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 A model of a three species intraguild predation community is proposed. The 

model is realized as a system of cross-diffusion equations which allow the intraguild prey 

species to adjust its motility based on local resource and intraguild predator densities. 

Solutions to the cross-diffusion system are shown to exist globally in time and the 

existence of a global attractor is proved. Abstract permanence theory is used to study 

conditions for coexistence in the ecological community. The case where the intraguild 

prey disperses randomly is compared to the case where the intraguild prey disperses 

conditionally on local ecological fitness and it is shown that the ability of the intraguild 

prey to persist in the ecological community is enhanced if the intraguild prey utilizes a 

movement strategy of avoiding areas with negative fitness. A finite element scheme is 

used to numerically simulate solutions to the system and confirm the analytical results.
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Chapter 1

Introduction

In December, 2008, the Proceedings of the National Academy of Sciences ran a 76

page special issue highlighting the field of movement ecology (Vol 105, No. 49). In

[20] the authors claim there are roughly 26, 000 papers in the literature that refer to

organismal movement. Clearly, movement of organisms has been an area of intense

interest for the ecological community; however, there is still a considerable amount

of work to be done in using precise mathematical models for non-random organis-

mal movement. In particular, one important direction is examining how non-random

movement strategies at the organism level affect the population dynamics in an eco-

logical community.

In this thesis I examine one particular ecological community module: intraguild

predation. Intraguild predation refers to an interaction where two species compete

for a resource and one of these species preys on the other; it is a blend of competition

and predator-prey dynamics. In the model we develop herein, we explicitly model

the dynamics of three species: the resource, the intraguild prey and the intraguild

predator. We will examine how non-random dispersal strategies employed by the
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intraguild prey affect community population dynamics.

Intraguild predation has been observed in wide variety of ecological communities

including: avian [17], [37], [36], both large and small mammals [14], [33], [41], reptile

[9], insect [29], fish [21] and bacteria [30]. In fact, any ecosystem with a complex food

web is likely to have examples of intraguild predation within it. In [7] a database of

113 food webs was analyzed for presence of intraguild predation and it was found to

be present at high frequencies throughout.

One of the earliest attempts to rigorously model intraguild predation (IGP) was

by Holt and Polis in [19] where basic ODE models were developed for the three species

community. One of the conclusions reached in [19] was that their model with strong

IGP was particularly prone to species exclusion, even though communities with strong

IGP seem widespread in nature. Holt and Polis suggested numerous lines of future

research on mechanisms to stabilize coexistence states in IGP communities. One of

these was to allow for a heterogeneous environment.

Dr. Priyanga Amarasekare at the UCLA Department of Ecology was the first

to model IGP in a heterogeneous environment; first with random movement [5], and

then with non-random movement strategies (density, habitat and fitness dependent

were all considered) [6]. Both of these models use an environment consisting of 3

distinct patches, each with a different level of resource productivity. The dynamic

equations take the the form of an ODE for each species in each patch. Due to the

size of the system (9 equations) all conclusions were based on numerical simulations

of the systems. In this thesis we will model the IGP system using a system of partial

differential equations that model space explicitly as a continuous two dimensional

region. The system will only have 3 equations, so it will be much more feasible to

understand the dynamics using analytical techniques.
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Numerous papers in ecology and biology journals have appeared citing examples

where the intraguild prey (IGPrey) employs nonrandom dispersal in foraging behav-

iors and habitat selection in an apparent effort to reduce its risk of predation [29],

[37], [36], [14], [33], [41]. In the model we develop in this thesis, the IGPrey will

employ non-random dispersal strategies that account for local resource availability

and predation risk. We assume that the resource and intraguild predator (IGPreda-

tor) will disperse randomly. We will analyze what effects the non-random dispersal

strategies have on the long-term population dynamics in the community.

There has been some past work modeling IGP communities that have incorpo-

rated negative penalties into the functional response terms of the IGPrey in areas of

increased IGPredator density in an effort to model prey vigilance, adaptive foraging,

and other anti-predation behavior [22], [32]. This differs significantly from the model

we propose below where we model space explicitly and allow the IGPrey to actively

avoid areas that it judges to be “bad”.



Chapter 2

A Model for Intraguild Predation
with IGPrey Movement Strategies

2.1 Development of Model

We will use a system of partial differential equations to model the population dy-

namics of the three species as functions of space, x, and time, t. The domain for the

space variable x describes a point in a two dimensional region, Ω ⊆ R2, with smooth

boundary denoted by ∂Ω. Throughout this thesis we will only be considering the case

of a reflective boundary, i.e. no-flux boundary conditions.

We will assume that the resource and IGPredator disperse through random move-

ment that will be modeled by pure diffusion. The IGPrey’s dispersal will be modeled

with a cross-diffusion term that depends on local resource and IGPredator densities.

One of the earliest ecological models to employ cross-diffusion to model conditional

dispersal was proposed by Shigesada, Kawasaki and Teramoto in [38]. They pro-
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posed a PDE system with cross-diffusion to model two interacting species that have

a propensity to avoid crowding from both interspecifics and conspecifics:

∂u1

∂t
= ∆ [(α1 + β11u1 + β12u2)u1] ,

∂u2

∂t
= ∆ [(α2 + β21u1 + β22u2)u2] , (2.1)

The parameters β11 and β22 are called self-diffusion pressures and represent the

propensity to avoid conspecifics. β12 and β21 are called cross-diffusion pressures and

indicate the degree to which interspecifics avoid each other. It was shown in [38] that

for certain parameter choices a system of this form can lead to spatial segregation of

the populations. Since this model was first proposed, numerous other models (e.g.

[23], [35], [28] and [34]) employing cross-diffusion to model interacting populations

in ecological communities have been proposed and analyzed (but not an intraguild

predation community module).

One of the main difficulties with cross-diffusion models is proving that solutions

do not become unbounded in finite time (which is clearly an undesirable property for

systems modeling population dynamics). Cross-diffusion systems are a special case

of quasilinear parabolic systems.

In a series of papers, [2], [4] and [3] Herbert Amann proved some key results for

systems of quasilinear parabolic equations. Amann considered systems of the form

∂u

∂t
+A(t, u)u = f(x, t, u, ∂u) in Ω× J̊ ,

B(t, u)u = 0 on ∂Ω× J̊ , (2.2)

u(x, 0) = u0 on Ω.
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where A is a normally elliptic operator for all u ∈ G ⊆ RN , J̊ is the interior of

the maximal interval of existence, and B(t, u) is an appropriate boundary operator

(note this is a system of N component equations). Some regularity conditions are

also imposed on f (see [3] for full details). Let Ck
B be functions in Ck(Ω,RN), 0 ≤

k ≤ 2, satisfying the prescribed boundary conditions required of B. Let Gk = {u ∈

Ck
B;u(Ω) ⊆ G}. Then we can state Amann’s culminating result:

Theorem 2.1.1 (Theorem 1 [3]). Given any u0 ∈ G2, there exists a unique classical

solution defined on a maximal interval of existence, J(u0)

u(·, u0) ∈ C(J(u0),G0) ∩ C(J̊(u0), C2(Ω,RN)) ∩ C1(J̊(u0), C(Ω,RN))

of the quasilinear parabolic system (2.2). Moreover, u is a global solution, that is

J(u0) = [0,∞), provided u(J(u0) ∩ [0, T ], u0) is, for each T ∈ J̊(u0), bounded away

from ∂G and bounded in Hs,p for some p > n with p ≥ 2 and some s with

1 < s < min{(1 + 1/p), (2− n/p)}.

If f is affine in the gradient, we can choose s=1.

In the theorem above, Hs,p is a fractional order Sobolev space when s is noninteger.

The “affine in the gradient” condition on f requires that if f involves∇u terms, that it

is linear in these terms. The system we will construct below will satisfy this condition,

so we will be able to use the Sobolev space W 1,p in this theorem. In combination with

this result, Corollary 7.4 of [4] shows that in the case where A and B are not time-

dependent (2.2) generates a semiflow on W 1,p. We will come back to this in Chapter

4. Amann goes on to prove in Theorem 3 of [3] that in some special cases of A(u)
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weaker a priori bounds on u are sufficient for global existence. Namely, if A(u) is an

upper-triangular differential operator, i.e. the rth-component equation only depends

on the components ur, ur+1, . . . , uN , then knowing that u(·, t) is bounded away from

∂G and bounded in L∞ for each T ∈ J̊(u0) is sufficient to conclude that the solution

is global (i.e. J(u0) = [0,∞)).

We will assume that the motility of the IGPrey is given by a function M(u,w) that

is twice differentiable in both of its arguments and is uniformly bounded below for

all u,w ≥ 0. This will be sufficient to make A(u) normally elliptic. Our assumption

that the resource and IGPredator disperse randomly means that we can write our

system as an upper-triangular system, and hence, we will have some powerful global

existence results at our disposal. We will continue this discussion in Chapter 3.

The term motility refers to the function µ(x) in the diffusion equation

∂u

∂t
= ∆[µ(x)u] in Ω . (2.3)

This form of diffusion arises from specific assumptions made in the random-walk

formulation prior to taking the diffusion limit. The assumption that the chance of

moving from a location is a function only of the conditions at the current location

leads to this kind of diffusion limit. The more classical diffusion equation

∂u

∂t
= ∇ · (d(x)∇u) in Ω , (2.4)

uses a diffusivity function d(x), and is a result of assuming that the chance of departing

a given location depends on averaging conditions between the point of departure and



8

the point of arrival and then taking the diffusion limit. See [42] for a discussion of

the derivations of these two diffusion models.

For models of organismal movement, it makes sense to think that the choice of

whether to move or not should be based on local conditions, and not necessarily

an averaging of conditions between point of arrival and departure. Since Shigesada,

Kawasaki and Teramoto introduced their cross-diffusion model in [38], the use of

density dependent motility functions has seen widespread use in ecological modeling.

In order for the IGPrey to benefit from a non-random dispersal strategy, there

should be some sort of environmental heterogeneity present (especially since we will

be imposing no-flux boundary conditions). In the case of no-flux boundary condi-

tions and a homogeneous environment, we could expect to see spatially constant

equilibrium solutions. We will incorporate heterogeneity into our model by varying

resource productivity throughout the domain Ω. This naturally leads to the concept

of “good” and “bad” habitat regions vis a vis areas without sufficient resources to

support a consumer vs. areas with sufficient resource productivity levels. We will

assume that the resource follows logistic growth with spatially varying reproduction

rate and carrying capacity in the absence of the two consumer species.

We will assume that both consumer species, the IGPrey and the IGPredator, have

their population levels decline due to natural mortality in the absence of the resource

or prey (i.e. they are not generalist). We will also impose self-limiting growth terms

to represent crowding effects.

All predation/consumption terms will use Holling Type II functional responses

(saturating functional responses). (From here out we will use the vocabulary of

predator/prey interactions as opposed to resource/consumer, even for consumption

of the resource species.) This type of functional response is derived by assuming that
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the predator must spend a certain amount of time handling any prey that it has

encountered in its search, and thus there is a upper bound on the amount of prey per

unit time that a predator can consume, regardless of the local prey density.

2.2 The Model Equations

We are finally ready to state our model equations. As mentioned above, Ω is assumed

to be a domain in R2 with smooth boundary. We will use u(x, t) to denote the density

of the resource species, v(x, t) for the IGPrey and w(x, t) for the IGPredator. The

full system of equations is:

∂u

∂t
= d1∆u+ f(x, u, v, w)u

∂v

∂t
= ∆ [M(u,w)v] + g(u, v, w) v (2.5)

∂w

∂t
= d3∆w + h(u, v, w)w in Ω,

u(x,0) = u0(x) , v(x, 0) = v0(x) , w(x, 0) = w0(x),

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 on ∂Ω ,

where the per-capita growth rates (or “fitness” functions), f, g and h are given by

f(x, u, v, w) = r(x)− ω1u−
a1v

1 + h1a1u
− a2w

1 + h2a2u
(2.6)

g(u, v, w) =
e1a1u

1 + h1a1u
− a3w

1 + h3a3v
− µ1 − ω2v (2.7)

h(u, v, w) =
e2a2u

1 + a2h2u
+

e3a3v

1 + h3a3v
− µ2 − ω3w . (2.8)
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The constants d1, and d3 are the motility of the resource and IGPredator respec-

tively. The function M(u,w) is the motility of the IGPrey. It is assumed that the

IGPrey changes its movement strategy based on the local density of the resource as

well as the IGPredator. Specific choices for the function M are discussed in later

chapters. Any choice for M will need to be twice differentiable in u and w. In

addition, there must be a positive constant d such that

M(u,w) ≥ d > 0 . (2.9)

The function r(x) is the spatially varying resource productivity which affects both

resource growth rate and carrying capacity (the local carrying capacity in the absence

of v and w would be r(x)/ω1). We assume that r(x) is Cα(Ω) for some α ∈ (0, 1) and

that r(x) > 0 on Ω.

The parameters µ1 and µ2 are the natural mortality rates of the IGPrey and

IGPredator and ω1, ω2 and ω3 are the self-limiting/crowding coefficients for each

species.

The ai parameters are the attack rates, the hi’s are the handling times and the ei’s

are the conversion efficiencies of each predation/consumption functional response.

We will assume that ai, hi, ei, µi, ωi and di are all positive for i = 1, 2, 3. In

addition, we will assume that

e1

h1

> µ1 and
e2

h2

+
e3

h3

> µ2 , (2.10)

or else it would not be possible for the energetic gains from any amount of resources

and prey consumption to exceed the mortality rates of the IGPrey and IGPredator.
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Note that we have imposed Neumann conditions in (2.5). These are actually no-

flux conditions for the system. It is clear that the boundary flux of the resource and

IGPredator are merely ∂u
∂n

and ∂w
∂n

respectively. However, for the IGPrey the flux

across the boundary is

∂

∂n
(M(u,w)v) = M(u,w)

∂v

∂n
+ v

∂M

∂u

∂u

∂n
+ v

∂M

∂w

∂w

∂n
. (2.11)

We see from (2.11) that if ∂v
∂n

= 0 in addition to the conditions already imposed on

u and w then we will have no-flux for the v-component equation as well. Conversely,

in order to achieve no-flux in the v equation and maintain no-flux in the u and w

equations we would have to impose ∂v
∂n

= 0. Thus, no-flux and Neumann boundary

conditions are equivalent for (2.5).

We will now prove that for nonnegative initial conditions in W 1,p(Ω) (2.5) has

unique solutions that are global (exist for t ∈ [0,∞)).



Chapter 3

Global Existence and the Global
Attractor

3.1 Abstract Theory

In Chapter 1 we stated results from Amann concerning the existence of unique global

solutions to (2.5) under certain a priori conditions. The G used to state Amann’s

results will be an open neighborhood of the positive octant in R3 in our case, so

G will consist of triples of continuous functions that take function values in this

neighborhood. Amann’s result requires that (u(t), v(t), w(t)) is bounded away from

∂G and that ‖u(t)‖∞, ‖v(t)‖∞ and ‖w(t)‖∞ are bounded on [0, T ) for all T > 0. Being

bounded away from ∂G is not a problem, as it is a result of the system (2.5) having

nonnegative solutions for all nonnegative initial data (which we will show below).

However, the a priori L∞ bounds can be difficult to establish.

In [25], Dung Le studies a two component cross-diffusion system and improves

on Amann’s result for this specific case. Le considers a two species system where

each species exhibits random diffusion and self-diffusion, but only one of the species

exhibits cross-diffusion. He shows that if an L∞ a priori bound can be established on

the species without cross-diffusion terms and a Ln a priori bound can be established

12
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for the species with cross-diffusion (where n is the number of space dimensions), then

the solutions exist globally in time. Moreover, he shows that the Hölder norms of

the solution components are ultimately uniformly bounded (definition given below),

leading to the existence of a global attractor for the system. This result is what we

will use to prove global existence for solutions to (2.5) and establish the existence of

a global attractor, which will be a key component of the analysis in Chapter 4. We

will need a precise definition for ultimately uniformly bounded, taken from [25].

Definition 3.1.1. Given an initial boundary value problem or the form (2.5), define

Θ = {J~ξ × ~ξ | ~ξ ∈ [W 1,p
+ (Ω)]3}

where J~ξ ⊆ R+ is the maximal interval of existence for the solution of (2.5) with

initial conditions (u0, v0, w0) = ~ξ. Let P be the set of functions ω : Θ → R+ such that

there exists a continuous function C0(‖~ξ‖) satisfying

ω(t, ~ξ) ≤ C0(‖~ξ‖), for all ~ξ ∈ [W 1,p
+ (Ω)]3, and t ∈ J~ξ.

Additionally, if J~ξ = [0,∞) there exists a positive constant C∞ such that

lim sup
t→∞

ω(t, ~ξ) ≤ C∞ for all ξ ∈ [W 1,p
+ (Ω)]3.

Then P is the set of ultimately uniformly bounded functions with respect to (2.5).

We will use a priori bounds on the solutions to (2.5) to show that appropriate

functions, frequently norms of solutions to (2.5) or functions thereof, are in P .
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Although the system we are considering here has three components instead of

two, Le’s results may be directly extended to our system (mainly because our extra

component is a standard reaction-diffusion equation). Since we are considering a

domain in R2 we will need to show that ‖u‖∞ ∈ P , ‖v‖2 ∈ P and ‖w‖∞ ∈ P .

3.2 A Priori Bounds

We are considering solutions to (2.5) with non-negative initial conditions in [W 1,p(Ω)]
3

for some p > 2. It is relatively easy to show that the L∞ norms of the u and w

components are in P . We do this by bounding the reaction terms and then using the

comparison principle for second order parabolic equations, which states:

Theorem 3.2.1 (Theorem 1.19 of [11]). Suppose that L is a uniformly elliptic oper-

ator of the form

L =
n∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂

∂xi

with |aij(x, t)| and |bi(x, t)| uniformly bounded on Ω× (0, T ]. Suppose that f(x, t, u),

∂f(x,t,u)
∂u

∈ C(Ω× [0, T ]× R). If u, u ∈ C2,1(Ω× (0, T ]) ∩ C(Ω× [0, T ]) with

∂u

∂t
− Lu ≥ f(x, t, u) in Ω× (0, T ],

∂u

∂t
− Lu ≤ f(x, t, u) in Ω× (0, T ],

u(x, 0) ≥ u(x, 0) on Ω and ∂u
∂n
≥ ∂u

∂n
on ∂Ω × (0, T ], then either u ≡ u or u > u on

Ω× (0, T ].
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We call the u and u of Theorem 3.2.1 a supersolution and a subsolution respectively

of the semilinear parabolic equation

∂u

∂t
= Lu+ f(x, t, u) in Ω, and

∂u

∂n
= 0 on ∂Ω . (3.1)

Note that a solution to (3.1) is also both a subsolution and a supersolution to the

equation, so we are able to compare solutions to sub or supersolutions via Theorem

3.2.1.

To establish that ‖u‖∞ ∈ P , we can drop the predation terms from the u-

component equation of (2.5) to obtain the differential inequality

∂u

∂t
≤ d1∆u+ r(x)u− ω1u

2 in Ω, and
∂u

∂n
= 0 on ∂Ω . (3.2)

Thus, u is a subsolution to the initial boundary value problem

∂û

∂t
= d1∆û+ r(x)û− ω1û

2 in Ω, (3.3)

∂û

∂n
= 0 on ∂Ω , û(x, 0) = u0(x) ,

which is a standard heterogeneous diffusive logistic equation. The solution, û, to

(3.3) converges to a unique globally attracting equilibrium by Proposition 3.3 of [11].

Theorem 3.2.1 implies that either u ≡ û or u < û on Ω×(0,∞). Therefore, ‖u‖∞ ∈ P .

Similarly we can bound the reaction terms in the w component equation by

w

(
e2a2u

1 + h2a2u
+

e3a3v

1 + a3h3v
− µ2 − ω2w

)
≤ w

(
e2

h2

+
e3

h3

− µ2 − ω2w

)
. (3.4)



16

Hence w satisfies the differential inequality

∂w

∂t
≤ d3∆w + w

(
e2

h2

+
e3

h3

− µ2 − ω2w

)
. (3.5)

The argument we used for the u-component above applies again; w is also a sub-

solution to a diffusive logistic equation whose solution is known to have a unique

globally attracting positive equilibrium (because we have assumed e2
h2

+ e3
h3

> µ2),

hence ‖w‖∞ ∈ P .

Because of the presence of the cross-diffusion terms in the v equation, it becomes

much more difficult to establish that ‖v‖2 ∈ P . We can trace the argument made by

Le in [25] where he considers a particular 2-dimensional example at the end of the

paper. We begin by establishing the following Lemma.

Lemma 3.2.1. ‖v‖1 ∈ P and

∫ t+1

t

‖v(s)‖2
2 ds ∈ P.

Proof. We begin by integrating both sides of the equation for the v component over

Ω (the Laplacian term drops out due to the no flux boundary conditions)

d

dt

∫
Ω

v dx =

∫
Ω

v

(
e1a1u

1 + h1a1u
− a3w

1 + h3a3v
− µ1 − ω2v

)
dx

≤ e1

h1

∫
Ω

v dx− ω2

∫
Ω

v2 dx (3.6)

≤ e1

h1

∫
Ω

v dx− ω2

|Ω|

(∫
Ω

v dx

)2

.

Therefore, ‖v‖1 is a subsolution to a logistic equation that has all solutions with

positive initial conditions converging to e1|Ω|
h1ω2

as t→∞, so ‖v‖1 ∈ P .
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Rearranging the first inequality in (3.6) we see that

∫
Ω

v2 dx ≤ e1

ω2h1

∫
Ω

v dx− 1

ω2

d

dt

∫
Ω

v dx , (3.7)

and integrating this from t to t+ 1 yields

∫ t+1

t

∫
Ω

v(x, s)2 dx ds ≤ e1

ω2h1

∫ t+1

t

∫
Ω

v(x, s) dx ds+
1

ω2

∫
Ω

[v(x, t)− v(x, t+ 1)] dx

≤ e1

ω2h1

∫ t+1

t

∫
Ω

v(x, s) dx ds+
1

ω2

∫
Ω

v(x, t) dx . (3.8)

Since ‖v‖1 ∈ P , we have

∫ t+1

t

‖v(s)‖1 ds ∈ P , so (3.8) implies

∫ t+1

t

‖v(s)‖2
2 ds ∈

P .

It will be useful to have the following side calculation in the material to follow:

∫
Ω

v∆ [M(u,w)v] dx =

∫
Ω

v∇ · (M∇v +Muv∇u+Mwv∇w) dx

= −
∫

Ω

M |∇v|2 +Muv∇u · ∇v +Mwv∇w · ∇v dx . (3.9)

Now, return to the v component equation, multiply by v and integrate, use (3.9) and

drop the negative reaction terms to arrive at the inequality

1

2

d

dt

∫
Ω

v2 dx+

∫
Ω

M |∇v|2 dx ≤ −
∫

Ω

Muv∇u·∇v+Mwv∇w·∇v dx+

∫
Ω

e1a1uv
2

1 + h1a1u
dx .

(3.10)
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Use the fact that M(u,w) ≥ d and bound the terms on the right hand side from

above to obtain

1

2

d

dt

∫
Ω

v2 dx+ d

∫
Ω

|∇v|2 dx ≤
∫

Ω

|Muv∇u · ∇v|+ |Mwv∇w · ∇v| dx+
e1

h1

∫
Ω

v2 dx .

(3.11)

We will need to make use of the Gagliardo-Nirenberg Inequality in the form found in

[31]:

Theorem 3.2.2 (Gagliardo-Nirenberg). Let Ω be a domain in Rn with smooth bound-

ary and let u belong to Lq(Ω) and its derivatives of order m, Dmu, belong to Lr(Ω),

1 ≤ q, r ≤ ∞. For the derivatives Dju, 0 ≤ j < m, the following inequalities hold:

‖Dju‖p ≤ C
(
‖Dmu‖ar‖u‖1−a

q + ‖u‖q̃
)

(3.12)

where

1

p
=
j

n
+ a

(
1

r
− m

n

)
+ (1− a)

1

q
and q̃ > 0 ,

for all a in the interval

j

m
≤ a ≤ 1

(the constant, C, depending only on n,m, j, q, r, a and Ω), with the following excep-

tion: If 1 < r <∞, and m− j − n
r

is a non-negative integer, then (3.12) holds only

for a satisfying j
m
≤ a < 1.

Recall that we are considering a domain Ω ⊆ R2. This will be an important

fact whenever we apply Theorem 3.2.2 (although these same results will also hold for



19

Ω ⊆ R1). We will apply this theorem with different choices of m, j, q, r, a and q̃. For

now, choose p = r = 2, j = 0, a = 1/2 and m = q = q̃ = 1 to get

‖v‖2
2 ≤ C‖∇v‖2 ‖v‖1 + C‖v‖2

1

= C(
√
ε‖∇v‖2)

(
‖v‖1√
ε

)
+ C‖v‖2

1

≤ Cε

2
‖∇v‖2

2 +
C

2ε
‖v‖2

1 + C‖v‖2
1 . (3.13)

Throughout the following calculations C will be a constant and ω(t) will be a function

with lim supt→∞ ω(t) bounded, and they both may change from line to line. We have

already shown that ‖v‖1 ∈ P , so by choosing ε small enough in (3.13) we have

e1

h1

∫
Ω

v2 dx ≤ d

2

∫
Ω

|∇v|2 dx+ ω(t) . (3.14)

Since ‖u‖∞ and ‖w‖∞ are in P and Mu and Mw are continuous functions of u and w

we have Mu and Mw in P as well. Using this fact and substituting (3.14) into (3.11)

we find that

d

dt

∫
Ω

v2 dx+ d

∫
Ω

|∇v|2 dx ≤ ω(t)

∫
Ω

|v∇u · ∇v|+ |v∇w · ∇v| dx+ ω(t) . (3.15)
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We now need a bound for
∫

Ω
|v∇u · ∇v| dx and

∫
Ω
|v∇w · ∇v| dx. We begin with

the latter expression

∫
Ω

|v∇w · ∇v| dx ≤
∫

Ω

|∇v||v∇w| dx

≤ ε1

2

∫
Ω

|∇v|2 dx+
1

2ε1

∫
Ω

v2|∇w|2 dx

≤ ε1

2
‖∇v‖2

2 +
1

2ε1

‖v‖2
4‖∇w‖2

4 . (3.16)

To get a bound on ‖v‖4 we can use the Gagliardo-Nirenberg Inequality (3.12) again

but with j = 0, p = 4, m = q̃ = 1, a = 1/2 and q = r = 2

‖v‖2
4 ≤ C‖∇v‖2‖v‖2 + C‖v‖2

1 . (3.17)

Recall that ‖v‖1 ∈ P , so substituting (3.17) in (3.16) results in

∫
Ω

|v∇w · ∇v| dx ≤ ε1

2
‖∇v‖2

2 +
C

2ε1

‖∇v‖2‖v‖2‖∇w‖2
4 + ω(t)‖∇w‖2

4

≤
(
ε1

2
+
Cε2

4ε1

)
‖∇v‖2

2 +
C

4ε1ε2

‖v‖2
2‖∇w‖4

4 + ω(t)‖∇w‖2
4 . (3.18)

Choose ε2 =
2ε21
C

so that the ‖∇v‖2
2 terms in (3.18) are controlled by ε1. This same

argument gives the analogous bound for
∫

Ω
|v∇u · ∇v| dx where ‖∇w‖4

4 is replaced

by ‖∇u‖4
4. Now, choose ε1 small and t0 large so that 2ε1ω(t) ≤ d when t ≥ t0. Then

(3.18) and the analogous bound for
∫

Ω
|v∇u · ∇v| dx gives

ω(t)

∫
Ω

|v∇u · ∇v|+ |v∇w · ∇v| dx ≤ d

∫
Ω

|∇v|2 dx+ C(1 + ‖v‖2
2)(‖∇u‖4

4 + ‖∇w‖4
4)

(3.19)
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for t ≥ t0. Substitute (3.19) into (3.15) and cancel the d
∫

Ω
|∇v|2 dx terms to obtain

d

dt
‖v‖2

2 ≤ C‖v‖2
2

(
‖∇u‖4

4 + ‖∇w‖4
4

)
+ C(1 + ‖∇u‖2

4 + ‖∇w‖2
4) for t ≥ t0 . (3.20)

At this point, we will need to make use of the Uniform Gronwall Lemma as found in

[39]:

Lemma 3.2.2 (Uniform Gronwall Lemma). Let g, h, y, be three positive locally in-

tegrable functions on (t0,∞) such that y′ is locally integrable on (t0,∞), and which

satisfy

dy

dt
≤ gy + h for t ≥ t0,

and,

∫ t+r

t

g(s) ds ≤ a1,

∫ t+r

t

h(s) ds ≤ a2,

∫ t+r

t

y(s) ds ≤ a3, for t ≥ t0

where r, a1, a2, a3, are positive constants. Then,

y(t+ r) ≤
(a3

r
+ a2

)
ea1 , ∀t ≥ t0.

From Lemma 3.2.1 we know that
∫ t+1

t
‖v(s)‖2

2 ds ∈ P ; so, if we can now show that∫ t+1

t
‖∇u(s)‖4

4 ds and
∫ t+1

t
‖∇w(s)‖4

4 ds ∈ P , then we can use the Uniform Gronwall

Lemma on (3.20) to conclude that ‖v‖2
2 ∈ P (and hence ‖v‖2 ∈ P) as desired.

We will begin by considering the expression involving the w component. Using

the Gagliardo-Nirenberg inequality, (3.12), with j = q̃ = 1, p = 4, m = r = 2, q =∞

and a = 1/2 yields

‖∇w‖4
4 ≤ C‖w‖2

2 , 2‖w‖2
∞ + C‖w‖4

1. (3.21)
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Furthermore, from standard elliptic theory we have the standard a priori bound for

weak solutions of ∆w = f

‖w‖2 ,2 ≤ C(‖f‖2 + ‖w‖2) = C(‖∆w‖2 + ‖w‖2). (3.22)

We can view the solution to our parabolic problem as solving an elliptic equation at

each snapshot in time, hence at any moment in time we have

‖w‖2 ,2 ≤ C(‖∆w‖2 + ‖w‖2) . (3.23)

We will show that
∫ t+1

t
‖∆w‖2

2 ds ∈ P and then conclude from (3.21) and (3.23) that∫ t+1

t
‖∇w‖4

4 ds ∈ P . First we will show that ‖∇w‖2
2 ∈ P . Adding w to both sides of

the w-component equation yields the equality

∂w

∂t
+ w = d3∆w + w h+ w . (3.24)

Multiply both sides of (3.24) by −2d3∆w and integrate over Ω to get

−2

∫
Ω

d3∆w

(
∂w

∂t
+ w

)
dx = −2

∫
Ω

d3∆w (d3∆w + w h+ w) dx

= −2

∫
Ω

d2
3(∆w)2 dx− 2

∫
Ω

d3∆w(w h+ w) dx

≤ −2

∫
Ω

d2
3(∆w)2 dx+

∫
Ω

d2
3(∆w)2 dx+

∫
Ω

(w h+ w)2 dx

≤
∫

Ω

(w h+ w)2 dx . (3.25)
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But, ‖w‖∞ ∈ P which implies ‖w‖p ∈ P for all 1 ≤ p ≤ ∞. Also −µ2 − ω3w ≤

h ≤ e2
h2

+ e3
h3

, so ‖h‖∞ ∈ P as well. Therefore,
∫

Ω
(w h+ w)2 dx ∈ P . We also have

∫
Ω

∂w

∂t
∆w dx =

∫
Ω

∇ ·
(
∂w

∂t
∇w
)
−∇

(
∂w

∂t

)
· ∇w dx

= −
∫

Ω

(
d

dt
∇w
)
· ∇w dx

= −1

2

d

dt

∫
Ω

|∇w|2 dx . (3.26)

Therefore,

−2d3

∫
Ω

∆w

(
∂w

∂t
+ w

)
dx = d3

d

dt

∫
Ω

|∇w|2 dx+ 2d3

∫
Ω

|∇w|2 dx . (3.27)

Inserting (3.27) into (3.25) and dividing by d3 we get

d

dt

∫
Ω

|∇w|2 dx+ 2

∫
Ω

|∇w|2 dx ≤ ω(t) . (3.28)

Integrate the inequality above in time to conclude that ‖∇w‖2
2 ∈ P . Now we can

begin to show
∫ t+1

t
‖∆w(s)‖2

2 ds ∈ P . Note that

∫
Ω

∂w

∂t
∆w dx = d3

∫
Ω

(∆w)2 dx+

∫
Ω

(w h)∆w dx (3.29)

so, ∫
Ω

∂w

∂t
∆w dx ≥

∫
Ω

(w h)∆w dx . (3.30)
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Now, go back to the w-component equation, multiply both sides by (w h), integrate

over Ω and apply (3.30) to obtain the inequality

∫
Ω

∂w

∂t
(w h) dx =

∫
Ω

d3(w h)∆w dx+

∫
Ω

(w h)2 dx ≤ d3

∫
Ω

∂w

∂t
∆w dx+

∫
Ω

(w h)2 dx .

(3.31)

Once again, start with the w-component equation, but this time multiply both sides

by ∂w
∂t

, integrate over Ω, and apply (3.31) to reach

∫
Ω

(
∂w

∂t

)2

dx =

∫
Ω

d3
∂w

∂t
∆w dx+

∫
Ω

∂w

∂t
(w h) dx ≤ 2d3

∫
Ω

∂w

∂t
∆w dx+

∫
Ω

(w h)2 dx

(3.32)

at which point we can use (3.26) to get

∫
Ω

(
∂w

∂t

)2

dx ≤ −d3
d

dt

∫
Ω

|∇w|2 dx+

∫
Ω

(w h)2 dx (3.33)

Integrate (3.33) from t to t+ 1 to find

∫ t+1

t

∥∥∥∥∂w∂t (s)

∥∥∥∥2

2

ds ≤ d3

∫
Ω

|∇w(x, t)|2 − |∇w(x, t+ 1)|2 dx+

∫ t+1

t

‖w(s)h(s)‖2
2 ds

≤ d3‖∇w(t)‖2
2 +

∫ t+1

t

‖w(s)h(s)‖2
2ds . (3.34)

We already have ‖∇w‖2
2 ∈ P , hence

∫ t+1

t

∥∥∂w
∂t

(s)
∥∥2

2
ds ∈ P . Now, return to the w-

component equation, subtract (w h) from both sides, square both sides of the resulting
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equation, and integrate over Ω and from t to t+ 1 to obtain

∫ t+1

t

∫
Ω

(d3∆w)2 dx =

∫ t+1

t

∫
Ω

(
∂w

∂t
− w h

)2

dx

≤ 2

∫ t+1

t

∫
Ω

(
∂w

∂t

)2

dx+ 2

∫ t+1

t

∫
Ω

w2h2 dx . (3.35)

Both terms on the right hand side are in P , so
∫ t+1

t
‖∆w(s)‖2

2 ds ∈ P . We can

conclude from (3.21) and (3.23) that
∫ t+1

t
‖∇w(s)‖4

4 ds ∈ P .

The corresponding analysis for the u component is slightly trickier. Following the

argument for w we can arrive at an inequality which corresponds to (3.28), namely

d1
d

dt

∫
Ω

|∇u|2 dx+ 2d1

∫
Ω

|∇u|2 dx ≤
∫

Ω

(u f + u)2 dx . (3.36)

We have that f satisfies

−ω1u− a1v − a2w ≤ f ≤ r(x) . (3.37)

Clearly f is bounded above by r(x). However, an upper bound on f 2 will involve v.

As such, it is not necessarily in P . However, from (3.37) there is an ω(t) such that

∫
Ω

f 2 dx ≤
∫

Ω

ω(t)(1 + v)2 dx . (3.38)

We established in Lemma 3.2.1 that ‖v‖1 and
∫ t+1

t
‖v(s)‖2

2 ds are in P . Hence,∫ t+1

t
‖f(s)‖2

2 ds ∈ P . This will be a strong enough bound on f to use the Uni-

form Gronwall Lemma on (3.36) if we can also show
∫ t+1

t
‖∇u(s)‖2

2 ds ∈ P . This is
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accomplished by multiplying the u-component equation by u integrating over Ω and

integrating in time to obtain

1

2

∫ t+1

t

d

ds

∫
Ω

u2 dx ds = −d1

∫ t+1

t

∫
Ω

|∇u|2 dx ds+

∫ t+1

t

∫
Ω

u2 f dx ds . (3.39)

Using the fact that ‖u‖∞ ∈ P and rearranging yields

d1

∫ t+1

t

∫
Ω

|∇u|2 dx ds ≤ ω(t) + ω(t)

∫ t+1

t

∫
Ω

f dx ds . (3.40)

Therefore,
∫ t+1

t
‖∇u(s)‖2

2 ds ∈ P and the Uniform Gronwall Lemma applied to (3.36)

yields ‖∇u‖2
2 ∈ P . The inequality for the u-component that is analogous to (3.33) is

∫
Ω

(
∂u

∂t

)2

dx ≤ −d1
d

dt

∫
Ω

|∇u|2 dx+

∫
Ω

(u f)2 dx . (3.41)

Integrating this from t to t+ 1 yields

∫ t+1

t

∥∥∥∥∂u∂t (s)

∥∥∥∥2

2

ds ≤ d1‖∇u(t)‖2
2 +

∫ t+1

t

‖u(s)f(s)‖2
2 ds . (3.42)

We need to use the fact that
∫ t+1

t
‖f(s)‖2

2 ds ∈ P again (along with ‖u‖∞ ∈ P)

to conclude
∫ t+1

t
‖u(s)f(s)‖2

2 ds ∈ P . Therefore the right hand side of (3.42) is all

ultimately uniformly bounded and
∫ t+1

t

∥∥∂u
∂t

(s)
∥∥2

2
ds ∈ P . Return to the u-component

equation, subtract (u f) from both sides, square the resulting equation and integrate
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over Ω and t to t+ 1 to arrive at

∫ t+1

t

∫
Ω

(d1∆u)2 dx ds =

∫ t+1

t

∫
Ω

(
∂u

∂t
− u f

)2

dx ds

≤ 2

∫ t+1

t

∥∥∥∥∂u∂t (s)

∥∥∥∥2

2

ds+ 2

∫ t+1

t

‖u(s)f(s)‖2
2 ds . (3.43)

We have shown that the right hand side above is in P , so
∫ t+1

t
‖∆u(s)‖2

2 ds ∈ P and

we can finally conclude from (3.20), (3.21) and (3.23) that ‖v‖2 ∈ P .

3.3 Existence And The Global Attractor

Now that we have the appropriate a priori bounds on the components of our system,

we can use the main result of Dung Le [25] to conclude global existence of solutions

and the existence of a global attractor. Le’s result concerns the system

∂u

∂t
= ∇ · (Q(u)∇u) + F (u, v)

∂v

∂t
= ∇ · (P (u, v)∇v +R(u, v)∇u) +G(u, v) for x ∈ Ω ⊆ Rn, t > 0 , (3.44)

with Neumann or Robin type boundary conditions and initial conditions in W 1,p(Ω)

with p > n. (We have switched the u and v from Le’s original paper so that this system

matches with (2.5) more directly). It is assumed that P,Q and R are differentiable
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in their variables and that there exists a positive constant d and continuous function

Φ such that

Q(u) ≥ d > 0 , (3.45)

P (u, v) ≥ d > 0 , (3.46)

|R(u, v)| ≤ Φ(u)v . (3.47)

Also, the partial derivatives with respect to u and v can be majorized by some powers

of u and v. The assumption on the reaction terms is that there exists a nonnegative

continuous function C(u) such that

|F (u, v)| ≤ C(u)(1 + v) , G(u, v)vp ≤ C(u)(1 + vp+1) , (3.48)

for all u, v ≥ 0 and p > 0. His main result states:

Theorem 3.3.1 ([25] Theorem 2.2). Assume (3.45) - (3.48) hold. Let (u, v) be a

nonnegative solution to (3.44) with its maximal existence interval I. If ‖u(t)‖∞ and

‖v(t)‖n are in P, then there exists ν > 1 such that

‖u(t)‖Cν(Ω) , ‖v(t)‖Cν(Ω) ∈ P . (3.49)

The proof of this theorem relies on using the Ln(Ω) a priori bound on v, the

L∞(Ω) bound on u and single-equation regularity results for quasi-linear parabolic

equations from [24] to get Cα, α/2(Ω) bounds on u for some α > 0. With this bound

on u and conditions (3.45) - (3.48), Le is able to then show that v is in Lq(Ω) for all
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1 ≤ q <∞. This is then used to prove a stronger regularity result for u that, in turn,

yields stronger regularity for v.

This idea can be applied to our system, (2.5), with little modification. Since u

and w have standard diffusion operators, classical parabolic regularity theory can be

applied using the a priori L2(Ω) bound on v, and the L∞(Ω) bounds on u and w.

The resulting regularity results for u and w can then be used to prove v is in Lq(Ω)

for all 1 ≤ q <∞, which is then used to prove increased regularity for u and w and so

forth. In fact, any number of additional components could be added to the system,

as long as none of them have cross-diffusion terms in their differential operators.

It is still necessary to verify that our choice of reaction terms and the conditions

we have imposed on M(u,w) satisfy (3.45)-(3.48). Writing the Laplacian term in the

v component equation in a form analogous to (3.44) yields

∆[M(u,w)v] = ∇ ·
(
M(u,w)∇v + v

∂M

∂u
∇u+ v

∂M

∂w
∇w
)
. (3.50)

The conditions equivalent to (3.45)-(3.47) are that M(u,w) ≥ d > 0 and that M(u,w)

has continuous partial derivatives up to second order. It is easy to verify that the

reaction terms defined by (2.6)-(2.8) satisfy the constraints analogous to (3.48). We

will need a nonnegative continuous function C(u,w) such that f, g and h satisfy

|u f(x, u, v, w)| ≤ C(u,w)(1 + v) , (3.51)

g(u, v, w)vp+1 ≤ C(u,w)(1 + vp+1) , (3.52)

|w h(u, v, w)| ≤ C(u,w)(1 + v) . (3.53)
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Returning to (2.6)-(2.8) we see that

|u f(x, u, v, w)| ≤ (r + ω1u+ a1v + a2w)u , (3.54)

g(u, v, w)vp+1 ≤ e1

h1

vp+1 , (3.55)

|w h(u, v, w)| ≤
(
e2

h2

+
e3

h3

+ µ2 + ω3w

)
w , (3.56)

where r = max
x∈Ω

r(x). Clearly there exists a C(u,w) that will satisfy the constraints

(3.51)-(3.53). It is worth noting that although we make use of the saturating func-

tional responses to achieve the bounds in (3.55) and (3.56), non-saturating functional

response terms will satisfy Le’s conditions as well. We can now formally state a global

existence theorem for (2.5).

Theorem 3.3.2. Suppose Ω is a bounded domain in R2 with smooth boundary. Let

h1, h2, h3, µ1, µ2, ω1, ω2, ω3, d1 and d3 be positive constants, r(x) > 0 for x ∈ Ω and

M(u,w) ≥ d > 0 for some d > 0 and all u,w ≥ 0. Then for all nonnegative intial

data (u0(x), v0(x), w0(x)) ∈ [W 1,p(Ω)]
3

with p > 2, (2.5) has a unique nonnegative

classical solution, (u(x, t), v(x, t), w(x, t)), that exists globally in time. Furthermore,

(2.5) induces a semiflow on
[
W 1,p

+ (Ω)
]3

which possesses a global attractor and there

is a constant ν > 1 such that

‖u(·, t)‖Cν(Ω), ‖v(·, t)‖Cν(Ω), ‖w(·, t)‖Cν(Ω) ∈ P . (3.57)

Proof. We can conclude from the a priori bounds proved in Section 3.2 and the

generalization of Theorem 2.2 of [25] discussed above that for nonnegative initial

conditions in W 1,p(Ω), p > 2, there is a unique classical solution, (u, v, w) to (2.5)

that exists globally in time. The fact that (2.5) induces a semiflow on
[
W 1,p

+ (Ω)
]3

is a
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result of Amann’s in [4]. The global attractor comes from the fact that Cν(Ω) embeds

compactly in W 1,p(Ω) and the bound (3.57) which results from the generalizatoin of

Le’s main result of [25], Theorem 3.3.1, to three components.



Chapter 4

Permanence

In this Chapter we investigate the effect of the IGPrey’s movement strategy, M , on

the conditions for coexistence in the system (2.5). In particular, we would like to see

if a biologically feasible movement strategy can result in coexistence but a movement

by random diffusion would result in v being excluded from the system. We will first

establish sufficient conditions for coexistence and then investigate how specific choices

of M will affect these criteria.

4.1 The Semi-Flow Framework

We will examine the conditions for coexistence of the three species through the lens

of abstract permanence theory. Saying that the system (2.5) exhibits ecological per-

manence means that for all initial conditions where no component is identically zero,

32
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there is an asymptotic floor and ceiling for each component, i.e. there are constants

C1, C2, t
′ > 0 such that

C1 ≤ u(x, t), v(x, t), w(x, t) ≤ C2 for all x ∈ Ω, t > t′ . (4.1)

Permanence can also be studied via the mathematical theory of semi-dynamical

systems. Suppose (Y, d) is a complete metric space and π is a semiflow on Y . Assume

that Y can be written as Y = Y0∪∂Y0 where Y0 is open in Y and both Y0 and ∂Y0 are

forward invariant under π. Then we say π is permanent if there is a bounded subset

U that is bounded away from ∂Y0 and

inf
u∈U

d(π(y0, t), u)→ 0 as t→∞ for all y0 ∈ Y0 . (4.2)

For the appropriate metric space, Y , permanence of the semiflow implies ecological

permanence of the system (see Section 4.6 of [11]). We will use this abstract version

of permanence to study the asymptotic dynamics of (2.5)

Amann proved in [4] that the system (2.5) with Ω ⊆ Rn generates a semiflow, π,

on [W 1,p(Ω)]3 for p > n (in our case we have n = 2). We showed in the previous

Chapter that solutions to (2.5) are actually ultimately uniformly bounded in [Cν(Ω)]3

for some ν > 1. We know that Cν(Ω) embeds compactly in C1(Ω) and C1(Ω) embeds

continuously in W 1,p(Ω). Therefore, [Cν(Ω)]3 is compactly embedded in [W 1,p(Ω)]3.

This compact embedding along with (3.57) tells us two critical points about the

semiflow, π:

1. π is dissipative (orbits are ultimately uniformly bounded in [W 1,p(Ω)]3) and,

2. π(·, t) : [W 1,p(Ω)]3 → [W 1,p(Ω)]3 is a compact map for t > 0.
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We will actually want to set up the semiflow on the subset of [W 1,p(Ω)]3 corresponding

to nonnegative functions. It makes sense to speak of nonnegative functions in W 1,p(Ω)

for p > 2 because W 1,p(Ω) embeds continuously in C(Ω). Let Y be defined by

Y =
[
W 1,p

+ (Ω)
]3 ≡ {(u, v, w) ∈

[
W 1,p(Ω)

]3 | u , v , w ≥ 0 for all x in Ω} ,

with ‖(u, v, w)‖Y = ‖u‖1,p + ‖v‖1,p + ‖w‖1,p. Y is a complete metric space and is

forward invariant under π. This invariance is a direct result of the maximum principle

for parabolic equations ([11], Corollary 1.18). The global existence result of Amann

in [3] states that for all initial conditions in [W 1,p(Ω)]3, the solution trajectories to

(2.5), (u(t), v(t), w(t)), are in [C2(Ω)]3 for all t ∈ (0,∞); so, the maximum principle

can be directly applied to the u and w equations by viewing the per capita growth

rates as time-dependent coefficients of a parabolic operator. To apply the maximum

principle to the v equation, we can first rewrite the equation as

∂v

∂t
= M(u,w)∆v + 2∇M(u,w) · ∇v

+

(
e1a1u

1 + a1h1u
− µ1 − ω2v −

a3w

1 + a3h3w
+ ∆M(u,w)

)
v , (4.3)

and recall that M(u,w) ≥ d > 0 and M has continuous derivatives up to second order.

In fact, the maximum principle gives a stronger result than the forward invariance

of Y . It states that if any component has an initial condition that is not identically

zero, then that component will be strictly positive on Ω for all t > 0.

The classic result of Billotti and LaSalle [8] states that if Y is a complete metric

space, and π a semiflow on Y such that π is dissipative and π(·, t′) is compact for

some t′ > 0, then π possesses a global attractor in Y . As shown above, this is the
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case for our semiflow coming from (2.5). Let A denote the global attractor for π in

Y .

Let Y̊ denote the interior of Y , i.e. the triples of functions that are strictly positive

on Ω, and ∂Y̊ be its boundary, the nonnegative triples where at least one component

vanishes at some point x in Ω.

For any set, U , define the epsilon ball around U , B(U, ε), by

B(U, ε) =

{
x ∈ Y | inf

x′∈U
‖x− x′‖Y < ε

}
; (4.4)

and, the distance from a point x in Y to the set U by

d(x, U) = inf
x′∈U
‖x− x′‖Y . (4.5)

A is a global attractor for π, so for any bounded U in Y there exists a tU such that

π(U, tU) ⊆ B(A, ε). Therefore, to investigate long-term dynamics of (2.5) it is only

necessary to consider what happens to initial data in B(A, ε), so we define

X̃ = π(B(A, ε), [t0,∞)) (4.6)

where the overline represents the closure in Y , ε > 0 and t0 > 0. Since, π(·, t) : Y → Y

is compact for t ≥ t0 and we have taken the closure of the resulting set, X̃ is compact.

Then take

X = π(X̃, t′) (4.7)

for some t′ > 0 (this guarantees that all elements of X with a component equal to

zero somewhere on Ω will have that component zero everywhere in Ω). Finally, set
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S = X ∩ ∂Y̊ . As in Theorem 4.1 of [11] we have that X̃, X and S are compact and

X̃, X, S and X \S are forward invariant under π. Note that as per the discussion of

the maximum principle above, S will consist of triples with at least one component

identically zero, whereas X \ S will consist of triples that are all strictly positive

on Ω. We will need two additional definitions before we state the acyclicity test for

permanence. Let ω(y) denote the omega limit set of a point y under the semiflow π,

and let α(u) be the alpha limit set (if it exists). For any set U in Y , define

ω(U) =
⋃
u∈U

ω(u) , (4.8)

which is actually a non-standard definition for the omega limit set of a set, but it

is what we will need below. If U is a compact invariant subset of X, we define the

stable set of U , W s(U), by

W s(U) = {u ∈ X | ω(u) 6= ∅, ω(u) ⊆ U} . (4.9)

and the unstable set of U by

W u(U) = {u ∈ X | ω(u) 6= ∅, α(u) ⊆ U} . (4.10)

If U1 and U2 are two compact invariant subsets of Y , we will say that U1 is chained to

U2 and write U1 → U2 if there exists a u /∈ U1∪U2 such that u ∈ W u(U1)∩W s(U2), i.e.

there is a full orbit, γ(u) passing through u with that connects to U1 as t→ −∞ and

connects to U2 as t→∞. We say a collection of compact invariant sets, {U1, . . . , Um}

forms a chain if

U1 → U2 → . . .→ Um ,
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and we say the collection forms a cycle if Um = U1.

The acyclicity test for permanence, Theorem 4.1 of [18], states that in order to

establish permanence for the system we must show that there are pairwise disjoint

compact invariant subsets of S, A1, ...,Ak, such that:

1. ω(S) =
⋃k
i=1Ai,

2. no subcollection of {A1, ...,Ak} forms a cycle,

3. Ai is isolated with respect to π and πS (the semiflow which results from re-

stricting π to S), and

4. W s(Ai) ∩ (X \ S) = ∅ for each i = 1, ..., k.

In order to test 4 above, the following Lemma is useful:

Lemma 4.1.1. If u ∈ X and U is a compact invariant subset of X such that u ∈

W s(U), then

lim
t→∞

d(π(u, t), U) = 0 . (4.11)

Proof. Suppose limt→∞ d(π(u, t), U) 6= 0. Then there exist an ε > 0 and {tn}∞n=1 with

tn → ∞ such that d(π(u, tn), U) ≥ ε. Take any t′ > 0. Since π is dissipative on

X, we know that {un} ≡ {π(u, tn − t′)} is defined and bounded for n large enough

so that tn > t′. Furthermore, π(·, t′) is a compact map so π(u, tn) = π(un, t
′) has

a convergent subsequence π(u, tnk) that converges to some point y ∈ X. Therefore,

y ∈ ω(u); but, u ∈ W s(U) implies that ω(u) ⊆ U which means that y ∈ U . This

contradicts the fact that d(y, U) ≥ ε.
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4.2 Invasibility Criteria

First, we need to compute ω(S). We will show below that ω(S) can be comprised of up

to four isolated invariant compact sets, A1, . . . ,A4, which we will compute below. For

each of these sets we will need to develop sufficient criteria so that W s(Ai)∩(X \S) =

∅. This will be done using principal eigenvalues of various linearizations of of (2.5).

Consider the linear elliptic boundary value problem

∇ · (d(x)∇φ) +m(x)φ = σφ in Ω,
∂φ

∂n
= 0 on ∂Ω . (4.12)

We say that σ̂ is the principal eigenvalue of (4.12) if it is the largest value of σ such

that (4.12) has a solution. Classical elliptic theory states that there is always a princi-

pal eigenvalue and that the corresponding solution (or eigenfunction), φ is unique up

to a scalar multiple and positive on Ω (see Chapter 2 of [11] for a full discussion). We

will see below that principal eigenvalues play a critical role in determining stable and

unstable sets. If the left hand side of (4.12) results from linearizing a system about

a particular point, then the sign of σ̂ will determine if small perturbations from the

point of linearization will grow (σ̂ > 0) or shrink (σ̂ < 0).

We can also talk about principal eigenvalues for equations of the form

∇ · (d(x)∇φ) + Λm(x)φ = 0 in Ω,
∂φ

∂n
= 0 on ∂Ω . (4.13)

In this case, the principal eigenvalue, Λ̂, is the smallest value of Λ for which (4.13)

possesses a solution. Again, the corresponding eigenfunction will be positive on Ω.

Theorems 2.5 and 2.6 of [11] draw a connection between these two types of principal

eigenvalues:
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Theorem 4.2.1 (Theorem 2.5 and Theorem 2.6 [11]). Suppose
∫

Ω
m(x) dx < 0, then

then the principal eigenvalue, Λ̂, of (4.13) is positive. Furthermore, the principal

eigenvalue, σ̂, of

∇ · (d(x)∇φ) + Λm(x)φ = σφ in Ω,
∂φ

∂n
= 0 on ∂Ω (4.14)

is positive if and only if 0 < Λ < Λ̂.

If
∫

Ω
m(x) dx > 0 then the principal eigenvalue, σ̂, of (4.14) is positive for all

Λ > 0.

Now, let’s begin to compute ω(S). Clearly, (0, 0, 0) is an equilibrium point in our

system. Set A1 = (0, 0, 0). If the resource is entirely absent from the system, the

resulting v − w subsystem has the form

∂v

∂t
= ∆ [M(w)v]−

(
µ1 + ω2v +

a3w

1 + a3h3v

)
v

∂w

∂t
= d3∆w +

(
e3a3v

1 + a3h3v
− µ2 − ω3w

)
w in Ω , (4.15)

∂v

∂n
=
∂w

∂n
= 0 on ∂Ω .

The dynamics of this system are not immediately evident. Even though the reaction

terms in the first equation of (4.15) are always strictly negative, the nonlinear diffusion

prevents a comparison principle type of argument. However, we can make use of the

compact global attractor to conclude that all solutions of (4.15) with non-negative

initial conditions converge to the extinction state (0, 0). To do this, we will show

that for any non-negative initial conditions, the solutions to (4.15) converge to (0, 0)

in [L1(Ω)]
2
, and then use the compact global attractor to conclude the convergence
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is actually in X. Multiply the first equation in (4.15) by e3, add it to the second

equation and integrate over Ω (applying the divergence theorem to eliminate the

Laplacian terms) to obtain

d

dt

∫
Ω

(e3v + w) dx = −
∫

Ω

µ1e3v + ω2e3v
2 + µ2w + ω3w

2 dx . (4.16)

We can drop the quadratic terms from the right hand side and set k = min{µ1, µ2}

to get the inequality

d

dt
‖e3v + w‖1 ≤ −k‖e3v + w‖1 , (4.17)

and then conclude that ‖e3v+w‖1 → 0 as t→∞, hence ‖v‖1, ‖w‖1 → 0 individually.

We know that π(·, t) is compact for t > 0, so for any nonnegative initial conditions,

and sequence of solution points at time tn, (vn, wn), where tn →∞ there is a conver-

gent subsequence in X. However, this convergent subsequence must be converging to

(0, 0) in [L1(Ω)]
2

which implies that it is converging to (0, 0) in X as well. Since every

sequence of solution points has a subsequence converging to (0, 0) in X, the solution

trajectory must be converging to (0, 0) in X as well. We can conclude that (0, 0, 0)

attracts all initial conditions where the resource is absent.

With both the IGPrey and IGPredator absent, (2.5) reduces to a diffusive logistic

equation with heterogeneous growth rate

∂u

∂t
= d1∆u+ r(x)u− ω1u

2 in Ω,
∂u

∂n
= 0 on ∂Ω . (4.18)

This equation is well understood, see [11] Section 3.2 for details. Since r(x) > 0

on Ω and we have Neumann boundary conditions, any solution to (4.18) with initial
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condition u0(x) ≥ 0, u0 not identically zero, will converge to a positive globally

attracting equilibrium u∗. Set A2 = (u∗, 0, 0).

Next, consider the u− v subsystem that arises when the IGPredator is absent

∂u

∂t
= d1∆u+ u

(
r(x)− ω1u−

a1v

1 + h1a1u

)
∂v

∂t
= ∆ [M(u, 0)v] + v

(
e1a1u

1 + h1a1u
− µ1 − ω2v

)
in Ω, (4.19)

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω .

We will show below that this system will exhibit permanence if v is able to invade

(u∗, 0), which will be the case if the principal eigenvalue σ1 of

∆ [M(u∗, 0)v1] +

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
v1 = σ1 v1 in Ω,

∂v1

∂n
= 0 on ∂Ω (4.20)

is positive. If this is the case, then there exists a compact invariant set A3 in
[
C1

+(Ω)
]2

bounded away from the boundary that attracts all initial data of the form (u0, v0, 0)

with u0(x) , v0(x) ≥ 0 and neither u0 nor v0 identically zero.

Lemma 4.2.1. If σ1 > 0 in (4.20), then the system defined in (4.19) exhibits perma-

nence in
[
W 1,p

+ (Ω)
]2

.

Proof. The proof is similar to that found in [26] and [27]. Let Y3 =
[
W 1,p

+ (Ω)
]2

, and

π3 be the semi-dynamical system corresponding to (4.19) on Y3. We will use Y̊3 to

denote the interior of Y3 and ∂Y̊3 to denote the boundary of Y̊3. As was the case for

the full system there is a global attractor, Aπ3 for π3 and analogous to (4.6) and (4.7)

we can define X̃3 = π3(B(Aπ3 , ε), [t0,∞)) and X3 = π3(X̃3, t
′) and set S3 = X3 ∩ ∂Y̊3.
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To apply the acyclicity test for permanence to π3 we will need to consider ω(S3).

For all initial conditions of the form (u0, 0) where u0 is positive somewhere in Ω we

have π((u0, 0), t) → (u∗, 0) as t → ∞ (the resulting equation is a standard diffusive

logistic equation). For initial conditions of the form (0, v0) we have π((0, v0), t) →

(0, 0) as t → ∞. This is because when u ≡ 0 we have M = M(0, 0) which is a

constant on Ω, so (4.19) reduces to a standard reaction-diffusion equation for v with

reaction terms of the form −µ1v − ω2v
2. All solutions to this equation converge to

v ≡ 0 as t→∞ (standard comparison arguments can be employed using a spatially

constant super-solution). Therefore, ω(S3) = {(0, 0), (u∗, 0)} which is clearly isolated

and acyclic, therefore π3 is permanent if

W s((0, 0)) ∩ (X3 \ S3) = ∅ and, (4.21)

W s((u∗, 0)) ∩ (X3 \ S3) = ∅ . (4.22)

Suppose there exists a (u0, v0) ∈ W s((0, 0)) ∩ (X3 \ S3). Let (u(t), v(t)) =

π3((u0, v0), t). Then, by Lemma 4.1.1 limt→∞ ‖u(t)‖1,p + ‖v(t)‖1,p = 0. Let σr be

the principal eigenvalue of

d1∆ψr + r(x)ψr = σrψr in Ω,
∂ψr
∂n

= 0 on ∂Ω , (4.23)

which is positive because r(x) > 0 on Ω. Multiply the u-component equation in (4.19)

by ψr and integrate over Ω to obtain

d

dt

∫
Ω

uψr dx =

∫
Ω

d1ψr∆u+ uψrr(x)− uψr
(
ω1u+

a1v

1 + h1a1u

)
dx . (4.24)
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Use the Divergence Theorem twice on the Laplacian term to move the differentiation

onto the ψr factor and use (4.23) to get

d

dt

∫
Ω

uψr dx =

∫
Ω

σruψr − uψr
(
ω1u+

a1v

1 + h1a1u

)
dx . (4.25)

Let ξ = σr
2(ω1+a1)

so that

ω1u+
a1v

1 + a1h1u
≤ σr

2
(4.26)

for all (u, v) ∈ B((0, 0), ξ). There is a t′ > 0 such that (u(t), v(t)) ∈ B((0, 0), ξ) for all

t > t′. Therefore

d

dt

∫
Ω

uψr dx ≥
σr
2

∫
Ω

uψr dx for t ≥ t′ . (4.27)

Thus, for t ≥ t′ we have ‖uψr‖1 growing at least exponentially without bound. How-

ever,

‖uψr‖1 ≤ ‖u‖∞‖ψr‖1 ≤ C‖u‖1,p‖ψr‖1 , (4.28)

so ‖u‖1,p must be growing at least exponentially as well. This contradicts ‖u‖1,p → 0.

Now, to show that W s((u∗, 0))∩ (X3 \ S3) = ∅ we will employ a similar technique

and make use of the fact that σ1 > 0 in (4.20). Suppose (u0, v0) ∈ W s((u∗, 0))∩ (X3 \

S3) and let (u(t), v(t)) = π3((u0, v0), t). Then we must have ‖u(t)−u∗‖1,p+‖v(t)‖1,p →

0 as t → ∞. Multiply the v-component equation of (4.19) by M(u∗, 0)v1, multiply

the eigenvalue equation (4.20) by M(u, 0)v and then integrate over Ω to get

d

dt

∫
Ω

M(u∗, 0)v1v dx =

∫
Ω

M(u∗, 0)v1∆[M(u, 0)v] dx

+

∫
Ω

M(u∗, 0)v1v

(
e1a1u

1 + h1a1u
− µ1 − ω2v

)
, (4.29)
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and

σ1

∫
Ω

M(u, 0)v1v dx =

∫
Ω

M(u, 0)v∆[M(u∗, 0)v1] dx

+

∫
Ω

M(u, 0)v1v

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
. (4.30)

Apply the Divergence Theorem once to each integral with Laplacian term in (4.29)

and (4.30) and then subtract (4.30) from (4.29) and factor the resulting right hand

side to obtain

d

dt

∫
Ω

M(u∗, 0)v1v dx =∫
Ω

M(u∗, 0)v1v

[
e1a1u

1 + h1a1u
− µ1 − ω2v −

M(u, 0)

M(u∗, 0)

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
+ σ1

M(u, 0)

M(u∗, 0)

]
dx

(4.31)

Now, set K = maxΩM(u∗, 0) and choose ξ > 0 such that

e1a1u

1 + h1a1u
− µ1 − ω2v −

M(u, 0)

M(u∗, 0)

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
≥ −σ1d

2K
(4.32)

for all (u, v) ∈ B((u∗, 0), ξ). Let t′ > 0 be such that (u(t), v(t)) ∈ B((u∗, 0), ξ) for all

t > t′. Then from (4.31) and (4.32) we have

d

dt

∫
Ω

M(u∗, 0)v1v dx ≥
σ1d

2K

∫
Ω

M(u∗, 0)v1v dx for t > t′ (4.33)

which means that ‖M(u∗, 0)v1v‖1 grows at least exponentially for all t > t′. However,

‖M(u∗, 0)v1v‖1 ≤ ‖v‖∞‖M(u∗, 0)v1‖1 ≤ C‖v‖1,p‖M(u∗, 0)v1‖1 (4.34)
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so ‖v(t)‖1,p →∞ which is a contradiction. The last inequality above comes from the

fact that for p > n we have that W 1,p(Ω) is continuously embedded in L∞(Ω), so

there exists a constant C such that ‖ · ‖∞ ≤ C‖ · ‖1,p.

Therefore, all conditions for (4.19) are satisfied.

Now consider the u− w subsystem that arises when the IGPrey is absent

∂u

∂t
= d1∆u+ u

(
r(x)− ω1u−

a2w

1 + h2a2u

)
∂w

∂t
= d3∆w + w

(
e2a2u

1 + h2a2u
− µ2 − ω3w

)
in Ω , (4.35)

∂u

∂n
=
∂w

∂n
= 0 on ∂Ω .

This is a standard system of the type considered in [11]. As in [11], Section 4.5, (4.35)

will be permanent if w is able to invade (u∗, 0), which will be the case if the principal

eigenvalue σ2 of

d3∆w2 +

(
e2a2u

∗

1 + h2a2u∗
− µ2

)
w2 = σ2w2 in Ω,

∂w2

∂n
= 0 on ∂Ω (4.36)

is positive. If this is the case, then there exists a compact invariant set A4 in the

u − w plane that is bounded away from the axes that attracts all initial data of

the form (u0, 0, w0) with u0(x) , w0(x) ≥ 0 and neither u0 nor w0 identically zero.

(Alternatively, a proof analogous to Lemma 4.2.1 could be used to show permanence

in (4.35).)

If σ1 and σ2 are positive, then ω(S) = A1∪A2∪A3∪A4 (see Figure 4.1). Clearly

no subcollection of Ai’s can form a cycle due to the attracting nature of A3 and A4

and the global stability of A2 in the resource only subsystem. We must now establish
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Figure 4.1: A sketch of the boundary attractors. Note that in reality each “axis” in
the figure is an infinite dimensional Banach space.

that all A’s are isolated with respect to π and πS and that

W s({(0, 0, 0)}) ∩ (X \ S) = ∅

W s({(u∗, 0, 0)}) ∩ (X \ S) = ∅

W s(A3) ∩ (X \ S) = ∅

W s(A4) ∩ (X \ S) = ∅ .

The first two cases follow from an argument along the lines of the proof of Lemma

4.2.1 or by a comparison argument as found in Lemma 4.5 of [11]. W s({(0, 0, 0)}) ∩

(X \ S) = ∅ is a direct consequence of r(x) > 0 and W s({(u∗, 0, 0)}) ∩ (X \ S) = ∅

follows from either σ1 > 0 or σ2 > 0. The last two cases require more care. Begin by

considering W s(A3).
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Lemma 4.2.2. Suppose there exists a continuous function h̃(x) such that h̃(x) ≤

h(u, v, 0) for all (u, v, 0) ∈ A3 and the principal eigenvalue σ3 of

d3∆w3 + h̃(x)w3 = σ3w3 (4.37)

is positive. Then W s(A3) ∩ (X \ S) = ∅.

Proof. Suppose there exists (u0, v0, w0) ∈ X0 such that

lim
t→∞

d ((u(t), v(t), w(t)),A3) = 0 .

Choose ξ > 0 such that h̃(x) ≤ h(u, v, w) + σ3
2

for all (u, v, w) ∈ B(A3, ξ). Take t0

such that d((u, v, w),A3) ≤ ξ for all t ≥ t0. Now multiply the w component equation

of (2.5) by w3, multiply (4.37) by w, integrate both equations, apply the divergence

theorem, and subtract to get

d

dt

∫
Ω

ww3 dx =

∫
Ω

ww3(σ3 + h(u, v, w)− h̃(x)) dx . (4.38)

For t > t0 we have σ3 + h(u, v, w)− h̃(x) ≥ σ3
2

, so

d

dt

∫
Ω

ww3 dx ≥
σ3

2

∫
Ω

ww3 dx for t > t0 . (4.39)

This implies that ‖ww3‖1 grows without bound, and

‖ww3‖1 ≤ ‖w‖∞‖w‖1 ≤ C‖w‖1,p‖w‖1 , (4.40)

which contradicts (u, v, w) ∈ B(A3, ξ) for t ≥ t0. Therefore, W s(A3)∩(X\S) = ∅.
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The argument for W s(A4) is similar, but the diffusion pressure, M , further com-

plicates matters.

Lemma 4.2.3. Suppose there exists a continuous function b̃(x) such that b̃(x) ≤
g(u, 0, w)
M(u,w)

for all (u, 0, w) ∈ A4 and the principal eigenvalue σ4 of

∆v4 + b̃(x) v4 = σ4 v4 in Ω,
∂v4

∂n
= 0 on ∂Ω , (4.41)

is positive. Then W s(A4) ∩ (X \ S) = ∅.

Proof. As in the proof for W s(A3), assume there is a (u0, v0, w0) ∈ X0 such that

lim
t→∞

d((u(t), v(t), w(t)),A4) = 0 .

Choose ξ > 0 such that

b̃(x) ≤ g(u, v, w)

M(u,w)
+
σ4

2
(4.42)

for all (u, v, w) ∈ B(A4, ξ). Take t0 such that d((u, v, w),A4) ≤ ξ for all t > t0.

Multiply the v component equation of (2.5) by v4 and multiply (4.41) by M(u,w)v

and integrate over Ω to obtain

d

dt

∫
Ω

v4v dx =

∫
Ω

v4∆[M(u,w)v] dx+

∫
Ω

v4v g(u, v, w) dx (4.43)

and

∫
Ω

M(u,w)v∆v4 dx+

∫
Ω

M(u,w)b̃(x)v4v dx− σ4

∫
Ω

M(u,w)v4v dx = 0 . (4.44)
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Apply the divergence theorem twice to the first term in (4.44) and subtract (4.44)

from (4.43) to get

d

dt

∫
Ω

v v4 dx = σ4

∫
Ω

M(u,w)v v4 dx+

∫
Ω

(
g(u, v, w)− b̃M(u,w)

)
v v4 dx . (4.45)

From (4.42) we have that g(u, v, w)−b̃M(u,w) ≥ −σ4M(u,w)
2

for all t > t0, and we have

also assumed that M is such that M(u,w) ≥ d > 0 for all u,w ≥ 0. Therefore, ‖v‖∞

and hence ‖v‖1,p must grow without bound which contradicts (u, v, w) ∈ B(A, ξ), so

W s(A4) ∩ (X \ S) = ∅.

Note that if A4 is a single equilibrium point, (û, ŵ), then the condition that there

exists an x0 ∈ Ω such that g∗(u(x0), w(x0)) > 0 for all (u, 0, w) ∈ A4 reduces to the

simpler statement g∗(û, ŵ) > 0 at some point in Ω.

We can now synthesize these results into a theorem.

Theorem 4.2.2. If the parameters of (2.5) are such that the principal eigenvalue of

(4.20), σ1, and the principal eigenvalue of (4.36), σ2, are positive then there exists

boundary attractors, A3 and A4 in the u − v and u − w planes respectively bounded

away from the axes. Furthermore, if there exists continuous functions h̃(x) and b̃(x)

satisfying the conditions of Lemma 4.2.2 and Lemma 4.2.3 that yield positive σ3

and σ4 respectively, then (2.5) exhibits ecological permanence; and, (2.5) possesses

a componentwise positive equilibrium point.

Proof. For σ1 and σ2 positive we have shown that ω(S) = A1 ∪ A2 ∪ A3 ∪ A4 which

are all compact isolated invariant sets. Furthermore, we know that A1 is chained to

A2,A3 and A4. A2 is chained to A3 and A4; and, A3 and A4 are not chained to any

other Ai. Therefore, the set {A1,A2,A3,A4} is acyclic. Furthermore, if there exists
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h̃(x) and b̃(x) that make σ3 and σ4 positive respectively, then W s(Ai)∩(X\S) = ∅ for

i = 1, 2, 3 and 4, which would imply by the acyclicity theorem that (2.5) is permanent.

Theorem 4.6 of [11] states that if a system exhibits permanence, then the existence

of at least one componentwise positive equilibrium point is guaranteed.

We will now investigate how the function M affects these eigenvalues. Looking at

(4.36) we see that M has no effect on σ2. Examining (4.37) it appears that M does

not affect σ3 either, but this is misleading. In fact, M can change the set A3 and hence

change h̃ and in turn influence σ3. This is a very indirect relationship, and not much

analysis can be done without further assumptions that give more information about

A3. However, in the special case that M is independent of u, σ3 will be independent

of M .

To examine the effect of M on σ1 and σ4 it is useful to obtain the variational

formulations of these eigenvalues. We can use the fact that M ≥ d > 0 to make the

change of variables ψ = M(u∗, 0)v1 in (4.20) to get the equivalent equation

∆ψ +
1

M(u∗, 0)

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
ψ =

σ1

M(u∗, 0)
ψ in Ω,

∂ψ

∂n
= 0 on ∂Ω . (4.46)

From (4.46) we see that σ1 has variational characterization

σ1 = max
ψ∈W 1,2(Ω)

−
∫

Ω

|∇ψ|2 dx+

∫
Ω

1

M(u∗, 0)

(
e1a1u

∗

1 + h1a1u∗
− µ1

)
ψ2 dx∫

Ω

1

M(u∗, 0)
ψ2 dx

(4.47)

(see [11] Section 2.2).
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The variational formula for σ4 is standard and requires no change of variable,

namely

σ4 = max
ψ∈W 1,2(Ω)

−
∫

Ω

|∇ψ|2 dx+

∫
Ω

b̃(x)ψ2 dx∫
Ω

ψ2 dx

. (4.48)

4.3 Fitness Dependent Dispersal

Without knowing the specific details of the equilibrium point (u∗, 0, 0) and the bound-

ary attractor A4 it may seem that the variational formulations (4.47) and (4.48) for

σ1 and σ4 are not very helpful. However, if M is chosen in an appropriate form, we

can make some useful observations on the effect of M . It is useful to think of M as a

perturbation away from a random diffusion movement strategy with motility d2. We

will show that if the IGPrey can increase its motility to a sufficiently high level in

areas where its linearized fitness is negative while maintaining a low level of motility

in areas where the linearized fitness is positive, then the IGPrey will be able to invade

the u− w subsystem. This type of movement amounts to the IGPrey avoiding areas

where resources are scarce and predation risk is high and feeling less diffusion pressure

in areas with abundant resources and low predation risk. In order for this type of

strategy to be biologically feasible, the IGPrey must be capable of assessing the local

level of resource availability and the frequency of predator encounters. Both of these

assumptions are reasonable for a variety of species [36], [14], [33], [41].

The major assumption that we will make about M is that it is actually a twice

differentiable function of the linearized fitness, g(u, 0, w), which we will now refer to
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as g∗. We will examine a one parameter family of movement strategies, {Mλ(g
∗)}λ≥0

such that

M0(g∗) = d2 for all real g∗, (4.49)

Mλ(0) = d2 for all λ ≥ 0, (4.50)

d2 ≥ Mλ(g
∗) ≥ d for all λ and g∗ > 0 and, (4.51)

Mλ(g
∗) ≥ d2 and lim

λ→∞
Mλ(g

∗) =∞ for all g∗ < 0. (4.52)

Condition (4.49) says that λ = 0 corresponds to random diffusion with diffusion

coefficient d2. Condition (4.50) says that the motility in regions of zero linearized

fitness is d2 regardless of λ. (4.51) describes the motility in areas of positive linearized

fitness. In these areas, v may have lower motility, but may never have values that

drop below the level d. When the linearized fitness is negative, λ increasing toward

infinity will result in ever higher motility for v. In this sense, higher values of λ make

the IGPrey more sensitive to “bad” areas, i.e. areas where the linearized fitness is

negative. With higher values of λ, the IGPrey will experience an increased diffusive

pressure in these “bad” areas. We will examine what happens to σ1 and σ4 as λ

increases from 0.

For each x ∈ Ω, define G(x) ⊂ R by

G(x) = {r ∈ R | g∗(u(x), w(x)) = r for some (u, 0, w) ∈ A4 } . (4.53)

We will now prove that G(x) is a compact set in R for every x ∈ Ω. Fix x ∈ Ω and

let {rn} ⊆ G(x) and {(un, wn)} ⊆ A4 such that g∗(un(x), wn(x)) = rn for all n. We

know that A4 is compact in [C1(Ω)]2, so there exists a subsequence, {(unk , wnk)},
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that converges in [C1(Ω)]2. This implies that the subsequence {rnk} converges in R

to the limit of {g∗(unk(x), wnk(x))}, hence {rn} is compact. It is also important to

note that G(x) does not depend on the movement strategy since A4 arises from the

u − w subsystem, which is independent of M . Thus G(x) is not influenced by λ in

any way. Define

ζλ(x) = min
r∈G(x)

r

Mλ(r)
. (4.54)

Note that for each x ∈ Ω the minimum in the definition of ζλ is attained because

G(x) is compact.

Lemma 4.3.1. The function ζλ(x) defined by (4.54) is continuous on Ω.

Proof. Fix x0 ∈ Ω and suppose ζλ is not continuous at x0. Then there is an ε > 0

and a sequence {xn}∞n=1 ⊆ Ω such that xn → x0 and |ζλ(xn) − ζλ(x0)| > ε for all n.

Let {(un, wn)} ⊆ A4 be such that

ζλ(xn) =
g∗(un(xn), wn(xn))

Mλ(g∗(un(xn), wn(xn)))
for n = 0, 1, . . . . (4.55)

Since A4 is compact there is a subsequence, {(unk , wnk)}, that converges (in [C1(Ω)]2)

to some function pair (û, ŵ) in A4. Choose K large enough so that

∣∣∣∣ g∗(u0(xnk), w0(xnk))

Mλ(g∗(u0(xnk), w0(xnk)))
− ζλ(x0)

∣∣∣∣ < ε for all k ≥ K , (4.56)

∣∣∣∣ g∗(û(xnk), ŵ(xnk))

Mλ(g∗(û(xnk), ŵ(xnk)))
− g∗(û(x0), ŵ(x0))

Mλ(g∗(û(x0), ŵ(x0)))

∣∣∣∣ < ε

2
for all k ≥ K , (4.57)

and ∣∣∣∣ g∗(û(xnk), ŵ(xnk))

Mλ(g∗(û(xnk), ŵ(xnk)))
− ζλ(xnk)

∣∣∣∣ < ε

2
for all k ≥ K . (4.58)
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Fix k ≥ K. Suppose ζλ(xnk) > ζλ(x0) + ε. Then (4.56) implies that

g∗(u0(xnk), w0(xnk))

Mλ(g∗(u0(xnk), w0(xnk)))
< ζλ(xnk) (4.59)

which contradicts the minimality of ζλ(xnk) for r ∈ G(xnk). Now, suppose ζλ(x0) >

ζλ(xnk) + ε. Then (4.57) and (4.58) imply that

g∗(û(x0), ŵ(x0))

Mλ(g∗(û(x0), ŵ(x0)))
< ζλ(x0) (4.60)

which contradicts the minimality of ζλ(x0) for r ∈ G(x0).

Therefore, we must have that ζλ(x) is continuous on Ω.

If
∫

Ω
ζλ(x) dx > 0 we can use b̃(x) = ζλ(x). Then b̃ ≤ g∗(u,w)

Mλ(g∗(u,w))
for all (u, 0, w) ∈

A4 and
∫

Ω
b̃(x) dx > 0, so the principal eigenvalue σ4 of (4.41) will be positive and

v will be able to invade the boundary attractor A4 if the movement strategy Mλ is

adopted. So, we will examine conditions that guarantee
∫

Ω
ζλ dx > 0.

Lemma 4.3.2. Let G(x) be given by (4.53) and define Ω1 = {x ∈ Ω | minG(x) > 0}.

If (2.5) is such that Ω1 has positive measure and {Mλ(g
∗)}λ≥0 satisfies (4.49) - (4.52),

then there exists a Λ such that
∫

Ω
ζλ dx > 0 for all λ ≥ Λ.

Proof. Define Ω2 = Ω \ Ω1. Because A4 is bounded in C(Ω) and g∗ is continuous,

there exists a K > 0 such that g∗(u,w) ≥ −K for all (u, 0, w) ∈ A4, so Ω2 = {x ∈

Ω | −K ≤ minG(x) ≤ 0}. Note that ζλ(x) > 0 on Ω1 and ζλ(x) ≤ 0 on Ω2. Break∫
Ω
ζλ dx into two parts via

∫
Ω

ζλ dx =

∫
Ω1

min
r∈G(x)

r

Mλ(r)
dx+

∫
Ω2

min
r∈G(x)

r

Mλ(r)
dx (4.61)
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and analyze each piece separately. Begin with the Ω1 integral. Since |Ω1| > 0 there

exists a positive integer, k, such that |Ω1,k| > 0 where Ω1,k = {x ∈ Ω1 | minG(x) >

1
k
}. By (4.51) we have

∫
Ω1

min
r∈G(x)

r

Mλ(r)
dx ≥ 1

d2

∫
Ω1

min
r∈G(x)

r dx ≥ |Ω1,k|
d2k

= C > 0 . (4.62)

Now, fix any x ∈ Ω2. For any δ ∈ (0, K) we have

0 ≥ min
r∈G(x)

r

Mλ(r)
≥ min

r∈[−K,−δ]

r

Mλ(r)
+ min

r∈(−δ,0]

r

Mλ(r)
(4.63)

because the minimizing choice of r ∈ G(x) must fall in either the interval [−K,−δ]

or (−δ, 0] and both terms are nonpositive. So

∫
Ω2

min
r∈G(x)

r

Mλ(r)
dx ≥

∫
Ω2

min
r∈[−K,−δ]

r

Mλ(r)
dx+

∫
Ω2

min
r∈(−δ,0]

r

Mλ(r)
dx . (4.64)

Now, choose δ such that δ|Ω|
d2

< C
2

and then choose Λ such that K
Mλ(r)

< C
2|Ω| for all

λ ≥ Λ and r ∈ [−K,−δ]. Such a Λ exists because limλ→∞Mλ(r) = ∞ for each

r ∈ [−K,−δ] and this interval is compact. Consequently, we will have

∫
Ω2

min
r∈(−δ,0]

r

Mλ(r)
dx ≥ 1

d2

∫
Ω2

min
r∈(−δ,0]

r dx ≥ −δ|Ω2|
d2

>
−δ|Ω|
d2

> −C
2

(4.65)

and, for λ ≥ Λ

∫
Ω2

min
r∈[−K,−δ]

r

Mλ(r)
dx ≥

∫
Ω2

min
r∈[−K,−δ]

−K
Mλ(r)

dx >

∫
Ω2

− C

2|Ω|
dx > −C

2
. (4.66)



56

Combining (4.61), (4.62) and (4.64) - (4.66) we can conclude that
∫

Ω
ζλ dx > 0 for

all λ ≥ Λ.

As an immediate consequence of Lemma 4.3.2 we can state one of the main results

of this thesis:

Theorem 4.3.1. Suppose {Mλ(g
∗)}λ≥0 satisfies (4.50) - (4.52). If there exists a point

x0 ∈ Ω with g∗(u(x0), w(x0)) > 0 for all (u,w) ∈ A4 and M(u,w) = Mλ(g
∗(u,w))

for sufficiently large λ, then v will be uniformly persistent in (2.5) for all initial

conditions, (u0, v0, w0), with u0 and v0 not identically zero.

Proof. The assumption that g∗(u(x0), w(x0)) > 0 for all (u, 0, w) ∈ A4 is equivalent

to saying that ζλ(x0) > 0. Since ζλ(x) is a continuous function, we have that Ω1 (as

defined in Lemma 4.3.2) has positive measure, which means there is a Λ such that∫
Ω
ζλ(x) dx > 0 for all λ ≥ Λ. Taking b̃(x) = ζλ(x) gives σ4 > 0 in Lemma 4.2.3.

Note that w > 0 and u < u∗ for all (u, 0, w) ∈ A4 so g∗(u∗, 0) > g∗(u,w) for all

(u, 0, w) ∈ A4, hence g(u∗,0)
Mλ(g∗(u∗,0))

> ζλ(x) so
∫

Ω
g(u∗,0)

Mλ(g∗(u∗,0))
dx > 0 and we can conclude

from (4.46) that σ1 > 0.

Since σ1, σ4 > 0 we have W s({(0, 0, 0)})∩(X \S) = ∅, W S({(u∗, 0, 0)})∩(X \S) =

∅ and W s(A4)∩(X \S) = ∅. If we knew that W s(A3)∩(X \S) = ∅ we could conclude

that (2.5) was permanent. However, even if W s(A3)∩(X\S) 6= ∅ we can still conclude

that v persists for all initial conditions with u0 and v0 positive somewhere in Ω.

If w0 ≡ 0, then π((u0, v0, 0), t)→ A3, which is uniformly bounded away from the

plane {v ≡ 0}, so v will be uniformly persistent.

If w0 > 0 somewhere in Ω, then we must deconstruct the proof of the acyclicity

theorem, Theorem 4.1 of [18]. This proof reveals that if v is not uniformly persistent
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then one of the boundary attractors, Ai, in the plane {v ≡ 0} (i = 1, 2 or 4) would

need to satisfy either (H1) or (H2) stated below:

(H1) W s(Ai) ∩ (X \ S) 6= ∅

(H2) There exists a j ∈ {1, 2, 3, 4}, j 6= i such that Aj is chained to Ai by an orbit

in S and Aj satisfies either (H1) or (H2) as well.

We know that W s(A1)∩(X \S) = ∅, W S(A2)∩(X \S) = ∅ and W s(A4)∩(X \S) = ∅,

so anytime one ofA1,A2 orA4 is required to satisfy either (H1) or (H2) it must satisfy

(H2). We know that A3 is not chained to any other boundary attractor because A3

attracts all boundary points in a neighborhood in S of itself, hence W u(A3) = A3.

Therefore, we can never have j = 3 in (H2). So, we start with an Ai, i = 1, 2 or 4,

that satisfies (H2). This gives an Aj, j = 1, 2 or 4, j 6= i, which must also satisfy

(H2). This goes on ad infinitum creating an infinite chain comprised solely of A1,

A2 and A4, which implies there is a subset of {A1,A2,A4} that forms a cycle, a

contradiction.

Therefore, we have that v is uniformly persistent in (2.5) if there is a x0 ∈ Ω with

g∗(u(x0), w(x0)) > 0 for all (u, 0, w) ∈ A4 and we take M(u,w) = Mλ(g
∗(u,w)) for

λ ≥ Λ.

Ecologically speaking, Theorem 4.3.1 states that if there is a region in the habitat

such that the linearized fitness of the IGPrey is positive for all (u,w) in the attractor

of the u−w subsystem, then the IGPrey adopting a movement strategy of sufficiently

high motility in areas that have negative linearized fitness can allow the IGPrey to

invade and persist. Of course, an arbitrarily large motility may not be feasible for

any given species of IGPrey.
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The use of linearized fitness, g∗(u,w), instead of actual fitness, g(u, v, w), is not

based on an ecological consideration, but rather a mathematical necessity. The per-

manence analysis would be very similar if we were using g instead of g∗ because they

are equivalent when v = 0 and the invasion analysis for v deals with a neighborhood

of this region.

The main mathematical difficulty actually comes when establishing global exis-

tence and is due to the saturating functional response of the IGPredator consuming

the IGPrey. Suppose we were to use M(u, v, w) = M(g(u, v, w)), then

∆[M(u, v, w)v] = ∇ · [(M + vMv)∇v + vMu∇u+ vMw∇w] (4.67)

and we cannot be sure that M + vMv = M + vM ′(g)∂g
∂v

is bounded below away from

zero, which is crucial to proving global existence. Note that M ′(g) ≤ 0 so the problem

arises when it is possible to have ∂g
∂v
> 0, which would allow M + vMv to be negative

for certain positive values of v. This is the case with our choice of g because of the

− a3w
1+a3h3v

term in g.

4.4 Examples Of Dispersal Strategies

We will now give three examples of movement strategy families that satisfy (4.49)

- (4.52): exponential, piecewise polynomial and exponentially smoothed. Our first

example uses a family of negative exponential functions

Mλ(g
∗) = (d2 − d)e−λg

∗
+ d . (4.68)
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Clearly (4.68) satisfies all of the required conditions on {Mλ}.

Suppose we would like a movement strategy that assumes a constant motility

throughout regions where g∗ ≥ 0, but that increases linearly with respect to |g∗|

when g∗ < 0. Such a family of strategies would have the form

Mλ(g
∗) =


d2 for g∗ ≥ 0 ,

−λg∗ + d2 for g∗ < 0 .

(4.69)

This has discontinuous first and second derivatives at g∗ = 0. However, we could

connect these linear functions over an interval near g∗ = 0 using a function that

matches the first and second derivatives of the linear functions on each end of the

matching region. Such a family is given below using (−1/λ, 0) as the matching region

and a degree 5 polynomial (6 degrees of freedom are needed, 3 for each connecting

point) to connect the linear functions

Mλ =


d2 for g∗ ≥ 0 ,

−3(λg∗)5 − 8(λg∗)4 − 6(λg∗)3 + d2 for −1
λ
< g∗ < 0 ,

−λg∗ + d2 for g∗ ≤ −1
λ
.

(4.70)

We can verify that Mλ(g
∗) is C2(R) by direct calculation. At g∗ = 0 we have

limg∗→0−M
′
λ(g
∗) = limg∗→0−M

′′
λ (g∗) = 0 and limg∗→0−Mλ(g

∗) = d2 which matches

the constant function defining Mλ to the right of g∗ = 0. At g∗ = −1/λ we have

lim
g∗→(−1/λ)+

Mλ(g
∗) = −3(−1)5 − 8(−1)4 − 6(−1)3 + d2 = 1 + d2 , (4.71)
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lim
g∗→(−1/λ)+

M ′
λ(g
∗) = −15λ(−1)4 − 32λ(−1)3 − 18λ(−1)2 = −λ (4.72)

and

lim
g∗→(−1/λ)+

M ′′
λ (g∗) = 60λ2(−1)3 − 96λ2(−1)2 + 36λ2λ(−1) = 0 . (4.73)

All of these match the corresponding values as we approach g∗ = −1/λ from the left.

In addition, (4.70) clearly satisfies conditions (4.49) - (4.52).

Another approach to approximating a piecewise defined function like (4.69) is to

multiply by a smoothing function. Suppose we have Mλ(g
∗) = fλ(g

∗) + d2 for g∗ < 0

where fλ ∈ C∞((−∞, 0)) and limg∗→0− fλ(g
∗) = 0 and Mλ(g

∗) = d2 for g∗ ≥ 0, but

Mλ is not C2 at g∗ = 0. We can approximate this family of movement strategies by

multiplying fλ by a function of the form ek/g
∗
. We will show below that as long as

fλ does not have derivatives that blow up in particularly nasty ways at g∗ = 0, the

resulting product will have all of its derivatives equal to 0 at g∗ = 0 (in particular,

bounded derivatives would certainly qualify as would any derivatives that blow-up at

0 like g∗−N for some N > 0). We will then have the following family in C∞(R):

Mλ(g
∗) =


d2 for g∗ ≥ 0 ,

fλ(g
∗)ek/g

∗
+ d2 for g∗ < 0 .

(4.74)

To see that (4.74) defines a function that is infinitely smooth at 0, consider the nth

derivative of Mλ as g∗ → 0−

dn

dg∗n
Mλ(g

∗) =
n∑
i=0

Cif
(i)
λ (g∗)

dn−i

dg∗n−i
(ek/g

∗
) =

n∑
i=0

f
(i)
λ (g∗)Pi(1/g

∗)ek/g
∗
, (4.75)
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where the Ci’s are constant and the Pi(1/g
∗)’s are polynomials in 1/g∗. We can

conclude from (4.75) that a sufficient condition for Mλ(g
∗) ∈ C∞(R) is

lim
g∗→0−

f
(n)
λ (g∗)

g∗Ne−k/g∗
= 0 for all n ≥ 1, N ≥ 1 . (4.76)

Note that the denominator in (4.76) is increasing to ∞ at an exponential rate. This

allows for a very wide class of f ’s to be used. Note that if fλ(g
∗) + d2 satisfies

(4.49)-(4.52) for g∗ ≤ 0 then so will the function defined by (4.74).

We will see in later chapters that an additional condition, namely

d

dg∗

(
g∗

Mλ(g∗)

)
> 0 (4.77)

becomes important when determining the local stability of certain bifurcating branches

of solutions (see Section 5.5). We also make use of this inequality when making a

practical persistence type of argument in Chapter 6. Note that (4.68) does not satisfy

this condition; and, (4.70) fails to do so if d2 < 65/54 ≈ .415. However, depending on

fλ and the choice of k, (4.74) can satisfy this condition (we will see a specific example

in Chapter 6).



Chapter 5

Bifurcation From The Resource
Only Equilibrium

5.1 Bifurcation in the u− w Subsystem

Consider the equilibrium problem for the u− w subsystem

d1∆u+ u

(
r(x)− ω1u−

a2w

1 + h2a2u

)
= 0

d3∆w + w

(
e2a2u

1 + h2a2u
− µ2 − ω3w

)
= 0 in Ω , (5.1)

∂u

∂n
=
∂w

∂n
= 0 on ∂Ω .

Let (u∗, 0) denote the unique semi-trivial equilibrium to (5.1). For e2 sufficiently

small, (5.1) cannot have any coexistence equilibrium states because the per capita

growth rate in the w component equation is negative on all of Ω when

e2 < µ2h2 . (5.2)

62
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If this were the case, then integrating the w-component equation and using the no-flux

boundary condition would yield

∫
Ω

w

(
e2a2u

1 + h2a2u
− µ2 − ω3w

)
dx = 0 , (5.3)

but if w > 0 and e2 < µ2h2 then the integral above is negative, which would be

a contradiction. Therefore, if e2 < µ2h2 the only nonnegative solution to the w-

component equation is w ≡ 0.

We will examine (5.1) using e2 as a bifurcation parameter to see when and how

coexistence states bifurcate from the semi-trivial solution, (u∗, 0). Write (5.1) as

F (e2, (u,w)) = ~0 (5.4)

where F : R ×
[
C2,α
N (Ω)

]2 → [
Cα(Ω)

]2
for α ∈ (0, 1) such that r(x) ∈ Cα(Ω). Note

that F (e2, (u
∗, 0)) = ~0 for all e2. The Crandall-Rabinowitz bifurcation theorem ([12]

Theorem 1.7) states that if e∗2 is such that F(u,w)(e
∗
2, (u

∗, 0)) is a Fredholm operator

with

dim N(F(u,w)(e
∗
2, (u

∗, 0))) = codim R(F(u,w)(e
∗
2, (u

∗, 0))) = 1 ; (5.5)

and, if N(F(u,w)(e
∗
2, (u

∗, 0))) = 〈~y0〉 with

Fe2,(u,w)(e
∗
2, (u

∗, 0))~y0 /∈ R(F(u,w)(e
∗
2, (u

∗, 0))) , (5.6)

then e∗2 is a bifurcation point for (u∗, 0). This means that there are a δ > 0

and continuously differentiable functions e2 : (−δ, δ) → R and (û, ŵ) : (−δ, δ) →[
C2,α
N (Ω)

]2
with e2(0) = e∗2 and (û(0), ŵ(0)) = (0, 0) such that if e2 = e2(s) and
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(u,w) = (u∗, 0) + s~y0 + s(û(s), ŵ(s)) then F (e2(s), (u∗, 0) + s~y0 + s(û(s), ŵ(s))) = 0

for s ∈ (−δ, δ). Furthermore, the entire solution set for F (e2, (u,w)) = 0 in a small

neighborhood of (e∗2, (u
∗, 0)) in R ×

[
C2,α
N (Ω)

]2
is the line (e2, (u

∗, 0)) and the curve

(e2(s), (u∗, 0) + s~y0 + s(û(s), ŵ(s)) [12].

First, we will examine N(F(u,w)(e2, (u
∗, 0))). We have

F(u,w)(e2, (u
∗, 0))

ψ1

ψ2

 =

d1∆ψ1 + r(x)ψ1 − 2ω1u
∗ψ1 − a2u∗

1+a2h2u∗
ψ2

−d3∆ψ2 + µ2ψ2 − e2a2u∗

1+a2h2u∗
ψ2

 (5.7)

Writing F(u,w)(e2, (u
∗, 0))~ψ = 0 in system form and rearranging yields

d1∆ψ1 + r(x)ψ1 − 2ω1u
∗ψ1 =

a2u
∗

1 + a2h2u∗
ψ2

−d3∆ψ2 + µ2ψ2 =
e2a2u

∗

1 + a2h2u∗
ψ2 in Ω, (5.8)

∂ψ1

∂n
=
∂ψ2

∂n
= 0 on ∂Ω .

Let

L1u = −d3∆u+ µ2u and m(x) =
a2u

∗

1 + a2h2u∗
. (5.9)

Then existence/uniqueness theory for elliptic equations implies that L−1
1 exists and

L−1
1 : Cα(Ω)→ C2,α(Ω) is a bounded linear operator ([16] Theorem 6.31). Addition-

ally, C2,α(Ω) embeds compactly into Cα(Ω), so L−1
1 : Cα(Ω) → Cα(Ω) is compact.

In fact, the strong maximum principle guarantees that L−1
1 maps nonnegative func-

tions that are not identically zero into functions that are positive on all of Ω which

means that L−1
1 is a strongly positive compact linear operator on Cα(Ω), and so is

L−1
1 ◦m(x). The Krein-Rutman Theorem (see [1] Theorem 3.2 for example) implies
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that there is a unique maximal eigenvalue for L−1
1 ◦m(x) that is real and simple with

positive eigenfunction. The ψ2 equation in (5.8) can be rewritten as

1

e2

ψ2 = L−1
1 (m(x)ψ2) in Ω and

∂ψ2

∂n
= 0 on ∂Ω . (5.10)

The smallest value of e2 that can yield a solution for (5.10) is the reciprocal of the

maximal eigenvalue of L−1 ◦ m(x), so it is simple and the corresponding solution,

ψ2, will be positive on Ω. This is the smallest possible value of e2 that could yield a

bifurcation. Call this value e∗2 and fix e2 = e∗2 and let ψ2 be the positive eigenfunction

corresponding to e∗2.

Now, examine the first equation in (5.8). Let σ be the principal eigenvalue of

d1∆z + [r(x)− 2ω1u
∗]z = σz in Ω ,

∂z

∂n
= 0 on ∂Ω . (5.11)

Then, multiply the resource only equilibrium equation (4.18) by z, multiply (5.11) by

u∗ integrate over Ω and subtract to get

∫
Ω

z[d1∆u∗+(r(x)−ω1u
∗)u∗]−u∗[d1∆z+(r(x)−2ω1u

∗)z] dx = −σ
∫

Ω

u∗z dx . (5.12)

The Laplacian terms drop out after integrating by parts twice, leaving

∫
Ω

ω1(u∗)2z dx = −σ
∫

Ω

u∗z dx . (5.13)

Hence σ < 0. This means that the operator L2u = d1∆u+(r(x)−2ω1u
∗)u is invertible.
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So,

N(F(u,w)(e
∗
2, (u

∗, 0))) =

〈L−1
2

(
a2u∗

1+a2h2u∗
ψ2

)
ψ2

〉 (5.14)

Computing R(F(u,w)(e
∗
2, (u

∗, 0))) is somewhat more difficult. We will resort to

using Fredholm theory and will show that

R(F(u,w)(e
∗
2, (u

∗, 0))) = Cα(Ω)×
{
f ∈ Cα(Ω) |

∫
Ω

f ψ2 dx = 0

}
.

We will examine for which ~f =

f1

f2

 the equation

d1∆ψ1 + r(x)ψ1 − 2ω1u
∗ψ1 − a2u∗

1+a2h2u∗
ψ2

−d3∆ψ2 + µ2ψ2 − e2a2u∗

1+a2h2u∗
ψ2

 =

f1

f2

 (5.15)

is solvable. The following argument is adapted from [15]. Let

Lu = −d3∆u+ µ2u− e∗2m(x)u . (5.16)

For some ρ > 0 such that ρ+ µ2 − e∗2m(x) > 0 on Ω define

Lρw = −d3∆w + µ2w − e∗2m(x)w + ρw (5.17)

and, for u, v ∈ H1(Ω), define

Bρ[u , v] =

∫
Ω

d3∇u · ∇v + [ρ+ µ2 − e∗2m(x)]uv dx . (5.18)
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Then Bρ[u , v] is an inner product on H1(Ω). Let f̃ ∈ L2(Ω) and define lf̃ (v) =

〈f̃ , v〉L2(Ω) for v ∈ H1(Ω). Then lf̃ is a bounded linear functional on H1(Ω). The

Riesz Representation Theorem implies there exists a unique u ∈ H1(Ω) such that

Bρ[u , v] = 〈f̃ , v〉 for all v ∈ H1(Ω). Note that this u is a weak solution of Lρu = f̃ ,

so we can denote u by L−1
ρ f̃ . Now, consider the equation

Lu = f2 . (5.19)

This is equivalent to

Lρu = ρu+ f2 . (5.20)

So, u is a weak solution of Lu = f2 if and only if Bρ[u , v] = 〈ρu + f2 , v〉 for all

v ∈ H1(Ω). This is the case if and only if

u = L−1
ρ (ρu+ f2)

= ρL−1
ρ u+ L−1

ρ f2 (5.21)

= Ku+ h

where Ku = ρL−1
ρ u and h = L−1

ρ f2. This K is a bounded operator from L2(Ω) to

H1(Ω) and hence is a compact operator when viewed from L2(Ω) to L2(Ω). To see
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this, let g ∈ L2(Ω). From (5.18) there exists a β > 0 such that

β‖Kg‖2
H1(Ω) ≤ Bρ[Kg , Kg]

= ρBρ[L
−1
ρ g , Kg]

= ρ〈g , Kg〉

≤ ρ‖g‖L2(Ω)‖Kg‖L2(Ω)

≤ ρ‖g‖L2(Ω)‖Kg‖H1(Ω) . (5.22)

So

‖Kg‖H1(Ω) ≤
ρ

β
‖g‖L2(Ω) . (5.23)

Because K is compact for L2(Ω) → L2(Ω), (I − K) is Fredholm index 0 as a map

from L2(Ω) → L2(Ω). Recall that Lu = 0 if and only if u ∈ 〈ψ2〉. But Lu = 0 if

and only if (I −K)u = 0, hence N(I −K) = 〈ψ2〉 as well. The Fredholm alternative

implies that for any h ∈ L2(Ω) the equation

(I −K)u = h (5.24)

has a solution if and only if 〈h , v〉 = 0 for all v ∈ N(I −K∗) (where K∗ denotes the

adjoint of K). We will now show that N(I − K∗) = 〈ψ2〉. First, we will show that

K = K∗ as an operator from L2(Ω) → L2(Ω). Let g, h ∈ Cα(Ω) be given. Define u,

v ∈ C2,α(Ω) by

u =
1

ρ
Kg and v =

1

ρ
Kh , (5.25)

which implies

g = Lρu and h = Lρv . (5.26)
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The operator Lρ is formally self-adjoint, so

〈Lρu , v〉 = 〈u , Lρv〉 . (5.27)

Use (5.25) and (5.26) to rewrite (5.27) as

〈g , 1

ρ
Kh〉 = 〈1

ρ
Kg , h〉 (5.28)

=⇒ 0 = 〈(K −K∗)g , h〉 for all g, h ∈ Cα(Ω) . (5.29)

Since Cα(Ω) is dense in L2(Ω) (5.29) must hold for any h ∈ L2(Ω) as well. Hence

Kg = K∗g for all g ∈ Cα(Ω) and we can appeal to density again to conclude K = K∗

as an operator for L2(Ω) → L2(Ω). Therefore, N(I −K∗) = N(I −K) = 〈ψ2〉. So

we have that Lu = f2 is solvable if and only if 〈h , ψ2〉 = 0 where h = L−1
ρ f2 = 1

ρ
Kf2.

So, f2 in the range of L if and only if

0 =
1

ρ
〈Kf2 , ψ2〉

=
1

ρ
〈f2 , K

∗ψ2〉

=
1

ρ
〈f2 , ψ2〉 (5.30)

where the last line follows from the fact that K = K∗ and Kψ2 = ψ2. From (5.30)

we have that there exists a ψ2 that solves the second component equation of (5.15)

if and only if
∫

Ω
f2ψ2 dx = 0. Assume this is the case. Then, the first component

equation of (5.15) can be written as

d1∆ψ1 + r(x)ψ1 − 2ω1u
∗ψ1 =

a2u
∗

1 + a2h2u∗
ψ2 + f1 . (5.31)
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The left hand side of (5.31) is invertible, so this equation will be solvable for any

choice of f1. We can finally conclude that

R(F(u,w)(e
∗
2, (u

∗, 0))) = Cα(Ω)×
{
f ∈ Cα(Ω) |

∫
Ω

f ψ2 dx = 0

}
.

Finally, in order to assert that the Crandall-Rabinowitz bifurcation theorem applies,

we need to show that

Fe2,(u,w)(e
∗
2, (u

∗, 0))

L−1
2

(
a2u∗

1+a2h2u∗
ψ2

)
ψ2

 /∈ R(F(u,w)(e
∗
2, (u

∗, 0))) . (5.32)

Differentiating F(u,w)(e
∗
2, u
∗, 0) (see (5.7)) with respect to e2 we see that

Fe2,(u,w)(e
∗
2, u
∗, 0)

φ1

φ2

 =

 0

a2u∗

1+a2h2u∗
φ2

 . (5.33)

If (5.32) fails, then we have
∫

Ω
a2u∗

1+a2h2u∗
ψ2

2 dx = 0 which is a contradiction. The

Crandall-Rabinowitz bifurcation theorem now applies to F at (e∗2, u
∗, 0) and we can

conclude there is a parameterized curve of solutions to (5.4) passing through (e∗2, u
∗, 0)

such that this curve and the semi-trivial solution are the only solutions in a neigh-

borhood of (e∗2, u
∗, 0).

5.2 Bifurcation in the u− v Subsystem

The analysis for the bifurcation from the resource only equilibrium in the u − v

subsystem is nearly identical to the analysis of the u − w subsystem. The only real
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difference is that the u − v system should be transformed first by the substitution

z = M(u)v so that the resulting system is a semi-linear elliptic system,

d1∆u+

(
r(x)− ω1u−

a1z

M(u)(1 + a1h1u)

)
u = 0

∆z +

(
e1a1u

1 + a1h1u
− µ1 −

ω2

M(u)
z

)
z

M(u)
= 0 in Ω, (5.34)

∂u

∂n
=
∂z

∂n
= 0 on ∂Ω.

This system linearized at (u∗, 0) and applied to the vector

φ1

φ2

 yields

d1∆φ1 + r(x)φ1 − 2ω1u
∗φ1 =

a1u
∗

M(u∗)(1 + a1h1u∗)
φ2

−∆φ2 +
µ1

M(u∗)
φ2 =

e1a1u
∗

M(u∗)(1 + a1h1u∗)
φ2 in Ω, (5.35)

∂φ1

∂n
=
∂φ2

∂n
= 0 on ∂Ω .

As in the case of the u − w subsystem, the operator on the left hand side of the

second equation of (5.35) has an inverse that is a positive compact operator (in the

appropriate space) and the right hand side is a bounded positive operator, leading

to a maximal principal eigenvalue, 1
e∗1

, of the equation written in terms of the inverse

operator and a corresponding positive eigenfunction. This gives a minimal eigenvalue,

e∗1, for the weighted eigenvalue problem in (5.35) (the second equation). This e∗1

becomes the candidate for bifurcation and the rest of the analysis proceeds in an

identical manner as the u− w case.
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5.3 Local Stability of the u− w Coexistence State

Let s ∈ (−δ, δ) parameterize the curve of solutions to (5.1) guaranteed to exist by

the Crandall-Rabinowitz bifurcation theorem, [12] Theorem 1.7, and write

u(s) = u∗ + sψ1 + û(s) ,

w(s) = sψ2 + ŵ(s) ,

where û(s) and ŵ(s) are both o(|s|). We also have e2(s) : (−δ, δ)→ R with e2(0) = e∗2.

In [13], Crandall and Rabinowitz prove that if F, e∗2, (u
∗, 0), ~y0, δ, e2(s) and (u(s), w(s))

are as in Section 5.1, then there are an interval I and continuously differentiable

functions σ(e2) : I → R, ~ψ(e2) : I →
[
C2,α
N (Ω)

]2
, µ(s) : (−δ, δ) → R and ~τ(s) :

(−δ, δ)→
[
C2,α
N (Ω)

]2
such that

F(u,w)(e2, (u
∗, 0))~ψ(e2) = σ(e2)~ψ(e2) and (5.36)

F(u,w)(e2(s), (u(s), w(s)))~τ(s) = µ(s)~τ(s) . (5.37)

Furthermore, near s = 0 the functions µ(s) and −se′2(s)σ′(e∗2) have the same zeros

and their signs are the same when they are not zero. If µ(s) is negative for s small and

positive (positive s corresponds to positive solutions since ψ2 > 0), then the branch

of solutions bifurcating from (e∗2, (u
∗, 0)) will be locally stable (in terms of linearized

stability). The σ(e2) eigenvalues in (5.36) are monotonically increasing in e2 (refer

back to (5.8) to see the full equations and the dependence on e2) so σ′(e∗2) > 0.

Therefore, if e′2(0) < 0 the bifurcating branch of solutions will be unstable for small
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positive s and if e′2(0) > 0 the bifurcating branch of solutions will be locally stable

for small positive s. We will now calculate e′2(0).

We can write the w component equation of the u−w subsystem using the notation

h(s) = h(e2(s), u(s), w(s)) as

0 = d3∆w(s) + w(s)h(s) , (5.38)

and differentiate with respect to s

0 = d3∆(ψ2 + ŵ′(s)) + h(s)(ψ2 + ŵ′(s)) + w(s)h′(s) . (5.39)

Substituting s = 0 in (5.39) and using w(0) = 0 and the fact that ψ2 satisfies

0 = d3∆ψ2 + h(0)ψ2 (5.40)

yields

0 = d3∆ŵ′(0) + h(0)ŵ′(0) . (5.41)

Hence ŵ′(0) = kψ2 for some k. However, from the results of Crandall and Rabinowitz,

we can assume that (û′(0), ŵ′(0)) lies in the range of F(u,w)(e
∗
2, u
∗, 0), hence k must be

zero and ŵ′(0) ≡ 0. If we follow a similar approach and differentiate the u equation

with respect to s and set s = 0 we find

0 = d1∆û′(0) + r(x)û′(0)− 2ω1u
∗û′(0) . (5.42)

As discussed before, the operator above is invertible and hence û′(0) ≡ 0 as well.
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Now, differentiate (5.39) once more with respect to s and again set s = 0 to get

0 = d3∆ŵ′′(0) + h(0)ŵ′′(0) + 2ψ2h
′(0) . (5.43)

We can calculate h′(0) explicitly,

h′(0) =
∂h

∂e2

∣∣∣∣
s=0

e′2(0) +
∂h

∂u

∣∣∣∣
s=0

u′(0) +
∂h

∂w

∣∣∣∣
s=0

w′(0)

=
a2u

∗

1 + a2h2u∗
e′2(0) +

a2e
∗
2

(1 + a2h2u∗)2
ψ1 − ω3ψ2 . (5.44)

Substitute (5.44) into (5.43), multiply by ψ2 and integrate over Ω to obtain

0 = d3

∫
Ω

ψ2∆ŵ′′(0) + h(0)ŵ′′(0)ψ2

+ 2ψ2
2

(
a2u

∗

1 + a2h2u∗
e′2(0) +

a2e
∗
2

(1 + a2h2u∗)2
ψ1 − ω3ψ2

)
dx . (5.45)

Apply the divergence theorem twice to the Laplacian term and use the fact that ψ2

satisfies (5.40) to eliminate the terms involving ŵ′′(0). We can break up the remaining

terms into separate integrals, divide by the common factor of 2, and use the fact that

e′2(0) is constant over Ω to get

0 = e′2(0)

∫
Ω

a2u
∗ψ2

2

1 + a2h2u∗
dx+

∫
Ω

a2e
∗
2ψ1ψ

2
2

(1 + a2h2u∗)2
dx−

∫
Ω

ω3ψ
3
2 dx . (5.46)

Therefore,

e′2(0) =

∫
Ω

ω3ψ
3
2 −

a2e
∗
2ψ1ψ

2
2

(1 + a2h2u∗)2
dx∫

Ω

a2u
∗ψ2

2

1 + a2h2u∗
dx

. (5.47)

Note that u(s) is a strict subsolution to the semi-trivial equilibrium equation with
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solution u∗ when s ∈ (0, δ), so u(s) < u∗ for s ∈ (0, δ) which implies ψ1 < 0 on Ω.

Therefore, (5.47) tells us that e′2(0) > 0, and the local stability of the coexistence

solution is guaranteed for s ∈ (0, δ).

The results of the analysis in Sections 5.1 and 5.3 can be summarized in a theorem.

Theorem 5.3.1. There is a critical value e∗2, and δ > 0 such that when e2 ≤ e∗2

there is no positive equilibrium of (4.35) and when e2 ∈ (e∗2, e
∗
2 + δ) there is a positive

equilibrium of (4.35) that is locally stable.

Proof. The bifurcation of a locally stable branch of positive equilibrium solutions at

e∗2 was shown in Sections 5.1 and 5.3. What is left to show is that there are no positive

solutions to (5.1) when e2 ≤ e∗2.

Fix e2 ≤ e∗2 and suppose (û, ŵ) is a positive equilibrium solution to (4.35). A

standard comparison argument yields û < u∗ on Ω, hence

e2a2û

1 + a2h2û
− µ1 <

e∗2a2u
∗

1 + a2h2u∗
− µ1 . (5.48)

Since there is a positive function, ψ2, that solves the second equation of (5.8), we

know that the principal eigenvalue, σ, of

d3∆φ+

(
e∗2a2u

∗

1 + a2h2u∗
− µ1

)
φ = σφ (5.49)

is zero. Therefore, the principal eigenvalue, σ̂ of

d3∆φ̂+

(
e2a2û

1 + a2h2û
− µ1

)
φ̂ = σ̂φ̂ (5.50)

must be negative. Proposition 3.1 of [11] rules out the possibility of a positive solution
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to

d3∆ŵ + ŵ

(
e2a2û

1 + a2h2û
− µ1 − ω3ŵ

)
= 0 , (5.51)

so no positive equilibrium solutions of (4.35) are possible.

5.4 Comparison of Random Diffusion and Fitness

Dependent Dispersal

In the previous section we saw that a locally stable positive equilibrium to (4.35)

bifurcates from (u∗, 0) at e2 = e∗2. We will now look at criteria for v to invade this

equilibrium point for the cases λ = 0, i.e. M(u,w) = d2, and λ large to see the effect

of the fitness dependent dispersal strategy.

For M(u,w) = d2, v will be able to invade the resource only equilibrium if the

principal eigenvalue, σ1 of

d2∆v1 +

(
e1a1u

∗

1 + a1h1u∗
− µ1

)
v1 = σ1v1 in Ω,

∂v1

∂n
= 0 on ∂Ω , (5.52)

is positive. Recall the notation g∗(u,w) = e1a1u
1+a1h1u

− µ1 − a3w. If
∫

Ω
g∗(u∗, 0) dx > 0

then σ1 will be positive regardless of the value of d2. However, if
∫

Ω
g∗(u∗, 0) dx < 0

then σ1 will be positive if and only if 1
d2
> Λ+

1 (g∗(u∗, 0)) (see Theorem 2.6 in [11])

where Λ+
1 (m(x)) is the positive principal eigenvalue of

∆ψ + Λm(x) = 0 in Ω,
∂ψ

∂n
= 0 on ∂Ω , (5.53)

which is guaranteed to exist by Theorem 2.5 of [11] for any m(x) that changes signs

in Ω and has
∫

Ω
m(x) dx < 0. Assume that d2 satisfies this condition and consider the
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bifurcating branch of positive solutions to (5.1), (u(s), w(s)), for s > 0 small enough

so that the local stability is maintained and g∗(u(s), w(s)) is positive somewhere in

Ω. We know that u(s) < u∗ and w(s) > 0 in Ω, so g∗(u(s), w(s)) < g∗(u∗, 0) and

Λ+
1 (g∗(u(s), w(s))) > Λ+

1 (g∗(u∗, 0)) . (5.54)

If d2 is such that

Λ+
1 (g∗(u(s), w(s))) >

1

d2

> Λ+
1 (g∗(u∗, 0)) , (5.55)

then the IGPrey will be able to invade the resource only equilibrium, but will not be

able to invade the locally stable positive u− w coexistence state.

Compare this to the situation when λ is large, i.e. the IGPrey is employing a move-

ment strategy that avoids areas with negative linearized fitness. We saw in Theorem

4.3.1 that v will be able to invade this u − w coexistence state if g∗(u(s), w(s)) > 0

at any point in Ω (which we have assumed is the case) if λ is sufficiently large.

If g∗(u(s), w(s)) is negative on all of Ω, then the IGPrey will not be able to invade

the coexistence state regardless of movement strategies employed. This would be

equivalent to saying the entire domain is “bad” for the IGPrey.

5.5 Stability of the u− v Coexistence State

We will follow the same procedure used to analyze the local stability of the coexistence

state in the u − w subsystem. Let s ∈ (−δ, δ) parameterize this curve of solutions
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and write

u(s) = u∗ + sφ1 + ũ(s) ,

z(s) = sφ2 + z̃(s) ,

where ũ(s) and z̃(s) are both o(|s|). We also have e1(s) : (−δ, δ)→ R with e1(0) = e∗1.

We can use the procedure from the preceding section to calculate e′1(0) and draw

conclusions about the local stability of the coexistence equilibrium. We can write the

z component equation of the u− z subsystem using the notation

g∗(e1, u) =
e1a1u

1 + a1h1u
− µ1 (5.56)

and

k(s) =
g∗(e1(s), u(s))

M(g∗(e1(s), u(s)))
− ω2

M(g∗(e1(s), u(s)))2
z(s) . (5.57)

Then the z-component equation is

0 = ∆z(s) + z(s)k(s) . (5.58)

Differentiate this with respect to s to get

0 = ∆(φ2 + z̃′(s)) + k(s)(φ2 + z̃′(s)) + z(s)k′(s) , (5.59)

with a companion equation for ũ′(s). The argument employed for the u−w subsystem

transfers here without modification. We find that z̃′(0) ≡ 0 and ũ′(0) ≡ 0. We can
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differentiate (5.59) with respect to s one more time and evaluate at s = 0 to obtain

0 = d3∆z̃′′(0) + k(0)z̃′′(0) + 2φ2k
′(0) , (5.60)

where

k′(0) =
∂

∂u∗

(
g∗(e∗1, u

∗)

M(g∗(e∗1, u
∗))

)
φ1 +

a1u
∗

1 + a1h1u∗
e′1(0)− ω2φ2 . (5.61)

Substitute (5.61) into (5.60), multiply by φ2 and integrate over Ω to obtain

0 =

∫
Ω

φ2∆z̃′′(0) + k(0)z̃′′(0)φ2

+ 2φ2
2

(
∂

∂u∗

(
g∗(e∗1, u

∗)

M(g∗(e∗1, u
∗))

)
φ1 +

a1u
∗

1 + a1h1u∗
e′1(0)− ω2φ2

)
dx . (5.62)

Apply the divergence theorem twice to the Laplacian term and use the fact that φ2

satisfies (5.35) to eliminate the terms involving z̃′′(0). We can break up the remaining

terms into separate integrals, divide by the common factor of 2, and use the fact that

e′1(0) is constant over Ω to get

Therefore,

e′1(0) =

∫
Ω

ω2φ
3
2

M(g∗(e∗1, u
∗))2
− ∂

∂u∗

(
g∗(e∗1, u

∗)

M(g∗(e∗1, u
∗))

)
φ1φ

2
2 dx∫

Ω

a1u
∗φ2

2

1 + a1h1u∗
dx

. (5.63)

Note that u(s) is a strict subsolution to the semi-trivial equilibrium equation with

solution u∗ when s ∈ (0, δ), so u(s) < u∗ for s ∈ (0, δ) which implies φ1 < 0 on Ω.

If we assume condition (4.77), then ∂
∂u∗

(
g∗(e∗1,u

∗)

M(g∗(e∗1,u
∗))

)
> 0 (because ∂g∗

∂u
> 0) and we

can conclude from (5.63) that e′1(0) > 0, and the local stability of the coexistence

solution is guaranteed for s ∈ (0, δ).
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However, if condition (4.77) is not satisfied, the analysis of Section 5.2 remains

valid and we can guarantee that the bifurcation point exists; but, we are not able to

determine its stability from (5.63) and it is possible to have a subcritical bifurcation

at (e∗1, (u
∗, 0)). The results of the analysis in Sections 5.2 and 5.5 are summarized in

the following theorem.

Theorem 5.5.1. Suppose M(u,w) = M(g∗(u,w)) and d
dg∗

(
g∗

M(g∗)

)
> 0. Then there

exists a δ > 0 and critical value e∗1 such that if e1 ≤ e∗1 there are no positive equilibrium

solutions to (4.19) and if e1 ∈ (e∗1, e
∗
1 + δ) there is a positive equilibrium solution to

(4.19) that is locally stable.

Proof. The existence of the locally stable bifurcating branch of equilibrium solutions

was shown in Sections 5.2 and 5.5. The proof of the nonexistence of positive equilib-

rium solutions when e1 ≤ e∗1 makes use of the fact that ∂
∂u

(
g∗(u,0)

M(g∗(u,0))

)
> 0; but other

than this, is identical to the proof for the u− w subsystem in Section 5.3.



Chapter 6

The Effect of λ on IGPredator
Invasibility

6.1 A Sufficient Condition for the IGPredator to

Invade When λ is Large

We will now examine a sufficient condition for the IGPredator to invade any equi-

librium points of the u − v subsystem when λ is sufficiently large. Consider the

equilibrium equations for the u− v subsystem for a particular value of λ:

d1∆uλ +

(
r(x)− ω1uλ −

a1vλ
1 + a1h1uλ

)
uλ = 0

∆ [Mλ(uλ)vλ] +

(
e1a1uλ

1 + a1h1uλ
− µ1 − ω2vλ

)
vλ = 0 in Ω, (6.1)

∂uλ
∂n

=
∂vλ
∂n

= 0 on ∂Ω ,

81
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where

Mλ(uλ) =


−λg∗ed2/(λg∗) + d2 when g∗ < 0

d2 when g∗ ≥ 0

and, (6.2)

g∗(uλ) =
e1a1uλ

1 + a1h1uλ
− µ1, (6.3)

and where we use the convention that M0 ≡ d2. This choice for Mλ is the expo-

nentially smoothed (as in (4.74)) version of (4.69). As in the discussion of (4.74),

this function (viewed as a function of g∗ ∈ R) is C∞(R). The exponential terms are

chosen so that condition (4.77) is satisfied,

d

dg∗

(
g∗

Mλ(g∗)

)
=
Mλ(g

∗)− g∗M ′
λ(g
∗)

Mλ(g∗)2
, (6.4)

and for g∗ < 0, λ > 0

Mλ(g
∗)− g∗M ′

λ(g
∗) = −λg∗ed2/(λg∗) + d2 − g∗

(
d2

g∗
ed2/(λg

∗) − λed2/(λg∗)
)

= d2 − d2e
d2/(λg∗) > 0 . (6.5)

Satisfying (4.77) will be used to establish the practical persistence type bounds we

are going to develop for the solutions of (6.1) below. Satisfying this condition has the

added benefit of making the positive solution to (6.1) locally stable for values of e1 in

(e∗1, e
∗
1 + δ). We also should note that g∗′(u) = e1a1

(1+a1h1u)2
> 0, so another consequence

of the calculations in (6.4) and (6.5) is that dMλ

du
< 0 when g∗ < 0 and λ > 0.

Set

uc =
µ1

e1a1 − a1h1µ1

(6.6)
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so that g∗(uc) = 0. We will assume that e1 ≥ e∗1 so that positive solutions to (6.1)

exist. We know that e∗1 > h1µ1 so uc > 0. To analyze the ability of the IGPredator

to invade solutions of (6.1) it will help to make the substitution zλ = Mλ(uλ)vλ in

(6.1) to get an equivalent u− z system:

d1∆uλ +

(
r(x)− ω1uλ −

a1zλ
Mλ(uλ)(1 + a1h1uλ)

)
uλ = 0

∆zλ +

(
e1a1uλ

1 + a1h1uλ
− µ1 −

ω2

Mλ(uλ)
zλ

)
zλ

Mλ(uλ)
= 0 in Ω, (6.7)

∂uλ
∂n

=
∂zλ
∂n

= 0 on ∂Ω.

Ultimately, we want to construct a pair of functions (u, v) such that for all ε > 0,

h(uλ, vλ, 0) ≥ h(u, v, 0) − ε for λ sufficiently large. We can then establish sufficient

criteria for the IGPredator to invade the equilibrium point (uλ, vλ) when λ is large.

We will construct (u, v) via a practical persistence type argument as in [10]. First we

will construct a z such that z ≥ zλ for all λ ≥ 0. We will then use this to construct

a monotone family of lower solutions to the uλ equation, {uλ}λ≥0, such that uλ is

converging pointwise to a function u. We can then use the uλ’s to construct lower

solutions, zλ, to the zλ equation, which again limit to a function, z, as λ → ∞.

Finally, the lower solution pairs, (uλ, zλ) can be used to construct lower solutions to

the vλ equation which limit to a function v as λ→∞. Functional analysis arguments

are employed to strengthen the convergence so that these limiting functions can be

used in an eigenvalue analysis of the IGPredator’s invasibility criteria for large λ.

Let u∗ represent the resource only semi-trivial equilibrium to (6.1) (which is inde-

pendent of λ). Clearly uλ ≤ u∗ for all λ ≥ 0 and hence g∗(uλ) ≤ g∗(u∗) for all λ ≥ 0.
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Define

u = max
x∈Ω

u∗(x) and z =
d2g(u)

ω2

=
d2

ω2

(
e1a1u

1 + a1h1u
− µ1

)
. (6.8)

Then

∆z +

(
e1a1uλ

1 + a1h1uλ
− µ1 −

ω2

Mλ(uλ)
z

)
z

Mλ(uλ)
≤ 0

because the term in parenthesis is negative whenever g∗(uλ) < 0 and when g∗(uλ) ≥ 0

we have Mλ(uλ) = d2 and g∗(uλ) ≤ max
Ω

g∗(u∗). Thus, z is a supersolution to the zλ

equation for all λ ≥ 0. We can obtain a subsolution, uλ, to the uλ equation in (6.7)

by replacing zλ with z and letting uλ be the solution of

d1∆uλ +

(
r(x)− ω1uλ −

a1z

Mλ(uλ)

)
uλ = 0 in Ω,

∂uλ
∂n

= 0 on ∂Ω (6.9)

when a positive solution exists, and 0 otherwise. There will be a positive solution to

(6.9) for sufficiently large values of λ. To see this, linearize (6.9) about the trivial

solution and examine the resulting eigenvalue equation

d1∆φ+

(
r(x)− a1z

Mλ(0)

)
φ = σφ in Ω,

∂φ

∂n
= 0 on ∂Ω. (6.10)

As λ→∞, Mλ(0)→∞, so for large λ, (6.10) will have a positive principal eigenvalue

and a standard comparison argument will guarantee that (6.9) admits a positive

solution. This solution is unique because

∂

∂uλ

(
r(x)− ω1uλ −

a1z

Mλ(uλ)

)
= −ω1 +

a1zM
′
λ(uλ)

Mλ(uλ)
2

< 0 ; (6.11)

see [11], Proposition 3.3.
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We can now use the fact that d
du

g(u)
Mλ(u)

≥ 0 and uλ ≤ uλ for all λ ≥ 0 to construct

subsolutions to the zλ equation. Let zλ be the unique positive solution to

∆zλ +
g(uλ)

Mλ(uλ)
zλ −

ω2

Mλ(u∗)2
z2
λ = 0 in Ω,

∂zλ
∂n

= 0 on ∂Ω (6.12)

if such a solution exists, and zλ ≡ 0 otherwise. If we want (6.12) to admit a positive

solution for large values of λ, we will assume some extra conditions on the parameters

of our system. This analysis will be deferred until the end of Chapter 6.

Now, we will see that the subsolutions we have constructed to (6.7), (uλ, zλ), are

monotone increasing in λ and bounded above by (u∗, z). The key observation is that

d
dλ
Mλ(u) ≥ 0. With this in mind, let λ1 < λ2 and examine (6.9). We see that uλ1

will be a subsolution to the equation for uλ2 and hence uλ1 ≤ uλ2 . Knowing that uλ

increases in λ and examining (6.12) we see that the quantity
g(uλ)

Mλ(uλ)
is increasing in λ.

This is because the region in which g(uλ) ≥ 0 is expanding as λ increases and within

this region g is increasing in λ and Mλ = d2. In the region where g(uλ) < 0, we have

to be a little more careful as the function definition of Mλ is changing in λ as well.

It will help to write Mλ and uλ as functions that depend on a variable λ and use the

chain rule to compute

d

dλ

(
g(uλ)

Mλ(uλ)

)
=

d

dλ

(
g(u(λ)

M(λ, g(u(λ)))

)
=

−g
M(λ, g)2

∂M

∂λ
+

∂

∂g

(
g

M(λ, g)

)
dg

du

du

dλ
.

(6.13)

We have ∂M
∂λ
≥ 0, ∂

∂g

(
g

M(λ,g)

)
> 0 (condition (4.77)), dg

du
≥ 0 and du

dλ
≥ 0 for g < 0;

so, (6.13) gives d
dλ

(
g(uλ)

Mλ(uλ)

)
≥ 0 for g < 0. The quadratic term in (6.12) is negative

and the denominator is increasing in λ, hence this whole term is increasing in λ as

well. Therefore, zλ is increasing in λ.
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Since uλ and zλ are increasing and bounded above, they must be converging

pointwise to some functions u and z on Ω. We can see that this convergence is

actually much stronger by rewriting (6.9) and (6.12) as

uλ = (−∆ + 1)−1

(
uλ +

uλ
d1

(
r(x)− ω1uλ −

a1z

Mλ(uλ)

))
(6.14)

zλ = (−∆ + 1)−1

((
1 +

g(uλ)

Mλ(uλ)

)
zλ −

ω2

Mλ(u∗)2
z2
λ

)
(6.15)

and use the fact that (−∆ + 1)−1 is a bounded linear operator from C(Ω) to C1+α
N (Ω)

for all α ∈ (0, 1). Take any {λn}∞n=1 converging to∞, and observe that the correspond-

ing solution pairs {(uλn , zλn)} are bounded in C(Ω)×C(Ω) (and so are the resulting

right hand sides of (6.14) and (6.15)). Hence {(uλn , zλn)} is bounded in C1+α(Ω) ×

C1+α(Ω) which compactly embeds in C1+β(Ω) × C1+β(Ω) for 0 < β < α. Therefore,

there exists a subsequence of {(uλn , zλn)} that converges in C1+β(Ω) × C1+β(Ω) to

(u, z) (because the limit in C1+β(Ω)×C1+β(Ω) must agree with the pointwise limit).

We can conclude that ‖(uλ, zλ)− (u, z)‖C1+β(Ω)×C1+β(Ω) → 0 as λ→∞. This follows

from the fact that if the limit were not 0, then we could select a sequence of λn’s ap-

proaching∞ and an ε > 0 such that ‖(uλn , zλn)− (u, z)‖C1+β(Ω)×C1+β(Ω) > ε for all λn

yet it still has a subsequence that converges to (u, z). This is clearly a contradiction.

To develop sufficient criteria for the successful invasion of an equilibrium, (uλ, vλ),

of the u-v subsystem by the IGPredator, we will need a lower bound for the vλ’s.

Define

vλ =


zλ
d2

where uλ > uc,

0 otherwise.

(6.16)

Because vλ = zλ
Mλ(uλ)

and uλ ≤ uλ we have vλ = zλ
d2

whenever uλ > uc. Combine this
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with the fact that zλ ≤ zλ and we get vλ ≤ vλ. Let

v =


z

d2

where u > uc,

0 otherwise.

(6.17)

Now, we have (uλ, vλ) increasing pointwise to the bounded functions (u, v). The

IGPredator functional response function, h(u, v, w), is continuous and increasing in

both the u and v variables, hence h(uλ, vλ, 0) is increasing pointwise to h(u, v, 0). We

can now state a sufficient condition for the IGPredator to be able to invade a u − v

equilibrium point when λ is large.

Theorem 6.1.1. Consider the principal eigenvalue, σ, of

d3∆φ+ h(u, v, 0)φ = σφ in Ω, and
∂φ

∂n
= 0 on ∂Ω, (6.18)

that is given by

σ = max
ψ∈W 1,2(Ω)
‖ψ‖2=1

(
−d3

∫
Ω

|∇ψ|2 dx+

∫
Ω

h(u, v, 0)ψ2 dx

)
. (6.19)

If σ > 0 then there exists a Λ > 0 such that for λ ≥ Λ, wλ will be able to invade the

(uλ, vλ, 0) equilibrium.

Proof. Let ψ̂ be the unique positive maximizer of of (6.19). Then h(uλ, vλ, 0)ψ̂2 is a

measureable function that is increasing in λ and converging pointwise to h(u, v, 0)ψ̂2.

The Lebesgue Monotone Convergence Theorem implies that

lim
λ→∞

∫
Ω

h(uλ, vλ, 0)ψ̂2 dx =

∫
Ω

h(u, v, 0)ψ̂2 dx . (6.20)
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Choose Λ large enough so that for all λ ≥ Λ we have

∫
Ω

h(uλ, vλ, 0)ψ̂2 dx ≥
∫

Ω

h(u, v, 0)ψ̂2 dx− σ

2
. (6.21)

Take λ ≥ Λ and let σλ be the principal eigenvalue of

d3∆φλ + h(uλ, vλ, 0)φλ = σλφλ . (6.22)

If this eigenvalue is positive, then w can invade the equilibrium point (uλ, vλ, 0). The

variational formula for σλ gives

σλ = max
ψ∈W 1,2(Ω)
‖ψ‖2=1

(
−d3

∫
Ω

|∇ψ|2 dx+

∫
Ω

h(uλ, vλ, 0)ψ2 dx

)

≥ max
ψ∈W 1,2(Ω)
‖ψ‖2=1

(
−d3

∫
Ω

|∇ψ|2 dx+

∫
Ω

h(uλ, vλ, 0)ψ2 dx

)

≥ −d3

∫
Ω

|∇ψ̂|2 dx+

∫
Ω

h(uλ, vλ, 0)ψ̂2 dx

≥ −d3

∫
Ω

|∇ψ̂|2 dx+

∫
Ω

h(u, v, 0)ψ̂2 dx− σ

2

=
σ

2
> 0 . (6.23)
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As discussed above, we might wish to guarantee that the zλ’s are non-zero for

sufficiently large λ. This will be the case if there exists a region in Ω with positive

measure such that uλ > uc for all large λ. Let r = maxx∈Ω r(x). Then, if

r − ω1uc −
a1z

d2

≤ 0 (6.24)

we will have uλ ≤ uc everywhere for all λ. This follows from the fact that if (6.24) is

satisfied, then uc is a supersolution to the uλ equation, (6.9), for all λ. So, a necessary

condition for zλ > 0 for λ large is

r > ω1uc +
a1z

d2

. (6.25)

In fact, this condition is also sufficient if d1 is sufficiently small and λ sufficiently

large. To show this, fix x and consider the equation

r(x) = ω1ξ +
a1z

Mλ(ξ)
. (6.26)

This will have a unique positive solution (depending on λ) for all x ∈ Ω when λ is

large. Call this solution ξλ(x). We know there is a unique solution because the left

hand side is independent of λ and the right hand side is increasing (at least linearly)

in ξ (because Mλ(ξ) is decreasing in ξ) and can be made arbitrarily small at ξ = 0

by choosing λ large. Now, Proposition 3.16 of [11] applies to (6.9) giving the result:

Lemma 6.1.1. For a fixed λ > 0 such that ξλ(x), the solution to (6.26), is a positive

function on Ω, the solution, uλ, to (6.9) is such that uλ → ξλ(x) uniformly on any

closed subset of Ω as d1 → 0.
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Proof. This is a direct application of Proposition 3.16 in [11].

If (6.25) is satisfied, then ξλ(x) > uc in a neighborhood of the point where r(x)

attains its maximum value; and, for small enough d1 Lemma 6.1.1 implies that we

will have uλ > uc at this point as well.

We can use (6.6) to express uc in terms of the original system parameters, and

use the fact that u ≤ r
ω1

to get the bound

ω1uc +
a1z

d2

≤ ω1µ1

a1(e1 − h1µ1)
+
a1

ω2

(
e1a1r

ω1 + a1h1r
− µ1

)
. (6.27)

So, for (6.25) to be satisfied, it would be sufficient to have

r >
ω1µ1

a1(e1 − h1µ1)
+
a1

ω2

(
e1a1r

ω1 + a1h1r
− µ1

)
. (6.28)

This is a quadratic inequality in r, and a more transparent condition that disentangles

the system parameters may be desired. This can be obtained by noting that

e1a1r

ω1 + a1h1r
<
e1

h1

(6.29)

which can be used to get another, more clear, condition that will imply (6.25), namely

r >
ω1µ1

a1h1(e1 − µ1h1)
+
a1(e1 − µ1h1)

ω2h1

. (6.30)

To recap, in order for zλ > 0 for any value of λ it is necessary for (6.25) to hold. In

addition, if d1 is sufficiently small, then (6.25) is a sufficient condition for zλ > 0 for

large values of λ. Furthermore, conditions (6.28) and (6.30) imply (6.25) (and are

easier to verify directly from system parameters).



Chapter 7

Numerical Approximation

7.1 A Finite Element Discretization

We will make use of a finite element discretization scheme that is the system analogue

to the single equation scheme described in Chapter 13 of [40]. Let Ω be a plane convex

domain with smooth boundary and J = (0, T ]. The numerical scheme derived in [40]

is for the parabolic problem

ut −∇ · (a(u)∇u) = f(u) in Ω, t ∈ J, (7.1)

u = 0 on ∂Ω, t ∈ J ; u(·, 0) = u0 in Ω .

We are dealing with a system of equations, but the analysis is valid unchanged (merely

more cumbersome notation). Our system has explicit x dependence in what would

be the f(u) term on the right hand side, but again the analysis is unchanged. In fact,

although not explicitly stated, the analysis treats f as a function from the function

space of u into a Hilbert space (usually the dual space to the space of test functions
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employed in the finite element discretization). The fact that [40] treats Dirichlet

conditions instead of Neumann again is insignificant, as Neumann conditions arise

naturally in the finite element discretization via dropping boundary integrals that

arise from using the Divergence Theorem.

It is necessary to assume that a and f are smooth functions such that

0 < d ≤ a(x, ξ) ≤M,

∣∣∣∣ ∂∂ξ a(x, ξ)

∣∣∣∣+

∣∣∣∣ ∂∂ξ f(x, ξ)

∣∣∣∣ ≤ B, (7.2)

for x ∈ Ω and ξ in a neighborhood of the solution of (7.1) (the neighborhood being

taken in C(Ω)). We have assumed that M(u,w) is twice differentiable and bounded

below by d, and we showed in Chapter 3 that solutions to our system have C1+α(Ω)

norms that are bounded in time by a constant depending on our initial conditions,

so (7.2) is satisfied for our problem.

Let Th be a triangulation of Ω with maxτ∈Th diam(τ) ≤ h and let Sh the the

corresponding finite dimensional space of continuous functions on Ω that are linear

when restricted to any τ ∈ Th (the piecewise linear approximating functions). Define

u0,h to be the approximating function of u0 in Sh (by projecting it onto the finite

basis of Sh). Let k be the constant time-step size for the time discretization. The

discretized version of problem (7.1) is to find {Un}tn∈J ⊆ Sh such that

〈∂̄Un, χ〉+ 〈a(Un)∇Un,∇χ〉 = 〈f(Un), χ〉, ∀χ ∈ Sh, tn ∈ J, (7.3)

where U0 = u0,h and ∂̄Un = Un−Un−1

k
. However, (7.3) is still a nonlinear system,

and therefore not an efficient means of obtaining an approximate solution. The first

method used to derive a linear system that approximates the solution to (7.1) replaces
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the a(Un) and f(Un) terms in (7.3) with a(Un−1) and f(Un−1), yielding the linear

system

〈∂̄Un, χ〉+ 〈a(Un−1)∇Un,∇χ〉 = 〈f(Un−1), χ〉, ∀χ ∈ Sh, tn ∈ J . (7.4)

The following error estimate applies to (7.4):

Theorem 7.1.1 (Theorem 13.3 [40]). Let Un and u be the solutions to (7.4) and

(7.1) respectively. Then under the appropriate regularity assumptions for u we have

‖Un − u(tn)‖2 ≤ C‖u0, h − u0‖2 + C(u)(h2 + k) , for tn ∈ J̄ . (7.5)

The error estimate above is quadratic in terms of the triangulation size h, but only

linear with respect to the time step size. Quadratic accuracy in time can be achieved

by using a Crank-Nicolson time stepping scheme. Let Ûn = Un+Un−1

2
for n ≥ 1 and

Ūn = 3
2
Un−1 − 1

2
Un−2 for n ≥ 2. The system

〈∂̄Un, χ〉+ 〈a(Ūn)∇Ûn,∇χ〉 = 〈f(Ūn), χ〉, ∀χ ∈ Sh, tn ∈ J (7.6)

is linear and yields quadratic accuracy in time (see Theorem 7.9 below). However,

we need both U0 and U1 to begin computing Un via (7.6). This is accomplished by

defining U1,0 to be the solution of the linear system

〈
U1,0 − U0

k
, χ

〉
+

〈
a(U0)∇

(
U1,0 − U0

2

)
,∇χ

〉
= 〈f(U0), χ〉 , ∀χ ∈ Sh ; (7.7)
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and, U1 determined by the solution of

〈
∂̄U1, χ

〉
+

〈
a

(
U1,0 − U0

k

)
∇Û1,∇χ

〉
=

〈
f

(
U1,0 − U0

k

)
, χ

〉
, ∀χ ∈ Sh . (7.8)

The error estimate (which is quadratic in space, h, and time, k) is given by the

following theorem:

Theorem 7.1.2 (Theorem 13.5 [40]). Let Un be the solution of (7.6), with U1 coming

from solving (7.7) and (7.8) and u the solution of (7.1). Then, under the appropriate

regularity assumptions for u, we have

‖Un − u(tn)‖2 ≤ C‖u0, h − u0‖2 + C(u)‖h2 + k2‖2, for tn ∈ J̄ . (7.9)

The scheme described in Theorem 7.1.2 was implemented using the Python pro-

gramming language and the finite element package GetFEM++ which is a free GNU

license finite element library written for C++ with implementations in C++, Matlab,

Python and Scilab (http://download.gna.org/getfem/html/homepage).

7.2 Numerical Results

Numerical solutions were run using a long thin rectangle, Ω = {(x, y) ∈ [0, 1] ×

[0, .025]} for the domain. The environmental heterogeneity was taken as a function

of x only:

r(x, y) = cos(2πx) + 2.4 . (7.10)
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The finite element nodes were spaced h = .025 units apart and the time step, k, was

.05. The rest of the parameters used were:

d1 = .01 d2 = .05 d3 = .001

e1 = 1 a1 = 1 h1 = .1

e2 = .5 a2 = 1 h2 = .1

e3 = .2 a3 = 2 h3 = .1

ω1 = 1 ω2 = .3 ω3 = .4

µ1 = .1 µ2 = .4

These parameters were chosen so that:

• the IGPredator and resource have low random dispersal rates;

• the IGPredator cannot subsist locally on the resource productivity in the center

of the domain, but the IGPrey can; and,

• the IGPredator is very hostile towards the IGPrey (a3 = 2), but the IGPredator

gains little from the consumption of the IGPrey (e3 = .2).

This creates a situation where the u − w subsystem has low IGPredator density in

the center of the domain and a much higher density towards the edges that in turn

makes g∗(u,w) positive in the center of the domain and negative towards its edges.

When the IGPrey dispersed randomly with diffusion coefficient d2, these parameters

resulted in the IGPrey being driven to extinction for all initial values tried. For all of

the initial values used, the u and w components converged to the equilibrium pictured
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in Figure 7.1. Along with the resource and IGPredator equilibrium levels, Figure 7.1

shows the function g∗(u,w) at this equilibrium.

This is the situation that was discussed in Section 5.4, where
∫

Ω
g∗(u,w) dx < 0

and 1
d2
< Λ+

1 (g∗(u,w)). Recall, the IGPrey can invade this equilibrium with random

dispersal if and only if 1
d2
> Λ+

1 (g∗(u,w)).

Methodically varying d2 to estimate the value of Λ+
1 (g∗(u,w)) yielded an estimate

of Λ+
1 (g∗(u,w)) ≈ 500, or a critical value for d2 of .002 for these parameters.

Figures 7.2 and 7.3 show coexistence equilibrium states for the system with all of

the same parameters as Figure 7.1 except that the IGPrey is using fitness dependent

dispersal. The specific choice for Mλ(u,w) was the exponentially smoothed piecewise

linear function

Mλ(g
∗) =


d2 for g∗ ≥ 0 ,

−λg∗ed2/(λg∗) + d2 for g∗ < 0 ,

(7.11)

(with d2 = .05 as in the previous case). Figure 7.2 results from choosing λ = 3 and

Figure 7.3 results from choosing λ = 1.5 (notice the scale diffrences for the v and Mλ

graphs in these two figures). In both cases, the IGPrey has nearly constant density

in the region where g∗ ≥ 0 and then decays sharply outside of this region. Larger

values of λ result in higher IGPrey densities in this “good” region.
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Resource-IGPredator Equilibrium
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Figure 7.1: An equilibrium solution where the IGPrey has been driven to extinction.
There is a narrow region in the center of Ω where g∗(u,w) > 0.
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Coexistence Equilibrium With Fitness Dependent Dispersal
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Figure 7.2: The coexistence equilibrium resulting from the IGPrey employing the
fitness dependent movement strategy (7.11) with λ = 3.
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Coexistence Equilibrium With Fitness Dependent Dispersal
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Figure 7.3: The coexistence equilibrium resulting from the IGPrey employing the
fitness dependent movement strategy (7.11) with λ = 1.5.



Chapter 8

Conclusion

We have proposed a model for studying the effects of fitness dependent dispersal in an

intraguild predation community module. We used a cross-diffusion system to model

the population dynamics of the resource, IGPrey and IGPredator, under the assump-

tion that the resource and IGPredator dispersed through the environment randomly

and the IGPrey employed a movement strategy based on population densities of the

resource and IGPredator.

In Chapter 3, we showed that the model system we developed has global solutions

for any choice of movement strategy, M(u,w) that was bounded below away from

zero for nonnegative u and w and is twice differentiable.

In Chapter 4, we used a semiflow framework to study ecological permanence for

the model. We restricted our choices of M(u,w) to strategies that were a function of

the IGPrey’s fitness (linearized about v ≡ 0). We saw that if the strategy increased

motility sufficiently in response to negative fitness, then the IGPrey would be uni-

formly persistent as long as there was some point in the domain that had positive
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fitness for all resource-IGPredator configurations arising from the global attractor of

the u− w subsystem.

This result seems complementary to the result from standard reaction-diffusion

equations that if there is a point in the habitat where the species has positive fitness

and the random diffusion level is small enough, then the species will persist under

no-flux boundary conditions (see Proposition 3.16 of [11]). In that instance, small

motility throughout the domain leads to coexistence because the loss due to flux into

the “bad” areas is small. In our model with nonrandom dispersal, persistence is the

result of a high motility in the “bad” region, i.e. the flux out of the “bad” region is

large.

Chapter 5 showed that the conversion efficiencies, e1 and e2, could be used as

bifurcation parameters to study the subsystems arising when the IGPredator or IG-

Prey is absent. We showed that there were critical levels, e∗1 and e∗2, at which locally

stable (with some restrictions on M) positive equilibria bifurcated from the semi-

trivial equilibrium state (u∗, 0). We went on to show how the criteria for v invading

this locally stable equilibrium of the u− w subsystem differed in the case of random

diffusion vs. fitness dependent dispersal.

The last piece of analytical study of (2.5) came in Chapter 6, where we investigated

the effect of fitness dependent dispersal on the IGPredator’s ability to invade a u− v

subsystem equilibrium. We developed sufficient criteria for the IGPredator to invade

for all M of the type we have been considering.

The finite element numerical scheme developed in Chapter 7 provided simulation

results confirming that fitness dependent dispersal could facilitate coexistence in cases

where random diffusion failed to do so.
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Recall that Holt and Polis in [19] used a Lotka-Volterra ODE model to study

an intraguild predation community. They found that coexistence was most common

when resource productivity was at an intermediate level. By introducing spatial het-

erogeneity into the system through a spatially varying resource productivity, we were

able to examine the effects of nonrandom dispersal strategies for the IGPrey. We

found that fitness dependent dispersal could enhance the IGPrey’s ability to invade

and persist in the system as long as there was some region in the environment where

the resource/predation trade-off was sufficiently favorable (positive fitness). This is

likely to occur when the environment has a large variation in resource productivity.

The numerical simulations of Chapter 7 demonstrate an example where the resource

varies significantly and the coexistence is attained through a partial segregation of

the IGPrey and IGPredator. The IGPrey occupied the area with lower resource pro-

ductivity (where its competitive ability gave it an advantage) and the IGPredator

was more concentrated in areas of high resource productivity (where it was able to

subsist at high enough density to cause significant predation pressure on the IG-

Prey). Priyanga Amarasekare found a similar segregation effect for fitness dependent

dispersal in an ODE patch model with varying resource productivity [6].

This type of spatial heterogeneity can lead to coexistence with random diffusion

as well; however, the segregation effect of the IGPrey’s fitness dependent dispersal

strategy leads to a significantly broader range of parameter values where coexistence

can occur (because it is less likely to be driven to extinction). This suggests that

an interplay between environmental and behavioral factors may be the reason why

intraguild predation communities exhibit robust coexistence.
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