

∫ −1
A
◦
∫
A

λ⇒ 1♭CATA . Given

E
P−→ A in HA, the corresponding functor TE : A −→ ♭CAT is defined as follows.
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For an object a ∈ A, TE(a) = P−1(a). Given a morphism f : a −→ b in A,

let f̄x denote the unique horizontal lift of f to domain x and codf̄x the codomain

of f̄x. Then the functor TEf : P−1(a) −→ P−1(b) will be defined for an object

x of P−1(a) by TEf(x) = codf̄x. To define TEf for a morphism t : x −→ y in

P−1(a), let g = f̄y ◦ t : x −→ codf̄y and let g = sh be the unique horizontal-vertical

factorization of g in E. Since P (g) = P (sh) = P (h) and also P (g) = P (f̄yt) = f ,

we have that P (h) = f , which means that h is a horizontal lift of f to domain

x. Thus by the uniqueness of horizontal lifts, h = f̄x. Then define TEf(t) =

s. TEf preserves identities, and since the composition of horizontal morphisms

is horizontal, it preserves compositions as well. For a 1-cell Φ : E1 −→ E2 in

HA,
∫ −1
A

Φ : TE1
⇒ TE2

must be a natural transformation with each component

(
∫ −1
A

Φ)a : T
E1

(a) −→ T
E2

(a) a functor such that the following diagram of categories

commutes for all a
f−→ b in A.

T
E1

(a)
(
∫ −1

A
Φ)a

−−−−−−→ T
E2

(a)

T
E1
f

y yTE2
f

T
E1

(b)
(
∫ −1

A
Φ)b

−−−−−−→ T
E2

(b)

Defining (
∫ −1
A

Φ)a for an object x in TE1
(a) by (

∫ −1
A

Φ)a(x) = Φ(x) and for a

morphism x
t−→ y by (

∫ −1
A

Φ)a(t) = Φ(t), the diagram commutes since Φ preserves

horizontal-vertical decompositions.

For a 2-cell α : Φ⇒ Ψ in HA, the corresponding 2-cell
∫ −1
A

α :
∫ −1
A

Φ 
∫ −1
A

Ψ

is the collection of natural transformations {(
∫ −1
A

α)a : (
∫ −1
A

Φ)a ⇒ (
∫ −1
A

Ψ)a}a∈A

whose components are the arrows in TE2(a) given by components of the 2-cell α:
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For an object x ∈ TE1(a) ⊆ E1, (
∫ −1
A

α)ax = αx : Φ(x) −→ Ψ(x). By Definition

2.6, the components of α are vertical morphisms; hence αx : Φ(x) −→ Ψ(x) is an

arrow in TE2(a); moreover, for
∫ −1
A
α to be a 2-cell in ♭CATA, the diagram below

must commute for f : a −→ b in A.

TE1(b)

TE1(a)

TE2(b)

TE2(a)(
∫ −1

A
α)a��

(
∫ −1

A
Φ)a

**

(
∫ −1

A
Ψ)a

44

(
∫ −1

A
Ψ)b

44(
∫ −1

A
α)b��

(
∫ −1

A
Φ)b

**

T1(f)

��

T2(f)

��

a

b

f

��

The equality 1TE2
f ∗
(∫ −1

A
α
)
a

=
(∫ −1

A
α
)
b
∗ 1TE1

f of natural transformations for

an object x in TE1(a) translates to the equation TE2f(αx) = α
codfΦ(x)

, using the

fact that for a morphism Φ of horizontal structures Φ(f̄x) = fΦ(x) (see Remark

2.13). (Lifts of f to E1 and E2 are denoted by f̄ and f respectively.) TE2f(αx)

is the vertical component of the horizontal-vertical decomposition of Ψ(f̄x) ◦ αx;

the naturality of α in the objects x and codf̄x however means that Ψ(f̄x) ◦ αx =

α
codfΦ(x)

◦ Φ(f̄x), where the latter is exactly the horizontal-vertical decomposition

of Ψ(f̄x) ◦ αx; thus TE2f(αx) = α
codfΦ(x)

.

The component of the 2-natural transformation θ :
∫
A
◦
∫ −1
A
⇒ 1HA corre-

sponding to an object E
P−→ A of HA is the morphism of horizontal structures

θE :
∫
A
TE −→ E defined for objects as θE (a, x) = x and for morphisms as

θ
E

(x, f, t, y) = t ◦ f̄x. Since θ
E

preserves both the horizontal and vertical mor-

phisms (θ
E

(x, f, 1, TEf(x)) = f̄x and θ
E

(x, 1, t, y) = t) and Pθ
E

= UTE , θ
E

is
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a 1-cell in HA. For θ to be a 2-natural transformation, the following diagram of

categories must commute for any pair of objects E1 and E2. (To simplify notation,

TEi will be denoted by Ti and similarly θEi by θi).

HA(E1, E2) −−−−→ HA(
∫
A

T1,
∫
A

T2)y y
HA(E1, E2) −−−−→ HA(

∫
A

T1, E2)

Commutativity for a 1-cell Φ : E1 −→ E2 means that Φ ◦ θ1 = θ2 ◦
∫
A

(
∫
A

−1Φ) :∫
A

T1 −→ E2; this equality holds, since both functors take an object (a, x) in
∫
A

T1 to

Φ(x), and a morphism (x, f, t, y) to Φ(t ◦ f̄x) = Φ(t) ◦ fΦ(x). Commutativity for a

2-cell ϱ : Φ⇒ Ψ means that 1α2 ∗
∫
A

(
∫
A

−1ϱ) = ϱ ∗ 1α1 ; following the definitions of the

natural transformations involved yields the (vertical) arrow ϱx : Φ(x) −→ Ψ(x) for

the component of both natural transformations corresponding to the object (a, x).

The components θE :
∫
A

TE −→ E of the natural transformation θ are invertible

morphisms in HA since we can define θ−1
E

: E −→
∫
A

TE for objects by θ−1
E

(x) =

(x, P (x)) and for morphisms by θ−1
E

(f : x −→ y) = (x, Pf, v, y) where v is the

vertical component of the horizontal vertical decomposition of f in E and have

θ−1
E
θ
E

= 1 and θ
E
θ−1
E

= 1. θ is then a natural isomorphism.

To define the 2-natural transformation λ : 1♭CATA ⇒
∫
A

−1 ◦
∫
A

, the following

notation will be introduced. The image of a 0-cell T , a 1-cell α : T1 ⇒ T2 and

a 2-cell m : α  β in CATA under the 2-functor
∫
A

−1 ◦
∫
A

will be denoted by

T ∗, α∗ and m∗, respectively. Following the definitions of
∫
A

−1 and
∫
A

T we have

that T ∗(a) = (UT )−1(a), the categorical fiber over a in
∫
A

T , and for a morphism

f : a −→ b in A, T ∗f : (UT )−1(a) −→ (UT )−1(b) is the functor that acts on
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objects and morphisms as follows: T ∗f(a, x) = (b, Tf(x)) and T ∗f(x, 1a, s, x
∗) =

(Tf(x), 1b, T f(s), T f(x∗)).

Given a natural transformation α : T1 ⇒ T2, α∗ : T ∗1 ⇒ T ∗2 is defined by having

as components the functors α∗a : T ∗1 (a) −→ T ∗2 (a) with α∗a(a, x) = (a, α(x)) and for

a morphism (x, 1a, s, y) : (a, x) −→ (a, y) in the categorical fiber, α∗a(x, 1a, s, y) =

(αa(x), 1a, αa(s), αa(y)).

Given a 2-cell m : α  β (for α, β : T1 ⇒ T2) with components the

arrows (ma)x : αa(x) −→ βa(x) in T2(a), the components of the modifica-

tion m∗ : α∗  β∗ corresponding to an object (a, x) in T ∗1 (a) are the arrows

(m∗a)x = (αa(x), 1a, (ma)x, βa(x)) : (a, αa(x)) −→ (a, βa(x)) in T ∗2 (a).

The component λT : T ⇒ T ∗ of the 2-natural transformation λ is a collection

of functors (λ
T

)a : T (a) −→ T ∗(a) defined as (λ
T

)a(x) = (a, x) for objects, and

for a morphism s : x −→ y as (λ
T

)a(s) = (x, 1a, s, y). For λ to be a 2-natural

transformation, the following diagram must commute for any pair of objects T1 and

T2 in ♭CATA.

♭CATA(T1, T2)
1CATA−−−−→ ♭CATA(T1, T2)∫

A

−1◦
∫
A

y y
♭CATA(T ∗1 , T

∗
2 ) −−−−→ ♭CATA(T1, T

∗
2 )

The commutativity of the diagram means for a 1-cell α : T1 ⇒ T2 that α∗ ∗

λT1
= λT2

∗ α, and for a 2-cell m : α  β and an object a in A that 1(λT2 )a
∗

ma = m∗a ∗ 1(λT1
)a . Both equalities hold as a direct consequence of the definitions

involved; therefore λ is a 2-natural transformation. Moreover, the components of λ

are invertible arrows in CATA with (λ
T

)−1a : T ∗ −→ T defined on its components the

obvious way: (λ
T

)−1(a, x) = x for objects and (λ
T

)−1a (x, 1a, s, y) = s for morphisms.
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The 2-functor
∫
A

: CATA −→ H
A

is then an equivalence of categories for any

category A.

Definition 2.30 A 2-natural transformation α between two lax functors

F,G : A −→ B is a lax natural transformation for which the diagram in Definition

2.8 commutes up to a natural transformation τab satisfying appropriate coherence

axioms. When F and G are strong-lax functors and τab is a natural isomorphism for

every pair of objects a and b, α will be called a strong-lax natural transformation.

Proposition 2.31 There is a strong-lax 2-natural isomorphism
∫

: K −→ H with

its component corresponding to a category A the 2-functor
∫
A

: ♭CATA −→ HA

defined in Construction 2.28.

Proof. For a pair of objects A and B in ♭CAT, the following diagram must be

shown to commute up to a natural isomorphism τ
AB

.

♭CAT(A,B) //

��

2−Cat(♭CATB , ♭CATA)

��
2−♭Cat(HB, HA) // 2−♭Cat(♭CATB ,HA)

����
FN

τAB

For a functor F : A −→ B, the corresponding component of τAB (will be denoted

by τ
F

rather than (τ
AB

)
F

) must be an arrow in 2−Cat(♭CATB ,HA) , i.e., a 2-

natural transformation τF : HF ◦
∫
B
⇒
∫
A
◦F ∗. Given an object T in ♭CATB ,

(HF ◦
∫
B

)(T ) = HF (
∫
B
T ) =

(∫
B
T
)F

is the pullback of
∫
B
T along F . Its objects are

”pairs” (a, (F (a), x)) with x in TF (a) and its morphisms (f, g) with f : a −→ a∗
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in A and g : (F (a), x) −→ (F (a∗), x∗) in
∫
B
T are such that g itself is formally

a quadruple g = (x, Ff, α, x∗) with α : TFf(x) −→ x∗. On the other hand,(∫
A
◦F ∗

)
(T ) =

∫
A

(TF ); the objects of
∫
A

(TF ) are pairs (a, x) with x ∈ TF (a)

and its morphisms are quadruples (x, f, α, x∗) : (a, x) −→ (a∗, x∗) with f : a −→ a∗

and α : TF (f)(x) −→ x∗. (τ
F

)T (the component of τ
F

corresponding to the functor

T : B −→ ♭CAT) then will identify the the object (a, (F (a), x)) in
(∫
B
T
)F

with

(a, x) in
∫
A
TF and the morphism (f, (x, Ff, α, x∗)) in

(∫
B
T
)F

with (x, f, α, x∗)

in
∫
A
TF . (τ

F
)
T

then gives a bijection both on the class of objects and the set of

morphisms of the categories
(∫
B
T
)F

and
∫
A
TF ; it also preserves both horizontal

and vertical morphisms, so it is a functor of horizontal structures and hence defines

an isomorphism of categories: (
∫
B
T )F ∼=

∫
A
TF .

For τ
F

to be a 2-natural transformation, the following diagram must commute:

♭CATB(T, S)
HF ◦

∫
B−−−−−→ HA

(
(
∫
B

T )F , (
∫
B

S)F

)
∫
A

◦F∗
y y

HA

(∫
A

TF,
∫
A

SF

)
−−−−→ HA

(
(
∫
B

T )F ,
∫
A

SF

)

Following a natural transformation ϱ : T ⇒ S, in ♭CATB(T, S) first going to

the right and then down in the diagram above gives first a functor of horizon-

tal structures
∫
B

ϱ :
∫
B

T −→
∫
B

S as defined in Lemma 2.27, which then induces

the functor (Lemma 2.16) (
∫
B

ϱ)F : (
∫
B

T )F −→ (
∫
B

S)F of the pullbacks; (
∫
B

ϱ)F is

then followed by (τ
F

)
S

: (
∫
B

S)F −→
∫
A

SF . The resulting functor (τ
F

)s ◦ (
∫
B
ϱ)F

takes an object (a, (Fa, x)) of (
∫
B
T )F first to (a, (Fa, ϱ

Fa
(x))) and then to
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(a, ϱ
Fa

(x)) and takes a morphism (f, (x, Ff, α, x∗)) : (a, (Fa, x)) −→ (a∗, (Fa∗, x∗))

to (ϱFa(x), f, ϱFa∗
(α), ϱFa∗

(x∗)). Following ϱ : T ⇒ S the other way around first

gives
∫
A

ϱ
F

:
∫
A

TF −→
∫
A

SF (as defined in Construction 2.9 and Lemma 2.27) which

is then followed by (τ
F

)
T

; the resulting functor takes an object (a, (Fa, x)) of

(
∫
B

T )F first to (a, x) and then to (a, ϱFa(x)) and a morphism (f, (x, Ff, α, x∗))

first to (x, f, α, x∗) and then to (ϱ
Fa

(x), f, ϱ
Fa∗

(α), ϱ
Fa∗

(x∗)). Thus for a 1-cell ϱ in

♭CATB(T, S), (τF )S ◦(
∫
B
ϱ)F = (τF )T ◦

∫
A

ϱF . For a 2-cell m : ϱ η in ♭CATB(T, S)

the commutativity of the diagram translates to 1(τ
F
)
S
∗ (
∫
B
m)F =

∫
A
m

F
∗ 1(τ

F
)
T

;

for both horizontal compositions of 2-cells in the equality (see diagram below),

the component corresponding to an object (a, (Fa, x)) in (
∫
B

T )F is the arrow

(ϱFa(x), 1a, (mFa)x, ηFa(x)) : (a, ϱFa(x)) −→ (a, ηFa(x)) in
∫
A
SF .

(
∫
B
T )F (

∫
B
S)F

∫
A
SF(

∫
B
m)F

��

(
∫
B
ϱ)F

((

(
∫
B
η)F

66
1��

(τ
F
)
S

((

(τ
F
)
S

66

(
∫
B
T )F

∫
A
TF

∫
A
SF1��

(τ
F
)
T

((

(τ
F
)
T

66

∫
A
mF��

∫
A
ϱF

((

∫
A
ηF

66

Given a natural transformation α : F ⇒ G with F,G : A −→ B, we must have the

components of the natural transformations 1 ∗ α∗ and Hα ∗ 1 (see diagram below)

to be coherent with the components of τ .

♭CATB
F∗

++

G∗
44

�� ��
�� α∗ ♭CATA

∫
A ))∫
A

55
�� ��
�� 1 HA and ♭CATB

∫
B ))∫
B

55
�� ��
�� 1 HB

HF
))

HG

55
�� ��
�� Hα HA .
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For an object T in ♭CATB then, the following diagram must be shown to com-

mute:

(
∫
B
T )F

Hα
T //

(τF )
T
∼=

��

(
∫
B
T )G

∼= (τG)
T

��∫
A
TF ∫

A
α∗

T

//
∫
A
TG

Following an object (a, (Fa, x)) (with x in TF (a)) of (
∫
B
T )F first down and

then right gives: (a, (Fa, x))
(τF )

T // (a, x)
α∗

T // (a, (α∗
T

)a(x)) = (a, T (αa)(x))

by Lemma 2.10. The same object is taken (by Lemma 2.20) to (a, (Fa, a))

where (Fa, a) is the codomain of the horizontal lift of αa : F (a) −→ G(a)

to domain (F (a), a) in
∫
B
T ; the horizontal lift of αa (by Lemma 2.26) is

(Fa, a)
(x,αa,1,T (aa)(x)) // (G(a), T (aa)(x)) , so following the object (a, (Fa, x)

first right, then down gives

(a, (Fa, x))
Hα

T // (a, (G(a), T (αa)(x)))
(τG)

T // (a, T (αa)(x)) . For objects then

the diagram above commutes.

Given a morphism (a, (Fa, x))
(f,(x,Ff,ν,y)) // (b, (Fb, y)) in (

∫
B
T )F (with ν :

TFf(x) −→ y an arrow in TF (b)), on one hand (τF )T (f, (x, Ff, ν, y)) = (x, f, ν, y)

and by Lemma 2.27 (
∫
A
α∗

T
(x, f, ν, y) = (T (αa)(x), f, T (αb)(ν), T (αb)(y)). On the

other hand, by Lemma 2.20, Hα
T

((f, (x, Ff, ν, y)) = (f, vGf) where v is the ver-

tical component of the horizontal-vertical decomposition of αb ◦ (x, Ff, ν, y). By

Lemma 2.26 and Definition 2.23 we have that αb ◦ (x, Ff, ν, y) = (y, αb, 1, Tαb(y))◦

(x, Ff, ν, x) = (x, αbFf, Tαb(ν), Tαb(y)) = (T (αbFf)(x), 1Gb, Tαb(ν), Tαb(y)) ◦

(x, αbFf, 1, T (αbFf)(x)). Since α is a natural transformation, TGf ◦ Tαa =
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Tαb ◦ TFf ; we then have that Gf , the horizontal lift of Gf to domain

(Ga, Tαa(x)) is (Tαa(x), Gf, 1, TGf ◦ Tαa(x)) = (Tαa(x), Gf, 1, Tαb ◦ TFf)

and then vGf = (T (αbFf)(x), 1Gb, Tαb(ν), Tαb(y)) ◦ (Tαa(x), Gf, 1, T (αbFf)) =

(Tαa(x), Gf, Tαb(ν), Tαb(y)). The image of (f, vGf) under (τ
G

)
T

is then

(Tαa(x), f, Tαb(ν), Tαb(y)) which agrees with (
∫
A
α∗

T
)(τF )

T
(f, (x, Ff, ν, y)) above.

The natural transformation
∫

is a natural isomorphism, since by Lemma 2.29

its components are invertible.

Universal Horizontal Structure

The horizontal structure
∫

♭CAT

1 (henceforth denoted by CAT∗) over ♭CAT that

results from taking F in Lemmas 2.25 and 2.26 to be the identity 1 : ♭CAT −→ ♭CAT

has the following description: The objects of CAT∗ are pairs (C, x) with x an

object of the category C, and its morphism are quadruples (x,G, t, y) : (C, x) −→

(D, y) with G : C −→ D a functor and t : G(x) −→ y a morphism in D. The

horizontal morphisms are of the form (x,G, 1G(x), G(x)) : (C, x) −→ (D,G(x)) and

the categorical fiber over C is isomorphic to C itself. Applying Construction 2.14

to a functor F : B −→ CAT and to the horizontal structure CAT∗
U1

−→ CAT, i.e.,

pulling back CAT∗ along F , results in a horizontal structure CATF∗ −→ B that is

canonically isomorphic to
∫
B

F . The isomorphism is given by identifying the object

(b, (Fb, x)) in CATF∗ to (b, x) in
∫
B

F and the morphism (f, (x, Ff, t, y)) in CATF∗ with

(x, f, t, y) in
∫
B

F −→ B and it follows from the natural isomorphism τF described

in the proof of Proposition 2.31 applied to a functor F : B −→ CAT and taking

T to be the identity functor 1 : CAT −→ CAT. The Grothendieck construction on
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a functor F : B −→ CAT is then, up to an isomorphism, the pullback along F of

CAT∗ −→ CAT. By Corollary 2.21, pulling CAT∗ back along isomorphic functors

F ∼= G : B −→ CAT results in the isomorphic horizontal structures CATF∗
∼= CATG∗ ;

hence we have that F ∼= G ⇒
∫
B

F ∼= CATF∗
∼= CATG∗

∼=
∫
B

G. Conversely, every

horizontal structure E
P−→ B defines a functor TE : B −→ CAT (the fiber functor)

such that
∫
B

TE ∼= E by the isomorphism θE of horizontal structures described in

detail in the proof of Lemma 2.29: an object (b, x) of
∫
B

TE corresponds to x in

E and a morphism (x, f, t, y) in
∫
B

TE to t ◦ fx in E. We then have the following

pullback square showing that every horizontal structure E
P−→ B is the pullback (up

to an isomorphism) of CAT∗
1−→ CAT, which therefore will be called the Universal

Horizontal Structure.

∫
B

TE ∼= E ∼= CATTE
∗

//

��

CAT∗

��
B

TE

// CAT

Topological Structures

Definition 2.32 Let A, E and B be categories.

(1) A sink in A with codomain a is a family of morphisms (fj : aj −→ a)j∈J ,

indexed by a class J (which may be empty).

(2) Given a functor U : E −→ B, a U-sink is a family (ej , fj : U(ej) −→ b)j∈J .
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(3) If (f̄j : ej −→ e)j∈J is a sink in E and (ej , fj : U(ej) −→ b)j∈J is a U -sink

such that U(f̄j) = fj for all j ∈ J , then (f̄j : ej −→ e)j∈J is called a lift of

(ej , fj : U(ej) −→ b)J with codomain e.

Definition 2.33 A lift (f̄j : ej −→ e)j∈J of the U -sink (ej , fj : U(ej) −→ b)j∈J is

called a final lift if given a sink (gj : ej −→ c)j∈J such that there exists a morphism

h : b −→ U(c) with hfj = U(gj) for all j ∈ J , then h lifts to a morphism h̄ : e −→ c

with h̄f̄j = gj .

The dual notion of a sink (final sink) is a source (initial source).

Remark 2.34 If J = ∅ in Definition 2.33 above, then the corresponding sink or

U -sink with codomain b is an empty set of morphisms; the final lift of the empty

U -sink with codomain b ∈ B is e ∈ U−1(b) such that for any c ∈ E, if there is a

morphism h : b −→ U(c) in B, then h lifts to a morphism h̄ : e −→ c in E.

Definition 2.35 A functor U : E −→ B is a topological functor and E is a

topological category over B if U satisfies the following conditions:

(i) U has small fibers,

(ii) U is faithful, (i.e., mono on hom sets);

(iii) U is amnestic, (i.e., if f ∈ E is an isomorphism s.t. U(f) = id, then f = id);

(iv) Every U -sink has a final lift.
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Remarks 2.36 (1) The first three conditions of the definition above imply that

the categorical fiber of U is a poset: U−1(b) is a set by (i), it is a preorder by (ii)

and a partial order by (iii).

(2) Condition (iv) is equivalent to the existence of initial lifts of arbitrary U -sources;

see [1], Proposition 21.36.

(3) Final (and initial) lifts are unique by the faithfulness of U .

(4) Given an object x ∈ U−1(b) and a morphism f : b −→ c in B, we can view

(x, f : b −→ c) as a U -sink. We’ll refer to the final lift f̄ : x −→ y of this U -sink as

the final lift of f to domain x.

(5) In a horizontal structure E
P−→ B, the unique horizontal lift of f : b −→ c in B

to domain x in E is the final lift of the P -sink (x, f : b −→ c) since if g : x −→ t is

such that P (g) = hf for some h : c −→ P (t) and g = vk is the unique horizontal-

vertical decomposition of g, then lifting h to y = cod(fx) gives h : y −→ cod(k)

which means that g factors through f as g = (hv)f .

Example 2.37 Let Top denote the category of topological spaces and continuous

functions. The forgetful functor U : Top −→ Sets with U(X, τ) = X is a topological

functor, and Top is a topological category over the category of Sets. For a set

X, U−1(X) = {(X, τ) | τ is a topology on X}. Since U−1(X) ⊆ P 2(X), U has

small fibers. Given a U -sink ((Xj , τj), fj : Xj −→ X)J in Sets, its final lift is

(fj : (Xj , τj) −→ (X, τ))J where τ is the topology coinduced on X by the functions

fj , i.e., τ = {U ∈ P (X)| f−1j (U) ∈ τj for all j ∈ J}.
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Lemma 2.38 Given a topological functor U : E −→ B, suppose (f̄j : xj −→ x)j∈J

is the final lift of the U -sink (xj , fj : U(xj) = bj −→ b)j∈J , and ḡ : x −→ y is the

final lift of g : b −→ c to domain x. Then ḡf̄j : xj −→ y is the final lift of the U -sink

(xj , gfj : bj −→ c)J .

Proof. Suppose (kj : xj −→ t)j∈J is a sink such that U(kj) factors through gfj

for all j as U(kj) = h(gfj) with h : c −→ U(t); then U(kj) factors through fj as

well which means that hg : b −→ U(t) lifts to a morphism hg : t −→ y in E with

kj = hgf̄j since (f̄j : xj −→ x)j∈J is a final lift. Similarly, since ḡ is a final lift, h

lifts ot h̄ : y −→ t in E.

Definition 2.39 Let CoP denote the category of cocomplete posets whose objects

are cocomplete posets and whose morphisms are functions f : (X,≤) −→ (Y,≤) that

preserve order and arbitrary suprema, and let CmP denote the category of complete

posets whose morphisms are functions preserving order and arbitrary infima. If we

view a poset (X,≤) as a category, then for (xj)j∈J ⊆ X, ∨
j∈J

(xj) is the colimit

of (xj) and a supremum-preserving function f : X −→ Y is then a cocontinuous

functor; similarly an infimum-preserving function is then a continuous functor.

Lemma 2.40 A poset is cocomplete iff it is complete.

Proof. Suppose (X,≤) is a cocomplete poset. For (xj)j∈J ⊆ X, let ∧
j∈J

(xj) =

∨{s ∈ X |s ≤ xj for all j ∈ J}, and similarly if (X,≤) is assumed to be complete,

then we can define the supremum of an arbirary subset T of X as the infimum of

the set of upper bounds of T .
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Remarks 2.41 (1) In view of the above lemma, posets that are cocomplete and

thus complete as well, will be called plete posets.

(2) Since a complete lattice is a poset in which every subset has an infimum and a

supremum (Definition 2.1 in [6]), a plete poset is a complete lattice. Morphisms in

the category of lattices (Lat) are functions that preserve both infima and suprema.

Thus CoP, CmP and Lat have the same objects, but different morphisms.

Lemma 2.42 If f∗ : (A,≤) −→ (B,≤) is a morphism in CoP, i.e., as a functor,

f∗ is cocontinuous, then it has a right adjoint f∗ : (B ≤) −→ (A,≤) (which is

then continuous), defined as f∗(b) = ∨{a ∈ A | f∗(a) ≤ b}. We also have the dual

statement: if f∗ : (B,≤) −→ (A,≤) is a morphism in CmP, then it has a left

adjoint f∗ : (A,≤) −→ (B,≤) (which is then cocontinuous), defined as f∗(a) =

∧{b ∈ B | f∗(b) ≥ a}.

Proof. Given a morphism f∗ : (A,≤) −→ (B,≤) in CoP, f∗ (as defined above)

preserves order, since for b1 ≤ b2, {a ∈ A | f∗(a) ≤ b1} ⊆ {a ∈ A | f∗(a) ≤ b2}

and therefore f∗(b1) = ∨{a ∈ A | f∗(a) ≤ b1} ≤ ∨{a ∈ A | f∗(a) ≤ b2} = f∗(b2).

f∗ is left adjoint to f∗ (written as f∗ ⊣ f∗) if and only if for all a ∈ A and b ∈ B,

f∗(a) ≤ b in B if and only if a ≤ f∗(b) in A, by Theorem 1 on page 93 in [14]. So

suppose that f∗(a) ≤ b ; then f∗f
∗(a) ≤ f∗(b) since f∗ preserves order. By definition

f∗f
∗(a) = ∨{x ∈ A | f∗(x) ≤ f∗(a)}, and since a ∈ {x ∈ A | f∗(x) ≤ f∗(a)},

a ≤ ∨{x ∈ A | f∗(x) ≤ f∗(a)} = f∗f
∗(a) ≤ f∗(b). To prove the converse, assume

that a ≤ f∗(b). Then applying f∗ to a ≤ f∗(b) = ∨{x ∈ A | f∗(x) ≤ b} gives that
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f∗(a) ≤ f∗(∨{x ∈ A | f∗(x) ≤ b}) = ∨{f∗(x) | f∗(x) ≤ b} ≤ b by cocontinuity of

f∗. The dual statement can be proven similarly.

Given a 2-category K, we can define the adjunction category Adj(K) as having

the same objects as K, and adjoint pairs l ⊣ r : a −→ b as morphisms, where the

direction of the morphism is given by that of the right adjoint r : a −→ b. (A

1-cell r : a −→ b is right adjoint to l : b −→ a if there are 2-cells ηb : 1b ⇒ rl

and εa : lr ⇒ 1a satisfying the triangle equalities.) Given l ⊣ r and l′ ⊣ r′, every

2-cell α : l ⇒ l′ defines a 2-cell β : r′ ⇒ r by the following vertical composition of

2-cells: β = ε′r · α · ηr′ where ηr′ denotes the horizontal composition ηb ∗ 1r′ and

similarly, ε′r = 1r ∗ εa. Adj(K) is then a 2-category with α : l ⊣ l′ ⇒ r ⊣ r′ as

2-cells and hence we can define the following 2-funtors: Πl : Adj(K) −→ Kop with

Πl(l ⊣ r) = l and Πl(α) = α, and Πr : Adj(K) −→ Kco with Πr(l ⊣ r) = r and

Πl(α) = β; both functors are the identity on objects.

Remark 2.43 The category POS of partially ordered sets can be viewed as a

2-category. The existence of a 2-cell α : f ⇒ g between f, g : (A,≤) −→ (b,≤)

means that for all a ∈ A, f(a) ≤ g(a).

If K=Plete, the category of plete posets and order preserving maps, then since

left adjoints are cocontinuous and right adjoints are continuous, the functors Πr

and Πl define the isomorphisms of 2-categories as pictured:

Adj(Plete)
Πl //

Πl

∼=

%%KK
KKK

KKK
KKK

KKK
Pleteop

CoPop
?�

OO Adj(Plete)
Πr //

Πr

∼=

%%KK
KKK

KKK
KKK

KKK
Pleteco

CmPco
?�

OO



50

Dropping the 2-cells, the above define isomorphisms of the categories:

Adj(Plete) ∼= Copop ∼= CmP.

Definition 2.44 A geometric morphism f : A −→ B is a pair of functors

f∗ : B −→ A and f∗ : A −→ B such that f∗ ⊣ f∗ and f∗ is left exact (preserves all

finite limits); f∗ is called the direct image part of f and f∗ the inverse image part

of the geometric morphism (Definition 1 on page 348 in [15]). (The direction of a

geometric morphism f : A −→ B again agrees with that of the (continuous) direct

image part f∗ : A −→ B.) A geometric morphism with the special property that

its inverse image part has a left adjoint is called an essential geometric morphism.

(cf. page 360 in [15]).

Example 2.45 Consider a topological space (X, τ), and the resulting inclusion

i : τ ↪→ P (X) of posets; here P (X) and τ are ordered by inclusion. Since i preserves

arbitrary unions and finite intersections, it is cocontinuous and left exact, so with

its right adjoint r : P (X) −→ τ (given for O ∈ P (X) by r(O) = intO), they form

a geometric morphism h = (i ⊣ r) : P (X) −→ τ .

Example 2.46 Essential geometric morphisms naturally arise whenever we con-

sider two sets X and Y and a function f : X −→ Y : if we view P (X) and P (Y ) as

posets (again ordered by inclusion), then since f−1 : P (Y ) −→ P (X) preserves ar-

bitrary unions and intersections, as a poset map it is bicontinuous and hence it has

both a right and a left adjoint. Its continuous right adjoint ∀f : P (X) −→ P (Y ) is

defined as ∀f (S) =
∪
{T ∈ P (Y )| f−1(T ) ⊆ S} = {y ∈ Y | f−1(y) ⊆ S} by Lemma

2.42; h = (f−1 ⊣ ∀f ) : P (X) −→ P (Y ) is then a geometric morphism. The cocon-
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tinuous left adjoint of f−1 is Im f : P (X) −→ P (Y ) (the notation ∃f is also used for

Im f (cf. Theorem 2 on page 58 in [15]); h is then an essential geometric morphism

and we have ∃f ⊣ f−1 ⊣ ∀f . If P (X) and P (Y ) are ordered by reverse inclusion (in

this case the notation P (X)op will be used) then for (Sj)j∈J ⊆ P (X) ∨
J
Sj = ∩

J
Sj

and ∧
J
Sj = ∪

J
Sj , and Imf : P (X)op −→ P (Y )op becomes continuous since it pre-

serves unions which now give infima, and g = (f−1 ⊣ Imf) : P (X)op −→ P (Y )op

again is a geometric morphism.

Definition 2.47 Let GeoCmP denote the category whose objects are plete posets

and whose morphisms are geometric morphisms and let Ess denote the category with

the same objects and morphisms the essential geometric morphisms.

We then have the following relationship between the different categories of

posets: Ess ⊆ GeoCmP ⊆ CmP ∼= CoPop ∼= Adj(Plete).

Example 2.48 The power-set functor can be viewed as a functor P : Sets −→

Ess ⊆ GeoCmP sending a function of sets f : X −→ Y to Pf = (f−1 ⊣ ∀f ) :

(P (X),⊆) −→ (P (Y ),⊆) as in example 2.46. In general, given an essential geo-

metric morphism f : A
f∗−→←−
f∗

B with l : A −→ B the left adjoint of f∗, we can

define a functor Φ : Ess −→ GeoCmP on the object level by Φ(A) = Aop and

on the morphism level by Φ(f) = (Aop
lop−−→←−

(f∗)op
Bop). Now (f∗)op ⊣ lop gives a

geometric morphism. Composing the power-set functor with Φ gives the func-

tor ΦP : Sets −→ GeoCmP which sends a set X to (P (X)op) and the function

f : X −→ Y to (ΦP )(f) = (f−1
op ⊣ ∃f op) : P (X)op −→ P (Y )op. For another

example of essential geometric morphisms (between fuzzy sets) see page 62.
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Remark 2.49 A cocomplete poset (A,≤) which satisfies the infinite distributive

law b ∧ (∨
j
aj) = ∨

j
(b∧ aj) is called a frame, and a poset map f∗ : (A,≤) −→ (B,≤)

which preserves infinite joins and finite meets is called a frame morphism (cf. page

473 in Sheaves in [15]). Frames form the category Frm. A frame morphism is then

cocontinuous and left exact, so with its right adjoint f∗ : B −→ A they give a

geometric morphism f = (f∗ ⊣ f∗) : B −→ A. The opposite category of Frm is

called the category of locales (Loc) and it is then a full subcategory of GeoCmp.

Theorem 2.50 Let K∗ : CATop −→ 2 − Cat be the subfunctor of K defined

by K∗(A) = CoPA ⊂ CATA. Then the component of the 2-natural transformation∫
: K −→ H corresponding to A, the 2-functor

∫
A

: CoPA −→ HA (defined in 2.28),

is such that for an object T in CoPA,
∫
A
T is a topological category.

Proof. UT :
∫
A
T −→ A has small fibers since (UT )−1(a) ∼= T (a) which is a

(po)set; UT is clearly faithful and amnestic by Definition 2.22. Given a UT -sink

((aj , xj), fj : aj −→ b)J , let x =
∨
J Tfj(xj) ∈ T (a). Since Tfj(xj) ≤ x for all j,

f̄j = (xj , fj , 1x, x) : (aj , xj) −→ (a, x) is a morphism in
∫
A

T for all j. Then the sink

(f̄j : (aj , xj) −→ (a, x)) is a final lift of the U -sink ((aj , xj), fj : aj −→ a)J , since if

for a sink (ḡj : (aj , xj) −→ (c, y)) there is a morphism h : a −→ c such that gj = hfj

for all j, then the cocontinuity of Th implies that Th(x) = Th (
∨
Tfj(xj)) =∨

ThTfj(xj) =
∨
Tgj(xj) ≤ y, and hence h : a −→ c lifts to a morphism h̄ :

(a, x) −→ (c, y) in
∫
A

T . Thus UT :
∫
A
T −→ A is a topological functor.

Note If a functor T : A −→ CAT factors through POS, i.e., we have T : A −→

POS ↪→ CAT, then U :
∫
A
T −→ A satisfies conditions (i), (ii) of Definition 2.35,
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however as far as condition (iv) goes, an arbitrary U -sink does not necessarily have a

final lift. If a U -sink ((aj , xj), fj : aj −→ a)J has a final lift then x =
∨
J Ffj(xj) ∈

T (a) exists and the final lift is (f̄j : (aj , xj) −→ (a, x)). The converse however is

not true.

Lemma 2.51 Every topological category over A is an object in HA, the 2-category

of horizontal structures over A.

Proof. Given a topological category E
U−→ A, a splitting (H,V ) is defined as

follows; V = V (E) as in Definition 2.2, and and H contains a morphism h : x −→ y

of E iff it is the final lift of the U -sink (x,U(h) : U(x) −→ U(y)). H is a subcategory

of E since given an object x ∈ U−1(a), 1x is the final lift of the U -sink (x, 1a), and

H is closed under the composition of morphisms. Given a morphism g : x −→ z in

E with x ∈ U−1(a) and z ∈ U−1(c), let h : x −→ y be the final lift of the U -sink

(x, U(g) : a −→ c). Then, since U(g) factors through U(h) as U(g) = 1c ◦U(h), 1c

lifts (uniquely) to a morphism α : y −→ z. Thus g factors as g = α ◦ h.

Definition 2.52 CATTopA
will denote the full subcategory of HA with objects

the topological categories over A.

Theorem 2.53 Restricting the 2-functor
∫ −1
A

: HA −→ CATA of Lemma 2.29 to

CATTopA gives a 2-functor (
∫ −1
A

)∗ : CATTopA −→ CoPA.

Proof For a topological category E
P−→ A, the corresponding functor

∫ −1
A

(E) =

T
E

: A −→ CAT is defined on the object level by TE(a) = P−1(a) which is a poset



54

(see Remark (1) of 2.36) ordered by the relation x ≤ y iff there is a morphism

α : x −→ y in the categorical fiber of P over a.

To show that P−1(a) is cocomplete, for (xj)j∈J ⊆ P−1(a), define
∨
j∈J

(xj) to be

the codomain of the final lift of the P -sink (xj , 1a). T
E

(a) is then a cocomplete

poset for all a ∈ A. (If J = ∅, then the final lift of the empty P -sink with codomain

a is x ∈ P−1(a) as described in Remark 2.34; in particular x is such that for any

y ∈ P−1(a), 1a ∈ A lifts to a morphism f : x
≤−→ y. Hence the final lift of the

empty P -sink with codomain a is the minimum element of the poset P−1(a).) To

show that for a morphism f : a −→ c in A T
E
f : T

E
(a) −→ T

E
(c) is a morphism in

CoP, we must show that TEf preserves order and least upper bounds. TEf is order

preserving by its definition in the proof of Lemma 2.29. Let (xj)j∈J ⊆ P−1(a), and

x =
∨
j∈J

(xj); thus (xj
≤−→ x) is the final lift of the P -sink (xj , 1a). Consider the

P -sink (xj , f1a : a −→ c), and let f̄ denote the final lift of f to domain x. Then by

Lemma 2.38, (xj
≤−→ x

f̄−→ codf̄ = T
E
f(x)) is a final lift of this P -sink. For each

xj , let f̄j denote the final lift of f to domain xj , and let yj = codf̄j = TEf(xj).

Since (≤ ◦f̄j : xj −→ ∨yj)J is a P -sink over (xj , f : a −→ c), lifting 1c we

get that TEf(x) ≤ ∨yj . On the other hand since TEf preserves order, xj ≤ x

implies that yj = T
E
f(xj) ≤ T

E
f(x) for all j, and then ∨yj ≤ T

E
f(x). Thus

TEf(∨xj) = TEf(x) = ∨yj = ∨Ff(xj), which proves that TEf is cocontinuous and

hence it defines a functor A −→ CoP

Corollary 2.54 In view of Theorems 2.50 and 2.53 we have that
∫
A

defines an

equivalence of the 2-categories CATTopA
and CoPA such that given a topological
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category E
P−→ A,

∫
A

T
E
∼= E; in this case we say that E is classified by the functor

T
E

: A −→ Cop.

By the corollary above, there is a one-to-one correspondence between topological

functors T : E −→ A and presheaves on the category A with values in Adj(Plete):

Every topological category defines the (fiber)functor T
E

: A −→ Cop which, since

Copop ∼= Adj(plete), can be viewed as a functor T
E

: Aop −→ Adj(Plete), i.e., a

presheaf on A. Conversely, every presheaf T : Aop −→ Adj(Plete) gives a functor

T : A −→ Cop which the defines the topological category
∫
A

T .

Universal Topological Category

Definition 2.55 The topological category
∫

CoP

1 classified by the functor 1 :

CoP −→ CoP is called the universal topological category and will be denoted by

CoP∗. (cf. ♭CAT∗ =
∫

♭CAT

1 on page 43.) The objects of the universal topological

category are pairs (A, a) where A is a cocomplete poset and a ∈ A. A morphism

f : (A,≤) −→ (B,≤) in CoP lifts to a morphism f̄ = (a, f, b) : (A, a) −→ (B, b) iff

f(a) ≤ b in B.

Theorem 2.56 Every topological category E
P−→ A is isomorphic to a pull-back

of the universal topological category
∫

CoP

1.

Proof. Given a topological category E
P−→ A, by Corollary 2.54 we have that E ∼=∫

A

TE where TE : A −→ CoP is the functor defined in 2.29. The pullback (CoP∗)
TE
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of CoP∗ along TE is isomorphic to
∫
A

TE by the isomorphism τ of Proposition 2.31;

hence E ∼= (CoP∗)
TE as shown by the pullback square below.

E ∼=
∫
A

TE −−−−→ CoP∗ =
∫

CoP

1

P

y yU1

A
TE−−−−→ CoP

1−−−−→ CoP

Similarly, we can view Sets∗, the category of pointed sets as the universal discrete

opfibration (P : E −→ B is called a discrete opfibration if every morphism f :

P (e) −→ c in B lifts uniquely to a morphism with domain e) classified by the

identity functor on the category of Sets: given any discrete opfibration P : E −→ B,

there is a functor F : B −→ Sets such that E ∼=
∫
B

F with
∫
B

F the pull-back of Sets∗

along F .

E ∼=
∫
B

F −−−−→
∫

Sets

1 = Sets∗

P

y yU
B

F−−−−→ Sets −−−−→ Sets



CHAPTER 3

Classification of General Topological Structures

Categories of Topological Posets

The category Top of topological spaces and continuous functions is classified

by the functor F : Sets −→ CoP defined as follows. For a set X, F (X) = {τ ⊆

P (X)| τ is a topology on X}. F (X) is a poset ordered by reverse inclusion; then

it is cocomplete with ∨τj = ∩τj . For a function f : X −→ Y and for τ ∈ F (X),

Ff(τ) = {U ∈ P (Y )| f−1(U) ∈ τ}. Ff(τ) defines a topology on the set Y since f−1

preserves arbitrary unions and intersections. F preserves suprema since Ff(∨τj) =

Ff(∩τj) = {y ∈ Y | f−1(y) ∈ ∩τj} = ∩{y ∈ Y | f−1(y) ∈ τj} = ∩Ff(τj) = ∨Ff(τj),

so Ff is cocontinuous. For functions f : X −→ Y and g : Y −→ Z in Sets,

F (gf) = F (g)◦F (f) since (gf)−1 = f−1g−1. Thus the functor F is well defined and

classifies a topological category
∫

Sets

F by Theorem 2.50. The objects of
∫

Sets

F are pairs

(X, τ) where τ ∈ F (X), i.e., τ is a topology onX, and a function f : X −→ Y in Sets

lifts to a morphism f : (Xτ) −→ (Y, σ) in
∫

Sets

F iff Ff(τ) ≤ σ (by the lifting condition

in Remark 2.24 (ii)), i.e., iff σ ⊆ Ff(τ), i.e., when for all U ∈ σ, f−1(U) ∈ τ , which

means exactly that f : (X, τ) −→ (Y, σ) is continuous. Thus
∫

Sets

F = Top. Viewing

Top as a horizontal structure over Sets, the horizontal morphisms are continuous

functions f : (X, τ) −→ (Y, σ) with σ the coinduced topology.

57
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Definition 3.1 A subset τ of a plete poset A is a topology in A, if τ is closed

under arbitrary joins and finite meets.

Then for a topology τ in A, 0A, 1A ∈ τ as 0A = ∨∅ and 1A = ∧∅. In case

A = P (X) (ordered by inclusion) for some set X, the above definition gives a

topology on X in the usual sense. Now we can generalize the above functor F .

Proposition 3.2 Let T : GeoCmp −→ CoP be defined as follows: For a plete

poset (A,≤),

(1) T (A) = {τ ⊆ A| τ is a topology in A}

where the set T (A) is ordered by reverse inclusion, and for a geometric morphism

h = (h∗ ⊣ h∗) : A −→ B and a topology τ in A,

(2) Th(τ) = {b ∈ B|h∗(b) ∈ τ}.

T is a well-defined functor and therefore, by Theorem 2.50, it classifies a topological

category
∫
T over GeoCmP; moreover TP = F (where P is the power-set functor

of example 2.46) and hence Top =
∫

Sets

TP .

Proof. T (A) is ordered by reverse inclusion, so for {τj}j∈J ⊆ T (A), ∨τj = ∩τj ;

thus T (A) is a cocomplete poset, since arbitrary intersection of topologies in A

is a topology. Th(τ) defines a topology in B, since h∗ is cocontinuous and left

exact, i.e., it preserves arbitrary suprema and finite infima (in essence it preserves

topologies). Th is cocontinuous, i.e., it is a morphism in CoP, since Th(∨
j
τj) =

Th(∩
j
τj) = {b ∈ B|h∗(b) ∈ ∩

j
τj} = ∩

j
{b ∈ B|h∗(b) ∈ τj} = ∩

j
Fh(τj) = ∨

j
Th(τj).

For h : A −→ B and g : B −→ C in GeoCmP, T (gh) = T (g)T (h); this follows
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from the fact that adjoint situations can be composed, i.e., with h = (h∗ ⊣ h∗)

and g = (g∗ ⊣ g∗), g∗h∗ ⊣ g∗h∗ and that g∗h∗ is left exact when h∗ and g∗ are.

Thus
∫

GeoCmp

T is a topological category; its objects are pairs (A, τ) where τ is a

topology in the plete poset A, and a morphism h : A −→ B in GeoCmP lifts to

a morphism h̄ : (A, τ) −→ (B, σ) in
∫
T iff Th(τ) ≤ σ in the poset T (B) (by the

lifting condition in Remark 2.24 (ii)); since T (B) is ordered by reverse inclusion,

Th(τ) ≤ σ translates to Th(τ) ⊇ σ, i.e., σ ⊆ {b ∈ B|h∗(b) ∈ τ}.

Composing T : GeoCmp −→ CoP with P : Sets −→ GeoCmp, TP : Sets −→

CoP classifies the topological category
∫

Sets

TP whose objects are pairs (X, τ) where

τ is a topology on the set X, and a function f : X −→ Y of sets lifts to a morphism

f̄ : (X, τ) −→ (Y, σ) in
∫
TP iff σ ⊆ TPf(τ) = {O ∈ P (Y )| f−1(O) ∈ τ}, i.e., when

for all O ∈ σ, f−1(O) ∈ τ , which means again that f is continuous. It is then a

morphism in Top and hence Top =
∫

Sets

TP . Also, TPf(τ) = {O ∈ P (Y )| f−1(O) ∈

τ} is exactly the topology on Y coinduced by f from τ .

The category
∫
T of Proposition 3.2 will be denoted by TOP and can be con-

sidered as a universal category for the family of ”Top-type” categories, in the sense

that they can be obtained by pulling TOP back along some functor C −→ GeoCmP.

Every functor Q∗ : C −→ CoP that factors through T as Q∗ = TQ defines a ”Top-

type” topological category and is isomorphic to a pullback of TOP along Q. In

particular, Top is the pullback of TOP along the functor P by the above proposi-

tion.

Note 3.3 If τ ⊆ A is a topology in A then the inclusion τ
i
↪→ A is cocontinuous

and left exact, so with its right adjoint r : A −→ τ they give a geometric morphism
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r : A −→ τ ; (example 2.45). The counit of the adjunction i ⊣ r gives that r(a) ≤ a

for all a ∈ A, and the unit gives that for all t ∈ τ , t ≤ r(t). Thus r(t) = t for all

t ∈ τ , which means that ri =id, i.e. r is a retraction and the unit of the adjunction

is an isomorphism. Then, G = ir : A −→ A is a left exact comonad on A, (G

is monotonic, idempotent and G(a) ≤ a for all a ∈ A), with the set of coalgebras

AG = {x ∈ A |G(x) = x} = τ . In fact, we have the following

Proposition 3.4 For a subset τ of the cocomplete poset A, the following conditions

are equivalent;

(ι) τ is a topology in A;

(ιι) τ ∼= AG for a left exact comonad G on A;

Proof.: It follows from the note above, that (ι) ⇒ (ιι). Given a comonad G :

A −→ A with AG its set of coalgebras, AG is closed under arbitrary joins: given

(xj)j∈J ⊆ AG, we have ∨(xj) = ∨(G(xj)) ≤ G(∨xj) since G preserves order; we also

have G(∨xj) ≤ ∨(xj), which then implies that G(∨xj) = ∨(G(xj)) = ∨(xj). If G is

left exact, then AG is also closed under finite meets, since for x, y ∈ AG, G(x∧y) =

G(x) ∧G(y) = x ∧ y. Thus AG is a topology in A, which shows that (ιι)⇒ (ι).

Categories of Fuzzy Topological Posets

Fuzzy subsets of a set X were originally defined by Zadeh in [23] as functions

f : X −→ I = [0, 1]; the set of all fuzzy subsets of a set X is then IX . Later Goguen

generalized the concept and defined an L-fuzzy set (or simply an L-set) on a set X

as a function µ : X −→ L; LX is then the set of all L-fuzzy sets on X. L can be
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viewed as the truth set of µ and for x ∈ X, µ(x) is called the degree of membership

of x in µ. In Goguen’s papers L could be a semigroup, a poset, a lattice, a Boolean

ring, a cl∞-monoid etc. Proposition 2 in [8] says that, ”LX can be given whatever

operations L has, and these operations in LX will obey any law valid in L, which

extends point by point.”

In our case L will be a plete poset; LX is then a plete poset as well with order and

suprema defined pointwise as stated above: for µ, ν ∈ LX , µ ≤ ν iff µ(x) ≤ ν(x)

for all x ∈ X and for µj ⊆ LX , ( ∨
j∈J

µj)(x) = ∨
j∈J

(µj(x)); infima in LX are defined

similarly. A function f : X −→ Y induces the inverse image mapping f← : LY −→

LX defined via composition: given ν ∈ LY , f←(ν) = νf . If L =2 = (0 ≤ 1), then

LX = 2X ∼= P (X), and f← = f−1 in the sense that if B ∈ P (Y ) and ν
B

: Y −→2

is the characteristic function of B, then f←ν
B

(x) = ν
B
f(x) = 1 iff f(x) ∈ B, i.e.,

when x ∈ f−1(B); so f←ν
B

is the characteristic function of f−1(B).

As a functor, f← is bicontinuous ( f←(∨νj)(x) = (∨νj)f(x) = ∨(νjf(x)) =

∨f←(νj)(x) and similarly for infima), so it has both a right and a left adjoint. Its

continuous right adjoint h∗ : LX −→ LY is defined for µ ∈ LX by h∗(µ) =
∨
{ν ∈

LY | νf ≤ µ} by Lemma 2.42. Then h = (f← ⊣ h∗) : LX −→ LY is a geometric

morphism. Again if L =2 as above (we’ll write µS : X −→ 2 for example to denote

the characteristic function of S ⊆ X), then the definition of h∗(µ) translates to

h∗(µS ) = ∨{νT ∈ 2Y | νT f ≤ µS} = ∪{T ∈ P (Y ) | f−1(T ) ⊆ S} which is exactly

the definition of ∀f (Example 2.46). The left adjoint h∗ : LX −→ LX of f← again

by Lemma 2.42 is defined as h∗(µ) = ∧{ν ∈ LY | νf ≥ µ} which for L =2 translates

to h∗(µS ) = ∧{νT ∈ 2Y | νT f ≥ µS} = ∩{T ∈ P (Y ) | f−1(T ) ⊇ S}; this set defines
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f(S) since S ⊆ f−1f(S) ⇒ h∗(µ
S
) ⊆ f(S) and ff−1(T ) ⊆ T ⇒ h∗(µ

S
) ⊇ f(S).

Therefore h∗(µS ) = f(S) and then h∗(µ) = Imf .

Then for any plete poset L we have a functor PL : Sets −→ Ess ⊆ GeoCmP

that sends a set X, to PL(X) = LX ordered as above, and a function f : X −→ Y ,

to PL(f) = (f← ⊣ h∗) : LX −→ LY . Again, if L =2, then PL is isomorphic to the

power-set functor P of Example 2.46.

The first definition of a fuzzy topology appeared in Chang’s paper [4]; he applied

the usual axioms of a topology to Zadeh’s fuzzy subsets of a set: a Chang fuzzy

topology on a set X is a function τ : IX −→ 2 satisfying certain axioms. Later

Goguen replaced the unit interval with a complete lattice (with additional structure)

L and introduced the concept of L-topological spaces [7]; in both cases the subsets

of X making up the topology are fuzzy (or L-fuzzy) subsets, their membership in τ

however is ”crisp”. Šostak generalized Chang’s idea and defined a fuzzy topological

space as a pair (X, τ) where τ : IX −→ I satisfying the appropriate axioms; in his

definitions both the subsets of X considered and their membership in the topology

are fuzzy. Zhang later defined an L-fuzzifying topology on a set X in [24] as a

function τ : 2X −→ L satisfying certain conditions; in his case the subsets of X

considered are crisp and their membership in the topology is fuzzy. All of these

concepts (and the several other versions that appear in the literature) of a fuzzy

topology can be unified by defining a topology as a function T : A −→M satisfying

certain properties (see Definition 3.7).
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Definition 3.5 An L-topological space is a pair (X, τ) where X is a set, L is a

plete poset and τ is a topology in LX as in Definition 3.1.(cf. the definition on page

736 in [7].)

L-topological spaces are the objects of the category L-Top. A function f :

X −→ Y defines a morphism f : (X, τ) −→ (Y, σ) in L-Top, if for all ν ∈ σ,

f←(ν) = νf ∈ τ . If L =2, then by identifying a subset U of X with µ−1(1) of its

characteristic function µ : X −→2, (X, τ) is a topological space and f : (X, τ) −→

(Y, σ) is a continuous function. Thus for L =2, L-Top ∼= Top. if L = I, then

Definition 3.5 gives a Chang fuzzy topology on X.

Proposition 3.6 L-Top =
∫

Sets

TPL, i.e, L-Top is isomorphic to the pullback of

TOP along the functor PL.

Proof. The objects of
∫

Sets

TPL are pairs (X, τ) where X is a set, and τ ∈ TPL(X) =

T (LX) = {τ ⊆ LX | τ is a topology in LX} as in Prop. 3.3. A function f : X −→ Y

lifts to a morphism f̄ : (X, τ) −→ (Y, σ) in
∫

Sets

TPL iff TPLf(τ) ≤ σ, i.e., iff

Th(τ) = {ν ∈ LY | νf ∈ τ} ⊇ σ (recall that T (LX) is ordered by reverse inclusion),

i.e., iff for all ν ∈ σ, νf ∈ τ , as above.

When (X, τ) is either a topological space or an L-topological space, τ is a crisp

subset of either P (X) or LX ; or in general we defined a topology τ in a poset A to be

a crisp subset of A satisfying the required properties. We can also consider ”fuzzy

topologies”, i.e., fuzzy subsets of a poset. More precisely identifying a topology τ in
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a poset A by T −1(1) of its characteristic function T : A −→ 2 and then replacing

2 by a cocomplete poset M leads to the following definition.

Definition 3.7 Given plete posets A and M with their bottom and top elements

denoted by 0A, 0M , 1A and 1M respectively, a function T : A −→M is an M-valued

fuzzy topology (or M-fuzzy topology) in A, iff T satisfies the following conditions:

(FT1) T (0A) = T (1A) = 1M ,

(FT2) T (µ ∧ ν) ≥ T (µ) ∧ T (ν) for all µ, ν ∈ A,

(FT3) T (∨µj) ≥ ∧T (µj) for all µj ∈ A.

Definition 3.8 Let M be a plete poset. An M-fuzzy topological poset is a

pair (A, T ) where A is a plete poset and T : A −→ M is an M-fuzzy topology

in A. M-fuzzy topological posets are the objects of the category M-FTPoS. A

geometric morphism h = (h∗ ⊣ h∗) : A −→ B of plete posets gives a morphism

h̄ : (A, T ) −→ (B,S) in M-FTPoS iff for all b ∈ B, S(b) ≤ T (h∗(b)).

Example 3.9: (1) If M =2 in Definition 3.7, then T −1(1) is a (crisp) topology in

A in the sense of Definition 3.1; thus when A = P (X), M=2 and T : P (X) −→ 2

satisfies the conditions of Definition 3.7, then T −1(1) is a topology on the set X in

the usual sense.

(2) When A = IX , the set of all fuzzy subsets of the set X, and M=2 , then

Definition 3.7 gives Chang’s definition of a fuzzy topological space; (Definition 3.2

in [4]).
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(3) When A = LX for a completely distributive lattice L, and M=2, T :

LX −→2 in Definition 3.7 gives Gougen’s L-topology (or L-fuzzy topology), as in

the definition on page 736 in [8].

(4) If A = [0, 1]X and M = [0, 1], then T : IX −→ I gives Šostak’s fuzzy

topology, as in Definition 3.1 in [19].

(5) When A = P (X) for some set X and M is a completely distributive lattice,

then T : P (X) −→M gives an M-fuzzifying topology, as in [24], page 135.

(6) When L and M are completely distributive lattices, X is a set and A = LX ,

then T : A −→ M (of definition 3.7) defines an (L,M)-fuzzy topology on the set

X, as in [25], page 4.

Proposition 3.10 M-FTPoS is a topological category over GeoCmP; its classi-

fying functor GM : GeoCmP −→ CoP is defined on the object level by

(3) GM (A) = {T : A −→M | T satisfies (FT1) - (FT3)},

and for a morphism h = (h∗ ⊣ h∗) : A −→ B in GeoCmP, GMh : GM (A) −→

GM (B) is defined for T : A −→M by

(4) GMh(T ) = T h∗.

Proof. GM (A) is a poset ordered as follows: T1 ≤ T2 iff T1(a) ≥ T2(a) for all

a ∈ A and then suprema are defined by (∨Tj)(a) = ∧(Tj(a)). If ∨Tj satisfies (FT1)

- (FT3), i.e., if ∨Tj ∈ GM (A), then GM (A) is a cocomplete poset. ∨Tj(0A) =

∧(Tj(0A)) = ∧1M = 1M and similarly (∨Tj)(1A) = 1M , thus ∨Tj satisfies (FT1).
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∨Tj satisfies (FT2) since for all µ, ν ∈ A, (∨
j
Tj)(µ∧ ν) = ∧

j
[Tj(µ∨ ν)] ≥ ∧

j
[Tj(µ)∧

Tj(ν)] = [∧
j
Tj(µ)] ∧ [∧

j
Tj(ν)] = (∨

j
Tj)(µ) ∧ (∨

j
Tj)(ν). And similarly, ∨Tj satisfies

(FT3) since (∨
j
Tj)(∨

t
µt) = ∧

j
(Tj(∨

t
µt)) ≥ ∧

j
(∧
t
Tj(µt)) = ∧

t
(∧
j
Tj(µt)) = ∧

t
[(∨
j
Tj)(µt)].

Next we have to show that GMh(T ) : B −→M satisfies (FT1) - (FT3) whenever

T : A −→ M does. GMh(T )(0B) = 1M since h∗ is cocontinuous and T (0A) = 1M ,

and GMh(T )(1B) = 1M since h∗ is left exact and T (1A) = 1M . Thus GMh(T )

satisfies (FT1). For µ, ν ∈ B, GMh(T )(µ∧ν) = T (h∗(µ∧ν)) by (4). T (h∗(µ∧ν)) =

T (h∗(µ) ∧ h∗(ν)) by the left exactness of h∗. Since T satisfies (FT2), T (h∗(µ) ∧

h∗(ν)) ≥ T (h∗(µ)) ∧ T (h∗(ν)) = GMhT (µ) ∧ GMhT (ν). Thus GMhT satisfies

(FT2). For {µj} ⊆ B, GMh(T )(∨(µj)) ≥ ∨GMh(T )(µj) since h∗ is cocontinuous

and T satisfies (FT3). Thus GMh(T ) satisfies (FT3) as well, and then GMh(T ) ∈

GM (B). The cocontinuity of GMh follows from the definition of ∨Tj .

Thus GM is a well-defined functor and
∫
GM is a topological category over

GeoCmp; its objects are pairs (A, T ) where A is a plete poset and T : A −→M is

an M -fuzzy topology in A. A morphism h = (h∗ ⊣ h∗) : A −→ B in GeoCmP lifts

to a morphism h̄ : (A, T ) −→ (B,S) in
∫
GM iff GMh(T ) ≤ S, i.e., iff for all b ∈ B

S(b) ≤ GMh(T )(b) = T (h∗(b)). Hence
∫
GM =M-FTPoS.

Using the functor GM and (G2) again several familiar topological categories can

be classified and hence M-FTPoS =
∫
GM can be considered as the universal fuzzy

top-type category in the sense that every functor Q∗ : C −→ CoP that factors

through GM as Q∗ = GMQ classifies a fuzzy type topological category, as it is

isomorphic to a pullback of M-FTPoS along Q.
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1. If M=2, the functor GM = G2 : GeoCmP −→ CoP gives for each co-

complete poset A, G2(A) = {T : A −→ 2 | T satisfies (FT1) - (FT3)} ∼= {τ ⊆

A | τ is a topology in A}, since T satisfies (FT1) - (FT3) iff T −1(1) = τ is a

topology in A; thus G2(A) ∼= T (A). For h : A −→ B, G2h(T ) = T h∗ by (4);

(T h∗)−1(1) = {b ∈ B |h∗(b) ∈ T −1(1) = τ} by (2) in Proposition 3.2. Thus

G2
∼= T and hence

∫
Sets

G2P ∼= Top.

2. GMP classifies the category of M -fuzzifying topological spaces, i.e.,∫
Sets

GMP = M-FYS; (the notation Top-(2,M) is also used in the literature).

The objects of
∫
GMP are pairs (X, T ) with T ∈ GMP (X) i.e., T : P (X) −→ M

is an M -fuzzifying topology in P (X). A function f : X −→ Y lifts to a morphism

f̄ : (X, T ) −→ (Y,S) in
∫
GMP iff GMPf(T ) ≤ S i.e., iff GMfT (V ) ≥ S(V ) for

all V ∈ P (Y ). By (4) GMfT (V ) = T f−1(V ) so the lifting condition on f̄ coincides

with the definition of a continuous function f̄ : (X, T ) −→ (Y,S) of M -fuzzifying

topological spaces in [24] page 135. M-FYS is then isomorphic to the pullback of∫
GM along the power-set functor.

3. Let PL : Sets −→ GeoCoP be the functor defined on page 62. Then∫
Sets

G2PL ∼= L - Top, the category of L-topological spaces. The objects of
∫
G2PL

are pairs (X, T ) where X is a set and T ∈ G2PL(X) = G2(LX) = {T : LX −→

2 | T satisfies (FT1) - (FT3)} ∼= {τ ⊆ LX | τ is a topology in LX}, since again as

in example (1), T −1(1) = τ is a topology in LX . A function f : X −→ Y

lifts to a morphism f̄ : (X, T ) −→ (Y,S) in
∫
G2PL iff G2PLf(T ) ≤ S. By

the definition of PL, for f : X −→ Y , PL(f) = (f← ⊣ h∗), so by (4),

G2(PLf)(T ) = T f←. The lifting condition then translates to T f← ≤ S mean-
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ing that for all ν ∈ LY , S(ν) ≤ T f←ν = T (νf). Let σ = S−1(1) and τ = T −1(1)

be the topologies defined by the functions S : LY −→ 2 and T : LX −→ 2; then

S(ν) ≤ T (νf) means that if ν ∈ σ, then νf ∈ τ , as required in Definition 3.5.

4.
∫
GMPL =(L,M)-FTS, the category of (L,M)-fuzzy topological spaces. The

objects of
∫
GMPL are pairs (X, T ) where T ∈ GMPL(X), i.e., T : LX −→ M

is an M-valued fuzzy topology in LX . A function f : X −→ Y lifts to a mor-

phism f̄ : (X, T ) −→ (Y,S) in
∫
GMPL iff GMPLf(T ) ≤ S i.e., iff for all

ν ∈ LY , GMf
←T (ν) = T (νf) ≥ S(ν). (L,M)-FTS is then isomorphic to the

pullback of
∫
GM along the functor PL.

In the examples above, the plete poset M was fixed. We can however generalize

the dependence on M by defining a functor G : GeoCmP×CmP −→ CoP as follows.

For objects G(A,M) = GM (A) where GM is the functor of Proposition 3.10. For

a morphism (h, r) : (A,M) −→ (B,N) (where h = (h∗ ⊣ h∗)) and for an M -fuzzy

topology T : A −→M, G(h, r)(T ) = rT h∗ : B −→ N . To be an N -fuzzy topology

on B, rT h∗ must satisfy the properties (FT1) - (FT3) of Definition 3.7.

(FT1): rT h∗(0B) = rT (0A) = r(1M ) = r(∧M ∅) = ∧N ∅ = 1N

rT h∗(1B) = rT h∗(∧B∅) = rT (1A) = r(1M ) = 1N

(FT2): rT h∗(µ ∧ ν) = rT (h∗(µ) ∧ h∗(ν)) ≥ r(T h∗(µ) ∧ T h∗(ν)) =

rT h∗(µ) ∧ rT h∗(ν)

(FT3): rT h∗(∨
B
µj) = rT (∨

A
h∗(µj)) ≥ r(∧M

T h∗(µj)) = ∧
N
rT h∗(µj)
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The above equalities and inequalities follow from the repeated application

of the cocontinuity and left exactness of h∗, the continuity of r and the fact

that T satisfies Definition 3.7. Since for an object b in B and Tj : A −→

M , G(h, r)(∨Tj)(b) = r(∨Tj)(h∗(b)) = r(∧Tj(h∗(b))) = ∧r(Tj(h∗(b))) =

(∨(rTjh∗))(b) = ∨(G(h, r)(Tj))(b), G(h, r) is cocontinuous; the functor G is then

well defined and it classifies the topological category
∫
G over GeoCmP ×CmP.

The objects of
∫
G are triples (A,M, T ) with T : A −→M an M -fuzzy topology on

A; a morphism (h, r) : (A,M) −→ (B,N) in GeoCmP ×CmP lifts to a morphism

(A,M, T )
(T ,(h,r),S) // (B,N,S) if and only if G(h, r)(T ) ≤ S, i.e., iff for all

b in B, rT h∗(b) ≥ S(b).

For a plete poset M , let iM : GeoCmP −→ GeoCmP×CmP be the functor that

assigns (A,M) to a plete poset A and (h, 1M ) to a geometric morphism h : A −→ B.

Then GiM = GM and hence
∫
GM is the pullback of

∫
G along iM :

∫
GM //

��

∫
G //

��

CoP∗

��
GeoCmP

iM // GeoCmP× CmP
G // CoP

All the topological categories discussed in this chapter can be obtained by pulling

back
∫
G along a suitable functor;

∫
G is then a universal object for the categories

considered above. Moreover, any functor Q : C −→ CoP that factors through

G classifies a topological category of this family; (special cases of such functors

classifying familiar topological categories are listed on pages 67 and 68).
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Level Topologies

Definition 3.11 (cf. Discussion 1.5 in [5]) Given an M -valued fuzzy topology

T : A −→M , define for all α ∈M , Tα = {µ ∈ A | T (µ) ≥ α}, the α-level topology

associated with T .

By examining the properties of the (po)set of level topologies associated to a

givenM -valued fuzzy topology, we’ll find conditions for a given set of level topologies

to define an M -fuzzy topology.

It is a direct consequence of the axioms (FT1) - (FT3) that for all α ∈ M, Tα

is a topology in A, i.e., Tα ∈ T (A) = the set of all toplogies in A.

The set {Tα}α∈M of α-level topologies has the following properties:

(1) {Tα}α∈M ⊆ T (A) is ordered by inclusion and α ≤ β implies that Tβ ⊆ Tα.

(The converse does not hold: for example if T : A −→ M is given by T (µ) = 1M

for all µ ∈ A, then T1M = T0M = A, so T0M ⊆ T1M , but 1M � 0M .)

(2) ({Tα},≤ = ⊆op) is a cocomplete subposet of (T (A),⊆op) with
∨
j∈J
Tβj =

T∨βj =
∩
j∈J

Tβj .

Proof of (2): If µ ∈
∩
j∈J
Tβj , then T (µ) ≥ βj for al j ∈ J , which means that

T (µ) ≥ ∨βj . Thus µ ∈ T∨bj and consequently
∩
j∈J
Tβj ⊆ T∨βj . If µ ∈ T∨βj , then

T (µ) ≥ ∨βj , which means that T (µ) ≥ βj for all j ∈ J and hence µ ∈
∩
j∈J
Tβj .

Thus T∨βj ⊆
∩
j∈J
Tβj , which then proves that T∨βj =

∩
j∈J
Tβj .

Since
∩
j∈J
Tβj =

∨
j∈J

Tβj in (T (A),⊆op), the inclusion {Tα}α∈M ↪→ T (A) is co-

continuous.
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Since the category PoS of posets is cartesian closed, for K,M ∈ Pos, KM is

a poset as well and if K is a cocomplete poset, so is KM . Now let M also be a

cocomplete poset and let F
M

: CoP −→ CoP denote the covariant hom functor

FM = CoP (M, ): CoP −→ CoP; then for K ∈ CoP, F
M

(K) = CoP (M,K) =

{Γ : M −→ K |Γ is a cocontinuous functor}, and given a morphism h : K −→ L

in CoP, F
M
h(Γ) = hΓ. Since both h and Γ are cocontinuous, so is hΓ. The

order on FM (K) is given by Γ1 ≤ Γ2 iff Γ1(α) ≤ Γ2(α) for all α ∈ M . Suprema

then in F
M

(K) are also defined by image: (
∨

Γj)(α) =
K∨

(Γj(α)). F
M

(h) is also

cocontinuous, since h is.

Then the functor T : GeoCmP −→ Cop of Proposition 3.2 and FM can be

composed: F
M
T : GeoCmP −→ CoP gives for A ∈ GeoCmP, F

M
T (A) =

CoP(M,T (A)), and for a morphism h : A −→ B in GeoCoP, and Γ ∈

CoP(M,T (A)), F
M
T (h)Γ = T (h)Γ. F

M
T then classifies the topological category∫

F
M
T over GeoCmP.

Proposition 3.12 Given a cocomplete poset M , there is a natural transformation

η : GM ⇒ FMT defined as follows: for a plete poset A, ηA : GM (A) −→ FMT (A) =

CoP(M,T (A)) sends the M-fuzzy topology T : A −→M to ηAT = ΓT : M −→ T (A)

where for α ∈ M, ΓT (α) = Tα = {µ ∈ A | T (µ) ≥ α}, the α-level topology

associated with T (Def. 3.11).

Proof. For each A ∈ GeoCmP, ηA is order preserving and cocontinuous: Given

T1, T2 : A −→ M , T1 ≤ T2 means that T1(a) ≥ T2(a) for all a ∈ A which then

implies that ΓT1(α) = {a ∈ A | T1(a) ≥ α} ⊇ {a ∈ A | T2(a) ≥ α} = ΓT2(α).
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Hence ΓT1(α) ≤ ΓT2(α), since T (A), the set of all topologies on A is ordered by

reverse inclusion; we then have that ηA preserves order. The fact that ηA preserves

arbitrary suprema, i.e., Γ∨T j = ∨ΓTj , follows, for α ∈ M , from the equality of the

sets Γ∨Tj (α) = {a ∈ A | (∨Tj)(a) ≥ α} = {a ∈ A | ∧ (Tj(a) ≥ α} and ∨(ΓTj (α)) =

∨{a ∈ A | Tj(α) ≥ α} =
∩
{a ∈ A | Tj(a) ≥ α}.

For a morphism h : A −→ B in GeoCmP, the diagram

G
M

(A)
η
A−−−−→ CoP(M,T (A))

G
M

(h)

y yFM
T (h)

G
M

(B)
η
B−−−−→ CoP(M,T (B))

commutes, since for (T : A −→M) ∈ GM (A), ηA(T ) = ΓT : M −→ T (A) with

(∗) ΓT (α) = Tα = {µ ∈ A | T (µ) ≥ α},

(FMTh)(ΓT ) = (Th)ΓT : M −→ T (B) with (Th)ΓT (α) = Th(Tα) =

{ν ∈ B |h∗(ν) ∈ Tα} = {ν ∈ B | T (h∗(ν)) ≥ α} by (2) on page 54 and by (∗) above.

Going along the diagram the other way gives for T ∈ GM (A) and for ν ∈ B that

GMh(T )(ν) := S(ν) = T (h∗(ν)) by (4) in Proposition 3.10, and ηB(S) = ΓS : α 7−→

{ν ∈ B | S(ν) ≥ α} = {ν ∈ B | T (h∗(ν)) ≥ α} as above; thus FMTηA = ηBGMh.

The natural transformation η : G
M
⇒ F

M
T then defines a functor

∫
η :∫

GM −→
∫
FMT the obvious way.

Definition 3.13 (Def. 1.1 in [6]) Let L be a complete lattice. We say that x is

way below y, in symbols x≪ y, iff for directed subsets D ⊆ L the relation y ≤ supD

always implies the existence of a d ∈ D with x ≤ d.
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Definition 3.14 (Def 1.6 in [6]) A lattice L is called a continuous lattice if L is

complete and satisfies the axiom of approximation: x =
∨
u≪x

u for all x ∈ L.

Definition 3.15 (Page 119 in [2]) A (complete) lattice is called completely dis-

tributive when it satisfies the dual extended distributive laws:

∧
C

∨
Aγ

xγ,α

 =
∨
Φ

[∧
C

xγ,ϕ(γ)

]
,

∨
C

∧
Aγ

xγ,α

 =
∧
Φ

[∨
C

xγ,ϕ(γ)

]
,

for any non-void family of index sets Aγ , one for each γ ∈ C, provided Φ is the

set of all functions ϕ with domain C and ϕ(γ) ∈ Aγ .

Proposition 3.16 (Corollary 3.5 in [6]) Every completely distributive lattice is

continuous.

Given a fuzzy topology T : A −→ M , the set {Tα}α∈M of associated α-level

topologies can be realized as the cocontinuos functor ΓT : M −→ (G2(A),⊆op) of

cocomplete posets that sends α ∈ M to ΓT (α) = Tα ∈ G2(A). Property (1) (page

70) implies that ΓT is order preserving; the cocontinuity of ΓT follows from property

(2).

The converse of the above statement holds, if M is a completely distributive

lattice:
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Proposition 3.17 If M is a completely distributive lattice (and A is a cocomplete

poset), then a cocontinuous functor Γ : M −→ T (A) defines an M -fuzzy topology

TΓ : A −→M in A by setting

TΓ(µ) =
∨
{β ∈M |µ ∈ Γ(β)}.

Proof. TΓ satisfies (FT1) since Γ(α) is a topology in A: 0A, 1A ∈ Γ(α) for

all α ∈ M , so TΓ(0A) = TΓ(1A) = ∨M = 1M . Given µ, ν ∈ A, TΓ(µ) ∧ TΓ(ν) =(∨
i∈I
{αi |µ ∈ Γ(αi)}

)∧( ∨
j∈J
{βj | ν ∈ Γ(βj)}

)
=
∨
I×J

(αi ∧ βj) by the infinite dis-

tributive law. Since αi∧βj ≤ αi and αi∧βj ≤ βj for all i ∈ I and j ∈ J , Γ(αi∧βj) ⊇

Γ(αi) and Γ(αi∧βj) ⊇ Γ(βj). Then µ, ν ∈ Γ(αi∧βj) for all i, j, and since Γ(αi∧βj)

is closed under finite meets, µ ∧ ν ∈ Γ(αi ∧ βj) also. Then TΓ(µ ∧ ν) ≥ αi ∧ βj for

all i, j which implies that TΓ(µ∧ ν) ≥
∨

(αi ∧ βj) = TΓ(µ∧TΓ(ν). Thus FT2 holds.

To show that TΓ(
∨
K

µk) ≥
∧
K

TΓ(µk), the complete distributivity of M is

needed: given {µk}k∈K ⊆ A,
∧
k∈K
TΓ(µk) =

∧
k∈K

( ∨
j∈Jk
{βk,j ∈M |µk ∈ Γ(βk,j)}

)
=

∨
ϕ∈Φ

( ∨
k∈K
{βk,ϕ(k) ∈M |µk ∈ Γ(βk,ϕ(k))}

)
where Φ is the set of all functions ϕ with

domain K and ϕ(k) ∈ Jk,( by the first extended distributive law). Since for any

(fixed) ϕ,
∧
k∈K
{βk,ϕ(k)} ≤ βk,ϕ(k) for all k ∈ K, Γ(∧βk,ϕ(k)) ⊇ Γ(βk,ϕ(k)) for all

k. Then since µk ∈ Γ(βk,ϕ(k)) for all k, µk ∈ Γ(
∧
K

βk,ϕ(k)) also. Γ(
∧
K

βk,ϕ(k)) is

closed under infinite suprema, thus
∨
K

µk ∈ Γ(
∧
K

βk,ϕ(k)) also for any ϕ ∈ Φ. Then

by definition of TΓ , TΓ(
∨
K

µk) ≥
∨
Φ

(∧
K

βk,ϕ(k)

)
=
∧
K

TΓ(µk).

Proposition 3.18 If M is a completely distributive lattice, then the natural

transformation η : G
M
⇒ F

M
T of Proposition 3.12 is a natural isomorphism.



75

Proof. We define a natural transformation λ : F
M
T ⇒ G

M
as follows: for

Γ ∈ FMT (A) = CoP(M,T (A)), λA(Γ) : A −→M is given by

λA(Γ)(µ) =
∨
{β ∈ M |µ ∈ Γ(β)} as in Proposition 3.17. For each A ∈GeoCmP,

λ
A

is a morphism in CoP, since it is order-preseving and cocontinuous. The natural

transformation η was defined for A ∈GeoCmP by η
A

(T ) = ΓT : α 7−→ Tα =

{µ ∈ A | T (µ) ≥ α}. λAηA(T )(µ) = TΓT (µ) = ∨{β ∈ M |µ ∈ ΓT (β)} = ∨{β ∈

M | T (µ) ≥ β} by the definitions of ΓT and TΓ . Let S = {β ∈ M | T (µ) ≥ β}.

Then T (µ) ∈ S implies that T (µ) ≤ ∨S and T (µ) ≥ β for all β ∈ S implies that

T (µ) ≥ ∨S. Thus T (µ) = ∨S = TΓT (µ) for all µ ∈ A, and hence λ
A
η
A

= 1.

To show that η
A
λ

A
(Γ) = ΓTΓ

= Γ i.e., ΓTΓ
(α) = Γ(α) for all α ∈ M , suppose

that µ ∈ ΓTΓ
(α) = {µ ∈ A | TΓ(µ) ≥ α} for some α, i.e. TΓ(µ) ≥ α. Again let

S = {β |µ ∈ Γ(β)}, ∨S = t and note that S is a directed set due the cocontinuity of

Γ. M being a completely distributive lattice, it is also continuous, hence t =
∨
γ≪t

γ.

Since γ ≪ t and t = ∨S implies that γ ≤ β for some β ∈ S by definition 3.4, for

every γ ≪ t, Γ(γ) ⊇ Γ(β) for some β ∈ S. Thus µ ∈ Γ(γ) for all γ ≪ t and hence

µ ∈
∩
γ≪t

Γ(γ) =
∨
γ≪t

Γ(γ) = Γ∨γ = Γt. Then µ ∈ Γ(α) also, since t = TΓ(µ) ≥ α.

Therefore ΓTΓ(α) ⊆ Γ(α) for all α ∈M .

If µ ∈ Γ(α), then α ∈ S and hence α ≤ ∨S = TΓ(µ). Thus µ ∈ ΓTΓ
and

Γ(α) ⊆ ΓTΓ
(α) for all α ∈M . Therefore ΓTΓ

= Γ, which means that ηAλA = 1, for

all A ∈ GeoCop. Hence η is a natural isomorphism and
∫
η :
∫
G

M
⇒
∫
F

M
T is an

isomorphism categories.



CHAPTER 4

Classification of General Convergence Structures

Poset properties

Definition 4.1 A poset L is said to be directed if every finite subset of L has

an upper bound in L. Dually, L is said to be filtered if every finite subset of L has

a lower bound in L. (The definition implies that directed and filtered posets are

nonempty.)

Definition 4.2 Let L be a poset. For α ⊆ L and a ∈ L we write:

(i) ↓α = {x ∈ L |x ≤ a for some a ∈ α};

(ii) ↓a =↓{a};

(iii) α is called a lower set (or down-segment) if ↓α = α;

(iv) α is an ideal if it is a directed lower set;

(v) An ideal of the form ↓a is called a principal ideal ;

(vi) An ideal α is a prime ideal if for any pair a, b of elements of L such that

a ∧ b exists, a ∧ b ∈ α⇒ a ∈ α or b ∈ α.

(vii) An element p in L is prime if for any pair a, b of elements of L such that

a ∧ b exists, a ∧ b ≤ p⇒ a ≤ p or b ≤ p.

(Note: p is a prime element iff ↓p is a prime ideal.)

76
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Dual notions:

(viii) ↑α = {x ∈ L |x ≥ a for some a ∈ α};

(ix) ↑a =↑{a};

(x) α is called an upper set (or up-segment) if ↑α = α;

(xi) α is a filter if it is a filtered upper set;

(xii) A filter of the form ↑a is called a principal filter ;

(xiii) A filter α is a prime filter if for any pair a, b of elements of L such that

a ∨ b exists, a ∨ b ∈ α⇒ a ∈ α or b ∈ a.

(xiv) An element p in L is coprime iff it is a prime element of Lop.

In case the poset (L,≤) = (PX,⊆) for some set X, upper sets are called stacks

on X and the notation [α] is also used instead of ↑α. A filter in the poset (PX,⊆)

gives the usual notion of a filter on the set X. A principal filter generated by a

singleton ↑{x} will be denoted by ↑x; filters of this form are exactly the principal

prime filters in (PX,⊆). In the case when P (X) is ordered by reverse inclusion, i.e.,

(L,≤) = P (X)op, a stack (resp. filter) on the set X is a lower set (resp. ideal),the

principal prime filters ↑ x on X become the principal prime ideals and the prime

elements are exactly the singletons {x}.

Lemma 4.3 If p is a prime element in the plete poset L and h : L −→ N is a

morphism in GeoCmP, then h(p) is a prime element of N and hence ↓ h(p) is a

prime ideal in N .

Proof. Suppose p is a prime in L and and t ∧ s ≤ h(p) in N . Then h∗(t ∧ s) ≤

h∗(h(p)); h∗(h(p)) ≤ p by the adjunction h∗ ⊣ h and h∗(t ∧ s) = h∗(t) ∧ h∗(s) by
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the left exactness of h∗. Hence h∗(t) ∧ h∗(s) ≤ p, and since p is prime, h∗(t) ≤ p

od h∗(s) ≤ p. Suppose h∗(t) ≤ p . Then h(h∗(t)) ≤ h(p) and by the adjunction,

t ≤ h(h∗(t)) ; hence t ≤ h(p) follows. Thus h(p) is a prime element of N and ↓h(p)

is a prime ideal; in fact ↓h(p) =↓h(↓p).

Lemma 4.4 Let Id(L) denote the set of all ideals of the poset L. If h : L −→ N

is continuous and {αj}j∈J ⊆ Id(L), then ↓h(∩αj) = ∩{↓h(αj)}.

Proof. The inclusion ↓h(∩αj) ⊆ ∩{↓h(αj)} is obvious. To show that

∩{↓h(αj)} ⊆ ↓h(∩αj), suppose that x ∈ ∩{↓h(αj}. Then for all j ∈ J , x ∈↓h(αj)

and there exists aj ∈ αj such that x ≤ h(aj). Thus x ≤ ∧h(aj) = h(∧aj) since h

is continuous, and ∧aj ∈ αj for all j ∈ J since each αj is an ideal and therefore a

lower set. Then h(∧aj) ∈ h(∩αj) and x ∈↓h(∩αj).

Lemma 4.5 If α is a prime ideal in the plete poset L and h : L −→ N is a

morphism in GeoCmp, then ↓h(α) is a prime ideal in N .

Proof. Suppose s ∧ t ∈↓ h(α). Then s ∧ t ≤ h(a) for some a ∈ α. Since h

defines a geometric morphism, its left adjoint h∗ is left exact; therefore h∗(s ∧ t) =

h∗(s) ∧ h∗(t). It follows form the adjunction h∗ ⊣ h that h∗(h(a)) ≤ a. Thus

h∗(s) ∧ h∗(t) ≤ a which means that h∗(s) ∧ h∗(t) ∈ α; α is a prime ideal, therefore

h∗(s) ∈ α or h∗(t) ∈ α. If h∗(s) ∈ α, then h(h∗(s)) ∈ h(α). Again by the

adjunction, h(h∗(s)) ≥ s, so s ∈↓h(α) which proves that ↓h(α) is a prime ideal in

N .
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Stack and Filter Convergence Structures

For a set X, let F (X) denote the set of all filters and S(X) the set of nonempty

stacks on X.

Definition 4.6 A Stack Convergence Structure on a set X is an order preserving

function q : (S(X),⊆) −→ (P (X),⊆) such that x ∈ q(↑ x) for all x ∈ X. In this

case the pair (X, q) is called a Stack Convergence Space. Stack convergence spaces

form the category SCo . A morphism f : (X, q) −→ (Y, r) is a function f : X −→ Y

such that for all α ∈ S(X), f(x) ∈ r (↑ f(α)) whenever x ∈ q(α). (cf. page 354 in

[18]).

Definition 4.7 If in the above definition S(X) is replaced by F (X), then

q : (F (X),⊆) −→ (PX,⊆) is called a Filter Convergence Structure on X and

(X, q) a Filter Convergence Space. Filter convergence spaces are the objects of the

category FCo (cf. page 348 in [18]). Morphisms in FCo are defined the same way

as in SCo.

When x ∈ q(α) for some stack/filter α, we write α
q−→ x and we say that ”

α q-converges to x” or ”x is a limit point of α”.

Given a filter convergence structure q : F (X) −→ P (X), consider the following

stronger conditions on q:

(C1) α
q−→ x implies that (α∩ ↑x)

q−→ x;

(C2) α
q−→ x and β

q−→ x implies that (α ∩ β)
q−→ x;

(C3) For any {αj}j∈J ⊆ F (X) such that αj
q−→ x for all j ∈ J , ∩αj

q−→ x.
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Definition 4.8 A filter convergence structure q : F (X) −→ P (X) is called a local

filter convergence structure if it satisfies (C1), a limit structure if it satisfies (C2),

and a pretopology if it satisfies (C3). Local filter convergence spaces, limit spaces

and pretopological spaces are defined the obvious way and are, respectively, objects

of the topological categories LCo, Lim and PrT.

Note 4.9 Since (C3)⇒ (C2)⇒ (C1) we have that LFCo ⊃ Lim ⊃ PrT; also LFCo

is a subcategory of FCo. Moreover Top is isomorphic to a subcategory of PrT, since

given a topological space (X, τ), τ defines a pretopology qτ : F (X) −→ P (X) as

follows: for α ∈ F (X), α
qτ−→ x iff α ⊇ Nx where Nx is the neighborhood filter of

x.

Note 4.10: A Stack (resp. filter) Convergence Structure can equivalently be defined

as a function K : X −→ P (S(X)) (resp. K : X −→ P (F (X))) such that ↑K(x) =

K(x) and ↑ x∈ K(x) ∀x ∈ X in the poset (P (S(X)),⊆), as in [18], on page 354,

or as as a subset q of S(X)×X such that (↑x, x) ∈ q ∀x ∈ X and for α, β ∈ S(X)

and α ⊆ β, (α, x) ∈ q =⇒ (β, x) ∈ q (cf. page 18 in [17]). The equivalence of

these definitions follows from the fact that the category of Sets is cartesian closed

and therefore the following morphism sets are isomorphic:

Sets(S(X), 2X) ∼=
c.c.

Sets(X × S(X), 2) ∼= Sets(S(X)×X, 2) ∼=
c.c.

Sets(X, 2S(X)). The

function q : S(X) −→ P (X) that corresponds to a function K : X −→ P (S(X))

under the isomorphisms above is characterized as: x ∈ q(α) iff α ∈ K(x); q assigns

to a stack/filter the set of its limit points, whereas K assigns to each point x the

set of stacks/filters converging to it.
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The functor Q : Sets −→ CoP that classifies the topological category SCo is the

following. For a set X,

Q(X) = {q : S(X) −→ P (X) | q is a stack convergence structure on X}.

The order on Q(X) is defined by q1 ≤ q2 iff q1(α) ⊆ q2(α) for all α ∈ S(X).

With infima defined by

(
∧
j
qj

)
(α) = ∩

j
(qj(α)), Q(X) is a complete and therefore

cocomplete poset; suprema are defined by

(
∨
j
qj

)
(α) = ∪

j
(qj(α)). For a function

f : X −→ Y of sets, Qf : Q(X) −→ Q(Y ) is defined as the left adjoint of

(Qf)∗ : Q(Y ) −→ Q(X), where for (r : S(Y ) −→ PY ) ∈ Q(Y ) and α ∈ S(X)

(Qf)∗ is defined by

(4-1) [(Qf)∗(r)](α) = {x ∈ X | f(x) ∈ r(↑f(α)}.

[(Qf)∗(r)](α) : S(X) −→ P (X) is continuous, preserves order and for all x ∈ X,

↑ x (Qf)∗(r)−−−−−→ x, so (Qf)∗(r) defines a stack convergence structure on X. The

functors that classify FCo, LFCo, Lim and Prt are defined similarly. Q0 : Sets −→

CoP defined for a set X as

Q0(X) = {q : F (X) −→ P (X) | q is a filter convergence structure on X}

classifies FCo. For i = 1, 2, 3, let Qi : Sets −→ CoP be defined as

Qi(X) = {q : F (X) −→ PX | q ∈ Q0(X) and q satisfies Ci}. The order, infima

and suprema in Qi(X), i = 0, 1, 2, 3 are defined the same way as for the functor Q

above, and also on the morphism level each Qi is defined the same way as Q. Then

Q1 classifies LFCo, Q2 classifies Lim, and Q3 classifies Prt.

If α ∈ F (X) (and f : X −→ Y ) then ↑ f(α) ∈ F (Y ), so the definition

[(Qif)∗(r)](α) = {x ∈ X | f(x) ∈ r(↑f(α)} as in (4-1) makes sense.
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Generalized Stack Convergence Structure

Definition 4.11 Given a plete poset L, let LL denote the set of all lower sets of

L ordered by inclusion. A function q : LL −→ L is a generalized stack convergence

structure in L if (i) q is order-reversing, i.e., q is an L-valued presheaf on LL, and

(ii) p ≥ q(↓ p) for every principal prime ideal ↓ p, or equivalently, for every prime

element p of L. The pair (L, q) is then called a generalized stack convergence space,

and is the object of the category GSCo. A morphism h : (L, q) −→ (N, r) in GSCo

is a geometric morphism h : L −→ N such that for all α ∈ LL and prime element

p ∈ L, h(p) ≥ r(↓h(α)) whenever p ≥ q(α).

Theorem 4.12 GSCo is a topological category over GeoCmP classified by the

functor G : GeoCmP −→ CoP defined as follows: for a plete poset L,

G(L) = {q : LL −→ L| q is a generalized stack convergence structure in L}; for a

geometric morphism h : L −→ N, Gh : G(L) −→ G(N) is defined as the left adjoint

of (Gh)∗ : G(N) −→ G(L), where for (r : LN −→ N) ∈ G(N) and α ∈ LL,

(4-2) ((Gh)∗(r))(α) = ∧{x ∈ L |h(x) ≥ r(↓h(α))}.

Remark: In case (L,≤) = P (X)op, (4-2) is equivalent to (4-1).

Proof. (i) G(L) is a complete (and cocomplete) poset with the order and infima

defined as follows: q1 ≤ q2 iff q1(α) ≥ q2(α) for all α ∈ LL and

(
∧
j
qj

)
(α) =

∨
j

(qj(α)). (Similarly, suprema are given by

(
∨
j
qj

)
(α) = ∧

j
(qj(α)).) ∧qj is clearly

order reversing, and p ≥ qj(↓ p) for all j implies that p ≥ ∨(qj(↓ p)) = (∧qj)(↓ p);

thus ∧qj defines a generalized stack convergence structure in L.



83

(ii) To see that G(h)∗(r) defines a generalized stack convergence structure in

L, we must first show that (Gh)∗(r) is order reversing. Assume that α, β ∈ LL

and α ⊆ β. Let A = {x ∈ L |h(x) ≥ r(↓ h(α))} and B = {x ∈ L |h(x) ≥

r(↓ h(β))}. Then ((Gh)∗(r))(α) = ∧A and ((Gh)∗(r))(β) = ∧B. α ⊆ β implies

that ↓ h(α) ⊆↓ h(β), and since r is order reversing, r(↓ h(α)) ≥ r(↓ h(β)). Thus

A ⊆ B, and hence ∧A ≥ ∧B, i.e., ((Gh)∗(r))(α) ≥ ((G(h)∗(r))(β). Next we

must show that for all principal prime ideals ↓ p of L, p ≥ ((G(h)∗(r))(↓ p). Let

S = {x ∈ L |h(x) ≥ r(↓ h(↓ p))}. Then by definition ((Gh)∗(r)) (↓ p) = ∧S. To

prove that p ≥ ((Gh)∗(r)) (↓p) = ∧S, we’ll show that p ∈ S, i.e., h(p) ≥ r(↓h(↓p)).

By Lemma 4.3 h(p) is a prime element of N and therefore ↓h(p) is a prime ideal;

r : LL −→ N satisfies requirement (ii) in definition 4.11, hence h(p) ≥ r(↓ h(p)).

Since ↓ h(p) =↓ h(↓ p), h(p) ≥ r(↓ h(↓ p)) also holds and therefore p ∈ S and

p ≥ ∧S = ((Gh)∗(r)(↓ p). (Gh)∗(r) then defines a generalized stack convergence

structure in L.

(iii) Next we must show that (Gh)∗ is continuous, i.e., [(Gh)∗(∧
j
rj)](α) =

[∧
j
((Gh)∗rj)](α) for all α ∈ LL. [(Gh)∗(∧

j
rj)](α) = ∧{x ∈ L |h(x) ≥

(∧
j
rj)(↓ h(α))} = ∧{x ∈ L |h(x) ≥ ∨

j
(rj(↓ h(α)))} and [∧

j
((Gh)∗rj)](α) =

∨
j
[((Gh)∗rj)(α)] = ∨

j
(∧{x ∈ L |h(x) ≥ rj(↓h(α))). Let T = {x ∈ L |h(x) ≥ ∨

j
(rj(↓

h(α))} and let Sj = {x ∈ L |h(x) ≥ rj(↓ h(α))} and denote ∧Sj by sj . Also, let

∧T = t and ∨
j
sj = s. Then we must show that t = s.

It follows from the definitions of the sets involved that T ⊆ Sj for all j. Thus

∧T ≥ ∧Sj , i.e., t ≥ sj for all j, which implies that t ≥ ∨
j
sj . Hence t ≥ s.

Since h is continuous and sj = ∧
x∈Sj

{x}, h(sj) = h( ∧
x∈Sj

{x}) = ∧
x∈Sj

{h(x)} for

all j. Since rj(↓ h(α)) ≤ h(x) for all x ∈ Sj , rj(↓ h(α)) is a lower bound for the
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set {h(x)}x∈Sj . Therefore rj(↓ h(α)) ≤ ∧
x∈Sj

{h(x)} = h(sj) for all j, which then

implies that ∨
j
{rj(↓ h(α))} ≤ ∨

j
{h(sj)}. Since s = ∨

j
sj , s ≥ sj for all j; with h

preserving order , we then have that h(s) ≥ h(sj) for all j. Thus h(s) ≥ ∨
j
{h(sj)} ≥

∨
j
rj(↓h(α)). This by definition of T means that s ∈ T . Hence s ≥ t = ∧T . Thus

s = t, which proves the continuity of (Gh)∗. Then the left adjoint Gh of (Gh)∗ is

cocontiuous.

For the functor G to be well defined, it is left to show that for morphisms

h : L −→ N and g : N −→ Q, (G(gh))∗ = (Gh)∗ ◦ (Gg)∗. For (s : LQ −→

Q) ∈ G(Q) and α ∈ LL, [(G(gh))∗(s)](α) = ∧{x ∈ L | gh(x) ≥ s(↓ (gh)(α))} and

[((Gh)∗ ◦ (Gg)∗)(s)](α) = (Gh)∗[((Gg)∗(s))(α)] = ∧{x ∈ L |h(x) ≥ ((Gg)∗(s))(↓

h(α))} = ∧{x ∈ L |h(x) ≥ ∧{y ∈ N | g(y) ≥ s(↓ (g(↓ h(α)))}. Then the desired

equality follows directly from the fact that ↓gh(α) =↓g(↓h(α)).

GSCo is then a topological category over GeoCmP classified by the functor G,

i.e.,
∫

GeoCmP

G = GSCo by Theorem 2.50., making GSCo canonically isomorphic to

the pullback of the universal topological category along the functor G. GSCo is the

family-universal category for topological categories with a stack convergence type

structure: any functor Q : A −→ CoP that factors through G defines a topological

category in this family. In particular, by composing the functor G with the functors

P and Φ of Example 2.48 we obtain the following

Proposition 4.13
∫

Sets

GΦP = SCo.

Proof. The objects of
∫

Sets

GΦP = are pairs (X, q) where X is a set and

q ∈ GΦP (X):

X
P7−→ P (X)

Φ7−→ P (X)op
G7−→ {q : LP (X)op −→ P (X)op}
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with q as in Definition 4.11, i.e., q is order reversing and p ≥ q(↓ p) for all prime

elements p of P (X)op. Since down-segments of P (X)op are exactly the stacks on X

(LP (X)op = S(X)), and the prime the prime elements of P (X)op are the singletons

{x} for x ∈ X, a function q as above can equivalently be described as q : S(X) −→

P (X) with q preserving order and {x} ⊆ q(↑x), i.e., x ∈ q(↑x) for all x ∈ X. Thus

q gives a stack convergence structure on X, and hence
∫

Sets

GΦP and SCo have the

same objects.

A function f : X −→ Y lifts to a morphism h : (X, q) −→ (Y, r) in
∫

Sets

GΦP iff

[(GΦP )(f)](q) ≤ r (lifting condition in Remark 2.24 (ii)). Following the actions of

the functors P , Φ and G we have the following:

(X
f−→ Y )

P7−→

(
P (X)

∀f−→←−
f−1

P (Y )

)
Φ7−→

P (X)op
∃op
f−−→←−

(f−1)op
P (Y )op

 .

Using the notation h = ((f−1)op ⊣ ∃opf ) for the geometric morphism

ΦP (f) : P (X)op −→ P (Y )op, Gh is defined by the adjunction

{r : S(Y ) −→ P (Y )}
(Gh)∗−−−−→←−
Gh

{q : S(X) −→ P (X)}

where both q and r are stack convergence structures on X and Y respectively,

Gh ⊣ (Gh)∗ and (Gh)∗ is defined (as in Theorem 4.12) for a stack α ∈ S(X) by

((Gh)∗(r))(α) = ∧{S ∈ P (X)op |h(S) ≥ r(↓h(α))}.

On one hand, due to the adjunction Gh ⊣ (Gh)∗, the lifting condition (Gh)(q) ≤

r as above is equivalent to q ≤ (Gh)∗(r) which then means that for all stacks α on

X, q(α) ≥ (Gh)∗(r)(α). The relation ≥ is now interpreted in P (X)op, so relative to

P (X) we have that h lifts to a morphism h : (x, q) −→ (Y, r) iff q(α) ⊆ (Gh)∗(r)(α)

for all α ∈ S(X).
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On the other hand, in the definition of (Gh)∗ above, the relation ≥ and the

operations ∧ and ↓ are all interpreted again in P (X)op and P (Y )op. Rewriting the

definition relative to P (X) and P (Y ) and using the fact that h(S) = f(S) since

∃f = Imf we obtain that [(Gh)∗(r)](α) = ∪{S ⊆ X | f(S) ⊆ r(↑ f(α))} = {x ∈

X ⊆ | f(x) ∈ r(↑f(α))}; then the lifting condition becomes q(α) ⊆ {x ∈ X | f(x) ⊆

r(↑f(α))}. This is equivalent to x ∈ q(α) ⇒ f(x) ∈ r(↑f(α)) which is exactly the

condition that defines morphisms in SCo. Thus
∫

Sets

GΦP = SCo which means that

SCo is isomorphic to the canonical pullback of the universal topological category

along the functors GΦP .

Generalized Filter Convergence Structures

With a construction similar to the one in Theorem 4.12 we can generalize the

notion of a filter convergence structure to posets.

Definition 4.14 Given a cocomplete poset L, let Id(L) denote the set of all

ideals of L ordered by inclusion. A function q : Id(L) −→ L is a generalized

filter convergence structure in L if (i) q is order-reversing and (ii) p ≥ q(↓ p) for

every principal prime ideal ↓ p. The pair (L, q) is then called a generalized filter

convergence space and is an object of the category GFCo. Morphisms in GFCo are

defined the same way as in GSCo (Definition 4.11).

The definition of morphisms in GFCo makes sense, since for an ideal α of L and

h : L −→ N a morphism in GeoCmP, ↓ h(α) is an ideal of N : ↓ h(α) is clearly a

down-segment, and for x, y ∈↓h(α), x ≤ h(a) and x ≤ h(b) for some a, b ∈ α; since
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α is an ideal, a ∨ b ∈ α and therefore h(a ∨ b) ≥ h(a) ∨ h(b) ≥ x ∨ y, which means

that x ∨ y ∈↓h(α).

Remark 4.15 If in definition 4.14 (L,≤) = P (X)op for some set X, then

Id(L) = F (X) and q defines a filter convergence structure on X as in Definition 4.7.

Again we’ll consider the following stronger conditions on q for p a prime element

of L and α, β ∈ Id(L):

(GC1) p ≥ q(α) implies that p ≥ q(α∩ ↓p);

(GC2) p ≥ q(α) and p ≥ q(β) implies that p ≥ q(α ∩ β);

(GC3) For any {αj}j∈J ⊆ Id(L) such that p ≥ q(αj) for all j ∈ J , p ≥ q( ∩
j∈J

αj).

If (L,≤) = P (X)op for some set X, then properties (GC1) - (GC3) are equivalent

to properties (C1) - (C3).

Definition 4.16 A generalized filter convergence structure q : Id(L) −→ L is

called a generalized local filter convergence structure if it satisfies (GC1), a general-

ized limit structure if it satisfies (GC2) and a generalized pretopology if it satisfies

(GC3).

The pairs (L, q) where q is a generalized filter convergence structure in L satis-

fying (GC1), (GC2) or (GC3) are the objects of the categories GLFCo, GLim and

GPrT respectively. Morphisms in these categories are defined the same way as in

GSCo (Definition 4.11).

Clearly (GC3)⇒ (GC2)⇒ (GC1), therefore GPrT ⊆ GLim ⊆ GLFCo ⊆ GFCo.
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The classifying functors for the above categories are defined in the following

theorems.

Theorem 4.17 GFCo is a topological category over GeoCmP classified by the

functor G0 : GeoCmP −→ CoP defined as follows: for a plete poset L,

G0(L) = {q : (Id)(L) −→ L| q is a generalized filter convergence structure in L};

for a geometric morphism h : L −→ N, G0h : G0(L) −→ G0(N) is defined again as

the left adjoint of (G0h)∗ : G0(N) −→ G0(L), where for (r : Id(N) −→ N) ∈ G0(N)

and α ∈ Id(L), ((G0h)∗(r))(α) = ∧{x ∈ L |h(x) ≥ r(↓h(α))}.

The proof of the above theorem is analogous to that of Theorem 4.12.

Thus GFCo =
∫

GeoCmP

G0 and GFCo is isomorphic to the pullback of the univer-

sal topological category along the functor G0; moreover, it is the family universal

category for topological categories with a filter convergence type structure, as any

functor Q −→ CoP that factors through G0 defines a category in this family. In par-

ticular, the classifying functor of FCo factors through G0 as shown in the following

proposition.

Proposition 4.18 FCo =
∫

Sets

G0ΦP .

Proof. Given a set X, G0ΦP (X) = G0(P (X)op) =

{q : F (X) −→ P (X) | q is a filter convergence structure on X} by Remark 4.15.

Thus the objects (X, q) of =
∫

Sets

G0ΦP are filter convergence spaces. The rest of

the proof is identical to that of Proposition 4.13.

Proposition 4.19 GLFCo is a topological category over GeoCmP classified by

the functor G1 : GeoCmP −→ CoP defined on the object level as follows: for a plete
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poset L as G1(L) = {q : Id(L) −→ L| q ∈ G0(L) and q satisfies (GC1)}. On the

morphism level G1 is defined the same way as G0.

Proof. Again the proof for the most part is analogous to that of Theorem 4.12. We

have to verify though that G1(L) is a complete poset. As before, order and infima

are defined as q1 ≤ q2 iff q1(α) ≥ q2(α) for all α ∈ Id(L), and (∧
j
qj)(α) = ∨

j
(qj(α)).

We have to show that ∧
j
qj defines a generalized filter convergence structure, i.e.,

that ∧
j
qj satisfies (GC1). Let {qj}j∈J be a set of generalized local filter convergence

funtions, and let α ∈ Id(L). We have to show that for a prime element p in L,(
p ≥ (∧

j
qj)(α)

)
⇒
(
p ≥ (∧

j
qj)(α∩ ↓p)

)
. p ≥ (∧

j
qj)(α) means by definition that

p ≥ ∨
j
qj(α), and hence p ≥ qj(α) for all j ∈ J . Thus p ≥ qj(α∩ ↓p) for all j since

qj satisfies (GC1), and hence p ≥ ∨
j
qj(α∩ ↓ p) = (∧

j
qj)(α∩ ↓ p). We also have to

verify that for a geometric morphism h : L −→ N and for r ∈ G1(N), (G1h)∗(r)

also satisfies (GC1). Thus we must show that for a prime p in L, p ≥ [(G1h)∗(r)](α)

implies that p ≥ [(G1h)∗(r)](α∩ ↓p). So assume that p ≥ [(G1h)∗(r)](α) =

∧{x ∈ L |h(x) ≥ r(↓h(α))} (as in Theorem 4.12), let

T = {x ∈ L |h(x) ≥ r(↓ h(α))} and ∧T = t. By the continuity of h, h(∧T ) =

∧h(T ), so we have that h(t) = h(∧T ) = ∧{h(x) ∈ N |h(x) ≥ r(↓h(α))}. r(↓h(a))

is a lower bound for h(T ) and hence r(↓ h(α)) ≤ ∧h(T ) = h(t). This means that

t ∈ T and therefore p ∈ T also, since p ≥ t ⇒ h(p) ≥ h(t) ≥ r(↓h(α)). By Lemma

4.3 h(p) is a prime element in N and r satisfies (GC1), so h(p) ≥ r(↓h(α)) implies

that h(p) ≥ r(↓h(α)∩ ↓h(p)). By Lemma 4.4 ↓h(α)∩ ↓h(p) =↓ h(α∩ ↓p), so we

have that h(p) ≥ r(↓ h(α∩ ↓ p)), and hence p ∈ {x ∈ L |h(x) ≥ r(↓ h(α∩ ↓ p))}.

Then p ≥ ∧{x ∈ L |h(x) ≥ r(↓ h(α∩ ↓ p))} = [(G1h)∗(r)](α∩ ↓ p), so (G1h)∗(r)
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satisfies (GC1). The rest of the proof is analogous to that of Theorem 4.12. Thus

GLFCo=
∫

GeoCmP

G1 an consequently LFCo
∫

Sets

G1ΦP .

GLFCo is then the family universal category for topological categories with a

local filter convergence type structure.

Proposition 4.20 The category GLim is a topological category over GeoCmP

classified by the functor G2 : GeoCmP −→ Cop defined as follows: for a plete poset

L, G2(L) = {q : Id(L) −→ L| q ∈ G0(L) and q satisfies (GC2)}. On the morphism

level G2 is defined the same way as G0.

Proof. Again we have to verify that G2(L) is a complete poset. It is a

direct consequence of the definition of ∧
j
qj that for any prime element p in L,

p ≥ (∧
j
qj)(α ∩ β) whenever p ≥ (∧

j
qj)(α) and p ≥ (∧

j
qj)(β).

We also have to show that for a morphism h :  L −→ N in GeoCmP and for

r ∈ (G2)(N), (G2h)∗(r) also satisfies (GC2): assume that p ≥ [(G2h)∗(r)](α) =

∧{x ∈ L |h(x) ≥ r(↓h(α))} and p ≥ [(G2h)∗(r)](β) = ∧{x ∈ L |h(x) ≥ r(↓h(β))}.

Let {x ∈ L |h(x) ≥ r(↓ h(α))} = S and {x ∈ L |h(x) ≥ r(↓ h(β))} = T . Then

p ≥ ∧S and p ≥ ∧T , and again by the continuity of h, h(p) ≥ h(∧S) = ∧h(S),

and h(p) ≥ h(∧T ) = ∧h(T ). As before we have that ∧h(S) ≥ r(↓ h(α)) and

∧h(S) ≥ r(↓ h(β)) and therefore h(p) ≥ r(↓ h(α)) and h(p) ≥ r(↓ h(β)) also hold.

Then, since r satisfies (GC2), h(p) ≥ r(↓ h(α)∩ ↓ h(β)) = r(↓ h(α ∩ β)); hence

p ∈ {x ∈ L |h(x) ≥ r(↓ h(α ∩ β))} which implies that p ≥ ∧{x ∈ L |h(x) ≥ r(↓

h(α ∩ β))} = [(Gh)∗(r)](α ∩ β). Thus (Gh)∗(r) satisfies (GC2). The rest of the

proof is the same as for Theorem 4.12. We have then that GLim=
∫

GeoCmP

G2 and
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that Lim=
∫

Sets

G2ΦP . GLim is then the family universal category for topological

categories with a limit structure.

Proposition 4.21 The category GPrT is a topological category over GeoCmP

classified by the functor G3 : GeoCmP −→ Cop defined as follows: for a plete poset

L, G3(L) = {q : Id(L) −→ L| q ∈ G0(L) and q satisfies (GC3)}. For morphisms

G3 is defined the same way as G0.

It can be verified essentially in the same way as in the proof of Proposition 4.20

that both ∧
j
qj and (Gh)∗(r) satisfy (GC3). So again we have that GPrT=

∫
GeoCmP

G3

and also that PrT=
∫

Sets

G3ΦP.

GPrT is then the family universal for topological categories with a pretopology

type structure.

Whether the relationships between the classical members of the families of topo-

logical categories discussed still hold for the generalized versions would be worth

investigating. Top is (isomorphic to) a bireflective subcategory of FCo. The in-

clusion functor ι : Top ↪→ FCo is defined as follows: an object (X, τ) in Top gives

a filter convergence structure qτ : F (X) −→ P (X) on the set X by sending a fil-

ter α to qτ (α) = {x ∈ X | Nx ⊆ α} where Nx denotes the neighborhood filter of

the point x associated with the topology τ . The traditional definition of a neigh-

borhood filter, Nx = {S ⊆ X | ∃ U ∈ τ with x ∈ U ⊆ S}, can equivalently be

defined using the notation of this chapter as Nx =↑ (τ ∩ ↑x) and then generalized

to posets; using this approach, a generalized filter convergence structure defined as
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qτ (α) = ∨{a ∈ A | ↑ (τ ∩ ↑ a) ⊆ α} can be associated to an object (A, τ) of TOP,

to see if
∫
T = TOP is isomorphic to a bireflective subcateogry of

∫
G0Φ = GFCo.

The family universal category could be examined for cartesian closedness in cases

when the classical member of the family, e.g. the category of filter convergence

spaces, is cartesian closed. Furthermore, the family universal category for other

types of topological structures could be identified.
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