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The idea of the lattice of non-crossing partitions, NC(n), is inspired by early

work of Kreweras [7]. In this thesis we study the action of dihedral group D2n on

NC(n), especially the sublattice NC(n)F in which all the elements are fixed by a

reflection F , and then we extend our work to the characters of the dihedral group

acting on NC(n). We start from enumerative properties of the lattice NC(n)F .

Next we investigate the recursive structure on the lattice NC(n)F related to

central binomial coefficients and the Catalan numbers. We proceed to look into

combinatorial structure of a graded sublattice, NC(n)Fpr, which is named “the

pruned sublattice”. Two characters αS, βS introduced by Stanley [18] of dihedral

groups acting on NC(n) are computed with respect to certain rank-selected

subposet NC(n)S ⊂ NC(n). We first recall Montenegro’s computation of β[n−2]

from his unpublished manuscript [8]. Based on the cyclic sieving phenomenon of

Reiner, Stanton and White [10], we obtain a general result for all αS’s, where S

is a subset of [n] of size 1 or n− 2.
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Chapter 1

Introduction

The idea of non-crossing partitions of the set [n] := {1, 2, . . . , n} comes from

Germain Kreweras. In his 1972 paper Sur les partitions non croisesé d’un

cycle [7], he investigated non-crossing partitions under the refinement order

relation. His paper set a good background for further enumerative results, and for

new connections between non-crossing partitions, the combinatorics of partially

ordered sets and algebraic combinatorics, all of which are the key topics in this

thesis.

In this first chapter, we will go over some preliminary knowledge with respect

to the classical non-crossing partitions. First we will introduce the idea of non-

crossing partitions and the basic combinatorial properties behind them. Then

we will introduce the dihedral groups, the cyclic sieving phenomenon of Reiner,

Stanton and White [10], and Richard Stanley’s α and β characters of groups acting

on finite posets [18].

For general information on non-crossing partitions, readers may refer to

Chapter 3 and Chapter 4 of [2]. For general information about finite posets,

see Chapter 3 of [16].

1
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Figure 1.1: A non-crossing and a crossing partition of the set [6]

1.1 The Classical Non-crossing Partitions

Let [n] denote the set {1, 2, . . . , n} and π = {B1, B2, . . . , Bk} be a partition of the

set [n] with k blocks. Each Bi ⊂ [n] is called a block of π, and we have a disjoint

union [n] = tki=1Bi.

Definition 1.1.1. Given a partition π of the set [n], for two different blocks

Bi 6= Bj in π, with 1 ≤ i, j ≤ n. We say Bi and Bj are crossing if there exist

a, b, c, d ∈ [n], such that 1 ≤ a < b < c < d ≤ n with {a, c} ∈ Bi and {b, d} ∈ Bj.

We say π = {B1, B2, . . . , Bk} is a non-crossing partition of [n] if any two blocks

Bi and Bj do not cross for all 1 ≤ i < j ≤ k. Let NC(n) denote the set of all

non-crossing partition of the set [n].

This definition becomes clearer is if we think of [n] as a regular n-ploygon with

n vertices labelled clockwise and identify each block of π with the convex hull of

its corresponding vertices. Then π is non-crossing if and only if its blocks are

pairwise disjoint.

Example 1.1.2.

In Figure 1.1, the left picture represents the non-crossing partition
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{{1, 4, 5}, {2.3}, {6}}, while the right one represents {{1, 4, 5}, {2, 6}, {3}} which

is crossing.

When describing a specific partition of [n], we will usually list the blocks

in increasing order of their minimum elements. For example, in Figure 1.1,

we express the partition on the left as π = {{1, 4, 5}, {2, 3}, {6}} instead of

π = {{5, 1, 4}, {6}, {2, 3}}.

Given two non-crossing partition π = {B1, B2, . . . , Bk} and τ = {B̃1, B̃2, . . . , B̃l}

in NC(n), we say τ is a refinement of π if ∀ B̃i ∈ τ, ∃ some Bs ∈ π so that B̃i ⊂ Bs,

and we write τ ≤ π.

Definition 1.1.3. A partially ordered set P , which is usually called poset P for

short, is a set together with a binary relation denoted ≤ (or ≤P ) satisfying the

following three axioms:

1. Reflexivity: For all a ∈ P, a ≤ a;

2. Antisymmetry: If a ≤ b and b ≤ a, then a = b;

3. Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

We say that two elements a and b of P are comparable if either a ≤ b or b ≤ a,

otherwise a and b are incomparable. It is not necessary that any two elements of

P are comparable. Hence the relation ≤ is called a partial order. If all elements

of a poset are comparable, we call it a total order or a chain. (see Definition 1.1.8)

Example 1.1.4. NC(n) forms a poset under the refinement of partitions,

with maximum element 1̂n = {{1, 2, . . . , n}} and minimum element 0̂n =

{{1}, {2}, . . . , {n}}.
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Figure 1.2: Lattice of NC(4)

Definition 1.1.5. Given two elements a, b in a poset P , we say b covers a if a < b

and there does not exist an element c ∈ P such that a < c < b, in which case we

write al b.

We can usually visualize a finite poset P by its Hasse diagram whose vertices

are the elements of P and edges are the covering relations such that if a < b then

b is drawn above a.

Example 1.1.6. Figure 1.2 exhibits the Hasse diagram of the poset NC(4).

Definition 1.1.7. Let a and b be two elements in a poset P , an upper bound of

a and b is an element s ∈ P such that s ≥ a and s ≥ b. A least upper bound (or

join or supremum) of a and b is an upper bound s of a and b such that every
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upper bound s′ of a and b satisfies s′ ≥ s. If a least upper bound of a and b exists,

then it is unique (by the antisymmetry of a poset) and we denote it as a ∨ b.

Similarly, we can define the greatest lower bound (or meet or infimum) of a

and b and denote it as a ∧ b if it exists.

A lattice is a poset L for which every pair of elements has a least upper bound

and greatest lower bound.

It is easy to check that the poset NC(n) is a lattice. Indeed, the meet of

any two non-crossing partitions π and τ is just their coarsest common refinement

whose blocks are obtained by intersecting the blocks of π with those of τ . It is a

standard fact that a finite poset with meets and a top element 1̂ also has joins [16,

Proposition 3.3.1].

Hence Figure 1.2 is also the lattice of NC(4).

Definition 1.1.8. A chain in a poset P is a subset of P in which any two elements

are comparable. A chain C of P is called maximal if it is not contained in a longer

chain C ′ of P such that C ⊂ C ′.

For any finite chain C of P , we may define the length `(C) of this chain by

`(C) := #C − 1, i.e. the length of a chain C is equal to the number of covering

relations in C.

Definition 1.1.9. A poset P is graded of rank n if all the maximal chains of P have

the same length n. In this case, there exists a unique rank function r : P → [n]

such that ra = 0 if a is a minimal element of P and r(b) = r(a) + 1 if al b.

The lattice NC(n) is graded of rank n with rank function as

r(π) := n− |π|,
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where |π| is the number of blocks of π.

Given π ∈ NC(n), Let next(π)=min{i : 1, i in the same block}, andNCi(n) =

{π ∈ NC(n) : next(π) = i}. Then we have a disjoint union

NC(n) =
⊔
i

NCi(n)

Since all theNCi(n) are disjoint, it is easy to see that #NC(n) =
∑
i

#NCi(n).

By defining #NC(−1) = #NC(0) = 1 by convention, we have the following

proposition:

Proposition 1.1.10. #NCi(n) = #NC(i− 2)#NC(n− i+ 1).

Proof. Given a fixed i ∈ [n], for ∀ π ∈ NCi(n), blocks of π form two non-crossing

partitions on sets {2, 3, . . . , i − 2} and {1, i, i + 1, . . . , n} respectively. Note that

in the set {1, i, i + 1, . . . , n}, there are actually n − i + 1 vertices, since vertex 1

and i must be in the same block and hence these two vertices can be regarded as

one “big” vertex. Hence #NCi(n) ≤ #NC(i− 2)#NC(n− i+ 1).
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On the other hand, if we give any two non-crossing partitions on sets

{2, 3, . . . , i − 2} and {1, i, i + 1, . . . , n} by connecting vertices 1 and i,

we obtain a non-crossing partition in NCi(n). Then, Hence #NCi(n) ≥

#NC(i− 2)#NC(n− i+ 1). The equality follows.

With the proposition above, it is clear that

#NC(n) =
n∑
i=1

#NC(i− 2)#NC(n− i+ 1).

Define nc(n) := #NC(n), then we have

nc(n) =
∑

k+l=n−1

nc(k)nc(l)

with the initial condition nc(0) = 1.

Based on the proposition above, we have a very important enumerative result

as follows:

Theorem 1.1.11. [7, Theorem 7] NC(n) is counted by the classic Catalan

Number, that is,

nc(n) = Cat(n) :=
1

n+ 1

(
2n

n

)
Proof. Define nc(0) = 1 and notice that

nc(n+ 1) =
n∑
i=0

nc(i)nc(n− i),

the equation above together with the initial condition that #NC(1) = 1 is

exactly the recurrence relation defining the Catalan numbers. [15]

We have seen that the lattice of NC(n) is graded, i.e. the elements of the



8

same rank in NC(n) have the same number of blocks as well. The next question

is what is the number of the elements of NC(n) with a certain rank?

Theorem 1.1.12. [5] #NC(n) with k blocks is counted by the classic Narayana

Number, that is,

#{π ∈ NC(n) : π has k blocks} = Nar(n, k) :=
1

n

(
n

k

)(
n

k − 1

)
.

Remark. This theorem is also implied by a more general formula of Kreweras [7,

Theorem 4].

1.2 Characters of Dihedral Groups

The dihedral group D2n is the symmetry group of an n-sided regular polygon

for n ≥ 3. A regular n-sided polygon has 2n different symmetries: n rotational

symmetries and n reflectional symmetries. The associated rotations and reflections

make up the dihedral group D2n.

If we fix a vertex of an n-sided polygon at 12-o’clock and label from this vertex

clockwise as 1. . . n, R is the action of the clockwise rotation by 2π/n and F is

the reflection with respect to the vertical symmetric axis crossing vertex 1.

By the description above, we can define D2n abstractly in terms of generators

and relations as follows:

Definition 1.2.1. The dihedral group D2n= 〈R,F |Rn = F 2 = RFRF = 1〉,

where R denotes the rotational generator with order n and F denotes the

reflectional generator with order 2,.
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Figure 1.3: Reflections of NC(5) and NC(6)

We note that D2n is the semi-direct product of the cyclic groups 〈R〉 ≈ Z/n

and 〈F 〉 ≈ Z/2, that is, D2n = 〈R〉n 〈F 〉. Clearly, the size of D2n is 2n.

In Figure 1.3, we may see that while the number of reflections in D2n (n ≥ 3)

is n for all cases, the geometric description of reflections depends on the parity of

n: for odd n all symmetric axes look the same, but for even n these symmetric

axes fall into two types. There are n reflections which form one or two conjugacy

classes, depending on the parity of n.

The different geometric descriptions of reflections in D2n for odd and even n

distinguish them algebraically when we describe the conjugacy classes of D2n.

Theorem 1.2.2. The conjugacy classes in D2n are as follows:

Case 1: When n is odd, there are n+3
2

conjugacy classes:

1. {id}

2. n−1
2

conjugacy classes of size 2: {R,Rn−1}, {R2, Rn−2}, . . . , {Rn−1
2 , R

n+1
2 }

3. one conjugacy class of reflections: {F,RF, . . . , Rn−1F}
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Case 2: When n is even, there are n+6
2

conjugacy classes:

1. {id}

2. {Rn
2 }

3. n−2
2

conjugacy classes of size 2: {R,Rn−1}, {R2, Rn−2}, . . . , {Rn
2
−1, R

n
2

+1}

4. the reflections fall into two conjugacy classes:

• one with F : { F,R2F,R4F, . . .}

• one with RF : { RF,R3F,R5F, . . .}

Proof. Note that each element in D2n is of form Rk or RkF for some integer k.

Hence, in order to find the conjugacy class of an element g we may compute

RkgR−k and (RkF )g(RkF )−1.

RkRlR−k = Rl, (RkF )Rl(RkF )−1 = R−l.

As k varies, this shows that the only conjugates of Rl in D2n are Rl and R−l.

To find the conjugacy class of F , we compute

RkFR−k = R2kF, (RkF )F (RkF )−1 = R2kF.

As k varies, R2kF goes through all the reflections in which R occurs with an

exponent divisible by 2. If n is odd then every integer modulo n is a multiple of

2, since 2 is invertible mod n so we can solve a ≡ 2k mod n for k given any a.

Hence when n is odd,

{R2kF : k ∈ Z} = {RkF : k ∈ Z},
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and every reflection in D2n is conjugate to F .

When n is even, however, we only get half the reflections as conjugates of F .

The other half are conjugate to RF :

Rk(RF )R−k = R2k+1F, (RkF )(RF )(RkF )−1 = R2k−1F.

As k varies, this gives us RF,R3F, . . . , Rn−1F .

Based on the geometric interpretation of D2n, we may define a map

ϕ : D2n −→ O(2)

where O(2) is the orthogonal group in dimension 2, by

R 7→

 cos 2π
n

sin 2π
n

− sin 2π
n

cos 2π
n

 , and F 7→

 −1 0

0 1


It is easy to check the map ϕ is an injective group homomorphism.

By abuse of notation, we also useD2n to refer to its image of the homomorphism

ϕ and get

D2n ⊆ O(2)

Remark. Actually D2n can be regarded as a Coxeter group [2, section 2.1] D2n =

〈s, t|s2 = t2 = (st)n = 1〉, where s = F and t = RF . That is, D2n is also generated

by F,RF , both with determinant −1.

It is easy to see that 〈F,RF 〉 ⊆ 〈R,F 〉. On the other hand, R = (RF )F ∈

〈F,RF 〉 which implies that 〈R,F 〉 ⊆ 〈F,RF 〉.
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Note that ∀ g ∈ D2n, if det(ϕ(g)) = 1, g is a product of even number of

generators s&t, which acts as a rotation, if det(ϕ(g)) = −1, g is a product of odd

number of s&t which acts as a reflection.

Definition 1.2.3. A matrix representation of a group G is a group homomorphism

φ : G→ GLd,

where GLd := GLd(C) = {A ∈Mat(C)d|A is invertible}, and d is called the

dimension or degree of the representation.

Clearly, under the map ϕ above, we obtained a 2-dimensional representation

of D2n.

Definition 1.2.4. Let φ : G → GLd(C), be a matrix representation. The

character of φ is

χ(g) = tr φ(g),

where tr denotes the trace of a matrix.

Definition 1.2.5. A matrix representation φ is called reducible if there exists a

basis in which

φ(g) =

 A(g) C(g)

0 B(g)


for all g ∈ G. Otherwise, it is called an irreducible representation.

Similarly, we can define a matrix representation φ to be decomposible if there

exists a basis in which

φ(g) =

 A(g) 0

0 B(g)
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and it is called indecomposable otherwise.

Remark. In general, the notions of indecomposable and irreducible representations

differ, but when |G| < ∞ (i.e. G is finite) over the field C, the two notions

coincide [12].

Theorem 1.2.6. [12] The number of irreducible representations of G (up to

isomorphism) is equal to the number of conjugacy classes of G.

Based on the theorem above and Theorem 1.2.2, we can solve for all the

irreducible representations of the dihedral group and compute the characters

explicitly.

When n is odd:

There are two one-dim representations:

1. Trivial representration: all elements 7→ 1

2. Determinant representation: all elements in < R >7→ 1, otherwise −1

There are n−1
2

irreducible 2-dim representations, where the k-th representation

φk is defined as

R 7→

 cos 2kπ
n

sin 2kπ
n

− sin 2kπ
n

cos 2kπ
n

 F 7→

 −1 0

0 1


Geometrically, R is the clockwise rotation by 2kπ

n
and F is the reflection across

the vertical symmetric axis.

We may construct a character table of D2n in which we list elements of D2n on

the first row and irreducible representations on the first column. Each entry of the
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D2n 1 F R R2 · · · R
n−1
2

Triv 1 1 1 1 1 1
Det 1 −1 1 1 1 1

φ1 2 0 2 cos 2π
n

2 cos 4π
n

· · · cos (n−1)π
n

φ2 2 0 2 cos 4π
n

2 cos 8π
n

· · · cos 2(n−1)π
n

...

φn−1
2

2 0 2 cos (n−1)π
n

2 cos 2(n−1)π
n

· · · cos (n−1)2π
2n

Figure 1.4: Character Table of D2n, for n odd

character table show the character of certain irreducible representation evaluated

at some element of D2n.

Example 1.2.7. Character Table of D2·3 is:

D2·3 1 F R

Triv 1 1 1

Det 1 −1 1

φ 2 0 −1

When n is even:

There are four one-dim representations:

1. Trivial representation: all elements 7→ 1

2. Determinant representation: all elements in < R >7→ 1, otherwise −1

3. Lin1: R 7→ −1, r 7→ 1, < R2, F > 7→ 1

4. Lin2: R 7→ −1, r 7→ −1, < R2, F > 7→ 1

Two-dim representations:
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D2n 1 F RF R R2 · · · R
n
2

Triv 1 1 1 1 1 1 1
Det 1 −1 −1 1 1 1 1
Lin1 1 1 −1 −1 1 · · · (−1)n/2

Lin2 1 1 1 −1 1 · · · (−1)n/2

φ1 2 0 0 2 cos 2π
n

2 cos 4π
n

· · · cos nπ
n

φ2 2 0 0 2 cos 4π
n

2 cos 8π
n

· · · cos 2nπ
n

...

φn−2
2

2 0 0 2 cos (n−1)π
n

2 cos 2(n−1)π
n

· · · cos n(n−1)π
2n

Figure 1.5: Character Table of D2n, for n even

There are n−2
2

irreducible 2-dim representations, where the k−th representation

φk is defined as

R 7→

 cos 2kπ
n

sin 2kπ
n

− sin 2kπ
n

cos 2kπ
n

 , F 7→

 −1 0

0 1


Example 1.2.8. The Character Table of D2·4 is:

D2·4 1 F RF R R2

Triv 1 1 1 1 1

Det 1 −1 −1 1 1

Lin1 1 1 −1 −1 1

Lin2 1 −1 1 −1 1

φ 2 0 0 0 −2

1.3 Cyclic Sieving Phenomenon

Suppose that we have a cyclic group G acting on a set X. In combinatorics, it is

natural to study the number of fixed points |Xg| = |{x ∈ X : gx = x}|. In their
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2004 paper [10], Reiner, Stanton and White described a phenomenon where one

polynomial encodes the numbers of fixed elements for a given cyclic action. They

called this the cyclic sieving phenomenon (CSP).

Definition 1.3.1. Let G be a cyclic group generated by an element of g of order

n. Suppose G acts on a set X. Let X(q) be a polynomial with integer coefficients.

Then the triple (X,X(q), G) is said to exhibit the cyclic sieving phenomenon

(CSP) if for all integers d, the evaluation X(e2πi d
n ) equals the number of elements

of X fixed by gd.

In particular, X(1) is the cardinality of X, so that X(q) can be regarded as a

q−analogue of |X| .

Example 1.3.2. Let G be the cyclic group of order n which acts by adding 1 to

each element of the set, modulo n. Let X be the collection of all the k-element

subsets of {1, 2, . . . , n}, and let X(q) be the q-binomial coefficient defined by

X(q) =

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!

where [n]q! := [n]q[n− 1]q · · · [2]q[1]q and [n]q := 1 + q + q2 + · · ·+ qn−1.

It is easy to see that X(1) =

(
n

k

)
, hence X(q) is a q−analogue for the number

of subsets of {1, 2, . . . , n} of size k.

Then the triple (X,X(q), G) exhibits the CSP [10, Theorem 1.1(b)].

Consider dissections of a convex n-gon using k non-crossing diagonals. The

number of the dissections is given by the formula [17]:
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Figure 1.6: Dissections of A Pentagon

f(n, k) =
1

n+ k

(
n+ k

k + 1

)(
n− 3

k

)
.

For example, if we use two non-crossing diagonals to dissect a pentagon, what

we get is shown in Figure 1.6. It is easy to see that f(5, 2) =
1

7

(
7

3

)(
2

2

)
= 5.

A q-analogue of f(n, k) is given by f(n, k; q) with

f(n, k; q) :=
1

[n+ k]q

[
n+ k

k + 1

]
q

[
n− 3

k

]
q

.

Theorem 1.3.3. [10] Let X be the set of dissections of a convex n-gon using

k non-crossing diagonals. Let G be the cyclic group of order n acting on X by

rotation. Let X(q) := f(n, k; q). Then the triple (X,X(q), G) exhibits the cyclic

sieving phenomenon.
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Recall that the non-crossing partitions are enumerated by the Catalan numbers

|NC(n)| = Cat(n) =
1

n+ 1

(
2n

n

)
.

Let NC(n, k) be the set of non-crossing partitions of the set [n] with k blocks.

|NC(n, k)| is counted by the Narayana numbers

|NC(n, k)| = Nar(n, k) =
1

n

(
n

k

)(
n

k − 1

)
.

A q-analogue of Cat(n) is given by

Cat(n) =
1

[n+ 1]q

[
2n

n

]
q

,

and a q-analogue of Nar(n) is given by

Nar(n, k) =
1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

.

Then we have a very important result as follows:

Theorem 1.3.4. [10] Let G be the cyclic group of order n acting on NC(n) by

rotation. Then the triples (NC(n),Cat(n), G) and (NC(n),Nar(n, k), G) exhibit

the cyclic sieving phenomenon.

1.4 Representations of Groups Acting on Finite

Posets

Definition 1.4.1. Let G be a group and let P be a poset (partially ordered set),

a group action φ of G on P is a function: φ : G → Aut(P ) which satisfies the
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following three axioms: (with abuse of notations we write φ(g) as g)

1. Identity: 1G · a = a,∀ a ∈ P ;

2. Compatability: gh · a = g(h · a),∀g, h ∈ G and a ∈ P ;

3. Preserving order: If a ≤P b, then g(a) ≤P g(b),∀ a, b ∈ P, ∀ g ∈ G.

Let P be a bounded finite poset, i.e. there are two elements 0̂ and 1̂ in P , such

that 0̂ ≤ a, and a ≤ 1̂,∀ a ∈ P , and let G be a finite group of automorphism of

P . G is actually a subgroup of Aut(P ) where Aut(P ) denotes the full group of

automorphism of P . Each element of G permutes the elements of P , and hence

the action of G on P defines a certain permutation representation of G. Note that

if P is graded, then the action necessarily preserves the grading.

Remark. The character of a permutation representation at some g ∈ G is equal to

the number of elements in P fixed by the action of g, which is equal to the number

of 1’s on the diagonal of the matrix under a certain basis. All the other entries on

the diagonal are all 0, since there is at most one 1 on each row and column of the

matrix.

Let P be a bounded graded poset. S is a subset of [n − 1], the rank-selected

subposet of P is defined by

PS = {x ∈ P : x = 0̂ or 1̂, or the rank of x : r(x) ∈ S}.

Definition 1.4.2. [18] Let G act on the maximal chains of PS. Let αPS (for

simplicity, just write as αS) be the character of this action. The character of this

representation evaluated at g ∈ G is denoted as αS(g).

In other words, αS(g) counts the number of maximal chains of PS fixed by the

element g ∈ G.

In particular, αS(1) is just the number of maximal chains in PS.
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Definition 1.4.3. Define βS based on αS satisfying the Principle of Inclusion-

Exclusion, i.e.

αS =
∑
T⊂S

βT ,

βS =
∑
T⊂S

(−1)|S−T |αT .

In general, βS can be regarded as a virtual representation of G. Let P be any

poset with 0̂ and 1̂. Define the order complex ∆(P ) to be the simplicial complex

whose vertices are the elements of P − {0̂, 1̂} and whose faces are the chains in

P − {0̂, 1̂}.

Sometimes βS is not only virtual but acutal (i.e. all the coefficients of

irreducible representations are non-negative integers). For example, when P has

EL-labeling, βS is an actual representation [16]. NC(n) also has EL-labeling [13].

Hence, in our discussion, βS is an actual representation.

Denote the simplicial homology groups by H̃i(∆(P ),C)( or just H̃i(∆(P ))).

Since every element g of G is order-preserving, G also acts on each homology

group H̃i(∆(PS)), −1 ≤ i ≤ |S| − 1.

Let γS,i : G → Hom(H̃i(∆(PS), H̃i(∆(PS)) denote above representation of G.

Then we have

βS =
∑
i

(−1)|S|−1−iγS,i.

In particular, when S = ∅, β∅ is just the trivial representation, hence β∅(g) =

1,∀ g ∈ G.

Example 1.4.4. Let D2·4 be the dihedral group of order 8 which acts on NC(4).

Let r and f be the rotational and reflectional generators of D2·4 respectively. We

can compute all αS
′s and βS

′s explicitly for S ⊂ [2] as follows:
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S αS(e) αS(F ) αS(RF ) αS(R) αS(R2)

∅ 1 1 1 1 1

{1} 6 2 2 0 0

{2} 6 2 2 0 0

{1, 2} 16 2 2 0 0

S βS(e) βS(F ) βS(RF ) βS(R) βS(R2)

∅ 1 1 1 1 1

{1} 5 1 1 -1 -1

{2} 5 1 1 -1 -1

{1, 2} 5 -1 -1 1 1

Figure 1.2 gives us a good interpretation of all the α’s. For instance, α{1,2}(F )

is the number of maximal chains which are fixed by the action of F ∈ D2n.

Montenegro once came up with an idea in his unpublished manuscript to

compute β[n−2] for NC(n). We will take a look into this and use his idea to compute

β[n−2] explicitly in section 3.1.

1.5 Outline of the Thesis

The main results of this thesis consist of two parts: structural studies of non-

crossing partitions which are fixed by reflections, and the characters of the dihedral

group D2n acting on the lattice of NC(n).

In Chapter 2, we will temporarily restrict our investigation to the sub-lattice

of NC(n) in which all the elements are fixed points under the action of F ∈ D2n
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(NC(n)F ).1

We have already seen in section 1.2 that when n is odd or even, we have different

classifications of conjugacy classes. However, we will later introduce Kreweras

Complement which will show that we have the same result for the sublattices of

NC(n) fixed by F and RF despite the parity of n (which is actually an anti-

isomorphism). Hence, we only need to investigate NC(n)F .

We will first investigate the enumerative properties of NC(n)F by establishing

a nice bijection between NC(n)F and NC(n)R
bn/2c

which tells us that the number

of NC(n)F is just equal to the central binomial coefficient
(

n
bn/2c

)
.

Next, we will prove a recurrence relation NC(n)F
as set∼=

⋃bn
2
c

i=0(NC(i)×NC(n−

1 − 2i)F ) using a combinatorial bijection. With the help of this relation and the

result from section 2.1 we obtain a nice formula
(
n
bn
2
c

)
=
∑bn/2c

i=0 Cat(i) ·
(
n−1−2i
bn−1−2i

2
c

)
.

The last thing we are going to do in the second chapter is to restrict our

investigation to a “pruned” sublattice of NC(n)F in which all the elements live

in the maximal chains of length n. We will show that the number of elements in

the pruned lattice is counted by the Fibonacci numbers and prove an interesting

theorem that the pruned lattice is isomorphic to the lattice of order ideals of Zigzag

poset, hence it is a distributive lattice.

In Chapter 3, we will examine the α and β characters defined by Stanley [18]

of D2n acting on NC(n).

We will first describe some unpublished results of Montenegro and then we will

build on these results and compute all β[n−2].

In the following section of this chapter we will compute all the 1−rank-selected

α characters evaluated at all the elements in the dihedral group D2n. In particular,

we will compute α[k](F ) for some k ∈ [n], which is the number of non-crossing

1Some notations which appear in this section will be introduced in latter chapters.
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partitions fixed by reflection with exactly k blocks and show that this is equal to

the q−Narayana number Narq(n, k) with q evaluated at −1.

For the last section of Chapter 3, we will compute α[n−2] evaluated at all

g ∈ D2n, where an interesting result is that α[n−2] evaluated at F is counted by

the Euler number.

In the last section, we will discuss some open problems and suggestions for

future research.



Chapter 2

Poset Structure on Non-crossing
Partitions Fixed by a Reflection

In the lattice of NC(n), the set of non-crossing partitions fixed by rotations

are basically understood enumeratively and algebraically [9, 10]. However, the

set of non-crossing partitions fixed by a reflection has not been investigated that

much.

Definition 2.0.1. Let NC(n)g denote the set of non-crossing partitions of the set

[n] fixed by action of g, where g ∈ D2n.

Theorem 2.0.2. For all g ∈ D2n, NC(n)g is a lattice.

Proof. Given g ∈ D2n, we define NC(n)g = {π ∈ NC(n) : g(π) = π}.

For all τ, σ ∈ NC(n)g, by definition of join and meet of two elements, we

have τ ≤ τ ∨ σ and σ ≤ τ ∨ σ, which implies that τ = g(τ) ≤ g(τ ∨ σ) because

g ∈ Aut(NC(n)) which preserves ordering. Similarly, σ = g(σ) ≤ g(τ ∨ σ), and

hence τ ∨ σ ≤ g(τ ∨ σ).

On the other hand, g−1 ∈ D2n and g−1(τ) = τ, g−1(σ) = σ, which shows that

g−1 is also a stabilizer for both τ and σ. We may conclude that τ = g−1(τ) ≤

g−1(τ ∨ σ) and σ = g−1(σ) ≤ g−1(τ ∨ σ), which shows that τ ∨ σ ≤ g−1(τ ∨ σ).

By applying g on both sides, we obtain g(τ ∨ σ) ≤ τ ∨ σ.

To sum up, we have τ ∨ σ = g(τ ∨ σ), hence τ ∨ σ ∈ NC(n)g.

24
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Similarly, we may prove that τ ∧ σ ∈ NC(n)g as well.

Hence, for all τ, σ ∈ NC(n)g, there is a join and meet in NC(n)g (actually it

is their original join and meet in NC(n)). Therefore NC(n)g is a lattice for all

g ∈ D2n.

Recall from Theorem1.2.2 that when n is even the reflections fall into two

conjugacy classes:

• one with F : {F,R2F,R4F, . . .}

• one with RF : {RF,R3F,R5F, . . .}

We will show that the lattices NC(n)F and NC(n)RF are anti-isomorphic

under a map which is is called the Kreweras Complement [7] and hence we only

need to study the behavior of NC(n)F .

To define the Kreweras complement of a non-crossing partition π ∈ NC(n),

we first add n imaginary vertices between the existing n vertices. By connecting

those imaginary vertices in the maximal way of not crossing the blocks of π, we

obtain a non-crossing partition of [n] on the imaginary vertices. Define this map

to be K and we established a bijection

K : NC(n)→ NC(n),

which is called the Kreweras Complement.

Example 2.0.3. Let π = {{1, 4, 5}, {2, 3}, {6}}. Figure 2.1 shows K(π) =

{{1, 6}, {2, 4}}.

Theorem 2.0.4. [2, section 4.2] K defines an anti-isomorphism between NC(n)F

and NC(n)RF .
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Figure 2.1: Kreweras Complement

Proof. One must first show that K sends NC(n)F into NC(n)RF . Let π ∈

NC(n)F , for a given symmetric axis of π which passes through vertex 1, by

Kreweras Complement, we do the same connections to both sides of the symmetric

axis and K(π) is still a non-crossing partition. K rotates the symmetric axis by a

rotation R, hence K(π) ∈ NC(n)RF .

Secondly, for any π and τ ∈ NC(n)F satisfying π ≤ τ . By the definition of

Kreweras Complement, if two imaginary vertices are connected in K(τ), so are

those in K(π). The other direction might not be true. Hence K(π) ≥ K(τ).

The result follows.

Example 2.0.5. In Figure 2.2, we see that the lattice of NC(4)F is anti-

isomorphic to the lattice of NC(4)RF .

In this chapter, we will first discuss the enumerative properties of NC(n)F , and

then take a look into the poset structures on NC(n)F and the “pruned sublattice”

NC(n)Fpr.
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Figure 2.2: Anit-isomorphism under Kreweras Complement

2.1 Enumeration on NC(n)F

Recall from Chapter 1 that the set of non-crosing partitions in NC(n) exhibits

the cyclic sieving phenomenon under the cyclic rotations of the n−gon, and we

have the following important theorem:

Theorem 2.1.1. [10, Theorem 7.2] The number of non-crossing partitions in

NC(n) fixed by Rd is counted by the q−Catalan Number evaluated at the d-th root

of the unity, i.e.

#NC(n)R
d

= Catq(n)|
q=e2πi

d
n
,

where R is the rotational generator of the dihedral group of D2n.

In particular, when n is even, the number of non-crossing partitions of the set

[n] fixed by R
n
2 is counted by the q−Catalan Number evaluated at q = −1, which

is Catq(n)|q=−1 =
(
n
n/2

)
.
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D.Callan and L.Smiley proved a similar result for NC(n)F .

Theorem 2.1.2. [3, Theorem 1] The number of self-complementary non-crossing

partitions of [n] is
(

n
bn/2c

)
.

A non-crossing partition π ∈ NC(n) is called self−complementary if F (π) =

π., which is clearly equivalent to say that π ∈ NC(n)F . Hence we know that

#NC(n)F =
(

n
bn/2c

)
.

However, they did not notice the connection with q−Catalan numbers. Callan

and Smiley’s proof uses a bijection to lattice paths. In this section we will give a

new bijective proof by relating NC(n)F to NC(n)R
bn/2c

.

Recall that the q−analogue of n, which is denoted as [n]q, is the polynomial

1 + q + q2 + . . .+ qn−1.

Hence

[n]q|q=−1 =


1, n is odd,

0, n is even.

Also note that the q−binomial coefficient

[
n

k

]
q

=
[n]q!

[n− k]q![k]q!
=

[n]q[n− 1]q · · · [n− k + 1]q
[k]q[k − 1]q · · · [1]q

.

It is clear that [n]q
[k]q

∣∣∣
q=−1

= 1 if both n and k are odd, and that [n]q
[k]q

∣∣∣
q=−1

= 0,

if n is even and k is odd.

Lemma 2.1.3. For both n and k even, limq→−1
[n]q
[k]q

=
n

k
.

Proof. We may use L’Hospital’s Rule to evaluate this limit quickly:

lim
q→−1

[n]q
[k]q

= lim
q→−1

[n]′q
[k]′q

= lim
q→−1

1 + 2q + 3q2 + . . .+ (n− 1)q(n−2)

1 + 2q + 3q2 + . . .+ (n− 1)q(k−2)
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=
1− 2 + 3− 4 + . . .− (n− 2) + (n− 1)

1− 2 + 3− 4 + . . .− (k − 2) + (k − 1)

=
1 + n−2

2

1 + k−2
2

=
2+n−2

2
2+k−2

2

=
n

k
.

Lemma 2.1.4. Catq(n)|q=−1 =
(

n
bn/2c

)
.

Proof. We only prove the case when n is odd, the other case is easy to check by

the reader. For any even number 2m, we have

(2m)!! = 2m · (2m− 2) · (2m− 4) · · · 2 = 2mm!.

Note that as q = −1,

Catq(n) =
1

[n+ 1]q

[
2n

n

]
=

1

[n+ 1]q
· [2n]q[2n− 1]q[2n− 2]q · · · [n+ 1]q

[n]q[n− 1]q · · · [2]q[1]q

=
[2n]q

[n+ 1]q
· [2n− 1]q

[n]q
· [2n− 2]q

[n− 1]q
· · · [n+ 1]q

[2]q
· 1

[1]q

=
2n

n+ 1
· 1 · 2n− 2

n− 1
· 1 · · · · n+ 1

2
· 1

=
(2n)(2n− 2) · · · (n+ 1)

(n+ 1)(n− 1) · · · (2)

=
(2n)!!

(n− 1)!!(n+ 1)!!

=
n!

(n−1
2

)! · (n+1
2

)!

=

(
n

bn
2
c

)
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Figure 2.3: Labelling of n-gon

Based on the lemma above and the result from theorem 2.1.1 and establish a

different combinatorial bijection to prove the following theorem:

Theorem 2.1.5. The number of non-crossing partitions in NC(n) fixed by F is

counted by the q−Catalan Number evaluated at q = −1, which is,

#NC(n)F = Catq(n)|q=−1.

Proof. We will break our proof in two pieces:

Case 1. When n is even (n = 2m).

We can build find a nice bijection between NC(n)R
m

and NC(n)F .

Since we can regard elements of the set [n] as vertices of an n−gon, we can

label the vertices of such an n−gon as in the Figure 2.3:

Label the top and bottom vertices as 1 and 2m, left column from 2 to m and
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right column from m+ 1 to 2m− 1. We call two vertices (a, b) a pair of anitpodes

if the sum of labels equals 2m+ 1.

Clearly, if π ∈ NC(n) is a non-crossing partition fixed by Rn/2 then i, j ∈

{2, 3, . . . ,m} are in the same block if and only if 2m + 1 − i and 2m + 1 − j are

in the same block on the right column.

Sub-Case 1. Suppose 1 is a singleton, then 2m is also a singleton.

For ∀ π ∈ NC(n)F , cutting through the symmetric axis connecting 1 and 2m,

we obtain two non-crossing partitions, one is on the set A = {2, 3, . . . ,m}, the

other is on the set B = {m+ 1,m+ 2, . . . , 2m− 1}.

We say that a block in A (B) is an external block if this block is previously

connected to some vertices in B.

Define a map φ : NC(n)R
m → NC(n)F as follows: Given π ∈ NC(n)R

m
,

reversing the labels of B from 2m− 1 to m+ 1, there will be the same number of

external blocks in A and B, since π is invariant under a rotation of 180◦. Hence

there will be a unique way to connect all the external blocks of A and B in a

“non-crossing” way. It is easy to see φ(π) ∈ NC(n)F .

This map is also invertible. Consider any non-crossing partition fixed by

reflection. Cutting through the symmetric axis and reversing the labelling of

B, there is a unique way to connect the external blocks from A and B to make

partition non-crossing.
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Hence we established a bijection between NC(n)R
n/2

and NC(n)F , the result

follows.

Sub-Case 2. Suppose 1 is a not singleton, neither is 2m.

Define the map φ as above. Then φ will send π to some π′ ∈ NC(n)F with 1

or 2m singleton depending on whether 2m or 1 is connected to some vertex from A.

Case 2. When n is odd (n = 2m− 1).

We can do the same labelling as in the first part and add an auxiliary vertex

at the bottom and label it as 2m.

From the first case we know that #NC(2m)F = #NC(2m)R
m

=

Catq(n)|q=−1 =
(

2m
m

)
.

Define the path connecting any two vertices which are symmetric via the

reflection axis as a bridge. Given an element in NC(2m − 1)F , by adding the

auxiliary vertex 2m, we may obtain two elements in NC(2m)F : one with vertex

2m isolated, the other one with 2m in the block connected to the lowest bridge.

Hence we obtain two subsets of NC(2m)F with the same size.

Notice that
(2m
m )
2

=
(

2m−1
m

)
, which is easy to see via Pascal’s triangle. We obtain
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Figure 2.4: Bridge between vertices of a n−gon

that #NC(2m− 1)F =
(

2m−1
m

)
= Catq(2m− 1)

∣∣
q=−1

=
(

n
bn/2c

)
.

2.2 Structural Decomposition of NC(n)F

In section 2.1, we discussed the enumeration of NC(n)F and showed it is counted

by the central binomial coefficient. In this section we will go into to NC(n)F

and establish a structural recurrence on it, which leads to a relation between the

central binomial coefficients and the Catalan numbers.

Definition 2.2.1. Label vertices of a regular n−gon as before, define the height

of a vertex i as follows:

ht(i) =


i if i ≤ dn

2
e,

i− dn
2
e+ 1 if i > dn

2
e.
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For example, if n = 2m, the heights of vertices are shown in Figure 2.5.

Definition 2.2.2. If two vertices have the same height, they are called a mirror

pair. The vertex from the left column is called the left image. Similarly we can

define the right image.

Consider the lattice of NC(n)F , we may think of decomposing the lattice into

several sublattices and each of the sublattices is isomorphic to the product of a

copy of the lattice of non-crossing partitions and a copy of the lattice of non-

crossing partitions fixed by reflection, which is proved in the following theorem.

Theorem 2.2.3 (Decomposition of NC(n)F ).

NC(n)F
as set∼=

bn
2
c⋃

i=0

(NC(i)×NC(n− 1− 2i)F ),

where we define NC(0) and NC(−1)F to be posets with one element.

Proof. We will give a combinatorial proof of the theorem.

Consider the block containing vertex 1. Since for any π ∈ NC(n)F , if vertex

1 is in the same block with a vertex with height k, then this block must contain

all vertices with height k. For a fixed n, there are dn
2
e different heights. Let j be

the maximal height of the vertices in the same block with vertex 1. Then the set

of possible heights is actually the set [dn
2
e].

Now consider two different set of vertices: one with all vertices of heights higher

than j, the other with all vertices of heights lower or equal to j. For a fixed set

of vertices with heights lower or equal to j, the remaining n− 2j + 1 vertices can

be partitioned in a non-crossing way fixed by reflection as in NC(n − 2j + 1)F .

Consider all the vertices with heights lower or equal to j. All these vertices are

coming from j heights, and the let image and the right image of a mirror pair
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Figure 2.5: Heights of vertices

should have the same behavior, i.e. either they are in the same block or they

are both isolated pairs themselves. Hence we may only consider “half” of them,

that is, vertices from 1 to j directly (the pattern of the other half could be copied

from it). What we need actually is just that those j vertices are partitioned in

a non-crossing way. The number of ways we can do to those j vertices is exactly

#NC(j), which is Cat(j).

The biggest such j we can find is dn
2
e and the smallest j is 1. Let i = j − 1,

the result follows.

It might be clearer if we take a look a the picture of the case in NC(6) as

shown in Figure 2.6.

The lattice of NC(6)F is decomposed into four sub-lattices. The first lattice
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Figure 2.6: Structural decomposition of NC(6)F
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consists of all non-crossing partitions fixed by reflection with vertex 1 connected

with vertex 6. In this case, our maximal height connected to vertex 1 is 3 and

we only need to make the partition of the set [3] (all left images of mirror pairs

together with vertices 1 and 6) non-crossing. This sub-lattice is clearly isomorphic

to NC(3) and hence isomorphic to NC(3) × NC(−1)F by defining NC(−1)F

to be a poset with one element. The middle two sub-lattices are isomorphic to

NC(2)×NC(1)F and NC(1)×NC(3)F respectively. The rightmost sub-lattice,

by ignoring the vertex 1, is just the lattice of NC(0)×NC(5)F , where NC(0) is

defined as a poset with one element.

Since we know that NC(n) is counted by the Catalan numbers and NC(n)F

is counted by the central binomial coefficients, we obtain the corollary as follows:

Corollary 2.2.4.

(
n

bn
2
c

)
=

bn/2c∑
i=0

Cat(i) ·
(
n− 1− 2i

bn−1−2i
2
c

)
.

This is a very nice recursive formula which illustrates the relation between the

central binomial coefficients and the Catalan numbers.

Definition 2.2.5. A generating function is a formal power series

f(x) =
∞∑
n=0

anx
n,

whose coefficients an encode information about a sequence of numbers that is

indexed by the natural numbers.
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Example 2.2.6. The generating function for the Catalan numbers [15] is

C(x) =
∞∑
n=0

Cat(n)xn =
1−
√

1− 4x

2x
.

The generating function for the central binomial coefficients [11, A001405] is

G(x) =
∞∑
n=1

(
n

bn/2c

)
xn =

1− 4x2 −
√

1− 4x2

4x3 − 2x2
.

We can also approach this formula in Corollary 2.2.4 from the perspective of

generating functions of posets.

Let ncf(n) = #NC(n)F , and F (x) = 1 + x + x2G(x). It is easy to see from

Theorem 2.1.5 that

F (x) =
∞∑

n=−1

ncf(n)xn,

with the convention that ncf(−1) = ncf(0) = 1.

Define two generating functions Fe(x) and Fo(x) by

Fe(x) =
∞∑
n=0

(
2n

n

)
xn,

Fo(x) =
∞∑
n=0

(
2n+ 1

n

)
xn.

It is a well known result [11, A000984] that Fe(x) =
1√

1− 4x
, and we can also

obtain that Fo(x) =
F (x) + F (−x)

2
.

One may establish Corollary 2.2.4 by check the equalities


Fe(x) = C(x)Fo(x),

Fo(x)−1
x

= C(x)Fe(x).
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2.3 Pruned Sublattice of NC(n)F

We have seen in the section 2.1 that NC(n)F is counted by the central binomial

coefficient. In this section we will look into a very special subposet of NC(n)F ,

which is the “pruned sublattice”.

Before we investigate “pruned sublattice” of NC(n)F , recall that a lattice is

a poset L for which every pair of elements has a least upper bound and greatest

lower bound.

From theorem 2.0.2, we know that NC(n)F is a lattice.

Recall from Chapter 1 that the lattice of NC(n) is graded with rank function

as

rank(π) := n− |π|,

where |π| is the number of blocks in π.

However, the lattice NC(n)F is not graded. In Figure 2.2, we see that there is

a maximal chain in NC(4)F of only length 2. Nevertheless, we can get sublattice

of NC(n)F which is graded by deleting some bad elements, which leads to the

idea of “Pruned Sublattice of NC(n)F”.

Definition 2.3.1. The pruned poset of NC(n)F is a subposet of NC(n)F where

all elements lie in a chain of maximal length in NC(n)F with length n.

Recall the labelling of the n−gon we developed in Figure 2.1. We can specify

two special types of pairs of blocks in an element π ∈ NC(n)F .

Definition 2.3.2. Let π ∈ NC(n)F . A pair of type A π is a pair of symmetric

blocks with respect to the reflection axis where each block consists of more than

one vertex from only either the left column of vertices {2, 3, . . . ,m} or the right

column {m+ 1,m+ 2, . . . , 2m− 1}.
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Figure 2.7: Examples of pairs of type A and type B

A pair of type B is pair of two symmetric vertices with respect to the reflection

axis, by connecting which we will obtain a crossing partition.

Example 2.3.3. Figure 2.7 shows examples of pairs of type A and B. on the

left picture, the pairs in the dotted boxes are two pairs of type A. On the right

picture, there are two pairs of singletons (each pair with the same height), by

crossing which we cannot avoid crossing. Hence, these two pairs are of type B.

Note that type A and type B are related by Kreweras Complement. If we have

a pair is of type A in π ∈ NC(n)F , then we have a corresponding pair of type B

in K(π).

Theorem 2.3.4. The pruned poset of NC(n)F contains all elements avoiding

symmetric pairs of type A and type B.

Proof. For any π ∈ NC(n)F , in order to refine or coarsen π, we have to either

break bridges connecting mirror vertices or break pairs of vertical edges in the left

column of vertices and the right column of vertices simultaneously.
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Since all elements in the pruned poset of NC(n)F must lie in a chain of NC(n)F

with length n. It must be possible to get 0̂ and 1̂ by breaks and connections that

only add or subtract one block. If π has a pair of type A, by breaking vertical

mirror edges we will get at least two more blocks and there will be no way to break

this par without adding two blocks. Similarly, if π has a pair of type B, there will

be no way to merge these without subtracting two blocks. In either case, π cannot

lie in a chain with length n.

Conversely, if π ∈ NC(n)F avoids pairs of type A and type B, then very block

of π has the form of either a big bulk in the middle including mirror vertices from

the left column of vertices and the right column, or a singleton by connecting

whose mirror vertex we get a bridge (except for vertex 1 and 2m if it exists). For

the mirror vertices in a big bulk, say vertices i and i + m− 1 (2 ≤ i ≤ m), if i is

connected to some other vertex from A (or even vertex 1 or 2m if it exists), we may

cut this edge and its mirror in B to add a block (actually we obtain a block with

only one bridge). Otherwise, we simply cut the bridge connecting them. Similar

thing happens when we want to subtract one block.

Note that the obtained pruned subposet of NC(n)F is also a sublattice, since

it is a graded subposet of NC(n) and the properties of lattice are easy to see.

Denote the pruned sublattice of NC(n)F as NC(n)Fpr. Then we have the

following:

Theorem 2.3.5. NC(n)Fpr is counted by the Fibonacci Number Fn−1, where F0 =

0, F1 = 1, Fn = Fn−1 + Fn−2,∀ n ≥ 2.

Proof. We will use induction to prove the theorem:

(1) It is easy to check #NC(1)Fpr = 1,#NC(2)Fpr = 2.
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(2) Suppose the result holds for all n ≤ k−1, if we can show #NC(k)Fpr = Fk−1,

then we are done.

• When k is even.

If k = 2m, by the labelling in Figure 2.1, we notice that either vertex 2m is

a singleton or it is in the block with the m and 2m− 1.

All π ∈ NC(k)Fpr with 2m a singleton form a lattice which is isomorphic to

the lattice of NC(k − 1)Fpr since we can just simply ignore 2m.

All τ ∈ NC(k)Fpr with 2m connected to m and 2m− 1 form a lattice which

is isomorphic to the lattice of NC(k − 2)Fpr, since we can regard 2m, m and

2m− 1 as a single vertex in the a k − 2-gon which plays the role of 2m− 2

in the labelling of a k − 2-gon.

• When k is odd. If k = 2m − 1, by the labelling, the vertex 1 is either a

singleton or it is in the block with 2 and m+ 1.

Consider the lattice of NC(k − 1)Fpr. The Kreweras Complement will map

NC(k− 1)Fpr to a anti-isomorphic graded lattice, where we can label the left

column of vertices from 2 to m and right column from m+ 1 to 2m− 1.

All π ∈ NC(k)Fpr with 1 a singleton form a lattice which is isomorphic to the

lattice of NC(k − 1)Fpr by the anti-isomorphism above and ignoring 1.

All τ ∈ NC(k)Fpr with 1 connected to 2 and m + 1 form a lattice which is

isomorphic to the lattice of NC(k− 2)Fpr, since we can regard 1, 2 and m+ 1

as a single vertex in the a k−2-gon which plays the role of 1 in the labelling

of a k − 2-gon.

In either case, #NC(k)Fpr = #NC(k−1)Fpr+#NC(k−2)Fpr = Fk−2 +Fk−3 =

Fk−1. The result follows.
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Definition 2.3.6. An order ideal of a poset P is a subset I of P such that if t ∈ I

and u ≤ v then u ∈ I.

The set of all order ideals of P , ordered by inclusion forms a poset denoted by

J(P ).

Definition 2.3.7. Given a lattice L, L is said distributive if for any s, t, u ∈ L,

the following two equalities hold:

1. s ∨ (t ∧ u) = (s ∨ t) ∧ (s ∨ u);

2. s ∧ (t ∨ u) = (s ∧ t) ∨ (s ∧ u).

Theorem 2.3.8. [16, Fundamental Theorem For Finite Distributive Lattices] Let

L be a finite lattice. Then L is a distributive lattice if and only if there is a unique

poset P (up to isomorphism) for which L ∼= J(P ).

Remark. Indeed, since the union and intersection of two order ideals is still an

order ideal, we know that J(P ) is a distributive lattice for any poset P by the

distributivity of set union and intersection.

Definition 2.3.9. A Zigzag poset of [n], which is also called a fence, is a poset

in which the order relations form a path with alternating orientations: 1 > 2 <

3 > 4 < 5 > · · ·n, denoted as Z[n].

NC(n)Fpr has a nice poset structure which is shown by the following theorem:

Theorem 2.3.10. The pruned sublattice NC(n)Fpr is isomorphic to the lattice of

order ideals of Zigzag poset of [n-1].

Proof. For a regular n-gon labelled as before, by connecting all the bridges and all

the symmetric edges, we may label all the bridges up and down with even number
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{2, 4, 6, · · · } and label all the other pairs of symmetric edges up and down with

odd numbers {1, 3, 5, · · · }. Such a labelling will give us a bijection between the

pruned lattice and the lattice of order ideals of Zigzag poset.

Indeed, we have seen in Theorem 2.3.4 that if π ∈ NC(n)Fpr, it must avoid

pairs of type A and type B. Hence all the blocks of π has the form of either a big

block with no curved edges in the middle including mirror vertices from both the

left and right columns of vertices, or a mirror singletons by connecting which we

get a bridge. Then every π ∈ NC(n)Fpr gives an order ideal with the labelling of

existing edges and bridges in the order ideal. Conversely, for any order ideal, by

joining the corresponding paths, we get an element of NC(n)F avoiding type of A

and B, which tells it is in NC(n)Fpr.

Example 2.3.11. In Figure 2.8, we see that the non-crossing partition

{{1, 2, 3, 6, 7}, {4}, {8}, {5, 9}} ∈ NC(9)Fpr corresponds to the order ideal

{1, 2, 3, 4, 8} ∈ J(Z[8]) under the isomorphism in the preceding proof. Each

bold line on the left corresponds to a solid point on the right with the same label.

Note that even though the bridge connecting vertices of height 2, i.e. bridge

with label 2, is not actually seen from the non-crossing partition, we still mark it

because vertex 2 and 6 are in the same block.

Corollary 2.3.12. The pruned lattice NC(n)Fpr is a distributive lattice.
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Figure 2.8: Isomorphism between NC(n)Fpr and J(Z[n−1])



Chapter 3

Characters of the Dihedral Group
Acting on Non-crossing Partition
Lattices

We have seen from the first chapter that each element g in the Dihedral group

D2n acts as an automorphism of the non-crossing partition lattice NC(n). In this

chapter, we will first recall Montenegro’s work in his unpublished manuscript [8]

and compute the characters of a reflection acting on NC(n), and extend the results

to NC(n)F to finish the computation of β[n−2]. In the next two sections, we will

take a look at the α characters of rank selected subposets of NC(n).

3.1 The Action of a Reflection on NC(n)

Definition 3.1.1. A finite poset P with 0̂ and 1̂ is called Cohen-Macaulay over C

if for every s < t in P , the order complex ∆(s, t) of the open interval (s, t) satisfies

H̃i(∆(s, t),C) = 0,∀i < dim∆(s, t),

where H̃i(∆(s, t),C) denotes the reduced simplicial homology with coefficients in

C.

Theorem 3.1.2. [16] If P is Cohen-Macaulay, then the Möbius function of P

46
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alternates in sign.

It is known that the lattice of NC(n) is Cohen-Macaulay [13]. Hence the

action of the Dihedral group D2n on the top homology of the order complex has

its character β[n−1] differing from the Möbius invariant µNC(n)F (0̂, 1̂) at most by a

sign.

Definition 3.1.3. A closure operation on P is a map x→ x̄ satisfying:

1. x ≤ x̄,

2. x ≤ y then x̄ ≤ ȳ,

3. ¯̄x = x̄.

Theorem 3.1.4. [4]

∑
z∈P,z̄=ȳ

µP (x, z) =


µP̄ (x̄, ȳ) if x = x̄,

0 otherwise.

where P̄ = {x̄ : x ∈ P}.

Definition 3.1.5. Let L be a finite lattice. An atom of L is an element which

covers 0̂. An coatom of L is an element which is covered by 1̂.

Theorem 3.1.6. [1] For a lattice L, if 1̂ is not the join of atoms, then the Möbius

invariant µL = 0. Similarly, if 0̂ is not the meet of coatoms, then µL = 0.

The following theorem and proof are from the unpublished manuscript of

Montenegro, here we did some organization and summarize as follows:

Theorem 3.1.7. [8]

µNC(n)F =


0 if n is odd,

−µNC(n/2) if n is even.
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Remark. Since the Kreweras Complement maps NC(n)F to NC(n)RF , which is

actually an anti-isomorphism, we have that µNC(n)RF = µNC(n)F .

Proof. Case 1: When n = 2m+ 1.

Labelling vertices as before in Figure 2.1, we have that the atoms of NC(n)F are

those non-crossing partitions with exactly one mirror pair connected, i.e. with

exactly one block {i, m+i-1} of size greater than one. The join of all the atoms is

the non-crossing partition with exactly two blocks, one of which is the vertex 1

as singleton, which is not 1̂. By the theorem above, µNC(n)F = 0.

Case 2: When n = 2m.

We may consider the Möbius function µNC(n)F ∗ on the dual lattice NC(n)F
∗
,

since µNC(n)F ∗ = µNC(n)F . Let π0 be the partition containing exactly two blocks

with vertex 1 as a singleton. Define a closure operation on NC(n)F
∗

by sending

0̂∗ → 0̂∗ and π → π ∧ π0 for π 6= 0̂∗, where ∧ is the regular meet in NC(n). Then

clearly the quotient lattice Q = {π : π̄ = π} has the unique atom π0 and hence

µQ = 0.

Consider a special element τ ∈ NC(n)F
∗

with all vertices singletons expect

the block {1, 2m}. We claim that for π 6= 1̂∗, π ∧ π0 = 1̂∗ if and only if π = τ .

Indeed, π0 ∧ τ = 1̂. For the converse, suppose that π 6= 1̂∗ and π 6= τ . There

is a block B of π of size greater than one and a member in {1, 2, . . . ,m, 2m}. If

{1, 2m} ∩ B = ∅, then the non-crossing partition with B and F (B) as the only

blocks of size greater than one is an upperbound of π ∧ π0 in µNC(n)F ∗ . If If

{1, 2m}∩B 6= ∅ for some i ∈ {2, . . . ,m}, then the partition with {i,m+ i− 1} as

the only block of size greater than one is an upperbound of π ∧ π0 in µNC(n)F ∗ .
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Hence we obtain that

0 = µQ =
∑
z̄=1̂∗

µNC(n)F ∗(0̂
∗, z) = µNC(n)F ∗(0̂

∗, τ) + µNC(n)F ∗(0̂
∗, 1̂∗).

Hence µNC(n)F = −µNC(n/2), since it is clear that the subposet {π ∈ NC(n)F
∗

:

0̂∗ ≤ π ≤ τ} is isomorphic to the lattice NC(n/2).

Corollary 3.1.8.

β[n−2](F ) = β[n−2](RF ) =


0 if n is odd,

(−1)
n
2 Cat(n

2
− 1) if n is even.

Montenegro and Reiner also computed the β[n−2](R
d) independently, which is

summarized in the following theorem:

Theorem 3.1.9. [8, 9]

β[n−2](R
d) =


Catn−1 if d = n,

(−1)gcd(d,n)+n(1− 2gcd(d, n))Catgcd(d,n)−1 if d 6= n.

Remark. gcd(d, n) is the greatest common divisor of d and n.

3.2 Non-crossing Partitions with a Certain

Number of Blocks Fixed by a Reflection

In Chapter 1, Theorem 1.1.12 tells us that the number of NC(n) with k blocks is

counted by the classic Narayana Number, i.e. #{π ∈ NC(n) : π has k blocks} =
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Nar(n, k) = 1
n

(
n
k

)(
n
k−1

)
. We will consider the cyclic sieving phenomenon (CSP)

on NC(n) which is introduced in section 1.3 and try to extend this to a “dihedral

sieving phenomenon”. In addition to the usual cyclic sieving phenomenon, we

will show that in the lattice of NC(n)F , the number of NC(n)F with k blocks is

counted by the q−Narayana Number evaluated at q = −1.

Consider the Dihedral group D2n acting on NC(n). Recall from section 1.4

that αS(g) is actually the number of chains of maximal length (i.e. with |S| + 2

elements) in the lattice of NC(n)g, for g ∈ D2n. If we restrict our rank selected

set S to be a single element set, that is S = {k}, for some k ∈ [n− 1], then αk(g)

counts the number of elements in the lattice of NC(n)g with n− k blocks.

Note that the rank function in NC(n) is defined to be rank(π) := n − |π|.

Hence all the NC(n) with the same rank have the same number of blocks. And

therefore, Theorem 1.1.12 can be rewritten as :

Theorem 3.2.1. Let D2n act on the lattice of NC(n), then

α{n−k}(1) = Nar(n, k) =
1

n

(
n

k

)(
n

k − 1

)
,∀ k ∈ [n− 1].

It is known from Reiner, Stanton and White [10, Theorem 7.2] that the number

of NC(n) fixed by rotation Rd with k blocks is counted by the q−Narayana

Number evaluated at q = e2πid/n, that is

Theorem 3.2.2. [10] For all k ∈ [n− 1], we have

α{n−k}(R
d) = Narq(n, k)|q=eeπid/n =

1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=e2πid/n

.

To finish the computation of the character α{n−k}, we need to know α{n−k}(F )

and α{n−k}(RF ).
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Now we restrict to the lattice of NC(n)F . We are interested in the number

of NC(n)F with exactly k blocks. Before we compute α{n−k}(F ), we will first

introduce an interesting recurrence relationship of NC(n)F with certain blocks.

Definition 3.2.3. Denote the set of elements in NC(n)F with k blocks as

NC(n, k)F and #NC(n, k)F is denoted ncf(n, k), #NC(n) with k blocks is

denoted nc(n, k).

Theorem 3.2.4. If n is even, then ncf(n, k) = ncf(n− 1, k) +ncf(n− 1, k− 1).

Proof. Label all the vertices of n−gon as in Figure 2.1. Then the vertex n is either

a block itself as singleton or in the block connected to the last bridge. In the first

case, the number of NC(n, k)F with vertex n as a singleton is just ncf(n−1, k−1)

by ignoring the last vertex n added to NC(n−1, k−1)F . In the latter case, vertex

n does not contribute to the number of blocks and hence the number is equal to

ncf(n− 1, k) as in the set of NC(n− 1, k)F . The recursive formula follows.

Theorem 3.2.5. If n is odd, then

ncf(n, k) =


ncf(n− 1, k) + ncf(n− 1, k − 1), if k is odd,

ncf(n− 1, k) + ncf(n− 1, k − 1)− nc(n−1
2
, k

2
), if k is even.

Proof. For any element in NC(n, k)F , consider deleting the vertex 1.

Case 1: When k is odd,

If vertex 1 is a block itself as a singleton, by deleting it, we obtain a non-

crossing partition of [n − 1] with k − 1 blocks. If vertex 1 is connected to some

vertices below, after deleting vertex 1, we get a non-crossing partition of [n − 1]

with exactly k blocks. The result follows easily.

Case 2: When k is even,
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Figure 3.1: Example of NC(7, 4)F

If vertex 1 is a block itself as a singleton, by deleting it, we obtain a non-crossing

partition of [n−1] with k−1 blocks. If vertex 1 is connected to some vertex below,

by deleting it, we get a non-crossing partition of [n− 1] with k blocks. However,

we need to avoid the case that there is no bridge underneath, since otherwise, the

number of blocks under vertex 1 is an even number (the numbers of blocks coming

from left column of vertices and right column are the same) and we have no way

to put vertex 1 in another block without building a bridge.

Notice that the subposet of NC(n− 1, k− 1)F with no bridge is isomorphic to

the lattice of NC(n−1
2
, k

2
). The recursive formula follows.

It is easier to understand this theorem if we take a look at an example.

Example 3.2.6. Consider the set of NC(7, 4)F . In Figure 3.1, all the non-

crossing partitions on the first row are those for which vertex 1 is a singleton. By

deleting 1 we obtain six elements from NC(6, 4)F (i.e. the first row by ignoring

vertex 1 is just the set NC(6, 4)F ). If vertex 1 is not a singleton, we will miss
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1

1 −1 1

1 1 1

1 −1 2 2 −1 1

1 2 4 2 1

1 −1 3 6 −3 6 3 −1 1

1 3 9 9 9 3 1

...
...

...
...

...
...

...

Figure 3.2: Jumping Triangle

three elements from NC(6, 4)F which are in the dotted box on the third row,

because otherwise we cannot have an even number of blocks. It is easy to see

those three elements in the dotted box form a set isomorphic to NC(3, 2) by

putting an imaginary symmetric axis in the middle..

We can write down this recursive relationship by a triangle, whose rows consist

of ncf(n, k) for k from 1 to n. The circled numbers are exactly the negatives of

the classic Narayana numbers.

Now we turn back to compute ncf(n, k).

We want to find an explicit formula for ncf(n, k).

Recall that the q−analogue of n, which is denoted as [n]q, is the polynomial

1 + q + q2 + . . .+ qn−1.



54

And

[n]q|q=−1 =


1, n is odd,

0, n is even.

We may use the Lemma 2.1.3 above to compute the explicit formula

for q−Narayana numbers evaluated at q = −1. Since q−Narayana number

Narq(n, k) = 1
[n]q

[
n
k

]
q

[
n

k−1q

]
is always a polynomial [6], hence the limit as q

approaches −1 is exactly its evaluation at −1.

First, assume that n is odd, then by definition we have 1
[n]q
|q=−1 = 1.

Case 1. If k is odd, then k − 1 is even.

[
n

k

]
q

=
[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
,[

n

k − 1

]
q

=
[n]q[n− 1]q · · · [n− k + 2]q

[k − 1]q[k − 2]q · · · [1]q
.

Then using the Lemma 2.1.3, we obtain at q = −1,

[
n

k

]
q

∣∣∣∣∣
q=−1

=
1

1
· n− 1

k − 1
· 1

1
· n− 3

k − 3
· · · n− k + 2

2
=

(n− 1) · (n− 3) · · · (n− k + 2)

(k − 1) · (k − 3) · · · (2)
.

Similarly we have,

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=
[n]q[n− 1]q[n− 2]q[n− 3]q · · · [n− k + 2]q

[1]q[k − 1]q[k − 2]q[k − 3]q · · · [2]q

∣∣∣∣
q=−1

=
1

1
· n− 1

k − 1
· 1

1
· n− 3

k − 3
· · · n− k + 2

2

=
(n− 1) · (n− 3)t · · · (n− k + 2)

(k − 1) · (k − 3) · · · (2)
.
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Recall the definition and the following properties of the double factorial:

n!! = n · (n− 2) · · · 3 · 1,

2nn! = 2n · (2n− 2) · (2n− 4) · · · = (2n)!!,

(2n)!

2nn!
= (2n− 1) · (2n− 3) · · · = (2n− 1)!!

Then we have

(n− 1)!! = 2
n−1
2 · (n− 1

2
)!,

(k − 1)!! = 2
k−1
2 · (k − 1

2
)!,

(n− k)!! = 2
n−k
2 · (n− k

2
)!.

This implies that

[
n

k

]
q

∣∣∣∣∣
q=−1

=

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=
(n− 1) · · · (n− 3) · · · (n− k + 2)

(k − 1) · (k − 3) · · · (2)

=
(n− 1)!!

(k − 1)!!(n− k)!!
=

2
n−1
2 · (n−1

2
)!

2
k−1
2 · (k−1

2
)!2

n−k
2 · (n−k

2
)!

=
(n−1

2
)!

(k−1
2

)!(n−k
2

)!

=

(n−1
2

k−1
2

)
.

Hence,

Narq(n, k)|q=−1 =
1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=

(n−1
2

k−1
2

)2

.

Case 2. If k is even, then k − 1 is odd.
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Using a method similar to case 1 above, one can compute that

[
n

k

]
q

∣∣∣∣∣
q=−1

=

(n−1
2
k
2

)
,

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=

(n−1
2

k−2
2

)
,

and hence,

Narq(n, k)|q=−1 =
1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
.

Next assume that n is even. In this case we have 1
[n]q
|q=−1 = 0, so we need to

use some trick here.

Case 1. If k is odd, then k − 1 is even. At q = −1,

1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=
[n]q
[n]q

[n− 1]q[n− 2]q · · · [n− k + 1]q
k]q[k − 1]1 · · · [1]q

· [n]q[n− 1]1 · · · [n− k + 2]q
[k − 1]q[k − 2]1 · · · [1]q

∣∣∣∣
q=−1

= (
n− 2

k − 1
· n− 4

k − 3
· · · n− k + 1

2
) · ( n

k − 1
· n− 2

k − 3
· · · n− k + 3

2
)

=
(n− 2)!!

(k − 1)!!(n− k − 1)!!
· n!!

(k − 1)!!(n− k + 1)!!

=

(n−2
2

k−1
2

)
·
( n

2
k−1

2

)
.

Case 2. If k is even, then k − 1 is odd.
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Similarly we may compute that

1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=
[n]q
[n]q

[n− 1]q[n− 2]q · · · [n− k + 1]q
k]q[k − 1]1 · · · [1]q

· [n]q[n− 1]1 · · · [n− k + 2]q
[k − 1]q[k − 2]1 · · · [1]q

∣∣∣∣
q=−1

= (
n− 2

k
· n− 4

k − 2
· · · n− k + 2

2
) · ( n

k − 2
· n− 2

k − 4
· · · n− k + 2

2
)

=
(n− 2)!!

(k − 2)!!(n− k)!!
· n!!

k!!(n− k)!!

=

(n−2
2

k−2
2

)
·
(n

2
k
2

)
.

In summary, we computed the explicit formulae for the q−Narayana numbers

evaluated at q =−1:

1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=



(n−1
2

k−1
2

)2

n odd, k odd,(n−1
2
k
2

)
·
(n−1

2
k−2
2

)
n odd, k even,(n−2

2
k−1
2

)
·
( n

2
k−1
2

)
n even, k odd,(n−2

2
k−2
2

)
·
(n

2
k
2

)
n even, k even.

Remark. We can rewrite the equations above as

1

[n]q

[
n

k

]
q

[
n

k − 1

]
q

∣∣∣∣∣
q=−1

=

(bn−1
2
c

bk−1
2
c

)
·
(bn

2
c

bk
2
c

)
,

for simplicity.

Theorem 3.2.7. α{n−k}(F ) = ncf(n, k) = Narq(n, k)|q=−1 = 1
[n]q

[
n
k

]
q

[
n
k−1

]
q

∣∣∣
q=−1

.

Proof. If we can prove that the q−Narayana numbers evaluated at q = −1 satisfy
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all the recursive formulae in Theorem 3.2.4 and Theorem 3.2.5, with the initial

condition that

Narq=−1(1, 1) = 1,

Narq=−1(2, 1) = 1,

Narq=−1(2, 2) = 1,

then we are done.

Here we only check the most difficult recursive formula:

ncf(n− 1, k) + ncf(n− 1, k − 1)− nc(n− 1

2
,
k

2
), if n is odd and k is even.

All the others can be justified easily by the reader.

When n is odd and k is even, our goal is to show that at q = −1,

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
=

(n−3
2

k−2
2

)
·
(n−1

2
k
2

)
+

(n−3
2

k−2
2

)
·
(n−1

2
k−2

2

)
− 1

n−1
2

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
.

Notice that

RHS =

(n−3
2

k−2
2

)
·
(n−1

2
k
2

)
+

(n−3
2

k−2
2

)
·
(n−1

2
k−2

2

)
− 1

n−1
2

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
=

(n−3
2

)(n−5
2

) · · · (n−k−1
2

+ 1)

(k−2
2

)!
·

(n−1
2

)(n−3
2

) · · · (n−k−1
2

+ 1)

(k
2
)!

+

(n−3
2

k−2
2

)
·
(n−1

2
k−2

2

)
− 1

n−1
2

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
=

(n−1
2

)(n−3
2

) · · · (n−k+1
2

+ 1)

(k−2
2

)!
·

(n−3
2

)(n−5
2

) · · · (n−k−1
2

+ 1)

(k
2
)!

· (n− k − 1

2
+ 1)

+

(n−3
2

k−2
2

)
·
(n−1

2
k−2

2

)
− 1

n−1
2

(n−1
2
k
2

)
·
(n−1

2
k−2

2

)
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=

(n−1
2

k−2
2

)[
(n−3

2
)(n−5

2
) · · · (n−k−1

2
+ 1)

(k
2
)!

· (n− k − 1

2
+ 1) +

(n−3
2

k−2
2

)
− 1

n−1
2

(n−1
2
k
2

)]

=

(n−1
2

k−2
2

)[
1

(k
2
)!

(
n− 3

2
) · · · (n− k − 1

2
+ 1)(

n− k − 1

2
+ 1)

+
1

(k
2
)!

(
n− 3

2
) · · · (n− k − 1

2
+ 1) · k

2
− (

n− 1

2
) · · · (n− k − 1

2
+ 1) · 1

n−1
2

]

=

(n−1
2

k−2
2

)
1

(k
2
)!

[
(
n− 3

2
) · · · (n− k − 1

2
+ 1)

(
n− k − 1

2
+ 1 +

k

2
− 1

)]
=

(n−1
2

k−2
2

)
1

(k
2
)!

(
n− 1

2
) · · · (n− k − 1

2
+ 1)

=

(n−1
2

k−2
2

)(n−1
2
k
2

)
= LHS.

Under the Kreweras Complement, using the fact that

Narq(n, n− k + 1) = Narq(n, k),

it is easy to see that α{n−k}(RF ) = Narq(n, k)|q=−1 = 1
[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=−1 as well.

In summary, we have completed the calculation of the character αS when

|S| = 1.

1. When n is odd,

g ∈ D2n 1 Rd (1 ≤ d ≤ n) F

α{n−k}
1
n

(
n
k

)(
n
k−1

)
1

[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=e2πi/d

(bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

)
2. When n is even,
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g ∈ D2n 1 Rd (1 ≤ d ≤ n) F RF

α{n−k}
1
n

(
n
k

)(
n
k−1

)
1

[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=e2πi/d

(bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

) (bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

)

3.3 Maximal Chains of NC(n)

In the previous section, we investigated the number of non-crossing partitions of

[n] of the certain rank, which is α[i] for ∀i ∈ [n]. Next, our goal is to compute the

character αS when S is as large as possible, i.e. S = [n− 2].

Recall from section 1.4 that αS(1) actually counts the number of chains of

length |S|+ 1 of the rank-selected subposet of NC(n), where S ⊂ [n− 2]. In this

section, we will look into a special S when S = [n − 2], that is, to study α[n−2]

evaluated at any element g in the dihedral group D2n.

First we need to consider the number of maximal chains of length n− 1 in the

total poset NC(n), which is counted by the number of α[n−2](1).

Definition 3.3.1. Let P be a finite poset. If #P = k ≥ 2, then define Z(P, k)

to be the number of multi-chains t1 ≤ t2 ≤ . . . ≤ tk−1 in P . We call Z(P, k)

(regarded as a function of k) the zeta polynomial of P .

Theorem 3.3.2. [16] Let bi be the number of chains with i − 1 elements in P .

Then bi+2 = ∆iZ(P, 2), i ≥ 0, where ∆ is the finite difference operator. In other

words, Z(P, n) =
∑

i≥2 bi
(
k−2
i−2

)
.

In particular, Z(P, k) is a polynomial function of k whose degree d is equal

to the length of the longest chain of P , and whose leading coefficient is bd+2/d!.

Moreover, we have Z(P, 2) = #P.

The following theorem is from Edelman:
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Theorem 3.3.3. [5]

Z(NC(n), k) =
1

n!

n−1∏
i=1

((k − 1)n+ i+ 1).

Note that the zeta polynomial allows us to compute the number of maximal

chains. We will illustrate this by reproving the following theorem of Kreweras,

which he proved by a different method.

Theorem 3.3.4. [7] α[n−1](1) = nn−2.

Proof. What we need is only to compute bn.

By Theorem 3.3.2, Z(NC(n), n) = bn
(n−1)!

kn−1 + . . . , where all the terms

following bn
(n−1)!

kn−1 are those whose degrees are lower than n − 1. Hence

limk→∞
Z(NC(n),k)

kn−1 = bn
(n−1)!

. According to Theorem 3.3.3,

lim
k→∞

Z(NC(n), k) =
1

n!
· kn+ 2

k
· kn+ 3

k
· . . . · kn+ n

k

=
1

n!
· n · n · . . . · n

=
nn−1

n!
.

which implies

bn =
(n− 1)!nn−1

n!
=
nn−1

n
= nn−2.

Now we consider NC(n)g, for g ∈ D2n.

Recall we established an isomorphism in Theorem 2.2.9 that the lattice of

NC(n)Fpr is isomorphic the the lattice of order ideals of Zigzag poset of [n− 1].

Definition 3.3.5. The number of alternating permutations [14] ω ∈ Sn is denoted

En (with E0 = 1). Such a number is called an Euler Number.
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Recall that the Zigzag poset of [n] is denoted as Z[n].

Theorem 3.3.6. # maximal chains in J(Z[n]) = En.

Proof. The number of maximal chains of order ideals in J(Z[n]) is equal to the

number of linear extensions of Z[n], which is equal to the number of alternating

permutations of [n].

Note that by the argument of the Theorem 2.3.4 and 2.3.10 the number of

chains with length n − 1 in NC(n)F all lie in the pruned sublattice of NC(n)Fpr.

Hence we obtain:

Corollary 3.3.7. α[n−2](F ) = En−1.

For n is even, we have seen that through Kreweras complement, α[n−1](RF ) =

En−1 as well.

It remains only to copute α[n−2](R
d) for d ∈ [bn

2
c].

Theorem 3.3.8. α[n−2](R
d) = 0, for all d ∈ [bn

2
c].

Proof. For a fixed d ∈ [bn
2
c], suppose there exists a chain of length n− 1 which is

fixed by Rd, consider the coatom on this chain. Since such a coatom is also fixed

by Rd, it has d symmetric parts. It is impossible to get a non-crossing partition

with d ≥ 3 blocks which is fixed by Rd because we need to do the same refinement

to those d symmetric parts. Hence such a coatom cannot lie on a chain of length

n− 1, which is a contradiction the existence of such a chain of length n− 1.

Now we fully understand α[n−2](g),∀g ∈ D2n, and we summarize our results in

the following tables:
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1. When n is odd,

g ∈ D2n 1 R . . . R
n−1
2 F

α[n−2] nn−2 0 0 0 En−1

2. When n is even,

g ∈ D2n 1 R . . . R
n
2 F RF

α[n−2] nn−2 0 0 0 En−1 En−1

3.4 Multiplicities of Irreducible Characters in αS

and βS

In the previous sections, we computed the αS and βS for some rank-subsets S ⊂

[n − 2]. We may then compute the multiplicities of irreducible characters in αS

and βS.

Definition 3.4.1. Let χ and ψ be two characters, then the inner product of χ

and ψ is

〈χ, ψ〉 =
1

G

∑
g∈G

χ(g)ψ(g).

Theorem 3.4.2. [12] Let χ be an irreducible character and ψ be any character.

Then the multiplicity of χ in ψ is equal to 〈χ, ψ〉.

In section 1.2, we established the character tables of D2n in Figure 1.4 and

Figure 1.5. Let χφ be the character of an irreducible representation φ of the

dihedral group D2n. We can use the theorem above to compute the multiplicities

of irreducible characters in αS and βS for some rank-sets S explicitly.
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Case 1. When n is odd.

In Figure 1.4, we see that there are n+3
2

irreducible characters. αS can be

interpreted by the following formula (similar for βS):

αS = 〈χTriv, αS〉 · χTriv + 〈χDet, αS〉 · χDet +

(n−1)/2∑
i=1

〈χφi , αS〉 · χφi .

If S is a subset of [n − 2] with only one element, from section 3.2 and the

formula for inner product in definition 3.4.1 (note that αS is real-valued), we may

compute the multiplicities of irreducible characters in αn−k as follows:

〈χTriv, α{n−k}〉 = 1
2n
{1 · 1

n

(
n
k

)(
n
k−1

)
+ n · 1 ·

(bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

)
+ 2 ·

∑(n−1)/2
d=1 1 ·

1
[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=e2πi/d}

〈χDet, α{n−k}〉 = 1
2n
{1 · 1

n

(
n
k

)(
n
k−1

)
+ n · (−1) ·

(bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

)
+ 2 ·

∑(n−1)/2
d=1 1 ·

1
[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=e2πi/d}

〈χφi , α{n−k}〉 = 1
2n
{2 · 1

n

(
n
k

)(
n
k−1

)
+ n · 0 ·

(bn−1
2
c

b k−1
2
c

)
·
(bn

2
c

b k
2
c

)
+ 2 ·

∑(n−1)/2
d=1 2 cos 2idπ

n
·

1
[n]q

[
n
k

]
q

[
n
k−1

]
q
|q=e2πi/d}, ∀i ∈ [n−1

2
].

If S is [n − 2], from section 3.3, we may get the multiplicities of irreducible

characters in α[n−2] as follows:

〈χTriv, α[n−2]〉 = 1
2n
{1 · nn−2 + n · 1 ·En−1 + 2 ·

∑(n−1)/2
d=1 1 · 0} = 1

2n
{nn−2 + nEn−1}

〈χDet, α[n−2]〉 = 1
2n
{1 ·nn−2 +n · (−1) ·En−1 +2 ·

∑(n−1)/2
d=1 1 ·0} = 1

2n
{nn−2−nEn−1}

〈χφi , α[n−2]〉 = 1
2n
{2·nn−2 +0·En−1 +2·

∑(n−1)/2
d=1 2 cos 2idπ

n
·0} = 1

2n
nn−2, ∀i ∈ [n−1

2
].

Note that β[n−2] is also real-valued, hence by section 3.1 we obtain:

〈χTriv, β[n−2]〉 = 1
2n
{1 · Catn−1 + n · 1 · 0 + 2 ·

∑(n−1)/2
d=1 1 · (−1)gcd(d,n)+n(1 −

2gcd(d, n))Catgcd(d,n)−1}

〈χDet, β[n−2]〉 = 1
2n
{1 · Catn−1 + n · (−1) · 0 + 2 ·

∑(n−1)/2
d=1 1 · (−1)gcd(d,n)+n(1 −

2gcd(d, n))Catgcd(d,n)−1}
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〈χφi , β[n−2]〉 = 1
2n
{2 · Catn−1 + n · 0 · 0 + 2 ·

∑(n−1)/2
d=1 2 cos 2idπ

n
· (−1)gcd(d,n)+n(1 −

2gcd(d, n))Catgcd(d,n)−1}, ∀i ∈ [n−1
2

].

Case 2. When n is even.

In Figure 1.5, we see that there are n+6
2

irreducible characters. And αS and βS

can be interpreted similarly as in the case 1.

We may compute α[n−2] and get the following results:

〈χTriv, α[n−2]〉 = 1
2n
{1·nn−2+n·1·En−1+2·

∑(n−2)/2
d=1 1·0+1·0} = 1

2n
{nn−2+nEn−1}

〈χDet, α[n−2]〉 = 1
2n
{1 ·nn−2 +n · (−1) ·En−1 + 2 ·

∑(n−2)/2
d=1 1 · 0 + 1 · 0} = 1

2n
{nn−2−

nEn−1}

〈χLin1, α[n−2]〉 = 1
2n
{1 ·nn−2 + n

2
· 1 ·En−1 + n

2
· (−1) ·En−1 + 2 ·

∑(n−2)/2
d=1 (−1)d · 0 +

(−1)n/2 · 0} = 1
2n
{nn−2}

〈χLin2, α[n−2]〉 = 1
2n
{1 · nn−2 + n · 1 · En−1 + 2 ·

∑(n−2)/2
d=1 (−1)d · 0 + (−1)n/2 · 0} =

1
2n
{nn−2 + nEn−1}

〈χφi , α[n−2]〉 = 1
2n
{2 ·nn−2 +n · 0 ·En−1 + 2 ·

∑(n−2)/2
d=1 2 cos 2idπ

n
· 0 + 2 cos 2inπ

n
· 0} =

1
2n
nn−2, ∀i ∈ [n/2].

The multiplicities of irreducible characters in α{n−k} and β[n−2] can be checked

by the reader easily.

3.5 Directions for Future Research and Some

Open Problems

In this thesis, we investigated poset structure on NC(n)F and computed the

characters of αS and βS for some rank-selected subsets S ⊂ [n− 2]. There are

still some open problems which we may work with in the future.
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1. Combinatorial interpretation of coefficients of αS and βS in terms of

irreducible characters for D2n.

We have already seen that both α and β are actual representations, which

means characters αS and βS can be expressed as linear combination of

irreducible characters with positive coefficients. We just know that the

coefficient of the trivial representation is the number of orbits. Is there

any way we can figure out the meaning of all the other coefficients?

2. αS and βS for some other rank-sets S ⊂ [n− 2].

In Chapter 3, we computed β[n−2], αi for i ∈ [n− 2] and α[n−2]. We are also

interested in other rank-sets S ⊂ [n− 2]. Are we able to compute those αS

and βS?

3. Zeta polynomial of NC(n)F .

In Kreweras’ paper [7], he computed the zeta polynomial of NC(n). When

we investigated the zeta polynomial ofNC(n)F , we did not get a nice formula

or conjecture. Maybe we could use some techniques to compute the zeta

polynomial for NC(n)F explicitly?
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