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I studied the existence of periodic solutions to the abstract semilinear evolution

equation
du

dt
= A(t)u(t) + F (t, u(t)), t ≥ 0

in a Banach space X , where A(t) is a T -periodic linear operator on X (not necessarily

densely defined); and F : [0,∞) × D(A) → X is continuous and T -periodic in t.

The idea is to combine Poincare map technique with fixed point theorems to derive

various conditions on the operator A(t) and the map F (t, u) to ensure that the abstract

evolution equation has periodic solutions. Three cases are considered: (i) IfA(t) = A is

time-independent and is a Hille-Yosida operator, conditions on F are given to guarantee

the existence of mild periodic solutions; (ii) If A(t) is time-dependent and satisfies the

hyperbolic condition, sufficient conditions on A(t) and F are presented to ensure the

existence of mild periodic solutions; (iii) If A(t) = A is time-independent, is a Hille-

Yosida operator and generates a compact semigroup, the existence of mild periodic

solutions is also discussed. As applications, the main results are applied to establish

the existence of periodic solutions in a delayed periodic red-blood cell model; age-

structured models with periodic harvesting, diffusive logistic equations with periodic

coefficients, and periodic diffusive Nicholson’ blowflies equation with delay.
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Chapter 1

Introduction

The aim of this work is to study the existence of periodic solutions for the following

abstract semilinear equation

du

dt
= Au(t) + F (t, u(t)), t ≥ 0 (1.1)

and abstract semilinear evolution equation

du

dt
= A(t)u(t) + F (t, u(t)), t ≥ 0 (1.2)

in a Banach space X , where A is a linear operator on X (not necessarily densely de-

fined) satisfying the Hille-Yosida condition; A(t) is a T -periodic linear operators on X

(not necessarily densely defined) satisfying the hyperbolic conditions (A1)-(A3) intro-

duced by Tanaka [1995, 1996], which will be specified later; and F : [0,∞)×D(A)→

X is continuous and T -periodic in t.

One aspect of studying the existence of periodic solutions is the Massera Theorem.

Massera [1950] studied the existence of T -periodic solutions for the following ordinary

differential equation
du

dt
= f(t, u(t)), t ∈ R, (1.3)
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where f : R× R → R is continuous and T -periodic in t. He proved that the existence

of T -periodic solutions of equation (1.3) is equivalent to the existence of a bounded

solution on R+ of equation (1.3). Important facts, results and references on periodic

solutions of ordinary differential equations can be found in Farkas [1994].

The problem on the existence of periodic solutions for differential equations in in-

finite dimensional spaces has been investigated in various directions. One of them is to

generalize the Massera Theorem to infinite dimensional systems. In fact, Massera and

Schäffer [1959] studied the relationship between the periodic solutions and bounded

solutions for the linear equation

du

dt
= A(t)u+ f(t), t ≥ 0 (1.4)

in infinite dimensional spaces. Chow [1973] and Chow and Hale [1974] established

the existence of a periodic solution under the existence of a bounded solution for the

nonhomogeneous linear functional differential equation

du

dt
= L(t, ut) + f(t), (1.5)

where ut ∈ Cr := C([−r, 0],R), L : (−∞,+∞)× Cr → R is continuous, linear with

respect to the second argument and T -periodic in t, T ≥ r, and f is continuous and

T -periodic. They proved that Massera Theorem holds for equation (1.5) by showing

that the Poincaré map defined by P : ϕ→ uT (· , ϕ, f), where uT (· , ϕ, f) is the unique

mild solution of equation (1.5) initiated at ϕ, has a fixed point.

Prüss [1979] studied (1.1) under the condition that A generates a C0-semigroup

{U(t)}t≥0 of type (M,ω),D(A) is closed, bounded and convex, F is continuous and T -

periodic in t. By constructing a Poincaré map and using Schauder’s fixed point theorem

and k-set contraction argument, he proved the existence of mild T -periodic solutions

when U(t) is compact for t > 0 or ω < 0 and F is compact.
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By applying Horn’s fixed point theorem to the Poincaré map, Liu [1998] and Ezzinbi

and Liu [2002] established the existence of bounded and ultimate bounded solutions of

evolution equations with or without delay, implying the existence of periodic solutions.

Kato et al. [2002] studied the periodic solution of abstract linear inhomogeneous differ-

ential equations in Banach space and presented a Messera type theorem. Benkhalt and

Ezzinbi [2004] and Kpoumiè et al. [2018] proved that under some conditions, the exis-

tence of a bounded solution for some nondensely defined nonautonomous partial func-

tional differential equations implies the existence of periodic solutions. The approach

was to construct a map on the space of T -periodic functions from the corresponding

nonhomogeneous linear equation and use a fixed-point theorem concerning set-valued

maps to prove the existence of a fixed point for this map. Li [2011] used analytic semi-

group theory to discuss the existence and stability of periodic solutions in evolution

equations with multiple delays. Li et al. [1999] proved several Massera-type criteria

for linear periodic evolution equations with delay and applied the results to nonlinear

evolution equations, functional and partial differential equations.

Nguyen and Ngo [2016b,a] investigated the abstract semilinear evolution equation

(1.2) when A(t) is T -periodic, F is T -periodic in t and satisfies the ϕ-Lipschitz condi-

tion ‖F (t, x1)− F (t, x2)‖ ≤ ϕ(t) ‖x1 − x2‖ for ϕ(t) being a real and positive function

belonging to an admissible function space. They proved the existence of periodic so-

lutions to (1.2) in the case that the family {A(t)}t≥0 generates a strongly continuous,

exponentially bounded evolution family. They started with the linear equation (1.4)

and used the Cesàro limit to prove the existence of periodic solutions. Then they con-

structed a map from periodic solutions of (1.4) and used the admissibility of function

spaces combined with the Banach fixed point argument to prove the existence of a

unique fixed point of the constructed map. The existence and uniqueness of a periodic
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solution of (1.2) follows from the existence and uniqueness of the fixed point. Naito

et al. [2000] developed a decomposition technique to prove the existence of periodic

solutions to periodic evolution equations in the form of (1.4). Vrabie [1990] studied

the existence of periodic mild solutions to nonlinear evolution inclusions that include

equation (1.1).

In this paper, we study the existence of mild periodic solutions of the abstract semi-

linear equation (1.1) and abstract semilinear evolution equation (1.2) in a setting that

includes several types of equations such as delay differential equations, first-order hy-

perbolic partial differential equations, and reaction-diffusion equations. In chapter 2,

we recall some preliminary results on semigroups generated by a Hille-Yosida operator,

the evolution family and the existence theorem of solutions of nonhomogeneous linear

equations (2.1) and (2.5). In chapter 3, we start with the linear equations (2.1) and (2.5)

to show the existence of mild periodic solutions, whose initial value is controlled by

the norm of the input function f(t). Using this result and the fixed point argument, we

prove the existence of mild periodic solutions of (1.1) and (1.2) under some assumptions

on F . At the end of chapter 3, we also discuss the case where the semigroup {U(t)}t≥0

generated by A in (1.1) is compact for t > 0 and give existence theorem of mild pe-

riodic solutions of (1.1). The approach is also to start with the linear equation (2.1) to

show the existence of mild periodic solutions of it and use this result combined with

the Schauder’s fixed point theorem to prove the existence of mild periodic solutions

of (1.1). In chapter 4 we use the main results of this paper to discuss the existence of

periodic solutions in several types of equations and biological models, age-structured

models with periodic harvesting, diffusive logistic models with periodic coefficients,

functional differential equations including red blood cell models with delay, and par-

tial functional differential equations including diffusive Nicholson’s blowflies equation
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with delay. A brief discussion on the conclusions and future study is given in Chapter

5.



Chapter 2

Preliminaries

In this chapter, we consider the nonhomogeneous linear Cauchy problem
du

dt
= Au(t) + f(t), t ≥ 0,

u(0) = x ∈ D(A).
(2.1)

where the linear operator A is densely or non-densely defined in a Banach space X , the

function f : R+ → R+ is continuous and T -periodic.

First we make the following assumptions.

Assumption 2.0.1. (a) A : D(A) ⊂ X → X is a linear operator and there exist real

constants, M ≥ 1 and ω ∈ R, such that (ω,∞) ⊂ ρ(A) and ‖(λI − A)−n‖ ≤
M

(λ−ω)n for n ≥ 1 and λ > ω;

(b) x ∈ X0 = D(A);

(c) f : [0,∞)→ X is continuous.

A linear operator A : D(A) ⊂ X → X satisfying Assumption 2.0.1 (a) is called a

Hille-Yosida operator.

Remark 2.0.1. Note that the renorming lemma (Lemma 5.1 in Pazy [1983]) holds. By

exactly the same argument as in Pazy [1983], we see that if ‖(λI − A)−n‖ ≤ M
(λ−ω)n for

6
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n ≥ 1 and λ > ω, then there exists a norm |.| on X which is equivalent to the original

norm ‖.‖ on X and satisfies ‖x‖ ≤ |x| ≤M ‖x‖ for x ∈ X and |(λI − A)−n| ≤ 1
(λ−ω)n

for n ≥ 1 and λ > ω. That is, without loss of generality, M can be chosen to be 1.

Definition 2.0.1 (Magal and Ruan [2007, 2009]). A continuous function u : [0,∞) →

X is called a mild (or an integrated) solution to (2.1) if

u(t) = UA(t)x+ lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1f(s)ds. (2.2)

for all t ≥ 0.

The existence theorem for (2.1) is as follows:

Theorem 2.0.2 (Da Prato and Sinestrari [1987]). Under Assumption 2.0.1, there exists

a unique mild solution to (2.1) with value in X0 = D(A). Moreover, u satisfies the

estimate

‖u(t)‖ ≤Meωt ‖x‖+

∫ t

0

Meωt ‖f(s)‖ ds (2.3)

for all t ≥ 0.

If D(A) 6= X; that is, A is nondensely defined, let X0 = D(A). If f(t) = 0,

then the family of operators {UA(t)}t≥0 with UA(t) : X0 → X0, t ≥ 0, defined by

UA(t)x = u(t) for all t ≥ 0 is the C0-semigroup generated by A0, the part of A in X0.

For the rest of the article, we denote by {UA(t)}t≥0 the semigroup generated by A0.

Kato [1970] initiated a study on the evolution family of solutions of the hyperbolic

linear evolution Cauchy problem
du

dt
= A(t)u(t), t ≥ s

u(s) = x ∈ X
(2.4)

in a Banach space X . To recall some results about the linear evolution Cauchy problem

(2.4), we make the following assumptions.
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Assumption 2.0.3. (A1) D(A(t)) := D is independent of t and not necessarily densely

defined;

(A2) The family {A(t)}t≥0 is stable in the sense that there are constants M ≥ 1 and

ω ∈ R such that (ω,∞) ⊂ ρ(A(t)) for t ∈ [0,∞) and∥∥∥∥∥
k∏
j=1

(λI − A(tj))
−1

∥∥∥∥∥ ≤ M

(λ− ω)−k

for λ > ω and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and

k = 1, 2, ...;

(A3) The mapping t→ A(t)x is continuously differentiable in X for each x ∈ D.

Now we recall some classical results due to Kato [1970].

Theorem 2.0.4 (Kato [1970]). Let {A(t), D(A(t))}t≥0 be a family of linear operators

on a Banach space X satisfying Assumption 2.0.3 such that D is dense in X. Then the

Cauchy problem (2.4) is well-posed and the family of operators {A(t)}t≥0 generates

an evolution family {U(t, s)}t≥s≥0. Moreover, for x ∈ D the map t → U(t, s)x is the

unique continuous function which solves the Cauchy problem (2.4).

For λ > 0, 0 ≤ s ≤ t and x ∈ D, set

Uλ(t, s)x =

[ t
λ
]∏

i=[ s
λ
]+1

(I − λA(iλ))−1x.

Theorem 2.0.5 (Tanaka [1996]). Let {A(t)}t≥0 be a family of linear operators on a

Banach space X satisfying Assumption 2.0.3. If x ∈ D satisfies the condition that

A(s)x ∈ D, then there exists an evolution family {U(t, s)}t≥s≥0 defined on D by

U(t, s)x = limλ→0+ Uλ(t, s)x uniformly for x ∈ D and satisfying:

(i) U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t, where D(t) := {x ∈ D : A(t)x ∈ D};
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(ii) for all x ∈ D(s) and t ≥ s, the mapping t 7→ U(t, s)x is continuous in D;

(iii) for all x ∈ D(s) and t ≥ s, the mapping t 7→ U(t, s)x is continuously differen-

tiable with

∂tU(t, s)x = A(t)U(t, s)x

and

∂+s U(t, s)x = −U(t, s)A(s)x.

Theorem 2.0.6 (Oka and Tanaka [2005], Tanaka [1996]). Assume that {A(t)}t≥0 sat-

isfies Assumption 2.0.3. Then the limit

U(t, s)x = lim
λ→0+

Uλ(t, s)x

exists for x ∈ D, 0 ≤ s ≤ t, where the convergence is uniform on Γ := {(t, s) : 0 ≤

s ≤ t}. Moreover, the family {U(t, s) : (t, s) ∈ Γ} satisfies the following properties:

(i) For x ∈ D, λ > 0 and 0 ≤ s ≤ r ≤ t, one has

Uλ(t, t)x = x

and

Uλ(t, s)x = Uλ(t, r)Uλ(r, s)x;

(ii) U(t, s) : D → D for (t, s) ∈ Γ;

(iii) U(t, t)x = x and U(t, s)x = U(t, r)U(r, s)x for x ∈ D and 0 ≤ s ≤ r ≤ t;

(iv) the mapping (t, s)→ U(t, s)x is continuous on Γ for any x ∈ D;

(v) ‖U(t, s)x‖ ≤Meω(t−s) ‖x‖ for x ∈ D and (t, s) ∈ Γ.
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In the following, we give some results on the existence of solutions for the following

non-densely defined nonhomogeneous linear evolution Cauchy problem
du

dt
= A(t)u(t) + f(t), t ∈ [0, a]

u(0) = x,
(2.5)

where f : [0, a]→ X is a function. The following theorem gives a generalized variation

of constant formula for equation (2.5).

Theorem 2.0.7 (Tanaka [1995]). Let x ∈ D and f ∈ L1([0, a], X). Then the limit

u(t) := U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr (2.6)

exists uniformly for t ∈ [0, a], and u is a continuous function on [0, a].

As in Tanaka [1995, 1996], for x ∈ D a continuous function u : [0, a]→ X is called

a mild (or an integrated) solution of equation (2.5) if it satisfies (2.6). Furthermore, we

have the following estimate.

Lemma 2.0.1 (Kpoumiè et al. [2018]). Assume that f ∈ L1([0, a], X). If u is a mild

solution of (2.5), then

‖u(t)‖ ≤Meωt ‖x‖+

∫ t

0

Meω(t−s) ‖f(s)‖ ds. (2.7)



Chapter 3

Existence of Periodic Solutions

In this chapter we will present our main results on the existence of periodic solutions in

systems (1.1) and (1.2) under different conditions..

3.1 Time-independent operators

We first assume that the operator is time-independent and consider the nonhomogeneous

linear equations
du

dt
= Au(t) + f(t) (3.1)

and the semilinear equation

du

dt
= Au(t) + F (t, u), (3.2)

whereA : D(A) ⊂ X → X is a linear operator, f ∈ C([0,∞), X) and F ∈ C([0,∞)×

D(A), X) are both T -periodic in t.

We have the following results for the nonhomogeneous linear equation (3.1).

Theorem 3.1.1. Assume that A is a Hille-Yosida operator with M ≥ 1 and ω ∈ R,

f ∈ C([0,∞), X) is T-periodic, i.e. f(t + T ) = f(t) for all t ≥ 0. Further, suppose

that ω < 0. Then the linear equation (3.1) has a unique mild T -periodic solution u0(t).

11
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Moreover, we have

‖u0(0)‖ < N sup
s∈[0,T ]

‖f(s)‖ , N =
T

1− eωT
.

Proof. Since A is a Hille-Yosida operator, the Cauchy problem (2.1) has a unique mild

solution u(t) : [0,∞) → D(A) on t ∈ [0,∞) for each x ∈ D(A) by Theorem 2.0.2.

Now by the variation of constant formula, we have

u(t) = UA(t)x+ lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1f(s)ds, (3.3)

where {UA(t)}t≥0 is the C0-semigroup generated by A on D(A). Let PT : D(A) →

D(A) be the Poincaré map, i.e.,

PT (x) = u(T ) = UA(T )x+ lim
λ→+∞

∫ T

0

UA(T − s)λ(λI − A)−1f(s)ds. (3.4)

Since by assumption ω < 0, ‖UA(T )‖ ≤MeωT . Without loss of generality (W.L.O.G.),

assume that M = 1 (see section 1.5 Lemma 5.1 in Pazy [1983] for the proof). Then

‖UA(T )‖ ≤ eωT < 1. Thus, the operator I − UA(T ) is invertible and PT (x) = x has a

unique solution

x0 = (I − UA(T ))−1 lim
λ→+∞

∫ T

0

UA(T − s)λ(λI − A)−1f(s)ds, (3.5)

i.e., x0 is a unique fixed point of PT .

Now let uT (t) = u(t + T ), where u(t) is the unique solution of (2.1) with initial
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value x0. Then

uT (t) = UA(t+ T )x0 + lim
λ→+∞

∫ t+T

0

UA(t+ T − s)λ(λI − A)−1f(s)ds

= UA(t)UA(T )x0 + lim
λ→+∞

∫ T

0

UA(t)UA(T − s)λ(λI − A)−1f(s)ds

+ lim
λ→+∞

∫ t+T

T

UA(t+ T − s)λ(λI − A)−1f(s)ds

= UA(t)u(T ) + lim
λ→+∞

∫ t

0

UA(t− θ)λ(λI − A)−1f(θ + T )dθ

= UA(t)uT (0) + lim
λ→+∞

∫ t

0

UA(t− θ)λ(λI − A)−1f(θ)dθ.

Since uT (0) = u(T ) = x0, uT (t) is also a mild solution of (2.1) with initial value x0.

By the uniqueness of solutions, uT (t) = u(t). Thus, we have u(t + T ) = u(t) for

t ∈ [0,∞).

Moreover, by (3.5), we have

‖x0‖ ≤

∥∥∥limλ→+∞
∫ T
0
UA(T − s)λ(λI − A)−1f(s)ds

∥∥∥
‖I − UA(T )‖

≤
limλ→+∞

λ
‖λI−A‖ sups∈[0,T ] ‖f(s)‖

∫ T
0
eω(T−s)ds

|1− ‖UA(T )‖|

≤ T

1− eωT
sup
s∈[0,T ]

‖f(s)‖ ,

i.e., ‖u0(0)‖ ≤ T
1−eωT sups∈[0,T ] ‖f(s)‖. This completes the proof. �

Now we make the following assumptions.

Assumption 3.1.2. (H1) A is a Hille-Yosida operator on X; i.e., there exist M ≥ 1

and ω ∈ R such that (ω,∞) ⊂ ρ(A) and ‖(λI − A)−n‖L(X) ≤
M

(λ−ω)n for λ > ω,

n ≥ 1;

(H2) F : [0,∞) × D(A) → X is continuous and Lipschitz on bounded sets; i.e., for

eachC > 0 there existsKF (C) ≥ 0 such that ‖F (t, u)− F (t, v)‖ ≤ KF (C) ‖u− v‖

for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;
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(H3) F : [0,∞)×D(A)→ X is continuous and bounded on bounded sets; i.e., there

exists LF (T, ρ) ≥ 0 such that ‖F (t, u)‖ ≤ LF (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions, we have the following result for equation (3.2).

Theorem 3.1.3. Let Assumption 3.1.2 hold with ω < 0 and F being T -periodic in t.

Suppose that there exists ρ > 0 such that (N+T )KF (ρ) < 1 and (N+T )LF (T, ρ) ≤ ρ,

where N = T
1−eωT . Then the semilinear equation (3.2) has a mild T -periodic solution.

Proof. Denote

Bρ = {v ∈ C(R+, D(A)), v(t+ T ) = v(t), ‖v‖ = sup
s∈[0,T ]

‖v(s)‖ ≤ ρ}.

By Theorem 3.1.1, for each v ∈ Bρ let f(t) = F (t, v(t)), then (3.1) has a mild T -

periodic solution

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− l)λ(λI − A)−1F (l, v(l))dl. (3.6)

Define an operator φ on Bρ by φ(v)(t) = u(t). Then

‖φ(v)(t)‖ ≤Meωt ‖u(0)‖+ lim
λ→+∞

∫ t

0

Meω(t−l)
Mλ

λ− ω
‖F (l, v(l))‖ dl.

W.L.O.G., let M = 1 (See Lemma 5.1 in section 1.5 of Pazy [1983]) . Since ‖u(0)‖ ≤
T

1−eωT sups∈[0,T ] ‖f(s)‖, we have

‖φ(v)(t)‖ ≤ eωtN sup
s∈[0,T ]

‖F (s, v(s))‖+ lim
λ→+∞

T
λ

λ− ω
sup
s∈[0,T ]

‖F (s, v(s))‖ ,

sup
s∈[0,T ]

‖φ(v)(t)‖ ≤ (N + T ) sup
s∈[0,T ]

‖F (s, v(s))‖ ≤ (N + T )LF (T, ρ) ≤ ρ.

So φ maps Bρ to Bρ. Furthermore, let v1, v2 ∈ Bρ. Then

φ(v1)(t)− φ(v2)(t) = u1(t)− u2(t)

= UA(t)(u1(0)− u2(0))

+ lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1(F (s, v1(s))− F (s, v2(s))),
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‖φ(v1(t))− φ(v2(t))‖ ≤Meωt ‖u1(0)− u2(0)‖

+ lim
λ→+∞

∫ t

0

Meω(t−s)
λ

λ− ω
‖F (s, v1(s))− F (s, v2(s))‖ ds.

Again let M = 1. Since ‖u1(0)− u2(0)‖ ≤ N sups∈[0,T ] ‖F (s, v1(s))− F (s, v2(s))‖,

by the result in Theorem 3.1.1, we have

‖φ(v1)(t)− φ(v2)(t)‖ ≤ eωtN sup
s∈[0,T ]

‖F (s, v1(s))− F (s, v2(s))‖

+ lim
λ→+∞

T
λ

λ− ω
sup
s∈[0,T ]

‖F (s, v1(s))− F (s, v2(s))‖ ,

sup
s∈[0,T ]

‖φ(v1)(t)− φ(v2)(t)‖ ≤ (N + T )KF (ρ) sup
s∈[0,T ]

‖v1(s)− v2(s)‖ .

So it implies that

‖φ(v1)− φ(v2)‖ ≤ (N + T )KF (ρ) sup
s∈[0,T ]

‖v1(s)− v2(s)‖ .

Since (N + T )KF (ρ) < 1, by Banach Fixed Point Theorem, φ : Bρ → Bρ has a fixed

point; i.e., there exists u ∈ Bρ such that

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1F (s, u(s))ds,

which is a T -periodic solution for (3.2). �

3.2 Time-dependent operators

Now consider the linear evolution equation

du

dt
= A(t)u(t) + f(t) (3.7)

and the semilinear evolution equation

du

dt
= A(t)u(t) + F (t, u), (3.8)
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where A(t) is a T -periodic linear operator on a Banach space X , f : R+ → X is

continuous and T -periodic, and F : R+ × X → X is continuous and T -periodic in t.

We make the following assumptions.

Assumption 3.2.1. (A1) D(A(t)) := D is independent of t and not necessarily densely

defined;

(A2) The family {A(t)}t≥0 is stable in the sense that there are constants M ≥ 1 and

ω ∈ R such that (ω,∞) ⊂ ρ(A(t)) for t ∈ [0,∞) and∥∥∥∥∥
k∏
j=1

(λI − A(tj))
−1

∥∥∥∥∥ ≤ M

(λ− ω)−k

for λ > ω and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and

k = 1, 2, ...;

(A3) The mapping t→ A(t)x is continuously differentiable in X for each x ∈ D.

For λ > 0, 0 ≤ s ≤ t, and x ∈ D. Set

Uλ(t, s)x =

[ t
λ
]∏

i=[ s
λ
]+1

(I − λA(iλ))−1x. (3.9)

Then the generalized variation of constant formula of (3.7) with initial value u(0) = x

is given by

u(t) = U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr. (3.10)

Now we state and prove the results for the nonhomogeneous linear evolution equa-

tion (3.7).

Theorem 3.2.2. Let Assumption 3.2.1 hold, MeωT < 1, f ∈ C([0,∞), X), f(t +

T ) = f(t) for t ∈ [0,∞), and ω < 0. Then the linear evolution equation (3.7) has a

unique mild T -periodic solution u(t). Moreover, ‖u(0)‖ ≤ N sups∈[0,T ] ‖f(s)‖, where

N = MT
1−MeωT

.
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Proof. By assumption, the variation of constant formula (3.10) holds. Let PT : D → D

be the Poincaré map

PT (x) = u(T ) = U(T, 0)x+ lim
λ→0+

∫ T

0

Uλ(T, r)f(r)dr. (3.11)

Since ‖U(T, 0)‖ ≤ MeωT < 1, I − U(T, 0) is invertible. PT has a unique fixed point

which is given by x = (I − U(T, 0))−1 limλ→0+
∫ t
0
Uλ(t, r)f(r)dr.

Now let u(t) be the unique solution with initial value u(0) = x. Let uT (t) =

u(t+ T ). Then

uT (t) = U(t+ T, 0)x+ lim
λ→0+

∫ T+t

0

Uλ(T + t, r)f(r)dr

= U(t+ T, T )U(T, 0)x+ lim
λ→0+

∫ T

0

Uλ(T + t, T )Uλ(T, r)f(r)dr

+ lim
λ→0+

∫ T+t

T

Uλ(T + t, r)f(r)dr

= U(t+ T, T )U(T, 0)x+ lim
λ→0+

Uλ(T + t, T )

∫ T

0

Uλ(T, r)f(r)dr

+ lim
λ→0+

∫ t+T

T

Uλ(T + t, r)f(r)dr

= U(t, 0)U(T, 0)x+ U(T + t, T ) lim
λ→0+

∫ T

0

Uλ(T, r)f(r)dr

+ lim
λ→0+

∫ t+T

T

Uλ(T + t, r)f(r)dr

= U(t, 0)U(T, 0)x+ U(t, 0) lim
λ→0+

∫ T

0

Uλ(T, r)f(r)dr

+ lim
λ→0+

∫ t+T

T

Uλ(T + t, r)f(r)dr

= U(t, 0)[U(T, 0)x+ lim
λ→0

∫ T

0

Uλ(T, r)f(r)dr]

+ lim
λ→0+

∫ t

0

Uλ(T + t, T + s)f(T + s)ds

= U(t, 0)u(T ) + lim
λ→0+

∫ t

0

Uλ(t, s)f(s)ds

= U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, s)f(s)ds.
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So uT (t) is a solution of (3.7) with initial value uT (0) = x. By uniqueness, uT (t) =

u(t), i.e. u(t+ T ) = u(t) for t ∈ [0,∞). Furthermore,

‖x‖ =
∥∥(I − U(T, 0))−1

∥∥∥∥∥∥ lim
λ→0+

∫ T

0

Uλ(T, r)f(r)dr

∥∥∥∥
≤ 1

‖I − U(T, 0)‖
lim
λ→0+

∫ T

0

‖Uλ(T, r)‖ ‖f(r)‖ dr

≤ 1

‖I − U(T, 0)‖
lim
λ→0+

∫ T

0

∥∥∥∥∥∥
[T
λ
]∏

i=[ r
λ
]+1

(I − λA(iλ))−1

∥∥∥∥∥∥ ‖f(r)‖ dr

≤ 1

‖I − U(T, 0)‖
lim
λ→0+

∫ T

0

M(
1

1− λω
)[
T
λ
]−[ r

λ
] ‖f(r)‖ dr

≤ 1

‖I − U(T, 0)‖
lim
λ→0+

∫ T

0

M(
1

1− λω
)
T−r
λ

+1 ‖f(r)‖ dr

≤ 1

|1− ‖U(T, 0)‖|
lim
λ→0+

∫ T

0

M

1− λω
e−ω(T−r)

ln(1−λω)
λω ‖f(r)‖ dr

≤ MT

1−MeωT
sup
s∈[0,T ]

‖f(s)‖ .

This completes the proof. �

Remark 3.2.1. Note that since the method in the proof of Lemma 5.1 in section 1.5 of

Pazy [1983] does not work for the family of operators A(t), we cannot assume M to be

1 in this case.

In order to study the semilinear evolution equation (3.8), we introduce the following

definition.

Definition 3.2.1. A continuous function u : R+ → X is called a mild (or an integrated)

solution of equation (3.8) if it satisfies the following

u(t) = U(t, 0)u(0) + lim
λ→0+

∫ t

0

Uλ(t, σ)F (σ, u(σ))dσ, t ≥ 0. (3.12)

Next we establish the existence of periodic solutions for the semilinear evolution

equation (3.8).
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Theorem 3.2.3. Let Assumption 3.1.2 (H2) (H3) and Assumption 3.2.1 hold, ω < 0,

MeωT < 1, F (t + T, ·) = F (t, ·) for t ≥ 0. Suppose that there exists ρ > 0 such that

M(N + T )KF (ρ) < 1 and M(N + T )LF (T, ρ) ≤ ρ, where N = MT
1−MeωT

. Then the

semilinear evolution equation (3.8) has a mild T -periodic solution.

Proof. Let Bρ = {v ∈ C(R+, D), v(t + T ) = v(t), ‖v‖ = sups∈[0,T ] ‖v(s)‖ ≤ ρ}.

By Theorem 3.2.2, for each v ∈ Bρ let f(t) = F (t, v(t)), then (3.7) has a unique mild

T -periodic solution given by

u(t) = U(t, 0)u(0) + lim
λ→0+

∫ t

0

Uλ(t, r)F (r, v(r))dr, t ≥ 0. (3.13)

Let φ be an operator on Bρ defined by φ(v)(t) = u(t). Then by the argument in

Theorem 3.2.2, we have

‖φ(v)(t)‖ ≤Meωt ‖u(0)‖+

∫ t

0

Meω(t−r) ‖F (r, v(r))‖ dr,

sup
t∈[0,T ]

‖φ(v)(t)‖ ≤MN sup
r∈[0,T ]

‖F (r, v(r))‖+MT sup
r∈[0,T ]

‖F (r, v(r))‖

≤M(N + T )LF (T, ρ)

≤ ρ.

So φ : Bρ → Bρ. Moreover, let v1, v2 ∈ Bρ, then

φ(v1)(t)− φ(v2)(t) = u1(t)− u2(t)

= U(t, 0)(u1(0)− u2(0))

+ lim
λ→0+

∫ t

0

Uλ(t, r)[F (r, v1(r))− F (r, v2(r))]dr,

‖φ(v1)(t)− φ(v2)(t)‖ ≤Meωt ‖u1(0)− u2(0)‖

+

∫ t

0

Meω(t−r) ‖F (r, v1(r))− F (r, v2(r))‖ dr,



20

sup
t∈[0,T ]

‖φ(v1)(t)− φ(v2)(t)‖ ≤MN sup
r∈[0,T ]

‖F (r, v1(r))− F (r, v2(r))‖

+MT sup
r∈[0,T ]

‖F (r, v1(r))− F (r, v2(r))‖

≤M(N + T )KF (ρ) sup
t∈[0,T ]

‖v1(t)− v2(t)‖ .

Thus, we have

‖φ(v1)− φ(v2)‖ ≤M(N + T )KF (ρ) ‖v1 − v2‖ .

Since M(N + T )KF (ρ) < 1, by Banach Fixed Point Theorem, φ has a fixed point

u ∈ Bρ; i.e.,

u(t) = U(t, 0)u(0) + lim
λ→0+

∫ t

0

Uλ(t, r)F (r, u(r))dr,

which is a mild T -periodic solution for (3.8). �

3.3 Time-independent operators - Revisited

Now consider (3.1) and (3.2) again when A is time independent. We will investigate

the case when A is compact.

Theorem 3.3.1. Let Assumption 3.1.2 (H1) hold, f ∈ C([0,∞), X), f(t + T ) = f(t).

Assume that UA(T ) is compact on D(A). If there exists x ∈ D(A) such that the Cauchy

problem (2.1) has a unique bounded mild solution u : [0,∞) → D(A) for u(0) = x ∈

D(A), then the nonhomogeneous linear equation (3.1) has a mild T -periodic solution.

Proof. It suffices to prove that the Poincaré map PT has a fixed point x0, where

PT (x) = UA(T )x+ lim
λ→+∞

∫ T

0

UA(t− s)λ(λI − A)−1f(s)ds.

By the same argument as in the proof of Theorem 3.1.1, let u(t) be the solution with

initial value x, u(t + T ) = u(t) for t ≥ 0, which implies that u(t) is a T -periodic

solution of (3.1).
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Suppose PT has no fixed point, i.e.,

x = UA(T )x+ lim
λ→+∞

∫ T

0

UA(T − s)λ(λI − A)−1f(s)ds

has no solution in D(A). Let P = UA(T ) : D(A)→ D(A) and

x0 = lim
λ→+∞

∫ T

0

UA(T − s)λ(λI − A)−1f(s)ds ∈ D(A).

Then x = Px + x0 has no solution in D(A). So 1 is an eigenvalue of P . Since P is

assumed to be compact on D(A), I−P is Fredholm, thusR(I−P ) is closed in D(A).

Then there exists x∗ ∈ D(A)
′

such that x∗((I − P )x) = 0 for each x ∈ D(A) and

x∗(x0) 6= 0. Let

xn = P n
T (x) = P nx+ (P n−1 + ...+ I)x0,

where x is chosen such that (3.1) has a unique bounded solution for u(0) = x. Then

x∗(xn) = x∗[P nx+ (P n−1 + ...+ I)x0]

= x∗(P nx) + x∗[(P n−1 + ...+ I)x0]

= (P ′)nx∗(x) + [(P ′)n−1 + ...+ I]x∗(x0).

Note that x∗(x) = x∗(Px), so P ′x∗(x) = x∗(x) for x ∈ D(A). Then we get x∗(xn) =

x∗(x)+nx∗(x0). Let n→∞, it follows that nx∗(x0)→∞. Then x∗(x0)→∞, which

contradicts the fact that xn is bounded, since (3.1) has a unique bounded solution for

x ∈ D(A). Therefore, PT has a fixed point in D(A) and (3.1) has a mild T-periodic

solution. �

Finally we prove an existence theorem of periodic solutions for the semilinear equa-

tion (3.2) when the operator A is compact.

Theorem 3.3.2. Let Assumption 3.1.2 (H1) (H3) hold and F (t + T, x) = F (t, x) for

t ≥ 0, x ∈ D(A). Let UA(t) be compact on D(A) for t > 0. Suppose that there
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exists ρ > 0 such that (N + T )LF (T, ρ) ≤ ρ, where N = T
1−eωT for ω < 0, and

(N + T )eωTLF (T, ρ) ≤ ρ, where N = TeωT

‖I−UA(T )‖
for ω ≥ 0. If for each T -periodic

f ∈ C([0,∞), X), there exists x ∈ D(A) such that the Cauchy problem (2.1) has a

unique bounded mild solution for u(0) = x ∈ D(A), then the semilinear equation (3.2)

has a T -periodic solution.

Proof. Define

Bρ = {v ∈ C(R+, D(A)), v(t+ T ) = v(t), ‖v‖ = sup
s∈[0,T ]

‖v(s)‖ ≤ ρ}.

By Theorem 3.3.1, for each v ∈ Bρ, let f(t) = F (t, v(t)). Then equation (3.1) has a

unique mild T -periodic solution given by

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− l)λ(λI − A)−1F (l, v(l))dl. (3.14)

Moreover,

u(0) = (I − UA)−1 lim
λ→+∞

∫ T

0

UA(T − s)λ(λI − A)−1F (s, v(s))ds, (3.15)

‖u(0)‖ ≤


eωTT

‖I−UA(T )‖
sups∈[0,T ] ‖F (s, v(s))‖ , ω ≥ 0,

T
‖I−UA(T )‖

sups∈[0,T ] ‖F (s, v(s))‖ , ω < 0.
(3.16)

Since T
‖I−UA(T )‖

≤ T
1−eωT for ω < 0, let

N =


T

1−eωT , ω < 0,

eωTT
‖I−UA(T )‖

, ω ≥ 0.

Then we have ‖u(0)‖ ≤ N sups∈[0,T ] ‖F (s, v(s))‖. Define an operator φ on Bρ as

follows:

φ(v)(t) = u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− l)λ(λI − A)−1F (l, v(l))dl.



23

Then

‖φ(v)(t)‖ ≤Meωt ‖u(0)‖+

∫ t

0

Meω(t−l) ‖F (l, v(l))‖ dl

W.L.O.G.M=1
========== eωt ‖u(0)‖+

∫ t

0

eω(t−l) ‖F (l, v(l))‖ dl.

It follows that if ω < 0,

sup
t∈[0,T ]

‖φ(v)(t)‖ ≤ ‖u(0)‖+ T sup
t∈[0,T ]

‖F (t, v(t))‖

≤ (N + T )LF (T, ρ)

≤ ρ.

If ω ≥ 0,

sup
t∈[0,T ]

‖φ(v)(t)‖ ≤ ‖u(0)‖+ TeωT sup
t∈[0,T ]

‖F (t, v(t))‖

≤ eωT (N + T )LF (T, ρ)

≤ ρ.

So φ : Bρ → Bρ.

Next, we show that φ is compact. Let t > 0, u ∈ φ(Bρ). Then there exists v ∈ Bρ

such that

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− l)λ(λI − A)−1F (l, v(l))dl.

Let 0 < ε < t, then

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t−ε

0

UA(t− s)λ(λI − A)−1F (s, v(s))ds

+ lim
λ→+∞

∫ t

t−ε
UA(t− s)λ(λI − A)−1F (s, v(s))ds

= UA(t)u(0) + UA(ε) lim
λ→+∞

∫ t−ε

0

UA(t− ε− s)λ(λI − A)−1F (s, v(s))ds

+ lim
λ→+∞

∫ t

t−ε
UA(t− s)λ(λI − A)−1F (s, v(s))ds.
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Since ‖F (s, v(s))‖ ≤ LF (t, ρ), ‖λ(λI − A)−1F (s, v(s))‖ ≤ λ
λ−ωLF (t, ρ). It then

follows that limλ→+∞
∫ t−ε
0

UA(t− ε− s)λ(λI − A)−1F (s, v(s))ds is bounded, by the

compactness of UA(ε), it follows that

{UA(ε) lim
λ→+∞

∫ t−ε

0

UA(t− ε− s)λ(λI − A)−1F (s, v(s))ds, v ∈ Bρ}

is relatively compact in D(A). Moreover, there exists some b > 0 such that∥∥∥∥ lim
λ→+∞

∫ t

t−ε
UA(t− s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥ ≤ bε

for v ∈ Bρ. Hence, {u(t), v ∈ φ(Bρ)} is relatively compact in D(A) for each t > 0.

By the periodicity, {u(0) : u ∈ φ(Bρ)} is relatively compact in D(A).

Now we show the equi-continuity of {u(t), v ∈ φ(Bρ)}. For T + ε ≥ t > τ > 0,

we have

u(t)− u(τ) = (UA(t)− UA(τ))u(0) + lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1F (s, v(s))ds

− lim
λ→+∞

∫ τ

0

UA(τ − s)λ(λI − A)−1F (s, v(s))ds

= (UA(t)− UA(τ))u(0) + lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1F (s, v(s))ds

− lim
λ→+∞

∫ τ

0

UA(t− s)λ(λI − A)−1F (s, v(s))ds

+ lim
λ→+∞

∫ τ

0

UA(t− s)λ(λI − A)−1F (s, v(s))ds

− lim
λ→+∞

∫ τ

0

UA(τ − s)λ(λI − A)−1F (s, v(s))ds

= (UA(t)− UA(τ))u(0) + lim
λ→+∞

∫ t

τ

UA(t− s)λ(λI − A)−1F (s, v(s))ds

+ lim
λ→+∞

∫ τ

0

(UA(t− τ)− I)UA(τ − s)λ(λI − A)−1F (s, v(s))ds,

‖u(t)− u(τ)‖ ≤ ‖UA(t)− UA(τ)‖ ρ+

∥∥∥∥ lim
λ→+∞

∫ t

τ

UA(t− s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥
+

∥∥∥∥(UA(t− τ)− I) lim
λ→+∞

∫ τ

0

UA(τ − s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥ .
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Since {UA(t)}t>0 is compact on D(A), it is continuous in uniform topology. Then

limt→τ ‖UA(t)− UA(τ)‖ = 0. Since ‖F (s, v(s))‖ ≤ LF (T + ε, ρ) for v ∈ Bρ, 0 <

s < T + ε, there exists C > 0 such that∥∥∥∥ lim
λ→+∞

∫ t

τ

UA(t− s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥ ≤ C(t− τ) for v ∈ Bρ.

Then

lim
t→+τ

∥∥∥∥ lim
λ→+∞

∫ t

τ

UA(t− s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥ ≤ lim
t→+τ

C(t− τ) = 0

uniformly for v ∈ Bρ. Since {u(t) : v ∈ φ(Bρ)} is relatively compact in D(A) for

each t ≥ 0 as shown above, {u(t) − UA(t)u(0) : v ∈ Bρ} is also relatively com-

pact in D(A) for each t ≥ 0, which implies that {limλ→+∞
∫ τ
0
UA(τ − s)λ(λI −

A)−1F (s, v(s))ds, v ∈ Bρ} is relatively compact in D(A) for each τ > 0. So there

exists a compact set K ⊂ D(A) such that

lim
λ→+∞

∫ τ

0

UA(τ − s)λ(λI − A)−1F (s, v(s))ds ∈ K

for all v ∈ Bρ.

Since limh→0 supα∈K ‖(UA(h)− I)α‖ = 0 for compact K, it follows that

lim
t→τ

sup
v∈Bρ

∥∥∥∥(UA(t− τ)− I) lim
λ→+∞

∫ τ

0

UA(τ − s)λ(λI − A)−1F (s, v(s))ds

∥∥∥∥ = 0.

Summarizing the above analysis, we have

lim
t→τ,t>τ>0

sup
v∈Bρ
‖u(t)− u(τ)‖ = 0.

Similarly,

lim
t→τ,τ>t>0

sup
v∈Bρ
‖u(t)− u(τ)‖ = 0.

By periodicity, u(t) is also equi-continuous at t = 0. Now by Arzelà-Ascoli theorem,

φ(Bρ) is relatively compact in C = {ϕ|ϕ ∈ C(R+, D(A)), ϕ(t+T ) = ϕ(t)}. So φ has
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a fixed point in Bρ; i.e., there exists u ∈ Bρ such that

u(t) = UA(t)u(0) + lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1F (s, u(s))ds,

which is a mild T-periodic solution for (3.2). �

Remark 3.3.1. Note that if F is bounded, i.e., ‖F (t, x)‖ ≤ B for each t ∈ [0,∞) and

x ∈ D(A), it is a special case of Theorem 3.3.2. In this case, we choose ρ ≥ (N+T )B,

then ‖φ(v)‖ ≤ (N + T )B ≤ ρ, which implies that φ : Bρ → Bρ. By the argument in

Theorem 3.3.2, φ has a fixed point in Bρ, which is a T -periodic solution for (3.2).



Chapter 4

Applications

The results obtained in last chapter can be applied to study the existence of periodic

solutions in several types of equations including delay differential equations, first-order

hyperbolic partial differential equations, and reaction-diffusion equations, in particular

some biological and physical models described by these equations. In this chapter we

consider age-structured population models with periodic harvesting and the diffusive

logistic equation with periodic coefficients.

4.1 Age-structured population models with periodic harvesting and

constant boundary value

Consider the following problem (Aniţa et al. [1998]):
∂tu(t, a) + ∂au(t, a) + µ(a)u(t, a) = f(t, a)− v(t, a)u(t, a), (t, a) ∈ R+ × [0, a+],

u(t, 0) = u0,

u(t, a) = u(t+ T, a),

(4.1)

where t is the time variable, a is the age variable, and u(t, a) is the density of the

population at time t with age a. This is a linear model for an age-structured population

(see for instance Iannelli [1995] and Webb [1985]), where µ(a) is the age-specific death

27
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rate. Moreover, the population is subject to a T -periodic external flow f(t, a) and a T -

periodic age-specific harvesting effort v(t, a) (see for instance Aniţa et al. [1998]).

(i) No harvesting. First, we are concerned with the case v(t, a) ≡ 0.

Proposition 4.1.1. Assume that

(i) f ∈ C([0,∞), L1[0, a+)), f(t, a) = f(t+ T, a) for t ≥ 0, a ∈ [0, a+);

(ii) µ(a) ∈ L1[0, a+) and there exists µ− > 0 such that µ(a) ≥ µ− for a ∈ [0, a+).

Then there exists u(t, a) ∈ C([0,∞), L1[0, a+)) such that u(t, a) is a mild T -periodic

solution of problem (4.1).

Proof. Consider the phase space X := L1[0, a+). Define the linear operator A :

D(A) ⊂ X → X by

Aϕ = −ϕ′ − µϕ

with D(A) = {ϕ ∈ W 1,1[0, a+), ϕ(0) = 0}. Then D(A) = X . Consider the map

F : R+ → X given by

F (t)(a) = f(t, a).

Then the partial differential equation (4.1) can be written as

∂u

∂t
= −∂u

∂a
− µ(a)u+ f(t) = Au+ f(t),

which can be further written as the abstract Cauchy problem (3.1).

Notice that for λ > −µ−, we have λ ∈ ρ(A). Now let

(λI − A)φ = ϕ.

Then by the definition of A, we have

φ′(a) + (µ(a) + λ)φ(a) = ϕ(a).
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Solving φ in terms of ϕ, we have

(λI − A)−1ϕ(a) = φ(a) =

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds.

W.L.O.G. we assume that ϕ(a) ≡ 0 for a > a+ and extend ϕ(a) to the whole R+. If

µ− ≤ µ(a), then

∥∥(λI − A)−1ϕ
∥∥
L1 =

∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∥∥∥∥
L1

=

∫ a+

0

∣∣∣∣∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∣∣∣∣ da
≤
∫ a+

0

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ |ϕ(s)| dsda

≤
∫ a+

0

∫ a

0

e−λ(a−s)−µ−(a−s) |ϕ(s)| dsda

≤
∫ ∞
0

∫ a

0

e−λ(a−s)−µ−(a−s) |ϕ(s)| dsda

=

∫ ∞
0

∫ ∞
s

e−λ(a−s)−µ−(a−s) |ϕ(s)| dads

=

∫ ∞
0

(

∫ ∞
s

e−(λ+µ−)ada)e(λ+µ−)s |ϕ(s)| ds

=
1

µ− + λ

∫ ∞
0

|ϕ(s)| ds

=
1

µ− + λ

∫ a+

0

|ϕ(s)| ds

=
1

λ+ µ−
‖ϕ‖L1 .

Thus, we have ∥∥(λI − A)−1
∥∥ ≤ 1

λ+ µ−
.

So A is a Hille-Yoshida operator with M = 1 and ω = −µ− < 0, which satisfies the

assumptions in Theorem 3.1.1. Moreover, since f ∈ C([0,∞), X), equation (3.1) has a

unique solution for each initial u(0) ∈ D(A) = X by Theorem 2.0.2. Therefore, there

exists a mild T -periodic solution u(t, a) of (4.1) as desired. �
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In the following, we choose specific functions and parameters which satisfy the

assumptions in Proposition 4.1.1 and perform some numerical simulations to show that

there is a periodic solution.

Let T = 1, a+ = 1, µ(a) = e−4a

1.0−a and f(t, a) = 1 + 5a(1 − a) sin(2πt). We can

see that µ− = 0.199. By Theorem 2.0.2, equation (3.1) has a unique solution for each

initial u(0) ∈ D(A) = X . So all assumptions in Theorem 3.1.1 are satisfied and there

is a unique 1-periodic solution which is shown in Figure 4.1.

Figure 4.1: A T -periodic solution of (4.1) starting at u(0, a) = 0 and with boundary
condition u(t, 0) = 0, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) ≡ 0 and f(t, a) = 1+5a(1−
a) sin(2πt).

(ii) Periodic harvesting. Now we consider the case when the harvest term v(t, a)

is nonzero and T -periodic in t.

Proposition 4.1.2. Assume that

(i) f ∈ C([0,∞), L1[0, a+)), f(t, a) = f(t+ T, a) for t ≥ 0, a ∈ [0, a+);

(ii) µ(a) ∈ L1[0, a+) and there exists µ− > 0 such that µ(a) ≥ µ− for a ∈ [0, a+);
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(iii) v(t, a) ∈ C1([0,∞), L1[0, a+)), v(t, a) = v(t + T, a) and there exists v− > 0

such that v(t, a) ≥ v− for t ≥ 0, a ∈ [0, a+).

Then there exists u(t, a) ∈ C([0,∞), L1[0, a+)) such that u(t, a) is a mild T -periodic

solution of problem (4.1).

Proof. LetX := L1[0, a+]. Define the time-dependent T -periodic linear operatorA(t) :

D(A(t)) ⊂ X → X by

A(t)ϕ = −ϕ′ − µ(a)ϕ− v(t, a)ϕ

with D(A(t)) = D = {ϕ ∈ W 1,1[0, a+], ϕ(0) = 0}. Then D(A(t)) = D = X .

Consider the map f : R+ → X given by

f(t)(a) = f(t, a)

Then the partial differential equation (4.1) can be written as the evolution equation (3.7).

Notice that for λ > −µ−, we have λ ∈ ρ(A(t)) for ∀t ≥ 0. Now let t ∈ R+ and let

(λI − A(t))φ = ϕ.

Then by the definition of A(T ) we have

φ′(a) + (µ(a) + v(t, a) + λ)φ(a) = ϕ(a).

Solving φ in terms of ϕ, we have

(λI − A(t))−1ϕ(a) = φ(a) =

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds.

W.L.O.G. we assume that ϕ(a) ≡ 0 for a > a+ and extend ϕ(a) to the whole R+. If
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µ− ≤ µ(a) and v− ≤ v(t, a) for ∀t ∈ R+, a ∈ [0, a+], then

∥∥(λI − A(t))−1ϕ
∥∥
L1 =

∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∥∥∥∥
L1

=

∫ a+

0

∣∣∣∣∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∣∣∣∣ da
≤
∫ a+

0

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτ |ϕ(s)| dsda

≤
∫ a+

0

∫ a

0

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dsda

≤
∫ ∞
0

∫ a

0

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dsda

=

∫ ∞
0

∫ ∞
s

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dads

=

∫ ∞
0

(

∫ ∞
s

e−(λ+µ−+v−)ada)e(λ+µ−+v−)s |ϕ(s)| ds

=
1

λ+ µ− + v−

∫ ∞
0

|ϕ(s)| ds

=
1

λ+ µ− + v−

∫ a+

0

|ϕ(s)| ds

=
1

λ+ µ− + v−
‖ϕ‖L1 .

So we have ∥∥(λI − A(t))−1
∥∥ ≤ 1

λ+ µ− + v−
.

Thus, ∥∥∥∥∥
k∏
j=1

(λI − A(tj))
−1

∥∥∥∥∥ ≤ 1

(λ+ (µ− + v−))−k

for λ > −(µ− + v−) and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk

and k = 1, 2, .... We have checked that (A1) and (A2) of Assumption 3.2.1 hold for

{A(t)}t≥0 with M = 1 and ω = −(µ− + v−) < 0. Moreover, (iii) implies (A3) of

Assumption 3.2.1. In addition, since f ∈ C([0,∞), X), (3.7) has a unique solution for

each u(0) ∈ D = X by Theorem 2.0.7, .Therefore, there is a mild T -periodic solution

for problem (4.1) by Theorem 3.2.2. �
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Proposition 4.1.2 indicates that if the external function f(t, u) is continuous and

T -periodic, the mortality function µ(a) is integrable and bounded from below, and the

harvesting function v(t, a) is continuously differentiable, T -periodic in t, and bounded

from below, then the model has a T -periodic mild solution.

Now we choose specific µ(a), v(t, a) and f(t, a) which satisfy the assumptions in

Proposition 4.1.2 and perform numerical simulations to demonstrate the existence of

periodic solutions. Let T = 1, a+ = 1, µ(a) = e−4a

1.0−a , v(t, a) = 0.5 + 0.4a(1 −

a) sin(2πt) and f(t, a) = 1+5a(1−a) sin(2πt). It then follows that ω = −(µ−+v−) =

−0.299 < 0. Now all assumptions in Proposition 4.1.2 are satisfied, it follows that

equation (4.1) has a unique mild 1-periodic solution, which is shown in Figure 4.2.

Figure 4.2: A T -periodic solution of (4.1) starting at u(0, a) = 0 and with boundary
condition u(t, 0) = 0, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) = 0.5 + 0.4a(1− a) sin(2πt)
and f(t, a) = 1 + 5a(1− a) sin(2πt).
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4.2 Age-structured population models with periodic harvesting and

global population dependent boundary value

Consider the following problem (Aniţa et al. [1998]):
∂tu(t, a) + ∂au(t, a) + µ(a)u(t, a) = f(t, a)− v(t, a)u(t, a), (a, t) ∈ [0, a+]× R+,

u(t, 0) =
∫ a+
0

γ(t, a)u(t, a)da,

u(t, a) = u(t+ T, a),

(4.2)

where t is the time variable, a is the age variable, and u(t, a) is the density of a popu-

lation at time t with age a, µ(a) is the age-specified death rate, and γ(t, a) is the age-

specified T -periodic birth rate. Moreover, there is a T -periodic external flow f(t, a)

and a T -periodic age-specified harvesting effort v(t, a).

(i) No harvesting. Once again, first we consider the case v(t, a) ≡ 0.

Proposition 4.2.1. Assume that

(i) f ∈ C([0,∞), L1[0, a+)), f(t, a) = f(t + T, a) for t ≥ 0, a ∈ [0, a+) and

supt∈[0,T ]
∫ a+
0
|f(t, a)| da ≤ f+(T );

(ii) µ(a) ∈ L1[0, a+) and there exists µ− > 0 such that µ(a) ≥ µ− for a ∈ [0, a+);

(iii) γ(t, a) ∈ C([0,∞), L1[0, a+)), γ(t, a) = γ(t + T, a) and there exists γ+ > 0

such that 0 ≤ γ(t, a) ≤ γ+ for t ≥ 0, a ∈ [0, a+);

(iv) ( T

1−e−µ−T + T )γ+ < 1 and the inequality ( T

1−e−µ−T + T )(γ+ρ+ f+(T )) ≤ ρ has

solution.

Then problem (4.2) has a mild T -periodic solution u(t, a) ∈ C([0,∞), L1[0, a+)).
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Proof. Consider the space X := R× L1 (0, a+) endowed with the product norm∥∥∥∥∥∥∥
 α

ϕ


∥∥∥∥∥∥∥ = |α|+ ‖ϕ‖L1(0,a+) .

Define the linear operator A : D(A) ⊂ X → X by

A

 0

ϕ

 =

 −ϕ(0)

−ϕ′ − µϕ


with D(A) = {0} × W 1,1(0, a+), and D(A) = {0} × L1(0, a+) 6= X . Define F :

R+ ×D(A)→ X by

F

t,
 0

φ


 =

 ∫ a+
0

γ(t, a)φ(a)da

f(t, a)

 .

Then the partial differential equation (4.2) can be written as the abstract semilinear

equation (3.2). Notice that for λ > µ−, we have λ ∈ ρ(A). Let

(λI − A)

 0

φ

 =

 θ

ϕ

 .

Then

(λI − A)−1

 θ

ϕ

 =

 0

φ

 .

Since by definition of A

(λI − A)

 0

φ

 =

 φ(0)

φ′ + (µ+ λ)φ

 ,

we have

φ(0) = θ,

φ′(a) + (µ(a) + λ)φ(a) = ϕ(a).
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Hence,

φ(a) = θe−
∫ a
0 (µ(s)+λ)ds + e−

∫ a
0 (µ(s)+λ)ds

∫ a

0

e
∫ s
0 (µ(τ)+λ)dτϕ(s)ds

= θe−λa−
∫ a
0 µ(s)ds + e−λa−

∫ a
0 µ(s)ds

∫ a

0

eλs+
∫ s
0 µ(τ)dτϕ(s)ds

= θe−λa−
∫ a
0 µ(s)ds +

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds.

So

(λI − A)−1

 θ

ϕ

 =

 0

θe−λa−
∫ a
0 µ(τ)dτ +

∫ a
0
e−λ(a−s)−

∫ a
s µ(τ)dτϕ(s)ds

 ,

∥∥∥∥∥∥∥(λI − A)−1

 θ

ϕ


∥∥∥∥∥∥∥
L1

=

∥∥∥∥θe−λa−∫ a0 µ(τ)dτ +

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∥∥∥∥
L1

≤ |θ|
∥∥∥e−λa−∫ a0 µ(τ)dτ∥∥∥

L1
+

∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∥∥∥∥
L1

.

W.L.O.G. we assume that ϕ(a) ≡ 0 for a ≥ a+ and extend ϕ(a) to the whole R+. Since
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µ(a) ≥ µ−, we have∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∥∥∥∥
L1

=

∫ a+

0

∣∣∣∣∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτϕ(s)ds

∣∣∣∣ da
≤
∫ a+

0

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ |ϕ(s)| dsda

≤
∫ a+

0

∫ a

0

e−λ(a−s)−µ−(a−s) |ϕ(s)| dsda

≤
∫ ∞
0

∫ a

0

e−λ(a−s)−µ−(a−s) |ϕ(s)| dsda

=

∫ ∞
0

∫ ∞
s

e−λ(a−s)−µ−(a−s) |ϕ(s)| dads

=

∫ ∞
0

(

∫ ∞
s

e−(µ−+λ)ada)e(µ−+λ)s |ϕ(s)| ds

=
1

µ− + λ

∫ ∞
0

|ϕ(s)| ds

=
1

µ− + λ

∫ a+

0

|ϕ(s)| ds

=
1

µ− + λ
‖ϕ‖L1 .

Moreover, ∥∥∥e−λa−∫ a0 µ(τ)dτ∥∥∥
L1

=

∫ a+

0

e−λa−
∫ a
0 µ(τ)dτda

≤
∫ a+

0

e−(λ+µ−)ada

≤
∫ ∞
0

e−(λ+µ−)ada

=
1

µ− + λ
.

So we obtain ∥∥∥∥∥∥∥(λI − A)−1

 θ

ϕ


∥∥∥∥∥∥∥
L1

≤ 1

λ+ µ−
[|θ|+ ‖ϕ‖L1 ].

It follows that ∥∥(λI − A)−1
∥∥
L(X)
≤ 1

λ+ µ−
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for λ > −µ−. Therefore, A is a Hille-Yosida operator with M = 1 and ω = −µ− < 0.

Moreover, since

F

t,
 0

φ


 =

 ∫ a+
0

γ(t, a)φ(a)da

f(t, a)

 ,

F

t,
 0

φ1


− F

t,
 0

φ2


 =

 ∫ a+
0

γ(t, a)φ1(a)da

f(t, a)


−

 ∫ a+
0

γ(t, a)φ2(a)da

f(t, a)


=

 ∫ a+
0

γ(t, a)[φ1(a)− φ2(a)]da

0

 .

Assume γ(t, a) ≤ γ+, then it follows that∥∥∥∥∥∥∥F
t,

 0

φ1


− F

t,
 0

φ2



∥∥∥∥∥∥∥ =

∣∣∣∣∣
∫ a+

0

γ(t, a)[φ1(a)− φ2(a)]da

∣∣∣∣∣
≤ γ+

∫ a+

0

|φ1(a)− φ2(a)| da

= γ+ ‖φ1 − φ2‖L1

= γ+

∥∥∥∥∥∥∥
 0

φ1

−
 0

φ2


∥∥∥∥∥∥∥ .

So we have KF (ρ) ≡ γ+.
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Assume that supt∈[0,T ]
∫ a+
0
|f(t, a)| ≤ f+(T ), then for ‖φ‖L1 ≤ ρ we have∥∥∥∥∥∥∥F

t,
 0

φ



∥∥∥∥∥∥∥ =

∣∣∣∣∣
∫ a+

0

γ(t, a)φ(a)da

∣∣∣∣∣+

∫ a+

0

|f(t, a)| da

≤ γ+

∫ a+

0

|φ(a)| da+

∫ a+

0

|f(t, a)| da

≤ γ+ρ+ f+(T ).

So LF (T, ρ) = γ+ρ + f+(T ). Now we have checked conditions of Assumption 3.1.2.

Moreover, since KF (ρ) = γ+ and LF (T, ρ) = γ+ρ+f+(T ), we have (N+T )KF (ρ) =

( T

1−e−µ−T +T )γ+ < 1 and there exists ρ > 0 such that (N +T )LF (T, ρ) = ( T

1−e−µ−T +

T )(γ+ρ + f+(T )) ≤ ρ. In addition, the Cauchy problem (2.1) has a unique mild so-

lution for each x ∈ D(A) and each f ∈ C([0,∞), X) by Theorem 2.0.2. Hence, all

assumptions of Theorem 3.1.3 are satisfied and (4.2) has a mild T -periodic solution

u(t, a) ∈ ([0,∞), L1(0, a+)). �

Proposition 4.2.1 implies that if the external function f(t, a) is continuous and T -

periodic and its integral over all ages is bounded above by f+(T ), the death rate µ(a)

is integrable and bounded below, the birth rate γ(t, a) is continuous, T -periodic and

bounded above by a constant γ+ which satisfies γ+ < 1
T

1−e−µ−T
+T

and there exists

ρ > 0 such that ( T

1−e−µ−T + T )(γ+ρ + f+(T )) ≤ ρ, then the model has a T -periodic

mild solution.

Next we choose specific functions and parameters for problem (4.2) which satisfy

conditions in Proposition 4.2.1 and simulate the periodic solutions.

Let T = 1 and µ(a) = e−4a

1.0−a , from the above discussion we know that ω = −µ− =

−0.199, then N = T
1−eωT = 1

1−e−0.199 ≈ 5.5417. Let a+ = 1, f(t, a) = 1 + 2 sin(2πt)

and γ(t, a) = 0.2a2(1 − a)(1 + sin(2πt)). Then KF (ρ) = γ+ = 0.4 × 4
27
≈ 0.059
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and (N + T ) ×KF (ρ) ≈ 6.5417 × 0.059 ≈ 0.386 < 1 for each ρ > 0. Furthermore,

LF (T, ρ) = 0.059ρ+ 3, then (N + T )LF (T, ρ) ≤ ρ⇔ 6.5417× (0.059ρ+ 3) ≤ ρ⇔

0.386ρ+19.625 ≤ ρ, which means that ρ ≥ 31.96. Now all assumptions of Proposition

4.2.1 are satisfied. Thus, equation (4.2) has a 1-periodic solution which is shown in

Figure 4.3.

Figure 4.3: A T -periodic solution of (4.2) starting at u(0, a) = 1 and with global
boundary condition u(t, 0) =

∫ 1

0
γ(t, a)u(t, a)da, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) ≡
0, γ(t, a) = 0.2a2(1− a)(1 + sin(2πt))and f(t, a) = 1 + 2 sin(2πt).

Now we change the parameters a little bit such that the assumptions of Proposition

4.2.1 are NOT satisfied. Let γ(t, a) = 4a2(1−a)(1+sin(2πt)), then γ+ = 8× 4
27

= 1.18

and (N + T )KF (ρ) = 6.5417 × 1.18 ≈ 7.7192 > 1. So assumptions of Proposition

4.2.1 are not satisfied. Figure 4.4 shows a solution with the same initial value as the

previous one in this case, which is no longer periodic.

(ii) Periodic harvesting. Now we let v(t, a) be nonzero and T -periodic in the time

variable t.

Proposition 4.2.2. Asume that
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Figure 4.4: A solution of (4.2) starting at u(0, a) = 1 and with boundary condition
u(t, 0) =

∫ 1

0
γ(t, a)u(t, a)da, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) ≡ 0, γ(t, a) =
4a2(1− a)(1 + sin(2πt))and f(t, a) = 1 + 2 sin(2πt).

(i) f ∈ C([0,∞), L1[0, a+)), f(t, a) = f(t + T, a) for t ≥ 0, a ∈ [0, a+) and

supt∈[0,T ]
∫ a+
0
|f(t, a)| da ≤ f+(T );

(ii) µ(a) ∈ L1[0, a+) and there exists µ− > 0 such that µ(a) ≥ µ− for a ∈ [0, a+);

(iii) γ(t, a) ∈ C([0,∞), L1[0, a+)), γ(t, a) = γ(t + T, a) and there exists γ+ > 0

such that 0 ≤ γ(t, a) ≤ γ+ for t ≥ 0, a ∈ [0, a+);

(iv) v(t, a) ∈ C1([0,∞), L1[0, a+)), v(t, a) ≥ v− > 0 and v(t, a) = v(t + T, a) for

t ≥ 0, a ∈ [0, a+);

(v) ( T

1−e−(µ−+v−)T +T )γ+ < 1 and the inequality ( T

1−e−(µ−+v−)T +T )(γ+ρ+f+(T )) ≤

ρ has solution.

Then problem (4.2) has a mild T -periodic solution u(t, a) ∈ C([0,∞), L1[0, a+)).
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Proof. Consider the space X := R× L1(0, a+) endowed with the product norm∥∥∥∥∥∥∥
 α

ϕ


∥∥∥∥∥∥∥ = |α|+ ‖ϕ‖L1(0,a+) .

Define the time-dependent linear operator A(t) : D(A(t)) ⊂ X → X by

A

 0

ϕ

 =

 −ϕ(0)

−ϕ′ − µϕ− v(t)ϕ


with D(A(t)) = D = {0} ×W 1,1(0, a+), and D(A(t)) = D = {0} × L1(0, a+) 6= X .

Define F : R+ ×D → X by

F

t,
 0

φ


 =

 ∫ a+
0

γ(t, a)φ(a)da

f(t, a)

 .

Then the partial differential equation (4.2) can be written as the evolution equation (3.8).

Notice that for λ > −µ− − v−, we have λ ∈ ρ(A(t)) for ∀t ≥ 0. For some t ∈ R+,

let

(λI − A(t))

 0

φ

 =

 θ

ϕ

 ,

(λI − A(t))−1

 θ

ϕ

 =

 0

φ

 .

Since by definition of A(t)

(λI − A(t))

 0

φ

 =

 φ(0)

φ′ + (λ+ µ+ v(t))φ

 ,

we have

φ(0) = θ,

φ′(a) + (λ+ µ(a) + v(t, a))φ(a) = ϕ(a).



43

Then

φ(a) = θe−
∫ a
0 (λ+µ(s)+v(t,s))ds + e−

∫ a
0 (λ+µ(s)+v(t,s))ds

∫ a

0

e
∫ s
0 (λ+µ(τ)+v(t,τ))dτϕ(s)ds

= θe−λa−
∫ a
0 µ(s)ds−

∫ a
0 v(t,s)ds +

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds.

So for λ > −µ− − v−

(λI − A(t))−1

 θ

ϕ

 =

 0

θe−λa−
∫ a
0 µ(s)ds−

∫ a
0 v(t,s)ds +

∫ a
0
e−λ(a−s)−

∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds


and ∥∥∥∥∥∥∥(λI − A(t))−1

 θ

ϕ


∥∥∥∥∥∥∥
L1

=

∥∥∥∥ θe−λa−∫ a0 µ(s)ds−∫ a0 v(t,s)ds +

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∥∥∥∥
L1

≤ |θ|
∥∥∥e−λa−∫ a0 µ(τ)dτ−∫ a0 v(t,τ)dτ∥∥∥

L1

+

∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∥∥∥∥
L1

.

W.L.O.G. assume ϕ(a) ≡ 0 for a > a+ and extend ϕ(a) to the whole R+. Since
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µ(a) ≥ µ− and v(t, a) ≥ v−, we have∥∥∥∥∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∥∥∥∥
L1

=

∫ a+

0

∣∣∣∣∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτϕ(s)ds

∣∣∣∣ da
≤
∫ a+

0

∫ a

0

e−λ(a−s)−
∫ a
s µ(τ)dτ−

∫ a
s v(t,τ)dτ |ϕ(s)| dsda

≤
∫ a+

0

∫ a

0

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dsda

≤
∫ ∞
0

∫ a

0

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dsda

=

∫ ∞
0

∫ ∞
s

e−λ(a−s)−µ−(a−s)−v−(a−s) |ϕ(s)| dads

=

∫ ∞
0

(

∫ ∞
s

e−(λ+µ−+v−)ada)e(λ+µ−+v−)s |ϕ(s)| ds

=
1

λ+ µ− + v−

∫ ∞
0

|ϕ(s)| ds

=
1

λ+ µ− + v−

∫ a+

0

|ϕ(s)| ds

=
1

λ+ µ− + v−
‖ϕ‖L1 .

Moreover,

∥∥∥e−λa−∫ a0 µ(τ)dτ−∫ a0 v(t,τ)dτ∥∥∥
L1

=

∫ a+

0

e−λa−
∫ a
0 µ(τ)dτ−

∫ a
0 v(t,τ)dτda

≤
∫ a+

0

e−(λ+µ−+v−)ada

≤
∫ ∞
0

e−(λ+µ−+v−)ada

=
1

λ+ µ− + v−
,
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So we obtain ∥∥∥∥∥∥∥(λI − A(t))−1

 θ

ϕ


∥∥∥∥∥∥∥
L1

≤ 1

λ+ µ− + v−
(|θ|+ ‖ϕ‖L1)

for all t ∈ R+ and λ > −(µ− + v−). It then follows that

∥∥(λI − A(t))−1
∥∥ ≤ 1

λ+ µ− + v−

for all t ∈ R+ and λ > −(µ− + v−) so that∥∥∥∥∥
k∏
j=1

(λI − A(tj))
−1

∥∥∥∥∥ ≤ 1

(λ+ µ− + v−)−k

for λ > −(µ− + v−) and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and

k = 1, 2, ... Hence, Assumption 3.2.1 holds for {A(t)}t≥0.

Moreover, we have

F

t,
 0

φ


 =

 ∫ a+
0

γ(t, a)φ(a)da

f(t, a)

 ,

F

t,
 0

φ1


− F

t,
 0

φ2


 =

 ∫ a+
0

γ(t, a)φ1(a)da

f(t, a)


−

 ∫ a+
0

γ(t, a)φ2(a)da

f(t, a)


=

 ∫ a+
0

γ(t, a)(φ1(a)− φ2(a))da

0

 .

From the discussion of the case v(t, a) ≡ 0, we obtain∥∥∥∥∥∥∥F
t,

 0

φ1


− F

t,
 0

φ2



∥∥∥∥∥∥∥ ≤ γ+

∥∥∥∥∥∥∥
 0

φ1

−
 0

φ2


∥∥∥∥∥∥∥ .
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where γ(t, a) ≤ γ+. So KF (ρ) = γ+. Assume supt∈[0,T ]
∫ a+
0
|f(t, a)| ≤ f+(T ), then

from the discussion in the case v(t, a) ≡ 0, for ‖φ‖L1 ≤ ρ,∥∥∥∥∥∥∥F
t,

 0

φ



∥∥∥∥∥∥∥ ≤ γ+ρ+ f+(T ).

Thus, we have LF (T, ρ) = γ+ρ + f+(T ). So we have checked Assumption 3.1.2

(H2)(H3) and Assumption 3.2.1 (A1)(A2), and (iv) implies Assumption 3.2.1 (A3).

Moreover, we have

M(N + T )KF (ρ) = (
T

1− e−(µ−+v−)T
+ T )γ+ < 1

and there exists ρ > 0 such that

M(N + T )LF (T, ρ) = (
T

1− e−(µ−+v−)T
+ T )(γ+ρ+ f+(T )) ≤ ρ.

Furthermore, Theorem 2.0.7 implies that the linear revolution Cauchy problem (2.5)

has a unique mild solution for each u(0) ∈ D. So all assumptions in Theorem 3.2.3 are

satisfied which ensures that there is a mild T -periodic solution. �

Proposition 4.2.2 indicates that if the external function f(t, a) is continuous, T -

periodic in t and its integral over all ages is bounded above by f+(T ), the death rate

γ(t, a) is integrable and bounded below by µ− > 0, the birth rate γ(t, a) is continuous,

T -Periodic in t and bounded above by γ+ > 0, the harvesting effort v(t, a) is continu-

ously differentiable in t and integrable in a, T -periodic and bounded below by v− > 0,

the upper bound γ+ of the birth rate γ(t, a) is bounded above by γ+ < 1
T

1−e−(µ−+v−)T
+T

and there exists ρ > 0 such that ( T

1−e−(µ−+v−)T +T )(γ+ρ+f+(T )) ≤ ρ , then the model

has a T -periodic mild solution.

As an example, now we choose some specific functions and coefficients for problem

(4.2) such that they satisfy conditions in Proposition 4.2.2.
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Let T = 1, v(t, a) = 0.5 + 0.4a(1 − a) sin(2πt) and µ(a) = e−4a

1.0−a , then ω =

−µ− − v− = −0.299 < 0 and N = MT
1−MeωT

= 1
1−e−0.299 ≈ 3.87. Let a+ = 1,

f(t, a) = 1 + 2 sin(2πt) and γ(t, a) = 0.2a2(1 − a)(1 + sin(2πt)). Then KF (ρ) ≈

0.059, (N + T )KF (ρ) ≈ 4.87 × 0.059 ≈ 0.28733 < 1 for all ρ > 0. In addition,

LF (T, ρ) = 0.059ρ + 3, then (N + T )LF (T, ρ) ≤ ρ ⇔ 4.87 × (0.059ρ + 3) ≤ ρ ⇔

0.28733ρ + 14.61 ≤ ρ, which means that ρ ≥ 20.5. Then equation (4.2) has a mild 1-

periodic solution by Proposition 4.2.2. A solution of equation (4.2) is shown in Figure

4.5.

Figure 4.5: A T -periodic solution of (4.2) starting at u(0, a) = 1 and with global
boundary condition u(t, 0) =

∫ 1

0
γ(t, a)u(t, a)da, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) =
0.5 + 0.4a(1 − a) sin(2πt), γ(t, a) = 0.2a2(1 − a)(1 + sin(2πt))and f(t, a) = 1 +
2 sin(2πt).

Again, we change the parameters a little bit such that the assumptions of Proposition

4.2.2 are NOT satisfied. Let γ(t, a) = 4a2(1 − a)(1 + sin(2πt)), then γ+ = 1.18 and

(N + T )KF (ρ) = 4.87 × 1.18 ≈ 5.7466 > 1. Then assumptions of Proposition 4.2.2

are not satisfied. Figure 4.6 shows a solution with the same initial value as the previous
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one, which is not periodic.

Figure 4.6: A solution of (4.2) starting at u(0, a) = 1 and with boundary condition
u(t, 0) =

∫ 1

0
γ(t, a)u(t, a)da, where µ(a) = e−4a

1.0−a , T = 1, v(t, a) = 0.5 + 0.4a(1 −
a) sin(2πt), γ(t, a) = 4a2(1− a)(1 + sin(2πt))and f(t, a) = 1 + 2 sin(2πt).

4.3 The diffusive logistic model with periodic coefficients

This subsection is concerned with a diffusive logistic model in T -periodic environment.

Consider the following problem (Hess [1991], Ward Jr. [1979])
∂tu(t, x) = ∂2xu(t, x) + r(t)u(t, x)[1− u(t,x)

K(t)
], t ∈ R+, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 1,

u(t, x) = u(t+ T, x),

(4.3)

where t is the time variable, x is the space variable, and u(t, x) is the density of a

population at time t and location x. In the logistic term, we have a T -periodic intrinsic

growth rate r(t) and a T -periodic carrying capacity K(t). Moreover, we give constant

boundary values.



49

Hess [1991] studied this kind of problem and gave existence theorems of periodic

solutions under the existence of a positive supersolution and under assumptions on the

eigenvalues of the linearized problem. I’ll give the existence theorem of periodic solu-

tions to this problem under another kind of assumptions by using a different method.

Let v(t, a) = u(t, a)− 1, then
∂tv(t, x) = ∂2xv(t, x) + r(t)[v(t, x) + 1][1− v(t,x)+1

K(t)
], t ∈ R+, x ∈ [0, 1],

v(t, 0) = v(t, 1) = 0,

v(t, x) = v(t+ T, x),

(4.4)

where r(t) and K(t) are T -periodic. The existence of solutions for (4.3) and that for

(4.4) are equivalent. From now on, we consider (4.4).

Let X = C[0, 1]. Define

Au = u′′.

Then D(A) = {u ∈ C2[0, 1] : u(0) = u(1) = 0}, D(A) = C[0, 1] = {u ∈ C[0, 1] :

u(0) = u(1) = 0} 6= C[0, 1] = X . By separation of variable (see section 4.1 in Strauss

[1992]), it follows that A generates a semigroup {UA(t)}t≥0 on D(A) given by

UA(t)f(x) =
∞∑
n=1

(2

∫ 1

0

f(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2t.

Define F : R+ ×D(A)→ X by

F (t, ϕ) = r(t)(ϕ+ 1)(1− ϕ+ 1

K(t)
).

Then as before, we can rewrite (4.4) as abstract Cauchy problem (3.2).

Proposition 4.3.1. Assume that

(i) r(t) ∈ C[0,∞), there exists r+ > 0 such that 0 ≤ r(t) ≤ r+ for t ≥ 0, r(t) =

r(t+ T );
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(ii) K(t) ∈ C[0,∞), there exists k− > 0 such that K(t) ≥ k− for t ≥ 0, K(t) =

K(t+ T );

(iii) There exists ρ > 0 such that ( T
‖I−UA(T )‖

+ T )r+(ρ+ 1)(1 + 1+ρ
k−

) ≤ ρ.

Then problem (4.3) has a mild T -periodic solution.

Proof. It suffices to prove the following

(a) A is Hille-Yoshida operator with M = 1 and ω = 0;

(b) There exists LF (T, ρ) ≥ 0 such that ‖F (t, u)‖ ≤ LF (T, ρ) for t ≤ T and ‖u‖ ≤

ρ;

(c) UA(t) is compact on D(A) for t > 0;

(d) There exists ρ > 0 such that ( T
‖I−UA(T )‖

+ T )r+(ρ+ 1)(1 + 1+ρ
k−

) ≤ ρ;

(e) The Cauchy problem (2.1) has a unique mild solution for each x ∈ D(A) and

f ∈ C([0,∞), X), f(t + T ) = f(t). Moreover there exits x ∈ D(A) such that

the solution u(t) with u(0) = x is bounded.

Note that if we rewrite (4.4) as abstract Cauchy problem (3.2), (a)-(e) cover all assump-

tions in Theorem 3.3.2. Then the existence of a mild T -periodic solution to problem

(4.4) is guaranteed by Theorem 3.3.2. Thus, we get existence of a mild T -periodic

solution to problem (4.3).

Now we prove (a)-(e).

(a) Let ψ ∈ X . Let λ > 0. Then

(λI − A)ϕ = ψ ⇔ λϕ− ϕ′′ = ψ
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Set ϕ̂ = ϕ′. Then

(λI − A)ϕ = ψ ⇔

 ϕ′ = ϕ̂

ϕ̂′ = λϕ− ψ

⇔


√
λϕ′ + ϕ̂′ =

√
λ(
√
λϕ+ ϕ̂)− ψ

√
λϕ′ − ϕ̂′ = −

√
λ(
√
λϕ− ϕ̂) + ψ.

Define

w = (
√
λϕ+ ϕ̂),

ŵ = (
√
λϕ− ϕ̂).

Then we have

(λI − A)ϕ = ψ ⇔

 w′ =
√
λw − ψ,

ŵ′ = −
√
λŵ + ψ.

(4.5)

The first equation of (4.5) is equivalent to

e−
√
λxw(x) = e−

√
λyw(y)−

∫ x

y

e−
√
λlψ(l)dl, ∀x ≥ y. (4.6)

In (4.6) let y = 0, then we obtain

w(x) = e
√
λxw(0)− e

√
λx

∫ x

0

e−
√
λlψ(l)dl, (4.7)

where w(0) =
√
λϕ(0) + ϕ̂(0) = ϕ̂(0). In (4.6) let x = 1, we have

w(y) = e
√
λy−
√
λw(1) + e

√
λy

∫ 1

y

e−
√
λlψ(l)dl, (4.8)

where w(1) =
√
λϕ(1) + ϕ̂(1) = ϕ̂(1).

The second equation of (4.5) is equivalent to

e
√
λxŵ(x) = e

√
λyŵ(y) +

∫ x

y

e
√
λlψ(l)dl, ∀x ≥ y. (4.9)

In (4.9) let y = 0, then we have

ŵ(x) = e−
√
λxŵ(0) + e−

√
λx

∫ x

0

e
√
λlψ(l)dl, (4.10)
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where ŵ(0) =
√
λϕ(0)− ϕ̂(0) = −ϕ̂(0). In (4.9) let x = 1, we have

ŵ(y) = e
√
λ−
√
λyŵ(1)− e−

√
λy

∫ 1

y

e
√
λlψ(l)dl, (4.11)

where ŵ(1) =
√
λϕ(1)− ϕ̂(1) = −ϕ̂(1).

From (4.7) and (4.10), we have

e2
√
λxŵ(x) + w(x) =

∫ x

0

e
√
λx(e

√
λl − e−

√
λl)ψ(l)dl, (4.12)

where x ∈ [0, 1]. Combining (4.8) and (4.11), we obtain

e2
√
λ(1−x)w(x) + ŵ(x) =

∫ 1

x

e−
√
λx(e2

√
λ−
√
λl − e

√
λl)ψ(l)dl. (4.13)

Since ŵ =
√
λϕ− ϕ̂ and w =

√
λϕ+ ϕ̂, (4.12) and (4.13) can be written as

√
λ(e2

√
λx + 1)ϕ+ (1− e2

√
λx)ϕ̂ =

∫ x

0

e
√
λx(e

√
λl − e−

√
λl)ψ(l)dl (4.14)

and

(e2
√
λ(1−x) + 1)

√
λϕ+ (e2

√
λ(1−x)− 1)ϕ̂ =

∫ 1

x

e−
√
λx(e2

√
λ−
√
λl− e

√
λl)ψ(l)dl. (4.15)

Combining (4.14) and (4.15), we have the following

ϕ(x) =
(e2
√
λ−
√
λx − e

√
λx)
∫ x
0

(e
√
λl − e−

√
λl)ψ(l)dl

2
√
λ(e2

√
λ − 1)

−
(e−
√
λx − e

√
λx)
∫ 1

x
(e2
√
λ−
√
λl − e

√
λl)ψ(l)dl

2
√
λ(e2

√
λ − 1)

=

∫ x
0

(e2
√
λ−
√
λ(x−l) − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ(x−l))ψ(l)dl

2
√
λ(e2

√
λ − 1)

−
∫ 1

x
(e2
√
λ−
√
λ(x+l) − e

√
λ(l−x) − e2

√
λ−
√
λ(l−x) + e

√
λ(x+l))ψ(l)dl

2
√
λ(e2

√
λ − 1)

=

∫ x
0

(e2
√
λ−
√
λ|x−l| − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ|x−l|)ψ(l)dl

2
√
λ(e2

√
λ − 1)

+

∫ 1

x
(e2
√
λ−
√
λ|l−x| − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ|l−x|)ψ(l)dl

2
√
λ(e2

√
λ − 1)

=

∫ 1

0
(e2
√
λ−
√
λ|x−l| − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ|x−l|)ψ(l)dl

2
√
λ(e2

√
λ − 1)

.
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Since ϕ ∈ D(A), it follows that

‖ϕ‖ = sup
x∈[0,1]

|ϕ(x)|

= sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0
(e2
√
λ−
√
λ|x−l| − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ|x−l|)ψ(l)dl

2
√
λ(e2

√
λ − 1)

∣∣∣∣∣ .
Since e2

√
λ−
√
λ|x−l|−e2

√
λ−
√
λ(x+l)−e

√
λ(x+l) +e

√
λ|x−l| ≥ 0 for x ∈ [0, 1] and l ∈ [0, 1],

we have

‖ϕ‖

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1

0

∣∣∣e2√λ−√λ|x−l| − e2√λ−√λ(x+l) − e√λ(x+l) + e
√
λ|x−l|

∣∣∣ dl
2
√
λ(e2

√
λ − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1

0
(e2
√
λ−
√
λ|x−l| − e2

√
λ−
√
λ(x+l) − e

√
λ(x+l) + e

√
λ|x−l|)dl

2
√
λ(e2

√
λ − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

e2
√
λ( 2√

λ
− 1√

λ
e
√
λ(x−1) − 1√

λ
e−
√
λx + 1√

λ
e−
√
λ(x+1) − 1√

λ
e−
√
λx)

2
√
λ(e2

√
λ − 1)

+
− 2√

λ
+ 1√

λ
e−
√
λ(x−1) + 1√

λ
e
√
λx − 1√

λ
e
√
λ(x+1) + 1√

λ
e
√
λx

2
√
λ(e2

√
λ − 1)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

( 2√
λ
− 1√

λ
e
√
λ(x−1) − 1√

λ
e−
√
λx + 1√

λ
e−
√
λ(x+1) − 1√

λ
e−
√
λx)

2
√
λ(e2

√
λ − 1)

× (e2
√
λ − 1)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√
λ − 1) 2√

λ

2
√
λ(e2

√
λ − 1)

=
1

λ
sup
x∈[0,1]

|ψ(x)|

=
1

λ
‖ψ‖ .

Now we have ‖(λI − A)−1ψ‖ ≤ 1
λ
‖ψ‖, which implies that ‖(λI − A)−1‖ ≤ 1

λ
. So A

is Hille-Yoshida with M = 1 and ω = 0, which completes the proof of (a).
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For ‖ϕ‖ ≤ ρ and t ∈ [0, 1],∥∥∥∥r(t)(ϕ+ 1)(1− 1 + ϕ

K(t)
)

∥∥∥∥ ≤ r+(ρ+ 1)(1 +
1 + ρ

k−
).

So we have LF (1, ρ) = r+(ρ+ 1)(1 + 1+ρ
k−

), which implies (b).

To prove (c), it suffices to prove uniform boundedness and equicontinuity ofUA(t)u(x)

on {u ∈ D(A) : ‖u‖ ≤ M0} for any M0 > 0. Then (c) follows from Arzelà-Ascoli

Theorem. For ‖u‖ ≤M0,

|UA(t)u(x)| =

∣∣∣∣∣
∞∑
n=1

(2

∫ 1

0

u(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2t

∣∣∣∣∣
≤ 2

∞∑
n=1

(

∫ 1

0

|u(ξ)| |sin(nπξ)| dξ) |sin(nπx)| e−(nπ)2t

≤ 2 sup
ξ∈[0,1]

|u(ξ)|
∞∑
n=1

(

∫ 1

0

|sin(nπξ)| dξ)e−(nπ)2t

= 2 sup
ξ∈[0,1]

|u(ξ)|
∞∑
n=1

2

π
e−(nπ)

2t

≤ 4

π
M0

∞∑
n=1

1

n2π2t

≤ 8

π3t
M0.

Then

‖UA(t)u‖ = sup
x∈[0,1]

|UA(t)u(x)| ≤ 8

π3t
M0,

which implies that UA(t)u(x) is uniformly bounded on {u ∈ D(A) : ‖u‖ ≤ M0} for
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any M0 > 0. Now we prove equicontunuity.

|UA(t)u(x)− UA(t)u(y)|

=

∣∣∣∣∣
∞∑
n=1

(2

∫ 1

0

u(ξ) sin(nπξ)dξ)(sin(nπx)− sin(nπy))e−(nπ)
2t

∣∣∣∣∣
≤

∞∑
n=1

2(

∫ 1

0

|u(ξ)| |sin(nπξ)| dξ) |sin(nπx)− sin(nπy)| e−(nπ)2t

≤ 2 sup
ξ∈[0,1]

|u(ξ)|
∞∑
n=1

(

∫ 1

0

|sin(nπξ)| dξ) |sin(nπx)− sin(nπy)| e−(nπ)2t

≤ 4

π
M0

∞∑
n=1

|sin(nπx)− sin(nπy)| e−(nπ)2t

≤ 4

π
M0

∞∑
n=1

nπ |x− y| e−(nπ)2t

≤ 4

π
M0

∞∑
n=1

nπ |x− y| 2

n4π4t2

=
8

π4t2
M0

∞∑
n=1

1

n3
|x− y|

≤ 12

π4t2
M0 |x− y| .

So UA(t)u(x) is equicontinuous on {u ∈ D(A) : ‖u‖ ≤ M0} for any M0 > 0. This

completes the proof of (c).

(d) It follows directly from assumption (iii).

(e) Claim (a) together with Theorem 2.0.2 implies that the Cauchy problem (2.1) has

a unique mild solution for each x ∈ D(A) and f ∈ C([0,∞), X) with f(t) = f(t+T ),

which is the first part of (e).

Now we check that there is a bounded solution. From the variation of constant

formula

u(t) = UA(t)u0 + lim
λ→+∞

∫ t

0

UA(t− s)λ(λI − A)−1f(s)ds,
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we first consider the first part

UA(t)u0(x) =
∞∑
n=1

(2

∫ 1

0

u0(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2t.

Then we have

|UA(t)u0(x)| ≤ sup
x∈[0,1]

∞∑
n=1

∣∣∣∣(2∫ 1

0

u0(ξ) sin(nπξ)dξ)

∣∣∣∣ |sin(nπx)| e−(nπ)2t

≤ 2
∞∑
n=1

sup
ξ∈[0,1]

|u0(ξ)|
2

π
e−(nπ)

2t

= sup
ξ∈[0,1]

|u0(ξ)| (
∞∑
n=1

4

π
e−(nπ)

2t).

It follows that

lim
t→+∞

sup
x∈[0,1]

|UA(t)u0(x)| = 0.

So there exists an M > 0 such that |UA(t)u0(x)| ≤M for t ∈ [0,∞) and x ∈ [0, 1].

Now we consider the second part limλ→+∞
∫ t
0
UA(t − s)λ(λI − A)−1f(s)ds and

have

∣∣UA(t− s)λ(λI − A)−1f(s)
∣∣

=

∣∣∣∣∣
∞∑
n=1

(2

∫ 1

0

λ(λI − A)−1f(s)(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2(t−s)

∣∣∣∣∣
≤ 2

∞∑
n=1

∫ 1

0

∥∥λ(λI − A)−1
∥∥ |f(s)(ξ)| |sin(nπξ)| dξ(e−(nπ)2(t−s))

≤ 2
∞∑
n=1

sup
ξ∈[0,1],s∈[0,1]

|f(s)(ξ)| 2

π
e−(nπ)

2(t−s).
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It follows that ∣∣∣∣∫ t

0

UA(t− s)λ(λI − A)−1f(s)ds

∣∣∣∣
≤ 2 sup

ξ∈[0,1],τ∈[0,1]
|f(τ)(ξ)|

∫ t

0

∞∑
n=1

2

π
e−(nπ)

2(t−s)ds

= 2 sup
ξ∈[0,1],τ∈[0,1]

|f(τ)(ξ)|
∞∑
n=1

2

π
e−(nπ)

2t

∫ t

0

e(nπ)
2sds

= 2 sup
ξ∈[0,1],τ∈[0,1]

|f(τ)(ξ)|
∞∑
n=1

2

π

1

(nπ)2
(1− e−(nπ)2t)

< 2 sup
ξ∈[0,1],τ∈[0,1]

|f(τ)(ξ)|
∞∑
n=1

2

π

1

(nπ)2

≤ 4

π3
sup

ξ∈[0,1],τ∈[0,1]
|f(τ)(ξ)| × 2

=
8

π3
sup

ξ∈[0,1],τ∈[0,1]
|f(τ)(ξ)| .

Hence, there exists an M0 > 0 such that

lim
λ→+∞

∣∣∣∣∫ t

0

UA(t− s)λ(λI − A)−1f(s)ds

∣∣∣∣ ≤M0, ∀t ≥ 0.

Combining the above two parts, we have for each u0 ∈ D(A), the solution to the Cauchy

problem (2.1) is bounded for all t ≥ 0, which completes the proof of the second part of

(e). �

Proposition 4.3.1 indicates that if the intrinsic growth rate r(t) is continuous, T -

periodic and bounded above by a constant r+, the carrying capacity K(t) is continuous,

T -periodic and bounded below by a constant k−, and there is ρ > 0 such that all the

parameters satisfy the inequality ( T
‖I−UA(T )‖

+T )r+(ρ+1)(1+ 1+ρ
k−

) ≤ ρ, then the model

has a T -periodic mild solution.

Now we choose specific functions and parameters. Let T = 1, r(t) = 0.15 +

0.1 cos(2πt) and K(t) = 15 + sin(2πt), then F (t, ϕ) = (0.15 + 0.1 cos(2πt))(ϕ +
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1)(1− 1+ϕ
15+sin(2πt)

). N = 1
‖I−UA(1)‖

, where

UA(t)[f(x)] =
∞∑
n=1

(2

∫ 1

0

f(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2t,

sup
x∈[0,1]

|UA(1)[f(x)]| = sup
x∈[0,1]

∣∣∣∣∣
∞∑
n=1

(2

∫ 1

0

f(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)
2

∣∣∣∣∣
≤ sup

ξ∈[0,1]
|f(ξ)|

∞∑
n=1

2× 2

π
e−(nπ)

2

,

in which

e−(nπ)
2

=
1

e(nπ)2

=
1

1 + (nπ)2 + (nπ)4

2
+ ...

≤ 2

(nπ)4
.

Thus,

∞∑
n=1

2× 2

π
e−(nπ)

2 ≤ 4

π
× 2

(nπ)4
=

8

π5

∞∑
n=1

1

n4
<

4

3
× 8

π5
=

32

3π5
<

6

π3
.

So we derive

sup
x∈[0,1]

|UA(1)[f(x)]| < sup
ξ∈[0,1]

|f(ξ)| × 6

π3
,

i.e.,

‖UA(1)‖ < 6

π3
.

Then

N =
1

‖I − UA(1)‖
<

1

1− 6
π3

≈ 1.24.

For ‖ϕ‖ ≤ ρ and t ∈ [0, 1]∥∥∥∥r(t)(ϕ+ 1)(1− 1 + ϕ

K(t)
)

∥∥∥∥ ≤ 0.25(ρ+ 1)(1 +
1 + ρ

14
).
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So r+ = 0.25.

Then from ( T
‖I−UA(T )‖

+ T )r+(ρ+ 1)(1 + 1+ρ
k−

) ≤ ρ, we get 2.24× 0.25(ρ+ 1)(1 +

1+ρ
14

) ≤ ρ, i.e. (ρ + 1)(ρ + 15) ≤ 25ρ, which is also equivalent to ρ2 − 9ρ + 15 ≤ 0,

where we get 9−
√
21

2
≤ ρ ≤ 9+

√
21

2
, such ρ exists.

Now all the assumptions in Proposition 4.3.1 are satisfied, we conclude that (4.4)

has a mild 1-periodic solution, i.e., (4.3) has a mild 1-periodic solution. The graph in

Figure 4.7 shows the mild 1-periodic solution to the first equation and second boundary

condition in (4.3) with initial value u ≡ 1, which confirms our result.

Figure 4.7: A T -periodic solution of the diffusive logistic equation (4.3) starting at
u(0, a) = 1 and with boundary condition u(t, 0) = u(t, 1) = 1, where r(t) = 0.15 +
0.1 cos(2πt), T = 1 and K(t) = 15 + sin(2πt).

4.4 Retarded functional differential equations

The existence of periodic solutions in periodic functional differential equations has

been studied by many researchers (see, for example, Chow [1973] and Chow and Hale

[1974]), we refer to the classical references of Hale and Verduyn Lunel [1993] and



60

Burton [1983], and the references cited therein. In this subsection, we will apply the

results in section 3 to obtain existence of periodic solutions in periodic functional dif-

ferential equations. Namely, we will first consider a general class of retarded periodic

functional differential equations, then we will consider a delayed red-blood cell model

with periodic coefficients.

For r ≥ 0, let C = C([−r, 0],Rn) be the Banach space of continuous functions from

[−r, 0] to Rn endowed with the supremum norm

‖ϕ‖ = sup
θ∈[−r,0]

|ϕ(θ)|Rn

Consider the retarded functional differential equations (RFDE) of the form
dx(t)
dt

= Bx(t) + L̂(xt) + f(t, xt),∀t ≥ 0,

x0 = ϕ ∈ C,
(4.16)

where xt ∈ C is defined by xt(θ) = x(t + θ) for θ ∈ [−r, 0], B ∈ Mn(R) is an n × n

real matrix, L̂ : C → Rn is a bounded linear operator given by

L̂(ϕ) =

∫ 0

−r
dη(θ)ϕ(θ),

here η : [−r, 0] → Mn(R) is a map of bounded variation, i.e. V (η, [−r, 0]) =

sup
∑n

i=1 ‖η(θi+1)− η(θi)‖ < +∞ in which the supremum is taken over all subdi-

visions −r = θ1 < θ2 < . . . < θn < θn+1 = 0, and f : R × C → Rn is a continuous

map.

Now following Liu et al. [2008] we rewrite (4.16) as an abstract non-densely defined

Cauchy problem so that our theorems can be applied. First, we write it as a PDE. Define

u ∈ C([0,∞)× [−r, 0],Rn) by

u(t, θ) = x(t+ θ), ∀t ≥ 0,∀θ ∈ [−r, 0].
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If x ∈ C1([−r,+∞),Rn), then

∂u(t, θ)

∂t
= x′(t+ θ) =

∂u(t, θ)

∂θ
.

So we have
∂u(t, θ)

∂t
− ∂u(t, θ)

∂θ
= 0, ∀t ≥ 0,∀θ ∈ [−r, 0].

Moreover, for θ = 0, we have

∂u(t, 0)

∂θ
= x′(t) = Bx(t) + L̂(xt) + f(t, xt)

= Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)),∀t ≥ 0.

Thus, u satisfies the PDE
∂u(t,θ)
∂t
− ∂u(t,θ)

∂θ
= 0,

∂u(t,0)
∂θ

= Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)),∀t ≥ 0,

u(0, .) = ϕ ∈ C.

(4.17)

To rewrite (4.17) as an abstract non-densely defined Cauchy problem, letX = Rn×

C with the usual product norm∥∥∥∥∥∥∥
 x

ϕ


∥∥∥∥∥∥∥ = |x|Rn + ‖ϕ‖ .

Define the linear operator A : D(A) ⊂ X → X by

A

 0Rn

ϕ

 =

 −ϕ′(0) +Bϕ(0)

ϕ′

 , ∀

 0Rn

ϕ

 ∈ D(A), (4.18)

with D(A) = {0Rn} × C1([−r, 0],Rn). Then D(A) = {0Rn} × C 6= X . Define

L : D(A)→ X by

L

 0Rn

ϕ

 =

 L̂(ϕ)

0C
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and F : R×D(A)→ X by

F

t,
 0Rn

ϕ


 =

 f(t, ϕ)

0C

 .

Set

v(t) =

 0Rn

u(t)

 .

Then the PDE (4.17) can be written as the following non-densely defined Cauchy prob-

lem

dv(t)

dt
= Av(t) + L(v(t)) + F (t, v(t)), t ≥ 0; v(0) =

 0Rn

ϕ

 ∈ D(A). (4.19)

Now we give an existence theorem of periodic solutions for equation (4.16).

Assumption 4.4.1. (B1) f : R × C → Rn is Lipschitz on bounded sets; i.e., for each

C > 0 there exists Kf (C) ≥ 0 such that ‖f(t, u)− f(t, v)‖ ≤ Kf (C) ‖u− v‖

for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(B2) f : R× C → Rn is bounded on bounded sets; i.e., there exists Lf (T, ρ) ≥ 0 such

that ‖f(t, u)‖ ≤ Lf (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions and the notation ω0(B) := supλ∈σ(B) Re(λ), we have the

following result for equation (4.16).

Theorem 4.4.2. Let Assumption 4.4.1 hold with ω0(B) < 0 and f being T-periodic in

t. Suppose that there exists ρ > 0 such that (N + T )(Kf (ρ) + V (η, [−r, 0])) < 1 and

(N + T )(Lf (T, ρ) + V (η, [−r, 0])ρ) ≤ ρ, where N = T
1−eω0(B)T , then equation (4.16)

has a T-periodic solution.

Proof. Since (4.16) can be written as (4.19), denote G(t, v(t)) = L(v(t)) + F (t, v(t)),

it suffices to prove that
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(a) A satisfies Assumption 3.1.2 (H1) with ω < 0;

(b) G : [0,∞)× 0Rn × C → Rn × C satisfies Assumption 3.1.2( H1) (H2);

(c) There exists ρ > 0 such that (N + T )KG(ρ) < 1 and (N + T )LG(T, ρ) ≤ ρ,

where N = T
1−eωT .

Then it follows from Theorem 3.1.3 that equation (4.19) has a T -periodic mild solution,

which implies that equation (4.17) has a T -periodic mild solution with initial u(0, .) =

ϕ0 ∈ C. Meanwhile, by Theorem 2.1 in Hale and Verduyn Lunel [1993], equation

(4.16) has a unique solution x0(t) ∈ C1([0,∞),Rn) with initial x0(θ) = ϕ0(θ) for

θ ∈ [−r, 0]. Therefore, x0(t) is a T -periodic solution for (4.16).

From Lemma 7.1 in Magal and Ruan [2018], we know that A as defined in (4.18) is

a Hille-Yoshida operator with ω = ω0(B) < 0 and M = 1, which proves (a).

For ϕ1, ϕ2 ∈ C such that ‖ϕ1‖ ≤ C and ‖ϕ2‖ ≤ C, we have 0Rn

ϕ1

 ,

 0Rn

ϕ2

 ∈ 0Rn × C = D(A)

and ∥∥∥∥∥∥∥
 0Rn

ϕ1


∥∥∥∥∥∥∥ = ‖ϕ1‖ ≤ C,

∥∥∥∥∥∥∥
 0Rn

ϕ2


∥∥∥∥∥∥∥ = ‖ϕ2‖ ≤ C.



64

Then ∥∥∥∥∥∥∥G(t,

 0Rn

ϕ1

)−G(t,

 0Rn

ϕ2

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥L(

 0Rn

ϕ1

)− L(

 0Rn

ϕ2

) + F (t,

 0Rn

ϕ1

)− F (t,

 0Rn

ϕ2

)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥L(

 0Rn

ϕ1

)− L(

 0Rn

ϕ2

)

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥F (t,

 0Rn

ϕ1

)− F (t,

 0Rn

ϕ2

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 ∫ 0

−r dη(θ)(ϕ1(θ)− ϕ2(θ))

0C


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 f(t, ϕ1)− f(t, ϕ2)

0C


∥∥∥∥∥∥∥

=

∣∣∣∣∫ 0

−r
dη(θ)(ϕ1(θ)− ϕ2(θ))

∣∣∣∣
Rn

+ |f(t, ϕ1)− f(t, ϕ2)|Rn

≤ Kf (C) ‖ϕ1 − ϕ2‖+ V (η, [−r, 0]) ‖ϕ1 − ϕ2‖

= (Kf (C) + V (η, [−r, 0])) ‖ϕ1 − ϕ2‖

= (Kf (C) + V (η, [−r, 0]))

∥∥∥∥∥∥∥
 0Rn

ϕ1

−
 0Rn

ϕ2


∥∥∥∥∥∥∥ .

So there exists KG(C) = Kf (C) + V (η, [−r, 0]) such that∥∥∥∥∥∥∥G(t,

 0Rn

ϕ1

)−G(t,

 0Rn

ϕ2

)

∥∥∥∥∥∥∥ ≤ KG(C)

∥∥∥∥∥∥∥
 0Rn

ϕ1

−
 0Rn

ϕ2


∥∥∥∥∥∥∥ .
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Furthermore, for t ≤ T and

∥∥∥∥∥∥∥
 0Rn

ϕ


∥∥∥∥∥∥∥ ≤ ρ, we have

∥∥∥∥∥∥∥G(t,

 0R+
n

ϕ

)

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥L
 0Rn

ϕ

+ F (t,

 0Rn

ϕ

)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥L
 0Rn

ϕ


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥F (t,

 0Rn

ϕ

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 ∫ 0

−r dη(θ)ϕ(θ)

0C


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 f(t, ϕ)

0C


∥∥∥∥∥∥∥

=

∣∣∣∣∫ 0

−r
dη(θ)ϕ(θ)

∣∣∣∣
Rn

+ |f(t, ϕ)|Rn

≤ V (η, [−r, 0])ρ+ Lf (T, ρ).

So there exists LG(T, ρ) = V (η, [−r, 0])ρ + Lf (T, ρ) such that

∥∥∥∥∥∥∥G(t,

 0R+
n

ϕ

)

∥∥∥∥∥∥∥ ≤
LG(T, ρ), which completes the proof of (b).

With KG(C) and LG(T, ρ) given as above, (c) follows directly from the assump-

tions. �

(ii) A delayed periodic red-blood cell model. Now as an example, we consider

Consider a delayed red-blood cell model with periodic coefficients which is a modifi-

cation of the model of Wazewska-Czyzewska and Lasota [1976] (see also Arino and

Kimmel [1986]):

N ′(t) = −µN(t) + p(t)e−γ(t)N(t−r) (4.20)

where N(t) denotes the number of red-blood cells at time t, µ ∈ (0.∞) is the proba-

bility of death of a red-blood cell, p(t) and γ(t) are positive and T -periodic continuous
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functions related to the production of red-blood cells per unit time and r is the time

required to produce a red-blood cell.

Proposition 4.4.1. Assume that

(i) p ∈ C([0,∞),R+), p(t+ T ) = p(t) for t ≥ 0 and p(t) ≤ p+ for t ≥ 0;

(ii) γ ∈ C([0,∞),R+), γ(t+ T ) = γ(t) for t ≥ 0 and γ(t) ≤ γ+ for t ≥ 0;

(iii) There exists ρ > 0 such that ( T
1−e−µT +T )p+γ+e

γ+ρ < 1 and ( T
1−e−µT +T )p+e

γ+ρ ≤

ρ.

Then equation (4.20) has a T -periodic solution.

Proof. Equation (4.20) can be written as equation (4.16), where B = −µ, L̂ = 0 and

f(t, ϕ) = p(t)e−γ(t)ϕ(−r). Then it suffices to check assumptions of Theorem 4.4.2. First

note that ω0(B) = −µ < 0. Since L̂ = 0, V (η, [−r, 0]) = 0. For ϕ1, ϕ2 ∈ C([−r, 0],R)

and ‖ϕ1‖ ≤ ρ, ‖ϕ2‖ ≤ ρ, by the mean value theorem we have

|f(t, ϕ1)− f(t, ϕ2)| =
∣∣p(t)(e−γ(t)ϕ1(−r) − e−γ(t)ϕ2(−r))

∣∣
≤ p(t)γ(t)eγ(t)ρ ‖ϕ1 − ϕ2‖

≤ p+γ+e
γ+ρ ‖ϕ1 − ϕ2‖ .

So we can pick Kf (ρ) = p+γ+e
γ+ρ. Moreover, for ϕ ∈ C([−r, 0],R), ‖ϕ‖ ≤ ρ and

0 ≤ t ≤ T ,

|f(t, ϕ)| =
∣∣p(t)e−γ(t)ϕ(−r)∣∣ ≤ p+e

γ+ρ.

So we get Lf (T, ρ) = p+e
γ+ρ. Then Assumption (iii) implies (N + T )(Kf (ρ) +

V (η, [−r, 0])) < 1 and (N + T )(Lf (T, ρ) + V (η, [−r, 0])) ≤ ρ in the assumption

of Theorem 4.4.2. The conclusion follows from Theorem 4.4.2. �
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Proposition 4.4.1 indicates that if the production related function p(t) is continuous,

T -periodic and bounded above by a constant p+, the production related function γ(t)

is continuous, T -periodic and bounded above by a constant γ+, and there exists ρ >

0 such that the parameters satisfy the inequalities ( T
1−e−µT + T )p+γ+e

γ+ρ < 1 and

( T
1−e−µT + T )p+e

γ+ρ ≤ ρ, then the model has a T -periodic solution.

Now we choose parameters for equation (4.20) such that assumptions in Proposition

4.4.1 are satisfied and perform numerical simulations to show the existence of a T -

periodic solution. Let T = 1, r = 1, µ = 10, p(t) = 0.3 + 0.2 sin(2πt) and γ(t) =

0.15+0.05 cos(2πt). It can be easily checked we have all the assumptions in Proposition

4.4.1, then there exists a 1-periodic solution, which can be seen from Figure 4.8.

Figure 4.8: A T -periodic solution of the delayed periodic red-blood cell model (4.20)
with r = 1 starting at ϕ(θ) = 0.2, θ ∈ [−1, 0], where p(t) = 0.3 + 0.2 sin(2πt), T = 1
and γ(t) = 0.15 + 0.05 cos(2πt).

Now we change the parameters so that assumptions in Proposition 4.4.1 are not

satisfied. Let T = 1, r = 1, µ = 10, p(t) = 3 + 2 sin(2πt) and γ(t) = 10 + 5 cos(2πt).

Figure 4.9 shows a solution in this scenario.
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Figure 4.9: An irregular solution of the delayed periodic red-blood cell model (4.20)
with r = 1 starting at ϕ(θ) = 0.2, θ ∈ [−1, 0], where p(t) = 3 + 2 sin(2πt), T = 1 and
γ(t) = 10 + 5 cos(2πt).

4.5 Partial functional differential equations

Following the settings in Wu [1996] and Ducrot et al. [2013], we can also use the results

in chapter 3 to study the existence of periodic solutions in abstract evolution equations

with delay (Liu [1998], Ezzinbi and Liu [2002], Benkhalt and Ezzinbi [2004], Kpoumiè

et al. [2018]) and partial functional differential equations with periodicity (Li [2011],

Li et al. [1999]).

(i) Periodic partial functional differential equations.

Let B : D(B) ⊂ Y → Y be a linear operator on a Banach space (Y, ‖‖Y ). Assume

that B is a Hille-Yosida operator; that is , there exist ωB ∈ R and MB > 0 such that

(ωB,+∞) ⊂ ρ(B) and

∥∥(λI −B)−n
∥∥ ≤ MB

(λ− ωB)n
, ∀λ > ωB, n ≥ 1.
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Set Y0 := D(B). Consider the part of B in Y0, denoted B0, which is defined by

B0y = By, ∀y ∈ D(B0)

with

D(B0) := {y ∈ D(B) : By ∈ Y0}.

Note that this construction is introduced for the existence theory.

For r ≥ 0, set C := C([−r, 0];Y ) endowed with the supremum norm

‖ϕ‖∞ = sup
θ∈[−r,0]

‖ϕ(θ)‖Y .

Consider the partial functional differential equations (PFDE):
dy(t)
dt

= By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,

y0 = ϕ ∈ CB.
(4.21)

where CB := {ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈ D(B)}, yt ∈ CB is defined by yt(θ) =

y(t + θ), θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and f : R× CB → Y

is a continuous map.

Now we rewrite the PFDE (4.21) as an abstract non-densely defined Cauchy prob-

lem such that our theorems can be applied. First, we regard the PFDE (4.21) as a PDE.

Define u ∈ C([0,+∞)× [−r, 0], Y ) by

u(t, θ) = y(t+ θ), ∀t ≥ 0, ∀θ ∈ [−r, 0].

If y ∈ C1([−r,+∞), Y ), then

∂u(t, θ)

∂t
= y′(t+ θ) =

∂u(t, θ)

∂θ
.

Moreover, for θ = 0, we obtain

∂u(t, 0)

∂θ
= y′(t) = By(t)+L̂(yt)+f(t, yt) = Bu(t, 0)+L̂(u(t, .))+f(t, u(t, .)), ∀t ≥ 0.
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Therefore, we deduce that u satisfies the PDE
∂u(t,θ)
∂t
− ∂u(t,θ)

∂θ
= 0,

∂u(t,0)
∂θ

= Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)), ∀t ≥ 0,

u(0, .) = ϕ ∈ CB.

(4.22)

In order to write the PDE (4.22) as an abstract non-densely defined Cauchy problem,

we extend the state space to take into account the boundary conditions. Let X = Y ×C

with the usual product norm ∥∥∥∥∥∥∥
 y

ϕ


∥∥∥∥∥∥∥ = ‖y‖Y + ‖ϕ‖∞ .

Define the linear operator A : D(A) ⊂ X → X by

A

 0Y

ϕ

 =

 −ϕ′(0) +Bϕ(0)

ϕ′

 , ∀

 0Y

ϕ

 ∈ D(A) (4.23)

with

D(A) = {0Y } × {ϕ ∈ C1([−r, 0], Y ), ϕ(0) ∈ D(B)}.

Note that A is non-densely defined because

X0 := D(A) = 0Y × CB 6= X.

Now define L : X0 → X by

L

 0Y

ϕ

 :=

 L̂(ϕ)

0C


and F : R×X0 → X by

F (t,

 0Y

ϕ

) :=

 f(t, ϕ)

0C

 .
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Let

v(t) :=

 0Y

u(t)

 .

Then we can rewrite the PDE (4.22) as the following non-densely defined Cauchy prob-

lem

dv(t)

dt
= Av(t) + L(v(t)) + F (t, v(t)), t ≥ 0; v(0) =

 0Y

ϕ

 ∈ X0. (4.24)

To state an existence theorem of periodic solutions for equation (4.21), we make the

following assumptions.

Assumption 4.5.1. (C1) f : R× CB → Y is Lipschitz on bounded sets; i.e., for each

C > 0 there exists Kf (C) ≥ 0 such that ‖f(t, u)− f(t, v)‖ ≤ Kf (C) ‖u− v‖

for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(C2) f : R×CB → Y is bounded on bounded sets; i.e., there exists Lf (T, ρ) ≥ 0 such

that ‖f(t, u)‖ ≤ Lf (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions, we have the following result for equation (4.21).

Theorem 4.5.2. Let Assumption 4.5.1 hold with ωB < 0 and f being T-periodic in t.

Suppose that there exists ρ > 0 such that (N + T )(Kf (ρ) +
∥∥∥L̂∥∥∥) < 1 and (N +

T )(Lf (T, ρ) +
∥∥∥L̂∥∥∥ ρ) ≤ ρ, where N = T

1−eωBT , then equation (4.21) has a T-periodic

solution.

Proof. Since (4.21) can be written as (4.24), denote G(t, v(t)) = L(v(t)) + F (t, v(t)),

it suffices to prove that

(a) A satisfies Assumption 3.1.2 (H1) with ω < 0;

(b) G : [0,∞)× {0Y } × CB → Y × C satisfies Assumption 3.1.2 (H1) (H2);
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(c) There exists ρ > 0 such that (N + T )KG(ρ) < 1 and (N + T )LG(T, ρ) ≤ ρ,

where N = T
1−eωT .

It follows from Theorem 3.1.3 that equation (4.24) has a T -periodic mild solution,

which implies that equation (4.21) has a T -periodic mild solution with initial value

u(0, .) = ϕ ∈ CB. Meanwhile, by Theorem 2.1 in Hale and Verduyn Lunel [1993],

equation (4.21) has a unique solution y0(t) ∈ C1([−r,∞), Y ) with initial condition

y0(θ) = ϕ(θ) for θ ∈ [−r, 0]. Therefore, y0(t) is a T -periodic solution for (4.21).

From Lemma 3.6 in Ducrot et al. [2013], we know that A as defined in (4.23) is a

Hille-Yoshida operator with ω = ωB < 0 and M = 1, which proves (a).

For ϕ1, ϕ2 ∈ CB such that ‖ϕ1‖ ≤ C and ‖ϕ2‖ ≤ C, we have 0Y

ϕ1

 ,

 0Y

ϕ2

 ∈ 0Y × CB = D(A)

and ∥∥∥∥∥∥∥
 0Y

ϕ1


∥∥∥∥∥∥∥ = ‖ϕ1‖ ≤ C,

∥∥∥∥∥∥∥
 0Y

ϕ2


∥∥∥∥∥∥∥ = ‖ϕ2‖ ≤ C.
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Then ∥∥∥∥∥∥∥G(t,

 0Y

ϕ1

)−G(t,

 0Y

ϕ2

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥L(

 0Y

ϕ1

)− L(

 0Y

ϕ2

) + F (t,

 0Y

ϕ1

)− F (t,

 0Y

ϕ2

)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥L(

 0Y

ϕ1

)− L(

 0Y

ϕ2

)

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥F (t,

 0Y

ϕ1

)− F (t,

 0Y

ϕ2

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 L̂(ϕ1 − ϕ2)

0C


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 f(t, ϕ1)− f(t, ϕ2)

0C


∥∥∥∥∥∥∥

=
∥∥∥L̂(ϕ1 − ϕ2)

∥∥∥
Y

+ ‖f(t, ϕ1)− f(t, ϕ2)‖Y

≤ Kf (C) ‖ϕ1 − ϕ2‖+
∥∥∥L̂∥∥∥ ‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥) ‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥)

∥∥∥∥∥∥∥
 0Y

ϕ1

−
 0Y

ϕ2


∥∥∥∥∥∥∥ .

So there exists KG(C) = Kf (C) +
∥∥∥L̂∥∥∥ such that∥∥∥∥∥∥∥G(t,

 0Y

ϕ1

)−G(t,

 0Y

ϕ2

)

∥∥∥∥∥∥∥ ≤ KG(C)

∥∥∥∥∥∥∥
 0Y

ϕ1

−
 0Y

ϕ2


∥∥∥∥∥∥∥ .
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Furthermore, for t ≤ T and

∥∥∥∥∥∥∥
 0Y

ϕ


∥∥∥∥∥∥∥ ≤ ρ, we have

∥∥∥∥∥∥∥G(t,

 0Y

ϕ

)

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥L
 0Y

ϕ

+ F (t,

 0Y

ϕ

)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥L
 0Y

ϕ


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥F (t,

 0Y

ϕ

)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 L̂(ϕ)

0C


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 f(t, ϕ)

0C


∥∥∥∥∥∥∥

=
∥∥∥L̂(ϕ)

∥∥∥
Y

+ ‖f(t, ϕ)‖Y

≤
∥∥∥L̂∥∥∥ ρ+ Lf (T, ρ).

So there exists LG(T, ρ) =
∥∥∥L̂∥∥∥ ρ + Lf (T, ρ) such that

∥∥∥∥∥∥∥G(t,

 0Y

ϕ

)

∥∥∥∥∥∥∥ ≤ LG(T, ρ),

which completes the proof of (b).

With KG(C) and LG(T, ρ) given as above, (c) follows directly from the assump-

tions. �

(ii) A reaction-diffusion equation with time delay

Let us consider the following periodic reaction-diffusion equation with time delay:
∂tu(x, t) = ∂2xu(x, t)− au(x, t)− b(t)u(x, t− r), 0 ≤ x ≤ 1, t ≥ 0

u(0, t) = u(1, t) = 0.5, t ≥ 0

u(x, t) = φ(t)(x), 0 ≤ x ≤ 1, −r ≤ t ≤ 0,

(4.25)

where a ≥ 0, b ∈ C([0,∞),R+) is T -periodic. We will study the existence of T -

periodic solution of problem (4.25).
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Let v(x, t) = u(x, t)− 0.5, then we have the following equation:
∂tv(x, t) = ∂2xv(x, t)− av(x, t)− b(t)v(x, t− r)− 0.5a− 0.5b(t), 0 ≤ x ≤ 1, t ≥ 0

v(0, t) = v(1, t) = 0, t ≥ 0

v(x, t) = φ(t)(x)− 0.5, 0 ≤ x ≤ 1, −r ≤ t ≤ 0.

(4.26)

We know that the existence of T -periodic solutions of equation (4.26) is equivalent to

the existence of T -periodic solutions of equation (4.25).

Let X = C(0, 1) and B : X → X be defined by

Bφ = φ′′ − aφ

with

D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}.

Let CB := {φ ∈ C([−r, 0], X) : φ(0) ∈ D(B)} and define f : [0,∞)× CB → X by

f(t, φ) = −b(t)φ(−r)− 0.5a− 0.5b(t).

Then equation (4.26) can be written as
dy(t)
dt

= By(t) + f(t, yt), ∀t = 0

y0 = ϕ ∈ CB
(4.27)

Proposition 4.5.1. Assume that

(i) a > 0, 0 ≤ b(t) ≤ b+ and b(t+ T ) = b(t) for t ≥ 0;

(ii) ( T
1−e−aT + T )b+ < 1;

(iii) There exists ρ > 0 such that ( T
1−e−aT + T )(0.5a+ 0.5b+ + b+ρ) ≤ ρ.

Then equation (4.26) thus (4.25) has a T -periodic solution.
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Proof. Since equation (4.26) can be written as (4.27), it suffices to check assumptions

of Theorem 4.5.2.

Let ψ ∈ X and let λ > −a. Then

(λI −B)ϕ = ψ ⇔ (λ+ a)ϕ− ϕ′′ = ψ.

Following exactly the same way as in the proof of part (a) of Proposition 4.3.1, we

obtain that ∥∥(λI −B)−1
∥∥ ≤ 1

λ+ a
, ∀λ > −a,

which implies that ωB = −a < 0. For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ C, ‖ϕ2‖ ≤ C, we

have

‖f(t, ϕ1)− f(t, ϕ2)‖ = ‖−b(t)ϕ1(−r)− 0.5a− 0.5b(t) + b(t)ϕ2(−r) + 0.5a+ 0.5b(t)‖

= ‖b(t)(ϕ2(−r)− ϕ2(−r))‖

≤ ‖b(t)‖ ‖ϕ2(−r)− ϕ2(−r))‖

≤ b+ ‖ϕ1 − ϕ2‖ .

So Kf (ρ) = b+ for ∀ρ > 0. Moreover, for ϕ ∈ CB with ‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ = ‖−b(t)ϕ(−r)− 0.5a− 0.5b(t)‖

≤ b+ ‖ϕ‖+ 0.5a+ 0.5b+

≤ b+ρ+ 0.5a+ 0.5b+.

So we have Lf (T, ρ) = b+ρ+ 0.5a+ 0.5b+. Therefore, assumptions (ii) and (iii) imply

(N + T )(Kf (ρ) +
∥∥∥L̂∥∥∥) < 1 and (N + T )(Lf (T, ρ) +

∥∥∥L̂∥∥∥ ρ) ≤ ρ in Theorem 4.5.2,

respectively. The conclusion follows from Theorem 4.5.2. �

Now we choose parameters for equation (4.26) such that assumptions in Proposition

4.5.1 are satisfied. We will perform numerical simulation to demontrate the existence

of T -periodic solutions.
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Let T = 1, a = 1 and b(t) = 0.15 + 0.15 sin(2πt). We can verify that Proposition

4.5.1 holds, so there exists a T -periodic solution, which can be seen from Figure 4.10.

Figure 4.10: A T -periodic solution of the delayed reaction-diffusion equation (4.26)
with initial condition ϕ(x, t) = 0.5 for t ∈ [−1, 0], x ∈ [0, 1], where b(t) = 0.15 +
0.15 sin(2πt), T = 1 and a = 1.

Now we change the parameters so that the conditions in Proposition 4.5.1 do hold.

Let T = 1, a = 1 and b(t) = 1.5 + 10 sin(2πt). Figure 4.11 gives a solution in this

scenario.

(iii) The diffusive Nicholson’s blowflies equation. We consider the diffusive Nichol-

son’s blowflies equation (So and Yang [1998], Yang and So [1998], So et al. [2000])
∂u(t,x)
∂t

= ∂2u(t,x)
∂x2

− τu(t, x) + β(t)τu(t− 1, x)eu(t−1,x), t ≥ 0, x ∈ [0, 1]

u(t, 0) = u(t, 1) = 0.1, t ≥ 0,
(4.28)

where β(t) is T -periodic. To study existence of T -periodic solution of equation (4.28),
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Figure 4.11: A solution of the delayed reaction-diffusion equation (4.26) with initial
condition ϕ(x, t) = 0.5 for t ∈ [−1, 0], x ∈ [0, 1], where b(t) = 1.5 + 10 sin(2πt),
T = 1 and a = 1.

let v(t, x) = u(t, x)− 0.1. Then we have
∂v(t,x)
∂t

= ∂2v(t,x)
∂x2

− τv(t, x) + β(t)τv(t− 1, x)e−[v(t−1,x)+0.1]

+0.1β(t)τe−[v(t−1,x)+0.1] − 0.1τ

v(t, 0) = v(t, 1) = 0,

(4.29)

We know that existence of T -periodic solutions of equation (4.29) is equivalent to the

existence of T -periodic solutions of equation (4.28).

Let X = C[0, 1] and let B : X → X be defined by

Bφ = φ′′ − τφ

with D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}. Let CB := {φ ∈ C([−1, 0], X) :

φ(0) ∈ D(B)} and define f : [0,∞)× CB → X by

f(t, φ) = β(t)τφ(−1)e−[φ(−1)+0.1] + 0.1β(t)τe−[φ(−1)+1] − 0.1τ.
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Then equation (4.29) can be written as

dy(t)

dt
= By(t) + f(t, yt), ∀t = 0 (4.30)

Proposition 4.5.2. Assume that

(i) τ > 0, 0 ≤ β(t) ≤ β+ and β(t) = β(t+ T ) for ∀t ≥ 0;

(ii) There exists ρ > 0 such that ( T
1−e−τT +T )β+τe

−0.1(ρ+1.1)eρ < 1 and ( T
1−e−τT +

T )τ(0.1 + β+ρe
ρ−0.1 + 0.1β+e

ρ−0.1) ≤ ρ.

Then equation (4.29) thus (4.28) has a T -periodic solution.

Proof. Since equation (4.29) can be written as (4.30), it suffices to check assumptions

of Theorem 4.5.2. Let ψ ∈ X and let λ > −τ . Then

(λI −B)ϕ = ψ ⇔ (λ+ τ)ϕ− ϕ′′ = ψ.

By following exactly the same way as in the proof of part (a) of Proposition 4.3.1, we

obtain that ∥∥(λI −B)−1
∥∥ ≤ 1

λ+ τ
, ∀λ > −τ,

which implies that ωB = −τ < 0. For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ ρ, ‖ϕ2‖ ≤ ρ, we have

f(t, ϕ1)− f(t, ϕ2) = β(t)τϕ1(−1)e−[ϕ1(−1)+0.1] + 0.1β(t)τe−[ϕ1(−1)+0.1] − 0.1τ

− β(t)τϕ2(−1)e−[ϕ2(−1)+0.1] − 0.1β(t)τe−[ϕ2(−1)+0.1] + 0.1τ
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and

‖f(t, ϕ1)− f(t, ϕ2)‖ ≤
∥∥β(t)τϕ1(−1)e−[ϕ1(−1)+0.1] − β(t)τϕ2(−1)e−[ϕ2(−1)+0.1]

∥∥
+
∥∥0.1β(t)τe−[ϕ1(−1)+0.1] − 0.1β(t)τe−[ϕ2(−1)+0.1]

∥∥
≤
∥∥β(t)τe−0.1(ϕ1(−1)e−ϕ1(−1) − ϕ1(−1)e−ϕ2(−1))

∥∥
+
∥∥β(t)τe−0.1(ϕ1(−1)e−ϕ2(−1) − ϕ2(−1)e−ϕ2(−1))

∥∥
+
∥∥0.1β(t)τe−0.1(e−ϕ1(−1) − e−ϕ2(−1))

∥∥
≤ β+τe

−0.1(ρ+ 1)eρ ‖ϕ1 − ϕ2‖+ 0.1β+τe
−0.1eρ ‖ϕ1 − ϕ2‖

= β+τe
−0.1(ρ+ 1.1)eρ ‖ϕ1 − ϕ2‖ .

So we have Kf (ρ) = β+τe
−0.1(ρ + 1.1)eρ for ρ > 0. Moreover, for ϕ ∈ CB with

‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ =
∥∥β(t)τϕ(−1)e−[ϕ(−1)+0.1] + 0.1β(t)τe−[ϕ(−1)+0.1] − 0.1τ

∥∥
≤ β+τe

−0.1 ∥∥ϕ(−1)e−ϕ(−1)
∥∥+ 0.1β+τe

−0.1 ∥∥e−ϕ(−1)∥∥+ 0.1τ

≤ τ(0.1 + β+ρe
ρ−0.1 + 0.1β+e

ρ−0.1).

Hence, we have Lf (T, ρ) = τ(0.1 + β+ρe
ρ−0.1 + 0.1β+e

ρ−0.1). Therefore, assumption

(ii) implies (N + T )(Kf (ρ) +
∥∥∥L̂∥∥∥) < 1 and (N + T )(Lf (T, ρ) +

∥∥∥L̂∥∥∥ ρ) ≤ ρ in

Theorem 4.5.2. The conclusion follows from Theorem 4.5.2. �

Proposition 4.5.2 indicates that if the production related function β(t) is T -periodic

and bounded above by a constant β+, and there exists ρ > 0 such that β+ <

1
τe−0.1(ρ+1.1)eρ( T

1−e−τT
+T )

and ( T
1−e−τT + T )τ(0.1 + β+ρe

ρ−0.1 + 0.1β+e
ρ−0.1) ≤ ρ, then

the model has a T -periodic solution.

Now we choose parameters for equation (4.28) such that assumptions in Proposition

4.5.2 are satisfied. Let T = 1, τ = 1 and β(t) = 0.025 + 0.015 cos 2πt in equation
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(4.28), then it’s easy to check that assumptions of Proposition 4.5.2 are satisfied. So

there exists a T -periodic solution, which can be seen from Figure 4.12.

Figure 4.12: A T -periodic solution of the diffusive Nicholson’s blowflies equation
(4.28) with initial condition ϕ(x, t) = 0.1 for t ∈ [−1, 0], x ∈ [0, 1], where
β(t) = 0.025 + 0.015 cos(2πt), T = 1 and τ = 1.



Chapter 5

Conclusions and Future Study

In conclusion, I gave a few theorems on the existence of periodic solutions of abstract

semilinear equations and abstract semilinear evolution equations and applied them to

age-structured models with periodic harvesting, diffusive logistic equations with peri-

odic coefficients, periodic functional differential equations including delayed red-blood

cell models, and periodic partial functional differential equations including diffusive

Nicholson’s blowflies equation.

Further studies could go towards two directions:

One is further theoretical study. So far only the existence of periodic solutions was

obtained for these equations, the next step is to study stability of the existing periodic

solutions.

The other one is application. Besides the biological and medical models I mentioned

in the application chapter, the theorems can also be applied to other models such as

periodic wave equations and periodic epidemic models (with delay, age-structure or

diffusion).
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