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Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that causes

infections in different parts of the body. It is tougher to treat than most strains of

Staphylococcus aureus or staph, because it is resistant to some commonly used an-

tibiotics. In this work, we investigate the role of environmental contamination on the

clinical epidemiology of antibiotic-resistant bacteria in hospitals. A compartmental

model is constructed to describe the transmission characteristics of MRSA in hospi-

tal setting. The deterministic epidemic model includes five compartments: colonized

and uncolonized patients, contaminated and uncontamincated health care workers

(HCWs), and bacterial load in environment. Basic reproduction number R0 is cal-

culated, and its numerical and sensitivity analysis has been performed to study the

asymptotic behavior of our model, and to help identify factors responsible for ob-

served patterns of infection. A stochastic epidemic model with stochastic simulations

is also presented to supply a comprehensive analysis of its behavior. The purpose of

this study is to provide theoretical guidance for designing efficient control measures,

such as increasing the hand hygiene compliance of HCWs and disinfection rate of en-

vironment, and decreasing the transmission rate between environment and patients

and HCWs.
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Chapter 1

Introduction

The emergence and spread of antimicrobial-resistant bacteria (ARB) is one of the

most serious public health threats. Bacteria such as vancomycin-resistant entero-

cocci (VRE) and glycopeptide-intermediate sensitive Staphylococcus aureus present

hospitals with the prospect of a postantibiotic era, in which few if any therapeutic an-

timicrobial agents remain effective.[33] Compared to infections caused by susceptible

strains, infections caused by antibiotic-resistant organisms are more likely to prolong

hospitalization, to increase the risk of death, and to require treatment with more

toxic or more expensive antibiotics.[10] Patients admitted to healthcare institutions

are the main reservoirs of ARB. It is estimated that 5 − 10% of patients develop

an infection directly related to their hospitalization, resulting in over 90,000 deaths

per year in the US. Infections that are acquired in hospitals, and are favored by a

hospital environment, referred to by the technical term ’nosocomial’ have been a big

threat to the public health. This situation is even more severe in China. A high per-

centage of hospital-acquired infections are caused by highly resistant bacteria such as

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant ente-
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rococci. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associ-

ated with considerable morbidity and mortality among inpatients,[7, 8] and accounts

for 35 − 80% of total staphylococcal infection in China.[29] Patients colonized with

MRSA are more likely to develop infection.[22, 23] Considerable quantitative research

has been dedicated into the study of infection control strategies. However, to gain

a complete understanding of the numerous interrelated variables that contribute to

the spread of ARB, mathematical modeling has a particularly successful record of

applications to the epidemiology of infectious diseases. This is especially true for the

description of the transmission dynamics of diseases ranging from measles and per-

tussis to gonorrhea and in the prediction of the effects of public health interventions

such as treatment and vaccination on these dynamics.[16] Mathematical modeling has

provided a means to study the transmission dynamics of nosocomial pathogens in

hospitals, including investigations of patient and health care worker contact patterns,

and HCW-and patient-mediated transmission.

Much evidence has been proposed to show that environmental contamination is

an important factor in the transmission of MRSA.[5] Environmental contamination

may contribute to transmission of health care pathogens when health care workers

contaminate their hands or gloves by touching contaminated surfaces, or when pa-

tients come into direct contact with contaminated surfaces. Transmission of MRSA

from environmental surfaces to gloves or hands of HCWs has been documented by

several investigators.[4] However, little is known about the role of environmental in-

fection in the transmission dynamics of MRSA, and this provides the motivation of

our research.

To investigate the transmission pattern of nosocomial infection in hospitals, we

first introduce a compartmental model of the transmission dynamics of MRSA in Bei-
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jing Tongren Hospital with patients, HCWs and volunteers.[30] The hospital provided

patient data collected from Emergence Ward (EW) that we will use in the analysis

of our model. Based on this research, we establish a mathematical model with pa-

tients, HCWs and bacteria in the environment. I used a combination of numerical

and sensitivity analysis to analyze the deterministic model, which concentrates on the

interactions between environmental infection and patients and HCWs. A stochastic

epidemic model and its simulations are also introduced to check the essential features

that are not well described in the deterministic model.

To control the nosocomial infection with environmental infection in hospitals, we

give suggestions on control strategies as follows. First, increasing the disinfection

rate of environment will help to control the transmission dynamic of MRSA in the

hospital. Meanwhile, it is essential to control the contamination rates between the

environment and patients and HCWs. Finally, we should give priority to controlling

the contamination rate between the environment and patients rather than that of the

environment and HCWs.



Chapter 2

Modeling the transmission

dynamics of methicillin-resistant

Staphylococcus aureus in Beijing

Tongren Hospital

2.1 Purpose

We consider the semi-professional volunteers who work in many tertiary care hospi-

tals in China to be healthcare assistants. These volunteers have less training than

HCWs[27, 35], care for patients on a one-to-one basis, and are known to be less com-

pliant with handwashing than HCWs. The daily work of volunteers includes taking

care of patients’ daily lives, helping patients transfer from one unit to another, re-

porting irregular results to doctors, etc. They do not usually share work stations with

HCWs. It is not clear whether the current infection control measures are effective

to control MRSA transmission on wards with volunteers. Hence, it is important to

assess the role of volunteers in MRSA transmission in order to identify reasonable

infection control programs for the whole hospital setting.

Most studies have used deterministic differential equation models which aggregate

4
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patient and HCW populations into compartments such as colonized or uncolonized pa-

tients, and contaminated or uncontaminated HCWs, and employ the Ross-Macdonald

model structure for vector-borne diseases.[2, 17] A stochastic version of such a model

has also been proposed to study the transmission of MRSA in an intensive care

unit.[19] Following a similar modeling structure, the authors constructed a compart-

mental model to describe the transmission characteristics of MRSA in the emergency

ward (EW) and respiratory intensive care unit (RICU) for volunteers in Beijing Ton-

gren Hospital, Beijing, China. The aim of this study was to analyze the transmission

dynamics of MRSA in wards with both professional HCWs and volunteers, and to

assess various infection prevention programmes to improve the control of MRSA and

other multi-drug-resistant bacteria infections in similar hospitals.

This study was conducted in Beijing Tongren Hospital, a 1600-bed university-

affiliated teaching hospital. Seventy volunteers worked at the hospital, distributed

over various wards, and all were managed by the Hospital Administration Centre of

Nursing Workers. Our study was focused on two wards: the emergency ward (EW)

and the respiratory intensive care unit (RICU). Twenty-three volunteers worked in

the EW, and two worked on the RICU. As the majority of patients admitted to the

EW are critically ill and are usually transferred to other units, the prevention of

MRSA transmission is particularly important. There are 23 beds in the EW and 7

beds in the RICU. Our study of the environmental infection will use the patient data

collected from the EW.
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2.2 Model description and assumptions

The patients were divided into two groups: uncolonized PU(t) and colonized PC(t).

No distinction was made between colonized and infected patients. The HCWs and

volunteers were also grouped into two subpopulations: uncontaminated HCWs HU(t)

and contaminated HCWs HC(t), and uncontaminated volunteers VU(t) and contami-

nated volunteers VC(t), respectively. It was assumed that patients are admitted to the

hospital at rate λ, and a portion φ were already colonized with MRSA before entering.

δU and δC represent the discharge rates for uncolonized and colonized patients, re-

spectively. Patients can become colonized through contact with contaminated HCWs

and volunteers, respectively, according to a mass-action law: (1 − η)βPHPU(t)HC(t)

and (1 − ξ)βPV PU(t)VC(t), where η describes the hand hygiene of HCWs, and ξ de-

scribes the hand hygiene of volunteers. It was assumed that the transmission rate for

volunteers (βPV ) was lower than the transmission rate for HCWs (βPH) as volunteers

only care for one patient at a time. HCWs can become contaminated through contact

with colonized patients, βPHPC(t)HU(t), as can volunteers, βPV PC(t)VU(t). 1/γH and

1/γV represent the durations of contamination of HCWs and volunteers, respectively.

Figure 2.1 shows a schematic illustration of the mathematical compartments.



7

���������	

��
�	�
�
�����

�����
�����
	
�
�����
		��

�����

�����
�����
	

����
�����

�������	

��
�	�
�
�����

���
�����
	
�
�����
		��

�����

���
�����
	

����
�����

�������������	

�������������

��
���������

�
�������������

�
�������������

��������� ���������

��������
 ��������


Figure 2.1: A compartmental model of transmission dynamics of methicillin-resistant
Staphylococcus aureus among patients, healthcare workers (HCWs) and volunteers in Bei-
jing Tongren Hospital



8

The deterministic model is a system of six ordinary differential equations as fol-

lows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPU

dt
= λ(1− φ)−

[
(1− η)

N
βPHHC(t) +

(1− ξ)

N
βPV VC(t)

]
PU(t)− δUPU(t)

dPC

dt
= λφ+

[
(1− η)

N
βPHHC(t) +

(1− ξ)

N
βPV VC(t)

]
PU(t)− δCPC(t)

dHU

dt
= −(1− η)

N
βPHPC(t)HU(t) + γHHC(t)

dHC

dt
=

(1− η)

N
βPHPC(t)HU(t)− γHHC(t)

dVU

dt
= −(1− ξ)

N
βPV PC(t)VU(t) + γV VC(t)

dVC

dt
=

(1− ξ)

N
βPV PC(t)VU(t)− γV VC(t);

(2.1)

2.3 Parameter estimation

An investigator observed the daily care activities of HCWs and volunteers over three 1-

h periods (9:00-10:00 am, 12:30-13:30 pm, 23:00-24:00pm), repeated on three different

days, including compliance with handwashing and other infection control measures,

and patient care activities. Contact plate sampling was employed to detect MRSA

colonies on the hands of HCWs/volunteers before and after medical care of MRSA-

positive patients. HCWs/volunteers were asked to wash their hands thoroughly before

contact with patients. MRSA was transferred to the hands of HCWs/volunteers in 19

out of 207 observed contacts with patients or their local environment (19/207, 9.2%).

Therefore, δ was estimated to be 0.09. Handwashing compliance rates of volunteers

were 20.7%(25/121) on the EW and 23.1%(30/130) on the RICU. Corresponding

figures for HCWs were 41.0%(50/122) and 45.6%(57/125). Note that βPH = δ× θPH
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Table 1: Baseline parameters values and estimates for the transmission of
MRSA in the Emergency Ward (EW) and respiratory intensive care unit (RICU).
Parameter Symbol Baseline value Sources

EW RICU
Total number of beds N 23 7 Tongren
Total number of HCWs H 23 14 Tongren
Total admissions per day λ 0.79 0.33 Tongren
Fraction of admissions per day
Colonized patients θ 0.067 0.165 Tongren
Length of stay (days)

Uncolonized patients 1/δU 13 7 Tongren
Colonized patients 1/δC 20 13 Tongren
Hand hygiene compliance (0 to 1)

HCWs η 0.41 0.46 Observed
Volunteers ξ 0.2 0.23 Observed
Transmission probability per contact δ 0.09 Observed
Transmission rate
Colonized patients to HCWs βPH 0.72 Estimated
Colonized patients to volunteers βPV 0.20 Estimated
Duration of contamination (days)

HCWs 1/γH 1/24 1/24 Austin et al.

volunteers 1/γV 1/12 1/12 Tongren

(contact rate, patients-HCWs), where θPH = number of patients × (total number

of contacts between HCWs and patients per day)/(total number of patients × total

number of HCWs in the ward). βPV = δ × θPV (contact rate, patients-volunteers),

where θPV = number of patients × (total number of contacts between volunteers and

patients per day)/(total number of patients × total number of volunteers in the ward).

Only ’effective contacts’ between patients and volunteers were calculated, which were

composed of two parts: contacts that occurred when a volunteer had contacts with

other patients in the ward, and effective contacts between a volunteer and his/her

dedicated patient. Baseline parameters and their estimates are listed in Table 1.
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2.4 Results

Basic Reproduction number

In epidemiology, the basic reproduction number (sometimes called basic repro-

ductive rate, or basic reproductive ratio and denoted R0) of an infection is defined

as the expected number of secondary cases produced by a single (typical) infection

in a completely susceptible population. Since the actual number of secondary cases

produced by an infected individual is an integer that can vary depending on their con-

tacts and they can be random factors that affect the chance of disease transmission

after a contact, the number of secondary cases aring from a single infection should

really be viewed as a random variable. R0 can be interpreted as its expected value.

Thus, since R0 represents the expected value (that is, the mean) of a random vari-

able, it is not necessarily an integer. R0 is very important and useful because it helps

in most cases determine whether or not an infectious disease can spread through a

population. Generally, larger R0 implies it is harder to control the epidemic. To be

more specific, when R0 < 1, the disease would die out eventually; when R0 > 1, the

disease will be endemic. Once we have the expression of R0, it is possible to do a

sensitivity analysis, which would be helpful in leading to an optimal control strategy.

In this study, R0 represents the number of patients who are colonized with MRSA

by an index case patient at the beginning of the epidemic. From the point of view of

infection control, the infection and spread of MRSA can be controlled in a hospital if

R0 < 1, whereas if R0 > 1, MRSA has become endemic in the hospital. This study

aimed to determine factors that affect the spread and control of MRSA in the hospi-

tal by analyzing the dependence of R0 on various model parameters (i.e. sensitivity
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analysis). An explicit expression for R0 is derived in the case of φ = 0 (i.e. when no

colonized patients are admitted to hospital). Sensitivity analysis of R0 was under-

taken in terms of the model parameters, such as transmission rate between patients

and volunteers, length of hospital stay for uncolonized and colonized patients, and

the duration of contamination of HCWs and volunteers.

We may find R0 by its definition directly from the model. More specifically: R0 =

τ · c̄ · d, [14] where τ is the transmissibility (i.e., probability of infection given contact

between a susceptible and infected individual), c̄ is the average rate of contact between

susceptible and infected individuals, and d is the duration of infectiousness. But for

other cases, it is not easy to obtain it from the model in such a straightforward manner.

The usual way to calculate R0 is due to van den Driessche and Watmough.[28] Their

paper and notes have given a precise definition and algorithm for obtaining R0 for a

general compartmental ordinary differential equation model of disease transmission.

In this work, we will use this method to find the basic reproduction number R0 of our

model. The details of this method we adapt from van den Driessche and Watmough

are as follows.[28]

Consider a heterogeneous population whose individuals are distinguishable by age,

behaviour, spatial position and/or stage of disease, but which can be grouped into n

homogeneous compartments. Let x = (x1, ..., xn)
t, with each xi � 0, being the number

of individuals in each compartment. For clarity we sort the compartments so that the

first m compartments correspond to infected individuals. The distinction between

infected and uninfected compartments must be determined from the epidemiological

interpretation of the model and cannot be deduced from the structure of the equations
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alone. We define Xs to be the set of all disease free states. That is

Xs = {x � 0|xi = 0, i = 1, ..., m}.

In order to compute R0, it is important to distinguish new infections from all other

changes in population. Let Fi(x) be the rate of appearance of new infections in

compartment i, V
+
i (x) be the rate of transfer of individuals into compartment i by

all other means, and V
−

i (x) be the rate of transfer of individuals out of compartment

i. It is assumed that each function is continuously differentiable at least twice in each

variable. The disease transmission model consists of nonnegative initial conditions

together with the following system of equations:

·

xi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n, (2.2)

where Vi = V
−

i − V
+
i and the functions satisfy assumptions (A1)-(A5) described

below.

(A1) if x � 0, then Fi,V
+
i ,V −

i � 0 for i = 1, ..., n.

(A2) if xi = 0 then V
−

i = 0. In particular, if x ∈ Xs then V
−

i = 0 for i = 1, ..., m.

(A3) Fi = 0 if i > m.

(A4) if x ∈ Xs then Fi(x) = 0 and V
+
i (x) = 0 for i = 1, ..., m.

(A5) if F (x) is set to zero, then all eigenvalues of Df(x0) have negative real parts,

where Df(x0) is the derivative [∂fi/∂xj ] evaluated at the disease free equilibrium

(DFE) x0 (i.e. the Jacobian Matrix).

The conditions listed above allow us to partition the matrix Df(x0) as shown by

the following lemma.
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Lemma 2.1. If x0 is a DFE of (2.2) and fi(x) satisfies (A1)-(A5), then the deriva-

tives DF (x0) and DV (x0) are partitioned as

DF (x0) =

⎛
⎜⎝ F 0

0 0

⎞
⎟⎠ , DV (x0) =

⎛
⎜⎝ V 0

J3 J4

⎞
⎟⎠ ,

where F and V are the m×m matrices defined by

F =

[
∂Fi

∂xj

(x0)

]
and V =

[
∂Vi

∂xj

(x0)

]
with 1 � i, j � m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4

have positive real part.

Note that part of derivative DV (x0) does not contribute to the calculation of R0,

we simply denote it as J3, J4. Following Diekmann et al.[9], we call FV −1 the next

generation matrix for the model and set

R0 = ρ
(
FV −1

)
,

where ρ(A) denotes the spectral radius of a matrix A. To be more specific, R0 is the

largest eigenvalue of the matrix FV −1.

When φ = 0, that is no colonized patients are admitted into the hospital, then

the disease-free steady state is obtained:

E0 = (PU , PC , HU , HC , VU , VC) =

(
λ

δU
, 0, 1, 0, 1, 0

)
.

The infected compartments are colonized patients PC , contaminated HCWs HC and
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contaminated volunteers VC ; the uninfected compartments are uncolonized patients

PU , uncontaminated HCWs HU and uncontaminated volunteers VU . Thus, for this

mode, n = 6, m = 3. After rearrangement, we denote

x = (PC , HC , VC , PU , HU , VU)
t, x0 = (0, 0, 0,

λ

δU
, 1, 1),

and

·

xi = fi(x) = Fi(x)− (V −

i (x)− V
+
i (x)), i = 1, ..., 6,

with

F (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(x)

F2(x)

F3(x)

F4(x)

F5(x)

F6(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1−η)
N

βPHPUHC + (1−ξ)
N

βPV PUVC

(1−η)
N

βPHPCHU

(1−ξ)
N

βPV PCVU

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

V
−(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δCPC

γCHc

γV VC[
(1−η)
N

βPHHC + (1−ξ)
N

βPV VC

]
PU + δUPU

(1−η)
N

βPHPCHU

(1−ξ)
N

βPV PCVU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,V +(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

λ

γHHC

γV VC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It is easy to check that (A1)-(A5) are satisfied. For 1 � i, j � 3,

F =

[
∂Fi

∂xj
(x0)

]

=

⎛
⎜⎜⎜⎜⎝

0 (1−η)
N

βPHPU
(1−ξ)
N

βPV PU

(1−η)
N

βPHHU 0 0

(1−ξ)
N

βPV VU 0 0

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣
E0

=

⎛
⎜⎜⎜⎜⎝

0 (1−η)
N

βPH
λ
δU

(1−ξ)
N

βPV
λ
δU

(1−η)
N

βPH 0 0

(1−ξ)
N

βPV 0 0

⎞
⎟⎟⎟⎟⎠ ,

and

V =

[
∂Vi

∂xj

(x0)

]
=

⎛
⎜⎜⎜⎝

δC 0 0

0 γH 0

0 0 γV

⎞
⎟⎟⎟⎠ ,

then

V −1 =

⎛
⎜⎜⎜⎝

1
δC

0 0

0 1
γH

0

0 0 1
γV

⎞
⎟⎟⎟⎠ .

Thus,

FV −1 =

⎛
⎜⎜⎜⎜⎝

0 (1−η)
N

βPH
λ
δU

(1−ξ)
N

βPV
λ
δU

(1−η)
N

βPH 0 0

(1−ξ)
N

βPV 0 0

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

1
δC

0 0

0 1
γH

0

0 0 1
γV

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 (1−η)βPHλ

δUγHN

(1−ξ)βPV λ

δUγCN

(1−η)βPH

δCN
0 0

(1−ξ)βPV

δCN
0 0

⎞
⎟⎟⎟⎟⎠ .
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Then

R0 =

√
(1− η)2β2

PHλ

δUδCγHN2
+

(1− ξ)2β2
PV λ

δUδCγVN2
,

which is the dominant eigenvalue of FV −1. Furthermore, we have the following

theorem from van den Driessche and Watmough:[28]

Theorem. If P 0
U , P

0
C � 0, the solutions are non-negative and remain bounded in the

positive cone of R6. If R0 < 1, the disease-free steady state E0 is locally asymptotically

stable. If R0 > 1, E0 is unstable.

Model simulations

Model simulations using the parameter values given in Table 1 were performed for

comparison with the reported data on the numbers of colonized patients in the EW

and RICU in Beijing Tongren Hospital from 3 March 2009 to 28 February 2010. The

results are compared in Figure 2.2. Since the populations in the EW and RICU were

small, the numerical simulations were performed according to the stochastic model,

and compared with the simulations using the deterministic model for both the EW

and RICU in Figure 2.3. Simulations using the stochastic model appeared to provide

a better explanation of the transmission dynamics for small populations.

Since βPV represents the transmission rate between patients and volunteers, it

is possible to analyze the effect of using volunteers on MRSA transmission. The

transmission rate is the proportion of contacts between colonized and uncolonized

individuals that result in infection. Thus, in numerical terms, it is the transmission

probability per contact × contact rate. As volunteers interact with patients on a

one-to-one basis, the transmission rate from volunteers to patients is less than that

from HCWs to patients. If there were no volunteers, an equal or smaller number of
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HCWs would have to replace these volunteers. We consider the case that all of the

volunteers were replaced by the same number of HCWs under assumptions that equal

transmission rates were used for both HCWs and volunteers and other parameters

were kept the same as we have used in numerical simulations. Figure 2.4 shows that

if volunteers were replaced by HCWs (i.e. βPV = βPH), the number of colonized

patients would increase; this was confirmed by analysis of R0.

2.5 Summary

Traditional strategies include reducing transmission rates between patient and nurses.

In this study, the introduction of volunteers provides more options in designing con-

trol intervention strategies. Meanwhile, decreasing the transmission rates between

patients and HCWs and between patients and volunteers, while increasing hand hy-

giene compliance of HCWs and volunteers, are all important in controlling infection

based on the sensitivity analysis of R0 for these parameters. However, among these

parameters, an increase in handwashing compliance for HCWs and volunteers would

decrease R0 most dramatically, as the dependence is almost linear. If volunteers were

replaced by HCWs and handwashing compliance was not 100%, MRSA transmission

would increase. We get this conclusion under assumptions that equal transmission

rates were used for both HCWs and volunteers and other parameters were kept the

same as we have used in numerical simulations. However, if we replaced volunteers

with HCWs, there would be only four compartments in the model: colonized and

uncolonized patients, and contaminated and uncontaminated HCWs. Meanwhile, we

should reestimate values of parameters. More accurate description and analysis of

this case are required in future research. The simulation results can be explained
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Figure 2.2: Model simulations using baseline parameters from Table 1 for the numbers of
patients colonized with methicillin-resistant Staphylococcus aureus (dotted line) compared
with the actual data (solid line) for (a) the emergency ward and (b) the respiratory intensive
care unit at Beijing Tongren Hospital. Euler’s method was used to plot the data.
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Figure 2.3: Numerical simulations for both the deterministic stochastic models over one
year corresponding to (a) the emergency ward and (b) the respiratory intensive care unit,
using the parameters in Table 1. Solid lines correspond to the deterministic model and
dotted lines correspond to the stochastic model.



20

0 50 100 150 200 250 300 350
1

1.5

2

2.5

Days

C
ol

on
iz

ed
 p

at
ie

nt
s

Emergency

βPV=0.20

βPV=0.72

Figure 2.4: Numbers of methicillin-resistant Staphylococcus aureus positive patients in
the emergency ward with volunteers and healthcare workers (HCWs) (βPV =0.2, solid line)
and HCWs alone (βPV = 0.72, dotted line). This indicates that the number of colonized
patients would increase if the volunteers were replaced by HCWs.



21

by previous studies, which showed that increasing the workload of HCWs was closely

associated with higher nosocomial infection rates.[13] Employment of volunteers would

decrease the workload of HCWs dramatically. Cohort nursing is known to be one of

the most effective ways to prevent cross-transmission.[3, 19] The ward is divided so that

each nurse cares for a certain cohort of patients (i.e. cohort nursing). Provided no con-

tact routes are duplicated, then the increase in staff numbers will lead to a reduction

in the number of hazardous contacts, and through a reduction in work pressure will

likely result in better hand hygiene compliance and improved housekeeping practices.

The volunteer system in the study hospital is similar to cohort nursing, and volun-

teers can conduct many nursing tasks, thus reducing multi-patient contact by HCWs.

Cohort nursing by fully trained HCWs would be even more effective. This study also

investigated the behaviors of volunteers during the study period. Compared with

HCWs, more frequent contacts were observed between volunteers and environmental

surfaces, and this may increase the probability of transmission of MRSA from the

surrounding environment of MRSA patients to other environmental surfaces and vice

versa. Volunteers’ behaviors may be partly influenced by their long-term assignment

to a ward. However, a recent study revealed that proper education for volunteers

in infection control can decrease the nosocomial infection rate, which suggests that

employment of volunteers undergoing nursing training is an alternative approach to

nursing care. In conclusion, improving the handwashing compliance of volunteers,

who cohort nurse patients, will decrease MRSA transmission dramatically.



Chapter 3

Nosocomial infection model with

environment contamination

3.1 Model description and assumptions

In this chapter, we introduce a nosocomial infection model with environment contam-

ination in hospital based on the previous model we discussed in Chapter 2. Patients

in the hospital unit are classified by compartment as either uncolonized Pu(t), or

colonized Pc(t); health-care workers are classified by compartment as either uncon-

taminated Hu(t), or contaminated Hc(t). The bacterial load in the environment is the

compartment Be(t). We do not consider the compartment of volunteers in this model.

The relation between different compartments inside hospital unit is depicted in the

compartmental scheme of Figure 3.1. Patients are admitted at a total rate of Λ per

day with the fraction of colonized patients θ. Since the total number of beds in hos-

pital unit is a fixed number, we assume that the inflow of patients is Λ = γuPu+γcPc,

based on the assumption of full occupation of the unit, where γu and γc are dis-

charge rates of uncolonized patients and colonized patients per day from hospital,

respectively. Hence, the total number of patients in the unit remains constant at Np.

Note that the total number of HCWs is also assumed to be a constant, Nh. It is

22
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assumed that there is no cross-infection between patients, so that patients can only

be colonized with antibiotic-resistant bacteria by contacting contaminated health-

care workers αpβp(1 − η)Pu(t)Hc(t) or the contaminated environment kpPu(t)Be(t) ,

where αp is the contact rate, βp is the probability of colonization per contact, η is the

compliance rate with the hand hygiene, and kp is the colonization rate from the envi-

ronment. Health-care workers can be contaminated with antibiotic-resistant bacteria

by contacting colonized patients ραpβhPc(t)Hc(t) and the contaminated environment

khHu(t)Be(t), where βh is the probability of contamination per contact, ρ is the ratio

of HCWs to patients, and kh is the contamination rate from the environment. μc is

the decontamination rate for the HCWs, νp and νh are the rate that colonized patients

and contaminated HCWs contaminate the environment, respectively, and γb is the

cleaning/disinfection rate of the environment. Details for parameters in this model

can be found in Table 2.

The equations of the basic model are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPu(t)

dt
= (1− θ) [γuPu(t) + γcPc(t)]− αpβp(1− η)Pu(t)Hc(t)− kpPu(t)Be(t)− γuPu(t)

dPc(t)

dt
= θ [γuPu(t) + γcPc(t)] + αpβp(1− η)Pu(t)Hc(t) + kpPu(t)Be(t)− γcPc(t)

dHu(t)

dt
= −ραpβhPc(t)Hu(t) + μcHc(t)− khHu(t)Be(t)

dHc(t)

dt
= ραpβhPc(t)Hu(t)− μcHc(t) + khHu(t)Be(t)

dBe(t)

dt
= νpPc(t) + νhHc(t)− γbBe(t)

,

(3.1)

with initial conditions Pu(0) = P 0
u , Pc(0) = P 0

c , Hu(0) = H0
u, Hc(0) = H0

c , Be(0) = B0
e

specified at time 0.

Since system (3.1) is developed from system (2.1), here are some remarks on the

connection between two systems.
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Figure 3.1: A compartmental model of transmission dynamics of meticillin-resistant
Staphylococcus aureus among patients and healthcare workers (HCWs) with environmental
contamination.
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(R1) They both have admission of patients into hospital with fraction of colonized

patients. In (2.1), the fraction is φ; in (3.1), the fraction is θ.

(R2) The admission of patients is given in different ways. In (2.1), we consider it

to be a constant λ; however, in (3.1), the inflow of patients is Λ = γuPu+ γcPc by the

assumption of full occupation of the unit.

(R3) In (2.1), (1−η)
N

βPH is used to represent the proportion of newly colonized

patients by contacting contaminated HCWs; in (3.1) we use αpβp(1 − η) to describe

this proportion.

(R4) In (2.1), (1−η)
N

βPH is also used to represent the proportion of newly contami-

nated HCWs by contacting colonized patients; however, in (3.1), we consider it to be

a different probability; that is, ραpβh.

(R5) Bacteria in the environment are now considered.

3.2 Basic reproduction number

We obtain R0 by using the method from van den Driessche and Watmough.[28]. When

θ = 0, that is no colonized patients are admitted into hospital, DFE is defined to be

E0 = (Pu, Pc, Hu, Hc, Be) = (Np, 0, Nh, 0, 0),

where Np, Nh are total number of patients and HCWs, respectively. The infected

compartments are colonized patients Pc, contaminated HCWs Hc and bacterial load

Be; the uninfected compartments are uncolonized patients Pu and uncontaminaed

HCWs Hu. Thus, for our model, n = 5, m = 3. After rearrangement, we denote

x = (Pc, Hc, Be, Pu, Hu)
t , x0 = (0, 0, 0, Np, Nh),
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and

·

xi = fi(x) = Fi(x)−
(
V

−

i (x)− V
+
i (x)

)
,

with

F (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(x)

F2(x)

F3(x)

F4(x)

F5(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αpβp(1− η)PuHc + kpPuBe

ραpβhPcHu + khHuBe

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

and

V
−(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γcPc

μcHc

γbBe

αpβp(1− η)PuHc + kpPuBe + γuPu

ραpβhPcHu + khHuBe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,V +(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

νpPc + νhHc

γuPu + γcPc

μcHc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.3)

It is easy to check that (A1)-(A5) are satisfied.

Thus,

F =

[
∂Fi

∂xj
(x0)

]

=

⎛
⎜⎜⎜⎜⎝

−αpβp(1− η)Hc − kpBe αpβp(1− η)(Np − Pc) kp(Np − Pc)

ραpβh(Nh −Hc) −ραpβhPc − khBe kh(Nh −Hc)

0 0 0

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣
E0

=

⎛
⎜⎜⎜⎜⎝

0 αpβp(1− η)Np kpNp

ραpβhNh 0 khNh

0 0 0

⎞
⎟⎟⎟⎟⎠ ,

(3.4)



27

and

V =

[
∂Vi

∂xj
(x0)

]
=

⎛
⎜⎜⎜⎜⎝

θγu + (1− θ)γc 0 0

0 μc 0

−νp −νh γb

⎞
⎟⎟⎟⎟⎠ , (3.5)

then

V −1 =
1

γμcγb

⎛
⎜⎜⎜⎜⎝

μcγb 0 0

0 γγb 0

νpμc γνh μcγ

⎞
⎟⎟⎟⎟⎠ , (3.6)

with γ = (θγu + (1− θ)γc).

Thus,

FV −1 =
1

γμcγb

⎛
⎜⎜⎜⎜⎝

0 αpβp(1− η)Np kpNp

ραpβhNh 0 khNh

0 0 0

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

μcγb 0 0

0 γγb 0

νpμc γνh γμc

⎞
⎟⎟⎟⎟⎠

=
1

γμcγb

⎛
⎜⎜⎜⎜⎝

kpνpμcNp [αpβp(1− η)γb + kpνh] γNp kpγμcNp

(ραpβhγb + khνp)μcNh khγνhNh khγμcNh

0 0 0

⎞
⎟⎟⎟⎟⎠ .

(3.7)

The basic reproduction number is defined by the largest eigenvalue of FV −1:

R0 =
kpνpNp

2γγb
+

khνhNh

2μcγb

+

√
(kpνpμcNp − khνhγNh)

2 + 4[(αpβp(1− η)γb + kpνh) (ραpβhγb + khνp)μcγNhNp]

2γμcγb
,

(3.8)

where γ = θγu + (1− θ)γc.

There is a general limitation on using R0. If there is an external source that

introduces infection into the system, then it is usually impossible to use R0 to get

information about how the system will behave.



Chapter 4

Mathematical and numerical

analysis

In this chapter, we will perform the mathematical and numerical analysis relevant

to the model of Chapter 3. In epidemiology, there are two types of states of an infec-

tion: the disease-free state when there is no infection in the dynamic system, and the

endemic state when infection is maintained in the dynamical system, corresponding

with disease-free and endemic equilibrium in the model, respectively. In general, for

an ordinary differential equation system:

dN

dt
= f(N) or

dNi

dt
= fi(N1, ..., Nn), i = 1, ..., n,

where N(t) is an n-dimensional vector, and f(N) is a n-dimensional vector of non-

linear function of N , an equilibrium solution N∗ is solution of f(N) = 0.[21, chap. 1,3]

Usually, there is only one disease-free equilibrium (DFE) N0 when we consider there

is no infection in terms of f(N). However, there may be several other equilibria N∗,

which depend on the function f(N). In this chapter, we focus on the analysis of the

disease-free state, because it may provide a basis for better control measures to help

eliminate MRSA transmission in hospital.

28
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4.1 Steady-state analysis

Theorem 4.1. If P 0
u , P

0
c , H

0
u, H

0
c , B

0
e � 0, then solutions are non-negative and remain

bounded in the positive cone of R5

G := {(Pu, Pc, Hu, Hc, Be) ∈ R5
+ : Pu + Pc +Hu +Hc +Be � N},

where N is a fixed integer.

Proof. It is easy to see that the solutions remain in the positive cone if the initial

conditions are in the positive cone.[26, app. B] Let T (t) = Pu(t)+Pc(t)+Hu(t)+Hc(t)+

Be(t). From (3.1) we have

dT (t)

dt
=

dBe(t)

dt
= νpPc(t) + νhHc(t)− γbBe(t)

� νpNp + νhNh − γbBe(t),

which implies that

Be(t) �
(νpNp + νhNh)

γb
(1− e−γbt) +B0

ee
−γbt.

So Be(t) is bounded by a fixed number

M =
(νpNp + νhNh)

γb
+B0

e .

Let N = Np +Nh +M , then

Pu(t) + Pc(t) +Hu(t) +Hc(t) +Be(t) � N.

Thus, the solutions remain bounded in a positive cone of R5, and the system induces

a global semiflow in the positive cone of R5.

The stability of disease-free equilibrium is a result of van den Driessche and

Watmough.[28]
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Theorem 4.2. If R0 < 1, the disease-free state (Np, 0, Nh, 0, 0) is locally asymptoti-

cally stable. If R0 > 1, the disease-free state is unstable.

4.2 Estimation of parameters

The best way to estimate parameters is from data collected from the hospital directly.

We are not able to obtain such data; however, there are good resources from two

references [30, 31] about Beijing Tongren Hospital to use as our estimates. Parameters

are grouped into two categories: direct reference, for those we could use immediately

from two references; indirect estimation, for those we have to do our own estimation.

(1) Direct reference.

Based on the assumption that the total number of HCWs remains fixed and bed

occupancy is 100%, we have Np = 23 and Nh = 23. The proportion of colonized

patients admitted to hospital is θ = 0.067. The daily discharge rates of uncolonized

patients and colonized patients are γu = 0.067 and γc = 0.046, respectively. The

hand hygiene compliance of HCWs is η = 0.4. The decontamination rate of HCWs is

μc = 24. The probability of colonization from colonized patients to uncontaminated

HCWs is βp = 0.72.

(2) Indirect estimation.

It is assumed that each patient has one contact from one HCW per day, so that the

contact rate between patients and HCWs is αp =
1
Nh

. In Wang et al.[30], it is assumed

that a contaminated HCW has the same ability of transmission as a contaminated

volunteer, so the probability of colonization from contaminated HCW to uncolonized

patient is βh = 0.20. We assume that Beijing Tongren Hospital maintains the same

standard for the clearance of the environment, so that the cleaning / disinfection rate
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of the environment is γb = 0.7 in the EW unit. In a similar way, the colonization

rate from the environment to uncolonized patients and uncontaminated HCWs are

kp = 0.000004 and kh = 0.00001, respectively, in the EW unit. Note that the units

of kp and kh is CFUs/day. In microbiology, colony-forming unit (CFU) is a measure

of viable bacterial or fungal numbers. Unlike direct microscopic counts where all

cells, dead and living, are counted, CFU measures viable cells. It is assumed that a

colonized patient and a contaminated HCW have the same effect of contamination

of the environment; then the contamination rate to the environment of colonized

patients νp is equal to the contamination rate to environment of contaminated HCWs

νh, and it is half the value of the shedding rate of patients[31], which is 235. The units

of nup and nih is also CFUs/day. From remark (R4), we estimate the value of ρ to

be 1− η, which is 0.6.

We notice that γb, kp and kh are small, νp and νh are large. This is because Be is

in units that make it come out to be a large number. And this is what is happening

in the simulation with initial value in (4.1).

4.3 Numerical simulations

In this section, we perform numerical simulations for solutions of the deterministic

epidemic system. Once we obtain the estimates of parameters, it is the most efficient

and direct way to check the result and its properties. We will use Euler’s method by

using Matlab.[20] The stepsize is defined based on practical need. In general, smaller

stepsizes will provide better simulations. However, it will increase the amount of

calculation time of computer program. Thus, we have to choose an appropriate step
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Table 2: Baseline parameters values and estimates for the transmission MRSA in the
Emergency Ward (EW) in Beijing Tongren Hospital. The unit of time is one day.

Parameter Symbol Parameter Estimate Source
Proportion of colonized patients
admitted in hospital (1/day) θ 0.067 [30]
Number of patients Np 23 [30]
Number of HCWs Nh 23 [30]
Contact rate (1/day) αp 0.0435 [30]
Probability of colonization (1/day)

By colonized patients βp 0.72 [30]
By contaminated HCWs βh 0.20 estimated
Discharge rate (1/day)

Uncolonized patients γu 0.067 [30]
Colonized patients γc 0.046 [30]
Cleaning / disinfection (1/day)
rate of environment γb 0.7 [31]
Colonization rate from environment (CFUs/day)

Of uncolonized patients kp 0.000004 [31]
Of uncontaminated HCWs kh 0.00001 [31]
Ratio of HCWs to patients ρ 0.6 [30]
Hand hygiene compliance of HCWs η 0.4 [30]
Decontamination rate of HCWs (1/day) μc 24 [30]
Contamination rate to environment (CFUs/day)

By colonized patients νp 235 estimated
By contaminated HCWs νh 235 estimated
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size. Here, we define h to be 0.01, and we have R0 = 0.7579 < 1. The initial value

that we choose is

(P 0
u , P

0
c , H

0
u, H

0
c , B

0
e ) = (10, 13, 17, 6, 1000). (4.1)

The numerical simulation of solutions of the deterministic epidemic model is given in

Figure 4.1.

4.4 Sensitivity analysis and discussion

In general, there are two types of analysis for determining how influential parameter

variation is on the final model output: uncertainty analysis and sensitivity analy-

sis. The uncertainty analysis is to determine the uncertainty in the model output,

given the uncertainties in the parameter values. And sensitivity analysis means to

quantitatively decide which parameters are most influential in the model output. In

this paper, we focus on the sensitivity analysis, because two references[30, 31] have

provided good resources for quantitative analysis. In this section, we will perform

sensitivity analysis of R0 in terms of model parameters. We consider inputs by pairs.

First, we consider the hand hygiene compliance and the disinfection rate of the en-

vironment. That is because hand hygiene and disinfection of the hospital are both

significantly important interventions. Figure 4.2 shows that if we increase the hand

hygiene compliance of HCWs, R0 would be reduced substantially. Similarly, if we

only consider to increase the disinfection rate of the environment, R0 would also be

greatly decreased. Thus, it is necessary to check the output of combining these two

control methods. The result has been shown in Figure 4.3. when we increase both



34

0 50 100 150 200 250 300 350
0

5

10

15

20

Time(days)

N
um

be
r o

f p
at

ie
nt

s

(a)

Colonized patients
Uncolonized patients

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

Time(days)

B
ac

te
ria

 lo
ad

 in
 th

e 
en

vi
ro

nm
en

t

(b)

Bacterial load

Figure 4.1: (a) Solution of colonized and uncolonized patients of deterministic epidemic
model (3.1) with initial value (P 0

u , P
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c ,H
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e ) = (10, 13, 17, 6, 1000). (b) Solution

of bacteria load in environment in deterministic epidemic model (3.1) with initial value
(P 0
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e ) = (10, 13, 17, 6, 1000).
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the hand hygiene compliance and disinfection rate, the basic reproduction number

would drop dramatically. In numerical simulations, we assume that the contamina-

tion rate to environment of colonized patients νp is equal to the contamination rate

to environment of contaminated HCWs νh. However, in the sensitivity analysis, we

will change them to observe their influences separately. Figure 4.4 gives a natural

explanation of increasing contamination to the environment by colonized patients or

contaminated HCWs. The basic reproduction number would increase in both cases.

However, we notice that in Figure 4.4(a), the increment of R0 is greater than that

in Figure 4.4(b), implying that it would be more effective to control the contamina-

tion rate to the environment by colonized patients than that of contaminated HCWs.

Figure 4.5 presents the consequence of controlling both of them at the same time.

Similarly, we consider the colonization rate from environment of uncolonized patients

and uncontaminated HCWs under the same scalar in Figure 4.6. It is easy to see

that R0 would increase much more significantly when the contamination rate from

environment to uncolonized patients increases, than that to uncontaminated HCWs.

Combining with Figure 4.4, it can be seen that it would be more important to control

the contamination rate related to patients than to HCWs. Figure 4.7 shows the trend

of R0 if we adjust both of them.
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Chapter 5

Stochastic epidemic models

In this chapter, we consider the stochastic version of the nosocomial infection model

with environmental contamination. The inspiration for introducing the stochastic

model comes from Figure 2.2. It seems that the number of colonized and uncolo-

nized patients fluctuates randomly due to the small number of patients. Meanwhile,

from Figure 2.3, simulations using the stochastic model appeared to provide a better

explanation of the transmission dynamics for small populations.

The history of stochastic epidemic models and their application is much shorter

than deterministic epidemic models. There are a lot differences between stochas-

tic epidemic models and deterministic ones. For instance, the basic reproduction

number, whose importance has been introduced in Chapter 2 can be expressed an-

alytically only in deterministic models. On the other hand, when the sample size is

very small, the stochastic simulations can describe the variability of the actual data,

which numerical simulations from deterministic models do not do. The traditional

way of obtaining a stochastic epidemic model of a well-known disease is based on its

deterministic epidemic model.[1, chp. 3] Basically, there are three types of stochastic
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model formulations: discrete time Markov chain (DTMC), continuous time Markov

chain (CTMC) and stochastic differential equations (SDE). These models differ in the

underlying assumptions regarding the time and the state variables. We will consider

a continuous time Markov chain (CTMC) model for our system, that is to say, the

time is continuous, but the state is discrete and embedded in R5. In order to con-

struct a stochastic epidemic model, we need to consider the probability of changes

in variables, the infinitesimal mean and variance, and the drift and diffusion terms

of stochastic equation. This construction will be performed in detail in the second

section of this chapter.

5.1 Model description and assumptions

It is assumed that Pu(t) + Pc(t) = Np, Hu(t) +Hc(t) = Nh, ∀t � 0, so the process is

trivariate {Pc(t), Hc(t), Be(t)} in R
3, with Pu(t) = Np−Pc(t) and Hu(t) = Nn−Hc(t).

These three variables have a joint probability given by

p(s,j,k)(t) = Prob {Pc(t) = s,Hc(t) = j,Be(t) = k} , (5.1)

with s = 0, ..., Np, j = 0, ..., Nh and k � 0. The process has Markov property and is

time-homogeneous.

The transition probabilities are determined as follows. Assume that Δt can be

chosen sufficiently small such that at most one change in state occurs during the

time interval Δt. In particular, there can only be either a new colonization or de-

colonization on patients or HCWs, or a new contamination or decontamination of

environment. The transition probabilities are written as follows:
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p(s+i1,j+i2,k+j3);(s,j,k)(Δt)

= Prob {(ΔPc,ΔHc,ΔBe) = (i1, i2, i3)| (Pc(t),Hc(t), Be(t)) = (s, j, k)} ,
(5.2)

where ΔPc = Pc(t+Δt)− Pc(t), and i1, i2, i3 ∈ {−1, 0, 1}. Hence,

p(s+i1,j+i2,k+j3);(s,j,k)(Δt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
θ
[
γu(Np − s) + γcs

]
+ αpβp(1 − η)(Np − s)j

+ kp(Nh − s)k
]}

Δt, (i1, i2, i3) = (1, 0, 0)

γcsΔt, (i1, i2, i3) = (−1, 0, 0)

[ραpβhs(Nh − j) + kh(Nh − j)k]Δt, (i1, i2, i3) = (0, 1, 0)

μcjΔt, (i1, i2, i3) = (0,−1, 0)

(νps+ νhj)Δt, (i1, i2, i3) = (0, 0, 1)

γbkΔt, (i1, i2, i3) = (0, 0,−1)

1− θ [γu(Np − s) + γcs]Δt− αpβp(1− η)(Np − s)jΔt

− kp(Nh − s)kΔt− γcsΔt

− [ραpβhs(Nh − j) + kh(Nj − j)k]Δt

− μcjΔt− (νps+ νhj)Δt− γbkΔt, (i1, i2, i3) = (0, 0, 0)

0, otherwise.

(5.3)

We notice that the time step Δt must be chosen to be sufficiently small such that

all of these probabilities could stay in the interval [0, 1]. The transition matrix is too

complicated to express, however, we could still write out the probabilities p(s,j,k)(t +
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Δt) by using the Markov property:

p(s,j,k)(t+Δt) = p(s−1,j,k)(t)
{
θ [γu(Np − s+ 1) + γc(s− 1)] + αpβp(1− η)(Np − s+ 1)j

+ kp(Np − s+ 1)k
}
Δt+ p(s+1,j,k)(t)γc(s+ 1)Δt

+ p(s,j−1,k)(t) [ραpβhs(Nh − j + 1) + kh(Nh − j + 1)k] Δt+ p(s,j+1,k)(t)μc(j + 1)Δt

+ p(s,j,k−1)(t) (νps+ νhj)Δt+ p(s,j,k+1)(t)γb(k + 1)Δt

+ p(s,j,k)(t)
{
1− {

θ [γu(Np − s+ 1) + γc(s − 1)] + αpβp(1− η)(Np − s)j + γcs

+ kp(Np − s)k + ραpβhs(Nh − j) + kh(Nh − j)k + μcj + νps+ νhj + γbk
}
Δt

}
.

(5.4)

Meanwhile, a system of forward Kolmogorov differential equations could be derived:

dp(s,j,k)

dt
= p(s−1,j,k)

{
θ [γu(Np − s+ 1) + γc(s− 1)] + αpβp(1− η)(Np − s+ 1)j

+ kp(Np − s+ 1)k
}
+ p(s+1,j,k)γc(s+ 1)

+ p(s,j−1,k) [ραpβhs(Nh − j + 1) + kh(Nh − j + 1)k] + p(s,j+1,k)μc(j + 1)

+ p(s,j,k−1) (νps+ νhj) + p(s,j,k+1)(t)γb(k + 1)

+ p(s,j,k)

{
1− {

θ [γu(Np − s+ 1) + γc(s− 1)] + αpβp(1− η)(Np − s)j

+ kp(Np − s)k + γcs+ ραpβhs(Nh − j) + kh(Nh − j)k + μcj + νps+ νhj + γbk
}}

.

(5.5)

5.2 Stochastic simulations

In this section, we will first construct a stochastic epidemic model from the determin-

istic epidemic model (3.1), then use data in Table 2 to run stochastic simulations of

our model.

The system has three variables with a joint probability

p(s,j,k)(t) = Prob {Pc(t) = s,Hc(t) = j, Be(t) = k} ,
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with s = 0, ..., Np, j = 0, ..., Nh and k � 0, whose transition probabilities have

been given in (5.3). Let X(t) = (Pc(t), Hc(t), Be(t))
T , with infinitesimal ΔX(t) =

(ΔPc(t),ΔHc(t),ΔBe(t))
T . It is possible for us to write out the infinitesimal mean

matrix f(X(t), t) as following:

E (ΔX(t)|X(t)) =

⎛
⎜⎜⎜⎜⎝

ep

eh

eb

⎞
⎟⎟⎟⎟⎠ ·Δt = f(X(t), t) ·Δt, (5.6)

where

ep = θ [γu(Nh − Pc) + γcPc] + αpβp(1− η)(Np − Pc)Hc + kp(Nh − Pc)Be − γcPc,

eh = [ραpβhPc(Nh −Hc) + kh(Nh −Hc)Be]− μcHc,

eb = νpPc + νhHc − γbBe,

and the infinitesimal variance matrix Σ(X(t), t) given by:

E
(
ΔX(t) (ΔX(t))T |X(t)

)
=

⎛
⎜⎜⎜⎜⎝

δp 0 0

0 δh 0

0 0 δb

⎞
⎟⎟⎟⎟⎠ ·Δt = Σ(X(t), t) ·Δt, (5.7)

where

δp = θ [γu(Nh − Pc) + γcPc] + αpβp(1− η)(Np − Pc)Hc + kp(Nh − Pc)Be + γcPc,

δh = [ραpβhPc(Nh −Hc) + kh(Nh −Hc)Be] + μcHc,

δb = νpPc + νhHc + γbBe.
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It is easy to see that δp, δh, δb are all nonnegative. Diffusion matrix G is the solution

of GGT = Σ. There may be several solutions of this equation depending on the

expression of Σ, however, we could always pick the most visible one as

G =

⎛
⎜⎜⎜⎜⎝

√
δp 0 0

0
√
δh 0

0 0
√
δb

⎞
⎟⎟⎟⎟⎠ . (5.8)

Then the Itô SDE takes the following form:

dX(t) = f(X(t), t)dt+G(X(t), t)dW (t). (5.9)

More precisely, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dPc(t)

dt
= epdt+

√
δpdW1(t)

dHc(t)

dt
= ehdt+

√
δhdW2(t)

dBe(t)

dt
= ebdt+

√
δbdW3(t),

(5.10)

where W1,W2,W3 are three independent Wiener processes. If the terms associated

with the Wiener processes are dropped, then we have the same ODE model as in

(3.1).

Once we obtain the stochastic epidemic model, we are able to run stochastic sim-

ulations by using data in Table 2. Simulations are done by Matlab.[1, chp. 3] Consider

variable Pc for a more specific explanation of this process. For k from 1 to n, where

n is the path number of simulation; let j be the state from 1, then

Pc(j + 1, k) = Pc(j, k) + ep · dt+
√

δp ·
√
dt · rp, (5.11)
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where dt = 0.01 is the time step, rp is a standard normal random variable, and

ep = θ [γu ·max ((Nh − Pc(j, k)), 0) + γcPc(j, k)]

+ αpβp(1− η) ·max ((Nh − Pc(j, k)), 0) ·Hc(j, k)

+ kp ·max ((Nh − Pc(j, k)), 0) · Be(j, k)− γcPc(j, k),

δp = θ [γu ·max ((Nh − Pc(j, k)), 0) + γcPc(j, k)]

+ αpβp(1− η) ·max ((Nh − Pc(j, k)), 0) ·Hc(j, k)

+ kp ·max ((Nh − Pc(j, k)), 0) · Be(j, k)− γcPc(j, k).

For each variable, we will present ten sample paths and compare them with the cor-

responding solution curves from the deterministic model. Usually, to verify whether

a stochastic simulation is good or not, the mean and the variance of the difference

between simulation and target value will be calculated. In this chapter, we will not

check these means and variances due to the complexity of calculation. However, it

is practicable to verify by observation: whether these sample paths are close to each

other, and whether they have small noise according to the deterministic solution.

We provide three figures as results of stochastic simulations of numbers of col-

onized patients Pc(t), number of contaminated HCWs Hc(t) and bacterial load in

the environment Be(t), compared with deterministic solution curves, respectively. As

shown, in each run, ten sample paths are close to each other, and oscillate around the

black solid curve, which is the solution curve of the deterministic system. Noticed

that in the last figure, the deterministic solution curve is almost close to zero. This is

because the size of populations of patients and HCWs are both very small. However,

the noise of this run was controlled to under four. Thus, we have provided a good

explanation of the transmission dynamics for small populations with environment
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Figure 5.1: Ten sample paths of bacterial load in environment in nosocomial infection
model with environment infection are graphed with the deterministic solution (black curve).
The parameter values are Δt = 0.01, Np = 23, Nh = 23, θ = 0.067, αp = 0.0435, βp =
0.72, βh = 0.20, η = 0.4, γu = 0.067, γc = 0.046, γb = 0.7, kp = 0.000004, kh = 0.00001, ρ =
0.6, μc = 24, νp = 235, νh = 235, time = 365, P 0

c = 13,H0
c = 6, B0

e = 1000.

infection.
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Figure 5.2: Ten sample paths of number of colonized patients in nosocomial infection model
with environment infection are graphed with the deterministic solution (black curve). The
parameter values are Δt = 0.01, Np = 23, Nh = 23, θ = 0.067, αp = 0.0435, βp = 0.72, βh =
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Figure 5.3: Ten sample paths of number of contaminated HCWs in nosocomial infection
model with environment infection are graphed with the deterministic solution (black curve).
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Chapter 6

Discussion

Traditional strategies of controlling nosocomial infection have been provided in many

references.[30, 35] These measures include reducing the transmission rate between HCWs

and patients, and the transmission rate between volunteers and patients; as well as

raising the hand hygiene compliance of HCWs and volunteers. In this study, we intro-

duce the environmental infection in a nosocomial infection model. The importance of

understanding the role of environmental infection in a hospital has been discussed in

Chapter 1. Our research is devoted to suggesting more possibilities for determining

the control intervention strategies, which are based on the sensitivity analysis of the

basic reproduction number R0.

The first conclusion is that increasing the disinfection rate of environment will

help to control the transmission dynamics of MRSA in the hospital. This includes 1)

appropriate use of cleaners and disinfectants; 2) appropriate maintenance of medical

equipment (e.g., automated endoscope reprocessors or hydrotherapy equipment); 3)

adherence to water-quality standards for hemodialysis, and to ventilation standards

for specialized care environments (e.g., airborne infection isolation rooms, protective
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environments, or operating rooms); and 4) prompt management of water intrusion

into the facility.[25] Meanwhile, it is essential to control the contamination rates be-

tween the environment and patients and HCWs. To be more specific, decreasing

the contamination rate to the environment by colonized patients and contaminated

HCWs, or decreasing the contamination rate from the environment to uncolonized

patients and uncontaminated HCWs, will be helpful for controlling the infection in

hospital. Two basic recommendations are limiting the scope of activities of patients,

especially, for those high-risk patients, to avoid non-essential contacts with the en-

vironment, and increasing hand hygiene compliance of HCWs, in particular, before

contacting any patient. It would be ideal if we could reduce both contamination

rates to the environment from colonized patients and contaminated HCWs, and both

contamination rates from the environment to uncolonized patients and uncontami-

nated HCWs. However, from the practical point of view, for instance, because of the

financial budget and the lack of supervision, it is possible that not all of these trans-

mission rates could be controlled at the same time. Our research indicates that under

such situations, we should give priority to controlling the contamination rates related

between the environment and patients. The sensitivity analysis of νp (i.e., contamina-

tion rate to environment from colonized patients) has explained that an increase of νp

would increase the value of R0 dramatically, compared with the influence of the same

increment of νh (i.e., contamination rate to environment from contaminated HCWs).

Similarly, the sensitivity analysis of kp (i.e., contamination rate from environment to

uncolonized patients) has shown that under the same scale, the increase of kp would

result in huge jump of R0, compared with kh (i.e., contamination rate from envi-

ronment to uncontaminated HCWs). Thus, to reduce unnecessary contacts between

patients and environment would decrease the transmission of MRSA significantly.
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During the process of numerical simulations and sensitivity analysis, we apply

data from the unit of EW (Emergency Ward) of Beijing Tongren Hospital from 3

March 2009 to 28 February 2010. There are both HCWs and volunteers working in

the EW during the process of data collection. Since we do not consider the compart-

ment of volunteers, it is not accurate to compare the patient data with solution of

deterministic epidemic model or stochastic simulations. However, we still would able

to estimate parameters from the original data.

In conclusion, decreasing the contamination rates between patients and environ-

ment, and HCWs and environment, increasing the disinfection rate of environment,

and increasing the hand hygiene compliance of HCWs would decrease MRSA trans-

mission remarkably.
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