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As we known, infectious diseases can be transmitted from one region to another

due to extensive travel and migration. Meanwhile, different regions have different de-

mographic and epidemiological characteristics. To capture these features, multi-patch

epidemic models have been developed to study disease transmission in heterogeneous

environments. These models are usually described by a system of differential equa-

tions with the dynamics of each patch coupled to that of other patches by population

dispersal. Typically, a patch may represent a city, a village, or a biological habitat. A

full understanding the effect of travel on the spatial spread of disease between patch-

es can definitely improve disease control and prevention measures. In this thesis, we

propose several epidemic models in a patchy environment to investigate some specific

epidemiological problems.

In the first chapter , a susceptible-infectious-susceptible patch model with noncon-

stant transmission coefficients is formulated to investigate the effect of media coverage

and human movement on the spread of infectious diseases among patches. The basic

reproduction number R0 is determined. It is shown that the disease-free equilibrium

is globally asymptotically stable if R0 ≤ 1, and the disease is uniformly persistent

and there exists at least one endemic equilibrium if R0 > 1. In particular, when the

disease is nonfatal and the travel rates of susceptible and infectious individuals in each



patch are the same, the endemic equilibrium is unique and is globally asymptotically

stable as R0 > 1. Numerical calculations are performed to illustrate some results for

the case with two patches.

In chapter 2, we propose a multi-patch model to study the effects of population

dispersal on the spatial spread of malaria between patches. The basic reproduction

number R0 is derived and it is shown that the disease-free equilibrium is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1. Bounds on the disease-free

equilibrium and R0 are given. A sufficient condition for the existence of an endemic

equilibrium when R0 > 1 is obtained. For the two-patch submodel, the dependence

of R0 on the movement of exposed, infectious, and recovered humans between the

two patches is investigated. Numerical simulations indicate that travel can help the

disease to become endemic in both patches, even though the disease dies out in each

isolated patch. However, if travel rates are continuously increased, the disease may

die out again in both patches.

In Chapter 3, based on the classical Ross-Macdonald model, we propose a periodic

malaria model to incorporate the effects of temporal and spatial heterogeneity in

disease transmission. We define the basic reproduction number R0 and show that

either the disease-free periodic solution or the positive periodic solution is globally

asymptotically stable. Numerical simulations are conducted to confirm the analytical

results.

Chapter 4 is devoted to studying the spatial spread of Rift Valley fever in Egypt.

We propose a three-patch model for the process that animals enter Egypt from Sudan

are moved up the Nile, and then consumed at the feast. The basic reproduction

number for each patch is introduced and then the threshold dynamics of the model is

established. We simulate an interesting scenario showing possible explanation to the



observed phenomenon in Egypt.

Finally, we summarize the main results of this thesis and list some possible future

research directions in Chapter 5.
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Chapter 1

An SIS Patch Model with Variable
Transmission Coefficients

1.1 Background

It has been observed that media coverage can affect the spread and control of infec-

tious diseases (see Liu et al. [50] and the references cited therein). During outbreaks of

serious infectious diseases such as the SARS outbreak in 2003 and the H1N1 influenza

pandemic in 2009, public media has massive reports on the number of infections and

deaths per day, the locations where these happen, the symptoms of the disease, the

proper protections to decrease the possibility of being infected, etc. People follow

the reports and thus choose to protect themselves by reducing their social activities

and direct contact with others, especially with those high-risk groups, which could

therefore lead to a reduction of effective contacts between susceptible individuals and

infectious individuals. In a recent paper [20], Cui et al. proposed an SIS (susceptible-

infectious-susceptible) epidemiological model incorporating media coverage

dS

dt
= A− dS − β(I)

SI

S + I
+ γI,

dI

dt
= β(I)

SI

S + I
− (d+ ν + γ)I,

(1.1.1)

1



2

where the transmission coefficient β(I) is a nonincreasing function of the number of

the infectious individuals. They defined a threshold for (1.1.1) below which all orbits

converge to the disease-free equilibrium and above which all orbits with I(0) > 0

converge to a unique endemic equilibrium.

In this chapter, we shall study an SIS patch model for the transmission of an

infectious disease with population dispersal among p patches. Within a single patch,

our model is based on that of Cui et al. [20]. Let Si(t) and Ii(t) denote, respectively,

the number of susceptible and infectious individuals in patch i at time t. The popula-

tion dynamics are described by the following system of ordinary differential equations

with nonnegative initial conditions:

dSi

dt
= Ai − diSi − βi(Ii)

SiIi
Si + Ii

+ γiIi +

p∑
j=1

mijSj, 1 ≤ i ≤ p,

dIi
dt

= βi(Ii)
SiIi
Si + Ii

− (di + νi + γi)Ii +

p∑
j=1

nijIj, 1 ≤ i ≤ p.

(1.1.2)

In patch i, Ai > 0 is the recruitment rate, di > 0 is the natural death rate, γi > 0 is

the recovery rate and νi ≥ 0 is the disease-induced death rate. The transmission coef-

ficient in patch i is βi(Ii) = ai− bifi(Ii), where ai is the usual transmission coefficient

without considering the impact of media reported number of infective individuals, bi

is the maximum reduced transmission coefficient due to the media effect and fi(Ii)

is a saturation function to measure the impact of the reported number of infected

individuals. Similar to Cui et al [20], we assume that

ai > bi ≥ 0, fi(0) = 0, fi(Ii) ∈ C1([0,∞)) with f ′
i(Ii) ≥ 0, lim

Ii→∞
fi(Ii) = 1
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for i = 1, . . . , p. Typical examples of fi(Ii) with such properties are 1− ki/(ki + Ini
i )

with ki > 0 and ni > 0, and 1 − e−kiIi with ki > 0. When bi = 0 for i = 1, 2, . . . , p,

i.e., the media impact is ignored, model (1.1.2) with two patches was studied in

Salmani and van den Driessche [76]. The immigration rates from patch j to patch i

for i ̸= j of susceptible and infectious humans are denoted, respectively, by mij ≥ 0

and nij ≥ 0, while the emigration rates of susceptible and infectious humans in patch

i are denoted, respectively, by −mii ≥ 0 and −nii ≥ 0. For simplicity, deaths and

births during travel are neglected. Thus, we have

p∑
j=1

mji = 0 and

p∑
j=1

nji = 0 for i = 1, 2, . . . , p.

Unless otherwise indicated, the travel rate matrices (mij)p×p and (nij)p×p are assumed

to be irreducible.

The organization of this chapter is as follows. In Section 2, the basic reproduction

number R0 is defined and it is shown to be a threshold of the disease dynamics.

Namely, the disease can be eradicated if R0 ≤ 1 and will be endemic if R0 > 1. In

Section 3, we consider the special case when susceptible and infectious individuals

have identical travel rates and there is no disease-induced death, and present a global

qualitative analysis. In the final section, we conclude with some numerical examples

and a brief discussion.

1.2 Threshold Dynamics

We first introduce some notations which will be used throughout this chapter. Let

Rp
+ = {x ∈ Rp : xi ≥ 0 for 1 ≤ i ≤ p} be the positive orthant in Rp and IntRp

+ = {x ∈
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Rp : xi > 0 for 1 ≤ i ≤ p} be the interior of Rp
+. We write x ≤ y and y ≥ x whenever

y− x ∈ Rp
+, x < y and y > x whenever y− x ∈ Rp

+ and x ̸= y, and x≪ y and y ≫ x

whenever y−x ∈ IntRp
+. If x, y ∈ Rp

+ and x ≤ y, we let [x, y] = {z ∈ Rp
+ : x ≤ z ≤ y}.

Let Ni(t) = Si(t) + Ii(t) be the total population in patch i at time t, and let the

new infection term in patch i equal zero whenever Ni = 0 (Greenhalgh [29]). The

following result indicates that model (1.1.2) is mathematically and biologically well

posed.

Theorem 1.1. Consider system (1.1.2) with non-negative initial conditions. Then

the system has a unique solution defined for all time t ≥ 0, and all disease state

variables remain non-negative. Moreover, the total population N(t) =
p∑

i=1

Ni(t) is

bounded.

Proof. The vector field defined by (1.1.2) is Lipschitzian in each compact set in R2p
+ ,

so the initial value problem has a unique solution which exists for all t ≥ 0 (Zhang et

al. [102]). The non-negative property of state variables can be immediately verified.

Let A =
p∑

i=1

Ai and D = min
1≤i≤p

di. Since

dN

dt
=

p∑
i=1

(Ai − diNi − νiIi) ≤
p∑

i=1

(Ai − diNi) ≤ A−DN,

by a comparison theorem, N(t) is bounded above by max{A/D, N(0)}.

1.2.1 Basic Reproduction Number

Let the right hand side of (1.1.2) be zero, one can verify that model (1.1.2) always

admits a disease-free equilibrium (DFE), denoted by E0 = (S0
1 , S

0
2 , . . . , S

0
p , 0, 0, . . . , 0).

Indeed, there is a DFE if and only if S0 = (S0
1 , S

0
2 , . . . , S

0
p) satisfies B(S0)T = A, where
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B = (δijdi−mij)p×p and A = (A1, A2, . . . , Ap)
T . Here δij denotes the Kronecker delta

(i.e. 1 when i = j and 0 otherwise). It follows from Corollary 4.3.2 in Smith [80] that

B−1 is a positive matrix. Hence S0 = (B−1A)T ≫ 0 guarantees the existence and

uniqueness of the disease-free equilibrium.

Now, we calculate the basic reproduction number of (1.1.2). Using the recipe of

van den Driessche and Watmough [90], we have

F = (δijai)p×p and V = (δij(di + νi + γi)− nij)p×p.

Therefore, the basic reproduction number is R0 = ρ(FV −1), where ρ denotes the

spectral radius and it is the same as that of the classical model with fixed transmission

coefficients.

Observe that R0 is independent of the parameters Ai, bi for i = 1, 2, . . . , p, and

the travel rates of susceptible individuals. It is easy to see that R0 is increasing in

ai while it is decreasing with respect to di, νi and γi. The following estimation on

the basic reproduction number was already showed by Wang and Mulone [93] and

Salmani and van den Driessche [76] for p = 2, so here is an interesting generalization

for general p.

Proposition 1.2. Let R(i)
0 = ai/(di + νi + γi) be the basic reproduction number for

patch i in isolation and write R̃(i)
0 = ai/(di + νi + γi − nii) as a modified reproduction

number that contains travel of infectives out of patch i. Then

max{max
1≤i≤p

R̃(i)
0 , min

1≤i≤p
R(i)

0 } ≤ R0 ≤ max
1≤i≤p

R(i)
0 .
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Proof. The inequality max
1≤i≤p

R̃(i)
0 ≤ R0 ≤ max

1≤i≤p
R(i)

0 follows a similar analysis used

in the proof of Theorem 3.4 in Gao and Ruan [28]. It then suffices to prove that

min
1≤i≤p

R(i)
0 ≤ R0.

Let ci = di + νi + γi for i = 1, 2, . . . , p and s(·) denote the spectral bound of a

matrix. Since V has a positive inverse, FV −1 is a positive matrix. Using the Perron-

Frobenius theorem, R0 = s(FV −1) is a simple eigenvalue of FV −1 associated to a

positive eigenvector v and any eigenvector w > 0 of FV −1 is a positive multiple of

v (see Smith [80]). Hence, FV −1v = R0v, which is equivalent to −V F−1v = − 1
R0

v,

where

−V F−1 = (nij)p×pF
−1 − diag{1/R(1)

0 , 1/R(2)
0 , . . . , 1/R(p)

0 }.

Since −V F−1 is a quasi-positive and irreducible matrix and v is positive, we conclude

that s(−V F−1) = −1/R0. The facts ML ≤ −V F−1 ≤ MU and s((nij)p×pF
−1) = 0

imply that

s(ML) = − max
1≤i≤p

1

R(i)
0

≤ s(−V F−1) = −1/R0 ≤ s(MU) = − min
1≤i≤p

1

R(i)
0

,

where

ML = (nij)p×pF
−1 − max

1≤i≤p

1

R(i)
0

· diag{1, 1, . . . , 1},

MU = (nij)p×pF
−1 − min

1≤i≤p

1

R(i)
0

· diag{1, 1, . . . , 1}.

A direct simplification completes the proof of the proposition.

Remark 1.3. By the results in Hadeler and Thieme [32], s(−V F−1) depends in a

monotone way on the travel rate of infectious humans nij for i, j = 1, 2, . . . , p and
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i ̸= j. More precisely, it is always strictly decreasing or strictly increasing or it is

constant. So is R0 = −1/s(−V F−1).

Like in the single patch model (1.1.2) or many other epidemic models, we have

the global stability of the DFE for system (1.1.2) as R0 < 1.

Theorem 1.4. The DFE of system (1.1.2) is globally asymptotically stable (GAS) if

R0 ≤ 1 and unstable if R0 > 1.

Proof. From Theorem 2 in van den Driessche and Watmough [90], E0 is locally asymp-

totically stable if R0 < 1, but unstable if R0 > 1. Now it suffices to prove that

all solutions converge to the DFE when R0 ≤ 1. The inequalities Si/Ni ≤ 1 and

βi(Ii) ≤ ai yield

dIi
dt

≤ aiIi − (di + νi + γi)Ii +

p∑
j=1

nijIj, 1 ≤ i ≤ p.

By applying the algorithm in Kamgang and Sallet [44], we know that the DFE is GAS

whenever R0 ≤ 1 (or like in Sun et al. [85], by a standard comparison theorem).

1.2.2 Uniform Persistence

Using the techniques of persistence theory (Zhao [104]), we can show the uniform

persistence of the disease and the existence of at least one endemic equilibrium when

R0 > 1. Thus, the basic reproduction number R0 is a threshold parameter of the

disease dynamics. The proof below is analogous to those of Theorem 2.3 in Wang

and Zhao [94] and Theorem 4.1 in Gao and Ruan [28].
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Theorem 1.5. For model (1.1.2), if R0 > 1, then the disease is uni-

formly persistent, i.e., there exists a constant κ > 0 such that every so-

lution ϕt(x0) ≡ (S1(t), . . . , Sp(t), I1(t), . . . , Ip(t)) of system (1.1.2) with x0 ≡

(S1(0), . . . , Sp(0), I1(0), . . . , Ip(0)) ∈ Rp
+ × Rp

+\{0} satisfies

lim inf
t→∞

Ii(t) > κ for i = 1, 2, . . . , p,

and (1.1.2) admits at least one endemic equilibrium.

Proof. Let

X = {(S1, . . . , Sp, I1, . . . , Ip) : Si ≥ 0, Ii ≥ 0, i = 1, 2, . . . , p},

X0 = {(S1, . . . , Sp, I1, . . . , Ip) ∈ X : Ii > 0, i = 1, 2, . . . , p},

∂X0 = X\X0 = {(S1, . . . , Sp, I1, . . . , Ip) ∈ X : Ii = 0 for some i ∈ {1, 2, . . . , p}}.

It suffices to prove that ∂X0 repels uniformly the solutions of system (1.1.2) in X0.

Clearly, ∂X0 is relatively closed in X. It is immediate that X and X0 are positively

invariant. Theorem 1.1 implies that system (1.1.2) is point dissipative.

Denote M∂ = {x0 ∈ ∂X0 : ϕt(x0) ∈ ∂X0 for t ≥ 0} and D = {x0 ∈ X : Ii = 0, i =

1, 2, . . . , p}. Obviously, D ⊂M∂. On the other hand, we have I1(0) + · · ·+ Ip(0) > 0

for any x0 ∈ ∂X0\D. By the irreducibility of the travel rate matrix (nij)p×p, we know

that ϕt(x0) ∈ X0 for all t > 0. Therefore, x0 ̸∈ M∂ and M∂ ⊂ D, which implies that

M∂ = D.

The disease-free equilibrium E0 is the unique equilibrium in M∂. Let W
s(E0) be
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the stable manifold of E0. We now show that W s(E0) ∩X0 = ∅ when R0 > 1. Let

Mϵ = F − V − diag{a1ϵ+ b1ϵ− b1ϵ
2, . . . , apϵ+ bpϵ− bpϵ

2}.

Since s(F − V ) > 0 if and only if R0 > 1, there is an ϵ1 > 0 such that s(Mϵ) > 0 for

ϵ ∈ [0, ϵ1]. Choose η small enough such that

Si(0)/Ni(0) ≥ 1− ϵ1 and fi(Ii(0)) ≤ ϵ1 for i = 1, . . . , p, ∥x0 − E0∥ ≤ η.

We claim that lim sup
t→∞

∥ϕt(x0) − E0∥ > η for x0 ∈ X0, where ∥ · ∥ is the usual

Euclidean norm. Suppose not, after translation, we have ∥ϕt(x0) − E0∥ ≤ η for all

t ≥ 0 and hence

dIi
dt

≥ (ai − biϵ1)(1− ϵ1)Ii − (di + νi + γi)Ii +

p∑
j=1

nijIj, 1 ≤ i ≤ p.

Notice that Mϵ1 has a positive eigenvalue s(Mϵ1) associated to a positive eigenvector.

It follows from a comparison theorem that Ii(t) → ∞ as t → ∞ for i = 1, 2, . . . , p, a

contradiction.

Since E0 is globally stable in M∂, it follows that {E0} is an isolated invariant set

and acyclic. By Theorem 4.6 in Thieme [88], system (1.1.2) is uniformly persistent

with respect to (X0, ∂X0). Furthermore, by Theorem 2.4 in Zhao [103], we know

that system (1.1.2) has an equilibrium Ē = (S̄1, . . . , S̄p, Ī1, . . . , Īp) ∈ X0. The first

equation of (1.1.2) ensures that S̄i > 0 for i = 1, . . . , p. This means that Ē is an

endemic equilibrium of system (1.1.2).
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Remark 1.6. Neither the travel of susceptible individuals nor the media coverage

affects the persistence and extinction of the disease. By Proposition 1.2, if R(i)
0 > 1

(or ≤ 1) for i = 1, 2, . . . , p, then R0 > 1 (or ≤ 1). Biologically, this means that the

disease persists or dies out in each isolated patch then remains persistent or extinct,

respectively, when human movement occurs.

1.3 Model with Restrictions

In the case where there is no disease-induced death (i.e., νi = 0 for i = 1, 2, . . . , p)

and susceptible and infectious individuals have identical travel rates (i.e., mij = nij

for i, j = 1, 2, . . . , p), the dynamics of the individuals are governed by the following

model:

dSi

dt
= Ai − diSi − βi(Ii)

SiIi
Si + Ii

+ γiIi +

p∑
j=1

mijSj, 1 ≤ i ≤ p,

dIi
dt

= βi(Ii)
SiIi
Si + Ii

− (di + γi)Ii +

p∑
j=1

mijIj, 1 ≤ i ≤ p.

(1.3.1)

Sun et al. [85] presented a global qualitative analysis for system (1.3.1) with two-

patch when R0 > 1. Here we study the model with an arbitrary number of patches

by using the theory of monotone dynamical systems (Smith [80]).

Theorem 1.7. If R0 > 1, then system (1.3.1) has a unique endemic equilibrium

which is globally asymptotically stable relative to Rp
+ × Rp

+\{0}.

Proof. Adding the two equations in system (1.3.1) leads to

dNi

dt
= Ai − diNi +

p∑
j=1

mijNj, 1 ≤ i ≤ p. (1.3.2)
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Obviously, system (1.3.2) has a unique equilibrium, labeled by N∗ =

(N∗
1 , N

∗
2 , . . . , N

∗
n), which is equal to S0 = (S0

1 , S
0
2 , . . . , S

0
p) and is globally asymp-

totically stable for (1.3.2). System (1.3.1) is then equivalent to the following system

dNi

dt
= Ai − diNi +

p∑
j=1

mijNj, 1 ≤ i ≤ p,

dIi
dt

= βi(Ii)
Ni − Ii
Ni

Ii − (di + γi)Ii +

p∑
j=1

mijIj, 1 ≤ i ≤ p.

(1.3.3)

Since Ni(t) → N∗
i , i = 1, 2, . . . , p, as t → ∞, (1.3.3) gives the following limit

system

dIi
dt

= hi(I1, . . . , Ip) = βi(Ii)
N∗

i − Ii
N∗

i

Ii − (di + γi)Ii +

p∑
j=1

mijIj, i = 1, 2, . . . , p.

(1.3.4)

Let h : Rp
+ → Rp denote the vector field described by (1.3.4) and ψt denote the

corresponding flow. For any α ∈ (0, 1) and any (I1, . . . , Ip) ∈ IntRp
+ ∩ D with D =

[0, N∗], there hold

βi(αIi)
N∗

i − αIi
N∗

i

αIi − (di + γi)αIi +

p∑
j=1

mijαIj

>α

(
βi(Ii)

N∗
i − Ii
N∗

i

Ii − (di + γi)Ii +

p∑
j=1

mijIj

)
, i = 1, 2, . . . , p,

that is, h(α(I1, . . . , Ip)) ≫ αh(I1, . . . , Ip). Thus h is strongly sublinear on D. In

addition, D is positively invariant for (1.3.4) since

hi(N
∗) = −(di + γi)N

∗
i +

p∑
j=1

mijN
∗
j = −Ai − γiN

∗
i < 0, i = 1, 2, . . . , p.
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Note that the Jacobian matrix of system (1.3.4) at the origin, Dh(0), satisfies

s(Dh(0)) = s(F − V ) > 0. It is easy to see that Corollary 3.2 in Zhao and Jing [105]

also holds if Rp
+ is replaced by a positively invariant order interval in Rp

+. Therefore,

system (1.3.4) has a positive equilibrium I∗ = (I∗1 , I
∗
2 , . . . , I

∗
p ) ∈ D, which is globally

asymptotically stable in D\{0}. It is clear from the first equation of (1.3.1) that S∗
i =

N∗
i − I∗i > 0 for i = 1, 2, . . . , p. Hence (1.3.1) admits a unique positive equilibrium

E∗ = (S∗
1 , S

∗
2 , . . . , S

∗
p , I

∗
1 , I

∗
2 , . . . , I

∗
p ).

Next, we prove that every nontrivial solution to (1.3.4) in Rp
+ converges to I∗.

We claim that (1.3.4) has no equilibrium in Rp
+\D. Assume, by contrary, that

I∗∗ = (I∗∗1 , . . . , I
∗∗
p ) is an equilibrium of (1.3.4) in Rp

+\D. It follows from the strong

monotonicity of the flow ψt that I∗ ≪ I∗∗. From (1.3.4), we have M∗(I∗)T = 0

and M∗∗(I∗∗)T = 0, where M∗ = ((βi(I
∗
i )(N

∗
i − I∗i )/N

∗
i − (di + γi))δij +mij)p×p and

M∗∗ = ((βi(I
∗∗
i )(N∗

i − I∗∗i )/N∗
i − (di + γi))δij +mij)p×p. Then s(M

∗) = s(M∗∗) = 0,

which is in contradiction to

M∗ −M∗∗ = ((βi(I
∗
i )(N

∗
i − I∗i )/N

∗
i − βi(I

∗∗
i )(N∗

i − I∗∗i )/N∗
i )δij)p×p > 0.

So, I∗ is the unique nontrivial equilibrium of (1.3.4) in Rp
+. For any y0 ∈ Rp

+\D, we

have y0 ≪ lN∗ for sufficiently large l > 1 and therefore ψt(y0) ≪ ψt(lN
∗) for t ≥ 0.

Note that h(lN∗) ≪ 0 for l ≥ 1, so ψt(lN
∗) → I∗ as t→ ∞. This means that ψt(y0)

enters into D for large t and thus ψt(y0) approaches I
∗ as t→ ∞.

Since both systems (1.3.2) and (1.3.4) are locally (globally) asymptotically stable,

system (1.3.3) has E∗ = (N∗
1 , N

∗
2 , . . . , N

∗
p , I

∗
1 , I

∗
2 , . . . , I

∗
p ) as a locally asymptotically

stable state (Vidyasagar [91]). A comparison theorem implies that all orbits of (1.3.3)

are forward bounded, while the proof of Theorem 1.5 indicates that no orbit of system
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(1.3.3) starting at a point in Rp
+ × Rp

+\{0} tends to (N∗
1 , . . . , N

∗
p , 0, . . . , 0) if R0 > 1.

It then follows a similar argument used in the proof of Theorem 4.2 in Seibert and

Suarez [77] that E∗ is globally asymptotically stable for system (1.3.3) relative to

Rp
+ × Rp

+\{0}. So is E∗ for system (1.3.1).

Remark 1.8. The above approach works for a class of SIS patch models where there

is no disease-induced death and susceptible and infectious individuals travel at the

same rates. As far as we know, most of the existing global results on these models

are only for two-patch case. With our approach, for example, one can generalize

Theorem 2.7 in Wang and Mulone [93] and Theorem 3.3 in Jin and Wang [42] to

arbitrary number of patches where the respective limit system is strongly sublinear

in the positive orthant and hence Corollary 3.2 in Zhao and Jing [105] can be applied

directly.

Remark 1.9. The existence and global asymptotic stability of the positive equilibri-

um of system (1.3.4) can also be proved in a manner similar to the proof for Theorem

2 in Cosner et al. [16]. Clearly, our result is a generalization of Theorem 3.1 in Salmani

and van den Driessche [76] where two patches are concerned and there is no impact

of media coverage (bi = 0 for i = 1, 2).

Remark 1.10. The endemic equilibrium E∗ for (1.3.1) is also linearly stable. To

prove this, it is equivalent to consider the stability of the Jacobian matrix of system

(1.3.3) at E∗, i.e.,

J(E∗) =

 ((−di)δij +mij)p×p 0p×p

(βi(I
∗
i )(I

∗
i /N

∗
i )

2δij)p×p M ′

 ,

where M ′ = ((β′
i(I

∗
i )

N∗
i −I∗i
N∗

i
I∗i + βi(I

∗
i )

N∗
i −2I∗i
N∗

i
− (di + γi))δij + mij)p×p. Obviously,
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s(((−di)δij + mij)p×p) < 0. Meanwhile, s(M ′) < 0 is proved by observing that

s(M∗) = 0 and

M ′ −M∗ = ((β′
i(I

∗
i )
N∗

i − I∗i
N∗

i

I∗i − βi(I
∗
i )
I∗i
N∗

i

)δij)p×p < 0.

Consequently, all eigenvalues of J(E∗) have negative real parts.

A combination of Theorem 1.4 and Theorem 1.7 yields a complete description of

the dynamics of system (1.3.1) as follows.

Corollary 1.11. For model (1.3.1), the disease-free equilibrium E0 is globally asymp-

totically stable if R0 ≤ 1, and the endemic equilibrium E∗ exists and is globally asymp-

totically stable on the non-negative orthant minus the disease-free state if R0 > 1.

Remark 1.12. The media coverage has no influence on the dynamics of disease

transmission of system (1.3.1). However, the final infected size in each patch can

be strictly reduced with more media coverage when the disease persists (i.e., R0 >

1). Such media-induced reduction was demonstrated in Sun et al. [85] by numerical

simulations. In fact, this is equivalent to say that ∂I∗i /∂bj < 0 for i, j = 1, 2, . . . , p.

Since (I∗1 , I
∗
2 , . . . , I

∗
p ) is the unique positive solution of the following equations

βi(Ii)
N∗

i − Ii
N∗

i

Ii − (di + γi)Ii +

p∑
j=1

mijIj = 0, i = 1, 2, . . . , p, (1.3.5)

it follows from the implicit function theorem that ∂I∗i /∂bj exists. We consider without

loss of generality the sign of ∂I∗i /∂b1. Taking partial derivatives of (1.3.5) with respect
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to b1 gives

M ′
(
∂I∗1
∂b1

,
∂I∗2
∂b1

, . . . ,
∂I∗p
∂b1

)T

=

(
f1(I

∗
1 )
N∗

1 − I∗1
N∗

1

I∗1 , 0, . . . , 0

)T

,

where M ′ is defined in Remark 1.10. Note that M ′ has a negative inverse, thus

∂I∗i /∂b1 < 0 for i = 1, 2, . . . , p.

When R0 > 1 for system (1.1.2), the following result shows that the existence,

uniqueness and global attractivity of the endemic equilibrium still hold if the disease

has mild effect on the travel of infectious humans (i.e., nij ≈ mij for i, j = 1, 2, . . . , p)

and the disease-induced death is seldom (i.e., νi ≈ 0 for i = 1, 2, . . . , p). We omit

the proof which is similar to that of Theorem 3.4 in Jin and Wang [42] by applying

Theorem 4.3 and Remark 4.2 in Smith and Zhao [84] and Corollary 2.3 in Smith and

Waltman [83].

Theorem 1.13. Let P = (mij)p×p and Q = (nij)p×p be the travel rate matrices for the

susceptible and infectious classes, respectively, and ν⃗ = (ν1, ν2, . . . , νp) be the vector

formed by the disease-induced death rates. Assume that all parameters in (1.1.2) are

fixed except nij for i, j = 1, 2, . . . , p and νi for i = 1, 2, . . . , p, and R0 > 1 when Q = P

and ν⃗ = 01×p. Then there is a τ > 0 such that for any Q and ν⃗ with ∥Q − P∥ < τ

and ∥ν⃗∥ < τ , (1.1.2) has a unique endemic equilibrium E∗(Q, ν⃗), which is globally

attractive with respect to Rp
+ × Rp

+\{0}. Here ∥ · ∥ is the Frobenius norm if ’·’ is a

matrix and the Euclidean norm if ’·’ is a vector.

We end this section with a result on the number of endemic equilibria for a special



16

case of the two-patch model:

dNi

dt
= Ai − diNi − νiIi −mji(Ni − Ii) +mij(Nj − Ij), i, j = 1, 2, i ̸= j,

dIi
dt

= βi(Ii)
Ni − Ii
Ni

Ii − (di + νi + γi)Ii, i, j = 1, 2, i ̸= j.
(1.3.6)

Namely, when the infectious individuals in each patch do not travel to the other

patch, we cannot obtain multiple endemic equilibria by choosing suitable saturation

functions and parameter values, which is different from the two-patch model in Jin

and Wang [42].

Theorem 1.14. System (1.3.6) has at most one endemic equilibrium if m12 ≥ 0 and

m21 ≥ 0.

Proof. Assume that E∗ = (N∗
1 , N

∗
2 , I

∗
1 , I

∗
2 ) and Ê = (N̂1, N̂2, Î1, Î2) are two distinct

positive equilibria of (1.3.6). Then they must satisfy the following four equations

Ai − diNi − νiIi −mji(Ni − Ii) +mij(Nj − Ij) = 0, i, j = 1, 2, i ̸= j,

βi(Ii)
Ni − Ii
Ni

− (di + νi + γi) = 0, i, j = 1, 2, i ̸= j.

Solving N1, N2 in terms of I1, I2 from the first two and the last two equations gives

Ni = ((dj +mij)(Ai − (νi −mji)Ii −mijIj) +mij(Aj −mjiIi − (νj −mij)Ij))/∆

(1.3.7)

and

Ni = Ii/(1− Λi/βi(Ii)), (1.3.8)

respectively, where Λi = di+ νi+γi, i, j = 1, 2, i ̸= j and ∆ = (d1+m21)(d2+m12)−
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m12m21 > 0. Thus, Ij can be solved in terms of Ii from (1.3.7) and (1.3.8) as follows:

(dj + νj)mijIj =(dj +mij)Ai +mijAj − ((dj +mij)νi − djmji)Ii −
Ii∆

1− Λi/βi(Ii)

(1.3.9)

for i, j = 1, 2 and i ̸= j, or

Ij =
(dj +mij)Ai +mijAj − ((dj +mij)νi − djmji)Ii − Ii∆/(1− Λi/βi(Ii))

(dj + νj)mij

(1.3.10)

if mij ̸= 0. Next the proof is naturally divided into three cases.

Case 1. m12 > 0,m21 > 0. Note that I∗i ̸= Îi for i = 1, 2, since otherwise it follows

from (1.3.8) and (1.3.10) that E∗ = Ê. For i = 1, 2, N∗
i > 0 and N̂i > 0 imply that

βi(Ii) > Λi, Ii ∈ [min{I∗i , Îi},max{I∗i , Îi}]. We differentiate the right hand side of

(1.3.10), denoted by gi(Ii), with respect to Ii ∈ [min{I∗i , Îi},max{I∗i , Îi}] and obtain

dgi(Ii)

dIi
=
djmji − (dj +mij)νi

(dj + νj)mij

− ∆

(dj + νj)mij

(
βi(Ii)

βi(Ii)− Λi

− Iiβ
′
i(Ii)Λi

(βi(Ii)− Λi)2

)
≤ djmji − (dj +mij)νi −∆

(dj + νj)mij

= Θi < 0, i, j = 1, 2, and i ̸= j.

Direct algebraic manipulations yield

(d1m12 − (d1 +m21)ν2 −∆)(d2m21 − (d2 +m12)ν1 −∆)− (d1 + ν1)(d2 + ν2)m12m21

=(d1 + ν1)(d2 + ν2)(d1d2 + d1m12 + d2m21) = (d1 + ν1)(d2 + ν2)∆ > 0,

which is equivalent to Θ1 ·Θ2 > 1. Without loss of generality, let I∗1 < Î1. Hence,

dg1(I1)

dI1

dg2(I2)

dI2
> 1 =⇒ dg1(I1)

dI1
<

(
dg2(I2)

dI2

)−1

< 0, I1 ∈ [I∗1 , Î1].
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This means that in the I1I2-plane, after the point (I∗1 , I
∗
2 ), the curve of I2 = g1(I1) is

below the curve of I1 = g2(I2). So the two curves cannot intersect again at (Î1, Î2).

Case 2. m12 > 0 and m21 = 0, or m12 = 0 and m21 > 0. It suffices to prove the result

under the first condition. The negativity of the derivative of the right side of (1.3.9)

with respect to I2 (i = 2, j = 1) means that I∗2 = Î2. Once again, the negativity of

the derivative of the right side of (1.3.9) with respect to I1 (i = 1, j = 2) means that

I∗1 = Î1. It follows (1.3.8) that E
∗ = Ê, which is a contradiction.

Case 3. m12 = m21 = 0. The negativity of the derivative of the right side of (1.3.9)

with respect to Ii means that I∗i = Îi for i = 1, 2. So E∗ = Ê, a contradiction.

Remark 1.15. An elementary but lengthy argument shows that system (1.3.6) can

have up to four biologically meaningful equilibria in R4
+ if m12 ≥ 0 and m21 ≥ 0, that

is, the DFE E0, two one-patch disease-free steady states, and the endemic equilibrium.

This is the same as the classic endemic model with bi = 0, i = 1, 2 (see [76], [19]).

1.4 Examples and Discussions

As mentioned earlier, the media effect alone cannot drive an endemic disease extinct,

but it plays a significant role in reducing the number of infectives and its proportion

to the total population. To investigate this, we carry out a numerical example for the

two-patch model.

Consider the saturation functions fi(Ii) = 1−ki/(ki+ Ii) for i = 1, 2 with k1 = 30

and k2 = 50, and take parameters in system (1.1.2) as follows: A1 = 20, a1 =

0.10, d1 = 3.6 × 10−5, ν1 = 0.02, γ1 = 0.09, A2 = 15, a2 = 0.22, d2 = 4.0 × 10−5, ν2 =

0.05, γ2 = 0.05, b2 = 0.11. For these parameter values, the respective basic repro-
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duction numbers for both patches are R(1)
0 = 0.9088 < 1 and R(2)

0 = 2.1991 > 1. If

the two patches are disconnected, the disease eventually dies out in patch 1 while it

persists in patch 2.

We fix the travel rates by letting m12 = 0.10,m21 = 0.08, n12 = 0.08, n21 = 0.06,

thus R0 = 1.6208. Therefore, the disease becomes endemic in both patches and there

exists an endemic equilibria. If we let b1 vary from 0 to 0.05, the curves of the final

sized infectives I∗1 and I∗2 against b1 are depicted in Figure 1(a). Here numerical

calculations indicate that the endemic equilibrium is unique for each b1 ∈ [0, 0.05]

and is locally stable. Both I∗1 and I∗2 are strictly decreasing with respect to b1 which

means stronger media coverage in patch 1 is beneficial to individuals in both patches.

Figure 1.1: The dependence of I∗1 and I∗2 on b1.

If we keep all parameter values unchanged except that ν2 = 0.03, n12 = 0.04 and

n21 = 0.02, then Figure 1(b) shows how I∗1 and I∗2 vary with b1 from 0 to 0.05. Here

I∗1 is decreasing in b1 but I∗2 is increasing in b1. However, their proportions to the

total population in each patch are strictly decreasing. Basically, appropriate media

alert is helpful to disease control.

In this chapter, we proposed a multi-patch model to study the influence of media

coverage and human movement on disease transmission. Our results show that the
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basic reproduction number R0 is a threshold parameter of the disease dynamics.

Particularly, either all positive solutions approach the disease-free equilibrium (R0 ≤

1) or a unique endemic equilibrium (R0 > 1) provided that the disease is nonfatal

and susceptible and infectious individuals have the same travel rates. There are some

unanswered questions with our model. For example, the nonexistence of multiple

endemic equilibria is unclear even for p = 2. Can the model exhibit more complicated

dynamical behaviors like Hopf bifurcation? Is there a possibility that media coverage

has negative effect on controlling of infectious diseases?

We can generalize the current model in many aspects. A more realistic model

should include the impact of media on the dispersal rates. Sometimes it is better

to consider the transmission coefficient as a function of the ratio Ii/Ni in patch i.

There is a difference between the time when data is collected and the time when

audiences get to know it, so it may be reasonable to consider a system of delay

differential equations. One can also incorporate media effect in other ways such as

that in Mummert and Weiss [64].



Chapter 2

A Multi-patch Malaria Model with
Logistic Growth Populations

2.1 Background

Malaria is a parasitic vector-borne disease caused by the Plasmodium, which is trans-

mitted to people via the bites of infected female mosquitoes of the genus Anopheles.

People with malaria often experience fever, chills, and flu-like illness. If not treat-

ed promptly or effectively, an infected individual may develop severe complications

and die. Vaccines for malaria are under development, with no approved vaccine yet

available. About half of the world’s population is at risk of malaria. This led to an

estimated 225 million malaria cases and nearly 781, 000 deaths worldwide in 2008,

the vast majority of which were children under five in Africa region (WHO [96]).

Following the pioneering work of Ross [74] and Macdonald [54–56], mathematical

modeling of malaria transmission has progressed rapidly. Among many contributions

to the development of mathematical modeling of malaria transmission , we would like

to mention Dietz et al. [22], Aron and May [6], Nedelman [65], Koella [45], Gupta et

al. [31], Ngwa and Shu [68], Ngwa [67], Chitnis et al. [14, 15], Ruan et al. [75], Lou

and Zhao [51], and the references cited therein.

21
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In paper [68] (also Ngwa [67]), Ngwa and Shu introduced a compartmental model

described by ordinary differential equations (ODEs) for the spread of malaria involv-

ing variable human and mosquito populations, in which the human population is

classified as susceptible, exposed, infectious and recovered and the mosquito popula-

tion is divided into classes containing susceptible, exposed and infectious individuals.

They established a threshold below which the disease-free equilibrium is stable and

above which the disease can persist. Chitnis et al. [14, 15] extended the model in

Ngwa and Shu [68] and Ngwa [67] to generalize the mosquito biting rate, include hu-

man immigration and exclude direct infectious-to-susceptible human recovery. They

presented a bifurcation analysis in [14], defined a reproductive number and showed

the existence and stability of the disease-free and endemic equilibria. To determine

the relative importance of model parameters in disease transmission and prevalence,

sensitivity indices of the reproductive number and the endemic equilibrium were com-

puted in [15].

Malaria varies greatly in different regions in the vectors that transmit it, in the

species causing the disease and in the level of intensity. It can be easily transmitted

from one region to another due to extensive travel and migration (Martens and Hall

[58], Tatem et al. [86]). This leads to new outbreaks in some former malaria-free or

lower transmission areas. For instance, even though malaria has been eliminated in

the United States since 1950’s, about 1,500 malaria cases are diagnosed every year

in this country, of which approximately 60% are among US travelers (Newman et

al. [66]). Thus it is necessary to distinguish the regions and understand the influence

of population dispersal on the propagation of the disease between regions, which may

improve malaria control programs.

Multi-patch models have been developed to study the spatial spread of infectious
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diseases by many researchers over the past three decades. In particular, models of

malaria in this direction include Dye and Hasibeder [23], Hasibeder and Dye [34],

Torres-Sorando and Rodriguez [89], Rodriguez and Torres-Sorando [73], Smith et

al. [78], Auger et al. [8], Cosner et al. [16], Arino et al. [5], etc. For references

on general epidemic models in a patchy environment, we refer the reader to two

review articles by Wang [92] and Arino [4]. Most of these studies focus on evaluating

the basic reproduction number R0 and establishing the existence and stability of

the disease-free and endemic equilibria. One of the goals in considering multi-patch

epidemic models is to study how the dispersal of individuals, in particular of the

exposed and infectious individuals, contributes to the spread of diseases from region

to region. Mathematically, one way to investigate this problem is to determine how R0

depends on model parameters, especially those describing the movement of exposed

and infectious individuals. This indeed is a very interesting and challenging problem

and there are very few results on this aspect (see Theorem 4.2 in Hsieh et al. [39] and

Lemma 3.4 in Allen et al. [3]). The reason is that for a multi-patch model R0 usually

cannot be expressed analytically in terms of model parameters and the monotone

dependence of R0 on model parameters is very complicated.

In this chapter, based on the model of Ngwa and Shu [68] (also Ngwa [67] and

Chitnis et al. [14, 15]), we propose a multi-patch model to examine how population

dispersal affects malaria spread between patches. This chapter is organized as follows.

In the next section, we describe our model in detail. The basic reproduction number

R0 is derived and shown to be a threshold in section 3. In section 4, we analyze

the dependence of R0 on the model parameters, in particular on the travel rates of

exposed, infectious, and recovered humans, for the two-patch submodel using the

matrix theory. In section 5, numerical simulations are performed to investigate the
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effects of human movement on disease dynamics. Section 6 gives a brief discussion of

main results and future work.

2.2 Model Formulation

We model the transmission dynamics of malaria between humans and mosquitoes

within a patch and the spatial dispersal between n patches. Within a single patch, our

model is based on that of Ngwa and Shu [68] (also Ngwa [67] and Chitnis et al. [14,15])

with an SEIRS structure for humans and an SEI structure for mosquitoes. Hereafter,

the subscript i refers to patch i and the superscript h/v refers to humans/mosquitoes.

Let Sh
i (t), E

h
i (t), I

h
i (t) and Rh

i (t) denote, respectively, the number of susceptible,

exposed, infectious, and recovered humans in patch i at time t. The total human

population in patch i at time t is Nh
i (t) = Sh

i (t)+E
h
i (t)+ I

h
i (t)+R

h
i (t). Similarly, let

Sv
i (t), E

v
i (t) and I

v
i (t) denote, respectively, the number of susceptible, exposed, and

infectious mosquitoes in patch i at time t. The total mosquito population in patch i

at time t is N v
i (t) = Sv

i (t)+E
v
i (t)+ I

v
i (t). The mosquito population has no recovered

class since we assume that the mosquito’s infective period ends with its death.

For patch i, all newborns in both populations are assumed to be into the suscep-

tible class (no vertical transmission). Susceptible humans, Sh
i , may become exposed

when they are bitten by infectious mosquitoes. The exposed humans, Eh
i , become

infectious as the incubation period ends. Infectious humans, Ihi , either reenter the

susceptible class or recover into the immune compartment, Rh
i , where they remain

for the period of their immunity before returning to the susceptible class. Susceptible

mosquitoes, Sv
i , can be infected when they bite infectious or recovered humans and



25

Figure 2.1: Flow diagram of the mosquito-borne model in patch i.

once infected they progress through the exposed, Ev
i , and infectious, Ivi , classes. Both

human and mosquito populations follow a logistic growth and migrate between patch-

es, with humans having additional disease-induced death. The flowchart of malaria

transmission for patch i omitting density-dependent death and travel is illustrated in

Fig 2.1. Solid arrows denote within-species progression while dotted arrows denote

interspecies transmission.

The interactions between humans and mosquitoes in patch i (with i = 1, 2, . . . , n)

based on the above assumptions are then described by the following differential equa-

tions with non-negative initial conditions satisfying Nh
i (0) > 0:
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dSh
i

dt
= λhiN

h
i + βh

i R
h
i + rhi I

h
i − cvhi a

v
i I

v
i

Nh
i

Sh
i − fh

i (N
h
i )S

h
i +

n∑
j=1

φS
ijS

h
j ,

dEh
i

dt
=
cvhi a

v
i I

v
i

Nh
i

Sh
i − (νhi + fh

i (N
h
i ))E

h
i +

n∑
j=1

φE
ijE

h
j ,

dIhi
dt

= νhi E
h
i − (rhi + αh

i + γhi + fh
i (N

h
i ))I

h
i +

n∑
j=1

φI
ijI

h
j ,

dRh
i

dt
= αh

i I
h
i − (βh

i + fh
i (N

h
i ))R

h
i +

n∑
j=1

φR
ijR

h
j , (2.2.1)

dSv
i

dt
= λviN

v
i − chvi a

v
i I

h
i

Nh
i

Sv
i −

dhvi a
v
iR

h
i

Nh
i

Sv
i − f v

i (N
v
i )S

v
i +

n∑
j=1

ψS
ijS

v
j ,

dEv
i

dt
=
chvi a

v
i I

h
i

Nh
i

Sv
i +

dhvi a
v
iR

h
i

Nh
i

Sv
i − (νvi + f v

i (N
v
i ))E

v
i +

n∑
j=1

ψE
ijE

v
j ,

dIvi
dt

= νvi E
v
i − f v

i (N
v
i )I

v
i +

n∑
j=1

ψI
ijI

v
j ,

where

fh
i (N

h
i ) = µh

i + ρhiN
h
i is the density-dependent death rate for humans;

f v
i (N

v
i ) = µv

i + ρviN
v
i is the density-dependent death rate for mosquitoes;

λhi is the birth rate of humans;

λvi is the birth rate of mosquitoes;

avi is the mosquito biting rate;

cvhi is the probability that a bite by an infectious mosquito on a susceptible

human will transfer the infection to the human;

chvi is the probability that a bite by a susceptible mosquito on an infectious

human will transfer the infection to the mosquito;

dhvi is the probability that a bite by a susceptible mosquito on a recovered
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human will transfer the infection to the mosquito;

νhi is the progression rate that exposed humans become infectious;

νvi is the progression rate that exposed mosquitoes become infectious;

rhi is the recovery rate that infectious humans become susceptible;

αh
i is the recovery rate that infectious humans become recovered;

γhi is the disease-induced death rate for humans;

βh
i is the rate of loss of immunity for humans;

φK
ij ≥ 0 for K = S,E, I, R is the immigration rate from patch j to patch i for i ̸=

j of susceptible, exposed, infectious, and recovered humans, respectively;

ψL
ij ≥ 0 for L = S,E, I is the immigration rate from patch j to patch i for i ̸= j

of susceptible, exposed, and infectious mosquitoes, respectively;

−φK
ii ≥ 0 for K = S,E, I, R is the emigration rate of susceptible, exposed,

infectious, and recovered humans in patch i, respectively;

−ψL
ii ≥ 0 for L = S,E, I, is the emigration rate of susceptible, exposed, and

infectious mosquitoes in patch i, respectively.

For simplicity, death rates and birth rates of the individuals during travel are

ignored. Thus, we have

φK
ii = −

n∑
j=1
j ̸=i

φK
ji , K = S,E, I, R, and ψL

ii = −
n∑

j=1
j ̸=i

ψL
ji, L = S,E, I, 1 ≤ i ≤ n.

Unless otherwise indicated, the travel rate matrices (φK
ij )n×n for K = S,E, I, R and

(ψL
ij)n×n for L = S,E, I are assumed to be irreducible. Here the movement of humans

and mosquitoes between patches is governed by the Eulerian approach (Cosner et

al. [16]), that is, humans and mosquitoes change their residences when they move
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from one patch to another patch. It is worth noting that they may have different

spatial scales because humans can travel much longer distances than mosquitoes.

In the absence of disease and dispersal, both human and mosquito populations in

each patch are modeled by the logistic growth. For the persistence of the dispersal

system, we assume that

s(((λhi − µh
i )δij + φS

ij)n×n) > 0 and s(((λvi − µv
i )δij + ψS

ij)n×n) > 0,

where s denotes the spectral bound of a matrix which is the largest real part of any

eigenvalue of the matrix and δij denotes the Kronecker delta (i.e. 1 when i = j and

0 otherwise), or else they will die out in all patches. This implies that λhi > µh
i and

λvj > µv
j for some i and j.

Furthermore, it is assumed that all parameters in the model are strictly positive

with the exception of the travel rates.

LetNh(t) =
n∑

i=1

Nh
i (t) andN

v(t) =
n∑

i=1

N v
i (t). The following theorem demonstrates

that model (2.2.1) is mathematically well-posed and epidemiologically reasonable.

Theorem 2.1. Consider model (2.2.1) with non-negative initial conditions satisfying

Nh
i (0) > 0 for i = 1, . . . , n. Then the system has a unique solution and all disease

state variables remain non-negative for all time t ≥ 0. Moreover, both the total human

population Nh(t) and the total mosquito population N v(t) are bounded.

Proof. The vector field defined by (2.2.1) is continuously differentiable, so the initial

value problem has a unique solution which exists for all t ≥ 0. The non-negative

property of state variables can be easily verified.

Denote χv = max
1≤i≤n

(λvi − µv
i ) > 0 and ρv = min

1≤i≤n
ρvi . Then
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dN v

dt
=

n∑
i=1

(λviN
v
i − f v

i (N
v
i )N

v
i ) =

n∑
i=1

((λvi − µv
i )N

v
i − ρvi (N

v
i )

2)

≤ χv

n∑
i=1

N v
i − ρv

n∑
i=1

(N v
i )

2 ≤ χv

n∑
i=1

N v
i − ρv

(
n∑

i=1

N v
i

)2

/n

= χvN v − ρv(N v)2/n = (χv − ρvN v/n)N v.

Hence, by a comparison theorem, N v(t) is bounded from above by

max{nχv/ρv, N v(0)}. Similarly, we can find an upper bound for Nh(t). The

proof is complete.

2.3 Threshold Dynamics

We first show the existence of a disease-free equilibrium (DFE) for (2.2.1), then

calculate the basic reproduction number R0 and give an estimate of it. Uniform

persistence of the disease and the existence of an endemic equilibrium are discussed

at the end of this section.

2.3.1 Disease-free Equilibrium

A disease-free equilibrium is a steady state solution of system (2.2.1) where there is no

disease, namely, Sh
i = Sh∗

i > 0, Sv
i = Sv∗

i > 0, and all other variables Eh
i , E

v
i , I

h
i , I

v
i , R

h
i

= 0 for i = 1, 2, . . . , n. The partially immune human, Rh
i , is regarded as infected

because individuals in this status are still infective to susceptible mosquitoes. Math-

ematically, if Eh
i = Ev

i = Ihi = Ivi = 0 for all i at a steady state, then by summing
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the fourth equation of (2.2.1) up from 1 to n, we have

−
n∑

i=1

(βh
i + f

h
i (N

h
i ))R

h
i +

n∑
i=1

n∑
j=1

φR
ijR

h
j = −

n∑
i=1

(βh
i + f

h
i (N

h
i ))R

h
i +

n∑
i=1

n∑
j=1

φR
jiR

h
i = 0.

Hence, −
n∑

i=1

(βh
i + fh

i (N
h
i ))R

h
i = 0. This implies Rh

i = 0 for i = 1, 2, . . . , n.

Let Sh∗ = (Sh∗
1 , S

h∗
2 , . . . , S

h∗
n ) and Sv∗ = (Sv∗

1 , S
v∗
2 , . . . , S

v∗
n ). Thus there is a DFE

for (2.2.1) if and only if Sh∗ and Sv∗ are positive equilibria to the subsystems

dSh
i

dt
= λhi S

h
i − fh

i (S
h
i )S

h
i +

n∑
j=1

φS
ijS

h
j , 1 ≤ i ≤ n (2.3.1)

and

dSv
i

dt
= λviS

v
i − f v

i (S
v
i )S

v
i +

n∑
j=1

ψS
ijS

v
j , 1 ≤ i ≤ n, (2.3.2)

respectively. They are guaranteed by the following lemma.

Lemma 2.2. Let IntRn
+ be the interior of Rn

+. For system (2.3.1), there is a unique

nonzero equilibrium Sh∗ ∈ IntRn
+ which is globally asymptotically stable with respect

to Rn
+\{0}. Moreover, if λhi > µh

i for 1 ≤ i ≤ n, we have

P h ≡ min
1≤i≤n

Kh
i

Lh
i

· Lh ≤ Sh∗ ≤ Qh ≡ max
1≤i≤n

Kh
i

Lh
i

· Lh,

where Kh
i =

λh
i −µh

i

ρhi
for 1 ≤ i ≤ n, and Lh = (Lh

1 , . . . , L
h
n−1, L

h
n) is the unique solution

to

n∑
j=1

φS
ijS

h
j = 0, i = 1, · · · , n, and Sh

n = 1

with Lh
i > 0 for 1 ≤ i ≤ n− 1 and Lh

n = 1. A similar result holds for system (2.3.2).
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Proof. It is easy to see that system (2.3.1) is cooperative and irreducible. The exis-

tence, uniqueness and global asymptotic stability of Sh∗ can be proved by applying

Theorem 6.1 in Hirsch [35] or Corollary 3.2 in Zhao and Jing [105].

Let Lh = (Lh
1 , . . . , L

h
n−1, L

h
n) be the right eigenvector of the irreducible matrix

(φS
ij)n×n corresponding to the principal eigenvalue 0 normalized so that its last entry

equals 1. The existence, uniqueness and positivity of Lh is proved in Lemma 1 of

Cosner et al. [16] or Lemma 2.1 of Guo et al. [30]. We denote by fh the vector field

defined by (2.3.1) and let ϕh
t denote the corresponding flow. Then the ith component

of fh evaluated at mLh satisfies

λhi (mL
h
i )− fh

i (mL
h
i ) ·mLh

i +
n∑

j=1

φS
ijmL

h
j = λhi (mL

h
i )− fh

i (mL
h
i ) ·mLh

i

= m((λhi − µh
i )− ρhimL

h
i )L

h
i = mρhi L

h
i

(λhi − µh
i

ρhi L
h
i

−m
)
Lh

i = mρhi L
h
i

(Kh
i

Lh
i

−m
)
Lh
i

for m > 0 and i = 1, . . . , n. Thus fh(mLh) ≥ 0 for m ≤ min
1≤i≤n

Kh
i

Lh
i
and fh(mLh) ≤ 0

for m ≥ max
1≤i≤n

Kh
i

Lh
i
. In particular, fh(P h) ≥ 0 and fh(Qh) ≤ 0. It follows from the

theory of monotone dynamical systems (Smith [80]) that ϕh
t (P

h) is non-decreasing

and ϕh
t (Q

h) is non-increasing for t ≥ 0. Since both ϕh
t (P

h) and ϕh
t (Q

h) converge to

Sh∗, we have P h ≤ Sh∗ ≤ Qh.

2.3.2 The Basic Reproduction Number

To derive the basic reproduction numberR0 for (2.2.1), we order the infected variables

first by disease state, then by patch, i.e.,

Eh
1 , E

h
2 , . . . , E

h
n, E

v
1 , E

v
2 , . . . , E

v
n, I

h
1 , I

h
2 , . . . , I

h
n , I

v
1 , I

v
2 , . . . , I

v
n, R

h
1 , R

h
2 , . . . , R

h
n
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and follow the recipe from van den Driessche and Watmough [90] to obtain

F =



0 0 0 A64 0

0 0 A73 0 A75

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



A11

0 A22

−A31 0 A33

0 −A42 0 A44

0 0 −A53 0 A55


,

where

A11 = (δij(ν
h
i + fh

i (S
h∗
i ))− φE

ij)n×n = (δij(ν
h
i + µh

i + ρhi S
h∗
i )− φE

ij)n×n,

A22 = (δij(ν
v
i + f v

i (S
v∗
i ))− ψE

ij)n×n = (δij(ν
v
i + µv

i + ρviS
v∗
i )− ψE

ij)n×n,

A31 = (δijν
h
i )n×n = diag{νh1 , νh2 , . . . , νhn},

A33 = (δij(r
h
i + αh

i + γhi + fh
i (S

h∗
i ))− φI

ij)n×n

= (δij(r
h
i + αh

i + γhi + µh
i + ρhi S

h∗
i )− φI

ij)n×n,

A42 = (δijν
v
i )n×n = diag{νv1 , νv2 , . . . , νvn},

A44 = (δijf
v
i (S

v∗
i )− ψI

ij)n×n = (δij(µ
v
i + ρviS

v∗
i )− ψI

ij)n×n,

A53 = (δijα
h
i )n×n = diag{αh

1 , α
h
2 , . . . , α

h
n},

A55 = (δij(β
h
i + fh

i (S
h∗
i ))− φR

ij)n×n = (δij(β
h
i + µh

i + ρhi S
h∗
i )− φR

ij)n×n,

A64 = (δijc
vh
i a

v
i )n×n = diag{cvh1 av1, cvh2 av2, . . . , cvhn avn},

A73 = (δijc
hv
i a

v
iS

v∗
i /S

h∗
i )n×n,

A75 = (δijd
hv
i a

v
iS

v∗
i /S

h∗
i )n×n.

The terms A64, A73 and A75 are named after the partial derivatives of the vector fields

of susceptible humans to infectious mosquitoes, susceptible mosquitoes to infectious

humans, and susceptible mosquitoes to recovered humans, respectively.
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Since Aii for i = 1, . . . , 5, is a strictly diagonally dominant matrix, by the Gersh-

gorin circle theorem, the real parts of its eigenvalues are positive and therefore A−1
ii

exists. So the inverse of V exists and equals

V −1 =



A−1
11

0 A−1
22

A−1
33 A31A

−1
11 0 A−1

33

0 A−1
44 A42A

−1
22 0 A−1

44

A−1
55 A53A

−1
33 A31A

−1
11 0 A−1

55 A53A
−1
33 0 A−1

55


.

Thus, the next generation matrix (see Diekmann et al. [21]) is

FV −1 =



0 M vh 0 A64A
−1
44 0

Mhv 0 (A73 + A75A
−1
55 A53)A

−1
33 0 A75A

−1
55

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

where M vh = A64A
−1
44 A42A

−1
22 and Mhv = (A73 + A75A

−1
55 A53)A

−1
33 A31A

−1
11 . Note that

M vh and Mhv account for new human infections due to each infectious mosquito and

new mosquito infections due to each infectious or recovered human, respectively.

By calculating (FV −1)2, we find the basic reproduction number

R0 =
√
ρ(M),
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where ρ denotes the spectral radius and M is the product of M vh and Mhv, i.e.,

M = M vhMhv = A64A
−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33 A31A

−1
11

= A64A
−1
44 A42A

−1
22 A73A

−1
33 A31A

−1
11 + A64A

−1
44 A42A

−1
22 A75A

−1
55 A53A

−1
33 A31A

−1
11 .

The first term in M represents infections related to infectious humans, while the

second one describes infections related to recovered humans who survive the infectious

class and acquire partial immunity.

Theorem 2.3. The disease-free equilibrium of (2.2.1) is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

Proof. To prove the stability of DFE, we need to check the hypotheses (A1)-(A5) in

van den Driessche and Watmough [90]. (A1)-(A4) are easily verified while (A5) is

satisfied if all eigenvalues of the 7n× 7n matrix

J =

 −V 0

J3 J4


have negative real parts. Here J3 is a 2n × 5n matrix and J4 = diag{Dfh(Sh∗),

Df v(Sv∗)} where f v denotes the vector field defined by (2.3.2). By Lemma 2.2,

s(J4) < 0. So that of s(J).

Remark 2.4. The basic reproduction number for the ith patch in isolation (i.e., there

is no travel between patch i and other patches) is given by

R(i)
0 =

√
cvhi (avi )

2νvi (c
hv
i (βh

i + λhi ) + dhvi α
h
i )ν

h
i (λ

v
i − µv

i )ρ
h
i

λvi (ν
v
i + λvi )(r

h
i + αh

i + γhi + λhi )(β
h
i + λhi )(ν

h
i + λhi )(λ

h
i − µh

i )ρ
v
i

. (2.3.3)
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This is slightly different from Ngwa and Shu’s [68] which is (R(i)
0 )2.

It is easy to see that in calculating R0, the matrix M is a positive matrix (all

entries are positive) and hence ρ(M) is an eigenvalue of M and it is simple. In fact,

it follows from Corollary 3.2 in Smith [80] that A−1
ii , i = 1, . . . , 5, is a positive matrix.

Moreover, as a consequence of Theorem 2.5.4 in Horn and Johnson [38], we know the

determinants of both A−1
ii for i = 1, . . . , 5 and A73 +A75A

−1
55 A53 are positive. So that

of M . In particular, M has two distinct positive eigenvalues when n = 2. This fact

will be used later.

Similarly to Theorem 2.3 in Salmani and van den Driessche [76] and Theorem

3.2 in Hsieh et al. [39], we have the following result which gives bounds on the basic

reproduction number.

Theorem 2.5. max
1≤i≤n

(R̃(i)
0 )2 ≤ R2

0 ≤ max
1≤i≤n

(R̂(i)
01 )

2 + max
1≤i≤n

(R̂(i)
02 )

2, where

(R̃(i)
0 )2 = cvhi a

v
i (µ

v
i + ρviS

v∗
i − ψI

ii)
−1νvi (ν

v
i + µv

i + ρviS
v∗
i − ψE

ii )
−1

·
(chvi aviSv∗

i

Sh∗
i

+
dhvi a

v
iS

v∗
i

Sh∗
i

(βh
i + µh

i + ρhi S
h∗
i − φR

ii)
−1αh

i

)
·(rhi + αh

i + γhi + µh
i + ρhi S

h∗
i − φI

ii)
−1νhi (ν

h
i + µh

i + ρhi S
h∗
i − φE

ii )
−1,

and

(R̂(i)
01 )

2 = cvhi a
v
i (µ

v
i + ρviS

v∗
i )−1νvi (ν

v
i + µv

i + ρviS
v∗
i )−1 c

hv
i a

v
iS

v∗
i

Sh∗
i

·(rhi + αh
i + γhi + µh

i + ρhi S
h∗
i )−1νhi (ν

h
i + µh

i + ρhi S
h∗
i )−1,

(R̂(i)
02 )

2 = cvhi a
v
i (µ

v
i + ρviS

v∗
i )−1νvi (ν

v
i + µv

i + ρviS
v∗
i )−1d

hv
i a

v
iS

v∗
i

Sh∗
i

(βh
i + µh

i + ρhi S
h∗
i )−1

·αh
i (r

h
i + αh

i + γhi + µh
i + ρhi S

h∗
i )−1νhi (ν

h
i + µh

i + ρhi S
h∗
i )−1.
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Proof. The lower bound can be proved by applying Fischer’s inequality (see Theorem

2.5.4(e), Horn and Johnson [38]) to estimate the diagonal entries of matrix A−1
ii , i =

1, . . . , 5. In fact, for example, let A11 = (aij)n×n and A−1
11 = (αij)n×n, then 1/aii ≤ αii

for i = 1, . . . , n and therefore

0 ≤ diag{1/a11, . . . , 1/ann} ≤ diag{α11, . . . , αnn} ≤ A−1
11 .

To establish the upper bound of R0, observe that, for example,

1⃗(A44B
−1
44 ) = 1⃗ ⇒ 1⃗(B44A

−1
44 ) = 1⃗,

where 1⃗ = (1, 1, . . . , 1)1×n and B44 = A44 + (ψI
ij)n×n = diag{f v

1 (S
v∗
1 ) . . . , f v

n(S
v∗
n )}.

This implies that the spectral radius of B44A
−1
44 is 1 and hence

ρ(A−1
44 ) = ρ(B−1

44 B44A
−1
44 ) ≤ ρ(B−1

44 )ρ(B44A
−1
44 ) = ρ(B−1

44 ).

Finally, the proof is complete with the properties ρ(M1M2) = ρ(M2M1) and ρ(M1 +

M2) ≤ ρ(M1) + ρ(M2) for any square matrices M1,M2 with the same order.

Remark 2.6. The trick in finding an upper bound for the basic reproduction number

seems very useful for general epidemic patch models. With such a trick, one can prove

the upper bound in Theorem 2.3 of Salmani and van den Driessche [76] without any

additional restriction on the parameters which is a nice improvement. Also, the trick

can be used to prove the upper bound in Theorem 3.2 of Hsieh et al. [39] without

assuming that di = d for i = 1, 2, . . . , n.

Remark 2.7. When λhi > µh
i and λ

v
i > µv

i for 1 ≤ i ≤ n, a combination of Lemma 2.2
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and Theorem 2.5 yields an estimation ofR0 which only depends on model parameters.

However, this result might have little use, because we omitted some terms in the

process of estimation.

2.3.3 Uniform Persistence and the Endemic Equilibrium

Under certain conditions, we can use the techniques of persistence theory (Freedman

et al. [24], Thieme [88], Cantrell and Cosner [12], Smith and Thieme [81]) to show

the uniform persistence of the disease and the existence of at least one endemic

equilibrium when R0 > 1. The proof is similar to Theorem 2.3 in Wang and Zhao

[94] and Theorem 3.2 in Lou and Zhao [51]. For convenience, we denote the vector

(Sh
1 (t), . . . , S

h
n(t)) by S

h(t) for t ≥ 0. Eh(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t) can be

introduced similarly.

Theorem 2.8. Let E11 denote the disease-free equilibrium of (2.2.1), W s(E11) be the

stable manifold of E11, and X0 be Rn
+ × IntR3n

+ ×Rn
+ × IntR2n

+ . Suppose that R0 > 1,

then we have W s(E11) ∩X0 = ∅. If, in addition, assume that

(i) λhi − µh
i − γhi > 0 for i = 1, 2, . . . , n;

(ii) φK
ij > 0 for K = S,E, I, R, i, j = 1, 2, . . . , n, i ̸= j;

(iii) λvi − µv
i > 0 for i = 1, 2, . . . , n (or ψS

ij = ψE
ij = ψI

ij for i, j = 1, 2, . . . , n).

Then the disease is uniformly persistent among patches, i.e., there is a constant κ > 0

such that each solution Φt(x0) ≡ (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t)) of sys-

tem (2.2.1) with x0 ≡ (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0)) ∈ X0 satisfies

lim inf
t→∞

(Eh(t), Ih(t), Rh(t), Ev(t), Iv(t)) > (κ, κ, . . . , κ)1×5n,
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and (2.2.1) admits at least one endemic equilibrium.

Proof. We show first that W s(E11) ∩X0 = ∅ whenever R0 > 1. Define

∆ =



(δijρ
h
i )n×n 0 0 (δijc

vh
i a

v
i )n×n 0

0 (δijρ
v
i )n×n (δijc

hv
i a

v
i )n×n 0 (δijd

hv
i a

v
i )n×n

0 0 (δijρ
h
i )n×n 0 0

0 0 0 (δijρ
v
i )n×n 0

0 0 0 0 (δijρ
h
i )n×n


andMϵ = F−V −ϵ∆. It follows from Theorem 2 in van den Driessche and Watmough

[90] that R0 > 1 if and only if s(F − V ) > 0. Thus, there exists an ϵ1 > 0 such that

s(Mϵ) > 0 for ϵ ∈ [0, ϵ1]. Let | · | be the Euclidean norm in R7n. Choose η small

enough such that

Sv
i (0)

Nh
i (0)

≥ Sv∗
i

Sh∗
i

− ϵ1,
Sh
i (0)

Nh
i (0)

≥ 1− ϵ1, N
h
i (0) ≤ Sh∗

i + ϵ1 and N v
i (0) ≤ Sv∗

i + ϵ1

for i = 1, 2, . . . , n, |x0 − E11| ≤ η. We now show that

lim sup
t→∞

|Φt(x0)− E11| > η for x0 ∈ X0.

Suppose, by contradiction, that there is a T > 0 such that |Φt(x0) − E11| ≤ η for

t ≥ T . Pick ΦT (x0) ∈ X0 as new x0, then |Φt(x0)− E11| ≤ η for t ≥ 0 and
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dEh
i

dt
≥ cvhi a

v
i I

v
i (1− ϵ1)− (νhi + fh

i (S
h∗
i + ϵ1))E

h
i +

n∑
j=1

φE
ijE

h
j ,

dEv
i

dt
≥ (chvi a

v
i I

h
i + dhvi a

v
iR

h
i )
(Sv∗

i

Sh∗
i

− ϵ1

)
− (νvi + f v

i (S
v∗
i + ϵ1))E

v
i +

n∑
j=1

ψE
ijE

v
j ,

dIhi
dt

≥ νhi E
h
i − (rhi + αh

i + γhi + fh
i (S

h∗
i + ϵ1))I

h
i +

n∑
j=1

φI
ijI

h
j ,

dIvi
dt

≥ νvi E
v
i − f v

i (S
v∗
i + ϵ1)I

v
i +

n∑
j=1

ψI
ijI

v
j ,

dRh
i

dt
≥ αh

i I
h
i − (βh

i + fh
i (S

h∗
i + ϵ1))R

h
i +

n∑
j=1

φR
ijR

h
j .

Consider an auxiliary system

dω(t)

dt
=Mϵ1ω(t). (2.3.4)

Note thatMϵ1 is an irreducible, cooperative matrix for sufficiently small ϵ1. Using the

Perron-Frobenius theorem, s(Mϵ1) > 0 is a simple eigenvalue associated to a positive

eigenvector. It then follows that any solution of (2.3.4) with positive initial value goes

to infinity as t→ ∞. By the comparison theorem, we have

lim
t→∞

(Eh
i (t), E

v
i (t), I

h
i (t), I

v
i (t), R

h
i (t)) = (∞,∞,∞,∞,∞), i = 1, 2, . . . , n.

Suppose (i) and (ii) hold. Let X = {x0 ∈ R7n
+ : Nh

i (0) > 0 for i = 1, 2, . . . , n}.

We now claim that there exist n+ 1 positive constants ζ1, ζ2, . . . , ζn and Λ such that

X̃ = {x0 ∈ X : Nh
i (0) ≥ ζi for i = 1, 2, . . . , n and Nh(0) ≥ Λ}



40

is closed positively invariant and each orbit of (2.2.1) starting in X eventually enters

into X̃. The proof of this claim is straightforward, but tedious, we refer to Theorem

2 of Cui and Chen [18] for the approach.

Let X̃0 = {x0 ∈ X̃ : Eh
i (0), I

h
i (0), R

h
i (0), E

v
i (0), I

v
i (0) > 0 for i = 1, 2, . . . , n} and

∂X̃0 = X̃\X̃0. It is sufficient to prove that system (2.2.1) is uniformly persistent with

respect to (X̃0, ∂X̃0).

Obviously, X̃0 is relatively open in X̃. It is easy to check that X̃0 is positively

invariant. Theorem 2.1 implies that system (2.2.1) is point dissipative. Define

M∂ = {x0 ∈ ∂X̃0 : Φt(x0) ∈ ∂X̃0,∀t ≥ 0},

D1 = {x0 ∈ X̃ : Eh
i (0) = Ihi (0) = Rh

i (0) = Ev
i (0) = Ivi (0) = 0,∀i ∈ {1, 2, . . . , n}},

D2 = {x0 ∈ X̃ : Sv
i (0) = Ev

i (0) = Ivi (0) = 0, ∀i ∈ {1, 2, . . . , n}}.

We claim that M∂ = D1 ∪ D2. Clearly, D1 ∪ D2 ⊂ M∂. It suffices to show that

M∂ ⊂ D1∪D2. For any x0 ∈ ∂X̃0\(D1∪D2), we have N
h
i (0) > 0, i = 1, 2, . . . , n, and

n∑
i=1

(Eh
i (0) + Ihi (0) +Rh

i (0) + Ev
i (0) + Ivi (0)) > 0,

n∑
i=1

(Sv
i (0) + Ev

i (0) + Ivi (0)) > 0.

By the form of (2.2.1) and the irreducibility of travel rate matrices, it follows that

Φt(x0) ∈ X̃0 for t > 0. Hence x0 ̸∈M∂ and the claim is proved.

Let 0⃗ = (0, 0, . . . , 0)1×n. It is easy to verify that there are exactly two equilibria

in M∂, i.e., E10 = (Sh∗, 0⃗, 0⃗, 0⃗, 0⃗, 0⃗, 0⃗) and E11 = (Sh∗, 0⃗, 0⃗, 0⃗, Sv∗, 0⃗, 0⃗). Clearly, the

total mosquito population N v(t) is permanent with respect to X0 provided that (iii)
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holds, and hence there is a δ > 0 such that

lim sup
t→∞

|Φt(x0)− E10| ≥ δ for x0 ∈ X0.

Consequently, both {E10} and {E11} are isolated invariant sets in X, W s(E10) ∩

X0 = ∅ and W s(E11)∩X0 = ∅. Notice that every trajectory inM∂ converges to either

E10 or E11, and {E10} and {E11} are acyclic in M∂. It follows from Theorem 4.6 in

Thieme [88] that system (2.2.1) is uniformly persistent with respect to (X̃0, ∂X̃0).

A well-known result in uniform persistence theory says that a bounded and uni-

formly persistent system has at least one interior equilibrium (see Hutson and Schmitt

[40] or Theorem 2.4 in Zhao [103]). Since system (2.2.1) is bounded and uniformly per-

sistent, we conclude that it has an equilibrium Ẽ ≡ (S̃h, Ẽh, Ĩh, R̃h, S̃v, Ẽv, Ĩv) ∈ X̃0.

By the first and fifth equations of (2.2.1), we find that S̃h ∈ IntRn
+ and S̃v ∈ IntRn

+

which indicates that Ẽ is an endemic equilibrium of (2.2.1).

Remark 2.9. For n = 1, the theorem is an improvement of Proposition 3.3 of Ngwa

and Shu [68]. By using the method in this proof, one can get similar or better results

for some other epidemic metapopulation models such as those in Hsieh et al. [39] and

Salmani and van den Driessche [76].

2.4 The Dependence of R0 on Parameters

In an epidemic model, once the basic reproduction number is calculated and shown to

be a threshold for the dynamics of the disease, a natural question about disease control

is how the reproduction number depends on the model parameters. For example, is

the dependence monotone is some sense (Müller and Hadeler [63])? For a very special
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case of a two-patch epidemic model, Hsieh et al. [39] showed that (Theorem 4.2) R0

decreases when the travel rate of infected individuals increases. See also Allen et

al. [3] (Lemma 3.4). In general there are very few results in this direction. For model

(2.2.1), it is easy to see that all parameters are directly or indirectly contained in

R0. Obviously, R0 is increasing with respect to cvhi , c
hv
i , dhvi or avi . By Theorem

2.5.4 in Horn and Johnson [38], an increase in βh
i , r

h
i or γhi will decrease R0. The

dependence of R0 on other parameters is more complicated. For example, unlike in

the single patch model, the following result indicates that in a multi-patch model

the parameters νhi or νvi can decrease or increase R0 and even more complicated

dependence may exist. Recall that R2
0 = ρ(M), where ρ denotes the spectral radius

and M = A64A
−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33 A31A

−1
11 . Only A31 and A11 contain

νhi while only A42 and A22 contain νvi . Then we have ρ(M) = ρ(AhA31A
−1
11 ) =

ρ(AvA42A
−1
22 ), where A

h = A64A
−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53)A

−1
33 and Av = (A73 +

A75A
−1
55 A53)A

−1
33 A31A

−1
11 A64A

−1
44 are positive matrices with positive determinants. For

n = 2, that is for the two-patch submodel, the question is reduced to a matrix

problem.

Proposition 2.10. Let A = [ e
g
f
h
][v1

v2
][v1+a1+k1

−k1

−k2
v2+a2+k2

]−1, where all involving pa-

rameters are positive and satisfy eh > fg. Then ρ(A) is decreasing in v1 if

((1+
a2
v2
)(e+g)−f−h)k21+(e−h+2g+

a2 + k2
v2

(e+g)+
a2
v2
g)a1k1+(1+

a2 + k2
v2

)a21g < 0

and increasing otherwise.

Proof. The matrix A is the product of three matrices which correspond to Ah, A31

and A−1
11 (or, Av, A42 and A−1

22 ) in M , respectively. So here vi represents ν
h
i (or νvi )

and ki represents φ
E
ji (or ψ

E
ji) for i, j = 1, 2 and i ̸= j.
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Note that A has two distinct positive eigenvalues and the inverses of the eigenval-

ues of A are the eigenvalues of A−1. Thus it suffices to consider the monotonicity of

the smaller eigenvalue λ1 = 1/ρ(A) of A−1 on v1.

Let ā1 = a1 + k1 and ā2 = a2 + k2, and let [ x
−z

−y
w
] = [ e

g
f
h
]−1, then x, y, z, w > 0

and xw > yz. The characteristic equation of matrix A−1 is λ2 − Pλ+Q = 0, where

P = tr(A−1) = x(v1 + ā1)/v1 + yk1/v1 + zk2/v2 + w(v2 + ā2)/v2,

Q = det(A−1) = (xw − yz)((v1 + ā1)(v2 + ā2)− k1k2)/(v1v2).

Thus, λ1 = (P−
√
P2 − 4Q)/2 and ∂λ1/∂v1 = (Ṗ −(PṖ−2Q̇)/

√
P2 − 4Q)/2, where

Ṗ = ∂P/∂v1 = −(xā1 + yk1)/v
2
1 < 0

and

Q̇ = ∂Q/∂v1 = −(xw − yz)(ā1(v2 + ā2)− k1k2)/(v
2
1v2) < 0.

Then

∂λ1/∂v1 > 0 ⇔ PṖ − 2Q̇ < 0 and (Ṗ)2Q+ (Q̇)2 − PṖQ̇ > 0.

The second inequality is equivalent to

(yv2 + wk2)k
2
1 + (xv2 + zk2)ā1k1 > (zā1 + wk1)(v2 + ā2)ā1. (2.4.1)
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Claim: (2.4.1) implies PṖ − 2Q̇ < 0. In fact, we have

−PṖv21 = (x(1 + ā1/v1) + yk1/v1 + zk2/v2 + w(1 + ā2/v2))(xā1 + yk1)

> (x+ zk2/v2 + w(1 + ā2/v2))(xā1 + yk1)

= ((xv2 + zk2) + w(v2 + ā2))(ā1k1 + yk21/x)x/(k1v2)

> ((yv2 + wk2)k
2
1 + (xv2 + zk2)ā1k1 − wk2k

2
1 + w(v2 + ā2)ā1k1)x/(k1v2)

> ((zā1 + wk1)(v2 + ā2)ā1 − wk2k
2
1 + w(v2 + ā2)ā1k1)x/(k1v2) by (2.4.1)

> (2w(v2 + ā2)ā1k1 − wk2k
2
1)x/(k1v2) = (2xwā1(v2 + ā2)− xwk1k2)/v2

> 2(xw − yz)(ā1(v2 + ā2)− k1k2)/v2 = −2Q̇v21.

The proof is complete by substituting ā1 = a1+ k1 and ā2 = a2+ k2 into (2.4.1).

Remark 2.11. The biological interpretation of the inequality in Proposition 2.10 is

not easy. However, if the emigration rate k1 = 0, then the inequality always fails

and ρ(A) is consistently increasing in v1. So, the decreasing phenomenon is due to

the emigration of the corresponding exposed class and the fact that shortening the

exposed period (1/v1) makes them migrate less to the other patch.

In the rest of this section, we will study the dependence of R0 on the movement

of exposed, infectious, and recovered humans for the two-patch case. As far as we

know, there are very few results on this topic (Theorem 4.2 in Hsieh et al. [39],

see also Allen et al. [3]). Note that only A11 contains φE
ij and only A33 contains

φI
ij. We know ρ(M) = ρ(AEA−1

11 ) = ρ(AIA−1
33 ), where A

E = A64A
−1
44 A42A

−1
22 (A73 +

A75A
−1
55 A53)A

−1
33 A31 and AI = A31A

−1
11 A64A

−1
44 A42A

−1
22 (A73 + A75A

−1
55 A53) are positive

matrices with positive determinants. We first consider the case when the travel rates

of exposed, infectious, and recovered humans from one patch to the other depend on
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both the residence and disease status. The question then becomes a matrix problem

as follows.

Proposition 2.12. Let A = [ e
g
f
h
][a1+k1

−k1

−k2
a2+k2

]−1 , where all involving parameters are

positive and satisfy eh > fg. Then ρ(A) is decreasing in k1 if (e+ g)/a1 > (f +h)/a2

and increasing otherwise.

Proof. The matrix A is the product of two matrices which correspond to AE and A−1
11

(or AI and A−1
33 ) in M , respectively. Here ki represents φ

E
ji (or φ

I
ji) for i, j = 1, 2 and

i ̸= j.

It suffices to consider the monotonicity of the smaller eigenvalue λ1 = 1/ρ(A) of

A−1 on k1.

Let [ x
−z

−y
w
] = [ e

g
f
h
]−1. Then x, y, z, w > 0 and xw > yz. The characteristic

equation of matrix A−1 is λ2 − Pλ+Q = 0, where

P = tr(A−1) = x(a1 + k1) + yk1 + zk2 + w(a2 + k2),

Q = det(A−1) = (xw − yz)((a1 + k1)(a2 + k2)− k1k2).

Thus, λ1 = (P−
√
P2 − 4Q)/2. Direct calculation yields ∂λ1/∂k1 = (Ṗ−(PṖ−2Q̇)/

√
P2 − 4Q)/2, where Ṗ = ∂P/∂k1 = x+ y and Q̇ = ∂Q/∂k1 = (xw − yz)a2. Then

∂λ1/∂k1 > 0 ⇔ PṖ − 2Q̇ ≤ 0 or (Ṗ)2Q+ (Q̇)2 − PṖQ̇ < 0,

which is equivalent to

(x(a1 + k1) + yk1 + zk2 + w(a2 + k2))(x+ y)− 2(xw − yz)a2 ≤ 0 (2.4.2)
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or

(xk2 + y(a2 + k2))((x+ y)a1 − (z + w)a2)(xw − yz) < 0. (2.4.3)

Since xk2 + y(a2 + k2) > 0 and xw > yz, (2.4.3) is reduced to (x+ y)a1 < (z +w)a2.

It is easy to verify that (2.4.2) implies (2.4.3). Therefore, when (x+y)a1 < (z+w)a2,

i.e., (f + h)/a2 < (e+ g)/a1, ρ(A) is decreasing in k1.

Remark 2.13. The conclusion in Proposition 2.12 still holds if e, h, a1, a2 > 0,

f, g, k1, k2 ≥ 0, eh > fg, and hk2 + f(a2 + k2) > 0 (namely, k2 > 0 or f > 0

which implies that there is also infected (exposed, infectious, or recovered) human or

infected mosquito migration from patch 2 to patch 1). In particular, when only the

two classes associated to k1 and k2 travel between patches, ρ(A) is decreasing in k1

if (g + e)/a1 = e/a1 = R(1)
0 > (f + h)/a2 = h/a2 = R(2)

0 . Biologically, this means

that the disease outbreak becomes less severe if more people migrate from the high

transmission area to the low transmission area.

Remark 2.14. If hk2 + f(a2 + k2) = 0, namely k2 = 0 and f = 0, which means

no infected (exposed, infectious, or recovered) human or infected mosquito migrates

from patch 2 to patch 1, then

A =

 e 0

g h


 a1 + k1 0

−k1 a2


−1

=

 e/(a1 + k1) 0

(ga2 + hk1)/((a1 + k1)a2) h/a2

 .
We have ρ(A) = max{e/(a1 + k1), h/a2} which is non-increasing in k1.

The following result assumes that the travel rates of exposed, infectious, and

recovered humans depend on disease states but are independent of residences (i.e.,

the travel rate matrices (φE
ij)n×n and (φI

ij)n×n are symmetric).
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Proposition 2.15. Let A = [ e
g
f
h
][a1+k

−k
−k

a2+k
]−1 , where all involving parameters are

positive and satisfy eh > fg. Then ρ(A) is decreasing in k if (e+ f)/a1 > (g+ h)/a2

and (e+ g)/a1 > (f + h)/a2, or (e+ f)/a1 < (g+ h)/a2 and (e+ g)/a1 < (f + h)/a2;

and increasing otherwise.

Proof. We use the same notations as in Proposition 2.12 and consider the monotonic-

ity of the smaller eigenvalue λ1 = 1/ρ(A) of A−1 on k. The characteristic equation

of matrix A−1 is λ2 − Pλ+Q = 0, where P = x(a1 + k) + yk + zk + w(a2 + k) and

Q = (xw − yz)((a1 + k)(a2 + k)− k2).

Obviously, Ṗ = ∂P/∂k = x + y + z + w and Q̇ = ∂Q/∂k = (xw − yz)(a1 + a2).

Then

∂λ1/∂k > 0 ⇔ PṖ − 2Q̇ ≤ 0 or (Ṗ)2Q+ (Q̇)2 −PṖQ̇ < 0,

which is equivalent to

(x(a1 + k) + yk + zk + w(a2 + k))(x+ y + z + w) ≤ 2(xw − yz)(a1 + a2) (2.4.4)

or

−((x+ z)a1 − (y + w)a2)((x+ y)a1 − (z + w)a2)(xw − yz) < 0. (2.4.5)

Since xw > yz, the solutions to (2.4.5) satisfy (x+ z)a1 < (y+w)a2 and (x+ y)a1 <

(z + w)a2, or (x + z)a1 > (y + w)a2 and (x + y)a1 > (z + w)a2. It is easy to verify

that (2.4.4) implies (2.4.5). The proof is complete.

Remark 2.16. The monotonicity of ρ(A) is still true if e, h, a1, a2 > 0, f, g, k ≥ 0

and eh > fg. Epidemiologically, this means that the disease trend depends on a

double-side effect. If f = g = 0, ρ(A) is always non-increasing in k which means

that travel can reduce the disease severity when only the two classes associated to k
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migrate between patches.

So far all our analyses are carried out for all three classes of humans: exposed,

infectious and recovered. However, one would expect that the effect of the recovered

human movement is different from that of the other two classes. In fact, the last two

propositions do not work for the movement of recovered humans Rh
i which is related

to different matrices, i.e., [ e
g
f
h
]
(
[d1

d2
]+[a1+k1

−k1

−k2
a2+k2

]−1
)
and [ e

g
f
h
]
(
[d1

d2
]+[a1+k

−k
−k

a2+k
]−1
)
,

where all parameters are positive and eh > fg. A tentative analysis suggests that

similar, but more complicated, results may hold for the recovered class.

Therefore, for the two-patch submodel, the basic reproduction number R0 varies

monotonically with the travel rates of exposed, infectious, and recovered humans

depending on their disease states. This demonstrates that if there is enough travel of

humans between the two regions malaria can be sustained in the region with lower or

no transmission. Screening at borders usually can help to identify infected individuals

with symptoms but not those individuals with subpatent parasitaemia or those with

only liver stage infections (exposed). The analysis in this section shows that the

travel of the infected individuals, with or without symptoms, can contribute to the

spread of the disease from one patch to another. Thus, as far as malaria is concerned,

screening at borders is not an effective control measure.

These results can be applied to general multi-patch models when the impact of

population dispersal on the spatial spread of an infectious disease is concerned. When

the travel rate is independent of the disease state, but may or may not be independent

of residence, the relationship between R0 and the travel rates of exposed, infectious

and recovered humans becomes even more complicated and non-monotone dependence

can occur. We will investigate these situations by presenting some examples in the
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next section.

2.5 Numerical Simulations

In the case when two patches are concerned, we study the effects of population disper-

sal on disease dynamics by performing numerical simulations. Some of the parameter

values are chosen from the data in Chitnis et al. [15] and the references therein.

Example 2.17. To compare the importance of human movement of different exposed,

infectious and recovered classes in the geographical spread of the disease, we need to

do sensitivity analysis of the basic reproduction number R0 on the dispersal rates

φE
ij, φ

I
ij and φ

R
ij, respectively.

Assume parameters in system (2.2.1) are as follows: λhi = 5.5 × 10−5, µh
i =

8.8 × 10−6, ρhi = 2.0 × 10−7, λvi = 0.13, µv
i = 0.033, ρvi = 4.0 × 10−5, νhi = 0.1,

νvi = 0.083, rhi = 2.2 × 10−3, αh
i = 4.8 × 10−3, γhi = 2.0 × 10−5, βh

i = 3.5 × 10−3,

avi = 0.14 for i = 1, 2, and cvh1 = 0.11, chv1 = 0.08, dhv1 = 0.02, cvh2 = 0.02, chv2 = 0.337,

dhv2 = 0.06. These parameters yields the respective basic reproduction numbers in

isolation of R(1)
0 = 1.0127 > 1 and R(2)

0 = 0.8535 < 1. Thus, malaria is endemic in

patch 1 and dies out in patch 2.

With migration between patches, we take the same travel rate for mosquitoes from

one patch to the other, namely, ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0.01. For

human movement, we assume that the travel rates are independent of residences and

choose φS
12 = φS

21 = 0.15 for the susceptible. Now we keep two of the three travel

rates, i.e., φE
12 = φE

21 = k, φI
12 = φI

21 = 0.1k and φR
12 = φR

21 = 0.4k, fixed with k = 0.1

and let the remaining one decrease with k from 0.1 to 0. For example, if the first two
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Figure 2.2: The basic reproduction number R0 in terms of k. (a) R0 = 1.0006 as k = 0.1,
the optimal strategy for reducing R0 to be less than 1 is to restrict the travel of infectious
humans. (b) R0 = 1.0002 as k = 0.1, the optimal strategy for reducing R0 to be less than
1 is to restrict the travel of recovered humans.

travel rates are fixed with k = 0.1 and the remaining one decreases with k from 0.1 to

0, then φE
12 = φE

21 = 0.1 and φI
12 = φI

21 = 0.01, and φR
12 = φR

21 = 0.4k, k ∈ [0, 0.1]. The

curves of R0 against k are illustrated in Fig 2.2(a). The monotonicity of the curves

is predicted by Proposition 2.15. Since R0 = 1.0006 > 1 as k = 0.1, the disease is

endemic in both patches by Theorem 2.8. To eradicate the disease, it is more efficient

to restrict the travel of infectious humans in case we can only control the travel of

one of the exposed, infectious and recovered human classes.

However, the optimal control strategy is changed if the parameter values are var-

ied. For example, taking the same parameters as above except that chv2 = 0.23 and

dhv2 = 0.1365, then R(1)
0 = 1.0127 > 1, R(2)

0 = 0.8497 < 1, and R0 = 1.0002 > 1

as k = 0.1. From Fig 2.2(b), the only choice is to strictly control the travel of the

recovered humans while travel restriction on the exposed and infectious humans has

an adverse influence on disease control.

Example 2.18. For model (2.2.1), we present an example where the disease dies out

or persists in each isolated patch but becomes endemic or extinct, respectively, when

there is suitable migration between them. In fact, such a scenario may happen even
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for two identical patches from the aspect of ecology and epidemiology.

Figure 2.3: R0 as a function of k = φS
12 with R(1)

0 = R(2)
0 = 0.9557. The disease dies

out in each isolated patch, but it becomes endemic in both patches even when there is small
human movement.

Case 1: R(1)
0 < 1 and R(2)

0 < 1, but R0 > 1. For i = 1, 2, suppose λhi =

5.5× 10−5, µh
i = 8.8× 10−6, ρhi = 2.0× 10−7, λvi = 0.13, µv

i = 0.033, ρvi = 4.0× 10−5,

νhi = 0.1, νvi = 0.083, rhi = 2.1×10−3, αh
i = 4.8×10−3, γhi = 1.8×10−5, βh

i = 2.7×10−3,

avi = 0.14, cvhi = 0.11, chvi = 0.08, dhvi = 0.008. We choose the travel rates as follows:

φS
12 = k, φE

12 = φI
12 = φR

12 = 0.2k, φS
21 = 0.5k, φE

21 = φI
21 = φR

21 = 0.3k and

ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0, where k increases from 0 to 0.10. Note

that the travel rates of exposed, infectious and recovered humans are independent

of disease states but depend on their residences and there is no mosquito migration

between patches.

For the above parameter values, the dependence of R0 on k is shown in Fig 2.3. In

particular, we have R(1)
0 = R(2)

0 = 0.9557 and the disease can die out in each isolated

patches (see Fig 2.4(a)). When humans move between these two patches, even for

very small travel rate (k > 10−5), R0 exceeds 1 and the disease becomes endemic in

both patches (see Fig 2.4(b)) which is coincident with Theorem 2.8.
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Figure 2.4: Numerical solutions of system ( 2.2.1) with (a) k = 0 (no human movement)
and (b) k = 0.06 (the corresponding R0 = 1.1116), respectively. In both situations, the
initial conditions are Sh

i (0) = 187, Eh
i (0) = 3, Ihi (0) = 8, Rh

i (0) = 9, Sv
i (0) = 2310, Ev

i (0) =
10, Ivi (0) = 4 for i = 1, 2. The solution in (a) approaches the disease-free equilibrium, while
the solution in (b) approaches the endemic equilibrium. Note that the two trajectories in
(a) coincide completely because they have the same initial values and the two patches have
the same parameter values.
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Case 2: R(1)
0 > 1 and R(2)

0 > 1, but R0 < 1. Use the same parameter

values as in Case 1 except that av1 = av2 = 0.15 and the travel rates. We choose

φS
12 = k, φE

12 = φI
12 = φR

12 = 0.6k, φS
21 = 0.5k, φE

21 = φI
21 = φR

21 = 0.05k, and

ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0, where k varies from 0 to 0.10. Thus,

R(1)
0 = R(2)

0 = 1.0240 and the dependence of R0 in k is shown in Fig 2.5. Suitable

human movement may result in the extinction of the disease in both patches, even

though the disease persists in each isolated patch (see Fig 2.6).

Figure 2.5: R0 in terms of k = φS
12 with R(1)

0 = R(2)
0 = 1.0240. The disease persists

in each isolated patch, but it becomes extinct in both patches when there is suitable human
movement.

In studying how travel affects the spatial spread of certain disease, Hsieh et al. [39]

considered two patches, a low prevalence patch with a minor disease outbreak (basic

reproduction number in isolation is less than 1) and a high prevalence patch with

endemic disease (basic reproduction number in isolation is greater than 1). They nu-

merically demonstrated the possibility that for the low prevalence patch open travel

with a high prevalence patch could lead to the disease becoming endemic. However,

for a high prevalence patch open travel with a low prevalence patch could eradicate

the disease. Our simulations in Example 5.2 present more interesting scenarios. Case
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Figure 2.6: Numerical solutions of system ( 2.2.1) with (a) k = 0 (no human movement)
and (b) k = 0.06 (the corresponding R0 = 0.9727), respectively. In both situations, the
initial conditions are Sh

i (0) = 221, Eh
i (0) = 3, Ihi (0) = 6, Rh

i (0) = 4, Sv
i (0) = 2150, Ev

i (0) =
8, Ivi (0) = 7 for i = 1, 2. The solution in (a) approaches the endemic equilibrium, while the
solution in (b) approaches the disease-free equilibrium. Note that the two trajectories in (a)
coincide completely because the two patches have the same parameter values and the initial
data are the same.
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1 indicates that if both patches have low prevalence of the disease, travel of the ex-

posed and infectious individuals from one patch to another would increase the chances

of infecting the susceptible individuals in the second patch, travel of susceptible indi-

viduals from one patch to another would give them more opportunities to be infected

in the second patch, and vice versa. These travels would make the disease more likely

to be endemic in both patches. Such a situation has also been observed in Cosner

et al. [16] for a two-patch Ross-Macdonald malaria model. Case 2 is an ad hoc and

probably less likely scenario which could occur when all exposed and infectious in-

dividuals from one patch moved to another while all the susceptible individuals in

the second patch move to the first one. This dilution of the overall prevalence could

lessen the severity of the disease so that it becomes minor in both patches.

Example 2.19. Assume all parameters are as in Case 1 of Example 2.18 except that

cvh1 = 0.118, chv1 = 0.08, dhv1 = 0.008, cvh2 = 0.012, chv2 = 0.50, dhv2 = 0.176, and the

travel rates. This means that the two patches differ only in infectivity, namely, one

with higher mosquito infectivity but lower human infectivity and the other with lower

mosquito infectivity but higher human infectivity. Using formula (2.3.3), we obtain

the respective basic reproduction numbers R(1)
0 = 0.9899 < 1 and R(2)

0 = 0.9250 < 1

for both patches in isolation. So the disease dies out in each isolated patch.

Next, when the patches are connected, we fix the travel rates of mosquitoes and

susceptible humans by letting ψS
12 = ψE

12 = ψI
12 = ψS

21 = ψE
21 = ψI

21 = 0.002, φS
12 =

φS
21 = 0.15 and want to see the effects of exposed, infectious and recovered human

movement on the disease dynamics. If the travel rates of exposed, infectious and

recovered humans are independent of residences and disease states, i.e., φE
12 = φI

12 =

φR
12 = φE

21 = φI
21 = φR

21 = k, then Fig 2.7 shows how R0 varies with k from 0 to 0.10.
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Figure 2.7: Relationship between R0 and k = φE
12 = φI

12 = φR
12 = φE

21 = φI
21 = φR

21. The
disease dies out when the exposed, infectious and recovered human travel rate is small or
large, it persists otherwise.

The disease may die out if the exposed, infectious and recovered human movement

is weak. Stronger travel of exposed, infectious and recovered humans between patches

can lead to the disease becoming endemic in both patches. However, if the travel rate

keeps increasing, the disease may again die out in both patches. This implies that

inappropriate border control on exposed, infectious and recovered humans could have

negative feedback. Observe that it is also an example where R0 is not monotone

in the exposed, infectious and recovered human travel rate which is independent of

residence and disease state.

2.6 Discussion

Malaria is one of the world’s most common infectious diseases and it is a major cause

of child death and poverty in Africa. This issue may become even more serious due

to many factors such as the rapid expansion of modern transportation, urbanization

in developing countries, deforestation and so on. In this chapter, taking the trans-

mission heterogeneity into account, we proposed a multi-patch model to study the
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impact of mobility of vector and host populations on malaria transmission. We have

discussed the existence and stability of the disease-free equilibrium of the model and

obtained a formula for the basic reproduction number R0. By applying some matrix

inequalities, bounds on R0 were given. A sufficient condition was obtained to guar-

antee the existence of an endemic equilibrium. Then the dependence of R0 on the

model parameters was analyzed. In particular, for a two-patch model, we studied the

monotonicity of R0 in terms of the travel rates of exposed, infectious and recovered

humans. Our analysis indicates that R0 varies monotonically with the movement of

exposed, infectious and recovered humans which depends on the disease state. We

should mention that the monotonicity also holds for mosquito movement. Finally,

three numerical examples were given to illustrate the impact of population dispersal

for the disease spread. The first example explores the role of different exposed, in-

fectious and recovered classes in the disease propagation. The second one shows that

suitable human movement can both intensify and mitigate the disease spread even for

two identical patches. In the last example, two patches which only differ in infectivity

of humans and mosquitoes are concerned. Non-monotonicity of R0 in the exposed,

infectious and recovered human travel rate which is independent of the residence and

disease state is observed. These results suggest that human movement is a critical

factor in the spatial spread of malaria around the world. Since the travel of exposed

(latently infected) human individuals can also spread the disease geographically and

screening at borders usually can only help to identify symptomatic individuals, inap-

propriate border control may make the disease transmission even worse and to control

or eliminate malaria we need global and regional strategies (Tatem and Smith [87]).

Accordingly, a full understanding of movement is important in designing effective

anti-malaria measures.
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There is still much work to do with our model. First of all, we are interested in

the global stability of the disease-free equilibrium when R0 < 1. Unfortunately, it is

difficult to give an explicit formula for the disease-free equilibrium (even for n = 2),

consequently, it is also difficult to give a formula for R0. Even if we obtained such

a formula, it may be too complicated to use it directly. Unlike models in Salmani

and van den Driessche [76] and Hsieh et al. [39], here we cannot use a comparison

theorem for the vector-host model using their methods. Secondly, the existence,

uniqueness and stability of the endemic equilibrium is in general unclear. Thirdly,

the dependence of R0 on travel rates for three or more patches submodels would be

extremely complicated since the interaction networks are more complex. However,

at least we can do some numerical simulations. Furthermore, it is interesting to

test our model with field data and carry out sensitivity analysis to develop efficient

intervention strategies.

We remark that there are many possibilities to generalize the ODE model studied

here to increase realism. For example, in the model it is assumed that all parameters

are constant. In fact, the biological activity and geographic distribution of malaria

parasite and its vector are greatly influenced by climatic factors such as rainfall,

temperature and humidity (Martens et al. [59], Smith et al. [78]). The impact of

climate change can be investigated by assuming that some parameters to be time or

temperature dependent. It is also important to consider stochastic versions of these

models. The basic modeling approach of dividing the population into subclasses

according to their locations and then observing their moving behavior can be viewed

as a Markov process with random coefficients (Langevin formulation) or with known

transition probabilities between regions. We leave all these for future consideration.



Chapter 3

A Periodic Ross-Macdonald Model
in a Patchy Environment

3.1 Background

Malaria, a widely prevalent vector-borne disease in tropical and subtropical areas, is

caused by a parasite that is transmitted to humans and many other animals by the

Anopheles mosquito. Once infected, people may experience a variety of symptoms,

ranging from absent or very mild symptoms to severe complications and even death.

It is one of the most deadly infectious diseases that causes major economic loss due

to illness and death in humans.

The so-called Ross-Macdonald model is the earliest and also simplest mathemat-

ical model of malaria transmission between human and mosquito populations. It

was initially proposed by Ross in 1911 [74] and later extended by Macdonald in

1950s [54–56]. The modeling framework is now widely used for malaria and some

other mosquito-borne diseases. It captures the essential features of malaria transmis-

sion process, but ignores many factors of real-world ecology and epidemiology (see

Ruan et al. [75]).

One omission in the classical Ross-Macdonald model is the temporal heterogeneity

59
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in the number of both populations and the human feeding rate of mosquitoes. In many

nations like Niger, seasonal human migration has a long history, and destinations and

reasons vary by community and ethnic group. It is a common sense that there are

more mosquitoes in the summer and fewer in the winter. The biological activity and

geographic distribution of malaria parasite and its vector are greatly influenced by

climatic factors such as rainfall, temperature and humidity. These influences can be

investigated by assuming some parameters to be time dependent. In recent years,

epidemic models with seasonal fluctuation have been proposed and explored by many

researchers. We refer to [10,11,49, 99,100] and references therein for more studies in

this topic. Periodicity mainly lies in contact rate, birth or death rate, vaccination

rate, etc. Another omission is the spatial movements of hosts. The migration of

humans can influence disease spread in a complicated way [28]. To get a better

understanding of disease dynamics, it is necessary to incorporate periodic variations

and population dispersal into epidemic models. These two concerns are considered

in [52] via a periodic reaction-diffusion-advection model. We shall formulate a periodic

epidemiological model in a patchy environment and establish the threshold dynamics

of the model in Section 2 and Section 3, respectively. The last section gives some

numerical simulations and a brief discussion of our main results.

3.2 Model Formulation

Most mosquitoes can only travel a couple of kilometers throughout their lifetime

(Costantini et al. [17] and Midega et al. [61]), so we assume no movement for vector

populations (see Auger et al. [8]). For simplicity, the human vital dynamics are
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ignored and the population model for vectors is the same as that studied in Smith

et al. [79]. Following the classical Ross-Macdonald model, we divide the adult female

mosquito and human populations into two classes in each patch: susceptible and

infectious. The total number of patches is p. We assume that the total populations

of humans and mosquitoes at time t in patch i are Hi(t) and Vi(t), respectively. Let

hi(t) and vi(t) denote the numbers of infectious humans and infectious mosquitoes in

patch i, respectively. The interactions between humans and mosquitoes in patch i can

be described by the following periodic system with non-negative initial conditions:

dHi

dt
=

p∑
j=1

mij(t)Hj, 1 ≤ i ≤ p, (3.2.1a)

dVi
dt

= ϵi(t)− di(t)Vi, 1 ≤ i ≤ p (3.2.1b)

dhi
dt

= ai(t)bi
Hi(t)− hi
Hi(t)

vi − rihi +

p∑
j=1

mij(t)hj, 1 ≤ i ≤ p, (3.2.1c)

dvi
dt

= ai(t)ci
hi

Hi(t)
(Vi(t)− vi)− di(t)vi, 1 ≤ i ≤ p, (3.2.1d)

where

ϵi(t) > 0 is mosquito birth rate;

di(t) > 0 is mortality rate of mosquitoes;

ai(t) > 0 is human feeding rate;

bi > 0 is transmission probability from infectious mosquitoes

to susceptible humans;

ci > 0 is transmission probability from infectious humans

to susceptible mosquitoes;
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1/ri > 0 is human infectious period;

mij(t) ≥ 0 is the human immigration rate from patch j to patch i for i ̸= j;

−mii(t) ≥ 0 is the human emigration rate in patch i.

All time-dependent parameters in system (3.2.1) are continuous and periodic functions

with the same period ω = 365 days. We assume that there is no death or birth during

travel, so the emigration rate of humans in patch i, −mii(t) ≥ 0, satisfies

p∑
j=1

mji(t) = 0 for i = 1, . . . , p and t ∈ [0, ω].

Unless otherwise indicated, the travel rate matrix (mij(t))p×p is assumed to be irre-

ducible for any fixed t ∈ [0, ω]. The notation H will mean (H1, . . . , Hp), with similar

notations for other vectors. The following theorem indicates that model (3.2.1) is

mathematically and epidemiologically well-posed.

Theorem 3.1. For any initial value z in

Γ = {(H,V, h, v) ∈ R4p
+ : hi ≤ Hi, vi ≤ Vi, i = 1, . . . , p},

system (3.2.1) has a unique nonnegative bounded solution through z for all t ≥ 0.

Proof. Let G(t, z) be the vector field described by (3.2.1) with z(t) ∈ Γ. Then G(t, z)

is continuous and Lipschitzian in z on each compact subset of R1 × Γ. Clearly,

Gk(t, z) ≥ 0 whenever z ≥ 0 and zk = 0, k = 1, . . . , 4p. It follows from Theorem

5.2.1 in [80] that there exists a unique nonnegative solution for system (3.2.1) through

z ∈ Γ in its maximal interval of existence. The total numbers of hosts and vectors,
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Nh(t) =
p∑

i=1

Hi(t) and N
v(t) =

p∑
i=1

Vi(t), satisfy

dNh(t)

dt
=

p∑
i=1

p∑
j=1

mij(t)Hj =

p∑
i=1

p∑
j=1

mji(t)Hi = 0

and

dN v(t)

dt
=

p∑
i=1

(ϵi(t)− di(t)Vi(t)) ≤ ϵ− dN v(t),

respectively, where ϵ = max
0≤t≤ω

( p∑
i=1

ϵi(t)
)

and d = min
0≤t≤ω

(
min
1≤i≤p

di(t)
)

are positive

constants. Thus Nh(t) ≡ Nh(0). The comparison principle (see Theorem B.1 in

Smith and Waltman [83]) implies that N v(t) is ultimately bounded. Hence every

solution of (3.2.1) exists globally.

3.3 Mathematical analysis

In this section, we first show the existence of a unique disease-free periodic solution

and then evaluate the basic reproduction number for the periodic system. By us-

ing theory of monotone dynamical systems, we establish its global dynamics. The

following result is analogous to Lemma 1 in Cosner et al. [16] for the autonomous

case.

Lemma 3.2. The human migration model (3.2.1a) with Hi(0) ≥ 0 for i = 1, . . . , p

and Nh(0) > 0 has a unique positive ω-periodic solution H∗(t) ≡ (H∗
1 (t), . . . , H

∗
p (t)),

which is globally asymptotically stable. The mosquito growth model (3.2.1b) with

Vi(0) ≥ 0 for i = 1, . . . , p has a unique positive ω-periodic solution V ∗(t) ≡ (V ∗
1 (t), . . . ,

V ∗
p (t)), which is globally asymptotically stable.
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Proof. Since the travel rate matrix (mij(t))p×p is continuous, cooperative, irreducible

and ω-periodic and it also satisfies e(mij(t))p×p ≡ 0 with e = (1, . . . , 1)1×p, it follows

from Theorem 1 in Aronsson and Kellogg [7] that there is a unique positive ω-periodic

solution H∗(t) such that
p∑

i=1

H∗
i (t) = Nh(0). Moreover, any solution H(t) of (3.2.1a)

satisfying
p∑

i=1

Hi(t) = Nh(0) approaches H∗(t) exponentially as t→ ∞.

The i-th equation of (3.2.1b) has a unique positive periodic solution

V ∗
i (t) = e

−
t∫
0

di(s)ds
(
Vi(0) +

t∫
0

e

s∫
0

di(τ)dτ
ϵi(s)ds

)
with V ∗

i (0) =

ω∫
0

e

s∫
0

di(τ)dτ
ϵi(s)ds

e

ω∫
0

di(s)ds
− 1

,

which is globally asymptotically stable.

Remark 3.3. We can relax the positivity assumption on ϵi(t) to ϵ̄i > 0 where ϵ̄i =

1
ω

∫ ω

0
ϵi(t)dt is the average value of ϵi(t). See Lemma 2.1 in Zhang and Teng [101] for

results on a general nonautonomous system of the form dVi/dt = ϵi(t)− di(t)Vi.

The above result guarantees that system (3.2.1) admits a unique disease-free pe-

riodic solution

E0(t) = (H∗
1 (t), . . . , H

∗
p (t), V

∗
1 (t), . . . , V

∗
p (t), 0, . . . , 0, 0, . . . , 0).

Biologically, both human and mosquito populations in each patch are seasonally

forced due to seasonal human migration and periodic changing in the birth rate

of mosquitoes, respectively. Now we consider the asymptotically periodic system for
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malaria transmission

dhi
dt

= ai(t)bi
H∗

i (t)− hi
H∗

i (t)
vi − rihi +

p∑
j=1

mij(t)hj, 1 ≤ i ≤ p,

dvi
dt

= ai(t)ci
hi

H∗
i (t)

(V ∗
i (t)− vi)− di(t)vi, 1 ≤ i ≤ p.

(3.3.1)

In what follows, we use the definition of Bacaër and Guernaoui [10] (see also

Bacaër [9]) and the general calculation method in Wang and Zhao [95] to evaluate

the basic reproduction number R0 for system (3.3.1). Then we analyze the threshold

dynamics of system (3.3.1). Finally we study global dynamics for the whole system

(3.2.1) by applying the theory of internally chain transitive sets (Hirsch et al. [36]).

Let x = (h1, . . . , hp, v1, . . . , vp) be the vector of all infectious class variables. The

linearization of system (3.3.1) at the disease-free equilibrium P0 = (0, . . . , 0, 0, . . . , 0)

is

dx

dt
= (F (t)− V (t))x, (3.3.2)

where

F (t) =

 0 A

B 0

 and V (t) =

 C 0

0 D

 .
Here A = (δijai(t)bi)p×p, B = (δijai(t)ciV

∗
i (t)/H

∗
i (t))p×p, C = (δijri − mij(t))p×p,

D = (δijdi(t))p×p and δij denotes the Kronecker delta function (i.e. 1 when i = j and

0 elsewhere).

Let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic system

dy

dt
= −V (t)y.
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That is, for each s ∈ R1, the 2p× 2p matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I2p,

where I2p is the 2p× 2p identity matrix.

Let Cω be the ordered Banach space of all ω-periodic functions from R1 to R2p

equipped with the maximum norm. We define a linear operator L : Cω → Cω by

(Lϕ)(t) =

∫ t

−∞
Y (t, s)F (s)ϕ(s)ds =

∫ ∞

0

Y (t, t−a)F (t−a)ϕ(t−a)da, ∀t ∈ R1, ϕ ∈ Cω.

The basic reproduction number of the periodic system (3.3.1) is then defined as

R0 := ρ(L), the spectral radius of L. LetW (t, λ) be the monodromy matrix (see [33])

of the homogeneous linear ω-periodic system

dw

dt
=
(
− V (t) +

F (t)

λ

)
w, t ∈ R1 (3.3.3)

with parameter λ ∈ (0,∞). That is, W (t, λ) is a nonsingular matrix associated

with a fundamental solution matrix Wλ(t) of system (3.3.3) through the relation

Wλ(t+ ω) = Wλ(t)W (t, λ).

It is easy to verify that conditions (A1)-(A7) in Wang and Zhao [95] are satis-

fied. The following two lemmas will be used in numerical computation of the basic

reproduction number R0.

Lemma 3.4 (Wang and Zhao [95], Theorem 2.1). The following statements are valid:

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L and

hence R0 > 0.
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(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.

Lemma 3.5 (Wang and Zhao [95], Theorem 2.2). Let ΦF−V (t) and ρ(ΦF−V (ω)) be

the monodromy matrix of system (3.3.2) and the spectral radius of ΦF−V (ω). The

following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.

(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Thus, the disease-free equilibrium P0 is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

According to Lemma 3.4(ii), we see that the basic reproduction number for (3.3.1)

is proportional to the biting rate, that is, R̃0 = kR0 if β̃i(t) = kβi(t) for k > 0 and

1 ≤ i ≤ p (see Lou and Zhao [51] or Liu and Zhao [49]). Lou and Zhao [52] presented

a global qualitative analysis for system (3.3.1) with a single patch. We will show that

the system with multiple patches does not exhibit more complicated dynamics.

Lemma 3.6. Let Dt = {(h, v); 0 ≤ h ≤ H∗(t), 0 ≤ v ≤ V ∗(t)}. For each x(0) =

(h(0), v(0)) ∈ R2p
+ , system (3.3.1) admits a unique solution x(t) = (h(t), v(t)) ∈ R2p

+

through x(0) for all t ≥ 0. Moreover, x(t) ∈ Dt, ∀t ≥ 0, provided that x(0) ∈ D0.

Proof. LetK(t, x) denote the vector field described by (3.3.1). SinceK(t, x) is contin-

uous and locally Lipschitizan in x in any bounded set. By Theorem 5.2.1 in Smith [80]
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and Theorem 3.1, system (3.3.1) has a unique solution through x(0) ∈ R2p
+ which ex-

ists globally. To prove the second statement, we introduce an auxiliary system

dhi
dt

= ai(t)bi
H∗

i (t)− hi
H∗

i (t)
vi +

p∑
j=1

mij(t)hj, 1 ≤ i ≤ p,

dvi
dt

= ai(t)ci
hi

H∗
i (t)

(V ∗
i (t)− vi), 1 ≤ i ≤ p.

(3.3.4)

and let K̃(t, x) be defined by the right hand side of (3.3.4). Clearly, K(t, x) ≤

K̃(t, x) for all (t, x) ∈ R1 × D0. Note that (H∗(t), V ∗(t)) is the unique solution of

(3.3.4) through (H∗(0), V ∗(0)). It follows from Theorem 5.1.1 in Smith [80] that

x(t) = (h(t), v(t)) ≤ (H∗(t), V ∗(t)) holds for all t ≥ 0 whenever x(0) ∈ D0.

Theorem 3.7. For system (3.3.1), it admits a unique positive ω-periodic solution

which is globally asymptotically stable with initial values in D0\{0} if R0 > 1 and the

disease-free equilibrium P0 is globally asymptotically stable in D0 if R0 ≤ 1.

Proof. To show the global asymptotic stability of E0(t) or P
0, it suffices to verify that

K(t, x) : R1
+ × D0 → R2p satisfies (A1)-(A3) in Theorem 3.1.2 in Zhao [103].

For every x = (h, v) ≥ 0 with hi = 0 or vi = 0, t ∈ R1
+, we have

Ki(t, x) = ai(t)bivi +
∑

1≤j≤p,j ̸=i

mij(t)hj ≥ 0 or Kp+i(t, x) = ai(t)ci
hi

H∗
i (t)

V ∗
i (t) ≥ 0,

1 ≤ i ≤ p. So (A1) is satisfied.

By Lemma 3.6 and the irreducibility of (mij(t))p×p, we know that (∂Ki/∂xj)2p×2p

is cooperative for t ≥ 0 and x ∈ D0, and is irreducible for t ≥ 0 and x ∈ IntD0,

the interior of D0. Thus, the semiflow generated by (3.3.1) is monotone in D0 and is

strongly monotone in IntD0.
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For each t ≥ 0, i = 1, . . . , p, there hold

Ki(t, αx) = ai(t)bi
H∗

i (t)− αhi
H∗

i (t)
αvi − riαhi +

p∑
j=1

mij(t)αhj

> α
(
ai(t)bi

H∗
i (t)− hi
H∗

i (t)
vi − rihi +

p∑
j=1

mij(t)hj

)
= αKi(t, x)

and

Kp+i(t, αx) = ai(t)ci
αhi
H∗

i (t)
(V ∗

i (t)− αvi)− di(t)αvi

> α
(
ai(t)ci

hi
H∗

i (t)
(V ∗

i (t)− vi)− di(t)vi

)
= αKp+i(t, x),

for each x≫ 0, α ∈ (0, 1). That is K(t, ·) is strictly subhomogeneous on R2p
+ .

Moreover, K(t, 0) ≡ 0 and all solutions are ultimately bounded. Therefore, by

Theorem 3.1.2 in Zhao [103] or Theorem 2.3.4 in Zhao [103] as applied to the Poincaré

map associated with (3.3.1), the proof is complete.

Using the theory of internally chain transitive sets (Hirsch et al. [36] or Zhao [103]),

as argued in Lou and Zhao [53], we find that the disease either dies out or persists at

a periodic attractor. The proof is omitted here.

Theorem 3.8. For system (3.2.1), if R0 > 1 then there is a unique positive ω-periodic

solution which is globally asymptotically stable; if R0 ≤ 1 then the disease-free periodic

solution E0(t) is globally asymptotically stable.
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3.4 Simulations and Discussions

In this section, we provide some numerical simulations for the two-patch case to

support our analytical conclusions.

Choose parameter values as follows: the first patch has b1 = 0.1, r1 =

0.009, c1 = 0.3; ϵ1(t) = 2.5 − 1.3 cos( 2π
365
t), d1(t) = 0.08 + 0.04 cos( 2π

365
t), a1(t) =

0.25 − 0.09 cos( 2π
365
t); the second patch has b2 = 0.1, r2 = 0.007, c2 = 0.3; ϵ2(t) =

1.8− 1.2 cos( 2π
365
t), d2(t) = 0.05 + 0.03 sin( 2π

365
t), a2(t) = 0.15− 0.06 cos( 2π

365
t); and the

migration rates are m12(t) = 0.003 + 0.001 cos( 2π
365
t),m21(t) = 0.004 + 0.002 sin( 2π

365
t).

Then Lemma 3.4 implies that R0 ≈ 0.943 < 1 and the disease-free periodic solution

is globally asymptotically stable (see Figure 3.1).

With the same parameter values and initial data except that the mosquito biting

rates a1(t) = 1.2(0.25 − 0.09 cos( 2π
365
t)) and a2(t) = 1.2(0.15 − 0.06 cos( 2π

365
t)), we

obtain R0 = 1.13 > 1 by Lemma 3.4 or the linearity of R0 in the biting rates. Every

solution with infectives initially present approaches a positive periodic solution (see

Figure 3.2).

The respective average basic reproduction numbers R̄0 (see Zhang et al. [100]

and references therein), are 0.589 < 1 and 0.706 < 1 corresponding to the two cases

shown above. Thus, the autonomous Ross-Macdonald model may underestimate or

overestimate disease severity.

In this project, we have developed a compartmental model to address seasonal

variations of malaria transmission among different regions by incorporating seasonal

human movement and periodic changing in mosquito ecology. We then define the

basic reproduction number and establish the global dynamics of the model. Our

result gives a possible explanation to the fact that malaria cases show seasonal peaks
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Figure 3.1: Numerical solution of system (3.2.1) with a1(t) = 0.25 − 0.09 cos( 2π
365 t) and

a2(t) = 0.15− 0.06 cos( 2π
365 t). We use the following initial conditions: H1(0) = 100, V1(0) =

50, h1(0) = 8, v1(0) = 15 and H2(0) = 342, V2(0) = 30, h2(0) = 25, v2(0) = 10. Since
R0 < 1, the disease dies out in both patches.
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Figure 3.2: Numerical solution of system (3.2.1) with a1(t) = 1.2(0.25 − 0.09 cos( 2π
365 t))

and a2(t) = 1.2(0.15 − 0.06 cos( 2π
365 t)). We use the following initial conditions: H1(0) =

100, V1(0) = 50, h1(0) = 8, v1(0) = 15 and H2(0) = 342, V2(0) = 30, h2(0) = 25, v2(0) = 10.
Since R0 > 1, the disease persists in both patches.
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in most endemic areas [72]. The numerical example shows that autonomous malaria

models can underestimate or overestimate the infection risk.

It is interesting to assess the impacts of climate change on the emerging and

reemerging of mosquito-borne diseases, especially malaria. It is believed that global

warming would cause climate change. Climatic factors such as rainfall, temperature,

humidity and wind speed affect the biological activity and geographic distribution of

parasites and their vectors.

The current and potential future impact of climate change on human health has

attracted considerable attention in recent years. Many of the early studies (see Os-

tfeld [69] and the references cited therein) claimed that recent and future trends in

climate warming were likely to increase the severity and global distribution of vector-

borne diseases, while there is still substantial debate about the link between climate

change and the spread of infectious diseases [46]. The controversy is partially due

to the fact that although there is massive work using empirical-statistical models to

explore the relationship between climatic factors and the distribution and prevalence

of vector-borne diseases, there are very few studies incorporating climatic factors into

mathematical models to describe disease transmission.

The research that comes closest to what we want to do has been conducted by

Parham and Michael in [70], where they used a system of delay differential equations

to model malaria transmission under varying climatic and environmental conditions.

Model parameters are assume to be temperature-dependent or rainfall-dependent or

both. Due to the complexity of the model, mathematical analysis was impossible and

only numerical simulations were carried out. We would like to expand our model to

a mathematically tractable climate-based model in the future.



Chapter 4

Modeling the Spatial Spread of Rift
Valley Fever in Egypt

4.1 Background

Rift Valley fever (RVF) is a viral zoonosis of domestic animals (such as cattle, sheep,

camels and goats) and humans caused by the RVF virus (RVFV), a member of the

genus Phlebovirus in the Bunyaviridae family. Initially identified in the Rift Valley of

Kenya in 1931, outbreaks of RVF have been reported in sub-Saharan Africa, Egypt,

Saudi Arabia and Yemen. These result in significant economic losses due to high

mortality and abortion in livestock. The virus is spread primarily by the bite of an

infected female mosquito, typically the Aedes or Culex genera. The Aedes mosquitoes

can only transmit the disease to hosts, while the Culex mosquitoes can also transmit

the disease vertically (mother-to-offspring). Humans can get RVF through the bites

of infected mosquitoes or direct/indirect contact with the blood or organs of infected

animals, but they cannot transmit it. To date, two types of vaccines are available for

veterinary use [41], but there is no licensed vaccine for humans.

Mathematical models have become an important tool in identifying disease trans-

mission process, assessing infection risk and prevalence, and in optimizing control

74
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strategies. However, so far little has been done to model and analyze the RVF trans-

mission dynamics [57]. Gaff et al. [26] proposed a compartment model explored the

mechanisms of RVFV circulation including Aedes and Culex mosquitoes and livestock

population, in which each adult mosquito population is divided into classes contain-

ing susceptible, exposed and infectious individuals and the livestock population is

classified as susceptible, exposed, infectious and recovered. To account for vertical

transmission in Aedes mosquiotes, compartments for uninfected and infected eggs are

also included. Meanwhile, only uninfected eggs are included for Culex mosquitoes.

They derived the basic reproduction number to assess the stability of the disease-free

equilibrium and performed sensitivity analysis to determine the most significant mod-

el parameters to disease transmission. In [62], Mpheshe et al. modified the model in

Gaff et al. [26] to reduce egg classes of mosquitoes, include human population and

exclude vertical transmission in mosquitoes. They gave conditions for the stabili-

ty of the disease-free equilibrium and persistence of the disease. Sensitivity indices

of the basic reproduction number and the endemic equilibrium were evaluated to s-

tudy the relative importance of different factors responsible for RVF transmission and

prevalence. It is believed that RVFV is introduced to a disease-free area by insects

carried by wind and animal movements through trade [57]. Xue et al. [97] presented

a network-based metapopulation model incorporating Aedes and Culex mosquitoes,

livestock and human populations. They tested the model with data from an outbreak

of RVF in South Africa and analyzed the sensitivity of the model to its parameters.

Recently, Chamchod et al. [13] proposed a simple but innovative model to investigate

the emergence of RVF outbreaks, and epizootic and enzootic cycles of RVFV. Many

aspects of their investigation have not been addressed in previous modeling studies.

For example, they considered the effect of vaccination on the transmission dynam-



76

ics of RVFV. However, these models either do not include spatial effects or are too

complicated to perform rigorous mathematical analysis.

The main purpose of this chapter is to propose a mathematically tractable model

with spatial dynamics. In the next section, we develop a three-patch epidemic model

to describe the spatial spread of RVF in Egypt. In Section 3, the basic reproduction

number for each patch is calculated and the threshold dynamics of the model will

be established. Moreover, the existence and stability of the endemic equilibrium

are discussed. In Section 4, we simulate an interesting scenario showing possible

explanation to the observed phenomenon in Egypt. A brief discussion is given in

Section 5.

4.2 The Model

The first outbreak of RVF in Egypt occurred in the Nile Valley and Delta in 1977

[37]. This was the first RVF outbreak recorded outside traditionally affected areas

in sub-Saharan Africa. Due to a combination of a lack of experience in dealing

with RVF patients and insufficient public health programs, the outbreak caused at

least thousands of human infections and hundreds of human deaths [62]. Since then,

Egypt has been experiencing continued RVF outbreaks among domestic animals which

indicates that the RVFV has become enzootic in Egypt. The imported animals from

Sudan and African Horn were usually not vaccinated against RVFV. Travel time

from north-central Sudan, where RVF was epizootic, to livestock markets in southern

Egypt (Aswan Province), was less than 5 days, approximating the incubation period

of RVFV in sheep [1, 25]. So it is hypothesized that the recurrence of epizootic is
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mainly caused by the continuous importation of infected animals from Sudan and

failure of the locally applied RVF vaccination program [43].

Egypt is an arid country with most of the population concentrated along the

Nile, in the Delta and near the Suez Canal. The imported animals enter southern

Egypt from northern Sudan, are moved up the Nile, and then consumed at these

population centres. Vertical transmission of RVF has not been demonstrated to occur

in Egypt [60]. For simplicity, we restrict our focus on the disease transmission between

domestic animals and mosquitoes. To capture the idea that more mosquitoes lead to

more transmission, it seems most natural to use mass-action transmission terms. The

movement timescale of animals is relatively short, so we assume that there is no host

reproduction during the journey. Therefore, the density of hosts is determined by

movement, mortality, and the rate at which they are introduced, which could be set

to depend on demand. We assume that there is no movement for vector population

because of their limited mobility. Assume also that the mosquito population satisfies

the logistic growth to maintain an equilibrium vector population. For epidemiology,

we use a simple SIRS model for hosts and an SI model for vectors.

Based on the above assumptions, we propose a three-patch model with animals

movement from patch 1 to patch 2 and then from patch 2 to patch 3:



dS1

dt
= r − α1S1V1 − µS1 + ζR1 − cS1,

dI1
dt

= α1S1V1 − (µ+ γ + δ)I1 − cI1,

dR1

dt
= γI1 − (µ+ ζ)R1 − cR1,

dU1

dt
= ξ1(U1 + V1)−

ξ1 − ν1
M1

(U1 + V1)
2 − ν1U1 − β1I1U1,

dV1
dt

= −ν1V1 + β1I1U1,

(4.2.1a)
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Table 4.1: The state variables in model (4.2.1) and their descriptions

Symbol Description
Si Number of susceptible animals in patch i at time t
Ii Number of infectious animals in patch i at time t
Ri Number of recovered animals in patch i at time t
Ui Number of susceptible mosquitoes in patch i at time t
Vi Number of infectious mosquitoes in patch i at time t



dS2

dt
= cS1 − α2S2V2 − µS2 + ζR2 − cS2,

dI2
dt

= cI1 + α2S2V2 − (µ+ γ + δ)I2 − cI2,

dR2

dt
= cR1 + γI2 − (µ+ ζ)R2 − cR2,

dU2

dt
= ξ2(U2 + V2)−

ξ2 − ν2
M2

(U2 + V2)
2 − ν2U2 − β2I2U2,

dV2
dt

= −ν2V2 + β2I2U2,

(4.2.1b)



dS3

dt
= cS2 − α3S3V3 − µS3 + ζR3 − cS3,

dI3
dt

= cI2 + α3S3V3 − (µ+ γ + δ)I3 − cI3,

dR3

dt
= cR2 + γI3 − (µ+ ζ)R3 − cR3,

dU3

dt
= ξ3(U3 + V3)−

ξ3 − ν3
M3

(U3 + V3)
2 − ν3U3 − β3I3U3,

dV3
dt

= −ν3V3 + β3I3U3.

(4.2.1c)

The state variables and parameters used in model (4.2.1) and their descriptions

are presented in Table 4.1 and Table 4.2, respectively.

The total number of mosquitoes in patch i at time t, denoted by N v
i (t), satisfies

dN v
i

dt
= (ξi − νi)N

v
i − ξi − νi

Mi

(N v
i )

2, i = 1, 2, 3,
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Table 4.2: The parameters in model (4.2.1) and their descriptions

Symbol Description
r Recruitment rate of animals
c Movement rate of animals
µ Natural death rate for animals
δ Disease-induced death rate for animals
γ Recovery rate for animals
ζ Rate of loss of immunity for animals
ξi Growth rate of mosquitoes in patch i
νi Natural death rate for mosquitoes in patch i
Mi Carrying capacity for mosquitoes in patch i
αi Transmission rate from vector to host in patch i
βi Transmission rate from host to vector in patch i

and it converges to Mi as t → ∞ for any positive initial value. Therefore, we may

consider the following reduced system



dS1

dt
= r − α1S1V1 − µS1 + ζR1 − cS1,

dI1
dt

= α1S1V1 − (µ+ γ + δ)I1 − cI1,

dR1

dt
= γI1 − (µ+ ζ)R1 − cR1,

dV1
dt

= −ν1V1 + β1I1(M1 − V1),

(4.2.2a)



dS2

dt
= cS1 − α2S2V2 − µS2 + ζR2 − cS2,

dI2
dt

= cI1 + α2S2V2 − (µ+ γ + δ)I2 − cI2,

dR2

dt
= cR1 + γI2 − (µ+ ζ)R2 − cR2,

dV2
dt

= −ν2V2 + β2I2(M2 − V2),

(4.2.2b)
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

dS3

dt
= cS2 − α3S3V3 − µS3 + ζR3 − cS3,

dI3
dt

= cI2 + α3S3V3 − (µ+ γ + δ)I3 − cI3,

dR3

dt
= cR2 + γI3 − (µ+ ζ)R3 − cR3,

dV3
dt

= −ν3V3 + β3I3(M3 − V3).

(4.2.2c)

Theorem 4.1. All forward solutions in R12
+ of (4.2.2) eventually enter into Ω = Ω1×

Ω2×Ω3, where Ωi = {(Si, Ii, Ri, Vi) ∈ R4
+ : Si+Ii+Ri ≤

rci−1

(µ+ c)i
, Vi ≤Mi}, i = 1, 2, 3,

and Ω is positively invariant for (4.2.2).

Proof. Let Nh
i (t) be the total number of host population in patch i at time t. Then

we have

dNh
1

dt
= r − (µ+ c)Nh

1 − δI1 ≤ r − (µ+ c)Nh
1

and

dNh
i

dt
= cNh

i−1 − (µ+ c)Nh
i − δIi ≤ cNh

i−1 − (µ+ c)Nh
i , i = 2, 3.

By a simple comparison theorem [82], the proof is complete.

4.3 Mathematical Analysis

It is easy to see that (4.2.2) has a unique disease-free equilibrium

E0 = (S0
1 , I

0
1 , R

0
1, V

0
1 , S

0
2 , I

0
2 , R

0
2, V

0
2 , S

0
3 , I

0
3 , R

0
3, V

0
3 )

= (
r

µ+ c
, 0, 0, 0,

rc

(µ+ c)2
, 0, 0, 0,

rc2

(µ+ c)3
, 0, 0, 0).

System (4.2.2) is in a block-triangular form, the dynamics of patch 1 are independent

of patch 2 and patch 3 while the dynamics of patch 2 are independent of patch 3.
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4.3.1 The First Patch

Obviously, E0
1 = (S0

1 , 0, 0, 0) is the unique disease-free equilibrium of subsystem

(4.2.2a). To calculate the basic reproduction number corresponding to (4.2.2a), we

order the infected state variables by (I1, R1, V1). Following the method and notations

of van den Driessche and Watmough [90], the linearization of (4.2.2a) at E0
1 gives

F =


0 0 α1S

0
1

0 0 0

β1M1 0 0

 and V =


µ+ γ + δ + c 0 0

−γ µ+ ζ + c 0

0 0 ν1

 .

Direct calculation yields

V −1 =


(µ+ γ + δ + c)−1 0 0

γ(µ+ γ + δ + c)−1(µ+ ζ + c)−1 (µ+ ζ + c)−1 0

0 0 ν−1
1


and the basic reproduction number for the first patch equals

R10 = ρ(FV −1) =

√
α1S

0
1

ν1
· β1M1

µ+ γ + δ + c
=

√
α1r

(µ+ c)ν1
· β1M1

µ+ γ + δ + c
,

which depends on all parameters except ζ, the rate of loss of immunity for animals.

(R10)
2 is proportional to S0

1 and M1, so more mosquitoes and more animals lead to

more disease transmission.

Theorem 4.2. The disease-free equilibrium E0
1 of (4.2.2a) is globally asymptotically

stable in Ω1 if R10 ≤ 1 and unstable if R10 > 1.

Proof. It is easy to show the local stability of E0
1 by verifying (A1)-(A5) in van den
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Drissche and Watmough [90].

Consider a Lyapunov function L1 = ν1(µ+ c)I1 + α1rV1 on Ω1. Then

L′
1 = ν1(µ+ c)I ′1 + α1rV

′
1

= ν1(µ+ c)α1S1V1 − ν1(µ+ c)(µ+ γ + δ + c)I1 − α1rν1V1 + α1rβ1I1(M1 − V1)

= [ν1(µ+ c)α1S1 − α1rν1]V1 + [α1rβ1(M1 − V1)− ν1(µ+ c)(µ+ γ + δ + c)]I1

= ν1(µ+ c)α1(S1 − S0
1)V1 + [α1rβ1(M1 − V1)− ν1(µ+ c)(µ+ γ + δ + c)]I1

≤ [α1rβ1(M1 − V1)− ν1(µ+ c)(µ+ γ + δ + c)]I1 in Ω1

≤ [α1rβ1M1 − ν1(µ+ c)(µ+ γ + δ + c)]I1

= [(R2
10 − 1)ν1(µ+ c)(µ+ γ + δ + c)]I1

≤ 0 if R10 ≤ 1.

The largest compact invariant set, denoted by Γ1, in {(S1, I1, R1, U1, V1) ∈ Ω1 : L
′
1 =

0} is the singleton {E0
1}.

Case 1: R10 < 1. Preceding calculation shows that I1 ≡ 0. So

dV1
dt

= −ν1V1 and
dR1

dt
= −(µ+ ζ + c)R1.

Backward continuation of a compact invariant set indicates that V1 = 0 and R1 = 0.

Thus

dS1

dt
= r − (µ+ c)S1.

This means that S1 = S0
1 and hence Γ1 = {E0

1}.

Case 2: R10 = 1. Preceding calculation gives either V1 ≡ 0 or I1 ≡ 0. The latter

can be proceeded as before. Suppose V1 ≡ 0, then
dV1
dt

= β1I1M1 ≡ 0 implies I1 = 0.
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Once again this can proceed as before.

By LaSalle’s Invariance Principle [47], E0
1 is globally asymptotically stable in

Ω1.

Theorem 4.3. If R10 > 1, then system (4.2.2a) has a unique endemic equilibrium,

denoted by E∗
1 = (S∗

1 , I
∗
1 , R

∗
1, V

∗
1 ), which is locally asymptotically stable. Moreover, the

disease is uniformly persistent in Ω0
1, the interior of Ω1, i.e., there is a constant ϵ > 0

such that any solution of (4.2.2a) starting at a point of Ω0
1 satisfies

lim inf
t→∞

(I1(t), R1(t), V1(t)) > (ϵ, ϵ, ϵ).

Proof. If E∗
1 = (S∗

1 , I
∗
1 , R

∗
1, V

∗
1 ) is a positive equilibrium of (4.2.2a), then it satisfies

the following system of algebraic equations

r − α1S1V1 − µS1 + ζR1 − cS1 = 0,

α1S1V1 − (µ+ γ + δ)I1 − cI1 = 0,

γI1 − (µ+ ζ)R1 − cR1 = 0,

−ν1V1 + β1I1(M1 − V1) = 0.

(4.3.1)

Solving S1, R1 and V1 in terms of I1 from the last three equations of (4.3.1), that is,

S1 =
(µ+ γ + δ + c)(ν1 + β1I1)

α1β1M1

, R1 =
γI1

µ+ ζ + c
, V1 =

β1I1M1

ν1 + β1I1
,

and substituting them into the first equation, we obtain

r − (µ+ γ + δ + c)I1 − (µ+ c)
µ+ γ + δ + c

α1β1M1

(β1I1 + ν1) + ζ
γ

µ+ ζ + c
I1 = 0,
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which can be simplified to a linear equation

[
(µ+γ+δ+c)+(µ+c)

µ+ γ + δ + c

α1M1

− ζγ

µ+ ζ + c

]
I1+

[
(µ+c)

µ+ γ + δ + c

α1β1M1

ν1−r
]
= 0.

The coefficient of I1 is always positive and the constant part is negative if and only

if R10 > 1. Hence, system (4.2.2a) has a unique endemic equilibrium if and only if

R10 > 1.

Next we study the local stability of E∗
1 by using the Routh-Hurwitz criterion. The

Jacobian matrix of system (4.2.2a) at the endemic equilibrium E∗
1 is

J(S∗
1 , I

∗
1 , R

∗
1, V

∗
1 ) =



−α1V
∗
1 − ρ 0 ζ −α1S

∗
1

α1V
∗
1 −(ρ+ γ + δ) 0 α1S

∗
1

0 γ −(ρ+ ζ) 0

0 β1(M1 − V ∗
1 ) 0 −ν1 − β1I

∗
1


,

where ρ = µ+ c and the corresponding characteristic equation is

P1(λ) = (λ+ ρ+ ζ)(λ3 + b2λ
2 + b1λ+ b0)− ζα1V

∗
1 γ(λ+ ν1 + β1I

∗
1 ) = 0,

where

b2 = α1V
∗
1 + 2ρ+ γ + δ + ν1 + β1I

∗
1 > 0,

b1 = (α1V
∗
1 + ρ)(ρ+ γ + δ) + (α1V

∗
1 + 2ρ+ γ + δ)(ν1 + β1I

∗
1 )− α1β1S

∗
1(M1 − V ∗

1 ),

b0 = (α1V
∗
1 + ρ)(ρ+ γ + δ)(ν1 + β1I

∗
1 )− α1β1S

∗
1ρ(M1 − V ∗

1 ).
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It follows from the second and fourth equations of (4.3.1) that

(ρ+ γ + δ)ν1 = α1β1S
∗
1(M1 − V ∗

1 )

and hence

b1 = (α1V
∗
1 + ρ)(ρ+ γ + δ + ν1) + (α1V

∗
1 + 2ρ+ γ + δ)β1I

∗
1 > 0,

b0 = (ρ+ γ + δ)(α1ν1V
∗
1 + α1β1V

∗
1 I

∗
1 + ρβ1I

∗
1 ) > 0 and b1b2 > b0.

Then

P1(λ) = λ4 + c3λ
3 + c2λ

2 + c1λ+ c0 = 0,

where

c3 = ρ+ ζ + b2 > 0, c2 = (ρ+ ζ)b2 + b1 > 0,

c1 = (ρ+ ζ)b1 + b0 − ζα1V
∗
1 γ = ρb1 + b0 + ζ(b1 − α1V

∗
1 γ) > 0,

c0 = (ρ+ ζ)b0 − ζα1V
∗
1 γ(ν1 + β1I

∗
1 ) = ρb0 + ζ(b0 − α1V

∗
1 γ(ν1 + β1I

∗
1 )) > 0.

Now it suffices to show that c1c2c3 > c21 + c23c0. In fact

c1c2c3 − c21 − c23c0 = c1(c2c3 − c1)− c23c0

=c1[c3(ρ+ ζ)b2 + (b1b2 − b0) + ζα1V
∗
1 γ]− c23c0

>c1c3(ρ+ ζ)b2 − c23c0 = c3[c1(ρ+ ζ)b2 − c3c0]

=c3[(ρ+ ζ)2(b1b2 − b0)− ζα1V
∗
1 γ((ρ+ ζ)b2 − (ρ+ ζ + b2)(ν1 + β1I

∗
1 ))]

>c3[(ρ+ ζ)ζ(b1b2 − b0)− ζα1V
∗
1 γ(ρ+ ζ)b2]

=c3(ρ+ ζ)ζ(b1b2 − b0 − α1V
∗
1 γb2) > 0.
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Thus, the Routh-Hurwitz criterion implies that all eigenvalues of the characteristic

equation have negative real parts. Hence, the endemic equilibrium is locally asymp-

totically stable.

Finally, the uniform persistence of system (4.2.2a) in Ω0
1 can be proved by applying

Theorem 4.6 in Thieme [88]. We omit the proof here, since it is similar to that of

Theorem 2.5 in Gao and Ruan [27].

Remark 4.4. It is worth to mention that Yang et al. [98] studied a similar vector-

host epidemic model with an SIR structure for the host population and without

disease-induced host deaths. They used the method of the second additive compound

matrix (see [48] and references therein) to establish the global stability of the endemic

equilibrium when it exists. Unfortunately, we cannot use that approach to establish

the global result because of the higher complexity in our model.

4.3.2 The Second Patch

By a simple comparison theorem, we conclude that the disease is uniformly persistent

in Ω0 if it is uniformly persistent in Ω0
1. Namely, the disease will persist in all three

patches if R10 > 1. Indeed, it follows from Theorem 4.3 that for any fixed initial data

we have

dI2
dt

≥ cϵ− (µ+ γ + δ + c)I2

for t large enough. So lim inf
t→∞

I2(t) ≥ cϵ/(µ + γ + δ + c). Similarly, we can find

positive lower limits for all other variables. If the disease dies out in patch 1, i.e.,

R10 ≤ 1, each solution of (4.2.2a) with nonnegative initial data converges to E0
1 and
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the limiting system of (4.2.2b) is

dS2

dt
= cS0

1 − α2S2V2 − µS2 + ζR2 − cS2,

dI2
dt

= α2S2V2 − (µ+ γ + δ)I2 − cI2,

dR2

dt
= γI2 − (µ+ ζ)R2 − cR2,

dV2
dt

= −ν2V2 + β2I2(M2 − V2).

(4.3.2)

Comparing (4.3.2) with (4.2.2a), we immediately find that (4.3.2) possesses a unique

disease-free equilibrium E0
2 = (S0

2 , I
0
2 , R

0
2, V

0
2 ) = (cS0

1/(µ + c), 0, 0, 0) = (rc/(µ +

c)2, 0, 0, 0) and obtain the basic reproduction number of patch 2 as

R20 =

√
α2S

0
2

ν2
· β2M2

µ+ γ + δ + c
=

√
α2rc

(µ+ c)2ν2
· β2M2

µ+ γ + δ + c
.

If R10 ≤ 1 and R20 ≤ 1, then the disease goes extinct in the first two patches; if

R10 ≤ 1 and R20 > 1, then the disease dies out in the first patch but persists in the

last two patches.

4.3.3 The Third Patch

Similarly, if R10 ≤ 1 and R20 ≤ 1, we obtain a limiting system of (4.2.2c) as follows:

dS3

dt
= cS0

2 − α3S3V3 − µS3 + ζR3 − cS3,

dI3
dt

= α3S3V3 − (µ+ γ + δ)I3 − cI3,

dR3

dt
= γI3 − (µ+ ζ)R3 − cR3,

dV3
dt

= −ν3V3 + β3I3U3,

(4.3.3)
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System (4.3.3) has a unique disease-free equilibrium E0
3 = (S0

3 , I
0
3 , R

0
3, V

0
3 ) = (cS0

2/(µ+

c), 0, 0, 0) = (rc2/(µ+c)3, 0, 0, 0) and the basic reproduction number of patch 3 is given

by

R30 =

√
α3S

0
3

ν3
· β3M3

µ+ γ + δ + c
=

√
α3rc

2

(µ+ c)3ν3
· β3M3

µ+ γ + δ + c
.

If R10 ≤ 1, R20 ≤ 1 and R30 ≤ 1, then the disease goes extinct in all three

patches; if R10 ≤ 1, R20 ≤ 1 and R30 > 1, then the disease dies out in the first two

patches, but persists in the third patch. So we have the following result:

Theorem 4.5. For the full model (4.2.2), if R10 > 1, the disease persists in all three

patches; if R10 ≤ 1 and R20 > 1, the disease dies out in the first patch but persists in

the remaining two patches; if R10 ≤ 1, R20 ≤ 1 and R30 > 1, the disease dies out in

the first two patches, but persists in the last patch; if R10 ≤ 1, R20 ≤ 1 and R30 ≤ 1,

the disease dies out in all three patches and E0 is globally asymptotically stable.

Theorem 4.6. System (4.2.2) has a unique endemic equilibrium, denoted E∗ =

(S∗
1 , I

∗
1 , R

∗
1, V

∗
1 , S

∗
2 , I

∗
2 , R

∗
2, V

∗
2 , S

∗
3 , I

∗
3 , R

∗
3, V

∗
3 ), if and only if R10 > 1 and it is locally

asymptotically stable when it exists.

Proof. The necessity is a straightforward consequence of Theorem 4.2. To prove the

existence and uniqueness of an endemic equilibrium as R10 > 1, it suffices to show

that the system
dSi

dt
= cS∗

i−1 − αiSiVi − µSi + ζRi − cSi,

dIi
dt

= cI∗i−1 + αiSiVi − (µ+ γ + δ)Ii − cIi,

dRi

dt
= cR∗

i−1 + γIi − (µ+ ζ)Ri − cRi,

dVi
dt

= −νiVi + βiIi(Mi − Vi),

(4.3.4)
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has a unique positive equilibrium for i = 2, 3. To compute the constant solution of

(4.3.4), we set its right hand side be zero and direct calculations yield

cS∗
i−1+cI

∗
i−1+ζ

cR∗
i−1 + γIi

µ+ ζ + c
= (µ+γ+δ+c)Ii+(µ+c)

(µ+ γ + δ + c)Ii − cI∗i−1

αi

·βiIi + νi
βiMiIi

,

which can be reduced to a quadratic equation

f(Ii) ≡ a2I
2
i + a1Ii + a0 = 0, (4.3.5)

where a2 = −
(
1 +

µ+ c

αiMi

)
(µ + γ + δ + c) + ζ

γ

µ+ ζ + c
< 0, a1 = cS∗

i−1 + cI∗i−1 −
µ+ c

αiβiMi

((µ+ γ + δ + c)νi − cI∗i−1βi) + ζ
cR∗

i−1

µ+ ζ + c
and a0 =

µ+ c

αiβiMi

cI∗i−1νi > 0.

Thus, (4.3.5) has exactly one positive root, I∗i . To check the positivity of other

variables, we need to verify that I∗i > cI∗i−1/(µ+γ+δ+c), or equivalently, f(cI
∗
i−1/(µ+

γ + δ + c)) > 0. In fact, f(cI∗i−1/(µ+ γ + δ + c)) equals

ζγc2(I∗i−1)
2

(µ+ ζ + c)(µ+ γ + δ + c)2
+

c2S∗
i−1I

∗
i−1

µ+ γ + δ + c
+

ζc2R∗
i−1I

∗
i−1

(µ+ ζ + c)(µ+ γ + δ + c)
> 0.

The local stability of the endemic equilibrium (S∗
i , I

∗
i , R

∗
i , V

∗
i ) of system (4.3.4) can

be proved in a way similar to that of E∗
1 in Theorem 4.3.

4.3.4 Model with Restriction

Research in RVF indicates that an infection leads to a durable, probably life-long,

immunity in animals [71]. Meanwhile, the immunity period is relatively longer than

the duration of movement. We may assume that ζ equals zero and use an SIR model

for the host population. In this case, since Ri does not appear in other equations of
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(4.2.2), system (4.2.2) can be reduced to



dS1

dt
= r − α1S1V1 − µS1 − cS1,

dI1
dt

= α1S1V1 − (µ+ γ + δ)I1 − cI1,

dV1
dt

= −ν1V1 + β1I1(M1 − V1),

(4.3.6a)



dS2

dt
= cS1 − α2S2V2 − µS2 − cS2,

dI2
dt

= cI1 + α2S2V2 − (µ+ γ + δ)I2 − cI2,

dV2
dt

= −ν2V2 + β2I2(M2 − V2),

(4.3.6b)



dS3

dt
= cS2 − α3S3V3 − µS3 − cS3,

dI3
dt

= cI2 + α3S3V3 − (µ+ γ + δ)I3 − cI3,

dV3
dt

= −ν3V3 + β3I3(M3 − V3).

(4.3.6c)

The following result can be proved in a way similar to that of Theorem 4.3 in Yang

et al. [98]. Consequently, the disease dynamics of (4.3.6) are completely determined

by the basic reproduction numbers Ri0 for i = 1, 2, 3.

Theorem 4.7. For system (4.3.6), if R10 > 1, then the disease persists at an endemic

equilibrium level in all three patches ; if R10 ≤ 1 and R20 > 1, then the disease dies

out in the first patch but persists at an endemic equilibrium level in the remaining

two patches; if R10 ≤ 1, R20 ≤ 1 and R30 > 1, then the disease dies out in the first

two patches but persists at an endemic equilibrium level in the last patch; if R10 ≤ 1,

R20 ≤ 1 and R30 ≤ 1, then the disease dies out in all three patches.
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4.3.5 The Relation Between R0 and Model Parameters

It follows from Theorem 4.5 that the disease dies out in all patches if and only if

Ri0 ≤ 1 for i = 1, 2, 3. In other words, to eliminate the disease from the whole

system, all three threshold parameters R10,R20 and R30 must be reduced to be less

than 1. To do so, we should study how the basic reproduction numbers vary with the

model parameters which can help us design highly efficient control strategies. Recall

that

R2
i0 =

αirc
i−1

(µ+ c)iνi
· βiMi

µ+ γ + δ + c
, i = 1, 2, 3.

Obviously, Ri0 is strictly increasing in αi, βi,Mi or r, and strictly decreasing in νi, µ, γ

or δ. An increase in the movement rate, c, will decrease R10. The dependence of Ri0

on c becomes more complicated if i > 1, since c appears in both the numerator and

denominator of the formula for R2
i0.

Proposition 4.8. For i > 1, there exists some c∗i such that the basic reproduction

number Ri0 is strictly increasing in c if c ∈ (0, c∗i ) and strictly decreasing if c ∈

(c∗i ,∞). Furthermore, (i− 1)µ/2 < c∗i < (i− 1)µ.

Proof. Let gi(c) be the partial derivative of R2
i0 with respect to c. Then

gi(c) =
αirβiMi

νi
· ∂
∂c

( ci−1

(µ+ c)i(µ+ γ + δ + c)

)
=
αirβiMi

νi
· ci−2 · (i− 1)(µ+ c)(µ+ γ + δ + c)− ci(µ+ γ + δ + c)− c(µ+ c)

(µ+ c)i+1(µ+ γ + δ + c)2

=
αirβiMi

νi
· ci−2 · iµ(µ+ γ + δ + c)− (µ+ c)(µ+ γ + δ + c)− c(µ+ c)

(µ+ c)i+1(µ+ γ + δ + c)2

=
αirβiMi

νi
· ci−2 · −2c2 − (γ + δ + (3− i)µ)c+ (i− 1)µ(µ+ γ + δ)

(µ+ c)i+1(µ+ γ + δ + c)2
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and the sign of gi(c) is the same as that of

hi(c) = −2c2 − (γ + δ + (3− i)µ)c+ (i− 1)µ(µ+ γ + δ).

Since hi(0) = (i − 1)µ(µ + γ + δ) > 0, the equation hi(c) = 0 has exactly one

positive root, denoted by c∗i , satisfying hi(c) > 0 if c ∈ (0, c∗i ) and hi(c) < 0 if

c ∈ (c∗i ,∞). Note that

hi(kµ) =− 2k2µ2 − (γ + δ + (3− i)µ)kµ+ (i− 1)µ(µ+ γ + δ)

=[−2k2 − (3− i)k + (i− 1)]µ2 − [(γ + δ)k − (i− 1)(γ + δ)]µ

=(k + 1)(−2k + i− 1)µ2 + (i− k − 1)(γ + δ)µ for k > 0.

In particular, we have

hi((i− 1)µ) = −i(i− 1)µ2 < 0 and hi((i− 1)µ/2) = (i− 1)(γ + δ)µ/2 > 0, i > 1,

which implies c∗i ∈ ((i− 1)µ/2, (i− 1)µ).

Remark 4.9. The duration of movement, 1/c, is about a few weeks or months, while

the life span of an animal, 1/µ, could be a couple of years or even longer. Namely,

the timescale of the movement is very short relative to the host population dynamic

timescale. So generally speaking, Ri0 is decreasing in c and shortening the duration

of host movement could reduce the possibility of a disease spread.
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4.4 Numerical Simulations

In this section, we conduct numerical simulations to confirm our analytical results.

The model uses a daily time step and some of the parameter values are chosen from

the data in Gaff et al. [26] and the references therein.

Firstly, we explore the relation between Ri0 and the travel rate c. We use the

following set of parameter values: r = 30, µ = 1.2 × 10−3, δ = 0.1, γ = 0.4, ζ =

5 × 10−3,M1 = 80,M2 = 1000,M3 = 100, νi = 0.06, αi = 0.002 and βi = 0.002 for

i = 1, 2, 3. Figure 4.1 shows how the basic reproduction number varies as a function of

the livestock movement rate c, in the range c ∈ [0, 0.5]. As predicted by Proposition

4.8, the curve of R10 is constantly decreasing, and the curves of R20 and R30 are

increasing for small c and then decreasing.

Figure 4.1: The curves of the basic reproduction number of patch i, Ri0, versus c.

Now we fix c at 0.3 and the respective basic reproduction numbers are R10 =

0.8143 < 1,R20 = 2.8731 > 1 and R30 = 0.9067 < 1. To consider a hypothetical

disease invasion scenario, we set the initial data of patches 2 and 3 to zero such

that there is no infected animals or mosquitoes in patches 2 and 3 at the beginning
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of travel. The disease dies out in patch 1, but persists in patches 2 and 3, which

is coincident with Theorem 4.5 (see Figures 4.2 and 4.3). This may represent an

interesting phenomenon regarding the role that animal movement plays in the spatial

spread of RVF from Sudan to Egypt. Though the disease is introduced to patch 2

from patch 1, it goes extinct in its origin because of lower mosquito density in patch

1. Patch 2 (the Nile) has high mosquito population density and the disease will reach

an endemic level once it appears. Patch 3 cannot sustain a disease alone, but this

becomes possible because of continuous immigration of infectious animals from patch

2.

Figure 4.2: Numerical simulations of system (4.2.2a) showing Ii vs t. Initial conditions:
S1(0) = 100, I1(0) = 5, R1(0) = 0, V1(0) = 0 and S2(0) = I2(0) = R2(0) = V2(0) = S3(0) =
I3(0) = R3(0) = V3(0) = 0. R10 < 1,R20 > 1 and R30 > 1.

4.5 Discussion

In this chapter, we have formulated a simple epidemic patch model aimed at capturing

a scenario where animals are imported into Egypt from the south and taken north
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Figure 4.3: Numerical simulations of system (4.2.2a) showing Vi vs t. Initial conditions:
S1(0) = 100, I1(0) = 5, R1(0) = 0, V1(0) = 0 and S2(0) = I2(0) = R2(0) = V2(0) = S3(0) =
I3(0) = R3(0) = V3(0) = 0. R10 < 1,R20 > 1 and R30 > 1.

along the Nile for human consumption, with the risk of a RVF outbreak if some of

them are infected. A similar model might apply to Saudi Arabia and Yemen based

on some descriptions [2]. We have evaluated the basic reproduction number for each

patch and established the threshold dynamics of the model. It is suggested that a

small amount of imported infectious animals from Sudan could result in an outbreak

of RVF in Egypt. Increasing the recruitment rate of animals, c, or the carrying

capacity of mosquitoes, Mi, will increase the basic reproduction number, Ri0. So the

likelihood of a RVF outbreak is higher when both r and Mi are large. The rate r

at which animals are fed in might be determined by demand, which would be large

during Muslim festival periods. For example, millions of animals are slaughtered as

each religious Muslim has traditionally to slaughter one animal during the celebration

of Eid al-Adha (also known as the Feast of Sacrifice). The date of Eid al-Adha varies

from year to year and more attention should be paid to the transmission of RVFV

when the rainy season (more mosquitoes) corresponds to the time of the occurrence
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of festivals [2].

We may assume that some animals starting the journey are recovered. It might be

that way even if no sick animals are starting the journey, since recovered ones could

be healthy. If this happens, the subsystem (4.2.2a) will become



dS1

dt
= r − α1S1V1 − µS1 + ζR1 − cS1,

dI1
dt

= α1S1V1 − (µ+ γ + δ)I1 − cI1,

dR1

dt
= rR + γI1 − (µ+ ζ)R1 − cR1,

dV1
dt

= −ν1V1 + β1I1(M1 − V1),

(4.5.1)

where rR is a constant recruitment of recovered individuals into patch 1. Let R̃1 =

R1 − rR/(µ+ ζ + c) and r̃ = r + ζrR/(µ+ ζ + c). Then (4.5.1) can be written as



dS1

dt
= r̃ − α1S1V1 − µS1 − cS1,

dI1
dt

= α1S1V1 − (µ+ γ + δ)I1 − cI1,

dR̃1

dt
= γI1 − (µ+ ζ)R̃1 − cR̃1,

dV1
dt

= −ν1V1 + β1I1(M1 − V1),

(4.5.2)

which is qualitatively equivalent to (4.2.2a). Therefore, all of the aforementioned

results still hold for system (4.5.2) or (4.5.1) and its associated new full system.

The work presented in this chapter enables us to gain useful insights into the

spread of RVF among different regions. However, there are a number of other aspects

we have not done in this study. Can we simplify our SIRS model to an SI/SIR model

for hosts? Do we need more detailed epidemiological models, for example SEIR for
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hosts, SEI for vectors? We may want to think about extending the model to a larger

and more realistic patch network, for example if we want to study how changing the

network affects disease spread, but we would need to know at least something quali-

tative about movement patterns of herds to set the movement coefficients. Seasonal

effects on mosquito population and time-dependence of animal importation may also

be incorporated. Data for disease, vector and animal migration need to be collected

so that we can testify the validity of our model.



Chapter 5

Conclusions and Future Work

In this chapter, we summarize the main conclusions in this thesis and then discuss

various research directions that we plan to study in the future.

5.1 Conclusions

Emerging and reemerging infectious diseases are viewed as a major threat to public

health and global economies. Each year, about one third of human deaths throughout

the world is from an communicable disease, such as AIDS/HIV, TB and malaria. The

current situation may become even worse with the appearance of multidrug-resistant

strains, new viruses, the climate change and urbanization. In particular, modern

transportation facilitates the spread of infectious diseases. For example, SARS was

first reported in China in February 2003. Due to global travel, the illness rapidly

spread to more than two dozen countries in North America, South America, Europe,

and Asia before it was contained. Multi-patch epidemic models have been developed

to study the effects of population dispersal on the spatial spread of infectious disease

in the past thirty years. These studies could play an important role in the prevention

and control of infectious diseases.

It has been observed that media coverage can affect the spread and control of

98
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infectious diseases. During outbreaks of serious infectious diseases, public media

has massive reports on the number of infections and deaths per day, the locations

where these happen, the symptoms of the disease, the proper protections to decrease

the possibility of being infected, etc. People follow the reports and thus choose to

protect themselves by reducing their social activities and direct contact with others,

especially with those high-risk groups, which could therefore lead to a reduction

of effective contacts between susceptible individuals and infectious individuals. In

Chapter 1, we proposed an SIS (susceptible-infectious-susceptible) patch model in

which the transmission coefficient is a nonincreasing function of the number of the

infectious individuals.

We derived the basic reproduction number R0 and found that it is a threshold

parameter between the extinction and the uniform persistence of the disease. Namely,

the disease-free equilibrium is globally asymptotically stable ifR0 ≤ 1, and the disease

is uniformly persistent if R0 > 1. Since the basic reproduction number of the model

is between the minimum and maximum of the respective basic reproduction numbers

in isolation. The disease persists or dies out in each isolated patch then remains

persistent or extinct, respectively, when human movement occurs. In the case where

there is no disease-induced death and susceptible and infectious individuals have

identical travel rates, there exists a globally asymptotically stable endemic equilibrium

if R0 > 1. The results indicate that the media coverage has no influence on the

dynamics of disease transmission. However, the final infected size in each patch can

be reduced with more media coverage when the disease persists.

In chapter 2, a multi-patch malaria model was formulated to address the spatial

heterogeneity of vectors and hosts. An explicit formula for the basic reproduction

number R0 was derived and we found that the disease-free equilibrium is locally
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asymptotically stable if R0 < 1 and unstable if R0 > 1. A sufficient condition for the

existence of an endemic equilibrium when R0 > 1 was obtained. For the two-patch

submodel, we studied how the dispersal of individuals, in particular of the exposed

and infectious individuals, contributes to the spread of diseases from one region to

another. Numerical simulations indicate that travel can help the disease to become

endemic in both patches, even though the disease dies out in each isolated patch.

However, if travel rates are continuously increased, the disease may die out again in

both patches.

In Chapter 3, based on the classical Ross-Macdonald model, we developed a peri-

odic malaria model in a patchy environment to include the effects of seasonal variation

and population dispersal in disease transmission. Following the recipe of Wang and

Zhao [95], we defined the basic reproduction number R0. By the theory of monotone

dynamical systems and internally chain transitive sets, we established the global dy-

namics of the system, i.e., the disease dies out if R0 ≤ 1 and persists at a periodic

attractor if R0 > 1. This is coincident with the observation that malaria cases show

seasonal fluctuations in most endemic areas.

Rift Valley fever (RVF) is a viral zoonosis of domestic animals (such as cattle,

sheep, camels and goats) and humans caused by the RVF virus. It was first identified

in Kenya in 1931 and later spread to Africa, Indian Ocean states and the Arabian

Peninsula. The disease causes major losses in the livestock industry. It is believed

that RVF in Egypt is mainly caused by the continuous importation of infected animals

from Sudan. The imported animals enter southern Egypt from northern Sudan, are

moved up the Nile, and then consumed at the feast. In Chapter 4, we proposed

a three-patch model to study the spatial spread of RVF in Egypt, with animals

movement from patch 1 to patch 2 and then from patch 2 to patch 3. The basic
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reproduction number for each patch was introduced and then the threshold dynamics

of the model was established. We performed numerical simulations to investigate

an interesting scenario showing possible explanation to the observed phenomenon in

Egypt.

In summary, we proposed several epidemic patch models to study the effects of

human movement on the spatial spread of infectious diseases. The analytical and

numerical results suggest that the migration of humans can influence disease spread

in a complicated way and to control or eliminate an infectious disease we need global

and regional strategies.

5.2 Future Work

The present work enables us to gain valuable insights into the spread of infectious

disease among different regions. However, there are a number of other aspects we

have not considered in this study.

In Chapter 1, the uniqueness and stability of the endemic equilibrium is unclear

even for two-patch case. Can the model exhibit more complicated dynamical behav-

iors like Hopf bifurcation? In Chapter 2, we are interested in the global stability

of the disease-free equilibrium when R0 < 1. Also, the existence, uniqueness and

stability of the endemic equilibrium is in general unclear. In Chapter 4, the global

stability of the endemic equilibrium is unknown when there is recovered individual

enters into susceptible compartment.

To determine the relative importance of model parameters in disease transmission

and prevalence, we would like to carry out systematic sensitivity analysis and calculate
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the sensitivity indices of the basic reproduction number and the endemic equilibrium.

This can improve the efficiency of disease intervention strategies. It is also interesting

to test these epidemic models with real data.

In addition, many additional features should be included to the models studied

here to increase realism. For example, it is more reasonable to use time-dependent

variables to incorporate the climatic and environmental impact. The latent period or

infectious period is short for some disease, so individuals could change their disease

status during travel. Different age groups may have different susceptibility, survival

capacities and behaviors in response to disease transmission. We leave all these for

future consideration.
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