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We derive a fluid limit for a multi-type urn model, also known as a hydrodynamic limit,

in the sense that random trajectories of the microscopic process are shown to follow, as

the scaling factor L, proportional with the initial population, approaches infinity, a unique

trajectory characterized as the strong global solution of a specific dynamical system (the

macroscopic equation). The result is a weak Law of Large Numbers of random variables

with values in the Skorokhod space of right continuous with left limits functions with values

in Rk, where k is the number of types. We obtain that while the macroscopic process does

not vanish in finite time, the microscopic process has a probability of extinction no larger

than O(L−1). A similar limit is proven for the normalized vector of population proportions,

together with qualitative results on its asymptotic behavior. Both limits are in probability,

uniformly in time for any fixed time interval. The model and the scaling studied is inspired

by earlier work by Schreiber, Benaïm et al. [35, 3] and generalizes the well known Repli-

cator model with applications in mathematical ecology and genome population dynamics.
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Chapter 1

Introduction and Results

1.1 Historical background

Urn models consist of a rich family of mathematical models which could be used to cre-

ate mental experiments and explain complex real world phenomena. By putting objects

of interest in the context of urns and colored balls, the urn scheme provides a framework

to study in a systematic way mathematically common situations in different areas and is

proved to successful. It has application in a wide range of fields like natural science, engi-

neering and more, see for example [18] for an introduction to many classical urn models

and with applications.

In a wide sense, an urn problem can refer to any mathematical problem that is presented,

or can be presented, as an urn scheme and the word urn model may refer to the urn problem,

the urn scheme or the mathematical mechanism, notably probability methods, involved to

solve the problem. The most recognized application is to random redistribution models of a

population of discrete types. Most commonly, an urn model is constructed by considering

colored balls in urns together with a set of rules for drawing and the permissible actions

1
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to perform, depending on drawing results. Balls can be any objects of interests such as

people, atoms, books etc. and different colors represent some characteristic of the objects

that one intends to differentiate. Urns can be concrete containers such as boxes, bags which

hold the colored balls or serve as abstract concepts like sets, groups or categories. A most

fertile example is modeling of genomic types.

In most cases, balls are assumed to be indistinguishable other than their colors (types)

and each ball in the same urn is equally likely to be drawn. A set of rules must be specified

such as the number of draws to be performed or when to stop, what actions to be performed

for different drawing results etc. Some phenomena concerning the evolution of urn models

that are of general interest include the (random) distribution of the colored balls starting

with a certain state after a number of draws, limiting distribution if it exists (ergodic prop-

erties), speed of convergence (exponential, polynomial, and other stability questions) to the

equilibrium configuration. Another issue is non-extinction of types, as will be seen in the

present work in Chapter 8.

The first urn model in history is hard to decide but its appearance in literature can

be traced back to as early as the 17th century. For example, the famous gambler’s ruin

problem, whose name was adapted much later, was considered in correspondences between

Pascal and Fermat in 1656 and restated in Huygens’ work in latin (1657), see [17] for a

mordern version. The original problem was phrased in the language of dice and scores

but it is rather easy to be converted to an urn scheme. It was presented as a classical urn

problem, for example, in [27]. This is also one of many problems that motivated the early

development of probability theory.

In combinatorics, probability and statistics, many basic ideas can be readily understood

with the aid of urn models. Urn models can be constructed to derive many important

discrete distribution such as (negative) binomial, (negative) hyper-geometric. Moreover,
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by considering limiting cases, even more distributions, like Poisson, Gaussian, Gamma,

Beta distributions can also be obtained. Due to its simple yet extremely flexible nature, urn

models gain their popularity and spring up in biology, chemistry, physics, economics, etc.

For example, the classic Ehrenfest model, an urn model named after Paul Ehrenfest,

was proposed in early 1900s in an attempt to explain the second law of thermodynamics,

with a simple statistical setup. However, it was reported that D. Bernoulli was the first who

came up with this model, see [36] .

In 1923, a paper [10] by Eggenberger and Pólya considered an urn scheme modeling

the spread of contagious disease which is later known as Pólya-Eggenberger Urn or simply

Pólya’s Urn. It is constructed as follows. Starting with a single urn containing w white

balls and b black balls, a ball is drawn from the urn at random, with equal probability (uni-

formly). The color of the ball drawn is observed and the ball is returned to the urn, together

with s balls of the same color. An urn scheme like this can be conveniently represented in

a matrix form

A2×2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12

a21 a22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here the matrix A is called the replacement matrix and its row index corresponds to the

color of the ball being drawn and its column indexes represent the color of the balls to be

added. More specifically, if we sampled a ball of color i, we shall check i-th row and add

ai j balls of the j-th color to the urn for all j. In this way we may represent the original

Pólya’s urn scheme as ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 0

0 s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (Polyá’s urn)

In a mental experiment our urn can have unlimited space and the number of additional

balls available is also unlimited. If s > 0 this process can be continued forever and it is
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known, see [9], that the fraction of the white balls in the urn converges almost surely to

a random variable which has Beta distribution with parameters
w
s

and
b
s

, i.e., Beta(
w
s
,

b
s

).

Note that this model had been studied before 1923. For example, Markov,A.A. investigated

the case for s = 1 in 1906 [29] and in general for s > 0 in 1917 [28].

There are many ways to generalize the Pólya’s urn scheme. For instance, depending on

the draw, s′ balls of the opposite color can be added to the urn besides s balls of the same

color, which corresponds to the scheme

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s s′

s′ s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In fact, this generalization was studied by Bernard Friedman in [14] and was named after

him. Also s, s′ can be negative integers as well in which case adding s or s′ balls shall be

interpreted as removing |s| or |s′| balls. We also mention that the Ehrenfest model can be

interpreted as an urn of fixed total N with replacement matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 1

1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1.2 Generalizations of the urn model and recent work

The study of the Pólya urn scheme is evolving as more generalized schemes and their

respective properties are considered. First note that the entries of the replacement matrix

can be pretty arbitrary at least in the nonnegative cases [23]. Also, the 2 × 2 replacement

matrix can be entended to any k × k matrix, where k > 0 is an integer, for example see

[2]. More than that, it is possible to extend the Pólya’s urn scheme to an infinite scheme,
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for example in the classical work [6] by Blackwell and MacQueen (1973). Once an urn

scheme is formulated, it is very natural to consider it in the context of stochastic processes

and there is no reason to restrict us to a deterministic replacement matrix. More complex

sampling rules can be considered. For example, a total of k′, 2 ≤ k′ ≤ k balls may be

sampled in each step either with (or without) replacement. If a multi-index α of k′ colors

has been chosen, the matrix of the urn scheme can be represented by (possibly random)

k-dimensional vectors Rα, with components a R(i)
α being the number of individuals of type i

to be added.

The Replicator model discussed in Section 1.3 is such an example with random matrix

and k′ = 2. Also, even more complicated structure like random trees which are connected to

Pólya urn models are studied, see for example [26]. Other multi-type population dynamics

are briefly discussed in subsections 1.5.2 and 1.5.3 of Section 1.5 on branching processes.

1.3 The replicator equations and a replicator process

The replicator model is a classical model in the field of evolutionary game theory, for in-

stance in [16], used to study the evolutionary dynamics of a population under the influence

of natural selection. It can be set up as follows. Consider a population with individuals

adopting various (but finitely many) strategies. For example, on an island there are differ-

ent species which may compete with each other for resources and individuals of the same

type (species) are assumed to take identical strategies. In that sense, types and strategies

are, for all practical purposes, identical and we shall call an individual is of type i if it takes

strategy i, 1 ≤ i ≤ k. When two individuals meet, according to their types, they will repli-

cate (without mutation) or die, which will change the configuration of the population. Now

we normalize the population, or equivalently we consider the frequencies of individuals
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of different types, each of which is programmed to take exactly one of those k different

strategies. We will use a column vector x⃗ = (x1, x2, ..., xk)T to represent such a state of

the population, where xi is the frequency of individuals of type i, 1 ≤ i ≤ k. Clearly, as

frequencies, we shall have xi ≥ 0, 1 ≤ i ≤ k and
k∑

i=1
xi = 1.

In the following, we will use | · | to represent the L1 norm for a vector unless stated

otherwise. Note that we may also use | · | for a scalar which is just the absolute value and

for a set in which case it would be the cardinality function. It should be understood in the

appropriate sense depending on the nature of the input.

For a (nonnegative) state vector x⃗, we have |x⃗| =
k∑

i=1
|xi| =

k∑
i=1

xi = 1, it follows that the

set of all possible states is ∆k−1, which is the standard (k − 1) - dimensional simplex:

∆k−1 =
{
x⃗ = (x1, ..., xk)T ∈ Rk

+

∣∣∣∣∣ |x⃗| = 1
}
. (1.1)

Note that we take a vector to be a column vector by default.

In a general sense, according to the strategy one will take, each type i ∈ {1, 2, ..., k} of

individuals would be assigned a so-called fitness function fi : ∆k−1 → R+. And the average

fitness function f̄ of the whole population would be f̄ (x⃗) =
k∑

i=1
xi fi(x⃗).

For a large population, we may consider the dynamical system where the frequencies

are smooth enough to be approximated by the replicator equations, as presented in [16],

dxi

dt
∆
= ẋi = xi( fi(x⃗) − f̄ (x⃗)), i = 1, 2, ..., k. (1.2)

Note that in the case xi = 0, the population of individuals taking strategy i will be extinct

(since we assumed no mutation) and negative xi does not have biological meaning. If xi > 0
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the replicator can be rewritten as

ẋi

xi
= fi(x⃗) − f̄ (x⃗), i = 1, 2, ..., k, (1.3)

and it can be interpreted that the relative growth rate
ẋi

xi
(logarithmic derivative) for the type

i individuals is proportional to fi(x⃗) − f̄ (x⃗), the difference between its fitness fi(x⃗) and the

average fitness of the whole population f̄ (x⃗). This models population growth under natural

selection. We can expect that the frequency for species i with better fitness, fi(x⃗)− f̄ (x⃗) > 0,

will increase and those that don’t fit well, with fi(x⃗)− f̄ (x⃗) < 0, will decrease. Note that the

replicator equations don’t tell us how the total population, in absolute sense, will grow or

diminish. Also note that this equation system is consistent, in the sense that, as frequencies,

we need
k∑

i=1
xi = 1 which leads to

k∑
i=1

ẋi = 0, and it can be verified by adding up equations

(1.2) for i = 1, ..., k.

The case of most interest and extensively studied, see for example [16] and references

therein, is when the fitness functions are assumed to be linear. More precisely, it is assumed

that each fitness function fi is of the form

fi(x⃗) =
k∑

j=1

ai jx j, i = 1, ..., k, (1.4)

or in a vector form

f (x⃗) = Ax⃗, (1.5)
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where x⃗ = (x1, ..., xk)T , f (x⃗) = ( f1(x⃗), ..., fk(x⃗))T and

A = Ak×k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1k

a21 a22 . . . a2k

...
...
. . .

...

ak1 ak2 ... akk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix entries (ai j) can be interpreted as “payoffs”: ai j is the factor by which the fitness

function of type i is affected when encountering a type j individual. With these notations

the replicator equations in the linear case simplify to

ẋi = xi((Ax⃗)i − x⃗T Ax⃗), 1 ≤ i ≤ k. (1.6)

Properties concerning equilibrium and stability for the replicator equation are extensively

studied and many results are available [16]. But as one may have noticed, for the fre-

quencies functions to be differentiable, we have to assume an infinite population or, in the

approximately sense, a really large total population.

In contrast to this view, our interest lies in considering a finite population where ran-

domness comes into play, and its limit phenomena under certain scaling.

The model we will investigate is a replicator process proposed by Schreiber in [35]

and a following paper [3], which in a large part motivated our work. Schreiber et al. [35,

3] formulated an urn model which can be considered a discrete model for the replicator

dynamics, in a generalized sense. Instead of a deterministic payoff matrix, random payoff,

with potential for growth, was studied under a discrete scaling that essentially equates the

number of updates per time unit with the size of the current population. Stability results of

the resulting dynamical system and some other insightful results were given.
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Our approach is different from the original authors though; we will introduce scaling

by the standard construction of having independent unit rate exponential clocks for up-

dates carried by each individual. In a natural way, it results that the holding times between

updates of the system seen as a whole coincides with exactly the minimum of such an expo-

nential time over all individuals, which is exactly, on the average |Z|−1, when the population

is |Z|. Since we deal with a large population, we shall assume |Z| ∼ L, where L will be the

scaling factor, typically large.

This makes the process under discussion a continuous time pure jump Markov process.

We then investigate the scaling limit as L → ∞, as described in more detail in (1.25) in

Section 1.6.

The replicator model we will study is based on that of [35, 3] with slight modification.

But we comment that although in [35, 3], more than one example was studied and the

replicator process is just one of them, our results rely on the assumption they made but

not on the process itself. Thus similar results can be obtained for other processes they

mentioned. More than that, we found that the results we obtained will hold under an even

relaxed assumption.

Note that the replicator model can be put in correspondence with an urn model by inter-

preting “balls” as individuals and “colors” as types. The discrete version of the replicator

process we study can be formulated, in the context of a generalized urn model, as follows.

A single urn is composed of balls with up to k ≥ 2 different colors and we label the

colors with numbers 1 ≤ i ≤ k. We say a ball is of color i, if the label for its color is i. We

consider the discrete time Markov chain (Zn)n≥0, where Zn = (Z1
n , ...,Zk

n) with component

Zi
n, i = 1, 2, ..., k, representing the number of balls of color i after the n-th update. Starting

with an initial state Z0 = a0 = (a1
0, ..., a

k
0) ∈ Zk

+, each time two balls are sampled in order

and with replacement. More precisely, we sample a ball first with replacement and then
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sample the second ball with replacement. Colors of the sample balls are observed and we

record their labels in the order they were drawn with the ordered pair (i, j). For the n-th

update, if i = j, then ri balls of the same color are added to the urn. If i ! j, then Ri j balls of

color i and R̃i j (contrast to R̃ ji in the original formulation [35, 3] ) balls of color j are added

to the urn. For 1 ≤ i, j ≤ k, all ri,Ri j, R̃i j are independent random variables taking values

in {−1, 0, 1, ...,m}, where m ≥ 2 is an integer, according to arbitrary but predetermined

distributions.

We point out that in this introduction we follow the presentation of that of Schreiber et

al [35, 3]. As will be seen, the setup can be substantially generalized and our main results

still hold.

For a predetermined integer m > 1, the set of all possible jumps w for the replicator

model is denoted by J where

J =
{
w = (w1, ...,wk) ∈ Zk : at most two wi are nonzero, −1 ! wi ! m, i = 1, ..., k

}

(1.7)

and note that the number of elements in J is finite, which we shall denote by |J|, where |J|

is the cardinality of the set J not the L1 norm for a vector.

Under our setup, the Markov chain (Zn)n≥0 is time homogeneous t = n ≥ 0 with states

z, z ∈ Zk
+ and its transition probability functions Π(z, z + w) are given as follows.

(i) If z = 0, then Π(z, z) = 1, i.e. the null state is absorbing, the population remains

extinct.

(ii) If z ! 0, denote xi =
zi

|z| . Then we have
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Π(z, z + w) = xix jP(Ri j = wi)P(R̃i j = wj) + x jxiP(Rji = wj)P(R̃ ji = wi), (1.8)

if w = (0, · · · , 0,wi, 0, · · · , 0,wj, 0, · · · , 0) with i ! j,wi ! 0 and wj ! 0;

Π(z, z + w) =
∑

j!i

xix jP(Ri j = wi)P(R̃i j = 0) +
∑

j!i

x jxiP(Rji = 0)P(R̃ ji = wi) + x2
i P(ri = wi)

if w = (0, · · · , 0,wi, 0, · · · , 0) with wi ! 0;

and

Π(z, z + w) =
∑

j!i

xix jP(Ri j = 0)P(R̃i j = 0) +
k∑

i=1

x2
i P(ri = 0) if w = 0⃗ .

1.4 Generalization of the replicator model

We notice that in all cases (1.8), the transition functions Π(z, z +w) are quadratic functions

in x =
z
|z| , which we can call pw(x). It turns out that a more relaxed set of assumptions is

sufficient. This is consistent with [3].

Assumption 1.1. All the possible jumps are uniformly bounded by a positive integer

m′ = m(J), where J denotes the set of all possible jumps, or precisely,

(A1) ∀w ∈ J, |w| ≤ m′ (1.9)

This means that we only add or remove a total of at most m′ balls at each update.
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Assumption 1.2. There exist Lipschitz maps

{
pw : ∆k−1 → [0, 1] : w ∈ Zk, |w| ! m′

}
, (1.10)

and a real number a > 0 such that

(A2) |Z| |pw (Z/|Z|) − Π(Z,Z + w)| ! a , when Z ! 0 , (1.11)

for any w ∈ Zk.

Remark 1.3. In equation (1.11), we only required the condition for Z ! 0. For this equa-

tion to make sense for Z = 0, we can formally take
Z
|Z| = 0 and extend the domain of pw to

include 0 that:

pw(0) = 0 for all w ∈ J . (1.12)

However, pw(0) = 0 is not essential and it can be taken to be any finite number. The point

is we want to extend |Z|pw(
Z
|Z| ) in a continuous way to the case Z = 0 (cf. Proposition 6.6).

Remark 1.4. Note that as |J| is finite, once a set of Lipschitz maps (pw)w∈J is given, we can

conclude there exists a constant Cp for all such functions that

|pw(X) − pw(X′)| ! Cp|X − X′| ∀w ∈ J and ∀X, X′ ∈ △k−1. (1.13)

For the replicator process model, the jump wi for each component satisfies |wi| ≤ m by

construction and at most two components will change at one update. So (A1) will hold for

m′ = 2m, where m is given in equation (1.7).
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Remark 1.5. The transition probabilities given by (1.8) are bilinear in xi, x j on a compact

set, which would be Lipschitz and we can simply choose pw (Z/|Z|) = Π(Z,Z + w) in which

case (1.11) must hold. Then (A2) is satisfied as well.

Let L > 0 be a large number. Condition (A2) (1.11) can be re-written in terms of

x ∈ ∆k−1 and L, with Lx ∈ Zk
+ ,

∀x ∈ ∆k−1 , ∀w ∈ J , ∀L > 0 |pw(x) − Π(Lx, Lx + w)| ! a
L
. (1.14)

The presence of the factor L > 0 suggests a scaling. The total population will be O(L),

as well as the number updated per time unit. It is reasonable to consider the time scale

of O(L) as well, acting heuristically as if each individual seeks an update with rate one.

The minimum waiting time between updates becomes O(L−1), as it is well known for the

minimum of L independent exponential random variables with intensity one.

As outlined in Section 1.6, we derive a rigorous scaling limit of the k-type model at the

full path level (known as hydrodynamic limit in the literature [22]) and prove that essentially

the extinction is a negligible event.

To put our work in context, the next section gives a brief account of other scaling limits

well known in the literature.

1.5 Scaling limits of some related stochastic processes

We are interested in studying some limit phenomena of a certain particle system which

could be generated from a generalized Pólya scheme under an appropriate scaling. And it

would be beneficial to discuss a few classic discrete time stochastic processes which can be
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constructed using an urn model, not of the type of Pólya though. In particularly, we discuss

how do different scaling work in their cases for illustration and comparison purpose.

1.5.1 Symmetric random walk and Brownian motion

The first and possibly the most renowned example we’d like to mention is the fact that the

limit of a symmetric random walk leads to a Brownian motion under a certain scaling. A

standard symmetric random walk on the real line is constructed as follows.

Let (ξn)n≥1be a sequence of independently and identically distributed (i.i.d.) random

variables (Ω,F , P) → (R,BR) such that P(ξ1 = 1) = P(ξ1 = −1) =
1
2

. Define recursively

random variables S 0 ≡ 0 and S n+1 = S n + ξn+1, the process (S n)n≥0 is called the symmetric

(or simple) random walk on the real line. We comment that the random walk model can be

easily constructed in the language of urn model if we are allowed to have negative number

balls in an urn. Elementary calculations tell us

E[ξ1] = 0, Var[ξ1] = 1, E[S 0] = 0, Var[S n] = n.

A direct application of the Lindeberg-Lèvy central limit theorem yields:

S n√
n

D−→ N(0, 1).

Next we will speed up the process and make smaller jump sizes and generate a new process.

We will do it the following way: for a large integer L > 0, we define a new process

BL(t) =
S ⌊tL⌋√

L
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where ⌊·⌋ is the floor function. Compared with S n√
n , BL(t) is a continuous time process that,

roughly speaking, runs L times as fast but making jumps 1√
L

the size. Put it another way,

let t′ = Lt, ξ′n =
ξn√

L
, and S ′n =

n∑
i=0
ξ′i , we have BL(t) = S ′⌊t′⌋. And as L→ ∞ we have

BL(t) =
S ⌊Lt⌋√⌊Lt⌋

·
√
⌊Lt⌋

L
D−→ N(0, t).

It is evident that BL(0) = 0 and BL(t) has stationary and independent increments by con-

struction. If we let L → ∞ and denote B(t) the weak limit of BL(t), it turns out that with

probability 1 we can choose a continuous path for B(t) which will make B(t) the standard

Brownian motion. We shall avoid the technicality of a strict proof here but rather explain

why the scaling has to be chosen this way. That is, if we want to find a scaling of time and

a scaling of the jumps (space) to make a possible limit process of simple random walk to be

of interest as a stochastic process, we have to scale it in a way that an infinitesimal change

must satisfy ∆t ∼ ∆x2 or equivalently
∆t
∆x2 ∼ O(1) .

Consider that we were given a simple random walk in a microscopic level. We determined

that a change in the microscopic system would take too long to be noticed in a macroscopic

level, so we consider large time scale, say L units at a time, i.e., L unit time in the micro-

scopic level would be 1 time unit in the macroscopic level. Let’s say the spatial scaling

factor is a function f (L). Now image what will we see in the macroscopic level: for one

unit time in macro level, L jumps happen in the micro level and each of size f (L) so its

cumulative effect would be f (L)S L. Its variance is Var[ f (L)S L] = f (L)2Var[S L] = L f (L)2.

Note that it is reasonable to require lim
L→∞

Var[ f (L)S L] = c > 0 for some constant c since we

may want a possible limit process to be of finite variance in an unit time (c < +∞), yet still

possesses some randomness (c ! 0). Otherwise either c = 0 which results in a deterministic

limit or the case that the variance doesn’t exist which means a limit process, if ever exits,
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would have no variance. This leads to f (L) ∼ O( 1√
L
) and if we choose f (L) = 1√

L
we get

BL(t) as we constructed. Note that in the above argument, we demonstrated formally that

if an infinitesimal time change satisfies L · ∆t = 1 or ∆t = 1
L , then an infinitesimal space

change shall be ∆x ∼ O( 1√
L
) which means

∆t
∆x2 ∼ O(1). For a discussion of non-symmetric

random walk and its connection with diffusion processes, one may refer, for example, [13].

1.5.2 The Galton-Watson process and the Feller diffusion

The Galton-Watson process is one representative of a class of mathematical models used

to study population dynamics mostly known as branching processes. The first model, or

rather problem, was formulated by Francis Galton. He was unconvinced of the conjecture

that aristocratic surnames are more likely to go extinct than common names and decided

to study it in a mathematical way. Thus he proposed the “Problem 4001”[15] in the pe-

riodic “Educational Times” . However, he only received one solution and it was far from

satisfactory to him [20].

At Galton’s request, Henry W. Watson approached this problem and developed a useful

mathematical device which is later known as (ordinary) generating functions, and which

for a sequence (pi)i∈Z+ is of the form:

f (x) =
∞∑

i=0

pixi. (1.15)

In probability we usually consider the case where pi is the probability that a discrete ran-

dom variable taking values in Z+ to be i in which case an ordinary generating function is

referred as a probability generating function. Watson, with great ingenuity, realized that
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this problem can be reduced to iteration of functions. More precisely, if we define

f1(x) = f (x), fn+1 = fn( f (x)), (1.16)

then the probability that the Galton-Watson process, say (Wn)n≥0, takes value i is the corre-

sponding coefficient of the xi term in fn(x).

However, failed to recognize an extra but relevant root (fix point) in the supercritical

case, Watson wrongly concluded that “All the surnames, therefore, tend to extinction in

an indefinite time ”[37]. Nevertheless, this process is named after Galton and Watson due

to their original work and great contribution. I refer the reader to [20] and [21] for more

history remarks.

In modern language, the (single-type) Galton-Watson process can be formulated as a

discrete time homogeneous Markov chain and is created as follows. Let (ξi, j)i≥0, j≥1 be a

sequence of i.i.d. random variables taking values in Z+ = {0, 1, 2, · · · } with the identical

probability generating function

f (x) =
∞∑

i=0

pixi.

Further define recursively W0 ≡ 1 and Wn+1 =
Wn∑
i=1
ξn,i. The sequence, or rather stochastic

process, (Wn)n≥0 is called the single type Galton-Watson process. It is called a single-type

because it assumes that each individual reproduces according to the same distribution and a

branching process because its transition probabilities p(x, ·) satisfy the branching property

(see, for example [11] [8])

p(x + y, ·) = p(x, ·) ∗ p(y, ·) (1.17)

where the operator “ ∗ ” represents convolution.
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It’s not hard to see that if a process has the branching property, then the law for the

process to start at a state x + y would be the same with the law of the sum of two such

processes starting with x and y respectively.

We can interpret ξn,i as the random number of offspring for the i-th individual in the n-th

generation and Wn as the total number of population in the n-th generation. It is assumed

that E[ξn,i] < ∞ which means that the expected progeny of a single individual is finite.

Note that the Galton-Watson process is possibly the most famous branching process.

It was introduced as a discrete time model but it can be made a continuous time Markov

process, for example, by using the construction method in Section 2.2. It describes the

behavior of a population that individuals reproduce according to the same rule (distribution)

and independent of each other. Now suppose W1 has finite expectation (µ > 0) and variance
(
σ2 > 0

)
, i.e.,

E[W1] = µ, Var[W1] = σ2,

simple calculation yields

E[Wn] = µn,

Var[Wn] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ2

µ(µ − 1)
µn(µn − 1), if µ ! 1;

nσ2 , if µ = 1.

The cases 0 < µ < 1, µ = 1 and µ > 1 are called sub-critical, critical and super-critical

respectively. The sub-critical case isn’t of much interest as 0 < µ < 1 implies lim
n→+∞

E[Wn]

= 0 and this population will die out will probability 1. The critical case is somehow delicate

and for the purpose of illustration of scaling, we shall only consider the case µ > 1 as Feller

did in [12].
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In the supercritical case where µ > 1, our population grows exponentially with proba-

bility one and for a large population we may approximate it by a continuous time process.

For the limit to be a diffusion process (if it can ever be), we shall try to scale the process

in a way that as the time change ∆t → 0, we have

E[∆W |Ws = w]
∆t

→ α(s,w),

E[(∆W)2|Ws = w]
∆t

→ 2β(s,w),
(1.18)

for some parameter functions α(s,w) and β(s,w), where (Ws)s≥0 is the after scaling (con-

tinuous time) process. If this condition can be satisfied, for instance, for some (twice con-

tinuously differentiable) α and β, then the (after-scaling) limit process would be a diffusion

proces and satisfies the Kolmogorov diffusion equations with drift α(s,w) and diffusion

coefficient β(s,w).

Now supppose we consider N time unit at a time and the scaling factor for population

to be f (N), we define the scaled process to be

W (N)
t

∆
=

W⌊Nt⌋
f (N)

(1.19)

If we choose f (N) = N, we see that for an infinitesimal time change ∆t = 1
N , we have

infinitesimal mean displacement and infinitesimal variance per particle, respectively

E[∆W] = µ − 1 =
α

N
and Var[(∆W)] =

σ2

N
.
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Since we have ∆t =
1
N

, we obtain, again per particle,

E[∆W]
∆t

= µ − 1 = α(s,w),

Var[(∆W)]
∆t

= σ2 = 2β(s,w).
(1.20)

If the current population is Wt and the coefficients are constants, for simplification, then the

mean change and variance from above are multiplied by a factor of Wt, giving

E[∆W] ≃ αWt∆t and Var[(∆W)] ≃ 2βWt∆t , (1.21)

which are exactly the infinitesimal form of (1.23).

These conditions indicate that the proper scaling to obtain a possible diffusion limit is

such that
∆W
∆t
∼ O(1), consistent with the presence of a drift α. In fact, the transition den-

sity function of the process (W (N)
t )t≥0 for large N can be well-approximated by the solution

u(t,w) to the diffusion equation

ut(t,w) = β{wu(t,w)}ww − α{wu(t,w)}w, (1.22)

which is of the type of the “Fokker-Planck” equation where α, β are such that for a fix large

N, µ − 1 =
α

N
and σ2 =

2β
N

, see [12]. Such a diffusion process is also called the Feller

diffusion such that

dWt = αWtdt +
√

2βWtdBt , (1.23)

where (Bt) is a standard Brownian motion. We notice that when α = 0 the Feller diffusion

is a martingale.
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1.5.3 The Wright-Fisher model and its diffusive limit

The Wright-Fisher model is proposed by Sewall Wright and Ronald Fisher in an attempt to

explain the genetic drift in a diploid population. It can be constructed using the urn model

language but we’ll set it up in the context of a discrete time Markov chain as follows.

Consider a population of total number of individuals 2N and each individual belongs

to exactly one of the two types A or a which were assumed to be alleles. Let Xn be a

random variable which counts the frequency of individuals of gene type A, then the (neu-

tral) Wright-Fisher model is essentially a time-homogeneous discrete time Markov chain

(Xn)n≥0 which assumes that the transition probabilities is

pi, j
∆
= P(Xn+1 =

j
2N
| Xn =

i
2N

) =
(
2N

j

)
(

i
2N

)
j

(1 − i
2N

)
2N− j

, (1.24)

where i, j ∈ {0, 1, 2, · · · , 2N}. Equation (1.24) tells us that conditioning on Xn, 2NXn+1

follows a binomial distribution with parameter 2N and Xn. It follows that

E[Xn+1 | Xn] = Xn, Var[2NXn+1 | Xn] = 2NXn(1 − Xn).

And the change of the frequency satisfies

E[∆X|Xn] = 0, E[(∆X)2|Xn] =
1

2N
Xn(1 − Xn).

In view of equation (1.18), we can construct for large N a process X(N)
t = X⌊Nt⌋ which

would have infinitesimal drift
E[∆X(N)]
∆t

= 0 and infinitesimal variance
E[(∆X(N))2]
∆t

=
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1
2

X(N)(1 − X(N)). This implies that as N → +∞, the limit process (Xt) would have

E[∆Xt|pt = x] ≃ 0 E[(∆Xt)2|pt = x] ≃ x(1 − x)∆t ,

and it is a diffusion process satisfying

dXt =
√

Xt(1 − Xt)dBt .

The transition density function of such a process can be approximated by, for large N, the

solution p(t, x) to the Kolmogorov (backward) equation:

∂p
∂t
=

1
2

[p(1 − p)]xx,

with initial condition p(0, x, y) = δy.

1.6 Main Results

As defined, in Chapter 3, the total mass of the system |Zt| (the L1 norm of the vector Zt)

will fluctuate - following a random process. This is not Markovian, because its changes are

dependent on the whole configuration and not only on the current state. However, we can

see heuristically that it must follow an approximation of an exponential growth/decay with

noise. It is natural to consider the total initial population as a scaling factor (size of the

system), and suppose it is proportional to a large number L > 0. The updates of the system

are done at exponential times with mean value proportional to the population. That means

there is an embedded time scaling of a factor of L.
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1.6.1 Scaling

We want to relate the microscopic system - with population |Zt| ∼ O(L), evolving at speed

tmicro ∼ O(L), with a macroscopic system ZL
t ∼ O(1) and tmacro ∼ O(1), by setting

ZL
t = L−1ZLt , t = tmacro , with L−1Z0 ≃ z0 ∈ Rk . (1.25)

Besides the initial condition scaling, we impose the assumption that the transition prob-

abilities for Zt satisfy a Lipschitz condition at the microscopic level see equation (3.14) ,

and this condition may possibly be relaxed, as conjectured in (9.2).

Mainly we are concerned with the limit of ZL
t as L→ ∞. This is not a stability question

(t → ∞) but a scaling limit problem.

1.6.2 Description of results

Following the order they are derived in, the results are built upon result 1, and then give a

refined perspective of the micro- vs macro- levels.

1. Our first result is given by Theorem 3.4 which gives the Fluid limit, also known as a

hydrodynamic limit in the literature for (Z̃L
t )t≥0. This is a law of large numbers (LLN) at the

level of the time-indexed process. We show that the distribution of types (colors) converges,

as L → ∞, to a non-random, i.e. deterministic, process zt ∈ Rk uniquely characterized as

the solution of an ordinary differential equation.

2. Non-explosion (Theorem 4.1) shows that both microscopically and macroscopically,

the system does not become arbitrarily large, satisfying an exponential upper bound and

there are not infinitely many jumps in a finite time interval.
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3. Non-extinction plays at two levels. Microscopically (for fixed L), extinction is pos-

sible, but with a small probability: A concrete large deviations bound is provided, cf. The-

orem 8.1. Macroscopically, as L → ∞, the system does not vanish, i.e. the total mass is

bounded away from zero at any finite time t > 0, see Corollary 8.2.

The non-extinction is crucial for the dynamical system’s asymptotic analysis, for in-

stance the results on stability. It is part of the hypothesis in the results of the original work

[35]: Theorem 2.2, Corollary 2.4, Theorem 3.1, Corollary 3.2 and further, in [3], Lemma

1, Theorem 1, Theorem 4, Theorem 5, Proposition 1, as well as Theorems 8 and 10.

A significant contribution of this thesis is that, with our methods, we can prove rigor-

ously that in the scaling limit, the conditional stipulation on non-extinction can be removed.

4. Normalized scaling limit. Statistically and often biologically, the proportions of

types are the relevant quantity. We let

XL
t = (

Z1
Lt

|ZLt|
), . . . ,

Zk
Lt

|ZLt|
) ∈ ∆k−1 , (1.26)

where ∆k−1 is the (k − 1)-dimensional simplex, be the normalized population proportions

vector. Under the same scaling - the total population is amplified by a factor of L and time

is sped up t → Lt - we show that macroscopically XL
t converges, again as a process, at the

full trajectory level, to the deterministic solution of an ODE.

1.7 Main tools and method of proof

We first prove that the family of random processes (Z̃L
t )t≥0, indexed by L > 1, is tight (com-

pact as measure valued distributions on the space of càdlàg functions with the Skorokhod
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topology), see Theorem 5.8. Compactness implies there is a limit process. To prove con-

vergence, in this case weak convergence in probability, we need to show that the limit is

unique and deterministic. In fact, the martingale problem it satisfies is exactly the weak

form of an evolution equation which is an ODE here. By analytic methods, it is uniquely

determined as a weak solution of a dynamical system with affine bounds on the coefficients,

that are also Lipschitz. Classical results in dynamical systems guarantee uniqueness and

the existence of a strong global solution. This procedure concludes the identification of the

limit.

It is paramount to ensure a global bound on the total population, which will be done

in Section 5.2. Technical aspects, like working with a stopping time up to the possible

extinction/blowup time are producing significant complications of the proof. However,

these conditions can be removed, and that is part of the substance of the result.

This dissertation is organized as follows. In Chapter 2 we introduce notations and lay

out the mathematical foundation of probability theory used in our study. Then, in Chapter

3, we set up the generalized urn model inspired by the replicator process and describe in a

formal manner the main results. The whole Chapter 4 is reserved to showing the pure jump

process we constructed from the replicator model is non-explosive. Chapter 5 proves the

main bounds, technical lemmas and the tightness of the scaled processes (Z̃L
t )t≥0, indexed

by L. Chapter 6 is devoted to the proof of the weak limit of (Z̃L
t )t≥0, identified as the unique

solution of a multidimensional ODE; qualitative properties of the deterministic equation

are also established. In chapter 7, the normalized process of proportions of types (X̃L
t )t≥0 is

investigated. We prove its tightness and derive its limiting ODE. In Chapter 8, we estimate

and obtain a large deviation type bound for the probability that (Z̃L
t )t≥0 goes to 0 in a finite

time. Finally, Chapter 9 gives an outline of directions for possible future research.



Chapter 2

Preliminary Markov Processes Theory

We shall layout some basic notations, definitions and properties of continuous time Markov

processes. In particular, we illustrate the construction of a pure jump process. Also we

introduce infinitesimal generator and martingales which are necessary to study the general-

ized urn model. The following definitions and notations are mostly based on [5], [9], [22],

[25],[33], and [34].

2.1 Probability spaces, random variables and stochastic

processes

Definition 2.1. Let X be a set. A σ-algebra or σ-field F on X is a collection of subsets of

X satisfying:

(a) ∅ ∈ F ,

(b) A ∈ F =⇒ Ac ∈ F and

(c) if A1, A2, · · · , is a countable collection of elements of F , then
⋃
n

An ∈ F .

26
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Definition 2.2. A measurable space (E,E) is a set E ! ∅ with a σ-algebra E on it.

Definition 2.3. A (positive) measure µ is a nonnegative countably additive real set function

from E to the extended real line. If µ(E) = 1, µ is called a probability measure and usually

denoted by P.

Definition 2.4. A probability space is a triple (Ω,F , P), where (Ω,F ) is a measurable

space with a probability measure P on it.

Definition 2.5. A filtration {Fi}i∈I on a probability space (Ω,F , P), where I is a totally

ordered indexed set say under order “ ≺ ”, is a family of σ-algebras that each Fi ⊂ F and

if i ≺ j in I then Fi ⊂ F j.

Definition 2.6. A filtered probability space (Ω,F , (Ft)t∈I , P) is a probability space (Ω,F , P)

with a filtration (Ft)t∈I on it.

Remark 2.1. Usually the index set I is R+ = [0,∞), Z+ = {0, 1, 2, · · · } or their subsets

and the total order “ ≺ ” is simply “ < ”. Intuitively we may think the parameter i ∈ I

as time and use t ∈ I; and I = R+ or I = Z+ represents discrete time or continuous time

respectively. In the following, we will consider the continuous time case with the total order

“ < ”, and we assume that either I = R+ or for a finite time T > 0, I = [0,T ].

Most of the time, it is desirable to have a filtered space which satisfies the so-called

usual conditions. To introduce that, we need the concept of completeness and right-

continuity for a filtered space first.

Definition 2.7. A probability space (Ω,F , P) is complete if subsets of all measurable null

sets are measurable, or equivalently, if A ∈ F and P(A) = 0 , then B ⊂ A implies B ∈ F .

A filtered probability space (Ω,F , (Ft)t≥0, P) is complete if (Ω,F , P) is complete and F0

contains all the null sets.
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Definition 2.8. A filtration (Ft)t≥0 is called right-continuous if Ft =
⋂
s>t
Fs,∀t ≥ 0.

Definition 2.9 (Usual conditions). A filtered space (Ω,F , (Ft)t≥0, P) is said to satisfy the

usual conditions if it is complete and the filtration (Ft)t≥0 is right-continuous.

Given a filtered probability space (Ω,F , (F )t≥0, P), we can always take the P-augmentation

of it and obtain a filtered space which satisfies the usual condition. Also, this augmentation

is “reasonable” in the sense that it is minimal and many properties of the original space

are preserved in the new filtered space. In fact, the natural filtration of a large family of

processes, levy processes for example, once completed, satisfies the usual conditions. One

can refer [32] for a more detailed discussion about usual conditions.

A major object we consider in probability is the class of functions called random vari-

ables, or more generally random elements, which are simply measurable functions.

Definition 2.10. Given two measurable spaces (E1,E1) and (E2,E2), a function f : E1 →

E2 is called measurable if ∀E′′ ∈ E2, we have f −1(E′′) = E′ ∈ E1.

When specifying the σ-algebras with respect to which the function f is measurable is

needed, we say f is (E1/E2)- measurable.

Let S be a locally compact complete separable metric space, for example Rd with the

Euclidean metric, and consider it with its Borel σ - algebra, denoted by (S ,Σ). The gener-

ality of this space is necessary, since we later on work with the metric space of probability

measures, as well as the Skorokhod space of right-continuous left-limit paths, which can

be endowed with metric topologies.

Definition 2.11. A S-valued random element is a measurable map X : (Ω,F ) → (S ,Σ)

between measurable spaces where Ω is called sample space and S is called state space.
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Remark 2.2. In particular, for (S ,Σ) = (Rd,BRd ), X is called a random variable if d = 1

and a d-dimensional (real-valued) random vector if d > 1 is an integer.

An important type of random variable which we will need is stopping time.

Definition 2.12. A random variable τ : Ω→ [0,+∞] is called a stopping time with respect

to a filtration (Ft)t≥0 if ∀t ∈ [0,+∞], we have {τ ≤ t} ∈ Ft.

Note that a probability measure P is not required when defining a random element. But

when one starts to consider probability concepts like distribution, expectation and more, a

probability measure is a must, and we shall always assume a probability space (Ω,F , P).

Definition 2.13. The law, or distribution, for a random element X : (Ω,F , P) → (S ,Σ) is

the probability measure PX = P ◦ X−1 on (S ,Σ) induced by X, more precisely:

PX(A) = P({ω : X(ω) ∈ A}), ∀A ∈ Σ.

Note that the distribution of a random element X is always well-defined since X is by

definition measurable which implies {ω : X(ω) ∈ A} ∈ F .

For a random variable we define its mathematical expectation.

Definition 2.14. The expectation of a random variable X : (Ω,F ) → (R,BR) with respect

to a probability measure P on (Ω,F ) is defined by the Lebesgue integral.

E[X] ∆=
∫

Ω

X(ω)P(dω) ≡
∫

R

x PX(dx). (2.1)

Remark 2.3. For a random vector, its expectation is defined component-wise as in (2.1).

Given a sequence of random variables (Xn)n≥1 and X defined on (Ω,F , P) taking values

in (S ,Σ), we define the following modes of convergence.
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Definition 2.15. The sequence of random variables (Xn)n≥1 is said to converge to X almost

surely (a.s.), or in probability 1, if

P({ω ∈ Ω : Xn(ω)→ X(ω)}) = 1.

In this case, we write Xn
a.s.−→ X.

Definition 2.16. The sequence of random variables (Xn)n≥1 is said to converge to X in

probability, if ∀ϵ > 0, we have

lim
n→+∞

P({ω ∈ Ω : |Xn(ω) − X(ω)| > ϵ}) = 1.

In this case, we write Xn
P−→ X.

Definition 2.17. The sequence of random variables (Xn)n≥1 is said to converge to X in

distribution, or in law, if ∀ f ∈ Cb(S ), we have

E[ f (Xn)]→ E[ f (X)],

where Cb(S ) denotes the set of continuous bounded functions f : S → R.

In this case, we write Xn
D−→ X, or Xn

L−→ X.

Note that a random variable X is Lp integrable, denoted by X ∈ Lp, if E[|Xp|] ≤ +∞.

With the additional assumption that X, X1, ..., Xn, ... ∈ Lp, we define the Lp convergence.

Definition 2.18. The sequence of random variables (Xn)n≥1 is said to converge to X in Lp,

denoted by Xn
Lp

−→ X, if ∀ f ∈ Cb(S ), we have

E[ f (Xn)]→ E[ f (X)],
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where Cb(S ) denotes the set of continuous bounded functions f : S → R.

Definition 2.19. Given measurable spaces (Ω,F ) and (S ,Σ), a S-valued stochastic process

(Xt)t∈I is a collection of S -valued random elements Xt : (Ω,F )→ (S ,Σ) indexed by t ∈ I .

Remark 2.4. Given a stochastic process (Xt)t∈I , it’s very natural to think it as a two vari-

ables function X : I ×Ω→ S and sometimes one writes X(t,ω) instead of Xt(ω). We know

for each t ∈ I, X(t, ·) : ω 8−→ Xt(ω) is a measurable function by definition. If we fix ω ∈ Ω,

X(·,ω) : t 8−→ Xt(ω) is also a function which is called a sample path at ω. However, we

need a topology on the index set I before we can talk about measurability.

Besides the assumption that I = [0,∞) or I = [0,T ] for a fixed T > 0 with the usual

topology, we shall also assume that the state space S is Rd, where d is a positive integer,

equipped with the Borel σ-algebra BRd generated by open balls from now on. We have

several notions concerning measurability of a stochastic process.

Definition 2.20. Given measurable spaces (Ω,F ) and (Rd,BRd ), a stochastic process (Xt)t≥0

is called jointly measurable if the function X : [0,+∞)×Ω→ Rd is
(
B([0,+∞))

⊗
F /BRd

)

measurable where B([0,+∞)) is the Borel σ-algebra on [0,+∞) generated by the open sets

of [0,+∞) induced from R and the operation “
⊗

” represents the product σ-algebra .

The next two concepts requires a filtered probability space.

Definition 2.21. Given a filtered probability space (Ω,F , (Ft)t≥0, P) and state space (Rd,BRd ),

a stochastic process (Xt)t≥0 is said to be adapted to the filtration (Ft)t≥0 if ∀t ∈ [0,+∞), the

function Xt : Ω→ Rd is (Ft /BRd ) measurable.

A notion which is even stronger than jointly measurable and used more often is pro-

gressively measurable.
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Definition 2.22. Assumptions as in Definition 2.21, a stochastic process (Xt)t≥0 is called

progressively measurable if ∀t ∈ [0,+∞), the function [0, t] × Ω → Rd given by (t,ω) 8−→

Xt(ω) is
(
B([0, t])

⊗
Ft
/
BRd

)
measurable where B([0, t]) is the Borel σ-algebra on [0, t].

Remark 2.5. Definitions 2.20, 2.21 and 2.22 are closely related. For example, a jointly

measurable and adapted process has a progressively measurable version. Also, an adapted

process with respect to a filtration (Ft)t≥0 which has right-continuous or left-continuous

sample paths is progressively measurably with respect to the same filtration, cf. [19].

In particular, a RCLL stochastic process is progressively measurable with respect to its

natural filtration (see related definitions below).

Definition 2.23 (RCLL). A stochastic process X : [0,+∞) × Ω → Rd is called RCLL, or

càdlàg in French, if ∀ω ∈ Ω, X(·,ω) : t 8−→ Xt(w) is right-continuous with left limits.

Note that the RCLL space is not necessarily a probabilistic concept. It is a metric space

under various topologies, of which we are specializing only to the Skorokhod J1 topology.

Definition 2.24 (Version). Two stochastic process (X)t≥0 and (X′)t≥0 are which are defined

respectively on probability spaces (Ω,F , P) and (Ω′,F ′, P′) with the same state space

(S ,Σ) are said to be versions, or modifications, of each other if they have the same finite

dimensional distributions, or equivalently, for any finite sequence t1, t2, ..., tn with each ti ∈

[0,+∞) and measurable sets A1, A2, ..., An with each Ai ∈ Σ, we have

P
({ω ∈ Ω |Xt1(ω) ∈ A1, Xt2(ω) ∈ A2, ..., Xtn(ω) ∈ An}

)

= P′({ω′ ∈ Ω′ |X′t1(ω′) ∈ A1, X′t2(ω
′) ∈ A2, ..., X′tn(ω

′) ∈ An}).
(2.2)

Definition 2.25. For a stochastic process (Xt)t≥0 defined on (Ω,F , P) with state space

(S ,Σ), the natural filtration, denoted by (F X
t )t≥0, of (Xt)t≥0 is the minimal filtration with
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respect to which the process is adapted. given by

F X
t = σ

{
X−1

s (A) | 0 ≤ s ≤ t, A ∈ Σ
}
,∀t ∈ [0,+∞).

There is another view of a stochastic process (Xt)t≥0 : I × Ω → S which is very useful.

As we noted earlier, each ω ∈ Ω determines a sample path X(·,ω) which is a function from

I to S . If we denote S I the set of all functions from I to S , alternatively we can view the

stochastic process as a map X : Ω → S I . Indeed, it turns out we can put an “appropriate”

σ-algebra on the space S I which is the smallest σ-algebra making all coordinate maps

πt : S I → S , πt( f ) = f (t), ∀t ∈ I, ∀ f ∈ S I (2.3)

measurable, say denoted by ΣI,

ΣI
∆
= σ {πt : t ∈ I} , (2.4)

in the sense that X : Ω → S I is (F /ΣI)- measurable if and only if Xt is (F /Σ)- measurable

for all t ∈ I. We refer the reader to Chapter II.3 of the book [34] for a detailed discussion of

the σ-algebra ΣI on the space S I . The result is that we can always view a stochastic process

I ×Ω→ S as a random element taking values in S I , under a proper σ-algebra.

As we noted, a random element always induces a well-defined law (distribution) on the

state space, we also have the law for a stochastic process:

Definition 2.26. Given probability space (Ω,F , P) and state space (S ,Σ) the law for a

stochastic process X : I×Ω→ S , or equivalently viewed as a random element X : Ω→ S I,

is the probability measure PX on the space (S I ,ΣI) induced by X given by PX = P ◦ X−1.
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Remark 2.6. A stochastic process (Xt)t∈I : (Ω,F , P) → (S ,Σ) always induces a law on

(S I ,ΣI) given by PX = P ◦ X−1, which is simply the law for it being view as a random

element. Now consider the stochastic process of coordinate maps (πt)t∈I given by equation

(2.3) on the probability space (S I ,ΣI, µ), with the same state space (S ,Σ), and it can be

viewed as a random element π : S I → S I. Since ∀t ∈ I and ∀ f ∈ S I, πt( f ) = f (t), we know

π( f ) = f and π is the identity map. Therefore, the law it induces on S I would be Pπ = µ. If

µ = PX, the coordinate maps process would has the same law with that of (Xt)t∈I . In other

words, (Xt)t∈I on (Ω,F , P) and (π)t∈I on (S I ,ΣI, P ◦ X−1) are versions of each other.

Definition 2.27. The stochastic process (πt)t∈I : S I → S defined as above on the probability

space (S I ,ΣI, PX) is called the canonical version of the process (Xt)t∈I on (Ω,F , P).

We shall call the space S I the canonical space and the stochastic process (πt)t∈I the

canonical process. We note that the existence of a canonical process on the canonical

space is guaranteed by the Kolmogorov extension theorem (also known as Kolmogorov’s

consistency theorem, Daniell-Kolmogorov theorem), see [34].

A continuous time Markov process, as will be considered in this work (see definition

2.28), can be constructed on a much more specific sample space Ω, namely a set of paths

continuous to the right and with left limits (RCLL, mentioned earlier). The most intuitive

idea of such a process is illustrated by pure jump processes. The space of RCLL paths can

be endowed with a metric, and becomes separable, complete, and locally compact and is

called the Skorokhod space. One is referred to see [4]for more about the Skorokhod space.

In the case of S = Rd, it is denoted by D([0,∞),Rd), I = [0,∞) or Ω = D([0,T ],Rd),

I = [0,T ] for a fixed T > 0 and S = Rd, we can define a stochastic process (Xt)0≤t≤T such

that X(t,w) : I×D(I,Rd)→ Rd, X(t,ω) = w(t). Alternatively, it can be viewed as a random

element D(I,Rd) → D(I,Rd) where D(I,Rd) is equipped with the Skorokhod J1 topology
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induced by the Skorokhod metric defined as follows, e.g., for I = [0,T ].

Let ΛT denote the set of increasing homeomorphisms of [0,T ] onto itself, i.e.,

{λ(t) : [0,T ]→ [0,T ]|λ(0) = 0, λ(T ) = T, λ(t) is continuous and strictly increasing}.

(2.5)

For ηn, η ∈ D([0,T ],Rd), the Skorokhod space J1 metric ∥ · ∥S is defined by

∥ηn − η∥S = inf
λ∈ΛT

{
sup

0!t!T
|λ(t) − t| ∨ sup

0!t!T
∥ηn(λ(t)) − η(t)∥1

}
(2.6)

and a sequence {ηn} ∈ D([0,T ],Rd) converges to η ∈ D([0,T ],Rd) in J1 topology if ∃{λn} ∈

ΛT s.t. sup
t∈[0,T ]

|λn(t) − t|→ 0 and sup
t∈[0,T ]

∥ηn(λn(t)) − η(t)∥1 → 0 as n→ ∞. Here ∥ · ∥1 denotes

the L1 norm on Rd and x ∨ y means max{x, y}.

We want to define a homogeneous continuous time Markov process with a countable

state space and RCLL paths. We need some preparations. Throughout this paper, we’ll

assume the following when talking about a continuous Markov process.

In our work, the setup involves a state space S , which is a denumerable metric space,

which is the case, as will be seen, for each process indexed by L.

However, our presentation includes the more general case S = Rd, which is not denu-

merable. This is when we pass L to infinity and where limit process will live in. When

necessary, we shall turn to the simplified notations of the discrete state space.

The following definition for a continuous Markov chain can be found in [25] with slight

modifications. The sample space can be assumed to be the canonical space Ω = {ω |ω :

[0,∞) → S is RCLL} by construction. Define a stochastic process X(t,ω) = ω(t) and for

a shift operator (θsω)(t) = ω(t + s). Alternatively, we may write X(t,ω) as Xt(ω) or simply

Xt without specifying ω. Also we put a σ-algebra F on Ω such that it is smallest which
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makes the mapping ω→ w(t) measurable ∀t ∈ [0,∞).

Definition 2.28 (Markov process). A stochastic process (Xt)t≥0 defined on a probability

space (Ω,F , P) is called a Markov process if there is

(a) a collection of probability measures {Px, x ∈ S } on Ω, and

(b) a right continuous filtration (Ft)t≥0 on (Ω,F ) with respect to which (Xt)t≥0 is adapted to

satisfying

Px(X0 = x) = 1

and for all bounded measurable Y on Ω

Ex[Y ◦ θs|Fs] = EXs[Y] Px a.s.,∀x ∈ S (2.7)

where Ex is the expectation corresponding to the measure Px that

Ex[Y] =
∫

Ω

Y dPx. (2.8)

Remark 2.7. Alternatively, if the random variables X(t,ω) are jointly measurable on the

probability space (Ω,F , P), then Px(·) = P(· | X0 = x).

Remark 2.8. Equation(2.7) is equivalent to the Markov property, see definition (2.29).

Definition 2.29 (Markov property). Given a measurable space (S ,Σ), a S-valued adapted

stochastic process (Xt)t≥0, with respect to a filtered probability space

(Ω,F , (Ft)t≥0, P, (Px)x∈S ) is said to have the Markov property with respect to the filtration

(Ft)t≥0 if, for each A ∈ Σ and 0 ≤ s ≤ t, (Ft)t≥0, we have

Px(Xt ∈ A | Fs) = Px(Xt ∈ A | Xs),∀x ∈ S . (2.9)



37

Remark 2.9. Both sides of equation (2.9) are conditional probabilities, and Px( · |Xs) is by

definition Px( · |σ(Xs)) where σ(Xs) is the σ-field generated by Xs.

We will deal with homogeneous Markov processes, which means that their transition

probabilities are time homogeneous.

Definition 2.30. A function p : S × Σ→ R is said to be a transition probability if:

(a) for each x ∈ S , B→ p(x, B) is a probability measure where B ∈ Σ is measurable, and

(b)for each B ∈ Σ , x→ p(x, B) is a measurable function.

We say that (Xt)t≥0 is a Markov process with respect to (Ft)t≥0 with transition probabilities

ps,t if

ps,t(x, B) " P(Xt ∈ B | Xs = x)

where 0 ≤ s ≤ t and B ∈ Σ is measurable. In particular, for x, y ∈ S , if S is discrete, then

we have

ps,t(x, {y}) = P(Xt ∈ {y} | Xs = x).

We will simply write y for {y} with the understanding as above and ps,t(x, y) will stand for

ps,t(x, {y}) :

ps,t(x, y) = P(Xt = y | Xs = x).

Definition 2.31. A Markov process (Xt)t≥0 is called time homogeneous if its transition prob-

abilities are time homogeneous, i.e., there exists a transition probability p̄ such that

p̄t−s(x, B) = ps,t(x, B).
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For a homogeneous Markov process, we have ∀s, t ≥ 0 and x ∈ S , {y} ∈ Σ ,

p̄t(x, y) = ps,s+t(x, y) = P(Xs+t = y | Xs = x) = P(Xt = y | X0 = x) = Px(Xt = y) ,

which says that the transition probabilities depend only on the positions x, y and the time

difference t = (s + t) − s, but not on the starting time s. We will only consider time

homogeneous Markov processes and use the notation pt(x, y) instead of p̄t(x, y) from now

on:

pt(x, y) ∆= Px(Xt = y) (2.10)

Remark 2.10. Technically, any time-inhomogeneous Markov process (Xt)≥0 can be made

time-homogeneous by considering the so-called space-time Markov chain (Yt)t≥0 where

Yt = (Xt, t), this is a good perspective but it is not as useful as one may expect it to be in

applications.

Remark 2.11. Under quite general conditions, for example a Feller-Dynkin process as

defined in [34] III 6, a Markov process can be defined such that, with probability one, the

sample paths t → Xt(ω) are right continuous with left limits. If the state space S is discrete,

one can imagine that the sample path cannot change in a continuous way but rather in the

form of “ jumps”. In fact, this type of Markov process falls into the category of pure jump

process.

Definition 2.32. A Markov process is called a pure jump process if it has right-continuous

sample paths and it is constant between consequent jumps.

Remark 2.12. A pure jump process doesn’t have to be time-homogeneous or have a count-

able state space, but it has by definition piecewise right continuous constant paths, which

are trivially RCLL.
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Note that the RCLL condition for sample paths of a pure jump process (Xt)t≥0 can be

stated in another way that there is a sequence of increasing stopping times (Tn)n≥0 such that

T0 = 0, Xt is constant on the interval [Tn,Tn+1) and XTn− ! XTn for all n ≥ 1. More than

that, for a time-homogeneous Markov process, the sojourn time (or holding time) at a state

x is proved to be satisfying the memoryless property and thus exponentially distributed.

The rate for the exponential distribution depends only on the state x and we will denote

it by λ(x). Since the stopping times sequence (Tn)n≥0 is monotone increasing, we know it

has an ω-by-ω limit which we shall denote by T∞ . Usually it is desirable to have only

finitely many jumps during any finite time in which case we say the pure jump process to

be regular or have the non-explosion property.

Definition 2.33. A pure jump process (Xt)t≥0 is called regular or have the non-explosion

property if its jump times (Tn)n≥0 with point-wise limit T∞
∆
= lim

n→+∞
Tn satisfying

P(T∞ = +∞) = 1. (Non-explosion)

Otherwise there is a positive probability that we may have a finite limit for the stopping

times P(T∞ < +∞) > 0, and we call the jump process explosive.

With the above discussion and notations, we would like to mention that we have the

following relations between a continuous time pure jump process and its embedded discrete

chain (2.11).

Proposition 2.13 (Proposition 2.5 in appendix 1 of [22]). (a) The skeleton chain defined

by ξn = XTn for n ≥ 0 is a discrete time Markov chain with transition probabilities p(x, B)

given by

p(x, B) = P(XT1 ∈ B | X0 = x) = Px(XT1 ∈ B). (2.11)
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(b) Under Px,T1 has an exponential distribution whose parameter is denoted by λ(x).

Conditionally to the sequence (ξn)n≥0, the variables T j+1 −T j are independent and have

exponential distributions of parameter λ(ξ j).

(c) For each continuous time homogeneous Markov chain, the associated transition prob-

ability p(·, ·) and jump rate λ(·) can be defined as in (a) and (b). Conversely, two contin-

uous time homogeneous Markov chains having the same transition probability p(·, ·) and

bounded jump rate λ(·) have the same distribution.

Remark 2.14. Proposition 2.13 assumes that the jump rates are bounded. However, the

construction we give in the next section is consistent for arbitrary rates, with the possibility

of explosion. Later on, in Chapter 3, Theorem 4.1 we will show that the process in this

work is non - explosive.

2.2 Construction of pure jump processes

Up to this point, we started from an existing pure jump process and we defined both the

skeleton chain p(·, ·) and the associated jump rates λ(·).

Note that Proposition 2.13 suggests that in order to construct a time-homogeneous

Markov process we only need to know the given transition probabilities and jump rates.

We will construct a particular RCLL time-homogeneous Markov process (Xt)t≥0 as an il-

lustration of a pure jump process. This will also serve as a prototype for the pure jump

process we are studying.

First we have the state space (S ,Σ) where everything is to be built on. We recall that

the space S a locally compact complete separable metric space like Rd, which may be

countable or uncountable.



41

We will suppose that the skeleton chain (ξn)n≥0 as mentioned in Proposition 2.13 has

transition probabilities p(x, B) defined as in equation (2.11) and a jump rate parameter

function λ : S → [0,+∞). The chain and a family of exponential random variables, called

holding or waiting times, are all measurable on a probability space (Ω,F , P).

We want to construct a jump process working as follows. Starting at a position X0 ∈ S ,

we stay at the same position until an exponential clock which is independent of the process

with rate λ(X0) rings, and then we jump to a new random state, with distribution defined

according to the prescribed transition probability p(X0, ·). To avoid the case that the clock

rings but no real jump occurs, we shall assume p(x, {x}) = 0,∀x ∈ S . This condition is

natural, since it is automatically satisfied in Proposition 2.13, part (b).

Set T0 ≡ 0 and denote T1 the first jump time for our process, or more precisely T1
∆
=

in f {t > T0 | Xt ! XT0}. The process would stay still (be constant ) on the interval [XT0 , XT1)

until the first jump, i.e.,

Xt = XT0 , t ∈ [T0,T1). (2.12)

And the position after the first jump would be determined according to the law

P(XT1 ∈ B) = p(XT0 , B), ∀B ∈ F .

Define the n-th jump time recursively Tn
∆
= in f {t > Tn−1 | Xt ! XTn−1}. The sequence

(Tn)n≥0 are increasing stopping times adapted to the filtration (Ft)t≥0 since whether the event

{Tn ≤ t} happens can be determined by observing the history the process (Xs)s≥0 up to time

t and we must have {Tn ≤ t} ∈ Ft.

Let’s say after the n-th jump, we are at a new position XTn , and we will stay put until a new

exponential clock, independent of the process and former clocks, with rate λ(XTn) rings.
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Again, it means (Xt)t≥0 is constant on the interval [XTn , XTn+1) until the next jump or the

(n + 1)-th jump, i.e.,

Xt = XTn , t ∈ [Tn,Tn+1). (2.13)

Also we require that the process jump according to the same time-independent transition

probabilities,

P(XTn+1 ∈ B) = p(XTn , B), B ∈ F , n ≥ 0,

and this process goes on with the same rules.

Formulated more mathematically, the above described process is defined as follows.

First we choose a start point X0 ∈ S and set T0 ≡ 0. Let (ηn)n≥1 be an i.i.d. sequence of

random variables which are independent of the process (Xt)t≥0 and have the unit exponential

distribution exp{1}, i.e.,

P(η1 ≤ t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − e−t, if t ≥ 0;

0 , if t < 0.

We also have a jump rate function λ : S → [0,+∞) that if for some time t ∈ [0,+∞)

the process is at a position Xt ∈ S , the holding time before the next jump would have

exponential distribution with rate λ(Xt) ∈ [0,+∞). If for some time t′ we have λ(Xt′) = 0,

then the process will not jump thereafter with probability 1 and we set Xt = Xt′ , t ∈ [t′,+∞).

If λ(Xt′) ! 0, with probability 1 there would be another jump in a finite time and the holding

has an exponential distribution with rate λ(Xt′). Define the n-th jump time recursively

Tn
∆
= in f {t > Tn−1 | Xt ! XTn−1}. In other words, conditioned on XTn−1 , we define that, with

probability 1,

Tn − Tn−1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+∞ , i f λ(XTn−1) = 0,
ηn

λ(XTn−1)
, i f λ(XTn−1) ! 0.

(2.14)
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Equivalently, we can set formally
ηn

λ(XTn−1)
∆
= +∞, if λ(XTn−1) = 0 and define recursively

that Tn = Tn−1 +
ηn

λ(XTn−1)
for n ≥ 1. Note that the process doesn’t change position between

jumps that Xt = XTn−1 for t ∈ [Tn−1,Tn) and at a jump time Tn, the next position XTn is a

random variable having transition probabilities given by a prescribed law p(x, ·) or more

precisely

P(XTn ∈ B) = p(XTn−1 , B). (2.15)

Without strictly proving it we note that the above defined process is Markovian since for us

to know what to do next, given the information for the current state Xt′ would be as good as

given (Xt)0≤t≤t′ , which is all the history up to t′. Also the process has RCLL sample paths

and is constant between consecutive jumps by construction. All in all, we constructed a

pure jump process indeed.

Now let’s think about this process and how it works. We know a pure jump process is

either regular or explosive (see definition 2.33). Let’s say we pick any time t ∈ [0,+∞),

if the pure jump process is regular, almost surely we have Tn ≤ t < Tn+1 for some n ≥ 0.

Due to the memoryless property of exponential distribution, we know we will have an

exponential clock with rate λ(XTn) for any time t ∈ [Tn,Tn+1). We wait until it rings and

then jump to a new position XTn+1 ∼ p(XTn , B) , n ≥ 0.

However, if the jump process is explosive, with positive probability we may encounter

the case t > T∞ and we need to answer the question as what do we do next, if we want to

define the process for all t ∈ [0,+∞). One standard way to fix it is to join an additional state

∆ # S which is called a cemetery state. And we extend the pure jump process by defining

X∆t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xt, if Tn ≤ t < Tn+1,

∆, if t ≥ T∞.
(2.16)
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This way, a pure jump process would be well-defined for all time t ∈ [0,+∞) whether

it is regular or not.

Let us investigate the explosion phenomena more closely. For the type of pure jump

process defined as we did, we have T0 = 0 and Tn = Tn−1 +
ηn

λ(XTn−1)
for n ≥ 1 which gives

Tn =

n∑

i=1

ηi

λ(XTi−1)
, (2.17)

and its limit is

T∞ =
+∞∑

i=1

ηi

λ(XTi−1)
a.s. (2.18)

Note that (ηi)i≥1 are i.i.d. unit exponential random variables, we have

E[T∞|FTk−1] =
k∑

i=1

1
λ(XTi−1)

. (2.19)

Then

E[T∞|F∞] =
+∞∑

i=1

1
λ(XTi−1)

. (2.20)

where F∞ = σ
⎛
⎜⎜⎜⎜⎜⎝
⋃

t≥0

Ft

⎞
⎟⎟⎟⎟⎟⎠ ⊂ F is the σ-algebra generated by infinite union of all the Ft in the

filtration (Ft)t≥0.

In general, the rates λ(XTi−1) may be dependent on each other as there is possibly a con-

nection between jumps. However, if there is some uniform bound for the jump rate, for

example, that sup
x∈S
λ(x) < +∞, it follows that P( E[T∞|F∞] = +∞) = 1 and the correspond-

ing jump process is regular; this is why many times people simply assume the jump rates

to be bounded when discussing properties of pure jump processes.

In our work, the jump rates aren’t uniformly bounded. Still, we show that the pure jump

process under discussion is regular, see Theorem 4.1.
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2.3 Infinitesimal generator and associated martingales

Now consider a continuous time homogeneous Markov process (Xt)t≥0 with the transition

probabilities pt(x, y) as in equation (2.10) taking values in a denumerable state space S .

However, the presentation in this section is valid for a more general locally compact sepa-

rable metric space S . We shall further assume (Xt)t≥0 to be a Feller process (see definition

(2.34) below). It is noteworthy that any regular pure jump process, including the processes

considered in this work, belongs to this class [34, 24].

Denote C0(S ) the collection of continuous functions f on S , f : S → R, which vanish

at infinity. We shall regard S as a Banach space with sup norm

∥ f ∥ = sup
z∈S
| f (z)|. (2.21)

The transition operators {T (t), t ≥ 0} of a Markov process (Xt)t≥0 is defined by

T (t) f (x) " Ex[ f (Xt)],∀ f ∈ C0(S ). (2.22)

Remark 2.15. In the countable state space case, we have

T (t) f (x) =
∑

y∈S
pt(x, y) f (y).

Definition 2.34 (Feller process). A time homogeneous Markov process (Xt)t≥0 is said to be

a strongly continuous Feller process if ∀ f ∈ C0(S ) and t ≥ 0, we have

(a) (Feller property) x→ T (t) f (x) ∈ C0(S ), and

(b) lim
t↓0

T (t) f (x) = f (x).
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By the Markov property, these transition probabilities as defined in equation (2.10) satisfy

the Chapman-Kolmogorov equations: ∀x, y ∈ S and s, t ≥ 0

ps+t(x, y) =
∑

z∈S
ps(x, z)pt(z, y). (2.23)

It follows that the operators {T (t), t ≥ 0} form a semigroup that

T (s + t) = T (s)T (t),∀s, t ≥ 0. (2.24)

Remark 2.16. Indeed, under our construction, {T (t), t ≥ 0} is a strongly continuous, posi-

tive, contraction semigroup. This guarantees the validity of the Hille-Yosida Theorem.

Now we introduce the infinitesimal generator for a Markov process (Xt)t≥0 defined by

L f ∆= lim
t↓0

T (t) f − f
t

, (2.25)

and its domain denoted byD(L ) is

D(L ) ∆=
{

f ∈ C0(S ) : lim
t↓0

T (t) f − f
t

exists
}
. (2.26)

Remark 2.17. In particular, if S = Rd, we have C2
c (Rd) ⊂ D(L ) ⊂ C0(Rd), and C2

c (Rd) is

dense in C0(Rd).

Next we need the concept of a martingale which is, roughly speaking, a stochastic

process model for a fair game.

Definition 2.35 (Martingale). Given a probability space (Ω,F , P) and a state space (Rd,BRd ),

a stochastic process X : I ×Ω→ S is called a martingale with respect to a filtration (Ft)t∈I
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on (Ω,F , P) if

(a) (Xt)t∈I is adapted to (Ft)t∈I ,

(b) E[|Xt|] < +∞ for each t ∈ I, and

(c) E[Xt | Fs] = Xs, ∀s, t ∈ I and s < t.

For a continuous-time homogeneous Markov process (Xt) and a smooth test function f (·, ·)

(defined precisely in the next Lemma), the processes

M f
t = f (t, Xt) − f (0, X0) −

∫ t

0
[
∂ f
∂s

(s, Xs) +Lx f (s, Xs)]ds (2.27)

and

N f
t = (M f

t )2 −
∫ t

0
[Lx f (s, Xs)2 − 2 f (x, Xs)Lx f (s, Xs)]ds (2.28)

where Lx means the infinitesimal generator is applied to the variable x of the test function

f (t, x), will be proven to be martingales.

Lemma 2.18. For a Markov process (Xt)t≥0 ∈ D([0,∞),Rd) and any test function f (t, x) ∈

C1,2
c ([0,∞) × Rd,R), let Ft = σ(Xs, 0 ≤ s < t) be the natural filtration induced by (Xt)t≥0 ,

the processes M f
t and N f

t as defined in (2.27) and (2.28) are Ft-martingales.

Remark 2.19. Notice that for a Brownian motion, for example, the martingale (2.27) ex-

presses the Ito formula, where the martingale part is given explicitly as a stochastic inte-

gral. Similarly, equation (2.28) would be exactly the so called Ito isometry formula.

Next we shall obtain the corresponding martingales as defined above for a more con-

crete Markov process. Note that in the simple case f (t, x) = f (x),we have Lx = L , and
∂ f
∂s
= 0 and it follows that (2.27) and (2.28) become

M f
t = f (Xt) − f (X0) −

∫ t

0
[L f (Xs)]ds (2.29)
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and

N f
t = (M f

t )2 −
∫ t

0
[L f (Xs)2 − 2 f (Xs)L f (Xs)]ds. (2.30)

For a pure jump process as constructed in Section 2.2, it is known that, see for example

[22], it can be characterized by specifying its generator

(L f )(x) =
∑

y∈S
λ(x)p(x, y)[ f (y) − f (x)],∀x ∈ S (2.31)

where S , a subset of Rd, is the state space and f (x) ∈ C2
c (Rd;R) is a test function. Note that

f ∈ C2
c (Rd;R) implies f 2 ∈ C2

c (Rd;R), we have

(L f 2)(x) =
∑

y∈S
λ(x)p(x, y)[ f 2(y) − f 2(x)],∀x ∈ S . (2.32)

Substituting the results (2.31) and (2.32) into (2.29) and (2.30), after some simplifica-

tions, we obtain the differential equations for our pure jump Markov process on the discrete

space S , i.e. the two processes below are (Ft)-martingales

M f
t = f (Xt) − f (X0) −

∫ t

0
λ(Xs−)

∑

y∈S
p(Xs−, y)( f (y) − f (Xs−))ds (2.33)

and

N f
t = (M f

t )2 −
∫ t

0
λ(Xs−)

∑

y∈S
p(Xs−, y)( f (y) − f (Xs−))2ds . (2.34)

We will use extensively the above-mentioned martingales, together with other techniques

like localization and truncation to obtain our main results.



Chapter 3

Setup of the Model

Given a probability space (Ω,F , P) and an integer k " 2, we shall define a stochastic

process

Zt(ω) =
(
Z1

t (ω),Z2
t (ω), ...,Zk

t (ω)
)
∈ S

modeling the k - type population evolution, where S = Zk
+.

Given a vector Z = (Z1, ...,Zk) ∈ Rk, we define notations

|Z| =
k∑

i=1

|Zi| and α(Z) =
k∑

i=1

Zi. (3.1)

Note that for convenience we will use | · | for the L1 norm in Rk instead of ∥ · ∥1, which are

more commonly seen, unless otherwise explicitly stated .

49
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3.1 The microscopic process

We make the following assumptions. The set of all possible jumps J is given by:

J =
{
w = (w1, ...,wk) ∈ Zk : −1 ! wi ! m, i = 1, ..., k

}
. (3.2)

We assume there exists a set of deterministic functions Π : Zk
+ × Zk

+ −→ R+ with the

property that, for all z ∈ S

Π(z, z′) = 0 if z′ − z # J , (3.3)

Π(z, z) = 1 , if z = 0 and Π(z, z) < 1 for all z ! 0 ,

and
∑

w∈J

Π(z, z + w) = 1 .

Remark 3.1. This is a generalization of the Replicator model. The requirement that at

most two component of a jump w can be nonzero is not relevant, and the lower bound −1

for the jump size is obtained by normalization, but again, a finite lower bound would be

sufficient. Notice that
∑

w∈J\{0}
Π(z, z+w) = 1−Π(z, z) > 0 for z ! 0 according to (3.3) which

says that we have no absorbing state other than 0.

Recall the construction of a pure jump process in (2.31). With that notation, let

p(z, z′) =
Π(z, z′)

1 − Π(z, z)
, λ(z) = |z|(1 − Π(z, z)) .

Definition 3.2. The process (Zt)t≥0 is defined as the pure jump process with coefficients

(also known as the coefficients of the Q - matrix of the infinitesimal generator)

λ(z)p(z, z′) = |z|Π(z, z′) , z, z′ ∈ Zk
+ , z′ − z = w ∈ J (3.4)
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i.e. with generator

L f (z) = |z|
∑

w∈J

Π(z, z + w)
(

f (z + w) − f (z)
)
, f ∈ C2

c (Rk;R) . (3.5)

The construction of the process is standard - see our own presentation in Section 2.2

based on the exponential clocks associated to each state. When the jump rates are bounded,

see for example Liggett [25, 24], as well as Kipnis-Landim [22] in Appendix 1. It will be

shown in Chapter 4 that this process is non-explosive, i.e. there are only finitely many

jumps in any finite time interval; that the rates can be taken unbounded, linear, as above,

and (3.8) is a proper martingale (it is a local martingale in any case), and finally that the

test functions can be extended to smooth functions with linear growth (like projections), in

Proposition 5.4.

Additionally, throughout the rest of this thesis, we assume (A1) and (A2) as defined

in Assumptions 1.1 and 1.2, together with the notation (1.12), are in force. These are not

necessary for the construction of the process, but essential for scaling, as the next section

will describe.

Concretely, specializing the general construction of jump processes to our setup, if the

process Zt = z ∈ Zk
+ at time t ≥ 0, then we have an exponential clock attached whose

next ring time T is exponentially distributed with rate λ(t,ω) = |Zt(ω)|. After a waiting

time equal to T , the process is updated to a new state z′ ∈ Zk
+ with probability Π(Zt, z′), as

prescribed by (3.4).

As explained in Chapter 2, for any t ∈ [0,∞), Zt(ω) is a random vector from (Ω,F ) to

(Rk,BRk) and for any ω ∈ Ω, Zt(ω) is a measurable function from [0,∞) to Zk
+ where Zk

+ is

the positive cone Zk
+ = {Z = (Z1, ...,Zk) ∈ Z : Zi " 0, i = 1, .., k}. Further we can define

{Ft}t"0 to be a filtration of F that Zt(ω) is adapted to. In particular, Ft can be the natural
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filtration induced by this process Z = {Z(t) : t " 0}, i.e.

∀ t " 0 , Ft = σ
({

Z−1
s (B) : 0 ! s ! t, B ∈ Rk

})
.

Then for each t ∈ [0,∞), Zt is Ft-measurable.

It is always possible to augment the natural filtration to a filtration that satisfies the

usual conditions. Henceforth we shall assume this is true throughout the paper.

The transition probabilities are time homogeneous and the resulting stochastic process

(Zt)t≥0 has RCLL paths, meaning that its paths

∀ω ∈ Ω t −→ Zt(ω) ∈ D([0,∞),Rk
+) , (3.6)

where D([0,∞),Rk
+) is the Skorokhod space of right-continuous with left-limits space in

Rk. Due to our construction, it turns out that the paths stay positive. The cemetery state is

simply 0 ∈ Zk
+ and we shall write

τ0(ω) ∆= inf{t > 0 |Zt(ω) = 0} (3.7)

for the extinction time, which is a stopping time.

For a test function f (·, ·) ∈ C1,2
c ([0,∞) × Rk;R), we have

f (t, Xt) − f (0, X0) −
∫ t

0

∂ f
∂s

(s, Xs) +L f (s, Xs)ds =M f
t (3.8)

where M f
t is a Ft - martingale and L = Lx (the process is time - homogeneous and the

generator acts on the space variable only) is the infinitesimal generator, defined in (2.25),

corresponding to the pure jump process (Xt)t≥0.
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Remark 3.3. The time - integrals in the martingale formulas are pathwise (in ω) Riemann

- Stieltjes integrals. Since the jumps occur from Zτ− → Zτ, where τ is a jump time, the

integrands would formally carry the left-limit marker, for example L f (s, Xs−). However,

Riemann-Stieltjes integrals coincide if the integrator function, here given by the Lebesgue

measure on the time line ds, is continuous and we can drop the left limit symbol.

In the case f (t, x) = f (x), applying relation (3.8) to the process (Zt)t"0, we have

f (Zt) − f (Z0) −
∫ t

0
L f (Zs)ds =M f

t . (3.9)

Under our set-up, (Zt)t"0 is a pure jump process, and for such a process we have

L f (Zt) = λ(Zt)
∑

w∈J

Π (Zt,Zt + w) ( f (Zt + w) − f (Zt)) , (3.10)

where λ(·) is the jump rate function given by λ(Zt) = |Zt|. Plugging (3.10) into (3.9)we

obtain

f (Zt) − f (Z0) −
∫ t

0
|Zs|
∑

w∈J

Π (Zs,Zs + w)
[
f (Zs + w) − f (Zs)

]
ds, (3.11)

which is a martingale and we shall denote it by M f
t . Note that the summation in (3.11) is

over all possible jumps w which we denoted by J.
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3.2 Scaling and macroscopic equations

Our assumptions are made as in Assumption 1.1 and Assumption 1.2 with the understand-

ing of the case Z = 0 as in Remark 1.3. We assume that there exist Lipschitz maps

{
pw : △k−1 → [0, 1] : w ∈ Zk, |w| ! m

}
(3.12)

where △k−1 is the k − 1 simplex:

△k−1 =

⎧⎪⎪⎨
⎪⎪⎩(x1, ..., xk) ∈ Rk

∣∣∣∣∣
k∑

i=1

xi = 1, xi " 0,∀i ∈ {1, ..., k}
⎫⎪⎪⎬
⎪⎪⎭ (3.13)

and a real number a > 0 s.t.

|Z| |pw (Z/|Z|) − Π(Z,Z + w)| ! a (3.14)

for nonzero Z ∈ Zk
+ and w ∈ Zk with |w| ! m. Note that as |J| is finite, once a set of Lipschitz

maps pw is given, we can conclude there exists a constant Cp for all such functions that

|pw(X) − pw(X′)| ! Cp|X − X′| ∀w ∈ J and ∀X, X′ ∈ △k−1. (3.15)

Suppose we can use the projection map f (Z) = Zi which requires justification and will

be given later (see lemma 5.4) since f # C2
c (Rk,R), we have that

Zi
t − Zi

0 −
∫ t

0
|Zs|
∑

w∈J

Π (Zs,Zs + w) wids, (3.16)

is a martingale which we shall denote by M i
t .
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Then we know from (3.16)

Zi
t − Zi

0 −
∫ t

0
|Zs|
∑

w∈J

(
Π (Zs,Zs + w) − pw

(
Zs

|Zs|

))
wids

−
∫ t

0
|Zs|
∑

w∈J

pw

(
Zs

|Zs|

)
wids =M i

t .

(3.17)

We want to investigate the case where Z0 is large and the frequency of the initial dis-

tribution is fixed. In order to do that, let L ≥ 1 be the scaling factor and pick a fixed

a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ \ {0}, we define a process ZL
t = (ZL,1

t , ...,Z
L,k
t ) depending on L. The

update mechanism of ZL
t is the same as that of Zt, we only impose a initial condition that

ZL
0 =
(⌊

La1
0

⌋
,
⌊
La2

0

⌋
, ...,
⌊
Lak

0

⌋)
. (3.18)

Note that ZL
0 is a random vector and the initial condition should be understood to be true

with probability one. Or we may simply assume it is true ∀ωwhich guarantees that ZL
0

L → a0

as L→ ∞. Note that ZL
t is a random vector and L is a scaling parameter which we will use

throughout this paper, while when we write Zi
t for i = 0, .., k, it is the i-th component of the

random vector of Zt. As for each Zi
t , we have for each ZL,i

t , i = 1, 2, ..., k that

ZL,i
t − ZL,i

0 =

∫ t

0
|ZL

s−|
∑

w∈J

(
Π(ZL

s−,Z
L
s− + w) − pw

(
ZL

s−
|ZL

s−|

))
wids

+

∫ t

0
|ZL

s−|
∑

w∈J

pw

(
ZL

s−
|ZL

s−|

)
wids +M L,i

t ,

(3.19)

where M L,i
t is a martingale. Define notations

Z̃L,i
t =

ZL,i
t

L
, Z̃L

t =
ZL

t

L
and M̃ L,i

t =
M L,i

t

L
; (3.20)
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dividing both sides of (3.19) by L and notice that

Z̃L
s−

|Z̃L
s−|
=

ZL
s−
|ZL

s−|
,

we obtain

Z̃L,i
t − Z̃L,i

0 =

∫ t

0
|Z̃L

s−|
∑

w∈J

⎛
⎜⎜⎜⎜⎝Π(LZ̃L

s−, LZ̃L
s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠wids

+

∫ t

0
|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠wids + M̃ L,i

t .

(3.21)

Note that for each fixed L, M̃ L,i
t is still a martingale. By (3.14), we have that

∣∣∣∣∣∣Π(ZL
s−,Z

L
s− + w) − pw

(
ZL

s−
|ZL

s−|

)∣∣∣∣∣∣ !
a
|ZL

s−|
,

and thus ∣∣∣∣∣∣Π(LZ̃L
s−, LZ̃L

s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣ !
a

L|Z̃L
s−|
. (3.22)

Therefore, using the fact that for all w ∈ J, |wi| ! m, we have that

∣∣∣∣∣∣∣

∫ t

0
|Z̃L

s−|
∑

w∈J

⎛
⎜⎜⎜⎜⎝Π(LZ̃L

s−, LZ̃L
s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠wids

∣∣∣∣∣∣∣
!

am
L

t. (3.23)

Suppose the limit process of Z̃L,i
t exists and is unique, which we shall denote by Z̃i

t , also

note that the martingale part M̃ L,i
t will fade away as L→ ∞, which we will show later, we



57

can see from (3.23) that as L→ ∞, (3.21) becomes

lim
L→∞

Z̃L,i
t − Z̃L,i

0 = Z̃i
t − Z̃i

0

= lim
L→∞

∫ t

0
|Z̃L

s−|
∑

w∈J

⎛
⎜⎜⎜⎜⎝Π(LZ̃L

s−, LZ̃L
s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠wids

+ lim
L→∞

∫ t

0
|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠wids + lim

L→∞
M̃ L,i

t

= lim
L→∞

∫ t

0
|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠wids.

(3.24)

Suppose that we can change the order of limits and integration in (3.24), we will have

Z̃i
t − Z̃i

0 =

∫ t

0
|Z̃s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃s−

|Z̃s−|

⎞
⎟⎟⎟⎟⎠wids, (3.25)

or
dZ̃i

t

dt
= |Z̃t|

∑

w

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠wi, (3.26)

assuming we can differentiate both sides because, as we will show later, the terms under

integral is continuous. If by adding a certain initial condition, we can gurantee that |Z̃t| > 0

and Z̃t

|Z̃t |
makes sense in any finite time interval, and at the same time it maintains that Z̃i

t ≥ 0,

for all i = 1, ..., k, we can add all those equations up and get

d|Z̃t|
dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠α(w). (3.27)

where |Z̃t| =
k∑

i=1
|Z̃i

t | and α(w) =
k∑

i=1
wi as defined in (3.1).

After completing the details of the proof, which are the object of Chapters 6 and 7, we

obtain one of our main results.
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Theorem 3.4. The family of processes (Z̃L
t )t"0 from (3.20), defined on the RCLL paths space

D([0,∞),Rk), indexed by L > 0 , with initial states equal to Z̃L
0 = L−1

(
[La1

0], [La2
0], ..., [Lak

0]
)

for a fixed a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, is tight and converges in probability, uniformly in time,

on any bounded time interval, to the deterministic process denoted by (Z̃t)t"0, which is

uniquely characterized as the strong solution of the initial value problem

dZ̃t

dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠w , Z̃0 = a0 . (3.28)

Proof. Theorem 5.8 guarantees the tightness of the process (Z̃L
t )t"0 and the time continuity

of any limit process. The initial value problem has a unique strong global solution as

shown in Proposition 6.6. Proposition 6.11 says that a weak limit of the process (Z̃L
t )t"0 is

the solution to (3.28) and, by uniqueness, it must be identical to the unique strong solution

of the ODE. Lemma 7.4 further proves that the convergence is in probability and uniform

in time on any bounded time interval. #

Remark 3.5. As will be seen in Proposition 6.6, and also discussed in Remark 1.3, the

right-hand side of (3.28), namely |Z̃| ∑
w∈J

pw

(
Z̃
|Z̃|

)
w, is extended continuously to Z̃ = 0, in

which case the ODE becomes
dZ̃t

dt
= 0. In this form, we have a uniformly Lipschitz, affine

(sublinenar) autonomous ODE, which will have a unique, global, strong solution.

In fact, more is true.

Theorem 3.6. If we start from a point a0 ∈ Rk
+ \{0}, then the process (Z̃L

t )t"0 has probability

of extinction of order O(L−1) and the deterministic limiting process (Z̃t)t"0 does not vanish

in finite time.

Proof. The proof is given in Lemma 7.3 and Corollary 8.2. #
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We now move on to the process of population proportions.

Denote
Z̃i

t

|Z̃i
t |

and
Z̃t

|Z̃t|
by X̃i

t and X̃t respectively, we have that

dX̃i
t

dt
=

1
|Z̃t|
· dZ̃i

t

dt
− Z̃i

t

|Z̃t|2
· d|Z̃i

t |
dt

=
∑

w∈J

pw(X̃t)wi − X̃i
t

∑

w∈J

pw(X̃t)α(w)

=
∑

w∈J

pw(X̃t)
(
wi − X̃i

tα(w)
)
.

(3.29)

Since (3.29) holds for all i = 1, 2, ..., k, we obtain the following.

Theorem 3.7. The process of population proportions converges in probability to the solu-

tion of the autonomous dynamical system

dX̃t

dt
=
∑

w∈J

pw(X̃t)
(
w − X̃tα(w)

)
, X̃0 =

a0

|a0|
. (3.30)

Proof. The proof is given in detail in Theorem 7.1 in Chapter 7. #



Chapter 4

Non-explosion

This chapter is dedicated to establish the result that the stochastic process we constructed

as a pure jump process is regular, i.e., non-explosive.

Theorem 4.1. There is no explosion for the pure jump processes (ZL
t )t≥0 and (Z̃L

t )t≥0.

Proof. The fact that (ZL
t )t≥0 and (Z̃L

t )t≥0 are pure jump processes are clear since they are

special cases of the type of pure jump process we constructed in Section 2.2 . Note that

Z̃L
t =

ZL
t

L
, it suffices to show that the family of jump process (ZL

t )t≥0 indexed by L is regular.

We prove that this is true for an arbitrary index L > 1.

Define the jump times, as we did in Section 2.2 , that T0 = 0,Tn = in f {t > Tn−1 |ZL
t !

ZL
Tn−1
}. As we discussed in Section 2.2 , to determine whether the pure jump process (ZL

t )t≥0

is regular or explosive, we shall consider the limit of the jump times (Tn)n≥0:

T∞ =
+∞∑

i=1

ηi

λ(ZL
Ti−1

)
, (4.1)

where (ηi)i≥1 are i.i.d. exponential with unit rate which are also independent of the process

(ZL
t )t≥0. Note that we set

1
λ(ZL

Ti−1
)
= +∞ if λ(ZL

Ti−1
) = 0 indicating the next jump will take

60
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forever to occur. Also in this case we would have only finitely many jumps and T∞ = +∞

which are consistent with non-explosion.

Since we assumed that the jumps are bounded in the sense that there is a constant m′

such that |ZL
Tn
−ZL

Tn−1
| ≤ m′ and the rate for the exponential clock at any time t is λ(ZL

t ) = |ZL
t |,

also recall that (ZL
t )t≥0 is just (Zt)t≥0 imposed with an initial conditions that for a fixed

a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ \ {0}, ZL
0 =
(
[La1

0], [La2
0], ..., [Lak

0]
)

which implies |ZL
0 | ≤ L|a0|, we

obtain estimates for the jump rates:

0 ≤ λ(ZL
Tn

) ≤ |ZL
0 | + nm′ ≤ L|a0| + nm′. (4.2)

If after a finite many jumps we have |ZL
Tn
| = 0 for some n ≥ 0, we know the process will

stay at 0 thereafter by construction and there is non-explosion. We need only consider the

case of non-extinction, i.e., |ZTn | > 0,∀n ≥ 0.

Define λi = L|a0| + im′, i = 0, 1, ..., we have by (4.2) and non-negativeness of ηi that

T∞ ≥
+∞∑

i=1

ηi

λi−1
, a.s. . (4.3)

Note that for a random variable
ηi

λi−1
, where (ηi)i≥1 are i.i.d. unit exponential random

variables as mentioned before, we have

E[exp{− ηi

λi−1
}] = 1

1 + 1
λi−1

. (4.4)

Besides, 0 ≤ E[exp{−T∞}] ≤ 1 always exists by the bounded convergence theorem.
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Moreover, by equations (4.2), (4.4) and independence of (ηi)i≥1, we have

E[exp{−T∞}] ≤ E[exp{−
+∞∑

i=1

ηi

λi−1
}]

=

+∞∏

i=1

E[exp{− ηi

L|a0| + im′
}]

=

+∞∏

i=1

(1 +
1

L|a0| + im′
)−1.

(4.5)

Note that
+∞∑

i=1

1
L|a0| + im′

= +∞ which implies
+∞∏

i=1

(1 +
1

L|a0| + im′
) = +∞, we obtain from

equation (4.5) that

E[exp{−T∞}] = 0,

and thus

P(T∞ = +∞) = 1.

This is the desired result. #



Chapter 5

Tightness of Z̃L
t

To show the limit as L → ∞ of the process (Z̃L
t )t≥0 exists and is unique, we will prove the

tightness of the family of processes (Z̃L
t )t≥0 indexed by L, in this chapter. To do that, we

prove the tightness of (Z̃L,i
t )0≤t≤T for an arbitrary but fixed T ≥ 0. The main result of this

chapter is Theorem 5.8.

Note that two conditions for tightness [22] of a family of stochastic processes {yL(·)}L>0

indexed by L with values in S seen as measures on the Skorokhod space D([0,T ], S ) which

ensure that any limit point belongs to C([0,T ], S ) are

there exists a M > 0 such that lim sup
L→∞

P
(
||yL(0)|| > M

)
= 0 (5.1)

and

∀ϵ > 0, lim
δ→0

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

||yL(t) − yL(s)|| > ϵ
⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 0. (5.2)

By (3.18) we can see that lim
L→∞

Z̃L
0 = lim

L→∞
ZL

0
L = a0, and if we choose M big enough we have
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lim sup
L→∞

p
(
||Z̃L,i

0 || > M
)
= 0. Therefore, condition (5.1) is satisfied for (Z̃t

L,i
)0!t!T . To prove

condition (5.2), it is equivalent to show, by a variant of Aldous criterion [1] that

∀ϵ > 0, lim
δ→0

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎝ sup

0!s<s+t!T
0<t<δ

||Z̃L,i
s+t − Z̃L,i

s || > ϵ
⎞
⎟⎟⎟⎟⎟⎟⎠ = 0. (5.3)

As we mentioned earlier in Chapter 3, we’d like to use a martingale relation (3.16) for

(ZL
t )t"0 and further obtain results for (Z̃L

t )t"0. However, we need to justify why the general

martingale relations as in (2.33) and (2.34 ) where the test functions family were supposed

to be C2
c (Rd) and be chosen to be projection maps f (z) = zi, i = 1, 2, ..., k in our case.

In particular, to show that Z̃L,i
t − Z̃L,i

0 −
∫ t

0 |Z̃
L
s |
∑

w∈J Π
(
LZ̃L

s , LZ̃L
s + w

)
wids is a martingale,

we need to show it has finite expectation. We shall show a stronger result, namely that

E
[

sup
0!t!T
|Z̃L

t− |2
]

is uniformly bounded, as a first step.

First we define a sequence of stopping times and use truncation techniques so that we can

use a martingale relation for the stopped process to do the estimates.

5.1 Localization of the martingales

Define the stopping times τN = inf{t > 0, | |ZL
t | > N}. Since (ZL

t )t≥0 is non-explosive, as

was shown in the previous chapter, meaning it has finitely many jumps in any finite time

almost surely, also its jump size is bounded by a constant m′ > 0 by assumption, we have

lim
N→+∞

τN = +∞ a.s..
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Define

fN(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi, if |z| ≤ N + 2m′

0, if |z| ≥ N + 2m′ + 1

smooth, if N + 2m′ < |z| < N + m′ + 1.

(5.4)

Note that by “smooth" we mean the function fN(z) shall connect the part where |z| ≤ N+2m′

and the part where |z| ≥ N + 2m′ + 1 in a smooth way that fN(z) is smooth ( fN ∈ C2
c is what

we need). Basically, fN(z) is a truncation of f which agrees with in |Z| ≤ N + 2m′ and

smoothly approaches to 0 in an unit interval and stays there afterwards. Clearly fN → f

pointwise. Also note that fN ∈ C2
c (Rd,R), and we have

fN(ZL
t∧τN

) = ZL,i
t∧τN
, fN(ZL

t∧τN
+ w) = ZL,i

t∧τN
+ wi,∀w ∈ J, (5.5)

because the process has RCLL paths and bounded jumps that

|ZL
t∧τN
| ≤ N + m′, |ZL

t∧τN
+ w| ≤ N + 2m′.

Therefore, ∀t ∈ [0,+∞),∀w ∈ J, we have

lim
N→+∞

fN(ZL
t∧τN

) = ZL,i
t , and lim

N→+∞
fN(ZL

t∧τN
+ w) = ZL,i

t + wi ω − a.s. . (5.6)

Remark 5.1. Up to the time τN, the jump rates λ(ZL
s ) = |ZL

s | are bounded by N. Technically,

we use the martingales (2.33) - (2.34) obtained in the general construction of pure jump

processes with bounded coefficients.

Applying the truncation functions as test functions to the process (Z̃L,i
s )s≥0, we obtain

the following martingales.
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fN(ZL
t∧τN

) − fN(ZL
0 ) −
∫ t∧τN

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
fN(ZL

s + w) − fN(ZL
s )
)

ds

= ZL,i
t∧τN
− ZL,i

0 −
∫ t∧τN

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

)
wids ∆=M L,i

t .

(5.7)

Note that Z̃L,i
t is just a scaled process of ZL,i

t , a similar martingale relation also holds for

Z̃L,i
t that we have proven that the following is a martingale

Z̃L,i
t∧τN
− Z̃L,i

0 −
∫ t∧τN

0
|Z̃L

s |
∑

w∈J

Π
(
LZ̃L

s , LZ̃L
s + w

)
wids ∆= M̃ L,i

t , (5.8)

together with its corresponding quadratic variation which can be obtained from (2.34).

5.2 Uniform bound on the total number of particles |Z̃L
t |

For ease of notation, we shall work on the process without indicating the stopping time.

The key point is that for each fixed N, we develop the bounds from Proposition 5.2, and

establish that they do not depend on N. By letting N → ∞, the bounds are proven for

the process without stopping, and immediately are showing that the martingales can be

extended to smooth linear functions, beyond compactly supported functions.

Proposition 5.2. For all T > 0, E
[

sup
0!t!T
|Z̃L

t− |2
]

is uniformly bounded for all L > 1. And as

a consequence, E
[

sup
0!t!T
|Z̃L

t− |
]

is also uniformly bounded for L > 1.
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More precisely, for any L > 1, we obtain the estimates

E
[

sup
0!t!T
|Z̃L

t− |2
]
!
[
6k2mCT + 3kM

]
· exp

{
k2CT [6m + 3CT ]

}
:= C2(k,m,T ) , (5.9)

E
[

sup
0!t!T
|Z̃L

t− |
]
!

1
2

(1 +C2(k,m,T )) := C1(k,m,T ) . (5.10)

Remark 5.3. 1) Since T > 0 is fixed, but arbitrary, we can remove the left-side limits

markers in the proposition without loss of generality. 2) The bounds do not depend on

N, which allows removing the localization. This step is important, but technical. 3) The

bounds do not depend on L, which is the main significance of this proposition. This is the

most important bound we need for tightness.

Proof. As noted above, even relation (5.8) holds up to a stopping time, we shall write

Z̃L,i
t = Z̃L,i

0 +

∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids + M̃ L,i

t . (5.11)

By the inequality (a + b + c)2 ! 3(a2 + b2 + c2) for real a, b, c, we have that

(Z̃L,i
t )2 ! 3

⎡
⎢⎢⎢⎢⎢⎢⎣(Z̃

L,i
0 )2 +

⎛
⎜⎜⎜⎜⎜⎝
∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids

⎞
⎟⎟⎟⎟⎟⎠

2

+ (M̃ L,i
t )2

⎤
⎥⎥⎥⎥⎥⎥⎦ . (5.12)

Applying sup
0!t!t′

on both sides of (5.12) for 0 ! t′ ! T , we further have

sup
0!t!t′

(Z̃L,i
t )2 ! 3

⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

0 )2 + sup
0!t!t′

(M̃ L,i
t )2
⎤
⎥⎥⎥⎥⎦

+ 3

⎡
⎢⎢⎢⎢⎢⎢⎣ sup

0!t!t′

⎛
⎜⎜⎜⎜⎜⎝
∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦ .
(5.13)

Applying expectation on both sides of (5.13) and using sup
0!t!t′

(Z̃L,i
t− )2 ! sup

0!t!t′
(Z̃L,i

t )2 by the fact
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that Z̃L,i
t− is right continuous with left limits(RCLL), we get

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

t− )2
⎤
⎥⎥⎥⎥⎦ ! E

⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

t )2
⎤
⎥⎥⎥⎥⎦

! E
⎡
⎢⎢⎢⎢⎣3 sup

0!t!t′
(Z̃L,i

0 )2
⎤
⎥⎥⎥⎥⎦ + E

⎡
⎢⎢⎢⎢⎣3 sup

0!t!t′
(M̃ L,i

t )2
⎤
⎥⎥⎥⎥⎦

+ E

⎡
⎢⎢⎢⎢⎢⎢⎣3 sup

0!t!t′

⎛
⎜⎜⎜⎜⎜⎝
∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦ .

(5.14)

We want to find estimates for the right side terms of (5.14). First we note that the term

sup
0!t!t′

(Z̃L,i
0 )2 is just (Z̃L,i

0 )2 and with our assumption lim
L→∞

Z̃L
0 = a0 there is nothing to estimate

as L → ∞. Since
∣∣∣∣∣
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wi

∣∣∣∣∣ is uniformly bounded by a constant C for all

L and thus
∣∣∣∣∣
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wi

2
∣∣∣∣∣ by mC, we have that:

E

⎡
⎢⎢⎢⎢⎢⎢⎣ sup

0!t!t′

⎛
⎜⎜⎜⎜⎜⎝
∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

! C2E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′

(∫ t

0
|Z̃L

s−|ds
)2⎤⎥⎥⎥⎥⎦

= C2E

⎡
⎢⎢⎢⎢⎢⎣

(∫ t′

0
|Z̃L

s−|ds
)2⎤⎥⎥⎥⎥⎥⎦ (nonnegativeness of |Z̃L

s−| )

! C2E

⎡
⎢⎢⎢⎢⎢⎣

(∫ t′

0
sup
0!t!s
|Z̃L

t− |ds
)2⎤⎥⎥⎥⎥⎥⎦

! C2E
⎡
⎢⎢⎢⎢⎣
∫ t′

0

(
sup
0!t!s
|Z̃L

t− |
)2

ds
⎤
⎥⎥⎥⎥⎦T (since 0 ! t′ ! T )

= C2E
[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]

T.

(5.15)
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Therefore, we get the estimate that

E

⎡
⎢⎢⎢⎢⎢⎢⎣3 sup

0!t!t′

⎛
⎜⎜⎜⎜⎜⎝
∫ t

0
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wids

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎦

! 3C2T · E
[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]
.

(5.16)

Now we proceed to estimate E
⎡
⎢⎢⎢⎢⎣3 sup

0!t!t′
(M̃ L,i

t )2

⎤
⎥⎥⎥⎥⎦. Note that |M̃ L,i

t | is a submartingale, using

Doob’s martingale inequality for p=2, we have

⎛
⎜⎜⎜⎜⎝E
⎡
⎢⎢⎢⎢⎣
(

sup
0!t!t′
|M̃ L,i

t |
)2⎤⎥⎥⎥⎥⎦
⎞
⎟⎟⎟⎟⎠

1
2

! 2 ·
(
E
[
|M̃ L,i

t′ |2
]) 1

2 (5.17)

or squaring both sides

E
⎡
⎢⎢⎢⎢⎣
(

sup
0!t!t′
|M̃ L,i

t |
)2⎤⎥⎥⎥⎥⎦ ! 4 · E

[
|M̃ L,i

t′ |2
]
. (5.18)

Since M̃ L,i
t′ is the martingale corresponding to the process Z̃L,i

t′ , we have

E
[
(M̃ L,i

t′ )2
]
= E

⎡
⎢⎢⎢⎢⎢⎣
∫ t′

0
L|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

) (wi

L

)2
ds

⎤
⎥⎥⎥⎥⎥⎦

!
mC
L

E
[∫ t′

0
|Z̃L

s−|ds
]

!
mC
L

E
[∫ t′

0
sup
0!t!s
|Z̃L

t−|ds
]

!
mC
2L

E
[∫ t′

0
[( sup

0!t!s
|Z̃L

t−|)2 + 1]ds
]

!
mCT

2L
+

mC
2L
· E
[∫ t′

0
sup
0!t!s
|Z̃L

t−|2ds
]
.

(5.19)
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Therefore, we obtain from (5.18) and (5.19) that

E
⎡
⎢⎢⎢⎢⎣3 sup

0!t!t′
(M̃ L,i

t )2
⎤
⎥⎥⎥⎥⎦ !

6mCT
L
+

6mC
L
· E
[∫ t′

0
sup
0!t!s
|Z̃L

t−|2ds
]
. (5.20)

Substituting result (5.16) and (5.20) into (5.14), we get

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

t− )2
⎤
⎥⎥⎥⎥⎦

! 3E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

0 )2
⎤
⎥⎥⎥⎥⎦ + 3C2T E

[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]

+
6mCT

L
+

6mC
L
· E
[∫ t′

0
sup
0!t!s
|Z̃L

t−|2ds
]

=
6mCT

L
+ 3E

⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

0 )2
⎤
⎥⎥⎥⎥⎦ +
[
6mC

L
+ 3C2T

]
· E
[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]
.

(5.21)

Adding the above result for i = 1, 2, · · · , k, we get

k∑

i=1

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

t− )2
⎤
⎥⎥⎥⎥⎦

!
6kmCT

L
+ 3

k∑

i=1

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

0 )2
⎤
⎥⎥⎥⎥⎦

+

[
6kmC

L
+ 3kC2T

]
· E
[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]
.

(5.22)
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Since |Z̃L
t−| =

k∑
i=1
|Z̃L,i

t− |, we have that
k∑

i=1
|Z̃L,i

t− |2 ! |Z̃L
t−|2 ! k

k∑
i=1
|Z̃L,i

t− |2 which implies

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
|Z̃L

t−|2
⎤
⎥⎥⎥⎥⎦ ! k

k∑

i=1

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

t− )2
⎤
⎥⎥⎥⎥⎦

!
6k2mCT

L
+ 3k

k∑

i=1

E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
(Z̃L,i

0 )2
⎤
⎥⎥⎥⎥⎦ + k2C

[
6m
L
+ 3CT

]
E
[∫ t′

0
sup
0!t!s
|Z̃L

t− |2ds
]

!
6k2mCT

L
+ 3kE

⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
|Z̃L

0 |2
⎤
⎥⎥⎥⎥⎦ + k2C

[
6m
L
+ 3CT

]
·
∫ t′

0
E
[

sup
0!t!s
|Z̃L

t− |2
]

ds.

(5.23)

Define UL(t′) = E
[

sup
0!t!t′
|Z̃L

t− |2
]

and note that E
⎡
⎢⎢⎢⎢⎣ sup

0!t!t′
|Z̃L

0 |2
⎤
⎥⎥⎥⎥⎦ = UL(0), we obtain from (5.23)

that

UL(t′) !
6k2mCT

L
+ 3kUL(0) + k2C

[
6m
L
+ 3CT

]
·
∫ t′

0
UL(s)ds. (5.24)

By Gronwall’s inequality for the integral form, given L, we have from (5.24) that

UL(t′) !
[
6k2mCT

L
+ 3kUL(0)

]
· exp

{
k2C
[
6m
L
+ 3CT

]
t′
}
. (5.25)

As we are considering the case 0 ! t′ ! T , for a given L, we get an uniform bound for all

UL(t′) , i.e.,

UL(t′) !
[
6k2mCT

L
+ 3kUL(0)

]
· exp

{
k2C
[
6m
L
+ 3CT

]
T
}
,∀ 0 ! t′ ! T. (5.26)

Since we have the additional assumption that lim
L→∞

Z̃L
0 = a0, we know that UL(0) must be

uniformly bounded by a constant M; and we know that L is large, say L " 1 at least, we
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obtain an uniform bound for all E
[

sup
0!t!t′
|Z̃L

t− |2
]
:

UL(t′) !
[
6k2mCT + 3kM

]
· exp

{
k2CT [6m + 3CT ]

}
,∀ 0 ! t′ ! T,∀L " 1. (5.27)

Since t′ ≤ T , we get

E
[

sup
0!t!T
|Z̃L

t− |2
]
!
[
6k2mCT + 3kM

]
· exp

{
k2CT [6m + 3CT ]

}
,∀L > 1. (5.28)

Note that this bound is uniform and has nothing to do with the time t ∈ [0,T ]. It follows

that it doesn’t depend on stopping time τN we introduced. If we worked with the process

with stopping time, we shall pass N to infinity now, and as lim
N→+∞

τN = +∞ a.s., we would

obtain the same bound as above. Therefore, Proposition 5.2 is proved. #

5.3 Delocalization of the martingales

Until now, we used local martingales up to time τN to prove universal bounds for the total

number of particles. This bound (uniform square integrability) allows us to extend the set

of test functions. To show the modulus of continuity part of tightness, done in Section 5.4,

we need the martingale relations in (2.29) and (2.30) to hold for the process (Z̃L
t )t"0 where

the test function can be projections maps. This proof follows the same steps (5.4)-(5.8).

Lemma 5.4. We can extend the test functions from f ∈ C2
c (Rk,R) to include projection

functions f (z) = zi,∀z ∈ Rk, i = 1, · · · , k, and the corresponding martingale relation for ZL
t

and Z̃L
t still hold. More precisely, we have martingales

f (ZL
t ) − f (ZL

0 ) −
∫ t

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
f (ZL

s + w) − f (ZL
s )
)

ds (5.29)
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which shall be denoted by M f ,ZL

t , and

(M f ,ZL
t

t )2 −
∫ t

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
f (ZL

s + w) − f (ZL
s )
)2

ds (5.30)

which shall be denoted by N f ,ZL

t for i = 1, 2, ..., k and all index L > 1, where the test

function f : Rk → R can be all functions in C2
c as well as projection maps.

Remark 5.5. In particular, if f (z) = zi, i = 1, 2, ..., k, being projection maps, we have

martingales

(ZL
i )t − (ZL

i )0 −
∫ t

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

)
wids (5.31)

which we shall denote by M
ZL

i
t , and

(M ZL
i

t )2 −
∫ t

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

)
w2

i ds (5.32)

which we shall denote by N
ZL

i
t for i = 1, 2, ..., k, and all indexes L > 1.

Proof. Note that (Z̃L
t )t≥0 is merely a scaled version of (ZL

t )t≥0, it suffices to prove the lemma

for the latter. Recall that the process (ZL
t )t≥0 is a non-explosive (Theorem 4.1) pure jump

process. Such a process has an infinitesimal generator as in (2.31), and we have martingales

(5.29) and (5.30) for f ∈ C2
c (Rd,R). The goal is to show we can choose f to be projection

maps and the martingale relations stated above still hold. Recall the initial condition for ZL
t

is given by equation (3.18) that

ZL
0 =
(
[La1

0], [La2
0], ..., [Lak

0]
)

where a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ \ {0} is fixed.
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Define the stopping times τN and truncation functions fN(·) as we did in Section 5.1 that

τN = inf{t > 0, | |ZL
t | > N} and fN as in (5.4).

Fix a time horizon T > 0. For 0 ≤ s < t ≤ T we can stop at time τN ∧ T (uniformly

bounded by T ) and from the Optional Stopping Theorem we have the martingale

fN(ZL
t∧τN

) − fN(ZL
0 ) −
∫ t∧τN

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
fN(ZL

s + w) − fN(ZL
s )
)

ds

= f (ZL
t∧τN

) − f (ZL
0 ) −
∫ t∧τN

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
f (ZL

s + w) − f (ZL
s )
)

ds ∆= MN
t .

(5.33)

We shall use Lemma 5.6 to prove our result.

Step 1 - almost sure convergence. Using (5.6) we see that the first two terms of MN
t converge

a.s.

lim
N→+∞

(
fN(ZL

t∧τN
) − fN(ZL

0 )
)
= lim

N→+∞

(
(ZL

t∧τN
) − f (ZL

0 )
)
= f (Zt) − f (Z0) .

The time integral part also converges almost surely. The integrand is a product of a bounded

function 0 ≤ Π(·, ·) ≤ 1 and RCLL functions, since the composition with an RCLL function

with a continuous function is RCLL. It is the case that the integrand denoted by b(s,ω) for

now, is bounded a.s. on the interval [0,T ], implying that the integral t →
∫ t

0 b(s,ω)ds,

where

b(s,ω) ∆= |ZL
s (ω)|

∑

w∈J

Π
(
ZL

s (ω),ZL
s (ω) + w

) (
f (ZL

s (ω) + w) − f (ZL
s (ω))

)

is a continuous mapping. We mention that Π(·, ·) is bounded but we didn’t require it to be

continuous, yet the above integral, t →
∫ t

0 b(s,ω)ds, is continuous in t.

Since t∧τN → t as N → ∞ we have a.s. convergence for the time integral as well. This
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shows that

lim
N→+∞

MN
t = Mt a.s.

where MN
t is defined in (5.33) and

Mt
∆
= f (ZL

t ) − f (ZL
0 ) −
∫ t

0
|ZL

s |
∑

w∈J

Π
(
ZL

s ,Z
L
s + w

) (
f (ZL

s + w) − f (ZL
s )
)

ds.

Step 2 - the uniform integrability. We need to show that for all t ∈ [0,T ],

E[sup
N>0
|MN

t |] < ∞ . (5.34)

We shall show the stronger property that there exists BT (ω) ≥ 0 such that

|MN
t | ≤ BT (ω) and E[BT (ω)] < ∞ . (5.35)

We can assume the functions | fN(z)| ≤ |z| + 2m′ + 1. Inspecting the first two terms of

MN
t we see they are bounded by 2[supt∈[0,T ] |ZL

t | + 2m′ + 1]. The integral term is bounded

by m′|J|T supt∈[0,T ] |ZL
t |. Take BT (ω) := 4m′ + 2 + (2 + m′|J|T ) supt∈[0,T ] |ZL

t (ω)| and the

conclusion is an immediate consequence of the uniform bound in time of supt∈[0,T ] |ZL
t (ω)|

proven in Proposition 5.2 in Section 5.2.

Notice that L is fixed here, and the bound is actually stronger, holding uniformly as well

in L for Z̃L
t = ZL

t /L but this fact is not used in the present proof. #

Lemma 5.6. Let (Ω,F , (Ft), P) be a filtered probability space, (MN
t (ω)) be a family of Ft

- martingales indexed by N > 0 such that (i) limN→∞ MN
t (ω) = Mt(ω) almost surely for

ω ∈ Ω and (ii) E[supN>0 |MN
t (ω)|] < ∞, for all t > 0. Then Mt is a Ft - martingale.
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Proof. Denote Ct(ω) = supN>0 |MN
t (ω)|. By dominated convergence theorem, it follows

that the a.s. limit Mt is integrable. It remains to show that E[Mt | Fs] = Ms, for 0 ≤ s ≤ t.

Take Φ(ω) a bounded measurable function with respect to Fs. We have to prove that

E[Mt(ω)Φ(ω)] = E[MsΦ(ω)] . (5.36)

It is true that for each N > 0 we have

E[MN
t (ω)Φ(ω)] = E[MN

s Φ(ω)] . (5.37)

We verify the conditions of Lebesgue Dominated Convergence Theorem. Convergence a.s.

is true by hypothesis (i), as Φ does not depend on N. It is immediate that |MN
t (ω)Φ(ω)| ≤

||Φ||Ct(ω) and the right-hand side bound does not depend on N and is integrable by (ii).

Here ||Φ|| is an upper bound for Φ. A similar bound is valid for the time s. Let N → ∞ in

(5.37). Using dominated convergence, we have equality on both sides, proving (5.36). #

5.4 Uniform continuity condition

The bound (5.3) is proven in the next Theorem.

Theorem 5.7. ∀T > 0, L > 1, let (Z̃L,i
t )0!t!T be the random processes defined as in the

model setup, for all 0 ! s < s + t < s + δ ! T, we have

lim
δ→0

lim
L→∞

E sup
0!t!δ

∣∣∣Z̃L,i
s+t − Z̃L,i

s

∣∣∣2 = 0, (5.38)

and it follows that condition (5.3) is satisfied.
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Proof. By lemma 5.4, pick 0 ≤ s < s + t ≤ T for a fixed T > 0, we have

Z̃L,i
s+t − Z̃L,i

s =

∫ s+t

s
|Z̃L

s−|
∑

w∈J

⎛
⎜⎜⎜⎜⎝Π(LZ̃L

s−, LZ̃L
s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠wids

+

∫ s+t

s
|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠wids + M̃ L,i

s+t − M̃ L,i
s .

To show (5.38), it suffices to prove the following:

lim
δ→0

lim
L→∞

E sup
0!t!δ

∣∣∣∣∣∣∣

∫ s+t

s
|Z̃L

s−|
∑

w∈J

⎛
⎜⎜⎜⎜⎝Π(LZ̃L

s−, LZ̃L
s− + w) − pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠wids

∣∣∣∣∣∣∣

2

= 0, (5.39)

lim
δ→0

lim
L→∞

E sup
0!t!δ

∣∣∣∣∣∣∣

∫ s+t

s
|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠wids

∣∣∣∣∣∣∣

2

= 0, (5.40)

and

lim
δ→0

lim
L→∞

E sup
0!t!δ

∣∣∣∣M̃ L,i
s+t − M̃ L,i

s

∣∣∣∣
2
= 0. (5.41)

Equation (5.39) is trivially true by (3.23). Note that
∣∣∣∣∣
∑

w∈J
pw

(
Z̃L

s−
|Z̃L

s− |

)
wi

∣∣∣∣∣ is uniformly bounded

for all L and E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!δ

∣∣∣∣∣∣

∫ s+t

s
|Z̃L

s−|ds
∣∣∣∣∣∣

2⎤⎥⎥⎥⎥⎥⎦ ! δ
2E
[

sup
0!t!T
|Z̃L

t−|2
]
, it is sufficient to show that E sup

0!t!T
|Z̃L

t−|2

is bounded for (5.40) to be true. To show (5.41), note that M̃ L,i
s+t − M̃ L,i

s is a martingale and

|M̃ L,i
s+t − M̃ L,i

s |2 is a nonnegative submartingale, we can use Doob’s maximal inequality to

estimate that

E sup
0!t!δ

∣∣∣∣M̃ L,i
s+t − M̃ L,i

s

∣∣∣∣
2
! 4E

∣∣∣∣M̃ L,i
s+δ − M̃ L,i

s

∣∣∣∣
2

= 4E

∣∣∣∣∣∣∣

∫ s+δ

s
|Z̃L

s−|
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wi

2ds

∣∣∣∣∣∣∣
! CδE sup

0!s!T
|Z̃L

s−|ds
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for some positive constant C since
∣∣∣∣
∑

w∈J

(
Π(LZ̃L

s−, LZ̃L
s− + w)

)
wi

2
∣∣∣∣ is uniformly bounded for

all L and i. Note that since sup
0!t!T
|Z̃L

t | ! 1 + sup
0!t!T
|Z̃L

t |2, we have

E[ sup
0!t!T
|Z̃L

t |] ! 1 + E[ sup
0!t!T
|Z̃L

t |2] . (5.42)

The bounds needed to prove the theorem are (5.40) and (5.41), which have been reduced

to the uniform bound in L on E[ sup
0!t!T
|Z̃L

t |2]. This is the result of Proposition 5.2, proved in

Section 5.2. #

We finally have the tightness result.

Theorem 5.8. Under the assumption that ZL
0 =

(
[La1

0], [La2
0], ..., [Lak

0]
)

for a fixed a0 =

(a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, the family of random processes (Z̃L
t )t"0 as defined in (3.20) indexed by

L > 1 is tight and its limit is continuous.

Proof. Under the assumption of Theorem (5.8), condition (5.1) is guaranteed and Theorem

(5.7) also holds. Theorem (5.7) says condition (5.3) holds, which is equivalent to condition

(5.2). Condition (5.1) and (5.2) in together proves that (Z̃L,i
t )0!t!T is tight for any fixed T > 0

and its limit is continuous. Since T > 0 is arbitrary, this implies the tightness of (Z̃L,i
t )t"0

and thus the tightness of (Z̃L
t )t"0. #



Chapter 6

Scaling Limit

Note that we have shown the tightness of process (Z̃L
t )t"0, which means that for any subse-

quence (in L) of (Z̃L
t )t"0 we have a further subsequence that is convergent in distribution.

We want show that (Z̃L
t )t"0 itself is convergent in distribution and it has a unique continuous

limit process which solves an ODE in the classical sense. First, we show that (Z̃L
t )0≤t≤T

must satisfy the following proposition.

Proposition 6.1. ∀T > 0, for a test function f ∈ C2
c (Rk,R), we have

lim
L→∞

E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ = 0 . (6.1)

79



80

Proof. ∀ 0 ! t ! T , and a test function f ∈ C2
c (Rk,R), we have by Ito’s formula that

f (Z̃L
t ) − f (Z̃L

0 )

=

∫ t

0
L|Z̃L

s−|
∑

w∈J

Π
(
LZ̃L

s−, LZ̃L
s− + w

) [
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds + M̃ f ,L
t

=

∫ t

0
L|Z̃L

s−|
∑

w∈J

⎡
⎢⎢⎢⎢⎣Π
(
LZ̃L

s−, LZ̃L
s− + w

)
− pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
⎤
⎥⎥⎥⎥⎦
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

+

∫ t

0
L|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds + M̃ f ,L
t .

(6.2)

By (3.22), we have
∣∣∣∣∣∣Π
(
LZ̃L

s−, LZ̃L
s− + w

)
− pw

⎛
⎜⎜⎜⎜⎝

Z̃L
s−

|Z̃L
s−|

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣ !
a

L|Z̃L
s−|

and thus

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

pw(
Z̃L

s−

|Z̃L
s−|

)
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

!

∣∣∣∣∣∣∣

∫ t

0
L|Z̃L

s−|
∑

w∈J

⎡
⎢⎢⎢⎢⎣Π
(
LZ̃L

s−, LZ̃L
s− + w

)
− pw(

Z̃L
s−

|Z̃L
s−|

)
⎤
⎥⎥⎥⎥⎦
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

+
∣∣∣∣M̃ f ,L

t

∣∣∣∣

!

∣∣∣∣∣∣∣

∫ t

0
L|Z̃L

s−| ·
∑

w∈J

a
L|Z̃L

s−|
·
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣
+
∣∣∣∣M̃ f ,L

t

∣∣∣∣

=a

∣∣∣∣∣∣∣

∫ t

0

∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣
+
∣∣∣∣M̃ f ,L

t

∣∣∣∣ .

(6.3)

Therefore,

E sup
0!t!T

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

pw(
Z̃L

s−

|Z̃L
s−|

)
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦

!a E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣

∫ t

0

∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ + E

[
sup

0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]
.

(6.4)
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We need to estimate

E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣

∫ t

0

∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ , (6.5)

E
[

sup
0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]

(6.6)

and their limits as L→ ∞.

By (6.4), Lemma (6.2) and Lemma (6.3), which are proven immediately after, we have that

lim
L→∞

E sup
0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

! lim
L→∞

aE

⎡
⎢⎢⎢⎢⎢⎣ sup
0!t!T

∣∣∣∣∣∣∣

∫ t

0

∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ + lim

L→∞
E
[

sup
0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]
= 0.

(6.7)

This finishes the proof of Proposition (6.1). #

Lemma 6.2.

lim
L→∞

E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣

∫ t

0

∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ = 0.

Proof. Note that f ∈ C2
c (Rk), which implies that f is global Lipschitz and there is a constant

Kf > 0 depending on f such that ∀x, y ∈ Rk, | f (x) − f (y)| ! Kf |x − y|.

It follows that

∣∣∣∣∣∣∣

∫ t

0
a
∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣
!

∣∣∣∣∣∣∣

∫ t

0
a
∑

w∈J

Kf w
L

ds

∣∣∣∣∣∣∣
. Recall that the

number of possible jumps w ∈ J is finite, bounded by a positive number N that is indepen-

dent of L and each jump |w| ! m, we have

E sup
0!t!T

∣∣∣∣∣∣∣

∫ t

0
a
∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣
!

aKf mNT
L

. (6.8)
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Therefore,

lim
L→∞

E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣

∫ t

0
a
∑

w∈J

[
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ ! lim

L→∞

aKf mNT
L

= 0. (6.9)

#

Lemma 6.3.

lim
L→∞

E
[

sup
0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]
= 0.

Proof. To estimate E
[

sup
0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]
, we work on E

[
sup

0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
2
]

first.

E
[

sup
0!t!T

(
M̃ f ,L

t

)2
]

!4E
(
M̃ f ,L

T

)2
(by Doob’s maximal inequality where p=2)

=4E
∫ T

0
L|Z̃L

s−|
∑

w∈J

Π
(
LZ̃L

s−, LZ̃L
s− + w

) [
f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]2

ds

!4E
∫ T

0
L|Z̃L

s−|
∑

w∈J

K2 |w|2
L2 ds

!
4K2m2N

L
E

T∫

0

|Z̃L
s−|ds.

Recall that we already proved that E
[

sup
0!s!T

|Z̃L
s−|2
]

is uniformly bounded in L ≥ 1, which

implies that

T∫

0

E
[

sup
0!s!T

|Z̃L
s−|2
]

ds = E
T∫

0

[
sup

0!s!T
|Z̃L

s−|2
]

ds " E
T∫

0

[
|Z̃L

s−|2
]

ds.
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Therefore,

E
T∫

0

|Z̃L
s−|ds ! E

T∫

0

[
|Z̃L

s−|2 + 1
]

ds

is bounded, say by M1, for all L. We can then conclude that

E sup
0!s!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣ !
[
E sup

0!s!T

(
M̃ f ,L

t

)2
] 1

2

! 2Km
(NM1

L

) 1
2

. (6.10)

which proves that

lim
L→∞

E
[

sup
0!t!T

∣∣∣∣M̃ f ,L
t

∣∣∣∣
]
! lim

L→∞
2Km

(NM1

L

) 1
2

= 0.

#

By using a linear approximation of the test function f ∈ C2
c (Rk,R), we can further obtain

the following Proposition.

Proposition 6.4. Under the same conditions as (6.1), we further have that

lim
L→∞

E

⎡
⎢⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
|Z̃L

s−|
∑

w∈J

⎡
⎢⎢⎢⎢⎢⎢⎣pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

i=1

∂ f
∂Zi (Z̃s−)wi

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦ = 0. (6.11)

Proof. For a test function f ∈ C2
c (Rk,R) , ∀Z = (Z1,Z2, ...,Zk) ∈ Rk, we have f (Z) =

f (Z1,Z2, ...,Zk) ∈ R and by Taylor’s formula

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−) =
k∑

i=1

∂ f
∂Zi (Z̃

L
s−)

wi

L
+ ε f ,L(Z̃L

s−,w)

where ε f ,L(Z̃L
s−,w) is an error part which satisfies that for large L and a constant depending
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on the test function f ,
∣∣∣ε f ,L(Z̃L

s−,w)
∣∣∣ !

C f

L2 . (6.12)

Then

E sup
0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

⎡
⎢⎢⎢⎢⎢⎣pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

k∑

i=1

∂ f
∂Zi

wi

L

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ ds

∣∣∣∣∣∣∣

! E sup
0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠
[

f
(
Z̃L

s− +
w
L

)
− f (Z̃L

s−)
]

ds

∣∣∣∣∣∣∣

+ E sup
0!t!T

∣∣∣∣∣∣∣

∫ t

0
L|Z̃L

s−|
∑

w∈J

pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠ ε f ,L(Z̃L

s−,w)

∣∣∣∣∣∣∣
.

Passing L to infinity, we can conclude from (6.12) and Proposition (6.1) that

lim
L→∞

E sup
0!t!T

∣∣∣∣∣∣∣
f (Z̃L

t ) − f (Z̃L
0 ) −
∫ t

0
L|Z̃L

s−|
∑

w∈J

⎡
⎢⎢⎢⎢⎢⎢⎣pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃L
s−∣∣∣Z̃L
s−
∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

i=1

∂ f
∂Zi (Z̃L

s−)
wi

L

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦ ds

∣∣∣∣∣∣∣
= 0. (6.13)

This finishes the proof of Proposition (6.4). #

We want to show that a similar result to that in proposition (6.4) also holds for any limit

process, which requires that the functional involved is continuous and bounded. However,

despite it is indeed continuous, it is not bounded due to the fact that there is an unbounded

term under integration. To proceed, we first prove the following lemma for the case in

which the boundedness is no longer an issue.

Lemma 6.5. Let η ∈ D([0,T ],Rk), g ∈ Cb(Rk,R) and f ∈ C1
b(Rk,R) with bounded contin-

uous first-order partial derivatives. Then the functional from D[0,T ] to R defined by

sup
0!t!T

∣∣∣∣∣∣ f (η(t)) − f (η(0)) −
∫ t

0
g(η(s−))ds

∣∣∣∣∣∣ (6.14)

is continuous and bounded. In particular, f can be a C1
c (Rk,R) function.
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Proof. Define

Φη(t) = f (η(t)) − f (η(0)) −
∫ t

0
g(η(s−))ds

where t ∈ [0,T ] and η, f are as given in the lemma. If we can show that

η 8→ Φη is a continuous map D([0,T ],Rk)→ D([0,T ],R) in the Skorohod J1 topology,

(I)

and

q : D([0,T ],R)→ R where q(η) = sup
0!t!T
|η(t)| is continuous, (II)

then q(Φη) : D([0,T ],Rk) → R is continuous as the composition of two continuous func-

tion. To make notations clear, despite we commented that we will use L1 norm for Rk

throughout this paper and for simplicity we use | · | instead of ∥ · ∥1, in this proof we will use

∥ · ∥1 for L1 norm in Rk and | · | for absolute value in R.

Also letΛT denote the set of increasing homeomorphisms of [0,T ] onto itself as defined

in (2.5) and ∥ · ∥S be the Skorokhod space J1 metric defined in (2.6).

First we prove (I), that is, η 8→ Φη(t) is continuous from D([0,T ],Rk) to D([0,T ],R) in

the Skorokhod topology J1. For a sequence ηn(t)→ η(t), we need to show thatΦηn → Φη in

J1. ηn(t) → η(t) implies that there exists a sequence of increasing homeomorphisms λn(t)

such that sup
0!t!T
∥ηn(λn(t)) − η(t)∥1 → 0; it would be sufficient if for the same sequence λn(t),

we have sup
0!t!T
|Φηn(λn(t)) − Φη(t)|→ 0. By definition, we have

Φηn(λn(t)) = f (ηn(λn(t))) − f (ηn(0)) −
∫ λn(t)

0
g(ηn(s−))ds,
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and direct calculations give

sup
0!t!T
|Φηn(λn(t)) − Φη(t)|

! 2 sup
0!t!T
| f (ηn(λn(t))) − f (η(t))|

+ sup
0!t!T

∣∣∣∣∣∣

∫ λn(t)

0
g(ηn(s−))ds −

∫ t

0
g(ηn(s−))ds

∣∣∣∣∣∣

! 2 sup ∥∇ f ∥1 sup
0!t!T
∥ηn(λn(t)) − η(t)∥1

+ sup
0!t!T

∫ λn(t)

0
|g(ηn(s−)) − g(η(s−))| ds + sup

0!t!T

∣∣∣∣∣∣

∫ t

λn(t)
g(η(s−))ds

∣∣∣∣∣∣ .

(6.15)

Since we assumed that f has continuous bounded first-order partial derivatives, ∥∇ f ∥1 is

bounded. Also g is assumed to be bounded, continuing (6.15) we get

sup
0!t!T
|Φηn(λn(t)) − Φη(t)|

! 2 sup ∥∇ f ∥1 sup
0!t!T
∥ηn(λn(t)) − η(t)∥1 + sup

0!t!T
|g(η(t−))| sup

0!t!T
|λn(t) − t|

+ sup
0!t!T

∫ λn(t)

0
|g(ηn(s−)) − g(η(s−))|ds.

(6.16)

For the first two terms we have sup
t∈[0,T ]

|λn(t) − t| → 0 and sup
t∈[0,T ]

∥ηn(λn(t)) − η(t)∥1 → 0 as

n → ∞; and for the last term we can use dominated convergence theorem since ηn(s) →

η(s) at the points of continuity of η(s). Letting n go to infinity, we get

lim
n→∞

sup
0!t!T
|Φηn(λn(t)) − Φη(t)| = 0, (6.17)

which proves (I). Now we proceed to prove (II), that is,

q : D([0,T ],R)→ R where q(η) = sup
0!t!T
|η(t)| is continuous.
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Note that ∀η(t), ηn(t) ∈ D([0,T ],R), we have

|q(η) − q(η′)| =
∣∣∣∣∣∣ sup
0!t!T
|η(t)| − sup

0!t!T
|η′(t)|

∣∣∣∣∣∣

=

∣∣∣∣∣∣ sup
0!t!T
|η(t)| − sup

0!t!T
|η′(λ(t))|

∣∣∣∣∣∣

! sup
0!t!T
||η(t)| − |η′(λ(t))||

! sup
0!t!T
|η(t) − η′(λ(t))|

(6.18)

where λ(t) ∈ ΛT as defined in (2.5) . Taking infimum over all possible λ(t) we conclude

that

|q(η) − q(η′)| ! inf
λ∈ΛT

sup
0!t!T
|η(t) − η′(λ(t))| ! ∥η − η′∥S.

As both (I) and (II) are proved, we have the continuity of q(Φη). Boundedness of q(Φη)

is readily seen since we assumed that both g and f are bounded. Note that functions in

C1
c (Rk,R) are bounded continuous which also have bounded continuous derivatives, f ∈

C1
c (Rk,R) would be sufficient for the above proof. This finishes the proof of Lemma (6.5).

#

Next we will show that the part under integration in proposition (6.4) is Lipschitz,

which implies continuity, and also a corresponding ODE system has a unique classical

solution. First note that if Lipschitz maps pw as defined in (3.12) that satisfy (3.14) exist,

we can extend them from the k−1 simplex △k−1 as defined in (3.13) to the k−1 sphere S k−1

in the ℓ1 norm in Rk, namely

S k−1 =

⎧⎪⎪⎨
⎪⎪⎩(x1, ..., xk) ∈ Rk

∣∣∣∣∣
k∑

i=1

|xi| = 1, xi " 0,∀i ∈ {1, ..., k}
⎫⎪⎪⎬
⎪⎪⎭ (6.19)
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such that ∀(x1, ..., xk) ∈ S k−1, an extended p̃w is defined by

p̃w(x1, ..., xk) = pw(|x1|, ..., |xk|) ∀w ∈ J. (6.20)

These extended p̃w coincide with pw in △k−1 and remain Lipschitz; moreover, ∀w ∈ J and

∀X = (x1, ..., xk), X′ = (x′1, ..., x
′
k) ∈ △k−1 we also have

∣∣∣ p̃w(x1, ..., xk) − p̃w(x
′
1, ..., x

′
k)
∣∣∣

=
∣∣∣pw(|x1|, ..., |xk|) − pw(|x′1|, ..., |x

′
k|)
∣∣∣

!Cp

k∑

i=1

∣∣∣|xi| − |x
′
i |
∣∣∣

!Cp

k∑

i=1

∣∣∣xi − x
′
i

∣∣∣

=Cp |X − X′|

(6.21)

where Cp is the same constant as in (3.15). We will use pw in the extended sense as p̃w

thereafter. Let Z = (Z1, ...,Zk) ∈ Rk where k " 2 is a given integer and w, J as defined in

(1.7), define

gi(Z) = gi(Z1, ...,Zk)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|Z|
∑

w∈J

pw

(
Z
|Z|

)
wi, if Z ! 0

0, if Z = 0,

(6.22)

for i = 1, 2, ..., k, and

g(Z) = (g1(Z), ..., gk(Z)) , (6.23)

we claim the following.
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Proposition 6.6. Let gi(Z) where Z = (Z1, ...,Zk) ∈ Rk be as given in (6.22) for i =

1, 2, ..., k, then each gi(Z) is Lipschitz in Z and the ODE system defined by

dZi
t

dt
= gi(Zt),

where Zt = (Z1
t ,Z2

t , ...,Zk
t ) ∈ Rk with initial condition Z0 = a0 = (a1

0, a
2
0, ..., a

k
0) ∈ Rk

+ has a

unique classical solution for t ∈ [0,∞).

Proof. Using the given notations, we have

gi(Z) = |Z|
∑

w∈J

pw(
Z
|Z| )wi

= (
k∑

i=1

|Zi|)
∑

w∈J

pw(
Z1

|Z| , ...,
Zk

|Z| )wi,

for nonzero Z ∈ Rk. To guarantee the existence and uniqueness of a classical solution to

the ODE system, it suffices to show that each gi(Z) is Lipschitz in Z1, ...,Zk. Without loss

of generality, we only need to show it is so for g1.

∀Z = (Z1, ...,Zk),Z∗ = (Z1
∗ , ...,Zk

∗) ∈ Rk, if one of them, say Z∗ = 0, then since the number

of jumps w ∈ J is finite, denoted by |J|, and each jump w satisfies |wi| ! |w| ! m for a

positive number m and pw takes values in [0, 1], we have

|g1(Z) − g1(Z∗)| =
∣∣∣g1(Z1, ...,Zk)

∣∣∣ ! m|J||Z| = m|J||Z − Z∗|.
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If both Z and Z∗ are nonzero,

∣∣∣g1(Z1, ...,Zk) − g1(Z1
∗ , ...,Z

k
∗)
∣∣∣

=

∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

|Z j|
⎞
⎟⎟⎟⎟⎟⎟⎠
∑

w∈J

pw

(
Z1

|Z| , ...,
Zk

|Z|

)
w1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

|Z j
∗ |
⎞
⎟⎟⎟⎟⎟⎟⎠
∑

w∈J

pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

)
w1

∣∣∣∣∣∣∣

!

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

∣∣∣|Z j| − |Z j
∗ |
∣∣∣
⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣

∑

w∈J

pw

(
Z1

|Z| , ...,
Zk

|Z|

)
w1

∣∣∣∣∣∣∣

+

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

|Z j
∗ |
⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣

∑

w∈J

(
pw

(
Z1

|Z| , ...,
Zk

|Z|

)
− pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

))
w1

∣∣∣∣∣∣∣

!m|J||Z − Z∗| + m|Z∗|
∣∣∣∣∣∣∣

∑

w∈J

(
pw

(
Z1

|Z| , ...,
Zk

|Z|

)
− pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

))∣∣∣∣∣∣∣
.

By (6.21), We have

∣∣∣∣∣∣∣

∑

w∈J

(
pw

(
Z1

|Z| , ...,
Zk

|Z|

)
− pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

))∣∣∣∣∣∣∣

! |J|Cp

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

∣∣∣∣∣∣
Z j

|Z| −
Z j
∗
|Z∗|

∣∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎠

! |J|Cp(|Z||Z∗|)−1

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

∣∣∣∣|Z∗|Z j − |Z|Z j
∗

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Since ∣∣∣∣|Z∗|Z j − |Z|Z j
∗

∣∣∣∣ =
∣∣∣∣(|Z∗| − |Z| + |Z|)Z j − |Z|(Z j

∗ − Z j + Z j)
∣∣∣∣

=
∣∣∣∣Z j(|Z∗| − |Z|) + |Z|(Z j − Z j

∗)
∣∣∣∣

! 2|Z|
k∑

j=1

∣∣∣∣Z j
∗ − Z j

∣∣∣∣

= 2|Z||Z − Z∗|,
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we get ∣∣∣∣∣∣∣

∑

w∈J

(
pw

(
Z1

|Z| , ...,
Zk

|Z|

)
− pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

))∣∣∣∣∣∣∣

!|J|Cp(|Z||Z∗|)−1
(
2k |Z|

∣∣∣∣Z∗ − Z
∣∣∣∣
)

=2|J|kCp|Z∗|−1
∣∣∣∣Z∗ − Z

∣∣∣∣,

and further

∣∣∣g1(Z1, ...,Zk) − g1(Z1
∗ , ...,Z

k
∗)
∣∣∣

!m|J||Z − Z∗| + m|Z∗|
∣∣∣∣∣∣∣

∑

w∈J

(
pw

(
Z1

|Z| , ...,
Zk

|Z|

)
− pw

(
Z1
∗
|Z∗|
, ...,

Zk
∗
|Z∗|

))∣∣∣∣∣∣∣

!m|J|(1 + 2kCp)
∣∣∣∣Z∗ − Z

∣∣∣∣,

which means that g1 is indeed Lipschitz in Z1, ...,Zk and our lemma is proved. #

Note that J and w in Proposition (6.6) are as mentioned in (1.7), however, examining the

proof, one can see that all we need is the fact that |J| is finite and |wi| ≤ m for all i = 1, ..., k.,

but not the part that at most two components of a jump can be nonzero. Let f ∈ C1
b(Rk,R)

such that f ′ ∈ Cb(Rk,R) as in Lemma (6.5), then
∣∣∣∣∣∣

k∑
i=1

∂ f
∂Zi (Z)wi

∣∣∣∣∣∣ is uniformly bounded for a

fixed f , by similar reasoning as in Proposition (6.6) we can obtain the following result.

Lemma 6.7. Let Z = (Z1, ...,Zk) ∈ Rk
+ and w, J, pw are the same as given in our setup. For

f ∈ C1
b(Rk,R) s.t. f ′ ∈ Cb(Rk,R), define

g f (Z) =gf (Z1, ...,Zk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|Z|
∑

w∈J

⎡
⎢⎢⎢⎢⎢⎣pw(

Z
|Z| )
⎛
⎜⎜⎜⎜⎜⎝

k∑

i=1

∂ f
∂Zi (Z)wi

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ , if Z ! 0

0, if Z = 0,

(6.24)
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then g f (Z) is Lipschitz and thus continuous.

Now we are ready to show that any limit process of
(
Z̃L

t

)
0!t!T

must satisfy a relation

similar to that in proposition (6.4).

Proposition 6.8. Any limit point of
(
Z̃L

t

)
0!t!T

, denoted by
(
Z̃t

)
0!t!T

, satisfies

E

⎡
⎢⎢⎢⎢⎢⎣ sup

0!t!T

∣∣∣∣∣∣∣
f (Z̃t) − f (Z̃0) −

∫ t

0
|Z̃s|
∑

w∈J

⎡
⎢⎢⎢⎢⎢⎣pw

⎛
⎜⎜⎜⎜⎜⎝

Z̃s∣∣∣Z̃s

∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

k∑

i=1

∂ f
∂Zi (Z̃s)wi

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ ds

∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦ = 0, (6.25)

where f ∈ C2
c (Rk,R).

Proof. For M " 0, define for z ∈ R

hM(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, |z| ! M

0, |z| " M + 1

−(|z| − M) + 1, M < z < M + 1

and define for η(·) ∈ D
(
[0,T ],Rk

)
,

HM (η(·)) = sup
0!t!T

∣∣∣∣∣∣ f (η(t)) − f (η(0)) −
∫ t

0
hM

(
|η(s−)|)gf (η(s−)) ds

)∣∣∣∣∣∣ , (6.26)

where for a fixed f ∈ C2
c (Rk,R), gf is the same as defined in Lemma (6.7) and

gf ((η(s−)) = |η(s−)|
∑

w∈J

pw

(
η(s−)
|η(s−)|

) ⎛⎜⎜⎜⎜⎜⎝
k∑

i=1

∂ f
∂Zi (η(s−))wi

⎞
⎟⎟⎟⎟⎟⎠ . (6.27)
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For
(
Z̃L

t

)
0!t!T

∈ D
(
[0,T ],Rk

)
, we have

HM(Z̃L(·)) = sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
hM

(
|Z̃L

s−|
)

gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣

! sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣

+ sup
0!t!T

∣∣∣∣∣∣

∫ t

0

(
1 − hM

(
|Z̃L

s−|
))

gf

(
Z̃L

s−
)∣∣∣∣∣∣ .

(6.28)

Taking expectation on both sides, we get

E sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
hM

(
|Z̃L

s−|
)

gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣

! E sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣

+ E sup
0!t!T

∣∣∣∣∣∣

∫ t

0

(
1 − hM

(
|Z̃L

s−|
))

gf

(
Z̃L

s−
)∣∣∣∣∣∣ .

(6.29)

By proposition (6.4), we have

lim
L→∞

E sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣ = 0. (6.30)

Note that f ∈ C2
c , we know each

∂ f
∂Zi is bounded for a fixed f , and since |wi| ! m,

pw ! 1, we know
∑

w∈J
pw

(
Z̃L

s−
|Z̃L

s− |
) ( k∑

i=1

∂ f
∂Zi (Z̃L

s−)wi

)
is bounded by some constant C f that doesn’t

depend on L, we have that

∣∣∣∣
(
1 − hM

(
|Z̃L

s−|
))

gf

(
Z̃L

s−
)∣∣∣∣ ! C f sup

0!t!T

∣∣∣Z̃L
t−
∣∣∣ sup

0!s!T

∣∣∣1 − hM(|Z̃L
s−|)
∣∣∣ .

Note that we have

0 ! {|Z̃L
s− |≤M} ! hM(|Z̃L

s−|) ! 1,
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by definition of hM, which implies

0 ! 1 − hM(|Z̃L
s−|) ! {|Z̃L

s− |>M} ! { sup
0≤s≤T

|Z̃L
s− |>M}.

Therefore,

E
[

sup
0!t!T

∣∣∣∣∣∣

∫ t

0

(
1 − hM

(
|Z̃L

s−|
))

gf

(
Z̃L

s−
)∣∣∣∣∣∣

]
! C f T E

[
sup

0!t!T

∣∣∣Z̃L
t−
∣∣∣ { sup

0≤s≤T
|Z̃L

s | > M}
]
. (6.31)

By Cauchy-Schwartz inequality,

(
E
[

sup
0!t!T

∣∣∣Z̃L
t−
∣∣∣ { sup

0≤s≤T
|Z̃L

s | > M}
])2

! E
⎡
⎢⎢⎢⎢⎣
(

sup
0!t!T

∣∣∣Z̃L
t−
∣∣∣
)2⎤⎥⎥⎥⎥⎦ E

⎡
⎢⎢⎢⎢⎣
(
{ sup

0≤s≤T
|Z̃L

s | > M}
)2⎤⎥⎥⎥⎥⎦

= E
[

sup
0!t!T

∣∣∣Z̃L
t−
∣∣∣2
]

P( sup
0≤s≤T

|Z̃L
s | > M).

(6.32)

Since E
[

sup
0!t!T
|Z̃L

t− |2
]

is uniformly bounded, say by K > 0, for all L > 1 according to

Proposition (5.2), and by Chebyshev’s inequality

P( sup
0≤t≤T
|Z̃L

t−| > M) ! M−2E
⎡
⎢⎢⎢⎢⎣
(

sup
0!t!T
|Z̃L

t− |
)2⎤⎥⎥⎥⎥⎦ ! M−2K. (6.33)

By (6.32) and (6.33), we get from (6.31) that

E
[

sup
0!t!T

∣∣∣∣∣∣

∫ t

0

(
1 − hM

(
|Z̃L

s−|
))

gf

(
Z̃L

s−
)∣∣∣∣∣∣

]
! C f T KM−1. (6.34)
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By (6.30) and (6.34), passing L to infinity we obtain from (6.29) that

lim
L→∞

E
[

sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃L

t

)
− f
(
Z̃L

0

)
−
∫ t

0
hM

(
|Z̃L

s−|
)

gf

(
Z̃L

s−
)

ds
∣∣∣∣∣∣

]
! C f T KM−1, (6.35)

or writing in a simpler form

lim
L→∞

E
[
HM

(
Z̃L(·)
)]
! C f T KM−1. (6.36)

Note that for a fixed M, hM is Lipschitz and bounded, gf is Lipschitz by Lemma (6.7), then

hMgf is bounded and Lipschitz which is in Cb(Rk), also we assumed that f ∈ C2
c (Rk,R) ⊂

C1
c (Rk,R), thus by Lemma (6.5) , HM (η(·)) is a continuous and bounded functional. There-

fore, any limit process
(
Z̃t

)
0!t!T

of
(
Z̃L

t

)
0!t!T

would also satisfy (6.36) , i.e.,

E
[
HM

(
Z̃(·)
)]
! C f T KM−1. (6.37)

Recall that the conditions (5.1) and (5.2) we proved in Chapter 5 are strong enough not

only to guarantee tightness but also that a limit point belongs to C([0,T ],Rk) almost surely,

which must be in D([0,T ],Rk) and this justifies our usage of the notation HM

(
Z̃(·)
)
. More-

over, since a continuous function Z̃t on a bounded interval [0,T ] must be bounded and

Z̃t− = Z̃t, for M " ess sup
0≤t≤T

|Z̃t|, by definition of hM we know hM(|Zt−|) = 1 a.s. and

HM

(
Z̃(·)
)
= sup

0!t!T

∣∣∣∣∣∣ f
(
Z̃t

)
− f
(
Z̃0

)
−
∫ t

0
gf (Zs) ds

∣∣∣∣∣∣ . (6.38)

Passing M to infinity, it follows from (6.37) and (6.38) that

E
[

sup
0!t!T

∣∣∣∣∣∣ f
(
Z̃t

)
− f
(
Z̃0

)
−
∫ t

0
gf

(
Z̃s

)
ds
∣∣∣∣∣∣

]
= 0. (6.39)
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#

Note that we wanted f ∈ C2
c (Rk,R) in proposition (6.8) since it is needed in proposition (6.4),

which we cited to obtain result (6.30). However, this result actually holds for more general

functions. For our purpose, we claim that it holds for f being projection maps.

Lemma 6.9. A limit process
(
Z̃t

)
0!t!T

of the family of processes
(
Z̃L

t

)
0!t!T

indexed by L

satisfies that

sup
0!t!T

∣∣∣∣∣∣Z̃
i
t − Z̃i

0 −
∫ t

0
gi(Z̃s)ds

∣∣∣∣∣∣ = 0, a.s. (6.40)

for all i = 1, ..., k, where gi is as defined in (6.22).

Proof. By equation (6.39), we have sup
0!t!T

∣∣∣∣ f
(
Z̃t

)
− f
(
Z̃0

)
−
∫ t

0 gf

(
Z̃s

)
ds
∣∣∣∣ = 0 almost surely .

Let’s say for a set N1 ⊂ Ωwith P(N1) = 0, that we have sup
0!t!T

∣∣∣∣ f
(
Z̃t

)
− f
(
Z̃0

)
−
∫ t

0 gf

(
Z̃s

)
ds
∣∣∣∣ =

0 ω-by-ω on Ω \ N1. Recall that the two tightness condition we proved are strong enough

to guarantee a continuous limit process a.s., there exists a set N2 ⊂ Ω that P(N2) = 0 and

(Z̃t)0≤t≤T is continuous ω-by-ω on Ω \ N2. Then on the set Ω \ (N1 ∪ N2), we have a con-

tinuous (Z̃t)0≤t≤T which satisfies sup
0!t!T

∣∣∣∣ f
(
Z̃t

)
− f
(
Z̃0

)
−
∫ t

0 gf

(
Z̃s

)
ds
∣∣∣∣ = 0,∀ f ∈ C2

c (Rk,R).

∀ω′ ∈ Ω \ (N1 ∪ N2), (Z̃t(ω′)) is a continuous function of t on the interval [0,T ] and thus

bounded by a constant Mω′ depending on ω′, we can chose a C2
c function fω′ such that

fω′(z) = zi for |z| ≤ Mω′ , and we have sup
0!t!T

∣∣∣∣Z̃i
t(ω′) − Z̃i

0(ω′) −
∫ t

0 gi

(
Z̃s(ω′)

)
ds
∣∣∣∣ = 0. This

can be done for all ω′ ∈ Ω \ (N1 ∪ N2) and we claim on the set Ω \ (N1 ∪ N2), which is of

probability 1, equation (6.40) holds for any i ∈ {1, 2, ..., k}. This proves the lemma. #

By lemma 6.9, we can conclude that sup
0!t!T

∣∣∣∣∣Z̃
i
t − Z̃i

0 −
∫ t

0 |Z̃s|
∑

w∈J

[
pw

(
Z̃s

|Z̃s|
)

wi

]∣∣∣∣∣ = 0 with

probability 1 and
(
Z̃t

)
0!t!T

is a weak solution to the ODE system

dZ̃i
t

dt
= gi(Z̃t), i=1,2,...,k (6.41)



97

or writing in vector form
dZ̃t

dt
= g(Z̃t), (6.42)

where g is as defined in (6.23).

Recall that we first conclude in theorem (5.8) the tightness of the family of processes

(Z̃L
t )0!t!T , which means any subsequence of (Z̃L

t )0!t!T has a further subsequence that con-

verges weakly. Then we showed that any limit of this kind must be a weak solution to the

same ODE system (6.41). By proposition (6.6), this limit ODE has a unique strong solu-

tion, which implies that the weak solution must be the same as the strong solution and thus

unique. One may ask does the original family of processes itself converge weakly to the so-

lution of the limit ODE? Note that the space D([0,T ],Rk) the family of processes (Z̃L
t )0!t!T

lives in is a metric space induced by the Skorokhod J1 metric and the limit process is in

C([0,T ],Rk) ⊂ D([0,T ],Rk), the answer is affirmative by the following lemma.

Lemma 6.10. Given a sequence {Zn} in a metric space (X, d), if every subsequence {Znk}

of {Zn} has a further subsequence that converges to the same limit point z ∈ X, then the

sequence {Zn} is convergent and it converges to z.

Proof. Suppose the opposite that {Zn} is not convergent. In particular, it cannot converge

to any point in X. Then ∀x ∈ X,∃ ϵ > 0 s.t. ∃ subsequence {Znk} of {Zn} satisfy-

ing that d(Znk , x) > ϵ ,∀ nk. Now choose x to be the limit point z given, we must have

d(Zn′k , z) > 0 ,∀ n′k for some subsequence {Zn′k}. But {Zn′k} must have a further subsequence

that converges to z by assumption, and we cannot have d(Zn′k , z) > ϵ, ∀ nk. This is a contra-

diction. Thus {Zn} is convergent. Clearly z is a limit of {Zn} and now it is the limit. #

Therefore, we can conclude the main result of this chapter.
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Proposition 6.11. Given 0 < T < +∞, the family of processes (Z̃L
t )0!t!T ∈ D([0,T ],Rk)

indexed by L, with initial conditions Z̃L
0 = L−1

(
[La1

0], [La2
0], ..., [Lak

0]
)

for a fixed a0 =

(a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, converges weakly to a unique limit process, denoted by (Z̃t)0!t!T , that

solves the initial value problem for the ODE

dZ̃t

dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠w, Z̃0 = a0,

in the classical sense.

Note that proposition (6.11) holds for any T > 0, which means (Z̃t)0!t!T satisfies the

ODE with the given initial condition in any bounded interval [0,T ], and it must be a solu-

tion to the ODE for all t ≥ 0.



Chapter 7

Weak Limit of X̃L
t

Note that we have shown the limit process (Z̃t)t"0 of (Z̃L
t )t"0, with initial conditions Z̃L

0 =

L−1
(
[La1

0], [La2
0], ..., [Lak

0]
)

for some fixed real vector a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ \ {0}, is the

solution to an ODE initial value problem. Next we want to investigate a new family of

processes defined by

X̃L
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z̃L
t

|Z̃L
t |
, if |Z̃L

t | > 0,

0 , if |Z̃L
t | = 0.

(7.1)

We want to show that this family of "normalized" process is also tight, and characterize its

limit behavior by an ODE. An intuitive guess is its limit might be

X̃t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z̃t

|Z̃t|
, if |Z̃t| > 0,

0 , if |Z̃t| = 0.

(7.2)

99
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This turned out to be the case with the same initial condition under which we deduced the

ODE for (Z̃t)0!t!T for a finite 0 < T < ∞. Note that we need to deal with it carefully since

the |Z̃L
t | term is in the denominator and it might go to 0 as L goes to infinity.

Here is the main result of this chapter.

Theorem 7.1. Given 0 < T < ∞, the family of processes (X̃L
t )0!t!T ∈ D([0,T ],Rk) indexed

by L and defined in (7.1), with initial conditions Z̃L
0 = L−1

(
[La1

0], [La2
0], ..., [Lak

0]
)

for a fixed

a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ \ {0}, converges in probability as L → ∞, uniformly in time to a

process (X̃t)0≤t≤T . More precisely

∀ϵ > 0, lim
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ
)
= 0,

where (X̃t)0!t!T is the deterministic process that solves the ODE initial value problem

dX̃t

dt
=
∑

w∈J

pw(X̃t)
(
w − X̃tα(w)

)
, X̃0 =

a0

|a0|
,

in the classical sense which is also the weak limit of (X̃L
t )0!t!T .

Proof. This result follows from Proposition 7.5, Corollary 7.8 and Proposition 7.9, which

are done in the rest of the chapter. #

First, we need the following proposition.

Proposition 7.2. Given a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, in a finite time 0 < T < ∞, ∃ b0 > 0 such

that

lim
L→∞

P
(

inf
t∈[0,T ]

|Z̃L
t | < b0

)
= 0, (7.3)

where Z̃L
0 = L−1

(
[La1

0], [La2
0], ..., [Lak

0]
)
.
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To show Proposition 7.2 , we need a lemma first.

Lemma 7.3. Given a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, in a finite time 0 < T < ∞, ∃ ϵ > 0 such that

the solution (Z̃t)t"0 to the initial value problem of (6.42) with Z̃0 = a0 satisfies that

inf
0!t!T
|Z̃t| > ϵ > 0. (7.4)

Proof. Let gi be as defined in (6.22), i.e.,

gi(Z) = gi(Z1, ...,Zk)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|Z|
∑

w∈J

pw

(
Z
|Z|

)
wi, if Z ! 0

0, if Z = 0

note that
∣∣∣d|Z̃i

t |
∣∣∣ !
∣∣∣dZ̃i

t

∣∣∣, we have

∣∣∣d|Z̃t|
∣∣∣ =

∣∣∣∣∣∣∣
d

k∑

i=1

|Z̃i
t |
∣∣∣∣∣∣∣
!

k∑

i=1

∣∣∣dZ̃i
t

∣∣∣ =
k∑

i=1

∣∣∣gi(Z̃t)
∣∣∣ |dt| =

∣∣∣g(Z̃t)
∣∣∣ |dt|.

Since
∣∣∣gi(Z̃t)

∣∣∣ ! m|J||Z̃t| , we have
∣∣∣d|Z̃t|
∣∣∣ " −mk|J||Z̃t||dt|. With the initial condition Z̃0 =

a0 ∈ Rk
+, we have

∣∣∣Z̃0
∣∣∣ = |a0| > 0, and in a finite time 0 ! t ! T we get

∣∣∣Z̃t

∣∣∣ "
∣∣∣Z̃0
∣∣∣ exp {−mk|J|t} " |a0| exp {−mk|J|T } . (7.5)

Now pick 0 < ϵ < |a0| exp {−mk|J|T }, we can conclude that inf
0!t!T
|Z̃t| > ϵ > 0. #

Next we proceed to show Proposition 7.2 .
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Proof. Construct a continuous function lϵ : R→ R such that for ϵ > 0,

lϵ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x ≤ ϵ
2

0, if x ≥ ϵ

linear, if
ϵ

2
< x < ϵ.

(7.6)

Note that for our proof to work, lϵ(x) doesn’t have to be defined linear for ϵ2 < x < ϵ, as

long as it is continuous at end points and 0 ! lϵ(x) ! 1.

Recall we proved in (II) that q : D([0,T ],R)→ R where q(η) = sup
0!t!T
|η(t)|is continuous.

A similar argument applies and we know inf
0!t!T
|η(t)| : D([0,T ],Rk)→ R is also continuous.

Therefore, lϵ( inf
0!t!T
|η(t)|) : D([0,T ],Rk) → R is a continuous and bounded function. Since

(Z̃L
t )0!t!T

D−→ (Z̃t)0!t!T , we have E
[
lϵ( inf

0!t!T
|Z̃L

t |)
]
→ E

[
lϵ( inf

0!t!T
|Z̃t|)
]
.

Note that for 0 ! Z < ∞, we have

[0, ϵ2 )(Z) ! lϵ(Z) ! [0,ϵ)(Z). (7.7)

It follows that

P( inf
0!t!T
|Z̃L

t | <
ϵ

2
) = E

[
[0, ϵ2 )( inf

0!t!T
|Z̃L

t |)
]
! E
[
[lϵ( inf

0!t!T
|Z̃L

t |)
]
, (7.8)

E
[
[lϵ( inf

0!t!T
|Z̃t|)
]
! E
[

[0,ϵ)( inf
0!t!T
|Z̃t|)
]
= P( inf

0!t!T
|Z̃t| < ϵ), (7.9)
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and as L→ ∞, we have

lim sup
L→∞

P( inf
0!t!T
|Z̃L

t | <
ϵ

2
)

! lim sup
L→∞

E
[
[lϵ( inf

0!t!T
|Z̃L

t |)
]

= E
[
[lϵ( inf

0!t!T
|Z̃t|)
]

! P( inf
0!t!T
|Z̃t| < ϵ).

(7.10)

Now pick 0 < ϵ < |a0| exp {−mk|J|T } and b0 =
ϵ

2
, by Lemma 7.3 we can conclude

lim
L→∞

P( inf
0!t!T
|Z̃L

t | < b0) = 0. #

Next we proceed to show the tightness of (X̃L
t )0!t!T . As in Chapter 5 , we need to prove two

conditions:

there exists a M > 0 such that lim sup
N→∞

P
(
|X̃L

0 | > M
)
= 0, (X1)

and

∀ϵ > 0, lim
δ→0

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃L

s

∣∣∣ > ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 0. (X2)

Note that by definition, we have |X̃L
t | ! 1 and if we choose M > 1 condition (X1) is trivially

satisfied. So the key part is to prove condition (X2). The following lemma about (Z̃L
t )0!t!T

can be useful.

Lemma 7.4. ∀ϵ > 0, lim
L→∞

P
(

sup
0!t!T

∣∣∣Z̃L
t − Z̃t

∣∣∣ > ϵ
)
= 0.

Note that we assumed that we are given a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+ and initial condition

Z̃L
0 = L−1

(
[La1

0], [La2
0], ..., [Lak

0]
)

without explicitly mentioning it every time

Proof. We will show that lim sup
L→∞

P
(

sup
0!t!T

∣∣∣Z̃L
t − Z̃t

∣∣∣ > ϵ
)
= 0.
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Construct a continuous function hϵ : R→ R such that for ϵ > 0,

hϵ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ ϵ
2

1, if x ≥ ϵ

linear, if
ϵ

2
< x < ϵ.

(7.11)

Note that hϵ(x) is continuous bounded and we have

(ϵ,∞)(Z) ! hϵ(Z) ! 1. (7.12)

Let ηL
t = Z̃L

t − Z̃t, 0 ! t ! T , then ηL
t ∈ D([0,T ],Rk). By (7.12), we have that

P( sup
0!t!T
|ηL(t)| > ϵ) = E[ (ϵ,∞)( sup

0!t!T
|ηL(t)|)] ! E[hϵ( sup

0!t!T
|ηL(t)|)]. (7.13)

Recall that we proved in (II) q : D([0,T ],R)→ R where q(η) = sup
0!t!T
|η(t)| is continuous. It

is also the case when η ∈ D([0,T ],Rk) by a similar argument. Consequently, hϵ( sup
0!t!T
|η(t)|) :

D([0,T ],Rk) → R is a continuous and bounded function. Note that (ηL
t )0!t!T

D−→ (0)0!t!T

since (Z̃L
t )0!t!T

D−→ (Z̃t)0!t!T . Taking limsup over (7.13) we can conclude that

lim sup
L→∞

P( sup
0!t!T
|Z̃L

t − Z̃t| > ϵ)

= lim sup
L→∞

P( sup
0!t!T
|ηL(t)| > ϵ)

! lim sup
L→∞

E[hϵ( sup
0!t!T
|ηL(t)|)]

= E[hϵ( sup
0!t!T
|0|)]

= 0 .

(7.14)
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#

Next we show the convergence in probability of X̃L
t , uniformly in time t ∈ [0,T ].

Proposition 7.5. ∀ϵ′ > 0, lim
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)
= 0.

Proof. It suffices to show that lim sup
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)
= 0.

By Lemma 7.3, we know that for a given initial condition Z̃0 = a0 ∈ Rk
+,∃ϵ > 0 such that

inf
0!t!T
|Z̃t| > ϵ > 0. First suppose |X̃L

t | ! 0 or simply |Z̃L
t | ! 0 and we have

∣∣∣X̃L
t − X̃t

∣∣∣

=

∣∣∣∣∣∣∣
Z̃L

t∣∣∣Z̃L
t

∣∣∣
− Z̃t∣∣∣Z̃t

∣∣∣

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
Z̃L

t

∣∣∣Z̃t

∣∣∣ − Z̃t

∣∣∣Z̃L
t

∣∣∣
∣∣∣Z̃L

t

∣∣∣
∣∣∣Z̃t

∣∣∣

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
Z̃L

t

∣∣∣Z̃t

∣∣∣ − Z̃L
t

∣∣∣Z̃L
t

∣∣∣ + Z̃L
t

∣∣∣Z̃L
t

∣∣∣ − Z̃t

∣∣∣Z̃L
t

∣∣∣
∣∣∣Z̃L

t

∣∣∣
∣∣∣Z̃t

∣∣∣

∣∣∣∣∣∣∣

!

∣∣∣∣∣∣
Z̃L

t (|Z̃t| − |Z̃L
t |)

|Z̃L
t ||Z̃t|

∣∣∣∣∣∣ +
∣∣∣∣∣∣
Z̃L

t − Z̃t

|Z̃t|

∣∣∣∣∣∣

! 2
|Z̃L

t − Z̃t|
|Z̃t|

!
2|Z̃L

t − Z̃t|
ϵ

.

By Proposition 7.2, we know ∃ b0 > 0 such that

lim
L→∞

P
(

inf
t∈[0,T ]

|Z̃L
t | < b0

)
= 0.
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For this b0, we further have

∣∣∣X̃L
t − X̃t

∣∣∣

=
∣∣∣X̃L

t − X̃t

∣∣∣ {|Z̃L
t |<b0} +

∣∣∣X̃L
t − X̃t

∣∣∣ {|Z̃L
t |"b0}

! 2 {|Z̃L
t |<b0} +

2|Z̃L
t − Z̃t|
ϵ {|Z̃L

t |"b0},

(7.15)

and it follows that

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)

! P( sup
0!t!T

∣∣∣∣2 {|Z̃L
t |<b0}

∣∣∣∣ >
ϵ′

2
) + P( sup

0!t!T

∣∣∣∣∣∣
2|Z̃L

t − Z̃t|
ϵ {|Z̃L

t |"b0}

∣∣∣∣∣∣ >
ϵ′

2
).

(7.16)

Taking limsup, by Proposition 7.2 and Lemma 7.4 respectively, we have that

lim sup
L→∞

P
(

sup
0!t!T

∣∣∣∣2 {|Z̃L
t |<b0}

∣∣∣∣ >
ϵ′

2

)
! lim sup

L→∞
P
(

inf
0!t!T
|Z̃L

t | < b0

)
= 0,

and

lim sup
L→∞

P
⎛
⎜⎜⎜⎜⎝ sup

0!t!T

∣∣∣∣∣∣
2|Z̃L

t − Z̃t|
ϵ {|Z̃L

t |"b0}

∣∣∣∣∣∣ >
ϵ′

2

⎞
⎟⎟⎟⎟⎠ ! lim sup

L→∞
P
⎛
⎜⎜⎜⎜⎝ sup

0!t!T

2|Z̃L
t − Z̃t|
ϵ

>
ϵ′

2

⎞
⎟⎟⎟⎟⎠ = 0.

Therefore,

lim sup
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)
! 0,

and it must be

lim
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)
= 0.

#

We comment that once we have Proposition 7.5 , condition (X2) holds.
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Corollary 7.6.

∀ϵ > 0, lim
δ→0

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃L

s

∣∣∣ > ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 0.

Proof. Note that

|X̃L
t − X̃L

s | !
∣∣∣X̃L

t − X̃t

∣∣∣ +
∣∣∣X̃L

s − X̃s

∣∣∣ +
∣∣∣X̃s − X̃t

∣∣∣ .

we have

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃L

s

∣∣∣ > ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

! P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃t

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ + P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
s − X̃s

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ + P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃s − X̃t

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= P
(

sup
t∈[0,T ]

∣∣∣X̃L
t − X̃t

∣∣∣ >
ϵ

3

)
+ P
(

sup
s∈[0,T ]

∣∣∣X̃L
s − X̃s

∣∣∣ >
ϵ

3

)
+ P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃s − X̃t

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Taking lim sup
L→∞

and by Proposition 7.5 , we obtain that

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃L

s

∣∣∣ > ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ ! P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃s − X̃t

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ . (7.17)

Since (X̃t) is uniformly continuous for 0 ! t ! T , we have

lim
δ→0+

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃s − X̃t

∣∣∣ >
ϵ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 0,

and it follows that

lim
δ→0

lim sup
L→∞

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ sup

s,t∈[0,T ]
0<|t−s|<δ

∣∣∣X̃L
t − X̃L

s

∣∣∣ > ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 0.

where ϵ > 0 is arbitrary. #
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Now we have tightness for (X̃L
t )0≤t≤T .

Corollary 7.7. The family of processes (X̃L
t )0≤t≤T as defined in (7.1) is tight.

Proof. We have tightness of (X̃L
t )0!t!T if both conditions (X1) and (X2) are satisfied.

Condition (X1) is satisfied due to the fact that (X̃L
t )0!t!T is bounded and Corollary 7.6

validates Condition (X2). #

Also, convergence in distribution of the process (X̃L
t )0!t!T follows from Proposition 7.5 .

Corollary 7.8. The family of processes (X̃L
t )0!t!T indexed by L converges in distribution to

the process (X̃t)0!t!T , uniformly in time.

Proof. By Proposition 7.5, we know that

∀ϵ′ > 0, lim
L→∞

P
(

sup
0!t!T

∣∣∣X̃L
t − X̃t

∣∣∣ > ϵ′
)
= 0.

Then for any fixed 0 ! t ! T , we can conclude that XL
t

P−→ Xt and further XL
t

D−→ Xt.

∀ 0 ! t1 < t2 < · · · < tm ! T and test functions f1, f2, · · · , fm ∈ C∞c , note that those fi are

uniformly bounded once given, it is easily seen that

lim
L 8→∞

E
[
f1(XL

t1) · · · fm(XL
tm)
]
= E
[
f1(Xt1) · · · fm(Xtm)

]
. (7.18)

This implies (X̃L
t )0!t!T

D−→ (X̃t)0!t!T . #

Next we show that the behavior of (X̃t)0!t!T is characterized by an ODE which can be

obtained from that of (Z̃t)0!t!T .
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Proposition 7.9. Given Z̃0 = a0 = (a1
0, a

2
0, ..., a

k
0) ∈ Rk

+, in a finite time 0 < T < ∞, we have

dX̃t

dt
=
∑

w∈J

pw(X̃t)
(
w − X̃tα(w)

)
.

Proof. Note that By Proposition 6.11 , we know in a finite time 0 < T < ∞,

dZ̃t

dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠w,

or component-wise we have

dZ̃i
t

dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠wi.

By Lemma 7.3 , we know ∃ ϵ such that inf
0!t!T
|Z̃t| > ϵ > 0 for a given initial condition

Z̃0 = a0 ∈ Rk
+. Applying a similar argument as used in the proof of Lemma 7.3 , we also

have that if Z̃i
t = ai ≥ 0, then inf

0!t!T
Z̃i

t ≥ 0. This allows us to add up those equations for

components and obtain
d|Z̃t|
dt
= |Z̃t|

∑

w∈J

pw

⎛
⎜⎜⎜⎜⎝

Z̃t

|Z̃t|

⎞
⎟⎟⎟⎟⎠α(w),

as appeared in (3.27). Again under the condition of Lemma 7.3 , we can deduce

dX̃i
t

dt
=

d
dt

⎛
⎜⎜⎜⎜⎝

Z̃i
t

|̃Z|t

⎞
⎟⎟⎟⎟⎠

=
1
|Z̃t|
· dZ̃i

t

dt
− Z̃i

t

|Z̃t|2
· d|Z̃i

t |
dt

=
∑

w∈J

pw(X̃t)wi − X̃i
t

∑

w∈J

pw(X̃t)α(w)

=
∑

w∈J

pw(X̃t)
(
wi − X̃i

tα(w)
)
,

(7.19)
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for any given finite time 0 < t < T since inf
0!t!T
|Z̃t| > ϵ > 0 guarantees that each term makes

sense and the calculations can be carried out. Writing in a vector form, we have

dX̃t

dt
=
∑

w∈J

pw(X̃t)
(
w − X̃tα(w)

)
.

#

With all the relevant results are proven, we proved Theorem 7.1.



Chapter 8

Bound Estimates for Extinction

First, we know from Lemma 5.4 that

|Z̃L
t | − |Z̃L

0 | −
∫ t

0
L|Z̃L

s−|
∑

w∈J

Π(LZ̃L
s−, LZ̃L

s− + w)
(
|Z̃L

s− +
w
L
| − |Z̃L

s−|
)

ds ∆= N L
t (8.1)

is a square integrable martingale with respect to the filtration (Ft)t≥0. We argue that we

can replace each Z̃L
s− with Z̃L

s since a RCLL jump process can have at most countably many

jumps implying the set of points at which Z̃L
s differs from Z̃L

s− is of measure zero. Therefore,

we have

|Z̃L
t | − |Z̃L

0 | −
∫ t

0
|Z̃L

s |
∑

w∈J

Π(LZ̃L
s , LZ̃L

s + w)
(
|LZ̃L

s + w| − |LZ̃L
s |
)

ds = N L
t . (8.2)

Define YL
s = |Z̃L

s | and PL
s =
∑

w∈J

Π(LZ̃L
s , LZ̃L

s + w)
(
|LZ̃L

s + w| − |LZ̃L
s |
)
, rewriting (8.2), we

have

YL
t − YL

0 −
∫ t

0
YL

s PL
s ds = N L

t , (8.3)
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or in a differential form

dYL
t = YL

t PL
t dt + dN L

t . (8.4)

Let g(s, x) = xe2s, applying stochastic differentiation in the sense of (3.8) to g(s,YL
s ),

we get that Rt,

Rt = e2tYL
t − YL

0 − Ut , where Ut =

∫ t

0
e2s(2 + PL

s )YL
s ds (8.5)

is a martingale. Note that we have YL
t ≥ 0, also PL

t ≥ −2 since
∑

w∈J Π(LZ̃L
s , LZ̃L

s + w) = 1,

each component wi of w satisfies −1 ≤ wi ≤ m and by construction we have at most two

components change at the same time. Then the integration part with respect to s in equation

(8.5) is nonnegative and we obtain that

Rt + Ut = e2tYL
t − YL

0 (8.6)

is a sub-martingale. We know that YL
t is nonnegative, but more than that, we are interested

in how fast does it approach 0 starting at a positive position. To be more specific, we want

to estimate P({ inf
0≤t≤T

YL
t ≤ ϵ}) for a small ϵ > 0 in a finite time interval 0 < T < ∞. Some
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calculations give

P({ inf
0≤t≤T

YL
t ≤ ϵ}) ≤ P({ inf

0≤t≤T
YL

t e2t ≤ ϵe2T }) (8.7)

= P({ inf
0≤t≤T

(YL
t e2t − YL

0 ) ≤ ϵe2T − YL
0 }) (8.8)

= P({ inf
0≤t≤T

(Rt + Ut) ≤ ϵe2T − YL
0 }) (8.9)

≤ P({ inf
0≤t≤T

Rt ≤ ϵe2T − YL
0 }) , since Ut ≥ 0 (8.10)

= P
(
{− sup

0≤t≤T
(−Rt) ≤ ϵe2T − YL

0 }
)

(8.11)

= P
(
{ sup
0≤t≤T

(−Rt) ≥ YL
0 − ϵe2T }

)
. (8.12)

Note that (−Rt) is a also a martingale with respect to the filtration (Ft)t≥0. Assuming YL
0 −

ϵe2T > 0, which can always be achieved by choosing a small enough ϵ given T and the

initial YL
0 > 0, by Doob’s sub-martingale L2 inequality we have that

P({ sup
0≤t≤T

(−Rt) ≥ YL
0 − ϵe2T })

≤ E
[
(Rt)2
] (

YL
0 − ϵe2T

)−2
.

(8.13)

Let ⟨N ⟩Ls be the quadratic variation process corresponding to the martingale N L
s , we must

have

E
[
(Rt)2
]
= E
[∫ T

0
(e2s)2d⟨N ⟩Ls

]
. (8.14)

Also note that a quadratic variation process is non-negative and non-decreasing, we have

E
[
(
∫ T

0
(e2s)2d⟨N ⟩Ls )2

]
≤ e4T E

[
⟨N ⟩LT

]
. (8.15)
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Combining equation (8.13), (8.14) and (8.15), we have

P
(
{ sup
0≤t≤T

(−Rt) ≥ YL
0 − ϵe2T }

)
≤ e4T E

[
⟨N ⟩LT

] (
YL

0 − ϵe2T
)−2
. (8.16)

Clearly we need to estimate E
[
⟨N ⟩LT

]
. Note that it is the quadratic variation process corre-

sponding to the martingale Ñ L
t , and the latter which satisfies equation (8.2) is a martingale

corresponding to the pure jump process YL
s , we have

E
[
⟨N ⟩LT

]
= E

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ T

0
L|Z̃L

s |
∑

w∈J

Π(LZ̃L
s , LZ̃L

s + w)
⎛
⎜⎜⎜⎜⎝
|LZ̃L

s + w| − |LZ̃L
s |

L

⎞
⎟⎟⎟⎟⎠

2

ds

⎤
⎥⎥⎥⎥⎥⎥⎦ . (8.17)

Note that
∑

w∈J Π(LZ̃L
s , LZ̃L

s + w) = 1 and −2 ≤ |LZ̃L
s + w| − |LZ̃L

s | ≤ 2m, we obtain from

equation (8.17) that

E
[
⟨N ⟩LT

]
≤ 4m2

L
E
[∫ T

0
|Z̃L

s |ds
]
≤ 4Tm2

L
E
[

sup
0≤t≤T
|Z̃L

s |
]

(8.18)

Recall in Proposition 5.2 we obtained

∀L > 1, E
[

sup
0!t!T
|Z̃L

t− |
]
! C1(k,m,T ), where C1(k,m,T ) is a constant depending on k,m,T

but not on L. Note that Z̃L
t− differs from Z̃L

t in t only on a set of at most countably many

elements, we know

E
[

sup
0!t!T
|Z̃L

t |
]
= E
[

sup
0!t!T
|Z̃L

t− |
]
! C1(k,m,T ). (8.19)

Combining (8.7), (8.16) (8.18)and (8.19), we can now conclude that when YL
0 − ϵe2T > 0

P({ inf
0≤t≤T

YL
t ≤ ϵ}) ≤ 4Tm2L−1e4TC1(k,m,T )

(
YL

0 − ϵe2T
)−2
. (8.20)
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We now have the main result of this chapter.

Theorem 8.1. Let ϵ1 =
|a0|
2e2T . Then, for any 0 ≤ ϵ ≤ ϵ1, the total number of individuals |Z̃L

t |

on any bounded interval [0,T ] satisfies the large deviations bound

lim sup
L→∞

L P({ inf
0≤t≤T
|Z̃L

t | ≤ ϵ}) ≤ CY(k,m,T, a0) , (8.21)

where CY(k,m,T, a0) = 16Tm2e4TC1(k,m,T )(|a0|)−2 is a positive constant given k, a0,m,T.

It clear that for arbitrary but fixed T > 0, we must have lim
L→+∞

P({ inf
0≤t≤T
|Z̃L

t | ≤ ϵ}) = 0 for

small enough ϵ. Note that Z̃L
t converges to Z̃t in probability uniformly on [0,T ] by lemma

7.4, we have P({ inf
0≤t≤T
|Z̃t| ≤ ϵ}) = 0.

Corollary 8.2. As a consequence, the limit (Z̃t)t≥0 never vanishes, almost surely.

Remark 8.3. We claim (Z̃t)t≥0 doesn’t vanish in finite time. Of course, it is possible that

z = 0 be a stable point of the system, and the solution may go to zero as t → +∞.



Chapter 9

Future Research

There could be a further generalization of the approximation bound (3.14). Let

A(Z) = sup
w

∣∣∣∣pw(
Z
|Z| ) − Π(Z,Z + w)

∣∣∣∣ (9.1)

be the error in the asymptotic formula for the transition probabilities.

Until now we used the bound A(w,Z) ≤ a|Z|−1, where a > 0 does not depend on the Z.

Conjecture 9.1. The hydrodynamic limit holds under the weaker assumption

lim
|Z|→∞

A(Z) = 0 . (9.2)

Conjecture 9.2. Under (9.2), we can prove a fluctuation limit as L → ∞. More precisely,

let

ξL
t =
√

L
(Zt

L
− zt

)
∈ Rk (9.3)

be the k-dimensional fluctuation random field for all t ≥ 0. Assume the initial values scale

to a normal random variable as in the Central Limit Theorem. Further assume that A, the
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differential operator of the limiting dynamical system, is symmetric (technically we want a

complete space of eigenfunctions). Then (ξL
t )t≥0 is a tight k-dimensional Gaussian random

field and its limit ξt satisfies, for a smooth test function φ

d⟨ξt, φ⟩ = ⟨ξt, Aφ⟩dt + dUt (9.4)

where

U2
t −
∫ t

0
|zs|
∑

w

pw(
zs

|zs|
)|∇φ(zs) · w|2 ds (9.5)

is a martingale.

Formula (9.5) says that if we define the time dependent (in s ≥ 0) bilinear form

φ −→ ⟨Csφ, φ⟩ = |zs|
∑

w

pw(
zs

|zs|
)|∇φ(zs) · w|2 , φ ∈ C∞c (Rk,R) , (9.6)

then

dξt = A∗ξtdt +
√

Ct dWt (9.7)

where Wt is a k - dimensional Brownian motion.

Assume that the increments w are no longer w ∼ O(1) but w ∼ O(|Z|). This is the

case when the birth rate is not a microscopic function of type, but of individual. In that

case, heuristically, each individual may produce an offspring at certain rate, generating

a population change macroscopically proportional to the total population Z. This is, by

analogy, similar to how branching occurs in a Galton-Watson process.

Conjecture 9.3. Determine the exact condition, incorporating w ∼ O(|Z|), such that the

hydrodynamic limit holds. Research if the extension allows more realistic applications.
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