
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2011-07-22

Quasisymmetric Functions and Permutation
Statistics for Coxeter Groups and Wreath Product
Groups
Matthew Hyatt
University of Miami, matthewdhyatt@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Hyatt, Matthew, "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups" (2011).
Open Access Dissertations. 609.
https://scholarlyrepository.miami.edu/oa_dissertations/609

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/609?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


 
 
 
 
 
 

UNIVERSITY OF MIAMI 
 
 
 
 
 

QUASISYMMETRIC FUNCTIONS AND PERMUTATION STATISTICS FOR 
COXETER GROUPS AND WREATH PRODUCT GROUPS 

 
 
 
 

By 
 

Matthew Hyatt 
 
 

A  DISSERTATION 
 
 

Submitted to the Faculty  
of the University of Miami 

in partial fulfillment of the requirements for  
the degree of Doctor of Philosophy 

 
 
 
 
 

Coral Gables, Florida 
 

August 2011 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2011 
Matthew Hyatt 

All Rights Reserved 



UNIVERSITY OF MIAMI 
 
 
 

A dissertation submitted in partial fulfillment of  
the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 

QUASISYMMETRIC FUNCTIONS AND PERMUTATION STATISTICS FOR 
COXETER GROUPS AND WREATH PRODUCT GROUPS 

 
 
 

Matthew Hyatt 
 
 
 
 
Approved: 
  
________________                    _________________ 
Michelle Wachs, Ph.D.             Terri A. Scandura, Ph.D. 
Professor of Mathematics   Dean of the Graduate School 
   
 
________________                    _________________ 
Drew Armstrong, Ph.D.                Alexander Dvorsky, Ph.D.    
Assistant Professor of                                                 Associate Professor of                                  
Mathematics              Mathematics 
 
 
________________                      
Mitsunori Ogihara, Ph.D.                
Professor of Computer Science                                        
 

 
 
 
 
 
 
 
 



 
 

       

HYATT, MATTHEW               (Ph.D., Mathematics) 

Quasisymmetric Functions and Permutation                       (August 2011) 
Statistics for Coxeter Groups and Wreath Product Groups. 
 
 
Abstract of a dissertation at the University of Miami. 
 
Dissertation supervised by Professor Michelle Wachs. 
No. of pages in text. (129) 

 

Eulerian quasisymmetric functions were introduced by Shareshian and Wachs in 

order to obtain a q-analog of Euler's exponential generating function formula for the 

Eulerian polynomials. They are defined via the symmetric group, and applying the stable 

and nonstable principal specializations yields formulas for joint distributions of 

permutation statistics. We consider the wreath product of the cyclic group with the 

symmetric group, also known as the group of colored permutations. We use this group to 

introduce colored Eulerian quasisymmetric functions, which are a generalization of 

Eulerian quasisymmetric functions. We derive a formula for the generating function of 

these colored Eulerian quasisymmetric functions, which reduces to a formula of 

Shareshian and Wachs for the Eulerian quasisymmetric functions. We show that applying 

the stable and nonstable principal specializations yields formulas for joint distributions of 

colored permutation statistics. The family of colored permutation groups includes the 

family of symmetric groups and the family of hyperoctahedral groups, also called the 

type A Coxeter groups and type B Coxeter groups, respectively. By specializing our 

formulas to these cases, they reduce to the Shareshian-Wachs q-analog of Euler's 



formula, formulas of Foata and Han, and a new generalization of a formula of Chow and 

Gessel. 
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Introduction

A permutation statistic is a map f : Sn → N where Sn is the symmetric group and

N is the set of nonnegative integers. The modern study of enumerating permutations

according to statistics began in the early 20th century with the work of MacMahon

[19], [20]. He studied four fundamental permutation statistics, namely the descent

number, excedance number, inversion number, and major index, which we denote by

des, exc, inv, and maj respectively. 1 In particular, he was the first to observe the

now classic result that des and exc are equidistributed [20], that is

An(t) =
∑
π∈Sn

tdes(π) =
∑
π∈Sn

texc(π).

The polynomials An(t) are well-studied and called the Eulerian polynomials. 2 They

were first introduced by Euler in the 18th century in the form

An(t)

(1− t)n+1
=
∑
k≥0

(k + 1)ntk. (1)

Euler also established the following formula for the exponential generating function

for the Eulerian polynomials

∑
n≥0

An(t)
zn

n!
=

(1− t)ez

etz − tez
. (2)

1Defined in Chapter 1.
2It is also common to define the Eulerian polynomials to be tAn(t).

1
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The permutation statistics inv and maj have frequently been used in the literature

to obtain q-analogs of classical results. One of the earliest instances of this is Carlitz’s

[5] formula for a q-analog of Euler’s original definition (1) of the Eulerian polynomials

∑
π∈Sn q

maj(π)tdes(π)

(t; q)n+1

=
∑
k≥0

[k + 1]nq t
k. (3)

A more recent instance is the following formula for the bivariate distribution of

maj and exc due Shareshian and Wachs [31], [32]

∑
n≥0
π∈Sn

qmaj(π)texc(π) z
n

[n]q!
=

(1− tq) expq(z)

expq(tqz)− tq expq(z)
. (4)

which is a q-analog of Euler’s formula (2). To prove this formula, they introduce a

family of quasisymmetric functions Qn,j,k(x), called Eulerian quasisymmetric func-

tions, where x denotes the infinite set of variables {x1, x2, ...}. They compute the

following generating function formula

∑
n,j,k≥0

Qn,j,k(x)tjrkzn =
(1− t)H(rz)

H(tz)− tH(z)
, (5)

where H(z) :=
∑

i≥0 hi(x)zi and hi(x) is the complete homogeneous symmetric func-

tion of degree i. The Eulerian quasisymmetric functions are constructed (and so

named) because applying the stable principal specialization (i.e. setting xi = qi−1)

to (5) yields the formula (4). The following formula of Foata and Han

∑
n≥0
π∈Sn

qmaj(π)pdes(π)texc(π)rfix(π) zn

(p; q)n+1

=
∑
k≥0

pk(1− tq)(z; q)k(tqz; q)k
(rz; q)k+1 [(z; q)k − tq(tqz; q)k]

(6)

was obtained subsequently to (4), and can be obtained by applying a different spe-

cialization to (5) called the nonstable principal specialization. The Eulerian qua-

sisymmetric functions are also quite interesting in their own right, and many other
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properties are investigated in [31], [32].

The symmetric group belongs to a family of groups known as Coxeter groups, and

is also called the type A Coxeter group. Some of the earliest results on permutation

statistics for general Coxeter groups were obtained by Reiner [22], [23], [24], [25], and

Brenti [4]. The inv and des statistic have natural Coxeter group generalizations. For

the hyperoctahedral group (the type B Coxeter group) we will denote the Coxeter

descent statistic by desB. Adin and Roichman [2] introduced an analog of the major

index statistic for the hyperoctahedral group, which they called the flag major index,

denoted fmaj. Adin, Brenti, and Roichman [1] use fmaj and another statistic fdes to

obtain a type B analog of Carlitz’s identity (3). More recently Chow and Gessel [6]

obtain a different type B analog of (3), which is given by

∑
π∈Bn q

fmaj(π)tdesB(π)

(t; q2)n+1

=
∑
k≥0

[2k + 1]nq t
k. (7)

A new result (Theorem 2.4.13) presented in this thesis is the following type B

analog of (6), which reduces to (7) by setting t = r = s = 1,

∑
n≥0
π∈Bn

zn

(p; q2)n+1

qfmaj(π)tfexc(π)pdesB(π)rfix+(π)sneg(π)

=
∑
k≥0

pk(1− t2q2)(z; q2)k(t
2q2z; q2)k

(rz; q2)k+1 [(1 + sqt)(z; q2)k − (t2q2 + sqt)(t2q2z; q2)k]
. (8)

This formula includes fexc, which is a natural type B analog of exc, as well as two

additional type B statistics fix+ and neg. Foata and Han introduced fexc and showed

it is equidistributed with the statistic fdes of Adin, Brenti and Roichman. Our formula

(8) is similar, but not equivalent, to a formula of Foata and Han [12] which involves

fdes rather than desB and reduces to the type B analog of (3) due to Adin, Brenti

and Roichman, while ours reduces to (7). However both (8) and the similar formula
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of Foata and Han reduce to the following type B analog of (4) when p approaches 1

and r = s = 1

∑
n≥0
π∈Bn

zn

[n]q2 !
tfexc(π)qfmaj(π) =

(1− tq) expq2(z)

expq2(t2q2z)− tq expq2(z)
. (9)

Equation (8) is a special case of formula (10) below involving permutation statis-

tics on a more general class of groups that contain both the symmetric group and

the hyperoctahedral group. The groups in this class are wreath products CN o Sn of

the cyclic group CN with the symmetric group Sn, also called colored permutation

groups. Some of the earliest results on permutation statistics for colored permuta-

tion groups were obtained by Reiner [22], Steingŕımmsson [35], and Poirier [21]. Our

formula (10) reduces to the following colored permutation generalization of Carlitz’s

identity (3) and the Chow-Gessel type B analog of Carlitz’s identity (7), 3

∑
π∈CN oSn q

flagmaj(π)tdes∗(π)

(t; qN)n+1

=
∑
k≥0

[Nk + 1]nq t
k,

where flagmaj and des∗ are generalizations of maj and des for CN o Sn.

Our more general formula (Theorem 3.3.1) for a multivariate distribution of col-

ored permutation statistics is

∑
n≥0

π∈CN oSn

zn

(p; q)n+1

texc(π)r
~fix(π)s

~col(π)qmaj(π)pdes∗(π)

=
∑
l≥0

pl(1− tq)(z; q)l(tqz; q)l

(∏N−1
m=1(smz; q)l

)(∏N−1
m=1(rmsmz; q)l

)−1

(r0z; q)l+1

[(
1 +

∑N−1
m=1 sm

)
(z; q)l −

(
tq +

∑N−1
m=1 sm

)
(tqz; q)l

] . (10)

This formula is similar, but not equivalent, to a formula of Foata and Han [13] which

3This colored permutation generalization of Carlitz’s identity was also independently obtained
by Chow and Mansour [7].
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involves a different descent statistic. We also obtain the following colored permutation

generalization of (9) and (4) 4

∑
n≥0

π∈CN oSn

zn

[n]q!
texc(π)r

~fix(π)s
~col(π)qmaj(π)

=
expq(r0z)(1− tq)

(∏N−1
m=1 Expq(−smz) expq(rmsmz)

)
(

1 +
∑N−1

m=1 sm

)
expq(tqz)−

(
tq +

∑N−1
m=1 sm

)
expq(z)

. (11)

Our proof of (10) and (11) involves a nontrivial generalization of techniques de-

veloped by Shareshian and Wachs in order to prove (4). We introduce a family of

quasisymmetric functions which we call colored Eulerian quasisymmetric functions.

They are a generalization of the Eulerian quasisymmetric functions of Shareshian and

Wachs. We obtain the following generating function formula for our colored Eulerian

quasisymmetric functions, which generalizes (5)

∑
n,j≥0
~α∈NN
~β∈NN−1

Qn,j,~α,~β(x)zntjr~αs
~β =

H(r0z)(1− t)
(∏N−1

m=1 E(−smz)H(rmsmz)
)

(
1 +

∑N−1
m=1 sm

)
H(tz)−

(
t+
∑N−1

m=1 sm

)
H(z)

, (12)

where E(z) :=
∑

i≥0 ei(x)zi and ei(x) is the elementary symmetric function of degree

i. We show that applying the stable and nonstable principal specializations to (12)

yields (10) and (11), respectively.

We begin in Chapter 1 with notation and preliminaries for the symmetric group.

We define the fundamental permutation statistics discussed above, and examine some

classic results. Next we briefly discuss symmetric and quasisymmetric functions. This

allows us to study the permutation enumeration techniques developed by Gessel and

Reutenauer [15] in Sections 1.6, and those of Shareshian and Wachs [31], [32] in

Section 1.7.

4Equation (11) was also independently obtained by Foata and Han [13].
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In Chapter 2 we define general Coxeter groups and some natural statistics on them.

We see how the symmetric group, or type A Coxeter group, fits into this family of

groups. Next we define the type B Coxeter group, also called the hyperoctahedral

group, and study its combinatorial description as the signed permutation group. We

define several statistics for the signed permutation group, which are analogous to

their symmetric group counterparts. We then examine type B analogs of classic type

A results, including our new result (8), and its consequence (9).

In Chapter 3 we define wreath products of cyclic groups with symmetric groups,

and their combinatorial interpretation as colored permutation groups. This family of

groups includes the symmetric group and the hyperoctahedral group, but is in general

different from the family of Coxeter groups. We discuss statistics for this group and

examine several results. In particular we present our new results given in (10) and

(11), and show how they imply (8) and (9).

We introduce our colored Eulerian quasisymmetric functions in Chapter 4 and

prove a fundamental lemma regarding this family of quasisymmetric functions. We

then show how our formulas for multivariate distributions of colored permutation

statistics follow from (12).

The bulk of our remaining work is to then prove (12). In Chapter 5 we begin

by obtaining a combinatorial description of the monomials appearing in each colored

Eulerian quasisymmetric function. From this combinatorial description, we deduce

a recurrence relation which is equivalent to the desired generating function formula.

Chapter 6 is devoted to establishing this recurrence relation, which must be done

separately for two different cases.

We close with Chapter 7 by presenting some recurrence and closed formulas, which

are equivalent to (12). These formulas are also specialized to obtain recurrence and

closed formulas for (10) and (11). In conclusion, we discuss some of our future work.



Chapter 1

The Symmetric Group

1.1 Preliminaries

For n ≥ 1 let Sn denote the symmetric group on the set [n] := {1, 2, ..., n}, i.e. the

group of bijections from [n] to itself with multiplication given by function composition.

It will also be convenient to define S0 := {θ} where θ denotes the empty word. An

element π ∈ Sn is called a permutation and it can be written in two-line notation

π =

 1 2 ... n

π(1) π(2) ... π(n)

 ,
and one-line notation (i.e. as a word over [n])

π = π(1), π(2), ..., π(n).

We can also write a permutation as a product of cycles. Let i1, i2, ..., ik be distinct

positive integers, a cycle

(i1, i2, ..., ik)

denotes a bijection which maps ij to ij+1 for j = 1, 2, ..., k − 1, maps ik to i1, and

each integer not appearing in the cycle is mapped to itself. Given any π ∈ Sn, it can

7
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be written as a product of disjoint cycles. For example

3, 2, 1, 5, 6, 4 = (1, 3)(2)(4, 5, 6).

We let Id denote the identity permutation which maps each integer in [n] to itself.

1.2 Permutation Statistics and Eulerian Polyno-

mials

A permutation statistic f is a map from the union of all symmetric groups to the

set of nonnegative integers, which we denote by N. The modern study of permutation

statistics was initiated by MacMahon [20]. We will see that there are several naturally

defined permutation statistics which have connections to other areas of mathemat-

ics, and lead to some beautiful results. Here we define some of these permutation

statistics.

Definition 1.2.1. Let π ∈ Sn.

• The set of fixed points of π, denoted FIX(π), is defined by

FIX(π) := {i ∈ [n] : π(i) = i} .

• The number of fixed points, denoted fix(π), is defined by

fix(π) := |FIX(π)|.

• The descent set of π, denoted DES(π), is defined by

DES(π) := {i ∈ [n− 1] : π(i) > π(i+ 1)} .
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• The descent number, denoted des(π), is defined by

des(π) := |DES(π)|.

• The excedance set of π, denoted EXC(π), is defined by

EXC(π) := {i ∈ [n− 1] : π(i) > i} .

• The excedance number, denoted exc(π), is defined by

exc(π) := |EXC(π)|.

• An inversion of π is a pair (π(i), π(j)), such that 1 ≤ i < j ≤ n and π(i) > π(j).

The inversion number of π, denoted inv(π), is defined to be the number of

inversions of π.

• The major index of π, denoted maj(π), is defined by

maj(π) :=
∑

i∈DES(π)

i.

The major index is named after Major Percy Alexander MacMahon, who intro-

duced this statistic along with descent number and excedance number. Given two

permutation statistics f1, f2, we say they are equidistributed if

| {π ∈ Sn : f1(π) = k} | = | {π ∈ Sn : f2(π) = k} |

for all n, k ∈ N. Equivalently, f1, f2, are equidistributed if the following polynomial
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identity holds for all n ∈ N

∑
π∈Sn

tf1(π) =
∑
π∈Sn

tf2(π).

MacMahon [20] was the first to observe in the early 20th century that the descent

number and excedance number are equidistributed. Here we describe a bijection

called Foata’s First Fundamental Transformation (see [14]), which shows that these

statistics are equidistributed.

Theorem 1.2.2 (MacMahon). Descent number and excedance number are equidis-

tributed. Equivalently, ∑
π∈Sn

tdes(π) =
∑
π∈Sn

texc(π)

for all n ∈ N.

Proof. Given w ∈ Sn, write w in cycle notation where

1) each cycle is written with its largest element first,

2) the cycles are written in increasing order of their largest element.

Then let ŵ be the permutation in one-line notation obtained by removing paren-

thesis. For example if

w = 5, 6, 8, 7, 2, 1, 9, 3, 4 = (1, 5, 2, 6)(3, 8)(4, 7, 9) = (6, 1, 5, 2)(8, 3)(9, 4, 7),

then

ŵ = 6, 1, 5, 2, 8, 3, 9, 4, 7.

Next we describe the inverse of the map w 7→ ŵ. Given a permutation w, we

call wi a left-to-right maximum if wi > wj for j = 1, 2, ..., i − 1. So if w 7→ ŵ, then

placing a left parenthesis before each left-to-right maximum of ŵ, and then placing

right parenthesis before each left parenthesis and at the end of ŵ, takes us back to w
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written in cycle form. Therefore this map is a bijection.

This map also has the property that i /∈ DES(ŵ) if and only if w(ŵ(i)) ≥ ŵ(i).

Let wexc(w) := | {i ∈ [n] : w(i) ≥ i} |, called the number of weak excedances of a

permutation. Thus n− des(ŵ) = wexc(w).

Let b : Sn → Sn be the involution which replaces i by n + 1 − i and rewrites the

word in reverse order. That is, if w = w1, w2, ..., wn, then

b(w1, w2, ..., wn) = n+ 1− wn, n+ 1− wn−1, ..., n+ 1− w1.

It follows that wi ≤ i if and only if b(w)(n + 1 − i) = n + 1 − wi ≥ n + 1 − i. Thus

wexc(b(w)) = n− exc(w).

If we apply the map b followed by the hat map, we have the desired result. That

is,

exc(w) = n− wexc(b(w)) = des(b̂(w)).

Note that while descent number and excedance number are equidistributed, in

general they are not equal. For example if π = 3, 2, 1, then des(π) = 2 and exc(π) = 1.

It so happens that des and exc have an intimate connection with the Eulerian

polynomials, which we denote by An(t) for n ∈ N. Euler introduced these polynomials

in the 18th century in the form

An(t)

(1− t)n+1
=
∑
k≥0

(k + 1)ntk,

in order to study the Dirichlet eta function. Euler also proved (see [17]) the following

generating function formula for these polynomials

∑
n≥0

An(t)
zn

n!
=

(1− t)ez

etz − tez
. (1.1)
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In the mid 20th century, after MacMahon’s result that des and exc are equidistributed,

Riordan [27] discovered the following combinatorial interpretation of the Eulerian

polynomials (see also [10]):

An(t) =
∑
π∈Sn

tdes(π) =
∑
π∈Sn

texc(π) (1.2)

for all n ∈ N. In fact, equation (1.2) is the modern definition of the Eulerian polyno-

mials. 1

Later on we will see that inversion number plays an important role in the study

of the symmetric group as a Coxeter group. MacMahon [19] was the first to prove

that inversion number is equidistributed with major index. Here, we choose to give

a sketch of Foata’s [9] bijective proof that maj and inv are equidistributed.

Theorem 1.2.3 (MacMahon). The permutation statistics major index and inversion

number are equidistributed.

Proof. We describe Foata’s second fundamental transformation Φ : Sn → Sn; we

refer the reader to [9] for the proof that Φ is a bijection and has the property that

maj(w) = inv(Φ(w)) for all w ∈ Sn. Let P denote the set of positive integers. Given

a ∈ P, and a word w = w1, w2, ..., wn consisting of distinct positive integers different

from a, the factorization of w induced by a is

w = α1 · α2 · · ·αk, where

1) if wn < a, then the last letter of each αi is less than a and all other letters of

αi are greater than a,

2) if wn > a, then the last letter of each αi is greater than a and all other letters

of αi are less than a.

1It is also common to define the Eulerian polynomials to be tAn(t)
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Given a word α, let α̃ be the word obtained from α by moving the last letter to

the front. Let

Fa(w) = α̃1 · α̃2 · · · α̃k,

where w = α1 · α2 · · ·αk is the factorization of w induced by a.

Then Φ is defined recursively by

Φ(w1) = w1,

Φ(w1, w2, ..., wn) = Fwn(Φ(w1, w2, ..., wn−1)) · wn.

For example, consider w = 3, 6, 4, 1, 2, 5 ∈ S6.

Φ(3) = 3

Φ(3, 6) = F6(3) · 6 = 3, 6

Φ(3, 6, 4) = F4(3, 6) = 3̃, 6 · 4 = 6, 3, 4

Φ(3, 6, 4, 1) = F1(6, 3, 4) = 6̃ · 3̃ · 4̃ · 1 = 6, 3, 4, 1

Φ(3, 6, 4, 1, 2) = F2(6, 3, 4, 1) = ˜6, 3, 4, 1 · 2 = 1, 6, 3, 4, 2

Φ(3, 6, 4, 1, 2, 5) = F5(1, 6, 3, 4, 2) · 5 = 1̃ · 6̃, 3 · 4̃ · 2̃ · 5 = 1, 3, 6, 4, 2, 5.

And for this example we see that maj(w) = 2 + 3 = 5, and inv(Φ(w)) = 5.

As was the case with descent number and excedance number, we note that in

general inversion number is not equal to major index. For example if π = 1, 3, 2, then

inv(π) = 1 and maj(π) = 2.
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1.3 q-analogs of Eulerian Polynomials

The permutation statistics inv and maj are frequently used to obtain q-analogs of

classic results. In general, a q-analog of an object has the property that by setting

q = 1, one recovers the original object. Of course there are many q-analogs of any

given object, and there are no objective criteria for what is considered to be a good

q-analog. Here we define a few commonly used q-analogs.

Definition 1.3.1. Let n ∈ N.

• The q-analog of n, denoted [n]q, is defined by

[n]q :=
n−1∑
i=0

qi.

• The q-analog of n!, denoted [n]q!, is defined by

[n]q! :=
n∏
i=1

[i]q.

• We define two q-analogs of the exponential function. The first is denoted expq

and is defined by

expq(z) :=
∑
i≥0

zi

[i]q!
.

• The second is denoted Expq and is defined by

Expq(z) :=
∑
i≥0

q(
i
2)zi

[i]q!
,

where
(
n
k

)
is the binomial coefficient.

We note that for n ≥ 1, [n]q = (1− qn)/(1− q). Thus

[n]q! = [1]q[2]q · · · [n]q =
(1− q)(1− q2) · · · (1− qn)

(1− q)(1− q) · · · (1− q)
=

(q; q)n
(1− q)n

,
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where for n ∈ N we define (a; q)n by

(a; q)n :=
n−1∏
i=0

(1− aqi).

For n = 0, we also have [0]q! = (q; q)0/(1− q)0 = 1.

Our first example of using permutation statistics to obtain q-analogs was first

proved by Rodrigues [28], it is a formula for q-counting permutations according to

inversion number.

Proposition 1.3.2. For n ∈ N we have

∑
π∈Sn

qinv(π) = [n]q!.

Proof. Given π ∈ Sn, let ai = | {(j, i) : (j, i) is an inversion of π} |, and let I(π) be

the inversion table of π defined by

I(π) := (a1, a2, ..., an) ∈ Tn,

where Tn := [0, n− 1]× [0, n− 2]× ...× [0, 0]. It follows that

inv(π) =
n∑
i=1

ai.

Next we show that the map I : Sn → Tn which maps π to I(π) is a bijection. It

suffices to show this map is surjective, so suppose we are given (a1, a2, ..., an) ∈ Tn.

We construct a permutation π in one-line notation by starting with the empty word

and successively inserting n, n−1, ..., 1. If n, n−1, ..., i+1 have already been inserted,

then we insert i immediately after the letter in position ai, so that there are ai letters

to the left of i that are larger than i. It follows that the resulting permutation π ∈ Sn
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satisfies I(π) = (a1, a2, ..., an). Then

∑
π∈Sn

qinv(π) =
∑

(a1,...,an)∈Tn

qa1+...+an =
n∏
i=1

(
n−i∑
ai=0

qai

)
= [n]q!.

We note that MacMahon’s [19] proof of the fact the inv and maj are equidis-

tributed follows from the formula

∑
π∈Sn

qmaj(π) = [n]q!,

which he proved after Rodrigues had obtained the result given in Proposition 1.3.2.

We have seen that inversion number and major index both provide us with

nice q-analogs of the formula for the number of permutations in Sn. We have

also seen that the Eulerian polynomials can be expressed using descent number

or excedance number. By pairing either des or exc, with either maj or inv (i.e.

(des,maj), (des, inv), (exc,maj), or (exc, inv)), one obtains a q-analog of the Eulerian

polynomials. We remark that these bivariate distributions are all different for n ≥ 5.

The first result on these distributions was obtained by Carlitz, it pairs des and maj.

Theorem 1.3.3 ([5]). For n ∈ N we have

∑
π∈Sn q

maj(π)pdes(π)

(p; q)n+1

=
∑
k≥0

[k + 1]nq p
k.

One can also consider q-analogs of the generating function formula for the Eulerian

polynomials given in Equation (1.1). One such q-analog due to Stanley pairs inv with

des.
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Theorem 1.3.4 ([33]). We have

∑
n≥0
π∈Sn

qinv(π)tdes(π) z
n

[n]q!
=

1− t
Expq(z(t− 1))− t

.

A different q-analog of Equation (1.1) was discovered by Shareshian and Wachs.

It pairs maj and exc and also enumerates fixed points.

Theorem 1.3.5 ([32, Corollary 1.3]). We have

∑
n≥0
π∈Sn

qmaj(π)texc(π)rfix(π) z
n

[n]q!
=

(1− tq) expq(rz)

expq(tqz)− tq expq(z)
.

Each of the above mentioned q-analogs of Eulerian polynomials was obtained by

very different methods. Our main results are obtained by non-trivially extending the

methods used by Shareshian and Wachs in obtaining Theorem 1.3.5. Their methods

include nontrivial extensions of methods involving symmetric and quasisymmetric

functions that were developed by Gessel and Reutenauer [15] in order to enumerate

permutations by descent set and cycle type.

Foata and Han obtain an extension of Theorem 1.3.5, which can also be obtained

using the above mentioned techniques of Shareshian and Wachs.

Theorem 1.3.6 ([11]). We have

∑
n≥0
π∈Sn

qmaj(π)pdes(π)texc(π)rfix(π) zn

(p; q)n+1

=
∑
l≥0

pl(1− qt)(z; q)l(ztq; q)l
(zr; q)l+1 [(z; q)l − tq(ztq; q)l]

.

1.4 Symmetric Functions

As mentioned above, symmetric functions will play an important part in the proofs
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of our results. While the study of symmetric functions is quite rich, we cover just a

few of the basic results that we will need. For a more thorough treatment see [34]

and [29]. We will consider symmetric functions over the ring Q.

Definition 1.4.1. Let x denote the infinite set of variables {x1, x2, ...}. For n ∈ N, we

call α a weak composition of n if α = (α1, α2, ...) is an infinite sequence of nonnegative

integers such that
∑
αi = n. Let xα denote the monomial xα1

1 x
α2
2 .... A formal power

series is called homogeneous of degree n if it has the form

f(x) =
∑
α

cαx
α,

where the sum is over all weak compositions of n and cα ∈ Q.

A formal power series f(x) over the ring Q is called a symmetric function if

f(x1, x2, ...) = f(xσ(1), xσ(2), ...)

for every permutation σ of the positive integers.

We let Symn denote the set of all homogeneous symmetric function of degree n.

Since the product of two symmetric functions is symmetric, we define the algebra of

symmetric functions, denoted Sym, by

Sym := Sym0 ⊕ Sym1 ⊕ Sym2 ⊕ ....

Next we examine various bases for Sym. In each case will we require the notion of a

partition of n. We call λ a partition of n and write λ ` n if λ = (λ1 ≥ λ2 ≥ ... ≥ λk)

is a weakly decreasing sequence of positive integers such that
∑
λi = n. We also

consider the sequence consisting of a single zero to be the only partition of zero. Note

that for weak compositions of n ∈ N, we allowed entries to be zero and we did not

require the sequence to be weakly decreasing. We let Par(n) denote the set of all
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partition of n, and Par =
⋃
n≥0 Par(n).

Definition 1.4.2. For λ = (λ1, λ2, ..., λk) ` n, let (λ1, λ2, ...) denote the weak compo-

sition obtained from λ by extending it by zeros. We define the monomial symmetric

function, denoted mλ, by

mλ = mλ(x) :=
∑
α

xα ∈ Symn,

where the sum is over all weak compositions α which can be obtained from (λ1, λ2, ...)

by a distinct permutation of the entries of (λ1, λ2, ...).

For example

m(0) = 1,

m(1) =
∑
i≥1

xi,

m(1,1) =
∑
i>j≥1

xixj,

m(2) =
∑
i≥1

x2
i ,

m(2,1) =
∑

i,j≥1,i 6=j

x2
ixj.

From these definitions, it is clear that f ∈ Symn if and only if f =
∑

λ`n cλmλ

where cλ ∈ Q. Thus we have the following immediate proposition.

Proposition 1.4.3. The set {mλ : λ ∈ Par} is a basis for Sym.

The next two bases we discuss are the elementary symmetric functions, and the

complete homogeneous symmetric functions. We will make frequent use of them.

Definition 1.4.4. For n ∈ N, let 1n denote the partition consisting of n ones. First
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we define en by

en = en(x) := m1n =
∑

i1>i2>...>in≥1

xi1xi2 · · ·xin .

For λ = (λ1, λ2, ..., λk) ∈ Par, the elementary symmetric function, denoted eλ, is

defined by

eλ = eλ(x) := eλ1eλ2 · · · eλk .

Next, for n ∈ N we define hn by

hn = hn(x) =
∑
λ`n

mλ =
∑

i1≥i2≥...≥in≥1

xi1xi2 · · ·xin .

For λ = (λ1, λ2, ..., λk) ∈ Par, the complete homogeneous symmetric function, denoted

hλ, is defined by

hλ = hλ(x) := hλ1hλ2 · · ·hλk .

While it is clear that the elementary and the complete homogeneous symmetric

functions are indeed symmetric, it is less obvious that they are bases for Sym. We

refer the reader to [34] for a proof of the following proposition.

Proposition 1.4.5. The set {eλ : λ ∈ Par}, and the set {hλ : λ ∈ Par} are both bases

for Sym.

Moreover, there is an interesting relationship between these two bases. To see

this, we first note that they are multiplicative bases. Thus we may define an algebra

endomorphism ω : Sym → Sym by setting ω(en) = hn for all n ∈ N, and then

extending linearly and multiplicatively. Hence for any λ ∈ Par we have ω(eλ) = hλ.

The interesting fact here is that ω2(eλ) = eλ (see [34]).

Proposition 1.4.6. The algebra endomorphism ω described above is an involution,

i.e. ω2 is the identity map. Equivalently ω(hn) = en.
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Proof. First consider the following formal power series

H(z) =
∑
n≥0

hnz
n

and

E(z) =
∑
n≥0

enz
n.

In addition to their role in this proof, we will see these formal power series throughout

this paper.

It is clear that

E(z) =
∏
n≥1

(1 + xnz).

It is also clear that

H(z) =
∏
n≥1

(1− xnz)−1,

if we recognize that

(1− xnz)−1 =
∑
i≥0

(xnz)i.

It follows that

H(z)E(−z) =

(∑
n≥0

hnz
n

)(∑
n≥0

en(−z)n

)
= 1, (1.3)

thus for n ≥ 1 we have
n∑
i=0

(−1)ieihn−i = 0. (1.4)

Conversely, suppose
∑n

i=0(−1)iuihn−i = 0 for all n ≥ 1 for some collection of

ui ∈ Sym with u0 = 1. Then by induction this implies ui = ei for all i. Now we apply

ω to Equation (1.4) to obtain

0 =
n∑
i=0

(−1)ihiω(hn−i) = (−1)n
n∑
i=0

(−1)ihn−iω(hi),
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where the last equality is obtained by replacing i with n− i. It follows that ω(hi) = ei

as desired.

The interested reader should see [34] and [29] for more on symmetric functions.

In particular, the Schur symmetric functions are arguably the most interesting basis

for Sym. There are several different definitions of the Schur symmetric functions,

and it is not obvious they are equivalent. Moreover, they play a central role in the

connection between symmetric function theory and representation theory.

1.5 Quasisymmetric Functions

In addition to our use of symmetric functions, quasisymmetric functions are also

prominently featured in this work (as the title suggests). The study of quasisymmetric

functions began with the work of Gessel and Stanley. In the subsequent section we

provide an example of how quasisymmetric functions may be used in permutation

enumeration. Informally, a quasisymmetric function is a formal power series which

is invariant under shifts of the indices, which is a weaker condition than that of a

symmetric function.

Definition 1.5.1. A formal power series f(x) with coefficients in Q is called qua-

sisymmetric if for any sequence of positive integers (α1, α2, ..., αk), the coefficient of

xα1
j1
xα2
j2
· · ·xαkjk

in f(x), equals the coefficient of

xα1
i1
xα2
i2
· · ·xαkik
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in f(x) whenever j1 > j2 > ... > jk and i1 > i2 > ... > ik. For n ∈ N, let QSymn

denote the set of all homogeneous quasisymmetric functions of degree n. Since the

product of two quasisymmetric functions is also quasisymmetric, we define the algebra

of quasisymmetric functions, denoted QSym, by

QSym = QSym0 ⊕QSym1 ⊕QSym2 ⊕ ....

The most obvious basis for QSym consists of the monomial quasisymmetric func-

tions, which we define now.

Definition 1.5.2. Let α = (α1, α2, ..., αk) be a finite sequence of positive integers. If∑
αi = n we call α a composition of n. For any sequence α of positive integers, the

monomial quasisymmetric function, denoted Mα, is defined by

Mα = Mα(x) :=
∑

i1>i2>...>ik≥1

xα1
i1
xα2
i2
· · ·xαkik .

We also define the sequence consisting of a single zero to be the only composition of

zero, so that M(0) := 1.

For example, α = (2, 1) is a composition of 3 and

M(2,1) =
∑
i>j≥1

x2
ixj.

The coefficient of x2
2x1 in M(2,1) is one, and the coefficient of x2

1x2 in M(2,1) is zero,

hence M(2,1) is quasisymmetric but not symmetric.

Clearly, the set {Mα : α is a composition of n} forms a basis of QSymn. We will

be more concerned with another basis, namely the fundamental quasisymmetric func-

tions of Gessel.

Definition 1.5.3. For n ∈ N and a subset T ⊆ [n − 1], we define the fundamental
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quasisymmetric function, denoted FT,n, by

FT,n = FT,n(x) :=
∑

i1≥i2≥...≥in≥1
ij>ij+1 if j∈T

xi1xi2 · · ·xin .

We also define F∅,0 := 1.

One thinks of the set T as telling us which inequalities of the indices must be

strict. For example

F{2},3 =
∑

i≥j>k≥1

xixjxk.

Using the principle of inclusion-exclusion, one can prove that each monomial

quasisymmetric function of degree n can be expressed as a linear combination of

fundamental quasisymmetric functions of degree n, and vice versa. Hence the set

{FT,n : T ⊆ [n− 1]} is a basis for QSymn (see [34]).

We conclude this section by noting the following identities

F∅,n = hn and F[n−1],n = en. (1.5)

1.6 Necklaces and Ornaments

Quasisymmetric functions have been useful in the study of permutation enumer-

ation. In this section, we examine how Gessel and Reutenauer used quasisymmetric

functions in enumerating permutations of a given descent set and cycle type [15].

As mentioned previously, techniques introduced here will be extended and play an

important role in proving further results.

The idea starts with encoding the descent set (see Definition 1.2.1) of a permu-

tation as a fundamental quasisymmetric function. Indeed, given π ∈ Sn we have
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DES(π) ⊆ [n− 1], and we associated a fundamental quasisymmetric function with π

by defining

Fπ = Fπ(x) := FDES(π),n(x).

For example π = 3, 2, 4, 1 ∈ S4, DES(π) = {1, 3}, and

Fπ = F{1,3},4 =
∑

i1>i2≥i3>i4≥1

xi1xi2xi3xi4 .

As mentioned in the beginning of this chapter, a permutation π ∈ Sn can be

written as a product of disjoint cycles. The lengths of these cycles are unique, and

form a partition λ of n which we call the cycle type of a permutation, and write

λ(π) = λ. So for example if π = (3, 1, 5)(2)(4, 6, 7), then λ(π) = (3, 3, 1). One

significance of cycle type is that for π, σ ∈ Sn, π is conjugate to σ (i.e. π = τστ−1 for

some τ ∈ Sn) if and only if λ(π) = λ(σ).

To enumerate the permutations of a given descent set and cycle type, Gessel and

Reutenauer [15] consider the sum

Lλ = Lλ(x) :=
∑
π∈Sn
λ(π)=λ

Fπ(x). (1.6)

They show that Lλ is actually a symmetric function, and has a nice combinatorial

description in terms of necklaces and ornaments, which we define now.

Definition 1.6.1. Consider the alphabet P of positive integers. Recall that a word

of length n over P is a sequence of n letters, not necessarily distinct. The cyclic group

of order n acts on the set of words of length n by cyclic rotation. So if z is a generator

of this cyclic group and v = v1, v2, ..., vn is a word, then z · v = v2, v3, ..., vn, v1. A

circular word, denoted (v), is the orbit of v under this action. The length of (v) is

just the length of v. A circular word (v) is called primitive if the size of the orbit is

equal to the length of the word v. Equivalently, (v) is not primitive if v is a proper
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power of another word. For example the circular word (1, 2, 1) is primitive, while

(1, 2, 1, 2) is not primitive since 1, 2, 1, 2 = u2 where u = 1, 2. We call a primitive

circular word (v) over P a necklace. One can visualize (v) as a circular arrangement

of letters obtained from v by attaching the first and last letters together. For each

position of this necklace one can read the letters in a clockwise direction to obtain an

element from the orbit of the circular action on v.

For example, consider the word v = 2, 2, 4, 1, 3, and corresponding necklace (v) =

(2, 2, 4, 1, 3). The orbit of v under the action of cyclic rotation is

v = 2, 2, 4, 1, 3

z · v = 2, 4, 1, 3, 2

z2 · v = 4, 1, 3, 2, 2

z3 · v = 1, 3, 2, 2, 4

z4 · v = 3, 2, 2, 4, 1

Alternatively, we can label a position y on (v) and consider a finite word uy of

length 5 obtained by reading the letters of (v) cyclically starting at position y, i.e.

(2, 2, 4, 1, 3)

y0 y1 y2 y3 y4

With this labeling, we see that uyi = zi · v for i = 0, 1, 2, 3, 4.

An ornament R is a multiset of necklaces. Formally, R is map from the set of

necklaces to N with finite support, i.e. R((v)) is the multiplicity of the necklace (v) in

the multiset R. By arranging the lengths of the necklaces in R in weakly decreasing

order, we obtain a partition λ = (λ1, λ2, ..., λk) and we say the ornament R has cycle

type λ, and write λ(R) = λ. The set of all ornaments of cycle type λ is denoted R(λ).

Given a necklace (v) where v = v1, v2, ..., vn, the weight of a necklace, denoted
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wt((v)), is the monomial

wt((v)) := xv1xv2 · · ·xvn .

Let η denote the set of all necklaces. The weight of an ornament R is denoted wt(R),

and is defined by

wt(R) :=
∏

(v)∈η

wt((v))R((v)).

For example, if

R = {(1, 4, 1), (1, 4, 1), (3, 2, 1, 6)} ,

then

wt(R) = x1x4x1x1x4x1x3x2x1x6 = x5
1x2x3x

2
4x6.

A key result of [15] is the following:

Theorem 1.6.2 ([15]). For n ∈ P and λ ` n, we have

Lλ =
∑

R∈R(λ)

wt(R).

Proof. We give a sketch of the proof by describing the bijection between the mono-

mials of the left and right hand sides above. Let s = (s1 ≥ s2 ≥ ... ≥ sn) be a weakly

decreasing sequence of positive integers. Given π ∈ Sn, we say that s is DES(π)-

compatible if i ∈ DES(π) implies that si > si+1. Let Com(λ) denote the set of all

pairs (π, s) such that λ(π) = λ and s is DES(π)-compatible. Define the weight of the

pair (π, s), denoted wt((π, s)), to be the monomial

wt((π, s)) := xs1xs2 · · ·xsn .

It follows that

Lλ =
∑

(π,s)∈Com(λ)

wt((π, s)).
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Next we describe a weight preserving map f : Com(λ) → R(λ). Given (π, s) ∈

Com(λ), first write π in cycle form. For each cycle (ii, i2, ..., ik) appearing in π, include

the necklace (si1 , si2 , ..., sik) in the multiset f((π, s)). If the necklace (si1 , si2 , ..., sik)

already belongs to f((π, s)), then increase its multiplicity by one. We note here that

Gessel and Reutenauer prove that (si1 , si2 , ..., sik) is primitive, which is not obvious.

For example if π = 5, 6, 7, 3, 1, 2, 8, 4 = (1, 5)(2, 6)(3, 7, 8, 4), then

s = 6, 6, 6, 4, 3, 3, 3, 2 is DES(π)-compatible since DES(π) = {3, 4, 7}. Thus (π, s) ∈

Com(λ) where λ = (4, 2, 2). Then

f((π, s)) = {(6, 3), (6, 3), (6, 3, 2, 4)} ∈ R(λ). (1.7)

Given R ∈ R(λ), we describe f−1(R). If R has repeated necklaces, then place

some linear order on each set of repeated necklaces. Next we want to linearly order the

positions on all necklaces in R. Given a position x, let wx denote the infinite word

obtained by reading letters in that necklace clockwise starting from that position.

Given two words u, v, we say that u is lexicographically larger than v if for some

positive integer k we have ui = vi for i < k, and uk > vk. Given two positions x, y in

our ornament R, we say x > y if wx is lexicographically larger than wy, or wx = wy

and x is in a larger repeated necklace than y. This linearly orders all of the positions.

A permutation π in cycle form is obtained by replacing the letter in position x with

i, if x is the ith largest position. We let s be the weakly decreasing rearrangement of

all the letters appearing in R, and f−1(R) = (π, s).

For example consider the following ornament R with positions labeled y1, y2, ..., y8.

Note we must choose a linear order on the repeated necklaces.

R = (6, 3) < (6, 3) , (6, 3, 2, 4)

y1 y2 y3 y4 y5 y6 y7 y8
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Then the word at each position is the following:

wy1 = 6, 3, 6, 3, 6, 3, ...

wy2 = 3, 6, 3, 6, 3, 6, ...

wy3 = 6, 3, 6, 3, 6, 3, ...

wy4 = 3, 6, 3, 6, 3, 6, ...

wy5 = 6, 3, 2, 4, 6, 3, 2, 4, ...

wy6 = 3, 2, 4, 6, 3, 2, 4, 6, ...

wy7 = 2, 4, 6, 3, 2, 4, 6, 3, ...

wy8 = 4, 6, 3, 2, 4, 6, 3, 2, ...

The lexicographically largest word occurs at positions y1, y3. By the order we

chose on necklaces, y3 is the largest position, followed by y1. So we place a 1 in

position y3, and a 2 in position y1. The next largest word is in position y5, so we

place a 3 in position y5. Continuing in this way, we obtain a permutation π in cycle

form,

R = (6, 3) < (6, 3) , (6, 3, 2, 4, )

π = (2, 6) (1, 5) (3, 7, 8, 4)

and a sequence s = 6, 6, 6, 4, 3, 3, 3, 2. By comparison with (1.7), we see f−1f((π, s)) =

(π, s) for this example. Of course a rigorous proof would involve checking that these

maps are well-defined, weight preserving, and inverses. We refer the reader to [15].

Gessel and Reutenauer use this result to express the number of permutations of

a given descent set and cycle type in terms of a certain scalar product of symmetric

functions (or equivalently, a scalar product of characters of Sn representations). We

will not discuss this result, instead we examine how they enumerate various subsets

of Sn according to descent number and major index. The main tools used here are

the stable and nonstable principal specializations.



30

Definition 1.6.3. The stable principal specialization, denoted ps, is the ring homo-

morphism ps : QSym → Q[q] (where Q[q] denotes the ring of formal power series in

variable q over Q) defined by

ps(xi) = qi−1 for all i.

For l ∈ N, the principal specialization, denoted psl, is the ring homomorphism

psl : QSym→ Q[q] defined by

psl(xi) =

 qi−1 if 1 ≤ i ≤ l

0 if i > l
.

Lemma 1.6.4 ([15, Lemma 5.2]). For n ∈ N we have

ps(FT,n(x)) =
q
∑
i∈T i

(q; q)n
,

and ∑
l≥0

psl(FT,n(x))pl =
p|T |+1q

∑
i∈T i

(p; q)n+1

.

The proof of this very useful lemma is obtained by rewriting the indices of sum-

mation on the left hand side in such a way that allows one to compute the sum using

geometric series. To apply this lemma, consider any subset A ⊆ Sn of permutations,

and define

LA = LA(x) :=
∑
π∈A

Fπ(x) =
∑
π∈A

FDES(π),n(x).

Recall from Definition 1.2.1 that |DES(π)| = des(π) and maj(π) =
∑

i∈DES(π) i. Using

Lemma 1.6.4 the following theorem is obtained.
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Theorem 1.6.5 ([15, Theorem 5.3]). For n ∈ N and A ⊆ Sn we have

ps(LA) =

∑
π∈A q

maj(π)

(q; q)n
,

and ∑
l≥0

plpsl(LA) =

∑
π∈A p

des(π)+1qmaj(π)

(p; q)n+1

.

By appropriate choice of A, this theorem is used by Gessel and Reutenauer [15] to

study the distribution of des and maj among involutions, derangements, and cyclic

permutations.

1.7 Bicolored Necklaces and Ornaments

Recall Theorem 1.3.5 which is due to Shareshian and Wachs:

∑
n≥0
π∈Sn

qmaj(π)texc(π)rfix(π) z
n

[n]q!
=

(1− tq) expq(rz)

expq(tqz)− tq expq(z)
,

where expq(z) :=
∑

i≥0 z
i/[i]q!. In this section we outline the proof of this theorem.

The proof uses nontrivial extensions of the techniques outlined in the previous sec-

tion. In Chapters 4,5,6, we non-trivially extend these techniques further to prove our

results.

The first objective is to associate a fundamental quasisymmetric function to each

permutation in such a way that applying principal specializations gets the excedance

number involved. In the previous section the descent set was used, here a different

set will be used.

Definition 1.7.1. For n ≥ 1, let [ñ] denote the linearly ordered alphabet

[ñ] := {1̃ < 2̃ < ... < ñ < 1 < 2 < ... < n}.
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For π ∈ Sn, define π̃ to be the word over [ñ] obtained from π by replacing πi with π̃i

whenever i ∈ EXC(π) (i.e., π(i) > i, see Definition 1.2.1). Then we define

DEX(π) := DES(π̃) ⊆ [n− 1],

where the descent set of any word over an ordered alphabet consists of all i such that

wi > wi+1. Also define DEX(θ) := 0 where θ denotes the empty word.

For example if π = 3, 4, 1, 7, 6, 5, 2 ∈ S7, then EXC(π) = {1, 2, 4, 5},

π̃ = 3̃, 4̃, 1, 7̃, 6̃, 5, 2, and DEX(π) = {3, 4, 6}. The motivation for this definition is

seen by the following lemma.

Lemma 1.7.2 ([32, Lemma 2.2]). For all π ∈ Sn we have

∑
i∈DEX(π)

i = maj(π)− exc(π),

and

|DEX(π)| =


des(π) if π(1) = 1

des(π)− 1 if π(1) 6= 1

.

Using DEX to associate fundamental quasisymmetric functions to permutations,

we proceed with the following definition.

Definition 1.7.3. For n, j, k ≥ 0, and λ ` n, define the following subsets of Sn

Wn,j,k = {π ∈ Sn : exc(π) = j, fix(π) = k} ,

Wλ,j = {π ∈ Sn : λ(π) = λ, exc(π) = j} .
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The fixed point Eulerian quasisymmetric functions, denoted Qn,j,k, are defined by

Qn,j,k = Qn,j,k(x) :=
∑

π∈Wn,j,k

FDEX(π),n(x).

The cycle type Eulerian quasisymmetric functions, denoted Qλ,j, are defined by

Qλ,j = Qλ,j(x) :=
∑

π∈Wλ,j

FDEX(π),n(x).

The goal now is to obtain a generating function formula for

∑
n,j,k≥0

Qn,j,kt
jrkzn.

Once such a formula is obtained, one can apply specializations to enumerate permu-

tations according to exc,maj, fix, and des. In order to find this formula, we discuss

a combinatorial description of Qλ,j. This description is inspired by the necklaces and

ornaments of Gessel and Reutenauer [15] (see Definition 1.6.1).

Definition 1.7.4. Define a linearly order alphabet

D := 1 < 1 < 2 < 2 < 3 < 3 < ...

Given a letter a ∈ D, let |a| denote the positive integer obtained by removing the bar

from a if there is one. A bicolored necklace is a primitive circular word (v) over D

such that

1. every barred letter is followed (clockwise, or cyclically) by a letter of lesser or equal

absolute value,

2. every unbarred letter is followed by a letter of greater or equal absolute value,

3. necklaces of length one may not consist of a single barred letter.

For example (1, 1, 1) is a bicolored necklace, and so is (2, 4, 4, 4, 4, 1, 1). The fol-
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lowing three circular words are not bicolored necklaces: (1, 2, 1, 2), (1, 3, 2, 3), (1).

A bicolored ornament is a multiset of bicolored necklaces. By arranging the lengths

of the bicolored necklaces in R in weakly decreasing order, we obtain a partition

λ = (λ1, λ2, ..., λk) and we say the bicolored ornament R has cycle type λ, and write

λ(R) = λ. The set of all bicolored ornaments of cycle type λ with exactly j barred

letters is denoted R(λ, j).

Given a bicolored necklace (v) of length n, the weight of (v), denoted wt((v)), is

defined to be the monomial

wt((v)) := x|v1|x|v2| · · ·x|vn|.

Let η denote the set of all bicolored necklaces. The weight of a bicolored ornament

is defined to be

wt(R) :=
∏

(v)∈η

wt((v))R((v)).

Theorem 1.7.5 ([32, Corollary 3.3]). For n ∈ P, j ∈ N, and λ ` n we have

Qλ,j =
∑

R∈R(λ,j)

wt(R).

Proof. We give a sketch of the proof by discussing how one modifies the bijection

of Gessel and Reutenauer described in the proof of Theorem 1.6.2. Given π ∈ Sn,

we call a weakly decreasing sequence s = (s1 ≥ s2 ≥ ... ≥ sn) of positive integers

DEX(π)-compatible if i ∈ DEX(π) implies si > si+1. Given λ ` n, we define

Com(λ, j) := {(π, s) : π ∈ Wλ,j and s is DEX(π)-compatible} .

We define the weight of (π, s), denoted wt((π, s)), to be the monomial

wt((π, s)) := xs1xs2 · · ·xsn .
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Thus

Qλ,j =
∑

(π,s)∈Com(λ,j)

wt((π, s)).

As in the proof of Theorem 1.6.2, we construct a weight preserving map f :

Com(λ, j) → R(λ, j). Given (π, s) ∈ Com(λ, j), let t be the sequence of letters

obtained from s by replacing si with si whenever i ∈ EXC(π). Next, write π in

cycle form. For each cycle (ii, i2, ..., ik) appearing in π, include the bicolored necklace

(ti1 , ti2 , ..., tik) in the multiset f((π, s)). If the necklace (ti1 , ti2 , ..., tik) already belongs

to f((π, s)), then increase its multiplicity by one. We note here that Shareshian and

Wachs prove that (ti1 , ti2 , ..., tik) is in fact a bicolored necklace.

For example, let π = 4, 5, 1, 3, 2, 8, 6, 7 = (1, 4, 3)(2, 5)(6, 8, 7) ∈ Wλ,j where

λ = (3, 3, 2), and j = 3. Note that π̃ = 4̃, 5̃, 1, 3, 2, 8̃, 6, 7, and DEX(π) = {4, 5},

so s = 5, 4, 4, 4, 3, 2, 2, 2 is DEX(π)-compatible and (π, s) ∈ Com(λ, j). Then t =

5, 4, 4, 4, 3, 2, 2, 2, and

f((π, s)) = (5, 4, 4), (4, 3), (2, 2, 2) ∈ R(λ, j).

The inverse map is given by the same description appearing the proof of Theorem

1.6.2, except that the word at each position is over the alphabet D. So we use

the order on D to determine if the word at position x is lexicographically larger

than the word at some position y. For example, if R = (5, 4, 4), (4, 3), (2, 2, 2) with

positions y1, y2, ..., y8 labeled consecutively, then clearly wy1 = 5, 4, 4, 5, 4, 4, .. is the

largest word and we place a 1 in position y1. Since 4 > 4, the next largest word is

wy4 = 4, 3, 4, 3, ..., and we place a 2 in position y4. If we continue this example, we

see that we recover (π, s) above.

While the description of the bijection of Shareshian and Wachs is somewhat similar

to that of Gessel and Reutenauer, there is much more work needed here to prove that

f is in fact well-defined, and actually a bijection. For more details we refer the reader
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to [31], [32].

Shareshian and Wachs use this theorem to prove that the quasisymmetric func-

tion Qλ,j is actually symmetric. Another use that we discuss next, is to establish a

recurrence for Qn,j,k. In order to accomplish this, we introduce the bicolored banners

of Shareshian and Wachs.

Definition 1.7.6. A bicolored banner is a word B over D of finite length such that

1. if B(i) is barred then |B(i)| ≥ |B(i+ 1)|,

2. if B(i) is unbarred then |B(i)| ≤ |B(i+ 1)|,

3. the last letter of B is unbarred.

The weight of a bicolored banner B of length n, denoted wt(B), is the monomial

wt(B) = x|B(1)|x|B(2)| · · ·x|B(n)|.

A Lyndon word over an ordered alphabet is a word that is strictly lexicographically

larger that all its circular rearrangements. A Lyndon factorization of a word over an

ordered alphabet is a factorization into a lexicographically weakly increasing sequence

of Lyndon words. It is a fact that every word over an ordered alphabet has a unique

Lyndon factorization. We say that a word of length n has Lyndon type λ, if λ ` n

and the parts of λ equal the lengths of the words in the Lyndon factorization (see

[18, Theorem 5.1.5]). Let K(λ, j) denote the set of all bicolored banners of Lyndon

type λ with exactly j barred letters.

Using Lyndon factorization, the following theorem is obtained.

Theorem 1.7.7 ([32, Theorem 3.6]). There exists a weight preserving bijection from
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R(λ, j) to K(λ, j), consequently

Qλ,j =
∑

B∈K(λ,j)

wt(B),

for n, j ∈ N and λ ` n.

It is through this bicolored banner description that a recurrence for Qn,j,k is ob-

tained. This recurrence is equivalent to the following generating function formula for

Qn,j,k.

Theorem 1.7.8 ([32, Theorem 1.2]). We have

∑
n,j,k≥0

Qn,j,k(x)tjrkzn =
(1− t)H(rz)

H(tz)− tH(z)
.

Recall from Section 1.4 that H(z) =
∑

n≥0 hnz
n, from Equation (1.5) that hn =

F∅,n, and from Definition 1.3.1 that [n]q! = (q;q)n
(1−q)n . Putting all this together with

Lemma 1.6.4, we have

ps(H(z(1− q)) =
∑
n≥0

zn

[n]q!
= expq(z).

We also recall Euler’s exponential generating function formula for the Eulerian poly-

nomials, Equation (1.1) ∑
n≥0

An(t)
zn

n!
=

(1− t)ez

etz − tez
.

So in comparing Theorem 1.7.8 with Euler’s result in Equation (1.1), it is natural

to call Theorem 1.7.8 a symmetric function analog of Euler’s result. Moreover, by

replacing z 7→ z(1 − q), and t 7→ tq, and applying the stable principal specialization

ps to Theorem 1.7.8, we obtain the q-analog of Equation (1.1) due to Shareshian and
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Wachs, Theorem 1.3.5

∑
n≥0
π∈Sn

qmaj(π)texc(π)rfix(π) z
n

[n]q!
=

(1− tq) expq(rz)

expq(tqz)− tq expq(z)
.

We remark that the formula for the distribution of maj, des, exc, and fix appearing

Theorem 1.3.6 also follows from Theorem 1.7.8 by applying the principal specialization

psl.

In the last two sections we have discussed techniques and results that will be

relevant to proving our results later on. In the next two chapters we discuss well-

known ways in which one can generalize the symmetric group. The first is a study

of Coxeter groups, and the second is to consider certain wreath products. We will

observe that there is some overlap in these two topics.



Chapter 2

The Hyperoctahedral Group

In this chapter we will see how the symmetric group fits into a larger class of groups

called Coxeter groups. First we define Coxeter groups and recognize the symmetric

group as part of this class of groups. We continue the chapter by considering the type

B Coxeter group, also called the hyperoctahedral group.

2.1 Coxeter Groups

Informally, a Coxeter group is a group that can be presented in a simple way

using generators and relations, where the generators are sometimes thought of as

reflections. Coxeter groups arise in many different areas of mathematics, some exam-

ples include symmetry groups of regular polytopes, and the Weyl groups of simple

Lie algebras. The finite Coxeter groups can be realized as reflection groups of finite

dimensional Euclidean spaces. Moreover, the finite irreducible Coxeter groups have

been completely classified: there are four infinite families, and six exceptional irre-

ducible Coxeter groups. We refer the reader to [3] for more information on Coxeter

groups.

Definition 2.1.1. A Coxeter system (W,S) consists of a group W and a set of gen-

erators S such that the following relations form a presentation of W :

1) s2
i = Id for all si ∈ S,

2) (sisj)
m(si,sj) = Id, where m(si, sj) ∈ {1, 2, ...,∞} for all si, sj ∈ S.

39
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If m(si, sj) = ∞ for some si, sj ∈ S, this means there is no relation of the form

(sisj)
m. The group W is called a Coxeter group. Given a Coxeter system (W,S), one

can write the coefficients m(si, sj) such that si, sj ∈ S as a matrix called a Coxeter

matrix.

We note that for W to be a group, m(si, sj) = m(sj, si) for all si, sj ∈ S. We also

note that two generators si and sj commute if and only if m(si, sj) = 2

Two fundamental aspects of a Coxeter system that we will be particularly inter-

ested in are that of Coxeter length and right descent set. Later we will discuss the

connections between certain permutation statistics, and length and right descent set.

Definition 2.1.2. Let (W,S) be any Coxeter system. We can express each w ∈ W

in terms of the generators S. If

w = si1si2 · · · sik

where sij ∈ S for 1 ≤ j ≤ k and k is minimal among all such expressions, then k is

called the Coxeter length of w and we write l(w) = k. The expression si1si2 · · · sik is

called a reduced word for w.

The right descent set of w, denoted DR(w), is defined to be

DR(w) := {si ∈ S : l(wsi) < l(w)} .

Note that since we also consider permutations as words, we will have to distinguish

between the Coxeter length of a permutation defined above, and the length of a

permutation as a word, which we may denote by length(π) = n if π ∈ Sn.



41

2.2 The Type A Coxeter Group

The most basic nontrivial example of a Coxeter group is the symmetric group,

also called the type A Coxeter group. To realize Sn as a Coxeter group, we must

present a list of generators S so that (Sn, S) is a Coxeter system, which we call the

type A Coxeter system. For i = 1, 2, ..., n− 1, define

τi := (i, i+ 1) ∈ Sn

written in cycle form. The element τi is called an adjacent transposition, and we choose

S = {τ1, τ2, ..., τn−1}. Given a permutation π ∈ Sn written in one line notation, we

note that πτi is obtained from π by switching π(i) and π(i + 1). For example let

π = 2, 5, 3, 1, 6, 4 ∈ S6, then πτ4 = 2, 5, 3, 6, 1, 4. From this it is clear that S generates

Sn. Moreover, it is an easy exercise to verify that with these generators, Sn has the

presentation

τ 2
i = Id for 1 ≤ i ≤ n− 1,

(τiτj)
2 = Id for |i− j| > 1,

(τiτi+1)3 = Id for 1 ≤ i ≤ n− 2,

where Id denotes the identity permutation of Sn (i.e. Id = 1, 2, ..., n written in one-

line notation). Thus (Sn, S) is indeed a Coxeter system. Given π ∈ Sn, we let lA(π)

and DESA(π) denote the Coxeter length and right descent set of π respectively with

respect to the Coxeter system (Sn, S). We also note that the corresponding Coxeter

matrix, for say n = 6, has the form

m =


1 3 2 2 2
3 1 3 2 2
2 3 1 3 2
2 2 3 1 3
2 2 2 3 1


Recall from Definition 1.2.1 that for 1 ≤ i < j ≤ n and π ∈ Sn, the pair (π(i), π(j))
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is called an inversion of π if π(i) > π(j). The inversion number of π is defined by

inv(π) := | {(π(i), π(j)) : (π(i), π(j)) is an inversion of π} |.

This statistic gives us a combinatorial description of Coxeter length for Sn.

Proposition 2.2.1. Let π ∈ Sn. Then lA(π) = inv(π).

Proof. First we show that inv(π) ≤ lA(π). Recall that multiplying π by τj on the

right switches the letters π(j) and π(j + 1). Thus if π(j) > π(j + 1), then inv(πτj) =

inv(π)− 1. And if π(j) < π(j + 1), then inv(πτj) = inv(π) + 1. Since inv(Id) = 0, it

follows that inv(τi1τi2 · · · τik) ≤ k, which implies inv(π) ≤ lA(π).

Next we show that lA(π) ≤ inv(π). Induct on k = inv(π). If k = 0, then π = Id

and lA(Id) = 0. Now let k = inv(π) > 0, and assume that lA(σ) ≤ inv(σ) whenever

inv(σ) < k. Since inv(π) > 0, there exists j such that π(j) > π(j + 1). Thus

inv(πτj) = inv(π)− 1 < k,

and

lA(πτj) ≤ inv(πτj) = inv(π)− 1 = k − 1.

It follows that

lA(π) ≤ k = inv(π).

Recall that our discussion of q-analogs began in Section 1.3. Through the work

of Rodrigues [28] and MacMahon [19], we saw that enumerating permutations by

inversion number or major index provides a nice q-analog of n!. Since lA is equal to
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inv, we update the corresponding formula now,

∑
π∈Sn

qlA(π) =
∑
π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π) = [n]q!. (2.1)

Next we show the connection between the right descent set (see Definition 2.1.2)

of our Coxeter system (Sn, S) , and the descent set from Definition 1.2.1.

Proposition 2.2.2. Let π ∈ Sn. Then i ∈ DES(π) if and only if τi ∈ DR(π).

Proof. If i ∈ DES(π), then multiplying by τi on the right switches π(i) and π(i + 1)

and lA(πτi) = inv(πτi) = inv(π)− 1 < lA(π), thus τi ∈ DR(π).

If i /∈ DES(π), then lA(πτi) = inv(πτi) = inv(π) + 1 > lA(π), and τi /∈ DR(π).

Since the Eulerian polynomial satisfies

An(t) =
∑
π∈Sn

tdes(π),

one could consider an Eulerian polynomial (or formal power series) for any Coxeter

system (W,S) to be ∑
w∈W

t|DR(w)|.

2.3 The Type B Coxeter Group

Our next example of a Coxeter group is the type B Coxeter group, also called the

hyperoctahedral group, and is the focus of this chapter. It is a generalization of the

symmetric group, and it has a subgroup isomorphic to the symmetric group. The

corresponding type B Coxeter system is similar to the type A Coxeter system, except

that it contains an additional exceptional generator.
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Definition 2.3.1. For n ∈ P, consider a set of generators S := {τ0, τ1, τ2, ..., τn−1},

and a group with presentation

τ 2
i = Id for 0 ≤ i ≤ n− 1,

(τiτj)
2 = Id for |i− j| > 1,

(τiτi+1)3 = Id for 1 ≤ i ≤ n− 2,

(τ0τ1)4 = Id.

We call the this group the type B Coxeter group, and we denote it by Bn. We call the

corresponding Coxeter system (Bn, S) the type B Coxeter system. Given w ∈ Bn, we

let lB(w) denote the Coxeter length with respect to this Coxeter system.

We note that the corresponding Coxeter matrix, for say n = 5, has the form

m =


1 4 2 2 2
4 1 3 2 2
2 3 1 3 2
2 2 3 1 3
2 2 2 3 1


The type B Coxeter group has a nice combinatorial description as a group of signed

permutations. This is the group of bijections on the set {−n,−n+ 1, ...,−1, 1, 2, ..., n},

subject to the constraint that a signed permutation π must satisfy π(−i) = −π(i) for

all i ∈ [n] = {1, 2, ..., n}. Because of this constraint, it suffices to describe a signed

permutation by specifying where it maps the elements in [n]. A signed permutation

π can be written in two-line notation

π =

 1 2 ... n

π(1) π(2) ... π(n)

 ,
and one-line notation

π = π(1), π(2), ..., π(n),
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where π(i) ∈ {−n,−n+ 1, ...,−1, 1, 2, ..., n} and

|π| := |π(1)|, |π(2)|, ..., |π(n)| ∈ Sn.

Let sgn(π(i)) := π(i)/|π(i)|, that is the sign of π(i). Clearly, Sn is a subgroup of the

group of signed permutations.

We can also write a signed permutation as product of cycles. Let i1, i2, ..., ik ∈

{−n,−n+ 1, ...,−1, 1, 2, ..., n} be integers with distinct absolute values. The cycle

(i1, i2, ..., ik)

denotes a bijection which maps |ij| to ij+1 for j = 1, 2, ..., k − 1, maps |ik| to i1, and

if ±i does not appear in the cycle then |i| is mapped to itself. Given any signed

permutation π, it can be written as a product of disjoint cycles. For example

π = −3, 2, 1,−5,−6, 4,−7 = (1,−3)(2)(4,−5,−6)(−7) ∈ B7,

and

|π| = 3, 2, 1, 5, 6, 4, 7 ∈ Sn.

We also let Id denote the identity element of the group of signed permutations (i.e

Id = 1, 2, ..., n written in one-line notation).

One realizes that the group of signed permutations is the type B Coxeter group

Bn, by identifying the generators in S with elements of the signed permutation group.

We let τ0 = (−1), and note that multiplying a signed permutation π by τ0 on the

right has the effect of changing the sign of π(1), and leaving the rest of π unchanged.

For 1 ≤ i ≤ n− 1, we let τi = (i, i+ 1), which we also call an adjacent transposition

since multiplying π on the right by (i, i + 1) has the effect of switching π(i) and

π(i+1) without changing any signs. From this, it follows that the signed permutations
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{τ0, τ1, ..., τn−1} generate the entire group of signed permutations. Moreover, we leave

it to the reader to verify that they satisfy the relations in Definition 2.3.1 (see also

[3]). Thus the type B Coxeter group is equal to the group of signed permutations,

which we also call the hyperoctahedral group, denoted Bn. It will also be convenient

to define B0 := {θ} where θ denotes the empty word.

2.4 Statistics for the Hyperoctahedral Group

A signed permutation statistic, or simply permutation statistic, f is a map from

the union of all signed permutation groups to N. In Chapter 1 we found the study

of permutation statistics to be a rich topic. Moreover, we found that the naturally

defined statistics given in Definition 1.2.1 have a wide range of applications, and

connections to the Coxeter interpretation of the symmetric group. Thus we seek so-

called type B analogs of these statistics. First we define several permutation statistics

for Bn, and then discuss their relevance. In this definition we use the usual order on

the nonzero integers between −n and n, i.e. −n < −n+ 1 < ... < −1 < 1 < 2 < ... <

n.

Definition 2.4.1. Let π ∈ Bn.

• The set of positive fixed points (or simply fixed points) of π, is denoted FIX+(π)

and is defined by

FIX+(π) := {i ∈ [n] : π(i) = i} .

• The number of fixed points of π, denoted fix+(π), is

fix+(π) := |FIX+(π)|.
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• The set of negative fixed points of π, denoted FIX−(π), is defined by

FIX−(π) := {i ∈ [n] : π(i) = −i} .

• The number of negative fixed points of π, denoted fix−(π), is

fix−(π) := |FIX−(π)|.

• The negative letters of π, denoted Neg(π), are defined by

Neg(π) := {i ∈ [n] : π(i) < 0} .

• The number of negative letters of π, denoted neg(π), is

neg(π) := |Neg(π)|.

• The descent set of π, denoted DES(π), is defined by

DES(π) := {i ∈ [n− 1] : π(i) > π(i+ 1)} .

• The descent number, denoted des(π), is defined by

des(π) := |DES(π)|.

• The type B descent set of π, denoted DESB(π), is defined by

DESB(π) :=


DES(π) if π(1) > 0

DES(π) ∪ {0} if π(1) < 0

.
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• The type B descent number of π, denoted desB(π), is defined by

desB(π) = |DESB(π)|.

• An inversion of π is a pair (π(i), π(j)), such that 1 ≤ i < j ≤ n and π(i) > π(j).

The inversion number of π, denoted inv(π), is defined to be the number of

inversions of π.

• The type B inversion number of π, denoted invB(π), is defined by

invB(π) := inv(π)−
∑

i∈Neg(π)

π(i).

First we seek a type B analog to Proposition 2.2.1, which stated that lA is equal

to inv for the symmetric group. While the inv defined above is the most natural

extension of inversion number, it does not have the property of being equal to lB (the

Coxeter length with respect to (Bn, S)), so we do not consider it to be a ”good” type

B analog for inversion number. We do consider invB to be a good type B analog of

inversion number, because it resembles the definition of the type A inversion number,

and it has the property of being equal to lB. Brenti [4] introduced invB and proved

the following proposition.

Proposition 2.4.2. Let π ∈ Bn. Then lB(π) = invB(π).

Proof. First we show invB(π) ≤ lB(π). For 1 ≤ i ≤ n − 1 multiplying π on the

right by τi switches π(i + 1) and π(i), and does not change any signs. Consequently

i ∈ DES(π) if and only if invB(πτi) = invB(π) − 1, and i /∈ DES(π) if and only if

invB(πτi) = invB(π) + 1. Multiplying π on the right by τ0 changes the sign of the

first letter of π. If π(1) > 0, then we lose π(1) − 1 inversions when multiplying on

the right by τ0. And if π(1) < 0 then we gain π(1) − 1 inversions when multiplying
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on the right by τ0. In either case we have inv(πτ0) = inv(π) − π(1) + sgn(π(1)). It

follows that

invB(πτ0) = inv(πτ0) + χ(π(1) > 0)π(1)−
∑

i∈Neg(π)−{1}

π(i),

where we define χ(P ) := 0 if the statement P is is false, and χ(P ) := 1 otherwise.

Thus

invB(πτ0) = inv(π)− π(1) + sgn(π(1)) + χ(π(1) > 0)π(1)−
∑

i∈Neg(π)−{1}

π(i)

= invB(π) + sgn(π(1)).

It follows from these results and the fact that invB(Id) = 0, that the type B inversion

number of a product of k generators is less than or equal to k.

Now we show that lB(π) ≤ invB(π). Induct on k = invB(π). If k = 0, then π = Id

and lB(Id) = 0. Now let k = invB(π) > 0, and assume that lB(σ) ≤ invB(σ) whenever

invB(σ) < k. Since invB(π) > 0, either DES(π) 6= ∅, or DES(π) = ∅ and Neg(π) 6= ∅.

If the latter holds, then the negative letters must occur at the beginning of the word

π, in particular π(1) < 0. In either case, we claim that there exists a generator τ such

that

invB(πτ) = invB(π)− 1 < k.

This follows from the fact that if DES(π) 6= ∅,then set τ = τi for some i ∈ DES(π).

If DES(π) = ∅ and π(1) < 0, then set τ = τ0.

Thus

lB(πτ) ≤ invB(πτ) = invB(π)− 1 = k − 1.

It follows that

lB(π) ≤ k = invB(π).
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As a corollary to Proposition 2.4.2, we verify that DESB provides us with a type

B analog of Proposition 2.2.2. Recall that we defined the right descent set for any

Coxeter system in Definition 2.1.1. So in the following proposition, DR(π) refers to

the right descent set of an element π ∈ Bn with respect to the Coxeter system (Bn, S).

Proposition 2.4.3. Let π ∈ Bn. Then i ∈ DESB(π) if and only if τi ∈ DR(π).

Proof. In the proof of Proposition 2.4.2 we showed that if i ∈ DESB(π), then lB(πτi) =

invB(πτi) = invB(π) − 1 < lB(π). And if i /∈ DESB(π), then lB(πτi) = invB(πτi) =

invB(π) + 1 > lB(π).

Next we define the flag major index statistic introduced by Adin and Roichman

[2]. It is a major index like statistic that is equidistributed with lB and invB, thus a

good type B analog to the major index for Sn (see Theorem 1.2.3).

Definition 2.4.4. For π ∈ Bn, the major index of π, denoted maj(π), is defined by

maj(π) :=
∑

i∈DES(π)

i.

The flag major index of π, denoted fmaj(π), is defined by

fmaj(π) := 2maj(π) + neg(π).

Theorem 2.4.5 ([2, Theorem 2.2, Theorem 3.1]). The statistic fmaj is equidistributed

with lB, thus also equidistributed with invB.

Moreover, we also have the following type B analog to Equation (2.1)

∑
π∈Bn

qlB(π) =
∑
π∈Bn

qinvB(π) =
∑
π∈Bn

qfmaj(π) =
n∏
i=1

[2i]q. (2.2)
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A question first posed by Foata, is to extend the formula for the bivariate distri-

bution of descent number and major index (the Carlitz identity, Theorem 1.3.3) to

the hyperoctahedral group Bn. An answer to this question is given by Adin, Brenti,

and Roichman [1] in Theorem 2.4.7 below. They use the flag major index and also

introduce a descent like statistic called the flag descent number. They show that the

flag descent number is equidistributed with the cardinality of a multiset they intro-

duce called the negative descent multiset. The negative descent multiset is shown to

have a natural description as a descent set in terms of the Coxeter group definition.

They compute a formula for the bivariate distribution of the flag descent number and

the flag major index, thus providing a type B analog to Carlitz’s identity Theorem

1.3.3, and an answer to Foata’s question.

Definition 2.4.6. For π ∈ Bn, the flag descent number of π, denoted fdes(π), is

defined by

fdes(π) := 2des(π) + χ(π(1) < 0).

Recall that χ(P ) = 0 if the statement P is is false, and χ(P ) = 1 otherwise.

Theorem 2.4.7 ([1, Theorem 4.2]). For n ∈ N we have

∑
π∈Bn q

fmaj(π)pfdes(π)

(1− p)
∏n

i=1(1− p2q2i)
=
∑
k≥0

[k + 1]nq p
k.

As an analog to MacMahon’s [20] classic result that excedance number and descent

number are equidistributed (Theorem 1.2.2), we consider the following excedance like

statistic of Foata and Han called the flag excedance number.

Definition 2.4.8. For π ∈ Bn, the excedance set of π, denoted EXC(π), is defined

by

EXC(π) := {i ∈ [n− 1] : π(i) > i} .
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The excedance number, denoted exc(π), is defined by

exc(π) := |EXC(π)|.

The flag excedance number of π, denoted fexc(π), is defined by

fexc(π) := 2exc(π) + neg(π).

The following theorem of Foata and Han shows that the pair (fdes, fexc) is a nice

type B analog to the pair of symmetric group statistics (des, exc).

Theorem 2.4.9 ([12]). The statistics fdes and fexc are equidistributed on Bn. Equiv-

alently, ∑
π∈Bn

tfdes(π) =
∑
π∈Bn

tfexc(π).

This theorem is proved by specializing the following type B analog of Theorem

1.3.6 due to Foata and Han.

Theorem 2.4.10 ([12, Theorem 1.1]). We have

∑
n≥0

(1 + t)
∑
π∈Bn

sfexc(π)tfdes(π)qfmaj(π)Y
fix+(π)

0 Y
fix−(π)

1 Zneg(π) un

(t2; q2)n+1

=
∑
r≥0

tr
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1Z; q2)b(r+1)/2c

(−usqZ; q2)b(r+1)/2c
Fr(u; s, q, Z),

where

Fr(u; s, q, Z) = (us2q2; q2)br/2c(1− s2q2)(u; q2)b(r+1)/2c(u; q2)br/2c

×
[
(u; q2)br/2c+1

(
(u; q2)b(r+1)/2c

(
(u; q2)br/2c − s2q2(us2q2; q2)br/2c

)
+sqZ(u; q2)br/2c

(
(u; q2)b(r+1)/2c − (us2q2; q2)b(r+1)/2c

))]−1
.
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As a corollary, Foata and Han obtain the following type B analog of Theorem

1.3.5.

Corollary 2.4.11 ([12, Corollary 1.2]). We have

∑
n≥0

∑
π∈Bn

sfexc(π)qfmaj(π)Y
fix+(π)

0 Y
fix−(π)

1 Zneg(π) un

(q2; q2)n

=
expq2(uY0)Expq2(usqY1Z)(1− s2q2)

Expq2(usqZ)
[
expq2(us2q2)− s2q2 expq2(u) + sqZ

(
expq2(us2q2)− expq2(u)

)] .
Clearly, Corollary 2.4.11 implies a formula for the four-variate distribution of

(fexc, fmaj, fix+, neg). At the end of Chapter 3 we show that this formula for the

four-variate distribution of (fexc, fmaj, fix+, neg) also follows from a new result of this

thesis, Theorem 3.3.1.

We turn our attention now to a different and more recent solution to Foata’s prob-

lem of extending Carlitz’s identity, Theorem 1.3.3, to the hyperoctahedral group Bn.

Since DESB is the right descent set for the Coxeter system (Bn, S) (see Proposition

2.4.3), it is the most natural analog to the type A descent set. We would like to have

a type B analog of Carlitz’s identity that involves desB, and Chow and Gessel obtain

just such a result.

Theorem 2.4.12 ([6, Theorem 3.7]). For n ∈ N we have

∑
π∈Bn q

fmaj(π)pdesB(π)

(p; q2)n+1

=
∑
k≥0

[2k + 1]nq p
k.

Proof. Here we give a sketch of the proof from [6]. First define

Bn,k(q) :=
∑
π∈Bn

desB(π)=k

qfmaj(π).

Next, the following recurrence for Bn,k(q) is obtained by analyzing how fmaj and desB
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change when inserting ±n into a signed permutation from Bn−1.

Bn,k(q) = [2k + 1]qBn−1,k(q) + q2k−1[2n− 2k + 1]qBn−1,k−1(q), 1 ≤ k ≤ n− 1.

The q-binomial coefficient

 n

k


q

is defined by

 n

k


q

:=
[n]q!

[n− k]q![k]q!
.

Using the above recursion and a few identities involving q-binomial coefficients, the

following identity is obtained by induction

[2r + 1]nq =
n∑
k=0

Bn,k(q)

 r + n− k

n


q2

.

This identity is used to prove that

∑
r≥0

[2r + 1]nq p
r =

∑
r≥0

n∑
k=0

Bn,k(q)

 r + n− k

n


q2

pr

=
n∑
k=0

Bn,k(q)p
k
∑
r≥k

 r + n− k

n


q2

pr−k

=
∑
π∈Bn

qfmaj(π)pdesB(π)
∑
s≥0

 n+ s

n


q2

ps.
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The result now follows from the following identity

∑
k≥0

 n+ k

n


q

pk =
1

(p; q)n+1

.

A new result we present in this thesis, is a formula for the five variate distribution

for fmaj, fexc, desB, fix+, neg. This is a type B analog to Theorem 1.3.6 and reduces

to Theorem 2.4.12 by setting t = r = s = 1.

Theorem 2.4.13.

∑
n≥0
π∈Bn

zn

(p; q2)n+1

qfmaj(π)tfexc(π)pdesB(π)rfix+(π)sneg(π)

=
∑
k≥0

pk(1− t2q2)(z; q2)k(t
2q2z; q2)k

(rz; q2)k+1 [(1 + sqt)(z; q2)k − (t2q2 + sqt)(t2q2z; q2)k]
.

At the end of Chapter 3 we show that Theorem 2.4.13 follows from another more

general new result of this thesis, Theorem 3.3.2. While Theorem 2.4.13 has sim-

ilarities to Theorem 2.4.10 of Foata and Han, we note that these formulas are not

equivalent. The difference is that the descent statistic in Theorem 2.4.10 is fdes, while

the descent statistic in Theorem 2.4.13 is desB. Thus Theorem 2.4.10 reduces to the

Adin, Brenti, Roichman type B analog of Carlitz’s identity (Theorem 2.4.7), while

our result in Theorem 2.4.13 reduces to the Chow-Gessel type B analog of Carlitz’s

identity (Theorem 2.4.12). We conclude this chapter by demonstrating how Theorem

2.4.13 reduces to Theorem 2.4.12.

By setting t = r = s = 1, Theorem 2.4.13 reduces to

∑
n≥0
π∈Bn

zn

(p; q2)n+1

qfmaj(π)pdesB(π) =
∑
k≥0

pk(1− q2)(z; q2)k(q
2z; q2)k

(z; q2)k+1[(1 + q)(z; q2)k − (q2 + q)(q2z; q2)k]
.
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Note that (zq2; q2)k = (z; q2)k+1/(1− z), thus

∑
n≥0
π∈Bn

zn

(p; q2)n+1

qfmaj(π)pdesB(π) =
∑
k≥0

pk(1− q)(1 + q)(z; q2)k
(1− z)[(1 + q)(z; q2)k − (q2 + q)(q2z; q2)k]

=
∑
k≥0

pk(1− q)(z; q2)k
(1− z)(z; q2)k − q(z; q2)k+1

=
∑
k≥0

pk(1− q)
(1− z)− q(1− zq2k)

=
∑
k≥0

pk(1− q)
(1− q)− z(1− q2k+1)

=
∑
k≥0

pk

1− z[2k + 1]q
=
∑
n,k≥0

zn[2k + 1]nq p
k.

Now extract the coefficient of zn from both sides to obtain Theorem 2.4.12 of

Chow and Gessel.

Some of the earliest results on enumerating signed permutations according to

statistics are due to Reiner [23]. He derives a multivariate generating function formula

involving type B descent number, major index and cycle type. His major index

is different from the major index statistics we have defined in this thesis, and is

not equidistributed with length for the hyperoctahedral group. We note that his

proof is a type B analog of the techniques of Gessel and Reutenauer discussed in

Section 1.6. To prove our results presented in this thesis, we will develop a colored

permutation, or wreath product, generalization of the techniques of Shareshian and

Wachs discussed in Section 1.7. In the following chapter, we will see that the family

of colored permutation groups includes the family of signed permutation groups.

Because of this, we are able to specialize our results to the signed permutation group.

Although our techniques and results have similarities with those of Reiner, they are

in fact different.



Chapter 3

The Colored Permutation Group

In the previous chapter we explored a way to generalize the symmetric group

using Coxeter group theory. In this chapter we consider another generalization of the

symmetric group, namely the wreath product of the cycle group with the symmetric

group, also called the colored permutation group. We will observe that there are close

connections between colored permutation groups and Coxeter groups.

3.1 Colored Permutations

First we define a wreath product in general, and then turn our attention to the

particular class of wreath products that we will be interested in. Let H,G be groups

with G acting on a set Γ. Let HΓ be the direct product

HΓ :=
∏
γ∈Γ

Hγ,

where each Hγ = H. Define an action of G on HΓ by

g · hγ := hg−1γ,

for g ∈ G, γ ∈ Γ, and h = (hγ)γ∈Γ ∈ HΓ. The wreath product of H and G with

respect to Γ, denoted H oΓ G, is the corresponding semidirect product HΓ oG. That

57
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is, for h1, h2 ∈ HΓ and g1, g2 ∈ G, the group multiplication in H oΓ G is given by

(h1, g1)(h2, g2) = (h1(g1 · h2), g1g2).

We will study a particular class of wreath products called colored permutation

groups.

Definition 3.1.1. For N, n ∈ P, let CN denote the cyclic group of order N and Sn

the symmetric group on [n] = {1, 2, ..., n}. Sn acts on [n] in the usual way, i.e. for

π ∈ Sn and i ∈ [n], π · i = π(i). We define the colored permutation group to be the

wreath product CN o[n] Sn, which we simply denote by CN o Sn. For n = 0, it will be

convenient to define CN o S0 := {θ} where θ denotes the empty word.

In Chapter 2 we saw that the type B Coxeter group has a nice and useful combina-

torial description as a group of signed permutations. There is also a nice combinatorial

description of CN o Sn which illuminates the reason for calling this group the colored

permutation group. In this and subsequent chapters we will primarily use this combi-

natorial description. We consider an N-colored permutation of length n, or simply a

colored permutation to be a bijection on the following (ordered) alphabet of N -colored

integers from 1 to n

E :=
{

1N−1 < 2N−1... < nN−1 < 1N−2 < 2N−2... < nN−2 < ... < 10 < 20 < ... < n0
}
.

(3.1)

Given such a bijection π, we require that

π(i0) = kεi implies π(ij) = k(εi+j mod N) (3.2)

for 1 ≤ i ≤ n and 0 ≤ j ≤ N − 1. So just as with signed permutations, it suffices to

describe a colored permutation by specifying where it maps 10, 20, ..., n0. We usually

do this by writing a colored permutation π in one-line notation (i.e. a word over E),
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so π(i) = πi ∈ E denotes the ith letter of the colored permutation π. We let |πi| denote

the positive integer obtained by removing the superscript, and let εi ∈ {0, 1, ..., N − 1}

denote the superscript, or color, of the ith letter of the word. If π is word of length n

over E , we denote by |π| the word

|π| := |π1| , |π2| , ..., |πn| .

Given any word π of length n over the alphabet E , π defines a colored permutation

if and only if |π| ∈ Sn.

For example, elements of this group may be written in one line or two line notation

as follows:

π = 32, 50, 41, 12, 21 =

10 20 30 40 50

32 50 41 12 21

 ∈ C3 o S5,

then

|π| = 3, 5, 4, 1, 2 ∈ S5.

And in particular, |π3| = 4 and ε3 = 1 so that π3 = |π3|ε3 = 41.

We can also write a colored permutation π in cycle notation using the convention

that jεj follows iεi means that πi = jεj . It is easy to see that a colored permutation

decomposes into a product of disjoint cycles. Continuing with the previous example,

we can write it in cycle notation as

π = (12, 32, 41)(21, 50).

Proposition 3.1.2. The group of N-colored permutations of length n is the wreath

product CN o Sn.

Proof. Let π be a colored permutation whose letters have colors ε1, ε2, ..., εn respec-
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tively. We identify π with the element (ε, |π|) ∈ CN o Sn where ε = (ε1, ε2, ..., εn) ∈

(CN)n. Given another colored permutation π′ with corresponding element (ε′, |π′|) ∈

CN o Sn, the wreath product multiplication is given by

(ε, |π|)(ε′, |π′|) = (ε(|π| · ε′), |π||π′|) = (δ, σ),

where σ = |π||π′|, and if we write CN additively then δi = εi + ε′|π|−1(i) mod N .

Considering the colored permutation multiplication ππ′, clearly |ππ′| = |π||π′|.

Thus by (3.2), the color of the ith letter of the word ππ′ is εi + ε′|π|−1(i) mod N , as

desired.

It is easy to see that C1 o Sn ∼= Sn and C2 o Sn ∼= Bn. From our study of type

A and B Coxeter groups, we can see how to obtain generators for arbitrary CN o Sn.

For 1 ≤ i ≤ n − 1, let τi := (i0, (i + 1)0) (we can think of τi as the usual adjacent

transposition). Now the extra distinguished generator τ0 is defined by τ0(1) = 11 and

τ0(i) = i for 2 ≤ i ≤ n. In cycle notation this can be written as τ0 := (11). Note that

multiplying a colored permutation π on the right by (i0, (i+ 1)0) switches the letters

π(i) and π(i + 1) without changing any colors, while multiplying on the right by τ0

adds one (mod N) to the color of π(1). Thus the elements τ0, τ1, τ2, ..., τn−1 generate

all of CN o Sn. We leave for the reader to verify that this group has the presentation

(see also [16])

τ 2
i = Id for i = 1, 2, ..., n− 1,

τN0 = Id,

(τiτj)
2 = Id if |i− j| > 1,

(τiτi+1)3 = Id for i = 1, 2, ..., n− 2,

(τ0τ1)2N = Id.

We see that for N > 2, we almost have a Coxeter system, except that τ 2
0 6= Id.
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However, wreath products do provide a nice generalization of both the type A and

type B Coxeter groups, in a way that is Coxeter-like.

3.2 Statistics for the Colored Permutation Group

A colored permutation statistic, or simply permutation statistic, f is a map from

the union of all colored permutation groups to N. In this section we discuss several

permutation statistics that are colored analogs of previous statistics.

Definition 3.2.1. Let π ∈ CN o Sn.

• For an integer k such that 0 ≤ k ≤ N − 1, we define the kth color fixed point

set of π, denoted FIXk(π), by

FIXk(π) :=
{
i ∈ [n] : πi = ik

}
.

• The kth color fixed point number of π, denoted fixk(π), is defined by

fixk(π) := |FIXk(π)|.

• It will also be convenient to define the fixed point vector of π, denoted ~fix(π) ∈

NN , by

~fix(π) := (fix0(π), fix1(π), ..., fixN−1(π)).

• For an integer m such that 1 ≤ m ≤ N − 1, we define the mth color set of π,

denoted COLm(π), by

COLm(π) := {i ∈ [n] : εi = m} .
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• The mth color number of π, denoted colm(π), is defined by

colm(π) := |COLm(π)|.

• And we define the color vector of π, denoted ~col(π) ∈ NN−1, by

~col(π) := (col1(π), col2(π), ..., colN−1(π)).

• The descent set of π, denoted DES(π), is defined by

DES(π) := {i ∈ [n− 1] : πi > πi+1} ;

note that this is computed with respect to the order given on E in (3.1).

• The descent number of π, denoted des(π), is defined by

des(π) := |DES(π)| .

• The starred descent set of π, denoted DES∗(π), is defined by

DES∗(π) :=

 DES(π) if ε1 = 0

DES(π) ∪ {0} if ε1 > 0
.

• The starred descent number of π, denoted des∗(π), is defined by

des∗(π) := |DES∗(π)| .
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For example if

π =

 1 2 3 4 5 6 7 8

12 40 81 60 52 32 70 21

 ∈ C3 o S8,

then DES∗(π) = {0, 2, 4, 5, 7}, des(π) = 4, des∗(π) = 5, ~fix(π) = (1, 0, 2), and ~col(π) =

(2, 3).

Now we introduce the cv-cycle type (short for color vector cycle type) of a colored

permutation π ∈ CN o Sn. As noted above, π decomposes into a product of disjoint

cycles. Let λ = (λ1 ≥ ... ≥ λk) be a partition of n. Let ~β1, ..., ~βk be a sequence of

vectors in NN−1 with each
∣∣∣~βi∣∣∣ ≤ λi, where the absolute value of a vector ~β ∈ NN−1

is the sum of its components, i.e. |~β| := β1 + β2 + ... + βN−1. Consider the multiset

of pairs

λ̌ =
{

(λ1, ~β1), (λ2, ~β2), ..., (λk, ~βk)
}
.

We say that π has cv-cycle type λ̌(π) = λ̌ if each pair (λi, ~βi) corresponds to exactly

one cycle of length λi with color vector ~βi in the decomposition of π. Note that

~col(π) = ~β1 + ...+ ~βk using component wise addition. Consider the following example

in C3 o S9, let

π =

 1 2 3 4 5 6 7 8 9

32 41 11 22 80 92 51 71 60


= (11, 32)(22, 41)(60, 92)(51, 80, 71),

so λ̌(π) = {(3, (2, 0)), (2, (1, 1)), (2, (1, 1)), (2, (0, 1))}.

The cv-cycle type is actually a refinement of the cycle type, which determines the

conjugacy classes of the colored permutation group. Given π ∈ CN oSn, we say π has
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cycle type {(λ1, j1), (λ2, j2), ..., (λk, jk)} where

ji =
N−1∑
m=1

mβim mod N.

So for example the cycle type of the colored permutation above is

{(3, 2), (2, 0), (2, 0), (2, 2)}. However we will only be using the cv-cycle type in this

paper.

As mentioned in the previous chapter, the flag major index was introduced by

Adin and Roichman [2] as an analog to the major index (see Definition 2.4.4). In

fact, they introduced a more general statistic for the colored permutation group,

which we define now.

Definition 3.2.2. For π ∈ CN oSn, the major index of π, denoted maj(π), is defined

by

maj(π) :=
∑

i∈DES(π)

i.

The flag major index of π, denoted flagmaj(π), is defined by

flagmaj(π) := N ·maj(π) +
N−1∑
m=1

m · colm(π).

For N = 1, we see immediately that flagmaj reduces to maj, which is equidis-

tributed with lA on C1 o Sn. We also see that des∗(π) = des(π) for all π ∈ C1 o Sn.

For N = 2 we identify the 1-colored letters with negative letters, but the order on

E from (3.1) is not the same as the usual order on ±1,±2, ...,±n. However, we still

have that flagmaj, fmaj, and lB are all equidistributed on C2 oSn. It is also a fact that

des∗ and desB are equidistributed on C2 o Sn. In Proposition 3.3.5 below, we describe

a bijection which shows that the pair (flagmaj, des∗) is jointly equidistributed with

(fmaj, desB) on C2 o Sn. This bijection actually shows that several other statistics are

also jointly equidistributed on C2 o Sn. For N > 2, flagmaj is not equidistributed
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with length in terms of the generators described above, but this statistic does play a

central role in Adin and Roichman’s [2] study of CN o Sn actions on tensor powers of

polynomial rings, and the Hilbert series of the diagonal action invariant algebra.

Haglund, Loehr, and Remmel [16] introduce another major index like statistic

called root major index. They show this statistic is equidistributed with flagmaj, and

they obtain a polynomial formula for the distribution.

Definition 3.2.3. For π ∈ CN o Sn, the root major index of π, denoted rootmaj(π),

is defined by

rootmaj(π) := maj(π) +
N−1∑
m=1

∑
i∈COLm(π)

m · |π(i)|.

Theorem 3.2.4 ([16, Theorem 4.5]). For N ∈ P and n ∈ N we have

∑
π∈CN oSn

qflagmaj(π) =
∑

π∈CN oSn

qrootmaj(π) =
n∏
i=1

[Ni]q.

The flag excedance number of Foata and Han can also be extended to the colored

permutation group.

Definition 3.2.5. For π ∈ CN o Sn, the excedance set of π, denoted EXC(π), is

defined by

EXC(π) :=
{
i ∈ [n] : πi > i0

}
.

The excedance number of π, denoted exc(π), is defined by

exc(π) := |EXC(π)|.

The flag excedance number of π, denoted flagexc(π), is defined by

flagexc(π) := N · exc(π) +
N−1∑
m=1

m · colm(π).
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3.3 Multivariate Distributions of Colored Permu-

tation Statistics

In this section we present some of the main results of this thesis, which enumerate

colored permutations according to various statistics.

Theorem 3.3.1. We have

∑
n≥0

π∈CN oSn

zn

[n]q!
texc(π)r

~fix(π)s
~col(π)qmaj(π)

=
expq(r0z)(1− tq)

(∏N−1
m=1 Expq(−smz) expq(rmsmz)

)
(

1 +
∑N−1

m=1 sm

)
expq(tqz)−

(
tq +

∑N−1
m=1 sm

)
expq(z)

.

Theorem 3.3.2. We have

∑
n≥0

π∈CN oSn

zn

(p; q)n+1

texc(π)r
~fix(π)s

~col(π)qmaj(π)pdes∗(π)

=
∑
l≥0

pl(1− tq)(z; q)l(tqz; q)l

(∏N−1
m=1(smz; q)l

)(∏N−1
m=1(rmsmz; q)l

)−1

(r0z; q)l+1

[(
1 +

∑N−1
m=1 sm

)
(z; q)l −

(
tq +

∑N−1
m=1 sm

)
(tqz; q)l

] .
In Chapter 4 we show that Theorem 3.3.1 and Theorem 3.3.2 are obtained by

applying the stable and nonstable principal specializations respectively to our colored

permutation generalization of Theorem 1.7.8 of Shareshian and Wachs, which we state

in Theorem 4.1.3.

Next we examine some special cases of Theorem 3.3.1 and Theorem 3.3.2. First,

we see that by a simple variable substitution Theorem 3.3.2 reduces to a colored per-

mutation analog of Carlitz’s identity. This formula enumerates colored permutations

according to fmaj and des∗, and is equivalent to a formula obtained independently by

Chow and Mansour [7].
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Theorem 3.3.3. We have

∑
π∈CN oSn q

flagmajpdes∗

(p; qN)n+1

=
∑
l≥0

[Nl + 1]nq p
l

Proof. In Theorem 3.3.2, replace t 7→ 1, rk 7→ 1 for 0 ≤ k ≤ N − 1, sm 7→ qm for

1 ≤ m ≤ N − 1, and q 7→ qN , to obtain

∑
n≥0

π∈CN oSn

zn

(p; qN)n+1

qflagmaj(π)pdes∗(π)

=
∑
l≥0

pl(1− qN)(z; qN)l(q
Nz; qN)l

(z; qN)l+1 [[N ]q(z; qN)l + (1− qN − [N ]q)(qNz; qN)l]

=
∑
l≥0

pl(1− qN)(z; qN)l(z; qN)l+1/(1− z)

(z; qN)l+1 [[N ]q(z; qN)l + (1− qN − [N ]q)(z; qN)l+1/(1− z)]

=
∑
l≥0

pl(1− qN)(z; qN)l
(1− z)[N ]q(z; qN)l + (1− qN − [N ]q)(z; qN)l+1

=
∑
l≥0

pl(1− qN)

(1− z)[N ]q + (1− qN − [N ]q)(1− zqNl)

=
∑
l≥0

pl(1− qN)

(1− qN)− z ([N ]q + qNl(1− qN − [N ]q))

=
∑
l≥0

pl(1− qN)

(1− qN)− z ((1− qNl)[N ]q + qNl(1− qN))
=
∑
l≥0

pl

1− z ([Nl]q + qNl)

=
∑
l≥0

pl

1− z[Nl + 1]q
=
∑
l,n≥0

zn[Nl + 1]nq p
l.

Now extract the coefficient of zn from both sides to obtain the desired result.

Next we notice an interesting corollary of Theorem 3.3.2.
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Corollary 3.3.4. For N ≥ 2 and ω a primitive N th root of unity, we have

∑
n≥0

π∈CN oSn

zn

(p; q)n+1

texc(π)qmaj(π)pdes∗(π)

(
N−1∏
m=1

ωm·colm(π)

)
=
∑
l≥0

pl

1− zql
=
∑
n,l≥0

znqnlpl.

Taking the coefficient of zn on both sides we have

∑
π∈CN oSn

texc(π)qmaj(π)pdes∗(π)

(
N−1∏
m=1

ωm·colm(π)

)
= (p; q)n.

Proof. In Theorem 3.3.2 set rk = 1 for 0 ≤ k ≤ N − 1, and set sm = ωm for

1 ≤ m ≤ N − 1, noting that
∑N−1

m=1 ω
m = −1, to obtain

∑
n≥0

π∈CN oSn

zn

(p; q)n+1

texc(π)qmaj(π)pdes∗(π)

(
N−1∏
m=1

ωm·colm(π)

)

=
∑
l≥0

pl(1− tq)(z; q)l(tqz; q)l
(z; q)l+1 (−tq + 1) (tqz; q)l

=
∑
l≥0

pl(z; q)l
(z; q)l+1

=
∑
l≥0

pl

1− zql
=
∑
n,l≥0

znqnlpl.

Thus

1

(p; q)n+1

∑
π∈CN oSn

texc(π)qmaj(π)pdes∗(π)

(
N−1∏
m=1

ωm·colm(π)

)
=
∑
l≥0

(qnp)l =
1

1− pqn
,

and the result follows from this.

For N = 1, we noticed that C1 o Sn ∼= Sn. Moreover, in this case the defini-

tions of the colored permutation statistics des∗, exc,maj, fix0 are exactly equal to the

permutation statistics des, exc,maj, fix. Theorem 3.3.1 reduces to Theorem 1.3.5 of

Shareshian and Wachs, and Theorem 3.3.2 reduces to Theorem 1.3.6 of Foata and

Han.

For N = 2, we have C2 o Sn ∼= Bn, where the 1-colored letters are identified with
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the negative integers. As mentioned above, the order given in (3.1) for the alphabet of

colored letters E , does not agree with the usual order on the integers. So for instance

desB(21, 31, 10) = 2, while des∗(21, 31, 10) = 1. However, we do have the following

proposition.

Proposition 3.3.5. There exists a bijection γ : Bn → C2 o Sn such that

desB(π) = des∗(γ(π)), neg(π) = col1(γ(π)), maj(π) = maj(γ(π)),

fmaj(π) = flagmaj(γ(π)), exc(π) = exc(γ(π))

fexc(π) = flagexc(γ(π)), fix+(π) = fix0(γ(π)).

Proof. Given π ∈ Bn, γ(π) is obtained by rewriting each run of consecutive negative

letters in reverse order, then replacing positive letters with 0-colored letters, and

negative letters with 1-colored letters. For example

γ(2,−1,−5, 3, 8,−7,−4,−6) = 20, 51, 11, 30, 80, 61, 41, 71.

It is clear that neg(π) = col1(γ(π)), exc(π) = exc(γ(π)), and fix+(π) = fix0(γ(π)). It

follows that fexc(π) = flagexc(γ(π)). We note that in general fix−(π) 6= fix1(γ(π)).

Clearly, 0 ∈ DESB(π) if and only if 0 ∈ DES∗(π). Now consider i > 0. If π(i) and

π(i+ 1) have different signs or are both positive, then it is clear that i ∈ DESB(π) if

and only if i ∈ DES∗(π). If π(i) and π(i + 1) are both negative, then i ∈ DESB(π)

if and only if |π(i)| < |π(i + 1)| if and only if i ∈ DES∗(π). Consequently desB(π) =

des∗(γ(π)), maj(π) = maj(γ(π)), and fmaj(π) = flagmaj(γ(π)).

Proof of Theorem 2.4.13. Consider Theorem 3.3.2 in the caseN = 2. Since flagmaj(π) =

2maj(π) + col1(π) and flagexc(π) = 2exc(π) + col1(π) for all π ∈ C2 o Sn, we replace
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q 7→ q2, t 7→ t2 and s1 7→ qts, r1 7→ 1, and r0 7→ r. Then apply Proposition 3.3.5 to

obtain ∑
n≥0
π∈Bn

zn

(p; q2)n+1

qfmaj(π)tfexc(π)pdesB(π)rfix+(π)sneg(π)

=
∑
l≥0

pl(1− t2q2)(z; q2)l(t
2q2z; q2)l

(rz; q2)l+1 [(1 + sqt)(z; q2)l − (t2q2 + sqt)(t2q2z; q2)l]
,

as desired.

If we also consider Theorem 3.3.1 in the case N = 2, we can again replace q 7→ q2,

t 7→ t2 and s1 7→ qts, r1 7→ 1, and r0 7→ r, and apply Proposition 3.3.5. The

resulting formula is for the four-variate distribution of (fmaj, fexc, neg, fix+). This

formula is already implied by Corollary 2.4.11 of Foata and Han, which is a five-

variate distribution of (fmaj, fexc, neg, fix+, fix−).



Chapter 4

Colored Eulerian Quasisymmetric
Functions

In the preceding chapter we introduced the colored permutation group, and pre-

sented our formulas for multivariate distributions of colored permutation statistics.

In order to prove these results, we first introduce colored Eulerian quasisymmetric

functions, which are a colored permutation analog of the Eulerian quasisymmetric

functions of Shareshian and Wachs [31], [32] (see Section 1.7). Analogous to Theorem

1.7.8, we present a generating function formula for our colored Eulerian quasisym-

metric functions, the proof of which is the focus of Chapters 5 and 6. We conclude

Chapter 4 with proofs of Theorem 3.3.1 and Theorem 3.3.2.

4.1 Colored Eulerian Quasisymmetric Functions

To find a colored permutation analog of the Eulerian quasisymmetric functions, we

must decide how to associate a fundamental quasisymmetric function to each colored

permutation. For n ∈ N, we extend the definition DEX(π) ⊆ [n − 1] from Defini-

tion 1.7.1. We will use this set in our definition of colored Eulerian quasisymmetric

functions. First, we construct a new ordered alphabet

A :=
{

1̃0 < 2̃0 < ... < ñ0
}
< E ,

71
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where E has the same order as defined in (3.1) above, but now the letters with a tilde

are less than the letters in E .

Definition 4.1.1. Given any colored permutation π ∈ CN o Sn written as a word,

construct a new word π̃ of length n over A as follows: if i ∈ EXC(π), then replace πi

by π̃i, otherwise leave πi alone. For example if π = 20, 32, 10, 60, 50, 43 ∈ C4 o S6, then

EXC(π) = {1, 4} and π̃ = 2̃0, 32, 10, 6̃0, 50, 43. Then we define the set

DEX(π) := DES(π̃),

where the descent set of any word over an ordered alphabet consists of all i such that

wi > wi+1. Also define DEX(θ) := 0 where θ denotes the empty word. Using the

example above we have

DEX(20, 32, 10, 60, 50, 43) = DES(2̃0, 32, 10, 6̃0, 50, 43) = {3, 5} .

This is a natural extension of the former definition, and Lemma 4.2.1 below will

show that it is also a useful definition.

For T ⊆ [n− 1], recall that the fundamental quasisymmetric function of degree n

is given by (see Definition 1.5.3)

FT,n(x) :=
∑

i1≥i2≥...≥in≥1
ij>ij+1 if j∈T

xi1xi2 · · ·xin .

Definition 4.1.2. Let N be arbitrary but fixed, for n, j ∈ N, ~α ∈ NN , ~β ∈ NN−1, we

define

Wn,j,~α,~β :=
{
π ∈ CN o Sn : exc(π) = j, ~fix(π) = ~α, ~col(π) = ~β

}
.
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We then define the fixed point colored Eulerian quasisymmetric functions as

Qn,j,~α,~β = Qn,j,~α,~β(x) :=
∑

π∈W
n,j,~α,~β

FDEX(π),n(x).

Given j ∈ N and a particular cv-cycle type λ̌ =
{

(λ1, ~β1), (λ2, ~β2), ..., (λk, ~βk)
}

, we

define

Wλ̌,j :=
{
π ∈ CN o Sn : λ̌(π) = λ̌, exc(π) = j

}
,

where λ1 + λ2 + ...+ λk = n.

We then define the cv-cycle type colored Eulerian quasisymmetric functions by

Qλ̌,j = Qλ̌,j(x) :=
∑

π∈Wλ̌,j

FDEX(π),n(x).

Recall that CN o S0 = {θ} where θ denotes the empty word. Then DEX(θ) = ∅,

des(θ) = des∗(θ) = maj(θ) = exc(θ) = 0, ~fix(θ) = ~col(θ) = ~0, and F∅,0 = 1, thus

Q0,0,~0,~0 = 1. We also note that the definitions of Qn,j,~α,~β and Qλ̌,j agree with the

definitions of Qn,j,k and Qλ,j from Definition 1.7.3, whenever ~β = ~0 or ~βi = ~0 for each

~βi of λ̌.

Recall from Section 1.4 that H(z) =
∑

i≥0 hi(x)zi and hi is the complete ho-

mogeneous symmetric function of degree i, and E(z) =
∑

i≥0 ei(x)zi and ei is the

elementary symmetric function of degree i. We now state a main theorem of this

thesis, which is a colored permutation analog of Theorem 1.7.8.

Theorem 4.1.3. Fix N ∈ P and let r~α = rα0
0 · · · r

αN−1

N−1 and s
~β = sβ1

1 · · · s
βN−1

N−1 . Then

∑
n,j≥0
~α∈NN
~β∈NN−1

Qn,j,~α,~β(x)zntjr~αs
~β =

H(r0z)(1− t)
(∏N−1

m=1 E(−smz)H(rmsmz)
)

(
1 +

∑N−1
m=1 sm

)
H(tz)−

(
t+
∑N−1

m=1 sm

)
H(z)

.
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Chapters 5 and 6 will be devoted to proving Theorem 4.1.3. The next two corol-

laries state immediate and interesting consequences of this theorem.

Corollary 4.1.4. The quasisymmetric function Qn,j,~α,~β(x) is actually symmetric.

Corollary 4.1.5. For N ≥ 2 and ω a primitive N th root of unity, we have

∑
n,j≥0
~α∈NN
~β∈NN−1

Qn,j,~α,~β(x)zntj

(
N−1∏
m=1

ωm·βm

)
= 1.

Proof. Recall from Equation 1.3 in Section 1.4 that H(z)E(−z) = 1. Also note that∑N−1
m=1 ω

m = −1. The corollary is obtained by setting rk = 1 for 0 ≤ k ≤ N − 1, and

setting sm = ωm for 1 ≤ m ≤ N − 1.

4.2 Specializations

In Section 3.3 we presented our formulas for multivariate distributions of colored

permutation statistics. This section is devoted to proving Theorem 3.3.1 and Theorem

3.3.2, which are obtained by applying specializations to Theorem 4.1.3. Recall the

principal specializations from Definition 1.6.3

ps(xi) = qi−1,

and

psl(xi) =

 qi−1 if 1 ≤ i ≤ l

0 if i > l
.

Also recall from Lemma 1.6.4 that

ps(FT,n(x)) =
q
∑
i∈T i

(q; q)n
,
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and ∑
l≥0

psl(FT,n(x))pl =
p|T |+1q

∑
i∈T i

(p; q)n+1

.

Therefore, we will need the following lemma, whose proof is nearly identical to the

proof of Lemma 1.7.2 (see [32, Lemma 2.2]).

Lemma 4.2.1. For every π ∈ CN o Sn we have

|DEX(π)| =

 des∗(π)− 1 if π1 6= 10

des∗(π) if π1 = 10
(4.1)

and ∑
i∈DEX(π)

i = maj(π)− exc(π). (4.2)

Proof. First define the following sets

J := {i ∈ [n− 1] : i /∈ EXC(π) and i+ 1 ∈ EXC(π)} ,

K := {i ∈ [n− 1] : i ∈ EXC(π) and i+ 1 /∈ EXC(π)} .

As in the proof of [32, Lemma 2.2] we have K ⊆ DES(π) and

DEX(π) =
(

DES(π)
⊎

J
)
−K.

Let J = {j1 < ... < jt} and K = {k1 < ... < ks} and we consider two cases.

Case 1: Suppose 1 /∈ EXC(π).

Since n is never an excedance position, it follows that t = s and j1 < k1 < j2 <

k2 < ... < jt < kt, thus

∑
i∈DEX(π)

i =
∑

i∈DES(π)

i−
t∑

m=1

(km − jm).
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Since

EXC(π) =
t⊎

m=1

{jm + 1, jm + 2, ..., km} ,

it follows that

exc(π) =
t∑

m=1

(km − jm)

and (4.2) holds.

Case 2: Suppose 1 ∈ EXC(π).

This implies that s = t + 1 and that k1 < j1 < k2 < ... < jt < kt+1. Again using

the fact that DEX(π) = (DES(π)
⊎
J)−K, we write

∑
i∈DEX(π)

i =

 ∑
i∈DES(π)

i

− k1 −
t∑

m=1

(km+1 − jm).

Since

EXC(π) = {1, 2, ..., k1}
t⊎

m=1

{jm + 1, jm + 2, ..., km+1} ,

we have

exc(π) = k1 +
t∑

m=1

(km+1 − jm)

and (4.2) holds again.

To prove (4.1), first consider the case when π1 > 10. As noted above, this implies

that s = t + 1 thus |DEX(π)| = des(π) − 1 = des∗(π) − 1. If π1 = 10, then s = t

thus |DEX(π)| = des(π) = des∗(π). If π1 < 10, then s = t and |DEX(π)| = des(π) =

des∗(π)− 1.

We are now ready to show how Theorem 3.3.1 follows from Theorem 4.1.3.

Proof of Theorem 3.3.1. Using Lemma 1.6.4 and Lemma 4.2.1 we have

ps
(
Qn,j,~α,~β

)
=

∑
π∈W

n,j,~α,~β

qmaj(π)q−j

(q; q)n
. (4.3)
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Since hn = F∅,n and [n]q! = (q;q)n
(1−q)n , it follows that

ps (H(z(1− q))) = expq(z) =
∑
n≥0

zn

[n]q!
. (4.4)

Also, since en = F[n−1],n, it follows that

ps (E(z(1− q))) = Expq(z) =
∑
n≥0

znq(
n
2)

[n]q!
.

If we then set z 7→ z(1− q) and t 7→ tq in Theorem 4.1.3 and apply ps to both sides,

we obtain the desired result.

Proving Theorem 3.3.2 takes more work, but is similar to the proofs of [32, Lemma

2.4 and Corollary 1.4].

Proof of Theorem 3.3.2. Again, using Lemma 1.6.4 Lemma 4.2.1 we have

∑
l≥0

psl

(
Qn,j,~α,~β

)
pl =

1

(p; q)n+1

∑
π∈W

n,j,~α,~β

p|DEX(π)|+1qmaj(π)−j

=
1

(p; q)n+1

∑
π∈W

n,j,~α,~β

π(1)6=10

pdes∗(π)qmaj(π)−j +
p

(p; q)n+1

∑
π∈W

n,j,~α,~β

π(1)=10

pdes∗(π)qmaj(π)−j.

If we define the following quantities

Xn,j,~α,~β(p, q) :=
∑
l≥0

psl

(
Qn,j,~α,~β

)
pl,

Yn,j,~α,~β(p, q) :=
1

(p; q)n+1

∑
π∈W

n,j,~α,~β

π(1)=10

pdes∗(π)qmaj(π)−j,

an,j,~α,~β(p, q) :=
∑

π∈W
n,j,~α,~β

pdes∗(π)qmaj(π),
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then they are related by the following equation

an,j,~α,~β(p, q)

qj(p; q)n+1

= Xn,j,~α,~β(p, q) + (1− p)Yn,j,~α,~β(p, q). (4.5)

Define a bijection

γ :
{
π ∈ Wn,j,~α,~β : π(1) = 10

}
→ W

n−1,j, ~α(1),~β
,

where ~α(1) := (α0 − 1, α1, α2, ..., αN−1), by setting

γ(π)(i) = (|π(i+ 1)| − 1)εi+1

for 1 ≤ i ≤ n− 1.

For example, if π = 10, 31, 21, 42 in one-line notation, then γ(π) = 21, 11, 32. It

is clear that γ is well-defined and a bijection, we would also like to know how γ

changes the starred descent number and the major index. Let π be any colored

permutation in the domain of γ. Since π(1) = 10, 0 /∈ DES∗(π). If i ≥ 2, then

i ∈ DES∗(π) if and only if i − 1 ∈ DES∗(γ(π)). Also, 1 ∈ DES∗(π) if and only if

π(2) < 10 if and only if 0 ∈ DES∗(γ(π)). It follows that des∗(π) = des∗(γ(π)) and

maj(π) = maj(γ(π)) + des∗(π). Thus

Yn,j,~α,~β(p, q) =
1

(p; q)n+1

∑
π∈W

n−1,j,
~

α(1),~β

pdes∗(π)qmaj(π)+des∗(π)−j

=
a
n−1,j, ~α(1),~β

(qp, q)

qj(p; q)n+1

.

Note that (1−p)/(p; q)n+1 = 1/(qp; q)n, so that when we substitute this expression
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for Yn,j,~α,~β(p, q) back in to (4.5) we get

an,j,~α,~β(p, q)

qj(p; q)n+1

= Xn,j,~α,~β(p, q) +
a
n−1,j, ~α(1),~β

(qp, q)

qj(qp; q)n
.

Let ~α(h) := (α0−h, α1, α2, ..., αN−1), so that we can iterate this recurrence relation

to obtain
an,j,~α,~β(p, q)

qj(p; q)n+1

=

α0∑
h=0

X
n−h,j, ~α(h),~β

(qhp, q).

Recalling the definition of Xn,j,~α,~β(p, q), we have

an,j,~α,~β(p, q) = qj(p; q)n+1

α0∑
h=0

X
n−h,j, ~α(h),~β

(qhp, q)

= (p; q)n+1

∑
l≥0

pl
α0∑
h=0

psl

(
Q
n−h,j, ~α(h),~β

)
qhl+j.

Lastly, we need the fact that psl(H(z)) = 1/(z; q)l and psl(E(z)) = (−z; q)l (see

[34]) to complete the proof,

∑
n≥0

π∈CN oSn

zn

(p; q)n+1

texc(π)r
~fix(π)s

~col(π)qmaj(π)pdes∗(π)

=
∑
n,j≥0
~α∈NN
~β∈NN−1

zn

(p; q)n+1

tjr~αs
~βan,j,~α,~β(p, q)

=
∑
n,j≥0
~α∈NN
~β∈NN−1

zntjr~αs
~β
∑
l≥0

pl
α0∑
h=0

psl

(
Q
n−h,j, ~α(h),~β

)
qhl+j

=
∑
l≥0

pl
∑
h≥0

(zr0q
l)hpsl


∑
n,j≥0

~α∈NN ,α0≥h
~β∈NN−1

Q
n−h,j, ~α(h),~β

zn−h(tq)jr
~α(h)
s
~β

 .
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By Theorem 4.1.3 this is equal to

=
∑
l≥0

pl

1− zr0ql
psl

 H(r0z)(1− tq)
(∏N−1

m=1 E(−smz)H(rmsmz)
)

(
1 +

∑N−1
m=1 sm

)
H(tqz)−

(
tq +

∑N−1
m=1 sm

)
H(z)



=
∑
l≥0

pl
(

1
(r0z;q)l

)
(1− tq)

(∏N−1
m=1(smz; q)l

1
(rmsmz;q)l

)
(1− zr0ql)

[(
1 +

∑N−1
m=1 sm

)
1

(tqz;q)l
−
(
tq +

∑N−1
m=1 sm

)
1

(z;q)l

]

=
∑
l≥0

pl(1− tq)(z; q)l(tqz; q)l

(∏N−1
m=1(smz; q)l

)(∏N−1
m=1(rmsmz; q)l

)−1

(r0z; q)l+1

[(
1 +

∑N−1
m=1 sm

)
(z; q)l −

(
tq +

∑N−1
m=1 sm

)
(tqz; q)l

] .



Chapter 5

Colored Necklaces and Colored
Ornaments

As mentioned earlier, Chapters 5 and 6 will be devoted to the proof of Theorem

4.1.3. In this chapter we introduce colored necklaces and colored ornaments. They

are a multicolored generalization of the bicolored necklaces and bicolored ornaments

of Shareshian and Wachs (see Section 1.7), which are in turn generalizations of the

monochromatic necklaces and ornaments of Gessel and Reutenauer (see Section 1.6).

We construct a bijection which shows that the cv-cycle type colored Eulerian qua-

sisymmetric functions can be expressed in terms of weights of colored ornaments.

This bijection and its proof are similar to the bicolored versions appearing in Theo-

rem 1.7.5 (see also [31], [32]). We will conclude this chapter by showing that Theorem

4.1.3 is equivalent to a certain recurrence relation.

5.1 A Combinatorial Description of the Colored

Eulerian Quasisymmetric Functions

Definition 5.1.1. Let s = (s1 ≥ s2 ≥ ... ≥ sn) be a weakly decreasing sequence of

positive integers. For π ∈ CN oSn, we say that s is DEX(π)-compatible if i ∈ DEX(π)

implies that si > si+1. Then define the set Com(λ̌, j) as follows

Com(λ̌, j) :=
{

(π, s) : λ̌(π) = λ̌, exc(π) = j, and s is DEX(π)-compatible
}
.

81
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Define the weight of the pair (π, s), denoted wt((π, s)), to be the monomial

wt((π, s)) := xs1xs2 · · ·xsn .

From this definition, it follows that we can express the colored Eulerian quasisym-

metric functions as

Qλ̌,j =
∑

(π,s)∈Com(λ̌,j)

wt((π, s)).

Let B be an infinite totally ordered alphabet with letters and order given by

B :=
{

10 < 11 < ... < 1N−1 < 10 < 20 < 21 < ... < 2N−1 < 20 < ...
}
. (5.1)

Let u be any positive integer. We call u a barred letter, while letters without a

bar are called unbarred. For 0 ≤ m ≤ N − 1 we say a letter is m-colored if it is of

the form um, we also say that u0 is 0-colored. Note that only 0-colored letters may

be barred. The absolute value of a letter is the positive integer obtained by removing

any colors or bars, so |um| =
∣∣∣u0

∣∣∣ = u.

Next we review the notion of a circular primitive word. The cyclic group of order

n acts on the set of words of length n by cyclic rotation. So if z is a generator of

this cyclic group and v = v1, v2, ..., vn, then z · v = v2, v3, ..., vn, v1. A circular word,

denoted (v), is the orbit of v under this action. A circular word (v) is called primitive

if the size of the orbit is equal to the length of the word v. Equivalently, a word is

not primitive if it is a proper power of another word. For example the circular word

(30, 30, 32) is primitive, while (42, 31, 42, 31) is not primitive since 42, 31, 42, 31 = w2

where w = 42, 31. One can visualize (v) as a circular arrangement of letters, called a

necklace, obtained from v by attaching the first and last letters together. For each

position of this necklace one can read the letters in a clockwise direction to obtain

an element from the orbit of the circular action (see also Sections 1.6 and 1.7, and
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[15],[23],[31],[32]).

Definition 5.1.2. A colored necklace is a circular primitive word (v) over the alphabet

B, such that

1. Every barred letter is followed by a letter of lesser or equal absolute value,

2. Every 0-colored unbarred letter is followed by a letter of greater or equal absolute

value,

3. Words of length one may not consist of a single barred letter.

Note that letters with color greater than zero may be followed by any letter from

B. Also note that for a colored necklace (v), we define its color vector in the same

way we did for colored permutations. That is,

~col((v)) = ~β ∈ NN−1

means that v has exactly βi letters with color i ∈ [N − 1].

For v = v1, v2, ..., vn, we define the weight of the colored necklace (v), denoted

wt((v)), to be the monomial

wt((v)) := x|v1|x|v2| · · ·x|vn|.

A colored ornament is a multiset of colored necklaces. Formally, a colored orna-

ment R is a map with finite support from the set η of colored necklaces to N. We

define the weight of a colored ornament R, denoted wt(R), to be

wt(R) :=
∏

(v)∈η

wt((v))R((v)).

Similar to the cv-cycle type of a colored permutation, the cv-cycle type λ̌(R) of a
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colored ornament R is the multiset

λ̌(R) =
{

(λ1, ~β1), (λ2, ~β2), ..., (λk, ~βk)
}

where each colored necklace of R corresponds to precisely one pair (λi, ~βi) where this

colored necklace has length λi and color vector ~βi.

For example let N = 4 and

R = (50, 50, 52, 30, 30, 61, 70), (33, 31), (33, 31), (40, 50), (20), (13).

Then

λ̌(R) = {(7, (1, 1, 0)), (2, (1, 0, 1)), (2, (1, 0, 1)), (2, (0, 0, 0), (1, (0, 0, 0)), (1, (0, 0, 1))} .

Let R(λ̌, j) denote the set of all colored ornaments of cv-cycle type λ̌, and exactly

j barred letters.

Theorem 5.1.3. There exists a weight preserving bijection f : Com(λ̌, j)→ R(λ̌, j).

Proof. Let (π, s) ∈ Com(λ̌, j) where s = (s1, s2, ..., sn). First we map (π, s) to the

pair (σ, α) where σ ∈ Sn and α is a weakly decreasing sequence of n letters from B.

We let σ = |π|, and we obtain α from s by replacing each si with one of the following

si 7→ s0
i if i ∈ EXC(π),

si 7→ smi if εi = m and i /∈ EXC(π).

Then for each cycle (i1, ..., ik) appearing in σ, add the colored necklace (αi1 , ..., αik)

to the multiset f((π, s)).

When doing an example, it helps to write the identity permutation as word on

top, below that the word for the colored permutation π, and below that the sequence
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s, as follows

Id =

π =

π̃ =

s =

1 2 3 4 5 6 7 8

81 30 22 50 12 61 40 70

81 3̃0 22 5̃0 12 61 40 70

6 5 5 4 4 4 4 3

.

One can check that DEX(π) = {1, 3} so that s is DEX(π)-compatible (note that s

has an optional decrease from s7 to s8). Then

σ = (1, 8, 7, 4, 5)(2, 3)(6),

α = 61, 50, 52, 40, 42, 41, 40, 30,

and

f((π, s)) = (61, 30, 40, 40, 42), (50, 52), (41).

It is clear that f preserves cv-cycle type, weight, and the number of excedances

of π is equal to the number of barred letters in f((π, s)). Since f preserves cv-cycle

type, and since fixed points of any color cannot be excedances, it is also clear that

the colored necklaces in f((π, s)) obey rule 3 in Definition 5.1.2. To prove that rules

1 and 2 are also obeyed, we first prove the following

Claim: α is a weakly decreasing sequence with respect to the order on B given in

(5.1).

Indeed, since |αi| = si, we know that |αi| = si ≥ si+1 = |αi+1|. So suppose

si = si+1 and αi = sm1
i while αi+1 = s0

i+1. This means that i /∈ EXC(π) while

i + 1 ∈ EXC(π). Thus i ∈ DEX(π) but si = si+1, contradicting that s is DEX(π)-

compatible. Also, if αi+1 = sm2
i+1 with m1 < m2, then i is again an element of DEX(π).

This proves the claim.

To check that rule 1 is obeyed, suppose αi is a barred letter. Then if σ(i) = j,

we must have i < j. By the claim above, αi ≥ αj. To check rule 2, suppose αi is
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0-colored and unbarred. Then σ(i) = j with i > j and the claim tells us that αi ≤ αj.

To show that f is well-defined, it remains to show that each word in f((π, s))

is primitive. Suppose (αi1 , αi2 , ..., αik) is a nonprimitive colored necklace in f((π, s))

obtained from the cycle (i1, i2, ..., ik) of σ, where i1 is the smallest element of the

cycle. Thus for some divisor d of k we have (αi1 , αi2 , ..., αik) = (αi1 , αi2 , ..., αid)
k/d. In

particular we have

αi1 = αid+1
and i1 < id+1. (5.2)

Since the sequence α is weakly decreasing, this implies that αi = αi1 for all i ∈ B :=

{i : i1 ≤ i ≤ id+1}, and B ∩ DEX(π) = ∅. Moreover, either B ∩ EXC(π) = B or ∅,

and εi = εi1 for all i ∈ B. So in fact B ∩DES(π) = ∅ and

σ(i1) < σ(i1 + 1) < σ(i1 + 2) < ... < σ(id+1). (5.3)

From (5.3), we find that i2 = σ(i1) < σ(id+1) = id+2. Since (αi1 , αi2 , ..., αik) =

(αi1 , αi2 , ..., αid)
k/d, we now have αi2 = αid+2

with i2 < id+2, similar to (5.2). The same

argument will show i3 = σ(i2) < σ(id+2) = id+3, and we can repeat this argument

until ik−d+1 = σ(ik−d) < σ(ik) = i1, contradicting the minimality of i1.

Thus far we have proved that f : Com(λ̌, j) → R(λ̌, j) is well-defined. Next, we

will describe the inverse map g : R(λ̌, j)→ Com(λ̌, j) and show that it is well-defined.

Let R ∈ R(λ̌, j) and if R has any repeated colored necklaces, fix some total order on

these repeated colored necklaces. For each position x of each colored necklace, let wx

denote the infinite word obtained by reading the colored necklace clockwise starting

at position x. Let wx > wy mean that wx is lexicographically larger than wy, using

the order on B (see (5.1)). If wx = wy for distinct positions x, y, then it must be

that x, y are positions in distinct copies of a repeated colored necklace, since words

are primitive. We can then break the tie using the total order on repeated colored

necklaces.
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This totally orders all the positions on all of the colored necklaces of R by letting

x > y if and only if

(1) wx > wy

or

(2) wx = wy and x is in a colored necklace which is larger in the total order on

these repeated colored necklaces.

If x is the ith largest position of R, then we replace the letter in position x by

i. After doing this for each position, we have a permutation denoted σ(R) ∈ Sn

written in cycle form. We then obtain a colored permutation denoted π(R) by setting

π(R)(i) = (σ(R)(i))εx where εx is the color of the letter formerly occupying position x.

A sequence s(R) is obtained by simply taking the weakly decreasing rearrangement of

the absolute values of all the letters appearing in R. We then set g(R) = (π(R), s(R)).

For example, consider the following colored ornament

R = (51, 50, 30) < (51, 50, 30), (41, 30, 31, 41), (31), (30) .

By ranking each position, we obtain σ(R) as follows

R = (51, 50, 30) < (51, 50, 30), (41, 30, 31, 41), (31), (30)

σ(R) = (4, 2, 10) (3, 1, 9) (6, 11, 7, 5) (8) (12)
.

So g(R) is the pair

Id = 1 2 3 4 5 6 7 8 9 10 11 12

π(R) = 90 100 11 21 61 111 51 81 30 40 70 120

s(R) = 5 5 5 5 4 4 3 3 3 3 3 3

.

It is easy to see that λ̌(π(R)) = λ̌, and that g does not depend on the ordering
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of repeated colored necklaces in R. Also, it follows from rules 1 and 2 in Definition

5.1.2 that if x is the ith largest position, then the letter in position x is barred if and

only if i ∈ EXC(π(R)), thus exc(π(R)) = j.

To show that g is well-defined, it remains to show that the sequence s is DEX(π)-

compatible. Suppose si = si+1. Let x be the ith largest position in R, and y be

the (i + 1)th largest position, in particular x > y. Given any word w, let F (w)

denote the first letter of the word. So si = si+1 means that |F (wx)| = |F (wy)|. If

F (wx) > F (wy), then one can easily check that i /∈ DEX(π) as desired.

So assume F (wx) = F (wy). Let u denote the position immediately following x

cyclically, and let v denote the position immediately following y. Since x > y it

follows that u > v. Since σ(R)(i) is equal to the rank of position u, and σ(R)(i+ 1)

is equal to the rank of position v, we have σ(R)(i) < σ(R)(i + 1). Since F (wx) =

F (wy), then εx = εy and this implies that i /∈ DES(π(R)). Moreover, since either

i, i+1 ∈ EXC(π(R)) or i, i+1 /∈ EXC(π(R)) we have i /∈ DEX(π(R)). Thus the map

g is well-defined.

The proof of Theorem 5.1.3 will be complete once we show that f ◦g = g ◦f = id.

It not hard to see that f ◦ g = id, and that if we apply g ◦ f to (π, s) we will recover

the sequence s. So we need to prove that applying g ◦ f to (π, s) will also bring us

back to the colored permutation π.

Let (π, s) 7→ (σ, α) in the first step of f , and let pi be the position occupied by αi in

f((π, s)). Order the cycles of σ from largest to smallest so that the minimum elements

of the cycles increase. Use this to order repeated colored necklaces in f((π, s)) so that

we know how to break ties if wpi = wpj . We want to show the following:

(i) if i < j, then wpi ≥ wpj ,

and
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(ii) if i < j and wpi = wpj , then i is in a cycle of σ whose minimum element is

less than the minimum element of the cycle containing j.

In order to prove both (i) and (ii), we first establish that

(iii) If i < j and wpi ≤ wpj , then αi = αj and σ(i) < σ(j).

Indeed, α is weakly decreasing so that i < j implies αi ≥ αj. And wpi ≤ wpj

implies that αi = F (wpi) ≤ F (wpj) = αj, so αi = αj. This implies that αi = αi+1 =

... = αj, which means si = si+1 = ... = sj, εi = εi+1 = ... = εj, and all the letters

αi, αi+1, ..., αj are either all barred or all unbarred. Since s is DEX(π)-compatible,

k /∈ DEX(π) for i ≤ k ≤ j − 1. This implies that |π(i)| < |π(i+ 1)| < ... < |π(j)|,

which means that σ(i) < σ(i+ 1) < ... < σ(j). This establishes (iii).

To prove (i), suppose i < j but wpi < wpj . Using (iii), we have σ(i) < σ(j) and

αi = αj. Since F (wpi) = F (wpj), we must have wpσ(i)
< wpσ(j)

. Now apply (iii) again

with σ(i), σ(j) taking the role of i, j. Then σ2(i) < σ2(j) and ασ(i) = ασ(j), which

implies wpσ2(i)
< wpσ2(j)

. Apply (iii) again to obtain σ3(i) < σ3(j), ασ2(i) = ασ2(j) and

wpσ3(i)
< wpσ3(j)

. By repeating this argument, we see that ασm(i) = ασm(j) for all m,

but this implies that wpi = wpj , a contradiction.

To prove (ii), suppose i < j and wpi = wpj . Using (iii) we have σ(i) < σ(j), and

wpi = wpj implies wpσ(i)
= wpσ(j)

. Applying (iii) again we have σ2(i) < σ2(j) and

wpσ2(i)
= wpσ2(j)

. Repeating this argument, we have σm(i) < σm(j) for all m. Thus

the cycle of σ containing i has a smaller minimum element, than the cycle containing

j.

This completes the proof that f : Com(λ̌, j)→ R(λ̌, j) is a bijection.

From Definition 5.1.1, we had expressed the cv-cycle type colored Eulerian qua-

sisymmetric functions as a sum of weights of pairs (π, s). Using Theorem 5.1.3 we

can now express it as a sum of weights of colored ornaments.
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Corollary 5.1.4. For all λ̌ and j we have

Qλ̌,j =
∑

(π,s)∈Com(λ̌,j)

wt((π, s)) =
∑

R∈R(λ̌,j)

wt(R).

Remark 5.1.5. It is possible to use Corollary 5.1.4 to prove that Qλ̌,j is also a symmet-

ric function. One method is to use the colored ornament description of Qλ̌,j to derive

a colored analog of [32, Corollary 6.1], which involves plethysm (see [36]). Another

possible method is a bijective approach as in [32, Theorem 5.8].

5.2 A Recurrence for the Fixed Point Colored Eu-

lerian Quasisymmetric Functions

From Corollary 5.1.4, we obtain the following results concerning the fixed point

colored Eulerian quasisymmetric functions.

Corollary 5.2.1. For n, j ∈ N, ~α ∈ NN , ~β ∈ NN−1 we have

Qn,j,~α,~β = Qn−|~α|,j,~0,~β−(α1,α2,...,αN−1)

N−1∏
k=0

hαk ,

where |~α| :=
∑N−1

k=0 αk, and recall that hαk is the complete homogeneous symmetric

function of degree αk.

Proof. Corollary 5.1.4 implies that Qn,j,~α,~β is equal to the sum of weights of all colored

ornaments with exactly αk colored necklaces of length one consisting of a single k-

colored letter, for 0 ≤ k ≤ N − 1. The result now follows from the fact that the

weight of αk colored necklaces of length one consisting of a single k-colored letter is

hαk .
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Corollary 5.2.2. Theorem 4.1.3 is equivalent to

∑
n,j≥0
~β∈NN−1

Qn,j,~0,~βz
ntjs

~β =
(1− t)

∏N−1
m=1 E(−smz)(

1 +
∑N−1

m=1 sm

)
H(tz)−

(
t+
∑N−1

m=1 sm

)
H(z)

. (5.4)

Proof. In one direction, take the formula from Theorem 4.1.3 and simply set r0 =

r1 = ... = rN−1 = 0. For the other direction, start with (5.4) and multiply both sides

by H(r0z)
∏N−1

m=1 H(rmsmz). The left hand side becomes

(∑
n≥0

rn0 z
nhn

)(
N−1∏
m=1

∑
n≥0

(rmsm)nznhn

) ∑
n,j≥0
~β∈NN−1

Qn,j,~0,~βz
ntjs

~β



=
∑
n≥0

zn
∑
j≥0

~β∈NN−1

~α∈NN

Qn−|~α|,j,~0,~βt
js
~β+(α1,...,αN−1)r~α

N−1∏
k=0

hαk .

By Corollary 5.2.1, this is equal to the left hand side of Theorem 4.1.3.

Corollary 5.2.3. Equation (5.4) is equivalent to the recurrence relation

Qn,j,~0,~β =
∑

0≤i≤n−2
j−n+i<k<j

Qi,k,~0,~βhn−i +
N−1∑
m=1

χ (βm > 0)

 ∑
0≤i≤n−1
j−n+i<k≤j

Qi,k,~0,~β(m̂)hn−i



+χ (j = 0)χ
(∣∣∣~β∣∣∣ = n

)
(−1)n

N−1∏
m=1

eβm ,

where if ~β = (β1, β2, ..., βN−1) then

~β(m̂) := (β1, ..., βm−1, βm − 1, βm+1, ..., βN−1).

(Recall that χ(P ) = 0 if the statement P is false, and χ(P ) = 1 if the statement P is

true.)
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Proof. Let

I :=
∑
n,j≥0
~β∈NN−1

Qn,j,~0,~βz
ntjs

~β.

Then the recurrence relation is equivalent to

I =
∑
n,j≥0
~β∈NN−1

zn
∑

0≤i≤n−2
j−n+i<k<j

Qi,k,~0,~βhn−it
js
~β

+
N−1∑
m=1

∑
n,j≥0
~β∈NN−1

zn
∑

0≤i≤n−1
j−n+i<k≤j

Qi,k,~0,~β(m̂)hn−it
js
~β(m̂)sm +

∑
~β∈NN−1

(−z)|~β|s~β
N−1∏
m=1

eβm

=
∑
n,k≥0
~β∈NN−1

zn
∑

0≤i≤n−2

Qi,k,~0,~βs
~βhn−i

k+n−i−1∑
j=k+1

tj

+
N−1∑
m=1

∑
n,k≥0
~β∈NN−1

zn
∑

0≤i≤n−1

Qi,k,~0,~β(m̂)s
~β(m̂)hn−ism

k+n−i−1∑
j=k

tj +
N−1∏
m=1

E(−smz)

=
∑
n,k≥0
~β∈NN−1

zn
∑

0≤i≤n−2

Qi,k,~0,~βt
ks

~βthn−i [n− i− 1]t

+
N−1∑
m=1

∑
n,k≥0
~β∈NN−1

zn
∑

0≤i≤n−1

Qi,k,~0,~β(m̂)t
ks

~β(m̂)smhn−i [n− i]t +
N−1∏
m=1

E(−smz)

= I
∑
n≥2

t [n− 1]t hnz
n +

N−1∑
m=1

I
∑
n≥1

sm [n]t hnz
n +

N−1∏
m=1

E(−smz).

If we let

A :=
∑
n≥2

t [n− 1]t hnz
n

and

B :=
N−1∑
m=1

∑
n≥1

sm [n]t hnz
n,
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then

I =

∏N−1
m=1 E(−smz)

1− A−B
. (5.5)

Next we compute the denominator of this expression,

1− A−B = 1 +
∑
n≥2

hnz
nt

(
tn−1 − 1

1− t

)
+

N−1∑
m=1

∑
n≥1

hnz
nsm

(
tn − 1

1− t

)

=
1

1− t

[
1− t+H(tz)− tz − 1− t(H(z)− z − 1) +

N−1∑
m=1

(H(tz)−H(z))sm

]

=
1

1− t

[(
1 +

N−1∑
m=1

sm

)
H(tz)−

(
t+

N−1∑
m=1

sm

)
H(z)

]
.

Substituting this back into (5.5) gives the desired result.

Thus Theorem 4.1.3 will be proved once we establish the recurrence relation in

Corollary 5.2.3, and this will be done in Chapter 6.



Chapter 6

Colored banners

The previous chapter has shown that Theorem 4.1.3 is equivalent to the recurrence

relation appearing in Corollary 5.2.3. This chapter will be devoted to establishing

this recurrence relation, thus proving Theorem 4.1.3. There are two cases which will

be treated separately, the case
∣∣∣~β∣∣∣ = n and the case

∣∣∣~β∣∣∣ < n (recall that the absolute

value of a vector ~β ∈ NN−1 is
∣∣∣~β∣∣∣ =

∑N−1
m=1 βm).

6.1 Establishing the Recurrence, Part I

First we consider the case
∣∣∣~β∣∣∣ = n, and define

Dn,~β(x) := Qn,0,~0,~β(x).

(Note that x := {x1, x2, ...} denotes our usual set of commuting variables which we

often omit, but we include here for the sake of clarity in the proof of Theorem 6.1.1).

Our goal is to compute the following recurrence relation for Dn,~β(x), and then check

that it agrees with the recurrence relation appearing in Corollary 5.2.3 in the case

when
∣∣∣~β∣∣∣ = n.

Theorem 6.1.1. For n ∈ N and
∣∣∣~β∣∣∣ = n we have

Dn,~β(x) = (−1)n

(
N−1∏
m=1

eβm(x)

)
+

N−1∑
m=1

χ(βm > 0)Dn−1,~β(m̂)(x)h1(x),

94
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recalling that ~β(m̂) = (β1, ..., βm−1, βm − 1, βm+1, ..., βN−1).

Proof. Similar to the definition of R(λ̌, j), we let R(n, j, ~α, ~β) denote the set of all

colored ornaments of size n with j barred letters, βi letters of color i ∈ [N − 1], and

αi colored necklaces consisting of a single i-colored letter where 0 ≤ i ≤ N − 1 (as

usual, N is arbitrary but fixed). Hence

Dn,~β(x) =
∑

R∈R(n,0,~0,~β)

wt(R).

Since
∣∣∣~β∣∣∣ = n, the key fact is that the colored necklace rules of Definition 5.1.2

present no restrictions, since there are no 0-colored letters in this case. Therefore

R(n, 0,~0, ~β) can be viewed as a set of Gessel-Reutenauer ornaments as in Section 1.6,

but over the alphabet

{
11, 12, ..., 1N−1, 21, 22, ..., 2N−1, ...

}
.

For a necklace (v) over this alphabet where v = vε11 , v
ε2
2 , ..., v

εn
n with vi ∈ P and

εi ∈ [N − 1], we define a new weight by

w̃t((v)) := xv1,ε1xv2,ε2 · · · xvn,εn ,

where

X := {x1,1, x1,2, ..., x1,N−1, x2,1, x2,2, ..., x2,N−1, ...}

is a set of commuting variables.

Then by [15, Theorem 3.6] we have

∑
~β∈NN−1

|~β|=n

Dn,~β(x)s
~β =

∑
~β∈NN−1

|~β|=n

∑
R∈R(n,0,~0,~β)

w̃t(R)

∣∣∣∣
xi,j=xisj

= Dn(X)

∣∣∣∣
xi,j=xisj

,
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where Dn is the quasisymmetric generating function for derangements in Sn, as de-

scribed by Gessel and Reutenauer in [15, Section 8]. By Equation (8.2) of [15], Dn

satisfies the following recurrence

Dn(X) = h1(X)Dn−1(X) + (−1)nen(X).

Next we compute the right hand side of this equation evaluated at xi,j = xisj.

First we have

Dn−1(X)

∣∣∣∣
xi,j=xisj

=
∑

~β∈NN−1

|~β|=n−1

Dn−1,~β(x)s
~β.

Next,

h1(X)

∣∣∣∣
xi,j=xisj

=
∑
i≥1

xi

(
N−1∑
m=1

sm

)
= h1(x)

N−1∑
m=1

sm.

And finally

en(X)

∣∣∣∣
xi,j=xisj

=
∑

~β∈NN−1

|~β|=n

N−1∏
m=1

sβmm eβm(x) =
∑

~β∈NN−1

|~β|=n

s
~β

N−1∏
m=1

eβm(x).

Thus ∑
~β∈NN−1

|~β|=n

Dn,~β(x)s
~β = Dn(X)

∣∣∣∣
xi,j=xisj

= h1(x)


N−1∑
m=1

sm
∑

~β∈NN−1

|~β|=n−1

Dn−1,~β(x)s
~β

+ (−1)n
∑

~β∈NN−1

|~β|=n

s
~β

N−1∏
m=1

eβm(x).

Extracting the coefficient of s
~β from both sides gives the desired result.

Next we show that Theorem 6.1.1 agrees with the recurrence relation appearing
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in Corollary 5.2.3 in the case that
∣∣∣~β∣∣∣ = n.

Corollary 6.1.2. In the case
∣∣∣~β∣∣∣ = n, Theorem 6.1.1 establishes the recurrence

relation appearing in Corollary 5.2.3, thus proving Theorem 4.1.3 in this case.

Proof. In Corollary 5.2.3, set j = 0 and
∣∣∣~β∣∣∣ = n so that the left hand side equals

Dn,~β(x). In the first sum on the right hand side, k < j = 0. By definition, Qi,k,~0,~β = 0

if k < 0, thus ∑
0≤i≤n−2
j−n+i<k<j

Qi,k,~0,~β(x)hn−i(x) = 0.

In the next sum, we note that |~β(m̂)| = n− 1. Consequently, the only nonzero terms

are when i = n− 1 and k = 0, that is

N−1∑
m=1

χ (βm > 0)

 ∑
0≤i≤n−1
j−n+i<k≤j

Qi,k,~0,~β(m̂)(x)hn−i(x)

 =
N−1∑
m=1

χ(βm > 0)Dn−1,~β(m̂)(x)h1(x).

Lastly,

χ (j = 0)χ
(∣∣∣~β∣∣∣ = n

)
(−1)n

N−1∏
m=1

eβm(x) = (−1)n
N−1∏
m=1

eβm(x),

as desired.

6.2 Establishing the Recurrence, Part II

It now remains to consider the case
∣∣∣~β∣∣∣ < n for establishing the recurrence relation

in Corollary 5.2.3. For this we introduce colored banners, which are a generalization of

the bicolored banners of Shareshian and Wachs (see Section 1.7). While the content of

this section is inspired by the work of Shareshian and Wachs, our bijection appearing

in Theorem 6.2.4 and the subsequent proof are considerably more complicated than
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the corresponding bijection and proof of [32, Theorem 3.7]. Though it is not obvious,

we note that our bijection does in fact reduce to that of Shareshian and Wachs in the

case N = 1.

Definition 6.2.1. A colored banner (which we simply call a banner) is a word B of

finite length over the alphabet B such that

1. if B(i) is barred then |B(i)| ≥ |B(i+ 1)| ,

2. if B(i) is 0-colored and unbarred, then |B(i)| ≤ |B(i+ 1)| or i equals the length

of B,

3. the last letter of B is unbarred.

Recall that a Lyndon word over an ordered alphabet is a word that is strictly

lexicographically larger than all its circular rearrangements. And a Lyndon factoriza-

tion of a word is a factorization into a lexicographically weakly increasing sequence

of Lyndon words. It is a fact that every word has a unique Lyndon factorization. We

say that a word of length n has Lyndon type λ (where λ is a partition of n) if parts

of λ equal the lengths of the words in the Lyndon factorization (see [18, Theorem

5.1.5]).

We will apply Lyndon factorization to banners, but we will do so using a new

order <B on the alphabet B as follows

11 <B 12 <B ... <B 1N−1

<B 21 <B 22 <B ... <B 2N−1

<B 31 <B 32 <B ... <B 3N−1

...

<B 10 <B 10 <B 20 <B 20 <B 30 <B 30 <B ... (6.1)

(The reason for choosing this order will become apparent in the proof of Theorem

6.2.4). We define the weight wt(B) of a banner B(i), ..., B(n) to be the monomial
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x|B(1)|...x|B(n)|. And we define the cv-cycle type of a banner B to be the multiset

λ̌(B) =
{

(λ1, ~α1), ..., (λk, ~αk)
}

if B has Lyndon type λ with respect to <B, and the corresponding word of length λi

in the Lyndon factorization has color vector ~αi. Then K(λ̌, j) will denote the set of

all banners of cv-cycle type λ̌ with exactly j barred letters.

Theorem 6.2.2. There exists a weight preserving bijection from R(λ̌, j) to K(λ̌, j),

consequently

Qλ̌,j =
∑

B∈K(λ̌,j)

wt(B).

Proof. The proof uses Lyndon factorization and is identical to the proof of [32, The-

orem 3.6].

Definition 6.2.3. A 0-colored marked sequence, denoted (ω, b, 0), is a weakly increas-

ing sequence ω of positive integers, together with a positive integer b, which we call

the mark, such that 1 ≤ b < length(ω). The set of all 0-colored marked sequences

with length(ω) = n and mark equal to b will be denoted M(n, b, 0).

For 1 ≤ m ≤ N − 1, an m-colored marked sequence, denoted (ω, b,m), is a

weakly increasing sequence ω of positive integers, together with a nonnegative integer

b such that 0 ≤ b < length(ω). The set of all m-colored marked sequences with

length(ω) = n and mark equal to b will be denoted M(n, b,m).

We will use colored marked sequences in Theorem 6.2.4 below, where one can think

of the map γ as removing a colored marked sequence (ω, b,m) from a banner. The

sequence ω corresponds to the absolute values of the letters removed, b corresponds

to the number of barred letters removed, and one of the letters removed has color m

while the rest of the letters removed all have color 0.

Let K0(n, j, ~β) denote the set of all banners of length n, with Lyndon type having
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no parts of size 1, color vector equal to ~β, and j bars. For m ∈ [N − 1] and βm > 0,

define

Xm :=
⊎

0≤i≤n−1
j−n+i<k≤j

K0(i, k, ~β(m̂))×M(n− i, j − k,m),

and let Xm := 0 if βm = 0. We also define

X0 =:
⊎

0≤i≤n−2
j−n+i<k<j

K0(i, k, ~β)×M(n− i, j − k, 0).

Theorem 6.2.4. If
∣∣∣~β∣∣∣ < n, then there is a bijection

γ : K0(n, j, ~β)→
N−1⊎
m=0

Xm

such that if γ(B) = (B′, (ω, b,m)), then wt(B) = wt(B′)wt(ω) where if ω = ω1, ω2, ..., ωl

then wt(ω) = xω1xω2 · · · xωl.

Corollary 6.2.5. Theorem 6.2.4 establishes the recurrence relation appearing in

Corollary 5.2.3 in the case that
∣∣∣~β∣∣∣ < n, thus completing the proof of Theorem 4.1.3.

Proof. This follows from the fact that

∑
(ω,j−k)∈M(n−i,j−k,m)

wt(ω) = hn−i.

In order to prove Theorem 6.2.4, we will need the following lemma (see [8, Lemma

4.3]).

Lemma 6.2.6. Let B be a banner. If the Lyndon type of B has no parts of size

one, then B has a unique increasing factorization (with respect to <B). By increasing

factorization of B, we mean that B has the form B = B1 · B2 · ... · Bd where each Bi
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has the form

Bi = (ai, ..., ai︸ ︷︷ ︸
pi times

) · ui,

where ai ∈ B, pi > 0, and ui is a word of positive length over the alphabet B whose let-

ters are all strictly less than ai with respect to <B (see (6.1)), and a1 ≤B a2 ≤B ... ≤B

ad. Note that the increasing factorization is a refinement of the Lyndon factorization.

For example, the Lyndon factorization of the word

(61, 12, 51, 40, 40, 41, 40, 40, 32, 50, 71)

is

(61, 12, 51) · (40, 40, 41, 40, 40, 32) · (50, 71),

which has no parts of size one, so its increasing factorization is

(61, 12, 51) · (40, 40, 41, 40) · (40, 32) · (50, 71).

Next we prove Theorem 6.2.4. As noted at the beginning of this section, the

N = 1 case of this proof reduces to the proof of [32, Theorem 3.7]. In the general case

that N > 1 (and
∣∣∣~β∣∣∣ < n), the proof is inspired by [32, Theorem 3.7], but significantly

more complicated.

Proof of Theorem 6.2.4. Describing γ (and its inverse) requires us to consider many

different cases. For convenience we will make a note of which case γ(B) falls under

when considering γ−1(γ(B)) (and vice versa) so that one can check that γ is indeed

a bijection.

First, we take the increasing factorization of B, say B = B1 ·B2 · ... ·Bd. Let

Bd = (a, ..., a︸ ︷︷ ︸
p times

) · u,
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where a ∈ B, p > 0, and u is a word of positive length over the alphabet B whose

letters are all strictly less than a with respect to the order <B from (6.1). We

observe that
∣∣∣~β∣∣∣ < n implies that a is 0-colored, since we have taken the increasing

factorization with respect to <B. For ease of notation, we will write

Bd = (a, ..., a︸ ︷︷ ︸
p times

) · u = ap · u,

where it is understood that a is 0-colored, and the superscript p means that the letter

a is repeated p times.

Case 1, γ (Case 1.1, γ−1)

Bd = apc where a is unbarred and c ∈ B. Since the banner rules in Definition

6.2.1 require that |c| ≥ |a|, this can only happen if c has positive color, say c has color

m > 0. Then set

γ(B) := (B′, (ω, b,m)),

where

B′ =: B1 · ... ·Bd−1,

ω := (|a| , ..., |a|︸ ︷︷ ︸
p times

, |c|), and b := 0.

For example if

Bd = (40, 40, 40, 40, 92),

then

(ω, b,m) = ((4, 4, 4, 4, 9), 0, 2).

Case 2, γ

Bd = apc, i1, i2, ...il where a is unbarred, c ∈ B, and i1 is unbarred. Again since a

is unbarred, c must have positive color. Next, we find the index s such that 1 ≤ s ≤ l
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and either one of the following subcases hold:

Case 2.1, γ (Case 1.1, γ−1)

i1 ≤B i2 ≤B ... ≤B il are all 0-colored and unbarred. We then take s = l and set

γ(B) := (B′, (ω, b,m)),

where c has color m > 0, and where

B′ =: B1 · ... ·Bd−1,

ω := (|i1| , ..., |il| , |a| , ..., |a|︸ ︷︷ ︸
p times

, |c|), and b := 0.

For example if

Bd = (40, 40, 91, 20, 20, 30),

then

(ω, b,m) = ((2, 2, 3, 4, 4, 9), 0, 1).

Case 2.2, γ (Case 4.2, γ−1)

i1 ≤B ... ≤B is−1 are all 0-colored and unbarred while is is barred. Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ =: B1 · ... ·Bd−1 · B̃d,

B̃d := apcis+1...il,

ω =: (|i1| , ..., |is|), and b := 1.
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For example if

Bd = (50, 50, 83, 10, 40, 40, 20, 71),

then

B̃d = (50, 50, 83, 20, 71),

(ω, b, 0) = ((1, 4, 4), 1, 0).

Case 2.3, γ (Cases 1.2 and 2.1, γ−1)

i1 ≤B ... ≤B is−1 are all 0-colored and unbarred while is is positively colored, say

is has color m > 0. Then set

γ(B) := (B′, (ω, b,m)),

where

B′ =: B1 · ... ·Bd−1 · B̃d,

B̃d := apcis+1...il,

ω := (|i1| , ..., |is|), and b := 0.

For example if

Bd = (50, 50, 81, 10, 40, 73, 62),

then

B̃d = (50, 50, 81, 62),

(ω, b,m) = ((1, 4, 7), 0, 3).

Case 3, γ

Bd = apc, i1, i2, ...il where a is unbarred, c ∈ B, and i1 is barred. Again this

implies c must have positive color. First, find the index r such that i1 ≥B ... ≥B ir−1
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are all barred while ir is unbarred (note 1 < r ≤ l). Then find the index s such that

r ≤ s ≤ l and either one of the following subcases hold:

Case 3.1, γ (Case 4.3, γ−1)

ir ≤B ... ≤B is are all 0-colored, unbarred, and |is| ≤ |ir−1|, while |is+1| > |ir−1|

or s = l. Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apcis+1...il,

ω := (|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r − 1.

For example if

Bd = (40, 40, 61, 30, 30, 20, 10, 20, 30),

then

B̃d = (40, 40, 61, 30),

(ω, b, 0) = ((1, 2, 2, 3, 3), 3, 0).

Case 3.2, γ (Case 4.2, γ−1)

ir ≤B ... ≤B is−1 are all 0-colored, unbarred, and |is−1| ≤ |ir−1|, while is is barred

and |is| ≤ |ir−1|. Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ =: B1 · ... ·Bd−1 · B̃d,

B̃d := apcis+1...il,
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ω := (|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r.

For example if

Bd = (60, 60, 82, 50, 40, 40, 20, 40, 40, 10, 91),

then

B̃d = (60, 60, 82, 10, 91),

(ω, b, 0) = ((2, 4, 4, 4, 4, 5), 4, 0).

Case 3.3, γ (Case 3.2, γ−1)

ir ≤B ... ≤B is−1 are all 0-colored, unbarred, and |is−1| ≤ |ir−1|, while is is

positively colored, say is has color m > 0, and |is| ≤ |ir−1|. Then set

γ(B) := (B′, (ω, b,m)),

where c has color m > 0, and where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apcis+1...il,

ω := (|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r − 1.

For example if

Bd = (50, 81, 40, 20, 10, 11, 13),

then

B̃d = (50, 81, 13),

(ω, b,m) = ((1, 1, 2, 4), 2, 1).
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Case 4, γ

Bd = api1, i2, ...il where a is barred and i1 is unbarred. Then find the index s such

that 1 ≤ s ≤ l and either one of the following subcases hold:

Case 4.1, γ (Case 4.1, γ−1)

i1 ≤B ... ≤B il are all 0-colored and unbarred, so we take s = l and set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1,

ω := (|i1| , |i2| , ..., |il| , |a| , ..., |a|︸ ︷︷ ︸
p times

), and b := p.

For example if

Bd = (50, 50, 50, 10, 30, 50),

then

(ω, b, 0) = ((1, 3, 5, 5, 5, 5), 3, 0).

Case 4.2, γ (Case 4.4, γ−1)

i1 ≤B ... ≤B is−1 are all 0-colored and unbarred while is is barred. Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apis+1...il,

ω := (|i1| , |i2| , ..., |is|), and b := 1.
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For example if

Bd = (50, 50, 50, 10, 30, 40, 31, 72),

then

B̃d = (50, 50, 50, 31, 72),

(ω, b, 0) = ((1, 3, 4), 1, 0).

Case 4.3, γ (Cases 1.3 and 2.2, γ−1)

i1 ≤B ... ≤B is−1 are all 0-colored and unbarred while is is positively colored, say

is has color m > 0, and |is+1| ≤ |a|. Then set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apis+1...il,

ω := (|i1| , |i2| , ..., |is|), and b := 0.

For example if

Bd = (60, 60, 20, 20, 40, 81, 50, 42),

then

B̃d = (60, 60, 50, 42),

(ω, b,m) = ((2, 2, 4, 8), 0, 1).

Case 4.4, γ (Case 3.1, γ−1)

i1 ≤B ... ≤B il−1 are all 0-colored and unbarred while il is positively colored, say
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il has color m > 0, and |il| ≤ |a|. Take s = l and set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1,

ω := (|i1| , |i2| , ..., |il| , |a| , ..., |a|︸ ︷︷ ︸
p times

), and b := p.

For example if

Bd = (60, 60, 20, 20, 40, 53),

then

(ω, b,m) = ((2, 2, 4, 5, 6, 6), 2, 3).

Case 4.5, γ (Case 2.3, γ−1)

i1 ≤B ... ≤B il−1 are all 0-colored and unbarred while il is positively colored, say

il has color m > 0, and |il| > |a|. Take s = l and set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := api1...il−1,

ω := (|il|), and b := 0.

For example if

Bd = (60, 60, 20, 20, 40, 73),
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then

B̃d = (60, 60, 20, 20, 40),

(ω, b,m) = ((7), 0, 3).

Case 4.6, γ (Case 2.3, γ−1)

i1 ≤B ... ≤B is−1 are all 0-colored and unbarred while is, is+1 are both positively

colored, say is+1 has color m > 0, and |is+1| > |a|. Then set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := api1...isis+2is+3...il,

ω := (|is+1|), and b := 0.

For example if

Bd = (60, 60, 20, 20, 40, 73, 82),

then

B̃d = (60, 60, 20, 20, 40, 73),

(ω, b,m) = ((8), 0, 2).

Case 5, γ

Bd = api1, i2, ...il where a and i1 are barred. First, find the index r such that

i1 ≥B ... ≥B ir−1 are all barred while ir is unbarred (note 1 < r ≤ l). Then find the

index s such that r ≤ s ≤ l and either one of the following subcases hold:

Case 5.1, γ (Case 4.1, γ−1)
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ir ≤B ... ≤B il are all 0-colored, unbarred, and |il| ≤ |ir−1|. Then we take s = l

and set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1,

ω := ((|ir| , |ir+1| , ..., |il| , |ir−1| , |ir−2| , ..., |i1| , |a| , ..., |a|︸ ︷︷ ︸
p times

), and b := p+ r − 1.

For example if

Bd = (70, 70, 60, 40, 10, 20, 40),

then

(ω, b, 0) = ((1, 2, 4, 4, 6, 7, 7), 4, 0).

Case 5.2, γ (Case 4.5, γ−1)

ir ≤B ... ≤B is are all 0-colored, unbarred, |is| ≤ |ir−1|, and |ir−1| < |is+1| ≤ |a|.

Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apis+1...il,

ω := ((|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r − 1.

For example if

Bd = (70, 70, 60, 40, 10, 20, 50, 82, 10),

then

B̃d := (70, 70, 50, 82, 10),
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(ω, b, 0) = ((1, 2, 4, 6), 2, 0).

Case 5.3, γ (Case 2.4, γ−1)

ir ≤B ... ≤B is are all 0-colored, unbarred, |is| ≤ |ir−1|, and is+1 is positively

colored, say is+1 has color m > 0, with |is+1| > |a|. If |ir−1| ≥ |is+2|, then set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := api1...ir−2irir+1...isir−1is+2is+3...il,

ω := (|is+1|), and b := 0.

For example if

Bd = (70, 70, 60, 40, 10, 20, 81, 10),

then

B̃d = (70, 70, 60, 10, 20, 40, 10),

(ω, b,m) = ((8), 0, 1).

Case 5.4, γ (Case 2.3, γ−1)

ir ≤B ... ≤B is are all 0-colored, unbarred, |is| ≤ |ir−1|, and is+1 is positively

colored, say is+1 has color m > 0, with |is+1| > |a|. If |ir−1| < |is+2| or if s + 1 = l,

then set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,
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B̃d := api1...isis+2is+3...il,

ω := (|is+1|), and b := 0.

For example if

Bd = (70, 70, 60, 40, 10, 20, 81, 50),

then

B̃d = (70, 70, 60, 40, 10, 20, 50),

(ω, b,m) = ((8), 0, 1).

Case 5.5, γ (Case 4.4, γ−1)

ir ≤B ... ≤B is−1 are all 0-colored and unbarred while is is barred with |is| ≤ |ir−1|.

Then set

γ(B) := (B′, (ω, b, 0)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := apis+1...il,

ω := (|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r.

For example if

Bd = (60, 60, 50, 10, 20, 20, 40, 20, 20),

then

B̃d = (60, 60, 20, 20),

(ω, b, 0) = ((1, 2, 2, 4, 5), 2, 0).

Case 5.6, γ (Case 3.1, γ−1)
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ir ≤B ... ≤B il−1 are all 0-colored and unbarred while il is positively colored, say

il has color m > 0, with |il| ≤ |ir−1|. Then take s = l and set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1,

ω := (|ir| , |ir+1| , ..., |il| , |ir−1| , |ir−2| , ..., |i1| , |a| , ..., |a|︸ ︷︷ ︸
p times

), and b := p+ r − 1.

For example if

Bd = (60, 60, 50, 10, 20, 20, 45),

then

(ω, b,m) = ((1, 2, 2, 4, 5, 6, 6), 3, 5).

Case 5.7, γ (Case 3.3, γ−1)

ir ≤B ... ≤B is−1 are all 0-colored and unbarred while is is positively colored, say

is has color m > 0, with |is| ≤ |ir−1|. If |is+1| ≤ |a|, then set

γ(B) := (B′, (ω, b,m)),

where

B′ =: B1 · ... ·Bd−1 · B̃d,

B̃d := apis+1...il,

ω := (|ir| , |ir+1| , ..., |is| , |ir−1| , |ir−2| , ..., |i1|), and b := r − 1.

For example if

Bd = (80, 80, 50, 10, 20, 20, 45, 73),
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then

B̃d = (80, 80, 73),

(ω, b,m) = ((1, 2, 2, 4, 5), 1, 5).

Case 5.8, γ (Case 2.3, γ−1)

ir ≤B ... ≤B is−1 are all 0-colored and unbarred while is is positively colored with

|is| ≤ |ir−1|. If |is+1| > |a|, then is+1 must be positively colored, say is+1 has color

m > 0. Then set

γ(B) := (B′, (ω, b,m)),

where

B′ := B1 · ... ·Bd−1 · B̃d,

B̃d := api1...isis+2is+3...il,

ω := (|is+1|), and b := 0.

For example if

Bd = (80, 80, 50, 10, 20, 20, 45, 93),

then

B̃d = (80, 80, 50, 10, 20, 20, 45),

(ω, b,m) = ((9), 0, 3).

This completes the description of the map γ. Next we describe γ−1. Suppose

we are given a banner B with increasing factorization B = B1 · ... · Bd where Bd =

apj1...jl, and an m-colored marked sequence (ω, b,m) where 0 ≤ m ≤ N − 1 and

ω = (ω1, ..., ωq). Here the letter a may have any color, and we do not specify its

color. For this letter only we use the superscript p to denote that a is repeated p
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times where p > 0.

Case 1, γ−1

Suppose m > 0, b = 0, q > 1, and one of the following subcases hold:

Case 1.1, γ−1 (Cases 1 and 2.1, γ)

ω0
q−1 ≥B a. If ωq−1 appears q − 1 or q times in the sequence ω, then set

Bd+1 := ω0
q−1...ω

0
q−1︸ ︷︷ ︸

q−1 times

ωmq .

Otherwise, ωq−1 appears r times with r < q − 1 and we set

Bd+1 := ω0
q−1...ω

0
q−1︸ ︷︷ ︸

r times

ωmq ω
0
1ω

0
2...ω

0
q−r−1.

In either case set

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd ·Bd+1.

For an example of this case (and for most of the cases below), refer to correspond-

ing case of γ.

Case 1.2, γ−1 (Case 2.3, γ)

ω0
q−1 <B a, and a is unbarred. Then set

B̃d := apj1ω
0
1ω

0
2...ω

0
q−1ω

m
q j2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 1.3, γ−1 (Case 4.3, γ)

ω0
q−1 <B a, and a is barred. Then set

B̃d := apω0
1ω

0
2...ω

0
q−1ω

m
q j1j2...jl,
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γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 2, γ−1

Suppose m > 0, b = 0, q = 1, and one of the following subcases hold:

Case 2.1, γ−1 (Case 2.3, γ)

a is unbarred. Then set

B̃d := apj1ω
m
1 j2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

For example if

Bd = (50, 50, 50, 81, 23, 41),

(ω, b,m) = ((4), 0, 2),

then

B̃d = (50, 50, 50, 81, 42, 23, 41).

Case 2.2, γ−1 (Case 4.3, γ)

a is barred and ω1 ≤ |a|. Then set

B̃d := apωm1 j1j2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

For example if

Bd = (60, 60, 40, 22, 10, 31),

(ω, b,m) = ((5), 0, 3),

then

B̃d = (60, 60, 53, 40, 22, 10, 31).
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Case 2.3, γ−1 (Cases 4.5, 4.6, 5.4, 5.8, γ)

a is barred, ω1 > |a|, and we find the index s such that 1 ≤ s ≤ l and one of the

following subcases hold:

Case 2.3.1 j1 ≤B ... ≤B jl are all 0-colored and unbarred, so we take s = l.

Case 2.3.2 j1 ≤B ... ≤B js−1 are all 0-colored and unbarred while js is positively

colored.

Case 2.3.3 j1 ≥B ... ≥B jr−1 are all barred while jr ≤B ... ≤B jl are all 0-colored,

unbarred, and |jl| ≤ |jr−1|. Then take s = l.

Case 2.3.4 j1 ≥B ... ≥B jr−1 are all barred while jr ≤B ... ≤B js are all 0-colored,

unbarred, |js| ≤ |jr−1|, and |js+1| > |jr−1|.

Case 2.3.5 j1 ≥B ... ≥B jr−1 are all barred while jr ≤B ... ≤B js−1 are all

0-colored, unbarred, and js is positively colored with |js| ≤ |jr−1|.

Once the index s is found, we set

B̃d := apj1j2...jsω
m
1 js+1js+2...jl,

and

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Note that in Cases 2.3.1-2.3.5, js is an unbarred letter, thus the banner rules in

Definition 6.2.1 are not violated.

Case 2.4, γ−1 (Case 5.3, γ)

a is barred, ω1 > |a|, and we find the index s such that 1 ≤ s ≤ l and one of the

following subcases hold:

Case 2.4.1 j1 ≤B ... ≤B js−1 are all 0-colored and unbarred while js is barred.

Then set

B̃d := apjsj1j2...js−1ω
m
1 js+1js+2...jl,
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γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 2.4.2 j1 ≥B ... ≥B jr−1 are all barred while jr ≤B ... ≤B js−1 are all

0-colored, unbarred, and js is barred with |js| ≤ |jr−1|. Then set

B̃d := apj1j2...jr−1jsjrjr+1...js−1ω
m
1 js+1js+2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 3, γ−1

Suppose m > 0, b > 0, and one of the following subcases hold:

Case 3.1, γ−1 (Cases 4.4 and 5.6, γ)

ω0
q ≥B a, then set

Bd+1 := ω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−b−1ω

m
q−b,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd ·Bd+1.

Case 3.2, γ−1 (Case 3.3, γ)

ω0
q <B a, and a is unbarred. Then set

B̃d := apj1ω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−b−1ω

m
q−bj2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 3.3, γ−1 (Case 5.7, γ)

ω0
q <B a, and a is barred. Then set

B̃d := apω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−b−1ω

m
q−bj1j2...jl,
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γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 4, γ−1

Suppose m = 0, and one of the following subcases hold:

Case 4.1, γ−1 (Cases 4.1 and 5.1, γ)

ω0
q ≥B a, then set

Bd+1 := ω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−b,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd ·Bd+1.

Case 4.2, γ−1 (Cases 2.2 and 3.2, γ)

ω0
q <B a, a is unbarred, and ωq−b+1 ≥ |j2|. Then set

B̃d := apj1ω0
qω0

q−1...ω0
q−b+2ω

0
1ω

0
2...ω

0
q−bω

0
q−b+1j2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 4.3, γ−1 (Case 3.1, γ)

ω0
q <B a, a is unbarred, and ωq−b+1 < |j2|. Then set

B̃d := apj1ω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−bj2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 4.4, γ−1 (Cases 4.2 and 5.5, γ)

ω0
q <B a, a is barred, and ωq−b+1 ≥ |j1|. Then set

B̃d := apω0
qω0

q−1...ω0
q−b+2ω

0
1ω

0
2...ω

0
q−bω

0
q−b+1j1j2...jl,
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γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

Case 4.5, γ−1 (Case 5.2, γ)

ω0
q <B a, a is barred, and ωq−b+1 < |j1|. Then set

B̃d := apω0
qω0

q−1...ω0
q−b+1ω

0
1ω

0
2...ω

0
q−bj1j2...jl,

γ−1 (B, (ω, b,m)) := B1 · ... ·Bd−1 · B̃d.

This completes the description of γ−1. One can check case by case that both maps

are well-defined and in fact inverses of each other.



Chapter 7

Recurrence and Closed Formulas

In this chapter, we first present some recurrence and closed form formulas which

are equivalent to Theorems 4.1.3 and 3.3.1. We close with some remarks on future

work.

7.1 Recurrence and Closed Formulas

Corollary 7.1.1. Let Qn(t, r, s) denote

Qn(t, r, s) :=
∑
j≥0
~α∈NN
~β∈NN−1

Qn,j,~α,~βt
jr~αs

~β.

Then for n ≥ 1, Qn(t, r, s) satisfies the following recurrence relation

Qn(t, r, s) =


∑
~µ∈NN
~ν∈NN−1

|~µ|+|~ν|=n

(−1)|~ν|hµeνr
~µ

N−1∏
m=1

sνm+µm
m



+
n−1∑
k=0

Qk(t, r, s)hn−k

(
t [n− k − 1]t + [n− k]t

(
N−1∑
m=1

sm

))
.

Proof. From Theorem 4.1.3 and equation (5.5) in the proof of Corollary 5.2.3, we

122
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have ∑
n≥0

Qn(t, r, s)zn =
−H(r0z)

(∏N−1
m=1 E(−smz)H(rmsmz)

)
∑

n≥0

(
t [n− 1]t + [n]t

(∑N−1
m=1 sm

))
hnzn

,

where [−1]t := −t−1. Thus

(∑
n≥0

Qn(t, r, s)zn

)(∑
n≥0

(
t [n− 1]t + [n]t

(
N−1∑
m=1

sm

))
hnz

n

)

= −H(r0z)

(
N−1∏
m=1

E(−smz)H(rmsmz)

)
.

Next we take the coefficient of zn on both sides,

n∑
k=0

Qk(t, r, s)hn−k

(
t [n− k − 1]t + [n− k]t

(
N−1∑
m=1

sm

))

=
∑
~µ∈NN
~ν∈NN−1

|~µ|+|~ν|=n

(−1)|~ν|+1hµeνr
~µ

N−1∏
m=1

sνm+µm
m .

Solving for Qn(t, r, s) yields the desired recurrence.

Corollary 7.1.2. For n ≥ 1 we have

Qn(t, r, s) =
n−1∑
l=0

∑
k0,...,kl≥1∑

ki=n

Pkl

(
l−1∏
j=0

hkjCkj

)
+

(
l∏

i=0

hkiCki

)
,

where

Pk = Pk(r, s,x) :=
∑
~µ∈NN
~ν∈NN−1

|~µ|+|~ν|=k

(−1)|~ν|hµeνr
~µ

N−1∏
m=1

sνm+µm
m

and

Ck = Ck(t, s) := t [k − 1]t + [k]t

(
N−1∑
m=1

sm

)
.
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Proof. Using the above notation, Corollary 7.1.1 can be written as

Qn(t, r, s) = Pn +
n−1∑
k=0

Qk(t, r, s)hn−kCn−k

= Pn + hnCn +
n−1∑
k=1

Qk(t, r, s)hn−kCn−k

And now we show that the right hand side of Corollary 7.1.2 satisfies the same

recurrence. Indeed

Pn + hnCn +
n−1∑
k=1

 k∑
l=1

∑
k1,...,kl≥1∑

ki=k

Pkl

(
l−1∏
j=1

hkjCkj

)
+

(
l∏

i=1

hkiCki

)hn−kCn−k

= Pn + hnCn +
n−1∑
k=1

n−k∑
l=1

∑
k1,...,kl≥1∑
ki=n−k

Pkl

(
l−1∏
j=1

hkjCkj

)
+

(
l∏

i=1

hkiCki

)hkCk

=
n−1∑
l=0

∑
k0,...,kl≥1∑

ki=n

Pkl

(
l−1∏
j=0

hkjCkj

)
+

(
l∏

i=0

hkiCki

)
.

Let

Amaj,exc, ~fix, ~col
n (q, t, r, s) :=

∑
π∈CN oSn

qmaj(π)texc(π)r
~fix(π)s

~col(π),

 n

k


q

:=
[n]q!

[n− k]q![k]q!
,

 n

k0, ..., kl


q

:=
[n]q!

[k0]q![k1]q!...[kl]q!
,



125 n

~µ, ~ν


q

:=
[n]q!

[µ0]q![µ1]q!...[µN−1]q![ν1]q![ν1]q!...[νN−1]q!

if ~µ ∈ NN , ~ν ∈ NN−1 and |~µ|+ |~ν| = n. We now apply the stable principal specializa-

tion to Corollaries 7.1.1 and 7.1.2 to obtain a recurrence and closed form formula for

Amaj,exc, ~fix, ~col
n (q, t, r, s).

Corollary 7.1.3. For n ≥ 1 we have

Amaj,exc, ~fix, ~col
n (q, t, r, s)

=


∑
~µ∈NN
~ν∈NN−1

|~µ|+|~ν|=n

(−1)|~ν|

 n

~µ, ~ν


q

r~µ

(
N−1∏
m=1

q(
νm
2 )sνm+µm

m

)

+
n−1∑
k=0

 n

k


q

Amaj,exc, ~fix, ~col
k (q, t, r, s)

(
tq[n− k − 1]tq + [n− k]tq

N−1∑
m=1

sm

)
,

and

Amaj,exc, ~fix, ~col
n (q, t, r, s)

=
n−1∑
l=0

∑
k0,...,kl≥1∑

ki=n


∑
~µ∈NN
~ν∈NN−1

|~µ|+|~ν|=kl

(−1)|~ν|

 n

k0, ..., kl−1, ~µ, ~ν


q

r~µ
N−1∏
m=1

q(
νm
2 )sνm+µm

m


×

(
l−1∏
j=0

tq[kj − 1]tq + [kj]tq

N−1∑
m=1

sm

)
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+

 n

k0, ..., kl


q

(
l∏

i=0

tq[ki − 1]tq + [ki]tq

N−1∑
m=1

sm

)
.

7.2 Future work

In this paper we have generalized the main results of Shareshian and Wachs in

[31], [32]. In Sections 5-7 of [32], the authors investigate many other interesting

properties exhibited by the Eulerian quasisymmetric functions and the relevant joint

distribution formulas. We plan to present the corresponding generalizations of these

properties in a forthcoming paper. This includes (as mentioned in Remark 5.1.5) a

detailed proof that the cv-cycle type colored Eulerian quasisymmetric function Qλ̌,j,

is in fact a symmetric function.

We expect a further study of Qλ̌,j to be quite fruitful. In [30], Sagan, Shareshian,

and Wachs show that the q-analog of the Eulerian numbers and their cycle type re-

finement introduced in [31], [32] provide an instance of the cyclic sieving phenomenon

(see also [26]). We suspect that our colored q-analog of the Eulerian numbers and their

cycle type refinement will also provide an instance of the cyclic sieving phenomenon.

We plan to present such results in a future paper.
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