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Avian influenza strains have been proven to be highly virulent in human popula-

tions, killing approximately 70 percent of infected individuals. Although the virus is

able to spread across species from birds-to-humans, some strains, such as H5N1, have

not been observed to spread from human-to-human. Pigs are capable of infection

by both avian and human strains and seem to be likely candidates as intermediate

hosts for co-infection of the inter-species strains. A co-infected pig potentially acts

as a “mixing vessel” and could produce a new strain as a result of a recombination

process. Humans could be immunologically naive to these new strains, hence making

them super-strains.

We propose an interacting host system (IHS) for such a process that considers

three host species that interact by sharing strains; that is, a primary and secondary

host species can both infect an intermediate host. When an intermediate host is

co-infected with the strains from both the other hosts, co-infected individuals may

become carriers of a super-strain back into the primary host population. The model

is formulated as a classical susceptible-infectious-susceptible (SIS) model, where the

primary and intermediate host species have a super-infection and co-infection with

recombination structure, respectively. The intermediate host is coupled to the other

host species at compartments of given infectious subclasses of the primary and sec-

ondary hosts.



We use the model to give a new perspective for the trade-off hypothesis for dis-

ease virulence, by analyzing the behavior of a highly virulent super-strain. We give

permanence conditions for a number of the subsystems of the IHS in terms of basic

reproductive numbers R0 of independent strains. We also simulate several relevant

scenarios showing complicated dynamics and connections with epidemic forecasting.
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Chapter 1

Introduction

Influenza, also know as “the flu”, is an RNA virus that is commonly found in birds

and mammals. The virus typically is spread from infected mammals through the air

by sneezing and coughing and from infected birds through their droppings. Seasonal

influenza epidemics spread across the world annually and, in some cases, result in

high mortality in humans. These seasonal epidemics are mainly attributed to the

genetically unstable structure of the virus that allows strains to change from year-to-

year. In rare cases, influenza strains have emerged for which most humans have little

to no immunity, and the resulting outbreaks have been catastrophic.

The virus is classified into three main types: A, B, and C. Type A virus is the

most common of the three types and is shared between a variety of host species.

Types B and C are commonly found in humans, but their outbreaks are typically

limited in size [5]. Earn et al. [14] describe type A influenza as “the most signifi-

cant epidemiologically and the most interesting from an ecological and evolutionary

standpoint, because it is found in a wide variety of bird and mammal species and

can undergo major shifts in immunological structure.” Throughout this project, the

1
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term “influenza” will refer to influenza A. Influenza A viruses are classified further by

antigenic characteristics of two surface proteins called hemagglutinin (HA) and neu-

raminidase (NA); see [5, 14]. Sixteen HA and nine NA subtypes have been isolated

from birds, lower mammals, and humans [6], resulting in 144 possible combinations of

subtypes. For example, the subtype H5N1, an avian influenza strain that can cause

serious illness in a number of different species, is composed of the fifth type of HA

and first type of NA. All the subtypes of HA and NA are found in aquatic birds, in

particular migrating water fowl [47].

A pandemic is an epidemic that spans a vast geographic region. There have been

several influenza pandemics over the past centuries. These outbreaks occurred when

a new highly transmissible strain was introduced in the human population. Historical

pandemics of the twentieth century include the Spanish Flu 1918-1919 (H1N1), Asian

Flu 1957-1958 (H2N2), and Hong Kong Flu 1968 (H3N2) [10]. Of these outbreaks,

the Spanish Flu was one of the most catastrophic events to the human population in

the 20th century, killing between 20 to 40 million people throughout the world [35].

One theory suggests the deadly virus came from birds through swine and was then

transmitted to humans.

More recently, highly virulent strains of avian influenza have emerged in Southeast

Asia. These avian strains are not transmissible from human-to-human; however, they

have proven to be a major threat to human populations, killing approximately 70

percent of infected individuals [48]. It is hypothesized that the interaction of avian

and human strains might recombine to form a super-strain that is highly transmissible

and highly virulent.
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1.1 Background

Influenza is a zoonotic disease, meaning it is shared amongst a variety of different

host species. Wild ducks and wading birds are considered a reservoir for influenza

becasue they can carry all subtypes and the virus is avirulent to its avian hosts. In

addition, the avian virus is found in other birds such as domestic ducks and poultry.

Influenza viruses of avian origin have also been found in a variety of mammals, such

as seals, whales, pigs, and humans; see [46]. Many of the different strains are specific

to individual species; however, the strains shared across species seem to pose the

greatest potential threat. That is, the newly infected host may be immunologically

naive to the strain that evolved in another host species (e.g., the case of humans and

swine during the 1918 epidemic [43]).

In more recent decades, the number of avian influenza cases transmitted to humans

has significantly grown; see [10]. Although these strains cannot pass from human-

to-human, their emergence has attracted global attention because the strains are

highly virulent in the human population [42]. The virus, in some cases, is thought

to be passed to humans due to interaction with an intermediate host species, such

as domestic poultry and/or swine. When an intermediate species is co-infected with

avian and human influenza strains, there is a possibility of genetic recombination in

the pathogens that could lead to potential super-strains of avian flu that can spread

from human-to-human.

The Role of Virulence

From an ecological perspective, virulence is the host’s loss in fitness from parasitic

infection. In the context of this research, virulence is defined as the potential for a
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pathogen to produce morbidity or mortality in a host population. Virulence plays an

important role in the evolution of a pathogen. A highly virulent strain can drastically

decrease host populations, hence, depleting the numbers necessary for the strain’s

long-term survival. With a limited host population, the number of infected individuals

would diminish and the strain could not sustain itself beyond an invasive transient

period. Natural selection suggests that a less virulent strain is more likely to co-exist

with the host population because mobile, living hosts will transmit the strains most

effectively [33]. In other words, the less virulent strain does not diminish the host

population, thus creating a habitat more suitable for the strain’s survival.

A system of differential equations is a natural mathematical approach for epidemi-

ology and allows disease virulence to be treated as a parameter in the equations. The

resulting system can be analyzed by the behavior near steady states, which is charac-

terized by threshold constants of the system’s parameters. These constants typically

determine when the long term dynamics of a pathogen will become endemic in or

be eradicated from the host population. Virulence is a usual parameter in threshold

constants that can contribute to pathogen evolution.

“Conventional wisdom” about pathogen virulence suggests that a fully evolved

parasite would not damage its host. We propose a new perspective to the theory that

suggests a highly virulence, with respect to mortality, would lower a strain’s chances

of long-term survival. In other words, we challenge the “conventional wisdom” that a

highly virulent strain is not able to sustain an epidemic and, hence, is eradicated from

the host population. This “conventional wisdom” refers to a single host population

with no outside reservoirs, as in the case of birds with influenza; however, the virus
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may be able to maintain highly virulent strains in certain host species if birds remain

as a reservoir.

One explanation for a pathogen to maintain high virulence is the trade-off hypoth-

esis, which suggests that virulent strain presence in a population can reach an optimal

level if there is a balance between transmission and virulence [33]. That is, a highly

virulent pathogen would need to be proportionally highly transmissible in order to

sustain reproduction over a long time period [15]. To illustrate this mathematically,

we introduce the basic reproductive number R0 for an infectious disease. The basic

reproductive number is the mean number of secondary cases from a typical infected

individual. The value of R0 determines the long-term dynamics of a disease; in other

words, the disease will die out of the population for R0 < 1, and spread for R0 > 1.

Mills et al. [35] calculated the basic reproductive number for influenza A to be ap-

proximately 2-3. We consider the following example from [30] to describe the trade-off

hypothesis with a given R0. The basic reproductive number for a host-parasite model

is given by

R0 =
βN

α+ b+ v
,

where β is the rate of infection (or incidence), α is the rate of disease-induced mortality

(or virulence), b is the natural mortality rate (i.e., independent of the parasite), v is

the rate of recovery, and N is the total population size. The R0 from [30] is in a

typical form for an epidemic model, since the transmission parameter (or incidence

rate) is in the numerator and the virulence (or disease-induced mortality rate) v is

in the denominator of the basic reproductive number. If the virulence constant is

increased, then the value of R0 decreases; hence, for a sufficiently large v, R0 < 1 and

the parasite would naturally be eradicated from the host population after a transient
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period. A disease’s incidence rate β needs to increase to offset erradication (or the

survival of the pathogen), so a trade-off must occur. A further discussion and methods

for the calculation of R0 are given in Section 3.1.

There are a number of perspectives on the “conventional wisdom” of the trade-off

hypothesis in different studies. Many of the classical mathematical epidemic models

have disease transmission and virulence as independent parameters and are consistent

with the trade-off hypothesis. Lipsitch and Moxon [33] explain research that links

transmissibility and virulence; however, Ebert and Bull [15] argue that many of these

studies are “system-specific” and do not relate to the simple models. Nowak and

May [38] found circumstances in which natural selection favors strains with higher

levels of virulence; however, the model required a super-infection structure with multi-

ple strains to obtain such dynamics. Hence, the modeling required a specific structure

to counter the trade-off hypothesis.

In our modeling approach, we will consider species interaction and genetic recom-

bination in a co-infected subclass. The strains that are endemic (i.e., less virulent, in

host species populations, such as birds and humans) are unlikely to cross infect each

other; however, they are both capable of simultaneously infecting an intermediate

host, such as domestic pigs [42]. Once an intermediate host is co-infected, a recom-

bination process at the molecular level between the co-cirulating strains can lead to

super-strains (for our interest) in the human population [42, 46]. This modeling ap-

proach will allow us to explore the impact of highly virulent strains that emerge from

a recombination process.
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Mathematical Models for Influenza

Since Kermack and McKendrick [29] proposed the first susceptible-infectious-recovered

(SIR) model to study pathogen spread in a host population, mathematical models

have found a natural place in epidemiology theory. This modeling approach divides

a given population (or multiple populations) into subclasses, where individuals are

classified by the capability of being infected, of infecting, or of being immune. Math-

ematical rules, typically in the form of dynamical systems, describe the transport

of individuals from compartment-to-compartment. To model influenza, we will con-

sider a susceptible-infectious-susceptible (SIS) model with multiple infectious classes

to represent many strains of influenza. The SIS structure differs from the SIR be-

cause infected individuals return directly to the susceptible class without undergoing

a recovered or immune state. A general description of our model is given later in this

section, and a more detailed description is given in Chapter 2.

A wide variety of mathematical models have been used to study the spread of

influenza. These models focus on a variety of approaches, which include features

ranging from genetic aspects to seasonal changes. Pease [40] introduced a model for

antigenic shift in a single strain by considering changes in amino acid substitutions.

The Pease model was initially modified by Inaba [28] for stability analysis. Magal

and Ruan [34] considered another variation and showed the mechanism could generate

periodic solutions. Andreasen [1] proposed a model conceptually similar to Pease’s,

where discrete subclasses model annual influenza epidemics. Lin et al. [32] considered

an influenza A drift model of three co-circulating strains, where individuals previously

infected with certain strains develop partial cross-immunity against other strains; see

also [2]. Lin et al. [31] modeled antigenic drift of influenza A in the population by
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considering the virus drift as a diffusion process along a one-dimensional axis to mimic

changes along a phylogenetic tree. In Dushoff et al. [13], an oscillating effect was built

into a simple SIR-type model to understand effects of seasonal changes on epidemics.

Holt and Pickering [25] considered a mathematical model in which two host species

shared a single pathogen; see also [20]. The Holt-Pickering model was used to address

conditions for coexistence and competition when a disease is shared between two

hosts. It was further studied by Chen and Price [8] seeking persistent and periodic

solutions. Similarly, Zhang et al. [50] considered a system of two hosts, where two

strains are shared between the host populations with a potential of co-infection.

A rich body of previous work exists to address a number of fundamental questions

regarding a pathogen’s ability to adapt and sustain itself as an endemic strain in

a host [3, 19]. Researchers have considered different approaches to understanding

the evolution of virulence in a pathogen; see [38]. Some approaches consider genetic

aspects [28, 31], while others consider inter-species dynamics [8, 50]; however, few

models consider the interplay of both approaches.

We focus our efforts on influenza because it is a perfect candidate to capture

these dynamics due to its many genetically unstable strains and ability to inhabit

different host species. Our specific research hypothesis is that virulent strains, which

would otherwise be eradicated from a given host species, can be sustained if there is

a continued external input of highly virulent strains from a second host species where

such strains arise from recombination.

We need to explore the role of inter-species dynamics while genetic changes occur

to gain insight with respect to the disease dynamics and epidemic forecasting. The

theoretical model helps advance the field of mathematical epidemiology, while giving
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insight to more practical approaches to disease prevention. Our main goal is to

develop a theoretical model that gives a framework for understanding the role of

inter-species dynamics and genetic recombination in influenza.

An Inter-species Influenza Model with Recombination

In the following chapter, we introduce a model for influenza that considers both

species interaction and recombination in certain strains. Each species has a set of

susceptible-infectious-susceptible (SIS) type differential equations that govern the

spread of certain strains in that population. The avian model consists of a susceptible

and an infectious subclass; the human model consists of a susceptible subclass and

two infectious subclasses, one of which is a super-infectious subclass that can infect

both of the other subclasses; and the intermediate host model consists of a suscep-

tible subclass, two infectious subclasses for avian and human strains, a co-infected

subclass, and a subclass consisting of a super-strain due to recombination. Moreover,

some host species can infect other species with specific strains, but this ability is

generally not symmetric. For example, birds can infect pigs with an avian strain,

but the pigs cannot pass the avian strain back into the avian population. More in-

depth discussions of this are given in Chapters 2 and 4. The three host species are

coupled as an interacting host system (IHS), where the couplings are external inputs

of avian and human strains from the respective hosts to the intermediate host and a

super-strain external input from the intermediate host to the humans. Similarly to

the Holt-Pickering model, we will consider a model where a single strain is shared

between two hosts; however, our interest is to understand co-infection and recombi-

nation in an intermediate host as a result of infectious strains from other host species.
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We asked the following question – Can virulent strains, too virulent to independently

sustain themselves in a host population, continue to reemerge in a host population

due to a recombination process in an intermediate host? To address this question, we

consider two open problems about uniform persistence theory in SIS type models:

1. What are the conditions for permanence in certain subsystems for single and

multiple host species?

2. Is it possible to find conditions under constraints for uniform persistence that

would suggest otherwise if there were no interactions between host species?

In Section 1.2, we will introduce certain definitions and notations that will be used

in the following chapters. In Chapter 2, we develop the IHS in detail to model species

interaction of influenza strains. In Chapter 3, we consider single host subsystems of

the IHS, which include a basic model, a super-infection model, and a co-infection

model. For each subsystem, we determine the basic reproductive numbers and per-

manence conditions. In Chapter 4, we consider subsystems with two host species,

in which one host can infect the other but not visa versa. We approximate an ini-

tial model from Section 4.1 by a two dimensional SIS model in Section 4.2 with an

external input. In Chapter 4.3, we calculate the basic reproductive number R0 for

the IHS and simulate several relevant scenarios showing complicated dynamics and

connections with epidemic forecasting. We present a summary of content and results

from Chapters 2 through 4.3 along with a discussion of epidemiological ramifications

in Chapter 6.
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1.2 Definitions and Notation

In this section, we give some of the basic definitions and notations that we will use

throughout the analysis. The majority of definitions and notation arise in dynamical

systems and permanence/persistence theory. We use the definitions and notations

from [4, 18, 22, 41, 27].

Dynamical Systems Theory

Let X denote a metric space with metric d and R denote the set of real numbers. Let

R+ and R− denote the sets of nonnegative and nonpositive real numbers, respectively.

We denote the continuous flow = = (X,R, π) defined on X , where π : X ×R → X is

a continous map with the properties:

i. π(x, 0) = x for all x ∈ X .

ii. π(π(x, t), s) = π(x, t+ s) for x ∈ X and s, t ∈ R.

If M ⊂ X and K ⊂ R, then π(M,K) denotes the set

{π(x, t) : x ∈M, t ∈ K}.

For a subset M ⊂ X , we denote

γ(M) = φ(M,R), γ+(M) = φ(M,R+), γ−(M) = π(M,R−)

Then for the singleton set M = {x}, these denote the sets γ(x), γ+(x), and γ−(x).

The boundary and interior of a set M ⊂ X are denoted by ∂M and M̊ , respectively.
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For any ε > 0 and M ⊂ X , we define

S[M, ε] = {x ∈ X : d(x,M) ≤ ε} .

Definition 1.1. We call a subset U of X

(i) forward invariant if for all u ∈ U , γ+(u) ⊆ U .

(ii) invariant if for all u ∈ U , γ(u) ⊆ U .

A continuous mapping T on a complete metric space X is said to be point dissi-

pative (compact dissipative) (bounded dissipative) on X if there is a bounded set B in

X such that B attracts each point of X (each compact set of X ) (each bounded set of

X ) under T ; see [21]. If a system is either compact or bounded dissipative, it follows

that the system is point dissipative. The systems in Chapters 3 through 4.3 are all

bounded and compact dissipative; hence, when a system is dissipative, we mean it is

bounded and compact dissipative. The arguments for dissipativity throughout this

project involve solving a differential inequality to show that each population subclass

of the system will be attracted to a bounded, compact set of the ambient space.

Persistence/Permanence Theory

It is convenient to classify the long-term population densities of a species by using

Permanence Theory. We address two forms of permanence: abstract permanence

and ecological permanence. Ecological permanence is a property of a system (i.e., all

species or compartments) that characterizes the long-term population densities. A

system exhibits permanence or is permanent when each component of the population

remains in a positive, bounded state for all time. Abstract permanence is a more
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mathematical concept that requires the model to be in the form of a dynamical

or semi-dynamical system, and the conclusions are in terms of a metric on a given

metric space. This general approach encompasses a much larger spectrum of models,

which include discrete time models, ordinary differential equations, reaction-diffusion

equations, and delay differential equations. Cantrell and Cosner [4] give a more

detailed discussion of abstract and ecological permanence. Since the model is a system

of ordinary differential equations, we will use abstract permanence methods, in most

cases, to find ecological permanence conditions on our system. The system is defined

on the nonnegative Euclidean space X = Rn
+ (n ≤ 10) with the Euclidean metric.

Consider the system of ordinary differential equations

dui
dt

= fi(u) (i = 1, . . . , n). (1.1)

Let u(t) = (u1(t), . . . , un(t))
T be a solution of system (1.1).

Definition 1.2. System (1.1) is said to be

(i) weakly persistent if

lim sup
t→∞

ui(t) > 0

(ii) persistent if

lim inf
t→∞

ui(t) > 0

(iii) weakly uniformly persistent if there exists ε0 > 0 such that

lim sup
t→∞

ui(t) > ε0
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(iv) uniformly persistent if there exists ε0 > 0 such that

lim inf
t→∞

ui(t) > ε0

for i = 1, . . . , n.

We will use the same definitions for a given subclass that individually satisfies

the above conditions; e.g., we say subclass i is persistent if lim inft→∞ ui(t) > 0.

A subclass can satisfy one of the persistence definitions regardless of the system’s

classification; however, if a system assumes a classification, then all its subclasses

assume the label.

The system (1.1) is said to be permanent if there are numbers m and M with

0 < m < M <∞ such that given any u0 ∈ int(Rn
+), there is a T such that

m ≤ ui(t) ≤M (t > T, i = 1, . . . , n).

In other words, a system that is strongly uniformly persistent and bounded above

is permanent. A dissipative system is bounded above; hence, the dissipativity and

strong uniform persistence imply permanence.



Chapter 2

The Model

2.1 A Model with Two Strains Circulating and

Three Host Species Interacting

The goal of this section is to construct a model in which strains of two species interact

by means of an intermediate host. We consider two parasitic strains circulating in

three species’ populations - the species are labeled as the primary host, intermediate

host, and secondary host populations. The primary and secondary hosts each have a

single strain circulating within their respective population; however, neither species

can directly share its strain with the other species. We label the respective strains as

the primary and secondary strain. The intermediate host acts as a medium between

the two other populations, in that it interacts by sharing respective strains with given

host populations. The primary host’s population is divided into subclasses which

follow the dynamics of the SIR model with interaction from an infectious subclass of

the intermediate host. We will assume the co-infected subclass of the intermediate

host is not infectious to the primary host.

15
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We begin by constructing the model for the primary and secondary host pop-

ulations in the absence of interaction with the intermediate host. We will use the

subscripts i = 1 and i = 2 for the primary and secondary hosts, respectively. Let

Si(t) be the density of susceptible individuals at time t and Ii(t) be the density of

individuals infected with strain at time t. We denote the total population at time t

by Ni(t) so that Ni(t) = Si(t)+ Ii(t). Recruitment is into the susceptible subclass, so

the birth term is going to be logistic and based on the entire population. We label the

intrinsic growth rate ri and carrying capacity Ki. ’The contact rates are denoted by

βi, the disease-induced death rates are denoted by vi, and the recovery rates are de-

noted by αi. See Figure 2.1. The following system of differential equations describes

Si Ii
riNi(1-Ni/Ki) viIi

βiSiIi

αiIi

Figure 2.1: Scheme diagram for the primary and secondary hosts without interaction for
System (2.1).

the dynamics of the primary and secondary host species

dSi
dt

= riNi

(
1− Ni

Ki

)
− βiSiIi + αiIi

dIi
dt

= βiSiIi − (αi + vi)Ii

(2.1)

The description of parameters and variables is given in Table 2.1.
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Table 2.1: Description of Parameters and Variables in System (2.1)

Character Description
Si Susceptible subclass for species i
Ii Infectious subclass for species i
Ni Total population for species i
ri Intrinsic growth rate for species i
Ki Carrying capacity for species i
βi Incidence rate for species i
αi Immunity rate for species i
vi Disease-induced death rate for species i

We continue by constructing the model for the intermediate host population in the

absence of interaction with the primary and secondary host. Let X(t) be the density

of susceptible or non-infected individuals at time t; Y1(t) and Y2(t) be the density

of individuals infected with the primary and secondary strain at time t, respectively;

and Y12(t) be the density of individuals co-infected with both strains. In this case, the

term non-infected is more appropriate for the subclass X. That is, the subclasses Y1

and Y2 are infectious subclasses and are able to infect individuals from the susceptible

subclass and the other infectious subclass. For example, individuals in Y1 can infect

individuals from X and Y2. A susceptible individual in X infected with strain one

would then join the subclass Y1, while individuals in Y1 infected from Y2 would then

join the co-infected subclass Y12. We will also assume that individuals can only be

infected by one strain at a time; that is, if a non-infected individual is infected by a

co-infected individual, then the individual will be either infected by the primary strain

or the secondary strain but not both. For simplicity, we will only allow the co-infected

subclass to infect the non-infected subclass. It is already possible for individuals in

the subclasses Y1 and Y2 to transfer into the co-infected subclass, so having a stronger
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transfer due to the co-infected subclass would only complicate the model. The total

population at time t is denoted by NX(t), then NX(t) = X(t)+Y1(t)+Y2(t)+Y12(t).

Recruitment is into the susceptible subclass, so the birth term is going to be logistic

and based on the entire population. We label the intrinsic growth rate rX and carrying

capacity KX . The contact rates are denoted by bi, the disease-induced death rates

are denoted by ui, and the recovery rates are denoted by ai. The rate at which co-

infected individuals infect susceptible individuals with strain i is given by bi · di. See

Figure 2.2.

X

Y2

rXNX(1-NX/KX)

Y1

u2Y2

b2(Y2+d2Y12 )X

b1(Y1
+d1Y12

)X

a2Y2

a1Y1

u1Y1

Y12

b12Y1Y2

b21Y1
Y2 u12Y12

a12Y12

Figure 2.2: Scheme diagram for the intermediate host without interaction.
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The dynamics are captured mathematically by

dX

dt
= rXNX

(
1− NX

KX

)
−

2∑
i=1

bi(Yi + diY12)X + a1Y1 + a2Y2 + a12Y12

dY1

dt
= b1(Y1 + d1Y12)X − b12Y1Y2 − (a1 + u1)Y1

dY2

dt
= b2(Y2 + d2Y12)X − b21Y1Y2 − (a2 + u2)Y2

dY12

dt
= (b12 + b21)Y1Y2 − (a12 + u12)Y12.

(2.2)

Table 2.2 gives a description of the parameters and variables in system (2.2). The

Table 2.2: Description of Parameters and Variables in System (2.2)

Character Description
X Susceptible subclass
Yi ith infectious subclass
NX Total population
rX Intrinsic growth rate
KX Carrying capacity
bi Contact rate for the ith infectious subclass
ai Immunity rate for the ith infected subclass
ui Disease-induced death rate of the ith subclass

bi · di Co-infected individuals infect a susceptible individual with strain i

intermediate host infectious class Yi will infect individuals in Si, sending them to

the subclass Ii at the rate γi. Hence, the interacting systems for the primary and
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secondary hosts are given by

dSi
dt

= riNi

(
1− Ni

Ki

)
− βiSiIi − γiSiYi + αiIi

dIi
dt

= βiSiIi + γiSiYi − (αi + vi)Ii.

(2.3)

The interaction of the primary and secondary hosts with the intermediate host will

both follow the assumption that infectious individuals will only infect individuals in

the corresponding susceptible subclasses. The primary host infectious class I1 will

infect individuals in X, sending them to the subclass Y1 at the rate g1. The same

assumption is made with respect to the secondary host interacting with the interme-

diate host at rate g2. For simplicity, we will assume that the infectious members of the

primary and secondary host populations will only infect individuals in the susceptible

subclass of the intermediate host population; however, one could imagine the primary

and secondary hosts could also infect members of the other infected subclass to pro-

duce more co-infected individuals. Summarizing, the dynamics in the intermediate
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host system (IHS) are given by

dX

dt
= rXNX

(
1− NX

KX

)
−

2∑
i=1

bi(Yi + diY12)X −
2∑
i=1

giXIi + a1Y1 + a2Y2 + a12Y12

dY1

dt
= b1(Y1 + d1Y12)X − b12Y1Y2 + g1XI1 − (a1 + u1)Y1

dY2

dt
= b2(Y2 + d2Y12)X − b21Y1Y2 + g2XI2 − (a2 + u2)Y2

dY12

dt
= (b12 + b21)Y1Y2 − (a12 + u12)Y12.

(2.4)

Notice now that the primary and secondary hosts share their respective strain with

the intermediate host; however, respective strains are not shared between the primary

and secondary host. Individuals in the co-infected subclass of the intermediate host

are infected with strains from two different species.

2.2 Recombination in the Intermediate Host’s Co-

Infected Subclass

In the event an individual is co-infected, the parasites of each strain interact

within the host. In some cases, the interaction leads to genetic recombination and an

antigenic shift in one of the strains. Thus, the recombination produces a new strain.

We will assume that recombination occurs in the co-infected class of the intermediate

host. In the model, the recombination process is thought of as a birth process,

producing a new subclass of infected individuals Y3 of individuals infected/infectious
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with a new strain. For now, we assume the primary host is susceptible to the third

strain in the intermediate host, but the secondary host is not. The third strain is

infectious only to the subclasses X, Y1, and Y2 of the intermediate host; that is, Y3

is not infectious to the subclass Y12 that produces the third strain. This is plausible

since members of Y12 would have antibodies the from primary and secondary strains

and Y3 would be built from the subclasses Y1 and Y2. See Figure 2.3. The subclass

Y12 Y3
u3Y3

ψY12

u12Y12

Figure 2.3: Scheme diagram for the recombination in the intermediate host’s subclass Y12,
producing the infected subclass Y3.

Y3 carries a super-strain that infects individuals in the primary host population. We

denote the super-infectious subclass of the primary host by J .

The primary host system then becomes

dS1

dt
= r1N1

(
1− N1

K1

)
− β1S1I1 − β3S1J − γ3S1Y3 + α1I1 + α3J

dI1
dt

= β1S1I1 − δI1J − (α1 + v1)I1

dJ

dt
= β3S1J + δI1J + γ3S1Y3 − (α3 + v3)J.

(2.5)

Here J is the subclass of individuals infected with the super strain; the infectious

class I1 in system (2.1) is subscripted with one, I1; and β3 is the incidence rate in
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which individuals in the primary host population are infected by individuals in the

intermediate host population with the super strain. Notice in this case, there is no

co-infected subclass of individual - it is assumed the super strain is the overwhelming

strain in the primary host. However, there is a super-infectious term, where indi-

viduals infected with the first strain are allowed to be infected with the third strain

with incidence rate δ. In other words, the susceptible and infectious subclass are both

susceptible relative to the super strain. We will refer to δ as the super-incidence rate.

The system for the intermediate host is given by

dX

dt
= rXNX

(
1− NX

KX

)
−

2∑
i=1

bi(Yi + diY12)X − b3XY3 −
2∑
i=1

giXIi +
3∑
i=1

aiYi + a12Y12

dY1

dt
= b1(Y1 + d1Y12)X − b12Y1Y2 − b13Y1Y3 + g1XI1 − (a1 + u1)Y1

dY2

dt
= b2(Y2 + d2Y12)X − b21Y1Y2 − b23Y2Y3 + g2XI2 − (a2 + u2)Y2

dY12

dt
= (b12 + b21)Y1Y2 − (a12 + u12 + ψ)Y12

dY3

dt
= ψY12 + b3XY3 + b13Y1Y3 + b23Y2Y3 − (a3 + u3)Y3.

(2.6)

In this case, we allow individuals in the subclass Y3 to infect individuals of the

subclass Y1 and Y2 but not the subclass Y12. That is, the individuals of Y12 already

feed into subclass Y3 due to recombination.

The complete model is then given by the primary host of system (2.5), the inter-

mediate host in system (2.6), and the secondary host of system (2.3). We are now

ready to analyze the subsystems of the complete model.



Chapter 3

Subsystems of a Single Host

3.1 The Basic SIS Model

We begin by considering a simple SIS model. The total population is divided into two

subclasses of infectious and susceptible individuals. We denote the total population

density at time t by N(t) and the population density of the subclasses of infectious

and susceptible individuals at time t by I(t) and S(t), respectively. We note that

N(t) = S(t) + I(t). Recruitment into the susceptible subclass so that the birth term

is going to be logistic and based on the total population. We label the intrinsic growth

rate r and carrying capacity K.

dS

dt
= rN

(
1− N

K

)
− βSI + αI

dI

dt
= βSI − (α+ v)I

with S(0) ≥ 0, I(0) ≥ 0.

(3.1)

24
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This system is the same as system (2.1) from section 2 of Chapter 2. System (3.1) is

also the subsystem (2.3) for the secondary host with γ2 = 0 (i.e., without interaction

with the intermediate host). The subscripts for the variables and parameters have

been omitted, since the results for system (3.1) will be used throughout the analysis

for a number of different subsystems.

If we look at the sum of the two equations of system (3.1), then the differential

equation for the total population is given by

dN

dt
= rN

(
1− N

K

)
− vI, (3.2)

implying

dN

dt
≤ rN

(
1− N

K

)
. (3.3)

Solving the differential inequality, we get the carrying capacity bound on the total

population as t→∞, that is,

lim sup
t→∞

N(t) ≤ K.

Setting S = 0 and I = 0, we can clearly see that the population growth rate is zero.

If S + I ≤ K, I ≥ 0 and S = 0, then dS/dt ≥ 0. Also, if I = 0 and S ≥ 0,

then dI/dt = 0. Hence, the space with S ≥ 0 and I ≥ 0 is invariant. Moreover,

system (3.1) attracts to a compact set and is dissipative. We denote the space

X = {(S, I) ∈ R2 : 0 ≤ S, I},
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and the attracting region

E = {(S, I) ∈ X : S + I ≤ K}.

We are now ready to solve for the equilibria. Clearly, system (3.1) has the disease

free equilbria (DFE) at (0, 0) and (K, 0).

The basic reproductive number R0 is “The expected number of secondary cases

produced by a typical infected individual during its entire period of infectiousness in

a completely susceptible population” and “is mathematically defined as the dominant

eigenvalue of a positive linear operator” [12]. In the case of system (3.1), the positive

linear operator is the next generation matrix that is described below.

To calculate the basic reproductive number R0 for system (3.1), we use the frame-

work given in [44]. We begin by denoting the population subclasses by xi. Let

x = (x1, . . . , xn)
t with each xi ≥ 0, be the density of individuals in each population

subclass. The compartments are sorted so that the first m compartments are the

infectious individual subclasses. We denote the disease free states by

Xs = {x ≥ 0 : xi = 0, i = 1, . . . ,m} .

Let Fi(x) be the rate of appearance of new infections in compartment i, V+
i (x) be

the transfer of individuals into compartment i, and V−i (x) be the rate of transfer of

individuals out of compartment i. We will begin by rewriting system (3.1) in the

form

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n, (3.4)

where Vi = V−i − V+
i . The functions Fi, Vi, V−i , and V+

i must satisfy the following
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assumptions:

(A1) if x ≥ 0, then Fi, V−i , and V+
i ≥ 0 for i = 1, . . . , n.

(A2) if xi = 0 then V−i = 0. In particular, if x ∈ Xs then V−i = 0 for i = 1, . . . ,m.

(A3) Fi = 0 if i > m.

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m.

(A5) if F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

Lemma 3.1 (van den Driessche and Watmough [44]). If x0 is a DFE of (3.4) and

fi(x) satisfies (A1)-(A5), then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

 F 0

0 0

 , DV(x0) =

 V 0

J3 J4

 ,
where F and V are the m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is a non-singular M-matrix and all eigenvalues of

J4 have positive real part.

The matrix FV −1 is then called the next generation matrix for the model and the

basic reproductive number is defined as

R0 = ρ(FV −1), (3.5)



28

where ρ(A) denotes the spectral radius of the matrix A. The following theorem

classifies the stability of the DFE under the conditions ofR0 as a threshold parameter.

Theorem 3.2 (van den Driessche and Watmough [44]). Consider the disease trans-

mission model given by (3.4) with f(x) satisfying conditions (A1)-(A5). If x0 is a

DFE of the model, then x0 is locally asymptotically stable if R0 < 1, but unstable if

R0 > 1, where R0 is defined by (3.5).

Proposition 3.3. R0 for system (3.1) is defined by

R0 =
βK

α+ v
.

For any positive parameter values, (0, 0) is a saddle. The following conditions char-

acterize the stability of (K, 0):

i. If R0 < 1, then (K, 0) is locally asymptotically stable.

ii. If R0 > 1, then (K, 0) is unstable.

Proof. We begin by letting x1 = I, x2 = S,and ~x = (x1, x2). Now we can write

system (3.1) in the form

ẋi = Fi(x)− Vi(x),

where

F =

 βSI

0

 and V =

 (α+ v)I

−rN
(
1− N

K

)
+ βSI − αI

 .
We then define

V+ =

 0

rN
(
1− N

K

)
+ αI

 and V− =

 (α+ v)I

βSI

 ,
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where Vi = V−i − V+
i . We now demonstrate the assumptions (A1)-(A5) in [44] are

satisfied for Fi, V+
i , and V−i . We note n = 2 and m = 1 for system (3.1) and the set

of all disease free states is given by

Xs = {(0, 0), (K, 0)} .

We label the equilibria x0 = (0, 0) and xK = (K, 0) so that the labels x0 and xK

remain despite rearranging coordinate positions.

(A1) Given S > 0 and I > 0, then clearly βSI > 0 and (α + v)I > 0 for α, β, and

v > 0. Hence, Fi ≥ 0 and V−i ≥ 0 for i = 1, 2. It is possible to have V+
i < 0 so

we impose the condition

N ≤ K

2

(
1 +

√
1 +

4α

rK
I

)

for V+
i ≥ 0 for i = 1, 2. It is noted that the right hand side of the inequality is

greater than the population carrying capacity K, which is the greater than the

bound S + I ≤ K on the attracting region E.

(A2) Since m = 1, set x1 = 0 (which is the same as I = 0). Then V−i = 0 for i = 1, 2.

Moverover, if x ∈ Xs then V−i = 0 for i = 1, 2.

(A3) Clearly, F2 = 0. So Fi = 0 for i > m.

(A4) Consider the disease free states x0 and xK . Then βSI = 0, implying Fi = 0

for i = 1, 2. In either case N = 0 or N = K along with I = 0, we have

rN(1−N/K) + αI = 0, implying V+
i = 0 for i = 1, 2.
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(A5) To satisfy this assumption, we analyze the Jacobian of system (3.1) when F(x)

is set to zero. That is, we consider the Jacobian of −V at the DFE xK given by

−DV(xK) =

 −(α+ v) 0

−r − βK + α −r

 , (3.6)

which has the negative eigenvalues λ1 = −(α+ v) and λ1 = −r.

Assumptions (A1)-(A5) are now satisfied, so we can use Lemma 3.1. We then have

DF(xK) =

 F 0

0 0

 and DV(xK) =

 V 0

J3 J4

 , (3.7)

where

F = βK, V = α+ v, J3 = r + βK − α, and J4 = r.

Furthermore, we note F is nonnegative, V is nonsingular, and J4 has positive real

eigenvalues. Then we have

ρ(FV −1) =
βK

α+ v
.

The basic reproductive number is given by R0 = ρ(FV −1). The equilibrium point is

stable for R0 < 1 and a saddle when R0 > 1 as a consequence of Theorem 3.2. Now

that R0 for system (3.1) is established, we examine the stability at the origin. We

can look at the original formulation. Evaluating the Jacobian at x0, we get

J(x0) =

 r r + α

0 −(α+ v)

 , (3.8)
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which has the eigenvalues

λ1 = r and λ2 = −(α+ v).

The corresponding eigenvectors are given by

w1 =

 1

0

 and w2 =

 − α+r
α+r+v

1

 ,
respectively. Figure 3.1 shows the stable and unstable manifolds about the origin.

The S-coordinate of w2 is always negative, so the stable manifold of x0 is not in the

region R+ × R+. All trajectories in the positive quadrant that are local to x0 will

attract toward the S-axis.

Proposition 3.3 states that the origin is a saddle; however, since the stable manifold

touches the space X only at the origin and the space X is invariant, then the origin

is unstable relative to the space X . See Figure 3.1. In other subsystems throughout

this chapter, we observe the similar cases for instability about the origin due to the

stable manifold being tangent to the positive space and the invariance in the positive

space.

Solving the system of equations

rN

(
1− N

K

)
− βSI + αI = 0

βS − (α+ v) = 0,

(3.9)
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Figure 3.1: The stable and unstable manifolds about the origin. The unstable and stable
manifold corresponds to the eigenvector w1 and w2, respectively. Notice the stable manifold
is tangent to the region X , which implies the origin is unstable relative to the space X .
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Figure 3.2: Graph of R0 versus virulence parameter for system (3.1). Parameter values
are K = 1, α = 0.2, and β = 0.5.
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we obtain a nontrivial equilibrium point (Ŝ, Î) defined by

α+ v

β
,
K

2

(
1− v

r

)
− Ŝ +

√
K2

4

(
1− v

r

)2

+
vKŜ

r

 .

Proposition 3.4. The nontrivial equilibrium point (Ŝ, Î) exists for system (3.1) if

and only if R0 > 1. Suppose (Ŝ, Î) exists, then it is locally asymptotically stable.

Moreover, the condition R0 > 1 gives rise to a locally asymptotically stable, disease

endemic equilibrium point.

Proof. We begin the proof by first examining the existence of (Ŝ, Î). Define N̂ to be

the sum Ŝ + Î. Ŝ is clearly positive, so Î > 0 is a sufficient condition for existence.

Î > 0 is equivalent to Ŝ < K, which is then equivalent to R0 > 1. Therefore, (Ŝ, Î)

exists if and only if R0 > 1.

Now we examine local stability of (Ŝ, Î). Evaluating the Jacobian at (Ŝ, Î), we

have

Ĵ =

 r
(
1− 2N̂

K

)
− βÎ r

(
1− 2N̂

K

)
− v

βÎ 0

 , (3.10)

which has the trace and determinant

tr(Ĵ) = r

(
1− 2N̂

K

)
− βÎ and det(Ĵ) = −βÎ

(
r

(
1− 2N̂

K

)
− v

)
.

Using the equations (3.9), we can rewrite the trace and determinant in the forms

tr(Ĵ) = −β Î
2

N̂
− α

Î

N̂
−

ˆrN

K
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and

det(Ĵ) = β
Î

N̂

(
vŜ +

N̂

K

)
.

Clearly, tr(Ĵ) < 0 and det(Ĵ) > 0, implying the equilibrium point (Ŝ, Î) is locally

stable. Therefore, R0 > 1 gives the existence of a stable disease endemic equilibrium

point.

Lemma 3.5. System (3.1) has no limit cycles on the region E.

Proof. Clearly the region E is simply connected in R2. Now define the Dulac function

B(S, I) =
1

SI
.

Then

5 · (Bf) =
∂

∂S
B · S ′ + ∂

∂I
B · I ′

=
∂

∂S

(
r

(
1

I
+

1

S

)(
1− S + I

K

)
− β +

α

S

)
+

∂

∂I

(
β − (α+ v)

S

)

= − r

S2

(
1− S + I

K

)
− r

K

(
1

S
+

1

I

)
− α

S2

On the region E, we have that 0 ≤ S+I ≤ K, which in turn implies 5· (Bf) < 0. In

other words, 5 · (Bf) is not identically zero and does not change sign in E. Hence,

system (3.1) satisfies Dulac’s Criteria. We are now able to conclude system (3.1) has

no limit cycles on the region E.

We are now ready to make our claim about the global analysis of system (3.1).
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Figure 3.3: Phase portrait for system (3.1). Parameter values are r = 0.2, K = 1,
α = 0.2, β = 1.3, and v = 0.2. Initial conditions are set to S(0) = 0 and I(0) = 0.5.
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Theorem 3.6. Assume R0 > 1. For any initial conditions S(0) ≥ 0 and I(0) > 0,

the disease endemic equilibrium point (Ŝ, Î) is globally attractive. In the case S(0) > 0

and I(0) = 0, the disease free equilibrium point (K, 0) is globally attractive.

Proof. The ω-limit set for system (3.1) is contained in the attracting region E.

Lemma 3.5 rules out the possibility of limit cycles in the region E. Ruling out

limit cycles in a two-dimensional space, the Generalized Poincaré–Bendixson Theo-

rem implies that the ω-limit set consists of a finite number of critical points. See [22]

and [41] for statements of theorems. Moreover, the equilibria in the region E are

(0, 0), (K, 0), and (Ŝ, Î), whose asymptotic behavior is classified by Propositions 3.3

and 3.4. Hence, given the condition R0 > 1, we can conclude the global stability of

the equilibrium point corresponding to the given initial conditions.

3.2 The Super-Infection Subsystem

In this section, we consider a super-infection subsystem of the primary host. We take

the primary host system of section 2 and remove the interaction with the intermedi-

ate host (i.e., γ1 = γ3 = 0). The resulting system assumes the third or super strain

is already present in the primary host given J > 0. That is, one may assume that

the resulting system is the primary host scenario after a super strain has emerged

and infected the primary host. The resulting super-infection subsystem is given by
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dS1

dt
= r1N1

(
1− N1

K1

)
− β1S1I1 − β3S1J + α1I1 + α3J

dI1
dt

= β1S1I1 − δI1J − (α1 + v1)I1

dJ

dt
= β3S1J + δI1J − (α3 + v3)J

with S1(0) ≥ 0, I1(0) ≥ 0, J(0) ≥ 0.

(3.11)

Notice, if we set J = 0, then the resulting system is the same in form as system (3.1).

Super-infection models were considered in [36, 38].

If we look at the sum of the equations of system (3.11), then the differential

equation for the total population is given by

dN1

dt
= r1N1

(
1− N1

K1

)
− v1I1 − v3J. (3.12)

Then comparing to the right-hand side of the inequality (3.3), we get the dissipativity

of system (3.11); that is, we have

0 ≤ lim sup
t→∞

N1(t) ≤ K1.

We denote the space

X = {(S1, I1, J) ∈ R3 : 0 ≤ S1, I1, J},
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and the compact attracting region

E = {(S1, I1, J) ∈ X : S1 + I1 + J ≤ K1}.

3.2.1 Qualitative Analysis

Clearly, system (3.11) has the disease free equilbria at (0, 0, 0) and (K1, 0, 0). We are

now ready to calculate the basic reproductive number R0 for system (3.11). In the

case of system (3.11), the R0 calculated following the framework of [44] is a threshold

value that determines when both strains are eradicated when the value is less than

one or the existence of an infectious individuals of an unspecified strain type when

greater than one. We will denote this threshold parameter by Rmax
0 . This parameter

is somewhat limited for our interest, since it does not determine the existence of both

equilibria that are disease free of only one strain; that is, it does not determine the

existence of the nontrivial boundary equilibria. To resolve this issue, we will later

define the parameter Rmin
0 that determines the existence of these boundary equilibria.

We define the independent strains’ basic reproductive numbers

R0,i =
βiK1

αi + vi
for i = 1, 3.

Proposition 3.7. Rmax
0 for system (3.11) is defined by

Rmax
0 = max

i=1,3
{R0,i} .

For any positive parameter values, (0, 0, 0) is a saddle. The following conditions

characterize the stability of (K1, 0, 0):
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i. If Rmax
0 < 1, then (K1, 0, 0) is locally asymptotically stable.

ii. If Rmax
0 > 1, then (K1, 0, 0) is unstable.

Proof. We label the equilibria x0 = (0, 0, 0) and xK = (K1, 0, 0) so that the labels x0

and xK remain despite rearranging coordinate positions. We now let x1 = I1, x2 = J

and x3 = S1, and ~x = (x1, x2, x3). Now we can write system (3.11) in the form

ẋi = Fi(~x)− Vi(~x),

where

F =


β1S1I1

β3S1J + δI1J

0

 and V =


δI1J + (α1 + v1)I1

(α3 + v3)J

−r1N1

(
1− N1

K1

)
+ β1S1I1 + β3S1J − α1I1 − α3J

 .

We then define

V+ =


0

0

r1N1

(
1− N1

K1

)
+ α1I1 + α3J

 and V− =


δI1J + (α1 + v1)I1

(α3 + v3)J

β1S1I1 + β3S1J

 ,

where Vi = V−i − V+
i . It is not difficult to demonstrate conditions (A1)-(A4) in [44]

are satisfied, so we draw our attention to condition (A5).

(A5) To satisfy this assumption, we analyze the Jacobian of system (3.11) when F(x)
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is set to zero. That is, we consider the Jacobian of −V at the DFE xK given by

−DV(xK) =


−(α1 + v1) 0 0

0 −(α3 + v3) 0

−r1 − β1K1 + α1 −r1 − β3K1 + α3 −r1

 , (3.13)

which has the negative eigenvalues λ1 = −(α1 + v1), λ2 = −(α3 + v3), and

λ3 = −r1.

Conditions (A1)-(A5) are now satisfied, so we can use Lemma 1 in [44]. We now

have

DF(xK) =

 F 0

0 0

 and DV(xK) =

 V 0

J3 J4

 , (3.14)

where

F =

 β1K1 0

0 β3K1

 , V =

 α1 + v1 0

0 α3 + v3

 ,
J3 =

[
r1 + β1K1 − α1 r1 + β3K1 − α3

]
, and J4 = r1.

Furthermore, we note F is nonnegative, V is nonsingular, and J4 is positive. Then

we have the next generation matrix

FV −1 =

 β1K1

α1 + v1

0

0
β3K1

α3 + v3

 ,
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which gives the spectral radius

ρ(FV −1) = max
i=1,3

{
βiK1

αi + vi

}
.

The basic reproductive number is given by Rmax
0 = ρ(FV −1). The equilibrium point

is stable for Rmax
0 < 1 and unstable when Rmax

0 > 1.

Now that R0 for system (3.11) is established, we examine the stability at the

origin. Evaluating J at x0, we get

J(x0) =


r1 r1 + α1 r1 + α3

0 −(α1 + v1) 0

0 0 −(α3 + v3)

 , (3.15)

which has the eigenvalues

λ1 = r1, λ2 = −(α1 + v1), and λ3 = −(α3 + v3).

The corresponding eigenvectors are given by

w1 =


1

0

0

 , w2 =


− α1+r1
α1+v1+r1

1

0

 and w3 =


− α3+r1
α3+v3+r1

0

1

 ,

respectively. The stable manifold of x0 is tangent to the region E. All trajectories in

the positive quadrant that are local to x0 will attract toward the S-axis.
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We now examine the boundary of X . Define the index set Λ = {0, 1, 2}. We

denote the hyperplanes

H0 = {(S1, I1, J) ∈ X : S1 = 0} ,

H1 = {(S1, I1, J) ∈ X : I1 = 0} ,

H2 = {(S1, I1, J) ∈ X : J = 0} .

The boundary of X is then given by

∂X =
⋃
σ∈Λ

Hσ.

Considering the restriction to H0, the trajectories with at least one nonzero compo-

nent (i.e., we rule out the possibility that all components are zero) of system (3.11)

will flow off of ∂X into the interior of X . Turning to the hyperplanes H1 and H2,

system (3.11) is then reduced to system (3.1) on each hyperplane respectively. For

example on H1, all terms with I1 in system (3.11) are zeroed out, and the time deriva-

tive of I1 is set to zero; hence, the system becomes system (3.11) with subscripts of 2

on the respective parameters. This allows us to apply the results from section (3.1)

on H1 and H2. It is then noted that H1 and H2 are the only invariant subspaces of

the boundary.

Each of the invariant boundary subspaces has an equilibrium point that is disease

free of one strain and disease endemic in the other strain. The nontrivial boundary

equilibrium points are denoted by (Ŝ1, Î1, 0) ∈ H2 and (Š1, 0, J̌) ∈ H1. Define the

threshold parameter

Rmin
0 = min

i=1,3
{R0,i} .
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Then condition that Rmin
0 > 1 is sufficient for each point to exist and to be globally

asymptotically stable when the flow is restricted to the relative invariant subspace.

We now develop stability conditions for each equilibrium point relative to the whole

space X . We continue with the following proposition:

Proposition 3.8. Consider system (3.11) on the space X , and suppose the condition

R0,1 > 1 (3.16)

holds. Define

R1 =
β3Ŝ1 + δÎ1
α3 + v3

Then the following conditions classify the stability of (Ŝ1, Î1, 0)

i. If R1 < 1, then (Ŝ1, Î1, 0) is locally asymptotically stable.

ii. If R1 > 1, then (Ŝ1, Î1, 0) is unstable.

Proof. We evaluate the Jacobian of system (3.11) at (Ŝ1, Î1, 0) to get

J(Ŝ1, Î1, 0) =


r1

(
1− 2N̂1

K1

)
− (α1 + v1) r

(
1− 2N̂1

K1

)
− v1 r1

(
1− 2N̂1

K1

)
− β3Ŝ1 + α3

β1Î1 0 −δÎ1

0 0 β3Ŝ1 + δÎ1 − (α3 + v3)

 ,

where N̂1 = Ŝ1 + Î1. The upper left 2 × 2 matrix of J(Ŝ1, Î1, 0) is the matrix (3.10)

subscripted with index 1, so the condition (3.16) is sufficient to show the two corre-

sponding eigenvalues have negative real part. The third eigenvalue is then given by

the lower right entry

λ = β3Ŝ1 + δÎ1 − (α3 + v3).
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This eigenvalue is real-valued, and whether it is positive or negative is equivalent to

R1 being greater than or less than one, respectively.

Proposition 3.9. Consider system (3.11) on the space X , and suppose the condition

R0,3 > 1 (3.17)

holds. Define

R3 =
β1Š1

δJ̌ + α1 + v1

Then the following conditions classify the stability of (Š1, 0, J̌)

i. If R3 < 1, then (Š1, 0, J̌) is locally asymptotically stable.

ii. If R3 > 1, then (Š1, 0, J̌) is unstable.

Proof. We evaluate the Jacobian of system (3.11) at (Š1, 0, J̌) to get

J(Š1, 0, J̌) =


r1

(
1− 2Ň1

K1

)
− (α3 + v3) r

(
1− 2Ň1

K1

)
− β1Š1 + α1 r1

(
1− 2Ň1

K1

)
− v3

0 β1Š1 − δJ̌ − (α1 + v1) 0

β3J̌ δJ̌ 0

 .

where Ň = Š1 + J̌ . The eigenvalues of J(Š1, 0, J̌) are the same as the Jacobian (3.10)

given the corresponding subscripts and

λ = β1Š1 − δJ̌ − (α1 + v1).

This eigenvalue is real-valued, and it is positive or negative is equivalent to R3 greater

than or less than one, respectively.
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To prove permanence in system (3.11), we follow arguments proposed in [18]. We

look at the flow = on the boundary of X . We denote the restriction of = to ∂X

by ∂= on ∂X . Let N be the maximal invariant set of ∂= on ∂X . We then find a

cover {Nσ}σ∈Λ, where Λ is an index set. Nσ ⊂ ∂X , N ⊂ ∪σ∈ΛNσ, and Nσ (σ ∈ Λ)

are pairwise disjoint closed invariant sets. The sets must also satisfy the following

hypothesis:

(H) (a) All Nσ are isolated invariant sets of the flow =.

(b) {Nσ}σ∈Λ is acyclic, that is, any finite subset of {Nσ}σ∈Λ does not form a

cycle.

(c) Any compact subset of ∂E contains, at most, finitely many sets of {Nσ}σ∈Λ.

Once the invariant setsNσ satisfy the three conditions of hypothesis (H) for all σ ∈ Λ,

the following theorem is applied to establish uniform persistence.

Theorem 3.10 (Freedman, Ruan, Tang [18]). Let Y be a closed positively invariant

subset of X on which a continuous flow = is defined. Suppose there is a constant

α > 0 such that = is point dissipative on S [∂Y, α]∩ Y̊ and the assumption (H) holds.

Then the flow = is uniformly persistent if and only if

W+(Nσ) ∩ S [∂Y, α] ∩ Y̊ = Ø

for any σ ∈ Λ, where W+(Nσ) = {y ∈ X : γ+(y) ⊂ Nσ}.

A dissipative system is bounded, so it follows that it is also point dissipative.

That is, system (3.11) is dissipative on the X̊ , so clearly it is point dissipative for any

α > 0 on S [∂X , α] ∩ X̊ . Therefore, the conditions that assumption (H) holds and

W+(Nσ) ∩ X̊ = Ø are sufficient to satisfy the premises of Theorem 3.10.
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Figure 3.4: The trajectories on the boundary of E for subsystem (3.11). Given the condi-
tion Rmin

0 > 1, there exist an interior equilibrium point on each of the invariant sets N1 and
N2. These equilibria are both globally stable relative to the respective invariant set; hence,
{Nσ}σ∈Λ is acyclic, and condition (b) of hypothesis (H) is satisfied.
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We are now ready to prove conditions for permanence in system (3.11). Λ =

{0, 1, 2} is the nonempty index set. The maximal invariant set N of ∂= is N =

H1 ∪H2. We note N is a closed invariant set and define the cover {Nσ}σ∈Λ of N by

N0 = {(S1, I1, J) ∈ X : I1 = J = 0},

N1 = {(S1, I1, J) ∈ X : I1 > 0, J = 0},

N2 = {(S1, I1, J) ∈ X : I1 = 0, J > 0},

and we note

N =
⋃
σ∈Λ

Nσ

and Nσ ⊂ ∂X . We also note that Nσ (σ ∈ Λ) are pairwise disjoint closed invariant

sets.

Lemma 3.11. Suppose Rmin
0 > 1. The pairwise disjoint closed invariant sets given

by Nσ (σ ∈ Λ) satisfy hypothesis (H).

Proof. Assumption (a). First, we consider the flow = restricted to N0. I1 and J are

equal to zero and hence their respective differential equations of system (3.11) are set

to zero. Moreover, system (3.11) is reduced to the logistic growth differential equation

with respect to the susceptive subclass. Hence, N0 is an isolated invariant set of the

flow =. Next, we consider the flow = restricted to N1. In this case, J = 0 and S1 ≥ 0,

I1 > 0, and system (3.11) is reduced to system (3.1) on N1. That is, given Rmin
0 > 1,

any initial conditions on N1 globally attract to the equilibrium point (Ŝ1, Î1, 0) (see

Theorem 3.6). Hence, N1 is an isolated invariant set of the flow =. Finally, the

case of N2 is analogous to the case of N1 with trajectories globally attracting toward

(Š1, 0, J̌) on N2 for Rmin
0 > 1. Therefore, assumption (a) is satisfied.
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Assumption (b). Given Rmin
0 > 1, (K1, 0, 0) is globally attractive on N0 with

the exception of the origin. (Ŝ1, Î1, 0) is globally attractive on N1 as a consequence

of Theorem 3.6. (Š1, 0, J̌) is globally attractive on N2. Hence, given Rmin
0 > 1,

no trajectories can form a cycle for any finite collection of {Nσ}σ∈Λ. Figure 3.4

shows the acyclic behavior on the boundary of E. Therefore, {Nσ}σ∈Λ is acyclic, and

assumption (b) is satisfied.

Assumption (c). There are a finite number of sets of {Nσ}σ∈Λ , so clearly any

compact set of the boundary will contain only a finitely many sets of {Nσ}σ∈Λ. Hence,

assumption (c) is satisfied.

Theorem 3.12. Suppose Rmin
0 > 1 and Ri > 1 for i = 1, 3. For any initial conditions

not contained in the maximal invariant set N , system (3.11) exhibits permanence.

Moreover, there exists an equilibrium point with all components positive.

Proof. First, we note that for Rmin
0 > 1, R1 > 1, and R3 > 1, W+(Ni) = Ni for

i = 0, 1, 2, respectively. Hence, W+(Nσ) ∩ X̊ = Ø for all σ ∈ Λ. This result

together with Lemma 3.11, we are now able to apply Theorem 3.10. Hence, the flow

of system (3.11) is uniformly persistent. The upper-bound from the dissipativity of

system (3.11) implies uniformly persistent is equivalent to permanence.

To establish the existence of equilibria on X̊ , we use the following three theorems

from [27]. The first two theorems are accredited to Schauder and Horn, respectively.

Theorem 3.13 (Schauder [49]). Let U be a nonempty bounded open convex subset of

the Banach space E, and suppose that A : E → E is completely continuous. Assume

that for some fixed prime p ≥ 2, AkŪ ⊂ U for k = p, p + 1. Then A has a fixed

point.
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Theorem 3.14 (Horn [26]). Let U0 ⊂ U1 ⊂ U2 be convex subsets of the Banach space

E with U0 and U2 compact and U1 open in U2. Let A : U2 → E be continuous and

assume that AjU1 ⊂ U2 (j ∈ Z+). Suppose also that there exists an integer m > 0

such that AjU1 ⊂ U0 for j ≥ m. Then A has a fixed point in U0.

Theorem 3.15 (Hutson, Schmitt [27]). Suppose that permanence holds for the set of

differential equations (3.11). Then there exists an equilibrium point in X̊ .

To calculate the equilibria in X̊ , we first note the equilibria will satisfy the system

of equations

r1N1

(
1− N1

K1

)
− v1I1 − v3J = 0

β1S − δJ − (α1 + v1) = 0

β3S + δI − (α3 + v3) = 0.

Using the second and third equations, we can write the variables N1, I1, and J as

linear equations of S1, as follows

J =
β1

δ
S − v1 + α1

δ
, I1 = −β3

δ
S +

v3 + α3

δ
,

and N1 =

(
1 +

β1 − β3

δ

)
S +

1

δ
((v3 + α3)− (v1 + α1)) .

Then the S1-coordinates of the equilibria are a solution to the quadratic equation

c2S
2
1 + c1S1 + c0 = 0,



51

where

c2 =

(
1 +

β1 − β3

δ

)2

c1 =

[
2

(
α3 + v3

δ
− α1 + v1

δ

)
−K1

](
1 +

β1 − β3

δ

)
+
K1

r1δ
(v3β1 − v1β3)

c0 =

(
α3 + v3

δ
− α1 + v1

δ

)(
α3 + v3

δ
− α1 + v1

δ
−K1

)
+
K1

r1δ
(v1α3 − v3α1) .

(3.18)

Hence, the S1-coordinates of the equilibria satisfy the quadratic formula

S∗ =
−c1 ±

√
c21 − 4c0c2

2c2
,

and the equilibria in X̊ have the form

(
S∗, −β3

δ
S ∗+

v3 + α3

δ
,
β1

δ
S ∗ −v1 + α1

δ

)
.

We now consider other possibilities for permanence in system (3.11). That is, we

give conditions for permanence when Rmax
0 > 1 and Rmin

0 < 1. We state the following

proposition:

Proposition 3.16. Suppose Rmax
0 > 1 and Rmin

0 < 1.

i. Let R0,1 > 1 and R0,3 < 1. If R1 > 1, then system (3.11) exhibits permanence.

ii. If R0,1 < 1 and R0,3 > 1, then system (3.11) does not exhibit permanence.

Proof. In the first case, since R0,1 > 1 and R0,3 < 1, the only nontrivial boundary

equilibrium point is at (Ŝ1, Î1, 0). (Ŝ1, Î1, 0) is unstable when R1 > 1. We use a

similar argument to Theorem 3.12. Therefore, system (3.11) exhibits permanence
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when R1 > 1. In the latter case, if R0,1 < 1 then R3 < 1, and all interior trajectories

converge to (Š1, 0, J̌); hence there is no permanence.

Proposition 3.16 suggests system (3.11) exhibits permanence despite R0,3 < 1;

that is, the super-strain can persist with its independent basic reproductive number

less than one. The conditions R0,1 > 1, R0,3 < 1, and R1 > 1 is another sufficient

parameter spaces for the system to exhibit permanence; however, to satisfy such a

condition, a necessary but not sufficient requirement is δ > β3.

3.2.2 Quantitative Analysis and Simulations

To simulate an example of seasonal and avian influenza strains in a population, we

use data from Thailand. Thailand is a likely locale here, due to the surveillance of

influenza strains throughout the country and the prevalence of the avian strain H5N1.

To determine the carrying capacity, initial susceptible population size, and pop-

ulation growth rate, we consider data on the total population of Thailand [37]. Ta-

ble 3.1 shows the data from the National Statistics Office of Thailand. The current

Thai population of 65,493,298 [7] was also included in the data. We then best-fit the

data to the to the solution of the logistic equation given by

p(t) =
KP0e

rt

K + P0(ert − 1)
,

using the method of least squares. The parameters were determined using iterative

methods: K = 87.3291, S0 = 3.983, r = 0.038. Figure 3.5 is the graph of the data

with the best-fit logistic solution. In a study by the National Institute of Health in

Thailand [45], case specimens of influenza were taken from patients in 2004 and 2005.
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Figure 3.5: Graph of the data from the National Statistics Thailand [37] and the best-fit
solution of the logistic solution. Parameter values are K = 87.33, S0 = 3.98, and r = 0.038.
R2 = 1− (Residual sum of squares)/(Corrected sum of squares) = 0.977.
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Table 3.1: Population of Thailand from 1911 to 2000. Information provided by the Na-
tional Statistics Office Thailand [37].

Year Population
1911 8,266,408
1919 9,207,355
1929 11,506,207
1937 14,464,105
1947 17,442,689
1960 26,257,916
1970 34,397,374
1980 44,824,540
1990 54,548,530
2000 60,606,947

It was determined that the number of cases of influenza-like illness (ILI) for 2004

and 2005 were 21,176 and 21,351 cases per 100,000 population. The study reported

influenza positive specimens. For 2004, it was determined that 12.0% of the specimens

were determined to have influenza A, and of those positive for Influenza A, 3.3% were

determined to have H5N1 while 96.7% did not. Table 3.2 shows the data of the

different influenza types and subtypes from the study. This information is applied to

Table 3.2: Table 1 of [45]. This table gives a breakdown of the influenza types and subtypes
from the case specimens in 2004-2005.

Year No. of specimens No. of positives Type Subtype of A
Influenza A Influneza B H1N1 H3N2

2004 3,854 539 461 78 249 197
2005 3,834 748 492 256 55 437

the reports that the total number of clinical cases of ILI in 2004 was 21,176 cases per

100,000 population. From these data, we chose the seasonal incidence of influenza to
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β1 = 0.0245 and the avian strain to be β3 = 0.00084. A summary report on influenza

in Asian countries [23] from 1999 cites the annual mortality due to pneumonia was

176 per 100,000 population, so we let v1 = 0.00176 and α1 = 1 − v1 = 0.99824.

The World Health Organization report on June 19, 2008 [48] recorded the number of

confirmed 25 cases and 17 deaths due to H5N1 in Thailand, so we let v3 = 0.68 and

α3 = 1− v3 = 0.32. The incidence rate δ is left undefined as a bifurcation parameter.

Calculating the basic reproductive values, we get Rmin
0 = 0.079 and Rmax

0 = 2.313.

This result implies that the only nontrivial boundary equilibrium is at (Ŝ, Î1, 0) =

(40.8, 51.1, 0). Hence, the condition for permanence is R1 > 1. The calculated value

of R1 in terms of δ is given by R1 = 0.0343 + 51.1δ. Then the condition that

δ > 0.0189 is equivalent to R1 > 1. Therefore, it is noted that subclass J infected by

the super-strain eradicates for δ < 0.0189.
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Figure 3.6: Population densities of the subclasses of system (3.11) versus time. Parameter
values are r1 = 0.037, K1 = 94.455, β1 = 0.0245, β3 = 0.00084, α1 = 0.99824, α3 = 0.32,
v1 = 0.00176, v3 = 0.68, and δ = 0.00084. Initial conditions are set to S(0) = 4.181,
I1(0) = 1.0, and J(0) = 0.483. The trajectories attract to the super-strain free equilibrium
point (40.8, 51.1, 0.0).
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Figure 3.7: Population densities of the subclasses of system (3.11) versus time. Parameter
values are r1 = 0.037, K1 = 94.455, β1 = 0.0245, β3 = 0.00084, α1 = 0.99824, α3 =
0.32, v1 = 0.00176, v3 = 0.68, and δ = 0.04. Initial conditions are set to S(0) = 4.181,
I1(0) = 1.0, and J(0) = 0.483. The trajectories attract to the endemic equilibrium point
(42.4, 24.1, 1.0).
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3.3 The Co-Infection Subsystem

In this section, we consider a co-infection subsystem of the intermediate host. We

take the intermediate host system of Section 2 and remove the interaction with the

primary and secondary host (i.e., g1 = g2 = 0). The resulting system assumes two

strains are already present in the intermediate host system. In this scenario, there

is no possibility of genetic recombination in the co-infected subclass. The resulting

co-infection subsystem is given by

dX

dt
= rXNX

(
1− NX

KX

)
−

2∑
i=1

bi(Yi + diY12)X + a1Y1 + a2Y2 + a12Y12

dY1

dt
= b1(Y1 + d1Y12)X − b12Y1Y2 − (a1 + u1)Y1

dY2

dt
= b2(Y2 + d2Y12)X − b21Y1Y2 − (a2 + u2)Y2

dY12

dt
= (b12 + b21)Y1Y2 − (a12 + u12)Y12

with X(0) ≥ 0, Y1(0) ≥ 0, Y2(0) ≥ 0, Y12(0) ≥ 0.

(3.19)

If we look at the sum of the equations of system (3.19), then the differential equation

for total population is given by

dNX

dt
= rXNX

(
1− NX

KX

)
− u1Y1 − u2Y2 − u12Y12. (3.20)
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Again, comparing to the right-hand side of the inequality (3.3), we get the dissipativity

of system (3.19); that is, we have

0 ≤ lim sup
t→∞

NX(t) ≤ KX .

We denote the space

X = {(X, Y1, Y2, Y12) ∈ R4 : 0 ≤ X, Y1, Y2, Y12},

and the attracting region

E = {(X, Y1, Y2, Y12) ∈ X : X + Y1 + Y2 + Y12 ≤ KX}.

3.3.1 Qualitative Analysis

Clearly, system (3.19) has the disease free equilbria (0, 0, 0, 0) and (KX , 0, 0, 0). We

are now ready to calculate the basic reproductive number R0 for system (3.19). As

in the case of the super-infection system (3.11), there lies the issue of two strains

circulating in the population, so we denote the threshold parameter by Rmax
0 . Again,

Rmax
0 is calculated using the methods from [44].

Proposition 3.17. Rmax
0 for system (3.19) is defined by

Rmax
0 = max

i=1,2

{
biKX

ai + ui

}
.

For any positive parameter values, (0, 0, 0, 0) is a saddle. The following conditions

characterize the stability of (KX , 0, 0, 0):
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i. If Rmax
0 < 1, then (KX , 0, 0, 0) is locally asymptotically stable.

ii. If Rmax
0 > 1, then (KX , 0, 0, 0) is unstable.

Proof. We label the equilibria x0 = (0, 0, 0, 0) and xK = (KX , 0, 0, 0) so that the

labels x0 and xK remain despite rearranging coordinate positions. We now let x1 =

Y1, x2 = Y2, x3 = Y12 and x4 = X, and ~x = (x1, x2, x3, x4). Now we can write

system (3.19) in the form

ẋi = Fi(~x)− Vi(~x),

where

F =



b1(Y1 + d1Y12)X

b2(Y2 + d2Y12)X

(b12 + b21)Y1Y2

0


and

V =



b12Y1Y2 + (a1 + u1)Y1

b21Y1Y2 + (a2 + u2)Y2

(a12 + u12)Y12

−rXNX

(
1− NX

KX

)
+
∑2

i=1 bi(Yi + diY12)X − a1Y1 − a2Y2 − a12Y12


.

We then define

V+ =


0

0

0

rXNX

(
1− NX

KX

)
+ a1Y1 + a2Y2 + a12Y12

 and V− =


b12Y1Y2 + (a1 + u1)Y1

b21Y1Y2 + (a2 + u2)Y2

(a12 + u12)Y12∑2
i=1 bi(Yi + diY12)X

 ,
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where Vi = V−i − V+
i . It is not difficult to demonstrate conditions (A1)-(A4) in [44]

are satisfied, so we draw our attention to condition (A5).

(A5) To satisfy this assumption, we analyze the Jacobian of system (3.11) when F(x)

is set to zero. That is, we consider the Jacobian of −V at the DFE xK given by

−DV(xK) =


−(a1 + u1) 0 0 0

0 −(a2 + u2) 0 0

0 0 −(a12 + u12) 0

−rX − b1KX + a1 −rX − b2K + a2 −rX − (b1d1 + b2d2)KX + a12 −rX

 ,
(3.21)

which has the negative eigenvalues λ1 = −(a1 + u1), λ2 = −(a2 + u2), λ3 =

−(a12 + u12), and λ4 = −rX .

Conditions (A1)-(A5) are satisfied, so we can use Lemma 1 in [44]. We now have

DF(xK) =

 F 0

0 0

 and DV(xK) =

 V 0

J3 J4

 , (3.22)

where

F =


b1KX 0 b1d1KX

0 b2KX b2d2KX

0 0 0

 , V =


a1 + u1 0 0

0 a2 + u2 0

0 0 a12 + u12

 ,

J3 =
[
rX + b1KX − a1 rX + b2KX − a2 rX + (b1d1 + b2d2)KX − a12

]
, and J4 = rX .

Furthermore, we note F is nonnegative, V is nonsingular, and J4 is positive. Then
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we have

FV −1 =



b1KX

a1 + u1

0
b1d1KX

a12 + u12

0
b2KX

a2 + u2

b2d2KX

a12 + u12

0 0 0


,

which gives the spectral radius

ρ(FV −1) = max
i=1,2

{
biKX

ai + ui

}
.

The basic reproductive number is given by Rmax
0 = ρ(FV −1). The equilibrium point

is stable for Rmax
0 < 1 and unstable when Rmax

0 > 1.

Now that R0 for system (3.19) is established, we examine the stability at the

origin. Evaluating J at x0, we get

J(x0) =



rX rX + a1 rX + a2 rX + a12

0 −(a1 + u1) 0 0

0 0 −(a2 + u2) 0

0 0 0 −(a12 + u12)


. (3.23)

which has the eigenvalues

λ1 = rX , λ2 = −(a1 + u1), λ3 = −(a2 + u2), and λ4 = −(a12 + u12).
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The corresponding eigenvectors are given by

e1 =


1

0

0

0

 , e2 =


− a1+rX

a1+u1+rX

1

0

0

 , e3 =


− a2+rX

a2+u2+rX

0

1

0

 , and e4 =


− a12+rX

a12+u12+rX

0

0

1

 ,

respectively. The stable manifold of x0 touches the region E at the origin. All

trajectories in the positive quadrant that are local to (0, 0, 0, 0) will attract toward

the S-axis.

We now examine the boundary of X. We denote the hyperplanes

H0 = {(X, Y1, Y2, Y12) ∈ X : X = 0} ,

H1 = {(X, Y1, Y2, Y12) ∈ X : Y1 = 0} ,

H2 = {(X, Y1, Y2, Y12) ∈ X : Y2 = 0} ,

H12 = {(X, Y1, Y2, Y12) ∈ X : Y12 = 0} .

The boundary of X is then given by

∂X =
⋃

i=0,1,2,12

Hi.

Considering the restriction to H0, the trajectories with at least one nonzero compo-

nent (i.e., we rule out the posiblity that all components are zero) of system (3.19) will

flow off of ∂X . On the hyperplane H12, the flow also lifts off of the plane onto the

interior. On hyperplanes H1 and H2, the flow lifts off the boundary unless Y12 = 0

and Yi = 0 on the respective hyperplace. That is, since there is a co-infection variable
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Y12 in the differential equations for Y1 and Y2 for the system (3.19), infected individ-

uals for the corresponding infectious subclass will continue to reproduce in the case

Y1 = 0 or Y2 = 0 given Y12 > 0. The closed invariant subspaces of the boundary are

on the sets H1∩H12 and H2∩H12. The equilibria on ∂X are then given by (0, 0, 0, 0),

(KX , 0, 0, 0), (X̂, Ŷ1, 0, 0), and (X̌, 0, Y̌2, 0), where the values are the same as (Ŝ, Î)

for system (3.1) with the corresponding change in variables and proper subscripts.

For example, (X̌, 0, Y̌2, 0) is given by

a2 + u2

b2
, 0,

KX

2

(
1− u2

rX

)
− X̌ +

√
K2
X

4

(
1− u2

rX

)2

+
u2KXX̌

rX
, 0

 .

Notice all equilibria lie on the boundary of H12, that is, if the equilibria is disease

free of either strain, then the density of the co-infected subclass is also zero. Take

for example the interior of the hyperplane H1. The differential equation for the Y1

subclass is then given by

dY1

dt
= b1d1Y12X

on H1 (setting Y1 = 0), which implies for any y ∈ H̊1, γ
+(y) /∈ H1. Hence, the only

closed invariant subspaces on the boundary are on H1∩H12 and H2∩H12, that is, the

system (3.19) behaves like the system (3.1) on the subspaces H1 ∩H12 and H2 ∩H12.

Define the threshold parameter

Rmin
0 = min

i=1,2

{
biKX

ai + ui

}
.

The condition that Rmin
0 > 1 is sufficient for each point to exist and to be globally

asymptotically stable on the relative invariant subspace. We now develop stability
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conditions for each equilibrium point relative to the whole space X . We continue with

the following proposition:

Proposition 3.18. Consider system (3.19) on the space X , and suppose the condition

b1K

a1 + u1

> 1 (3.24)

holds. Define the constants

R1 =
b2X̂

b21Ŷ1 + a2 + u2 + a12 + u12

and

R12 =
(a12 + u12)(b21Ŷ1 + a2 + u2)

b2X̂(a12 + u12 + d2(b12 + b21)Ŷ1)

Then the following conditions classify the stability of (X̂, Ŷ1, 0, 0)

i. (X̂, Ŷ1, 0, 0) is locally asymptotically stable for R1 < 1 and R12 > 1.

ii. (X̂, Ŷ1, 0, 0) is unstable for either: (1a) R1 < 1 and R12 < 1, or (1b) R1 > 1

and R12 < 1.

Proof. We begin by evaluating the Jacobian of system (3.19) at (X̂, Ŷ1, 0, 0). The

result has the form

J(X̂, Ŷ1, 0, 0) =

 A B

0 C

 , (3.25)

where

A =

 rX

(
1− 2N̂X

KX

)
− b1Ŷ1 rX

(
1− 2N̂X

KX

)
− u1

b1Ŷ1 0


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and

C =

 b2X̂ − b21Ŷ1 − (a2 + u2) b2d2X̂

(b12 + b21)Ŷ1 −(a12 + u12)

 ,
noting N̂X = X̂ + Ŷ1. Matrices A, B, and C are all 2 × 2, and the upper triangular

block form of J(X̂, Ŷ1, 0, 0) implies the eigenvalues of matrices A and C are the

eigenvalues of J(X̂, Ŷ1, 0, 0). The matrix A has the form of the matrix (3.10), so it

has eigenvalues have negative real part. Since the off-diagonal entries of the matrix

C are positive, the eigenvalues of C are real. We are now ready to develop conditions

to characterize the local stability for (X̂, Ŷ1, 0, 0).

Define the threshold constants

R1 =
b2X̂

b21Ŷ1 + a2 + u2 + a12 + u12

,

and

R12 =
(a12 + u12)(b21Ŷ1 + a2 + u2)

b2X̂(a12 + u12 + d2Ŷ1(b12 + b21))

Then the condition R1 < 1 implies tr(C) < 0, and R1 > 1 implies tr(C) > 0. Sim-

ilarly, the condition R12 < 1 implies det(C) < 0, and R12 > 1 implies det(C) > 0.

In the case when R1 < 1, we clearly have at least one negative eigenvalue, so

R12 < 1 (or R12 > 1) implies the other eigenvalue is positive (or negative). On

the other hand, given R1 > 1 at least one eigenvalue is positive, so the condition
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R12 < 1 implies the other eigenvalue is negative. We note that when R1 > 1, then

b2X̂ > b12Ŷ1 + a2 + u2 + a12 + u12. We then have

1

R12

>
b12Ŷ1 + a2 + u2 + a12 + u12

b12Ŷ1 + a2 + u2

· d2(b12 + b21)Ŷ1 + a12 + u12

a12 + u12

(3.26)

>

(
1 +

a12 + u12

b12Ŷ1 + a2 + u2

)
·

(
1 +

d2(b12 + b21)Ŷ1

a12 + u12

)
> 1, (3.27)

which implies R12 < 1. Hence, the equilibrium point (X̂, Ŷ1, 0, 0) is locally asymp-

totically stable when R1 < 1 and R12 > 1. (X̂, Ŷ1, 0, 0) is unstable when either: (1a)

R1 < 1 and R12 < 1, or (1b) R1 > 1 and R12 < 1.

The symmetry of system (3.19) with respect to the Y1 and Y2 variables and respec-

tive parameters give a similar result to proposition (3.18) for the equilibrium point

(X̌, 0, Y̌2, 0). That is, we can define a threshold constant

R2 =
b1X̌

b12Y̌2 + a1 + u1 + a12 + u12

,

and

R21 =
(a12 + u12)(b12Y̌2 + a1 + v1)

b1X̌(a12 + u12 + d1Y̌2(b12 + b21))

that characterizes the local stability. R2 < 1 and R21 > 1 implies (X̌, 0, Y̌2, 0) is local

asymptotically stable. (X̌, 0, Y̌2, 0) is unstable for either (2a) R21 < 1 and R21 < 1,

or (2b) R2 > 1 and R21 < 1. We are now ready to define conditions for permanence.

We are now ready to prove conditions for permanence in system (3.11). De-

fine the nonempty index set Λ = {0, 1, 2}, and let ∂= denote the restriction of

the flow to ∂X . Let N be the maximal invariant set of ∂=, which in this case



68

N = (H1 ∩ H12) ∪ (H2 ∩ H12). We note N is a closed invariant set and define the

cover {Nσ}σ∈Λ of N by

N0 = {(X, Y1, Y2, Y12) ∈ X : Y1 = Y2 = Y12 = 0},

N1 = {(X, Y1, Y2, Y12) ∈ X : Y1 > 0, Y2 = Y12 = 0},

N2 = {(X, Y1, Y2, Y12) ∈ X : Y2 > 0, Y1 = Y12 = 0},

and we note

N =
⋃
σ∈Λ

Nσ

and Nσ ⊂ ∂X . We also note that Nσ (σ ∈ Λ) are pairwise disjoint closed invariant

sets. The following lemma show the closed invariant sets of the cover {Nσ}σ∈Λ satisfy

hypothesis (H) of [18].

Lemma 3.19. Suppose Rmin
0 > 1 for system (3.19). The pairwise disjoint closed

invariant sets given by Nσ (σ ∈ Λ) satisfy hypothesis (H).

Proof. Assumption (a). We first note that (0, 0, 0, 0) is invariant inN0. Otherwise, the

flow = on N0, N1, and N2 globally attract to the equilibria (KX , 0, 0, 0), (X̂, Ŷ1, 0, 0),

and (X̌, 0, Y̌2, 0), respectively (see the proof of assumption (a) in Lemma 3.11). Hence,

all Nσ are isolated sets of the flow =.

The proof of assumptions (b) and (c) are completely analogous to the proofs of

the same assumptions in Lemma 3.11.

As in the case of system (3.11), system (3.19) is dissipative and hence point

dissipative. We can then note hypothesis (H) and W+(Nσ)∩ X̊ = Ø are sufficient to

satisfy the premise of Theorem 3.10.
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We define the conditions:

(1) Condition (1a) or (1b) is satisfied for (X̂, Ŷ1, 0, 0).

(2) Condition (2a) or (2b) is satisfied for (X̂, 0, Ŷ2, 0).

We are now ready to state the theorem that establishes permanence in system (3.19).

Theorem 3.20. Suppose Rmin
0 > 1 and that conditions (1) and (2) are satisfied.

Then for any initial conditions not in the maximal invariant set N , system (3.19)

exihibits permanence. Moreover, there exists a positive equilibrium point.

Proof. Rmin
0 > 1 implies W+(N0) = N0. If condition (1) is satisfied, then Proposi-

tion 3.18 implies W+(N1) = N1. Similarly, we get W+(N2) = N2 when condition

(2) is satisfied. Hence, W+(Nσ) ∩ X̊ = Ø for all σ ∈ Λ. This result together with

Lemma 3.19, we are now able to apply Theorem 3.10. Hence, the flow of system (3.19)

is uniformly persistent. The upper-bound from the dissipativity of system (3.19) im-

plies uniformly persistent is equivalent to permanence.

Consider the case with Rmin
0 > 1 with conditions R1 > 1 and R2 > 1. Then for

any initial condition off of the closed invariant subspaces H1 ∩H12 and H2 ∩H12, the

system (3.19) will persist. Notice this implies that both strains need to be present

for the system to exhibit permanence; however, this requires the density in both the

subclasses Y1 and Y2 must be positive or in the co-infected subclass and either of the

other infectious subclasses.

3.3.2 Quantitative Analysis and Simulations

The co-infection subsystem (3.19) represents an intermediate host that acts as a

“mixing vessel” of two parasitic strains. That is, a single host has the potential
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of being infected by two different strains at a given moment. For our interest in

influenza, pigs serve as ideal candidates in that they can become infected with both

avian and human strains of the virus; see [9, 42].

To simulate a system consistent with the simulations for the super-infection model

of Section 3.2, we consider data from the Food and Agriculture Organization of the

United Nations (FAO) on pig populations in Thailand. Table 3.3 shows the data

from [16, 17]. The population growth rate and capacity were calculated to be rX =

Table 3.3: Pig populations of Thailand reported by the Food and Agriculture Organization
of the United Nations (FAO) on [16, 17].

Year Population (millions)
1991 4.9
1992 4.7
1993 5.0
1994 5.3
1995 4.5
1996 4.0
1999 6.4
2000 6.6
2001 6.7
2002 6.7

0.093 and KX = 9.16, using numerical methods of nonlinear regression with the

solution to the logistic equation. Due to the inconsistency with the data for the years

1995 and 1996, these years were omitted from the regression calculation. There is a

steady growth trend of the data for the swine population values prior to 1995, and the

trend continues from 1999 on. We omit the data from the years 1995 and 1996, since

they deviate from the increasing trend of the other statistics; see Table 3.3. Due to

the limited data on swine influenza virus transmissibility, the remaining parameters
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are chosen as reasonable values that set conditions to exhibit permanence. For the

incidence rates, let b1 = 0.23, b2 = 0.13, b12 = 0.2, and b21 = 0.0013 with d1 = 1 and

d2 = 1. The corresponding recovery and disease induced mortality rates are a1 = 0.9,

u1 = 0.07, a2 = 0.0125, u2 = 0.08, a12 = 0.025, and u12 = 0.03.

Calculating the basic reproductive values, we get Rmin
0 = 2.172 and Rmax

0 = 12.87.

Since both values are greater than one, this implies the existence of both nontrivial

boundary equilibria at (X̂, Ŷ1, 0, 0) = (4.2, 2.4, 0, 0) and (X̌, 0, Y̌2, 0) = (0.7, 0.5.7, 0).

The remaining constants are R1 = 3.64, R12 = 0.11, R2 = 0.08, and R21 = 0.27.

SinceR1 > 1, we have the (X̂, Ŷ1, 0, 0) is a saddle as a consequence of proposition 3.18.

Since R2 < 1 and R21 < 1, we have (X̌, 0, Y̌2, 0) is also a saddle. Hence, there exists

an equilibrium point in X̊ . Simulations with the initial conditions X(0) = 0.002,

Y1(0) = 0.001, Y2(0) = 0.001, and Y12(0) = 0.001 attract to the interior equilibrium

point (0.66, 0.02, 2.33, 0.20). Figure 3.8 shows the population versus time for the

given values.
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Figure 3.8: Population densities of the subclasses of system (3.19) versus time. Parameter
values are rX = 0.093, KX = 9.16, b1 = 0.23, b2 = 0.2, b12 = 0.2, and b21 = 0.17 with
d1 = 1, d2 = 1, a1 = 0.9, u1 = 0.07, a2 = 0.8, u2 = 0.08, a12 = 0.75, and u12 = 0.03. Initial
conditions are set to X(0) = 0.002, Y1(0) = 0.001, Y2(0) = 0.001, and Y12(0) = 0.001. The
trajectories attract to the endemic equilibrium point (3.44, 1.22, 1.01, 0.59).



Chapter 4

Subsystems with Multiple Hosts

4.1 An SIS Model of Two Interacting Hosts

We begin by considering an SIS model with two host species, a primary host and a

secondary host, each with a strain circulating in the respective populations. Each host

has the total population divided into two subclasses of infectious and susceptible indi-

viduals. We denote the total population density for each species together at time t by

N(t). For the primary host, we consider the system (2.1). For the intermediate host,

we let X denote the susceptible subclass and Y1 denote the infectious subclass. The

total population density of primary and intermediate host species at time t are N1(t)

and NX(t), respectively. That is, N1(t) = S1(t) + I1(t) and NX(t) = X(t) + Y1(t).

Susceptible individuals of the intermediate host population are infected by infec-

tious individuals of the primary host by the mass action term gXI1. In other

words, infectious individuals of the primary host population are capable of infecting

73
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susceptible individuals of the intermediate host population through species interac-

tion.
dS1

dt
= r1N1

(
1− N1

K1

)
− β1S1I1 + a1I1

dX

dt
= rXNX

(
1− NX

KX

)
− b1XY1 − gXI1 + a1Y1

dI1
dt

= β1S1I1 − (α1 + v1)I1

dY1

dt
= b1XY1 + gXI1 − (a1 + u1)Y1

with S1(0) ≥ 0, X(0) ≥ 0, I1(0) ≥ 0, Y1(0) ≥ 0.

(4.1)

If we look at the sum the two equations of each species for system (4.1), then the

differential equations for total population of each species is given by

dN1

dt
= r1N1

(
1− N1

K1

)
− v1I1 (4.2)

and

dNX

dt
= rXNX

(
1− NX

KX

)
− u1Y1, (4.3)

implying

dN1

dt
≤ r1N1

(
1− N1

K1

)
and

dNX

dt
≤ rXNX

(
1− NX

KX

)
, (4.4)
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respectively. Solving the differential inequality, we get the carrying capacity bound

on the total population as t→∞, that is,

lim sup
t→∞

N1(t) ≤ K1 and lim sup
t→∞

NX(t) ≤ KX .

Setting S1 = 0, X = 0, I1 = 0 and Y1 = 0, we can clearly see that the population

growth rate is zero; moreover, the density of each species of system (4.1) is attracted

to the compact set [0, Ki] (i = 1, X) and the system is dissipative. For the total

population (including the population densities of both populations), we have

0 ≤ lim sup
t→∞

N(t) ≤ K,

where K = K1 +KX . We denote the space

X = {(S1, X, I1, Y1) ∈ R4 : 0 ≤ S1, X, I1, Y1},

and the attracting region

E = {(S1, X, I1, Y1) ∈ X : S1 + I1 ≤ K1, X + Y1 ≤ KX}.

We are now ready to solve for the equilibria. The subspaces

Z1 = {(S1, X, I1, Y1) ∈ X : X = Y1 = 0}

and

Z2 = {(S1, X, I1, Y1) ∈ X : S1 = I1 = 0}.
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are the invariant subspaces that consist only of the subclasses of primary and in-

termediate host individuals, respectively. System (4.1) has the disease free equilbria

(0, 0, 0, 0), (K1, 0, 0, 0), (0, KX , 0, 0) and (K1, KX , 0, 0). We are now ready to calcu-

late the basic reproductive number R0 for system (4.1) following the framework given

in [44].

Proposition 4.1. Rmax
0 for system (4.1) is defined by

Rmax
0 = max

{
β1K1

α1 + v1

,
b1KX

a1 + u1

}
.

For any positive parameter values, (0, 0, 0, 0) is a saddle. The following conditions

characterize the stability of (K1, KX , 0, 0):

i. If Rmax
0 < 1, then (K1, KX , 0, 0) is locally asymptotically stable.

ii. If Rmax
0 > 1, then (K1, KX , 0, 0) is unstable.

Proof. We label the equilibria x0 = (0, 0, 0, 0) and xK = (K1, KX , 0, 0) so that the

labels x0 and xK remain despite rearranging coordinate positions. We let x1 = I1,

x2 = Y1, x3 = S1 and x4 = X, and ~x = (x1, x2, x3, x4). Now we can write system (4.1)

in the form

ẋi = Fi(x)− Vi(x),

where

F =



β1S1I1

b1XY1 + gXI1

0

0


and V =



(α1 + v1)I1

(a1 + u1)Y1

−r1N1

(
1− N1

K1

)
+ β1S1I1 − α1I1

−rXNX

(
1− NX

KX

)
+ b1XY1 + gXI1 − a1Y1


.
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We then define

V+ =



0

0

r1N1

(
1− N1

K1

)
+ α1I1

rXNX

(
1− NX

KX

)
+ a1Y1


and V− =



(α1 + v1)I

(a1 + u1)I

β1S1I1

b1XY1 + gXI1


,

where Vi = V−i − V+
i . It is not difficult to demonstrate conditions (A1)-(A4) in [44]

are satisfied, so we draw our attention to condition (A5).

(A5) We now consider the Jacobian of system (4.1) when F(x) is set to zero. That

is, we consider the Jacobian of −V at the DFE xK = (K1, KX , 0, 0) given by

−DV(xK) =



−(α1 + v1) 0 0 0

0 −(a1 + u1) 0 0

−r1 − β1K1 + α1 0 −r1 0

gKX −rX − b1KX + a1 0 −rX


, (4.5)

which has the eigenvalues

λ1 = −r1, λ2 = −rX , λ3 = −(α1 + v1) and λ4 = −(a1 + u1).

Clearly, all the eigenvalues have negative real parts.

Conditions (A1)-(A5) are now satisfied, so we can use Lemma 1 in [44]. We now have

DF(xK) =

 F 0

0 0

 and DV(xK) =

 V 0

J3 J4

 , (4.6)
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where

F =

 β1K1 0

gKX b1KX

 , V =

 α1 + v1 0

0 a1 + u1

 ,

J3 =

 r1 + β1K1 − α1 0

gKX rX + b1KX − a1

 , and J4 =

 r1 0

0 rX

 .
Furthermore, we note F is nonnegative, V is nonsingular, and J4 is positive. Then

we have

FV −1 =


β1K1

α1 + v1

0

gKX

α1 + v1

b1KX

a1 + v1

 ,

which gives the spectral radius

ρ(FV −1) = max

{
β1K1

α1 + v1

,
b1KX

a1 + u1

}
.

The basic reproductive number is given by Rmax
0 = ρ(FV −1). The equilibrium point

is stable for Rmax
0 < 1 and unstable when Rmax

0 > 1. Now that R0 for system (4.1) is

established, we examine the stability at the origin. Evaluating J at x0, we get

J(x0) =



r1 0 r1 + α1 0

0 rX 0 rX + a1

0 0 −(α1 + v1) 0

0 0 0 −(a1 + u1)


, (4.7)
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which has the eigenvalues

λ1 = r1, λ2 = rX , λ3 = −(α1 + v1), and λ4 = −(a1 + u1).

The corresponding eigenvectors are given by

v1 =



1

0

0

0


, v2 =



0

1

0

0


and v3 =



− α1+r1
α1+v1+r1

0

1

0


, v4 =



0

0

− a1+rX
a1+u1+rX

1


,

respectively. The stable manifold about the origin is tangent to the region X , and

the unstable manifold is simply the S1X-plane. We can conclude that the origin is

classified as a saddle.

The following proposition characterizes the stability of (K1, 0, 0, 0) and (0, KX , 0, 0)

in the space X , and the species specific subspaces Z1 and Z2.

Proposition 4.2. Consider the equilibria (K1, 0, 0, 0) and (0, KX , 0, 0). The given

equilibria are both saddles relative to the space X . For considering (K1, 0, 0, 0) and

(0, KX , 0, 0) on the species hyperplanes H1 and H2, we denote

R0,1 =
β1K1

α1 + v1

for R0,X =
b1KX

a1 + u1

.

The condition R0,1 > 1(< 1) implies (K1, 0, 0, 0) is a saddle (asymptotically stable)

on Z1. Similarly, R0,K > 1(< 1) implies (0, KX , 0, 0) is a saddle (asymptotically

stable) on Z2.



80

Proof. Evaluating the Jacobian of system (4.1) at (K1, 0, 0, 0), we have

J(K1, 0, 0, 0) =



−r1 0 −r1 − β1K1 + α1 0

0 rX 0 rX + a1

0 0 β1K1 − (α1 + v1) 0

0 0 0 −(a1 + u1)


,

which has the eigenvalues

λ1 = −r1, λ2 = rX , λ3 = β1K1 − (α1 + v1), and λ4 = −(a1 + u1).

Hence, the positive eigenvalues λ2 implies the equilibrium point (K1, 0, 0, 0) is a saddle

with respect to the space X . The condition that λ3 < 0(> 0) is equivalent to the

condition R0,1 < 1(> 1).

Similarly, evaluating the Jacobian of system (4.1) at (0, KX , 0, 0), we have

J(0, KX , 0, 0) =



r1 0 r1 + α1 0

0 −rX −gKX −rX − b1KX + a1

0 0 −(α1 + v1) 0

0 0 gKX b1KX − (a1 + u1)


,

which yields the eigenvalues

λ1 = r1, λ2 = −rX , λ3 = −(α1 + v1), and λ4 = b1KX − (a1 + u1).

The desired result follows from similar methods as applied in the case of the equilib-

rium point (K1, 0, 0, 0).
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Notice that in absence of one of the species populations (e.g., S1 = 0 and I1 = 0

for the primary host), system (4.1) is reduced to system (3.1) in terms of one of the

species. Using the result of system (3.1) in Section 3.1 of Chapter 3, we can determine

the existence of a equilibrium point that is persistent relative to the given species.

For example, suppose X = Y1 = 0 and R0,1 > 1, then there exists the equilibrium

point (Ŝ1, 0, Î1, 0) that is globally asymptotically stable for initial conditions satisfying

S1(0) ≥ 0 and I1(0) > 0 on the subspace Z1. In this case, system (4.1) exhibits

persistence relative to the primary host species. Moreover, Z1 is a closed invariant

subspace of X . An analogous result holds for intermediate host species. We denote

the equilibrium point by (0, X̂, 0, Ŷ1) and the corresponding closed invariant subspace

by Z2. We are now ready to examine the stability criterion for (Ŝ1, 0, Î1, 0) and

(0, X̂, 0, Ŷ1) relative to the entire space X .

Proposition 4.3. Suppose Rmin
0 > 1. Then there exist the equilibria (Ŝ1, 0, Î1, 0) and

(0, X̂, 0, Ŷ1) for system (4.1). Define the parameter constants

R11 =
rX

gÎ1 + a1 + u1

, and R12 =
gu1Î1

rX(gÎ1 + a1 + u1)
.

For any positive parameter values, (0, X̂, 0, Ŷ1) is unstable. The following conditions

characterize the stability of (Ŝ1, 0, Î1, 0):

i. (Ŝ1, 0, Î1, 0) is asymptotically stable for R11 < 1 and R12 > 1.

ii. (Ŝ1, 0, Î1, 0) is unstable for either: (1) R11 > 1 and R12 < 1, or (2) R11 < 1

and R12 < 1.
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Proof. Rmin
0 > 1 implies the existences of both (Ŝ1, 0, Î1, 0) and (0, X̂, 0, Ŷ1) on Z1

and Z2, respectively. The Jacobian of system (4.1) evaluated at (Ŝ1, 0, Î1, 0) is

J(Ŝ1, 0, Î1, 0) =



r1

(
1− 2N̂1

K1

)
− β1Î1 0 r1

(
1− 2N̂1

K1

)
− v1 0

0 rX − gÎ1 0 rX + a1

β1Î1 0 0 0

0 gÎ1 0 −(a1 + u1)


,

(4.8)

By applying matrix column and row operations, the matrices given by

A =

 r1

(
1− 2N̂1

K1

)
− β1Î1 r1

(
1− 2N̂1

K1

)
− v1

β1Î1 0


and

B =

 rX − gÎ1 rX + a1

gÎ1 −(a1 + u1)

 .
have the same eigenvalues as matrix J(Ŝ1, 0, Î1, 0). The matrix A has the form of the

Jacobian (3.10). Hence, as a consequence of Proposition (3.4), the eigenvalues of the

matrix A have negative real parts. Define the threshold constants

R11 =
rX

gÎ1 + a1 + u1

,

and

R12 =
gu1Î1

rX(gÎ1 + a1 + u1)
.
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The condition that R11 > 1 (< 1) is equivalent to tr(B) > 0(< 0), and R12 > 1 (< 1)

is equivalent to det(B) > 0(< 0). Therefore, we can classify the stability criterion

for (Ŝ1, 0, Î1, 0) by if R11 < 1 and R12 > 1 then the equilibrium is asymptotically

stable. If R11 > 1, then R12 < 1. (Ŝ1, 0, Î1, 0) is unstable for either: (1) R11 < 1 and

R12 < 1, or (2) R11 > 1 and R12 < 1.

The Jacobian of system (4.1) evaluated at (0, X̂, 0, Ŷ2) is

J(0, X̂, 0, Ŷ2) =



r1 0 r1 + α1 0

0 rX

(
1− 2N̂X

KX

)
− b1Ŷ1 −gX̂ rX

(
1− 2N̂X

KX

)
− u1

0 0 −(α1 + v1) 0

0 b1Ŷ1 gX̂ 0


,

(4.9)

By applying matrix column and row operations, the matrices given by

C =

 r1 r1 + α1

0 −(α1 + v1)


and

D =

 rX

(
1− 2N̂X

KX

)
− b1Ŷ1 rX

(
1− 2N̂X

KX

)
− u1

b1Ŷ1 0


have the same eigenvalues as J(0, X̂, 0, Ŷ2). The eigenvalues of C are λ1 = r1 and

λ2 = −(α1 + v1). The matrix D has the same form as the Jacobian matrix (3.10) in

Section 3.1; hence, the two eigenvalues of D have negative real parts. We then have

the that eigenvalues of J(0, Ŝ2, 0, Î2) consist of a positive real eigenvalue and three
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eigenvalues with negative real parts. Therefore, the equilibrium point (0, Ŝ2, 0, Î2) is

unstable.

We now have stability criteria for all the boundary equilibria and are ready to

prove permanence for system (4.1). The closed invariant subspaces of the boundary

of X are Z1 and Z2. The maximal invariant set N of ∂= is N = Z1

⋃
Z2. We note

N is a closed and invariant and define the cover {Nσ}σ∈Λ of N by

N0 = {(S1, X, I1, Y1) ∈ X : I1 = Y1 = 0},

N1 = {(S1, X, I1, Y1) ∈ X : X = Y1 = 0, I1 > 0},

N2 = {(S1, X, I1, Y1) ∈ X : S1 = I1 = 0, Y1 > 0}.

Then

N =
⋃
σ∈Λ

Nσ

and Nσ ⊂ ∂X . We also note that Nσ (σ ∈ Λ) are pairwise disjoint closed invari-

ant sets. The equilibria (Ŝ1, 0, Î1, 0) and (0, X̂, 0, Ŷ1) are asymptotically stable when

restricted to the invariant spaces N1 and N2, respectively. Proposition 4.3 suggests

that the equilibria are both unstable, under certain conditions, when considered on

the entire space X . Therefore, {Nσ}σ∈Λ is acyclic, and condition (b) of hypothesis

(H) is satisfied.

Theorem 4.4. Suppose Rmin
0 > 1 and either: (1) R11 < 1 and R12 < 1, or (2)

R11 > 1 and R12 < 1. Then system (4.1) exhibits permanence.

Proof. AsRmin
0 > 1, we have the boundary equilibria: (0, 0, 0, 0), (K1, 0, 0, 0), (0, KX , 0, 0),

(K1, KX , 0, 0), (Ŝ1, 0, Î1, 0), and (0, X̂, 0, Ŷ1). (Ŝ1, 0, Î1, 0) is the only boundary equi-



85

librium point that is not immediately classified as unstable. Since either (1) R11 < 1

and R12 < 1, or (2) R11 > 1 and R12 < 1, it follows from Proposition 4.3 that

(Ŝ1, 0, Î1, 0) is unstable.

The classification of the boundary equilibria as unstable implies W+(Ni) = Ni.

It then follows that Ni

⋂
X̊ = Ø. Now, Theorem 3.10 applies so that the system is

uniformly persistent, which then implies the system exhibits permanence due to the

dissipativity.

4.2 SIS Model with an External Input

Since we have shown conditions for persistence in system (4.1), we can assume these

conditions will hold for primary host species and analyze the dynamics under these

conditions for intermediate host species. More specifically, if system (4.1) is persistent

with respect to the primary host’s infectious subclass (i.e., for some time t0 > 0,

I1(t) ≥ I1(0) > 0 for t > t0), then we can consider the intermediate host system with

a feed from the primary host. That is, we assume that I1(t) > 0 for t large enough

via sufficient conditions for permanence.

Since the existence of an interior equilibrium point does not determine the asymp-

totic behavior of that point, we define the constant external input parameter φ in a

couple of scenarios. Suppose I1(t) converges to a real number I∗ as t→∞, then we

define the constant external input parameter by

φ = g · I ∗ .
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Figure 4.1: Population densities of the subclasses of system (4.1) versus time. Note the
two graphs represent the densities for the interacting species. The upper graph represents the
primary host, and the lower graph represents the intermediate host. Parameter values for
the primary host are r1 = 0.037, K1 = 94.455, b1 = 0.2449, a1 = 0.998, and v1 = 0.0018.
Parameter values for the intermediate host are rX = 0.093, KX = 9.16, a1 = 0.9, and
u1 = 0.07 and g = 0.02445. Initial conditions are set to S(0) = 4.181, X(0) = 0.001,
I1(0) = 0.483, and Y1(0) = 0. The trajectories attract to the endemic equilibrium point
(40.82, 2.19, 51.14, 2.99).
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If I1(t) converges to a limit cycle with period T , we can define the parameter by

φ = g ·
∫ t0+T

t0
I(t)dt

T
.

Another possibility could be to simply take the min I1(t) for t > t0, then define the

parameter by

φ = g ·min I1(t).

In any case, mentioned or not, we have a constant feed parameter φ that is introduced

to the system. In other words, the constant feed parameter φ is a mechanism that

infects individuals in the susceptible population subclass from an outside force. In the

case of the interacting species model, the constant infection parameter suggests the

primary host population will constantly infect individuals of the intermediate host

population with the first strain. Since the primary infectious subclass of system (4.1)

approaches a positive equilibrium value (say I∗), it is reasonable to assume the con-

stant feed parameter φ is equal to g · I∗. We can then introduce the subsystem of

system (4.1) of one host

dX

dt
= rXNX

(
1− NX

KX

)
− φX − b1XY1 + a1Y1

dY1

dt
= b1XY1 + φX − (a1 + u1)Y1

with X(0) ≥ 0, Y1(0) ≥ 0,

(4.10)

noting that φX is the rate at which species two infects members of the species one’s

susceptible class. Summing the equations and solving the differential inequality, we



88

get the dissipative condition

0 ≤ lim sup
t→∞

NX(t) ≤ KX .

We denote the space

X = {(X, Y1) ∈ R2 : 0 ≤ X, Y1},

and the attracting region

E = {(X,Y1) ∈ X : X + Y1 ≤ KX}.

We are now ready to solve for the equilibria.

Clearly, system (4.10) has the disease free equilibrium point (0, 0). However,

(KX , 0) is not an equilibrium point for φ > 0. We are now ready to establish the

stability criterion for (0, 0).

Proposition 4.5. Define the parameter constants

R1 =
rX

a1 + u1 + φ
and R2 =

φu1

rX(a1 + u1 + φ)
. (4.11)

The disease free equilibrium point (0, 0) for the system (4.10) is locally asymptotically

stable when R1 < 1 and R2 > 1. (0, 0) is unstable for either: (1) R1 < 1 and R2 < 1,

or (2) R1 > 1 and R2 < 1.

Proof. The Jacobian of system (4.10) is

J(X, Y1) =

 rX

(
1− 2NX

KX

)
− b1Y1 − φ rX

(
1− 2NX

KX

)
− b1X + a1

b1Y1 + φ b1X − (a1 + u1)

 , (4.12)
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and evaluating at (0, 0), we get

J(0, 0) =

 rX − φ rX + a1

φ −(a1 + u1)

 , (4.13)

which has the eigenvalues

λ± =
rX − (a1 + u1 + φ)

2
±
√

(rX − (a1 + u1 + φ))2 − 4φu1

2
.

We define the constants

R1 =
rX

a1 + u1 + φ
and R2 =

φu1

rX(a1 + u1 + φ)
.

If R1 > 1, then R2 < 1, so we eliminate the case R1 > 1 and R2 > 1. (0, 0) is stable

when R1 < 1 or R2 > 1, and (0, 0) is unstable for either: (1) R1 < 1 and R2 < 1 or

(2) R1 > 1 and R2 < 1.

The only invariant set on ∂X is at the origin, hence, system (4.10) exhibits per-

manence when either: (1) R1 < 1 and R2 < 1 or (2) R1 > 1 and R2 < 1. We will

now examine the asymptotic behavior of system (4.10) on the interior of X .

Assume either: (1) R1 < 1 and R2 < 1 or (2) R1 > 1 and R2 < 1, then there

exists an interior equilibrium point, denoted by (X̂, Ŷ1). There may exist more than

one equilibrium point. However, our interest is focused on the existence of such a

point. (X̂, Ŷ1) satisfies the equations
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rXNX

(
1− NX

KX

)
− b1XY1 − φX + a1Y1 = 0,

b1XY1 + φX − (a1 + u1)Y1 = 0.

(4.14)

Then the solution of equations (4.14) is equivalent to the solution of the equation

Y1 =
rX

u1KX

·NX (KX −NX) ,

NX = Y1 +
a1 + u1

b1
− φ(a1 + u1)

b1

1

b1Y1 + φ
.

Lemma 4.6. Suppose either R1 > 1 or R2 < 1. Consider the functions

f(x) = x+
a1 + u1

b1
− φ(a1 + u1)

b1

1

b1x+ φ

g±(x) =
KX

2

(
1±

√
1− 4

u1

rXKX

x

)
,

where all parameters are positive. Then the graphs of f and g− intersect at the origin

and g+ or g− at a unique point in the positive quadrant.

Proof. We begin by noting that the domain of g+ and g− is [0, rXKX/4u1]. We have

two possibilities:

rX
a1 + u1 + φ

> 1 or
φu1

rX(a1 + u1 + φ)
< 1.

Suppose the first inequality holds, then

a1 + u1 + φ

rX
< 1
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and u1/rX < 1 or rX/u1 > 1. Clearly, f(0) = 0 and g−(0) = 0. Now the

derivatives of f and g− with respect to x are given by

f ′(x) = 1 +
φ(a1 + u1)

(b1x+ φ)2

g′−(x) =
u1

rX

1√
1− 4 u1

rXKX
x
.

Then we have

f ′(0) = 1 +
a1 + u1

φ

g′−(0) =
u1

rX
,

implying f ′(0) > g′−(0) (using u1/rX < 1). That is, f(x) is monotonically increasing

and is inside the parabola formed by the functions g+ and g− for values of x close to

zero. f(x) →∞ as x→∞; therefore, f intersects the parabola at exactly one point.

Now suppose the second inequality holds, then

u1

rX
<
a1 + u1 + φ

φ
=
a1 + u1

φ
+ 1.

Again, it is easy to see f ′(0) > g′−(0), so there is exactly one intersection point with

f and the parabola formed by the functions g+ and g−.

Since f and g− are continuous functions on [0, rXKX/4u1], we can set h(x) =

g−(x)− f(x). We note h(0) = 0 and

h(x) =
u1

rx

1√
1− (4u1/rXKX)

− 1 +
φ(a1 + u1)

b1x+ φ)2
.



92

Suppose u1/rX > 1. If x ∈ [0, rXKX/4u1], then h′(x) > 0 (g′−(x) > f(x)). Moreover,

the only intersections of the graphs f and g− is at the origin. In this case, the

only equilibrium point is (0, 0), which is stable Lemma 4.6 shows the existence of

an intersection point of the equations (4.14); that is, there exists a unique endemic

equilibrium point of system (4.10). The endemic equilibrium point is denoted by

(X̂, Ŷ1). We are now ready to classify the stability criterion for (X̂, Ŷ1).

Proposition 4.7. Suppose either: (1) R1 < 1 and R2 < 1 or (2) R1 > 1 and R2 < 1.

Then there exists an nontrivial equilibrium point (X̂, Ŷ1) that is locally asymptotically

stable.

Proof. Evaluating the Jacobian of system (4.10) at (X̂, Ŷ1), we get

tr(Ĵ) = rX

(
1− 2N̂X

KX

)
− b1Ŷ1 − φ+ b1X̂ − (a1 + u1)

and

det(Ĵ) =
(
rX

(
1− 2N̂X

KX

)
− b1Ŷ1 − φ

)(
b1X̂ − (a1 + u1)

)
−(b1Ŷ1 + φ)

(
rX

(
1− 2N̂X

KX

)
− b1X̂ + a1

)
,

where Ĵ = J(X̂, Ŷ1). Using the equations (4.14), we can rewrite the trace and deter-

minant in the forms

tr(Ĵ) = −b1
Ŷ1

2

N̂X

− (a1 + φ)
Ŷ1

N̂X

−
ˆrXNX

KX

− φX̂

Ŷ1
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and

det(Ĵ) =
φX̂

Ŷ1

·

(
b1Ŷ1

2

N̂X

+ (a1 + φ)
Î

N̂X

+
rXN̂X

KX

)

−(a1 + u1)
Ŷ1

X̂

(
−b1X̂

2

N̂X

+ (φ+ a1)
X̂

N̂X

− rXN̂X

KX

)

= (a1 + u1 + φ)
b1X̂Ŷ1

N̂X

+ φ(a1 + φ)
X̂

N̂X

−(a1 + u1)(a1 + φ)
Ŷ1

N̂X

+

(
φ
X̂

Ŷ1

+ (a1 + u1)
Ŷ1

X̂

)
rXN̂X

KX

> (a1 + φ)
βX̂Ŷ1

N̂X

+ φ(a1 + φ)
X̂

N̂X

− (a1 + u1)(a1 + φ)
Ŷ1

N̂X

= (a1 + φ)

(
βŜÎ

N̂
+ φ

Ŝ

N̂
− (a1 + u1)

Î

N̂

)

= (a1 + φ)

(
(a1 + u1)

Ŷ1

N̂X

− φ
X̂

N̂X

+ φ
X̂

N̂X

− (a1 + u1)
Ŷ1

N̂X

)
= 0.

Clearly, tr(Ĵ) < 0 and det(Ĵ) > 0, implying the equilibrium point (X̂, Ŷ ) is locally

stable.

Lemma 4.8. System (4.10) has no limit cycles on the region E.

Proof. Clearly the region E is simply connected in R2. Now define the Dulac function

B(X,Y1) =
1

XY1

.
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Then

5 · (Bf) =
∂

∂X
B ·X ′ +

∂

∂Y1

B · Y ′1

=
∂

∂X

(
rX

(
1

X
+

1

Y1

)(
1− X + Y1

KX

)
− b1 −

φ

Y1

+
a1

X

)
+

∂

∂Y1

(
b1 +

φ

Y1

− (a1 + u1)

X

)

= − rX
X2

(
1− X + Y1

KX

)
− rX
KX

(
1

X
+

1

Y1

)
− a1

X2
− φ

Y 2
1

On the region E, we have that 0 ≤ X+Y1 ≤ KX , which in turn implies 5· (Bf) < 0.

In other words, 5· (Bf) is not identically zero and does not change sign in E. Hence,

system (4.10) satisfies Dulac’s Criteria. We are now able to conclude system (4.10)

has no limit cycles on the region E.

We are now ready to make our claim about the global analysis of system (4.10).

Theorem 4.9. Suppose R1 < 1 and R2 > 1. Then for any initial conditions X(0) ≥

0 and Y1(0) ≥ 0, the trajectories globally attract to the disease free equilibrium point

(0, 0). Suppose either: (1) R1 < 1 and R2 < 1 or (2) R1 > 1 and R2 < 1, then the

trajectories globally attract to the unique disease endemic equilibrium point (X̂, Ŷ1)

for any initial conditions X(0) ≥ 0 and Y1(0) ≥ 0 (with the exception of X(0) =

Y1(0) = 0).

Proof. The proof follows from Proposition 4.5, Lemma 4.6, Proposition 4.7, and

Lemma 4.8.
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Figure 4.2: Population densities of the subclasses of system (4.10) versus time. Note the
two graphs are the represents the densities for intermediate species when φ = 0 and φ = 0.5.
The other parameter values are rX = 0.093, K = 9.16, b1 = 0.2449, a1 = 0.9, and u1 = 0.07
and g = 0.02445. Initial conditions are set to X(0) = 0.02 and Y1(0) = 2. The trajectories
attract to the endemic equilibrium points (9.16, 0) and (2.59, 2.92) in the respective cases.
R0 = 0.23, so notice the infectious feed parameter, φ, forces the strain to become endemic
in the host population.
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4.3 Other Models with an External Input

In this section, we use the idea of an external input of infection, as in section (4.2),

with a super- and co- infection model, similar to that of sections 3.11 and 3.19.

First, we consider the case with a co-infection model with an inter-species feed.

That is, we consider the super-infection system (3.11) from section 3.2, resulting in

the system of differential equations

dS1

dt
= r1N1

(
1− N1

K1

)
− β1S1I1 − β3S1J − γS1 + α1I1 + a3J

dI1
dt

= β1S1I1 − δI1J − (α1 + v1)I1

dJ

dt
= β3S1J + δI1J + γS1 − (α3 + v3)I2

with S1(0) ≥ 0, I1(0) ≥ 0, J(0) ≥ 0.

(4.15)

Using an argument similar to that of section (3.2), we get system (4.3) is dissipative.

Denote the set

X = {(S, I1, J) ∈ R3 : 0 ≤ S, I1, J}

and the compact attractor

E = {(S, I1, J) ∈ X : S + I1 + J ≤ K1}.

The only boundary equilibria of system (4.3) are at the origin and the point (Ŝ1, 0, Ĵ).

That is, the equilibrium point (Ŝ, 0, Ĵ) corresponds to the equilibrium point (Ŝ, Î) of
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section 3.1. Moreover, the only invariant spaces of the boundary are the spaces N0

and N1 as described in Section 3.2. That is, the feed will force any trajectory to flow

off of the space N2. Therefore, the system cannot form a cycle on the boundary, and

{Nσ}σ∈Λ is acyclic. Hence, condition (b) of hypothesis (H) is satisfied. A condition

similar to conditions on R1 and R3 is sufficient to have stability with respect to

the hyperplane of X where I1 = 0. In all other cases of in which the analogous

condition strictly fails, system (4.3) would exhibit persistence with respect to the

super-infectious strain J .

Now, we consider the co-infection model with an external input of infection. That

is, we consider the co-infection system (3.19) from Section (3.3), resulting in the

differential equations

dX

dt
= rXNX

(
1− NX

KX

)
−

2∑
i=1

bi(Yi + diY12 + gi)X + α1Y1 + a1Y2 + a12Y12

dY1

dt
= b1(Y1 + d1Y12 + g1)X − b12Y1Y2 − (a1 + u1)Y1

dY2

dt
= b2(Y2 + d2Y12 + g2)X − b21Y1Y2 − (a1 + u2)Y2

dY12

dt
= (b12 + b21)Y1Y2 − (a12 + u12)Y12

with X(0) ≥ 0, Y1(0) ≥ 0, Y2(0) ≥ 0, Y12(0) ≥ 0.

(4.16)

In this case, the rate in which susceptible individuals feed into the infectious subclass



98

Yi is bigi. System (4.16) is dissipative by an argument similar to the dissipativity of

system (3.19) of section (3.3).

The Jacobian of system (4.16) evaluated at the origin is given by

J(0, 0, 0, 0) =



rX − b1g1 − b2g2 rX + a1 rX + a2 rX + a12

b1g1 −(a1 + u1) 0 0

b2g2 0 −(a2 + u2) 0

0 0 0 −(a12 + u12)


. (4.17)

The characteristic polynomial of J(0, 0, 0, 0) is given by

p(λ) = (λ+ a12 + u12)(λ
3 + c1λ

2 + c2λ+ c3),

where the coefficients are given by

c1 = a1 + u1 + a2 + u2 + b1g1 + b2g2 − rX

c2 = (a1 + u1)(a2 + u2)− (a1 + u1 + a2 + u2)(rX − b1g1 − b2g2)

−(b1g1(rX + a1) + b2g2(rX + a2))

c3 = (b1g1 + b2g2 − rX)(a1 + u1)(a2 + u2)− (b1g1(a2 + u2) + b2g2(a1 + u1)).

We are now ready to establish the Routh-Hurwitz conditions for stability; that is,

c1 > 0, c3 > 0, and c1c2 − c3 > 0. Hence, when conditions are satisfied, the origin

is locally asymptotically stable. If any of the three conditions are not satisfied, the

system exhibits permanence modulo the neutral stability cases.



Chapter 5

The System with Interacting Hosts
and Recombination

In Chapter 2, a deterministic model for influenza A is introduced. The model

features three interacting host species, in which an intermediate host acts as a “mixing

vessel” for strains passed from the other host species. A co-infected individual in the

intermediate host population can act to potentially produce super-strains that are

highly virulent in the primary host population. In Chapters 3 and 4, a number of the

subsystems of the model of Chapter 2 are analyzed and simulated. In this chapter,

we will consider the entire model from Chapter 2.

5.1 The Interacting Host Model

The entire model proposed for influenza in Chapter 2 is given by the primary host

of system (2.5), the intermediate host in system (2.6), and the secondary host of

system (2.3). This model will be referred to as the interacting host system (IHS).

We begin by defining the total population for the primary, secondary, and interme-

diate host species by N1 = S1 +I1 +J , N2 = S2 +I2, and NX = X+Y1 +Y2 +Y12 +Y3,
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respectively. We determine that

0 ≤ lim sup
t→∞

Ni(t) ≤ Ki

for i = 1, 2, X, by using the same methodology for the subsystems in Chapter 3.

Hence, the system is dissipative. We let y = (S2, I2, X, Y1, Y2, Y12, Y3, S1, I1, J), and

the i-th component is denoted by yi. The space is denoted by

X = {y ∈ R10 : 0 ≤ yi},

and the attracting region

E = {y ∈ X :
10∑
i=1

yi ≤ K},

where K = K1 +K2 +KX . The following proposition defines the basic reproductive

number for the IHS, following the methods from [44].

Proposition 5.1. Rmax
0 for the IHS is defined by

Rmax
0 = max

{
β2K2

α2 + v2

,
b1KX

a1 + u1

,
b2KX

a2 + u2

,
b3KX

a3 + u3

,
β1K1

α1 + v1

,
β3K1

α3 + v3

}
.

For any positive parameter values, x0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is a saddle. The

following conditions characterize the stability of xK = (K2, 0, KX , 0, 0, 0, 0, K1, 0, 0):

i. If Rmax
0 < 1, then xK is locally asymptotically stable.

ii. If Rmax
0 > 1, then xK is unstable.
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Proof. We begin by letting x1 = I2, x2 = Y1, x3 = Y2, x4 = Y12, x5 = Y3, x6 = I1,

x7 = J , x8 = S2, x9 = X, and x10 = S1, and ~x = (x1, . . . , x10). Now we can write the

IHS in the form

ẋi = Fi(~x)− Vi(~x),

where

F =



β2S2I2

b1(Y1 + d1Y12)X + g1XI1

b2(Y2 + d1Y12)X + g2XI2

(b12 + b21)Y1Y2

ψY12 + b3XY3 + b13Y1Y3 + b23Y2Y3

β1S1

β3S1J + δI1J + γ3S1Y3

0

0

0


and

V =



(α2 + v2)I2

b12Y1Y2 + b13Y1Y3 + (a1 + u1)Y1

b21Y1Y2 + b23Y2Y3 + (a2 + U2)Y2

(a12 + u12 + ψ)Y12

(a3 + u3)Y3

δI1J + (α1 + v1)I1

(α3 + v3)J

−r2N2

(
1− N2

K2

)
+ β2S2I2 − α2I2

−rXNX

(
1− NX

KX

)
+
∑2

i=1 bi(Yi + diY12)X + b3XY3 +
∑
giXIi −

∑3
i=1 aiYi − a12Y12

−r1N1

(
1− N1

K1

)
+ β1S1I1 + β3S1J − α1I1 − α3J



.
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We then define

V+ =



0

0

0

0

0

0

0

r2N2

(
1− N2

K2

)
+ α2I2

rXNX

(
1− NX

KX

)
+
∑3

i=1 aiYi + a12Y12

r1N1

(
1− N1

K1

)
+ α1I1 + α3J



.

and

V− =



(α2 + v2)I2

b12Y1Y2 + b13Y1Y3 + (a1 + u1)Y1

b21Y1Y2 + b23Y2Y3 + (a2 + U2)Y2

(a12 + u12 + ψ)Y12

(a3 + u3)Y3

δI1J + (α1 + v1)I1

(α3 + v3)J

β2S2I2∑2
i=1 bi(Yi + diY12)X + b3XY3 +

∑
giXIi

β1S1I1 + β3S1J



.
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where Vi = V−i − V+
i . It is not difficult to demonstrate conditions (A1)-(A4) in [44]

are satisfied, so we draw our attention to condition (A5).

(A5) The eigenvalues for the matrix −DV(xK) are λ1 = −(α2 + v2), λ2 = −(a1 +

u1), λ3 = −(a2+u2), λ4 = −(a12+u12), λ5 = −(a3+u3), λ6 = −(α1+v1), λ7 =

−(α3 + v3), λ8 = −r2, λ9 = −rx, and λ10 = −r1, which are all negative for

positive parameter values. Therefore, the condition (A5) is satisfied.

The product of the matrices F and V −1 is

FV −1 =



β2K2

α2+v2
0 0 0 0 0 0

0 b1KX

a1+u1
0 b1d1KX

a12+u12+ψ
0 g1KX

α1+v1
0

g2KX

a2+u2
0 b2KX

a2+u2

b2d2KX

a12+u12+ψ
0 0 0

0 0 0 0 0 0 0

0 0 0 ψ
a12+u12+ψ

b3KX

a3+u3
0 0

0 0 0 0 0 β1K1

α1+v1
0

0 0 0 0 γ1K1

a1+u1
0 β3K1

α1+v1



,

which has the spectral radius

ρ(FV −1) = max

{
β2K2

α2 + v2

,
b1KX

a1 + u1

,
b2KX

a2 + u2

,
b3KX

a3 + u3

,
β1K1

α1 + v1

,
β3K1

α3 + v3

}
.

Hence, the basic reproductive number is given by Rmax
0 = ρ(FV −1).

Now that we have calculated the basic reproductive number, we consider the

stability criterion at the equilibrium point x0. Evaluating the Jacobian at x0, we
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have

J(x0) =


A 0 0

0 B 0

0 0 C

 ,
where the matrices are given by

A =

 r2 r2 + α2

0 −(α2 + v2)

 ,

B =



rX rx + a1 rx + a2 rx + a12 rx + a3

0 −(a1 + u1) 0 0 0

0 0 −(a2 + u2) 0 0

0 0 0 −(a12 + u12 − ψ) 0

0 0 0 ψ −(a3 + u3)


,

and

C =


r1 r1 + α1 r1 + α3

0 −(α1 + v1) 0

0 0 −(α3 + v3)

 .
The eigenvalues of A, B and C are the same as for J(x0), which are given by λ1 = r2,

λ2 = −(α2 + v2), λ3 = rX , λ4 = −(a1 + u1), λ5 = −(a2 + u2), λ6 = −(a12 + u12 + ψ),

λ7 = −(a3 + u3), λ8 = r1, λ9 = −(α1 + v1), and λ10 = −(α3 + v3). These eigenvalues

are all real-valued and consist of positive and negative values. Hence, the equilibrium

point x0 is a saddle.
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The values for computing Rmax
0 are denoted by

~R0 =

[
β2K2

α2 + v2

,
b1KX

a1 + u1

,
b2KX

a2 + u2

,
b3KX

a3 + u3

,
β1K1

α1 + v1

,
β3K1

α3 + v3

]
.

We now consider the remaining disease free equilibria:

e2 = (K2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

eX = (0, 0, KX , 0, 0, 0, 0, 0, 0, 0)

e1 = (0, 0, 0, 0, 0, 0, 0, K1, 0, 0)

e2X = (K2, 0, KX , 0, 0, 0, 0, 0, 0, 0)

e21 = (K2, 0, 0, 0, 0, 0, 0, K1, 0, 0)

eX1 = (0, 0, KX , 0, 0, 0, 0, K1, 0, 0).

Denote the index set A = {2, X, 1, 2X, 21, X1}. Then the Jacobian for ei for any

i ∈ A has the form

J(ei) =


Ai ∗ ∗

0 Bi ∗

0 0 Ci

 .
Then there are two choices for each of the matrices Ai, Bi, and Ci. The results

for the equilibria ei (i ∈ A) are similar to that of ~0 and x0. For example, when

the corresponding species has zero components (e.g. matrices eX , e1, and eX1 have

zero components for the secondary host species), the result is the same eigenvalue

computation is the same as for the equilibrium point ~0 for the corresponding species.

Due to the large number of equations in the IHS, the computation of nontrivial

equilibria is omitted. In the next section, we simulate several scenarios to gain insight

to the dynamics for the IHS.
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5.2 Simulations

Due to the number of equations of the IHS, it is difficult to analyze the IHS as in

the cases of the subsystems. We will chose parameter values that will describe a

number of different scenarios, and simulate the IHS using numerical methods. In

these simulations, we will fix the secondary host’s parameters to the values used in

section 3.2 for the simulations of system (3.11) for the susceptible and infectious

subclasses (S1 and I1 but not J). The purpose of the secondary host is to act as an

agent that feeds infection individuals from the intermediate host’s susceptible subclass

into the infectious subclass Y2. Although it is reasonable to convert this process into

a feed parameter, say φ = g2 · I2∗ with equilibrium value I2∗ for the secondary host’s

infectious subclass, we consider the dynamics of the secondary host to explore its

dynamics as they impact the rest of the IHS. Figure 5.1 shows the dynamics for the

secondary host used throughout the simulations.

In the first scenario, we consider a situation in which there is no initial presence

of a super-strain in the primary host population; however, through recombination

in the intermediate host’s co-infected subclass, the super-strain can emerge through

species interaction. The parameter values are set similar to the simulations of the

super-infection and co-infection subsystems described in sections 3.2 and 3.3 of chap-

ter 3; however, the super-strain’s incidence rates are significantly greater. For the

intermediate host, the parameter values are set as follows: rX = 0.093, KX = 9.16,

b1 = 0.23, b2 = 0.2, b12 = 0.2, and b21 = 0.17 with d1 = 1, d2 = 1, a1 = 0.9,

u1 = 0.07, a2 = 0.8, u2 = 0.08, a12 = 0.75, and u12 = 0.03. The intermediate

host’s initial conditions are set to X(0) = 0.002, Y1(0) = 0.001, Y2(0) = 0.001,

and Y12(0) = 0.001. For the primary host, the parameter values are set as follows:
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Figure 5.1: Graph of the secondary host’s population densities versus time. Parameter
values are r2 = 0.037, K2 = 94.455, β2 = 0.0245, α2 = 0.99824, and v2 = 0.00176. Initial
conditions are set to S2(0) = 4.181 and I2(0) = 1.0. The trajectories attract to the endemic
equilibrium point (40.8, 51.1).
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r1 = 0.037, K1 = 94.455, β1 = 0.0245, β3 = 0.084, α1 = 0.99824, α3 = 0.32,

v1 = 0.00176, v3 = 0.68, and δ = 0.084. The primary host’s initial conditions are

set to S1(0) = 4.181, I1(0) = 1.483, and J(0) = 0. Notice in this case, the infectious

rates β3 and δ for the super-strain, corresponding to the primary host subclass J , are

set to 0.084 to demonstrate a highly transmissible strain, and the super-strain initial

condition J(0) is set to zero so that the strain is not initially present in the primary

host population.

The interaction parameters are initially set so that the primary and secondary

hosts are allowed to pass the primary and secondary strains to the intermediate

host; however, the intermediate host is not allowed to pass the super-strain into

the primary host population. That is, we set the interaction parameters as follows:

g1 = 0.1, g2 = 0.1, and ψ = 0. The simulation show all three species exhibit

uniform persistence with the exception of the primary host’s super-strain subclass J .

Figures 5.2 and 5.3 display the resulting dynamics for intermediate and primary

hosts, respectively.

We then increase the interaction parameters so that the primary and secondary

hosts are allowed to pass the primary and secondary strains to the intermediate

host; however, now the intermediate host is allowed to pass the super-strain into

the primary host population. That is, we set the interaction parameters as follows:

g1 = 0.1, g2 = 0.1, and ψ = 0.05. The resulting dynamics show that the super-

strain becomes the dominating factor and disrupts the persistence of all the related

primary strain subclasses. In other words, the super-strain invades the primary host

population; the super-strain naturally eradicates the primary strain population; the

eradication of the primary strain in the primary host population causes the strain
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Figure 5.2: Intermediate host population densities versus time for the IHS. This figure
corresponds to the scenario in which the intermediate host is infected by the primary and
secondary strains, but not the super-strain; that is, g1 = 0.1, g2 = 0.1, and ψ = 0. Fig-
ure 5.1 and Figure 5.3 are the corresponding simulations to this scenario. Parameter
values are rX = 0.093, KX = 9.16, b1 = 0.23, b2 = 0.2, b12 = 0.2, and b21 = 0.17 with
d1 = 1, d2 = 1, a1 = 0.9, u1 = 0.07, a2 = 0.8, u2 = 0.08, a12 = 0.75, and u12 = 0.03.
Initial conditions are set to X(0) = 0.002, Y1(0) = 0.001, Y2(0) = 0.001, Y12(0) = 0.001,
and Y3(0) = 0.
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Figure 5.3: Primary host population densities versus time for the IHS. This figure cor-
responds to the scenario in which the intermediate host is infected by the primary and
secondary strains, but not the super-strain; that is, g1 = 0.1, g2 = 0.1, and ψ = 0. Fig-
ure 5.1 and Figure 5.2 are the corresponding simulations to this scenario. Parameter
values are r1 = 0.037, K1 = 94.455, β1 = 0.0245, β3 = 0.084, α1 = 0.99824, α3 = 0.32,
v1 = 0.00176, v3 = 0.68, and δ = 0.084. Initial conditions are set to S1(0) = 4.181, and
I1(0) = 1.483 and J(0) = 0.
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to be eradicated from the intermediate host population. Hence, the intermediate

host exhibits persistence in the susceptible and secondary strain infectious subclasses

(X and Y2), and the primary host exhibits persistence in the susceptible and super-

strain infectious subclasses (S1 and J). Moreover, the resulting intermediate host

scenario reflects the situation of swine infected with avian influenza described in [11].

Figures 5.4 and 5.5 display the resulting dynamics for intermediate and primary

hosts, respectively.

The oscillating dynamics of the super-strain in the primary host population shows

dampening epidemic spikes. The numerical data for the super-strain simulation was

used to determine the peaks of the spikes. The mean time was determined to be

approximately 36.3. In other words, the numerical analysis of these spikes suggests

the model predicts an epidemic every 36.3 years. We apply the same analysis to the

major influenza pandemics since the late nineteenth century; see Table 5.1. The

initial year for each pandemic was taken, and the mean differences between each case

was determined to be approximates 26.3 years.

Table 5.1: Major influenza pandemics from the late nineteenth century. Pandemic, year,
and subtype extracted from [24], and deaths taken from [39]

Pandemics Years Deaths Subtype Involved
Asiatic (Russian) Flu 1889-90 1 million H2N2 proposed

Spanish Flu 1918-19 up to 50 million H1N1
Asian Flu 1957-58 1 to 2 million H2N2

Hong Kong Flu 1968-69 700,000 H3N2

In the next scenario, we consider a situation in which a super strain can invade

a population, despite the relative basic reproduction number suggesting otherwise.

We fix all parameters for the three species in a manner similar to the first scenario,
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Figure 5.4: Intermediate host population densities versus time for the IHS. This figure
corresponds to the scenario in which the intermediate host is infected by the primary and
secondary strains, but not the super-strain; that is, g1 = 0.1, g2 = 0.1, and ψ = 0.05.
Figure 5.1 and Figure 5.5 are the corresponding simulations to this scenario. Parameter
values are rX = 0.093, KX = 9.16, b1 = 0.23, b2 = 0.2, b12 = 0.2, b21 = 0.17, d1 = 1,
d2 = 1, a1 = 0.9, u1 = 0.07, a2 = 0.8, u2 = 0.08, a12 = 0.75, and u12 = 0.03. Initial
conditions are set to X(0) = 0.002, Y1(0) = 0.001, Y2(0) = 0.001, Y12(0) = 0.001, and
Y3(0) = 0.
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Figure 5.5: Primary host population densities versus time for the IHS. This figure cor-
responds to the scenario in which the intermediate host is infected by the primary and
secondary strains. In this case, the intermediate host infects the primary host with the
super-strain; that is, γ1 = 0.1. Figure 5.1 and Figure 5.4 are the corresponding sim-
ulations to this scenario. Parameter values are r1 = 0.037, K1 = 94.455, β1 = 0.0245,
β3 = 0.084, α1 = 0.99824, α3 = 0.32, v1 = 0.00176, v3 = 0.68, and δ = 0.084. Initial
conditions are S1(0) = 4.181, I1(0) = 1.483, and J(0) = 0.
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with the exception of the parameters β3 = 0.0084 and δ = 0.0084. These super-strain

parameters imply the strain’s basic reproductive number is R0,3 = 0.793, which tra-

ditionally implies the super-strain subclass population density would converge to zero

(i.e., naturally eradicate). However, due to the species interaction, the intermediate

host is able to feed the super-strain into the primary host population. The basic

reproductive numbers are given by

~R0 = [2.31, 2.11, 1.56, 1.83, 2.31, 0.79] ,

which implies Rmax
0 = 2.31. Figure 5.6 shows the phase portrait for the primary

host. Initially, the trajectory approaches the S-axis, suggesting the super-strain is

naturally dying out. The primary host population is nearly free of all strain, and

its susceptible subclass’s population begins to grow. Once the susceptible subclass’s

density is large enough, the primary strain begins to spread in the population. During

this time, the primary strain is feeding into the intermediate host population, which

is (with the secondary strain) producing the super-strain out of the intermediate

host’s co-infected subclass. The super-strain then begins to invade the primary host

population, and the trajectory converges to the asymptotically stable equilibrium

point (41.2, 12.9, 1.2). Hence, the system exhibits permanence in the primary host

population contrary to the individual host species’ threshold constants.
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Figure 5.6: Phase portrait for the primary host in the second scenario. Parameters values
are r1 = 0.037, K1 = 94.455, β1 = 0.0245, β3 = 0.0084, δ = 0.0084, v1 = 0.00176,
v3 = 0.68, α1 = 0.99824, α3 = 0.32, and γ = 0.1. The initial conditions are S1(0) =
4.181, I1(0) = 1.483, and J(0) = 1.483. The trajectory converges to the equilibrium point
(41.2, 12.9, 1.2).



Chapter 6

Results and Discussion

In Chapter 2, we introduced a mechanistic model for influenza, consisting of three in-

teracting hosts with a recombination process. In Chapters 3 and 4, we proved perma-

nence results on a number of the subsystems and simulated situations from collected

data. In Chapter 4.3, we considered the complete model proposed in Chapter 2 and

simulated a number of theoretical scenarios. In this chapter, we will summarize and

discuss the results from Chapters 2 through 4.3.

6.1 Results

In this section, we will retrace the mathematical results from Chapters 2 though 4.3.

Since there are a number of threshold constants with the same labels, we will iden-

tify these constants with the number of the corresponding system. For example,

the constant R0(3.1) is the parameter R0 for system (3.1). Generally, the following

symbols with subscripts are defined as follows: β and b are incidence rates, K is a

116
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carrying capacity, α and a are immunity rates, and v and u are disease-induced

mortality rate

In Chapter 2, we introduced the interacting host system (IHS) for influenza, fea-

turing inter-species dynamics and genetic recombination. The model had three hosts:

a primary, intermediate, and secondary host, and three strains: a primary, secondary

and super-strain. The primary and secondary strains were shared between their in-

termediate and respective hosts. If a member of the intermediate host population

was co-infected with the primary and secondary strains, then the individual was ca-

pable of producing a super-strain. The super-strain was shared with the primary

and intermediate host and was able to infect individuals in the primary host’s pop-

ulation in both the infectious (with respect to the primary strain) and susceptible

subclasses. The complete model is then given by the primary host of system (2.5),

the intermediate host of system (2.6), and the secondary host of system (2.3).

Basic Model

In Chapter 3, we considered three individual host subsystems of the IHS: the basic

two compartmental, super-infection, and co-infection subsystem. In Section 3.1, the

basic subsystem was given by the system (3.1). The basic reproductive number was

determined to be

R0(3.1) =
βK

α+ v
.

Theorem 3.6 summarizes the global behavior on the ambient space X whenR0(3.1) >

1, showing that (Ŝ, Î) is a global attractor for all initial conditions away from the

origin.
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Super-Infection Model

In Section 3.2, the super-infection subsystem was given by (3.11). The basic repro-

ductive number was given by

Rmax
0 (3.11) = max

i=1,3
{R0,i(3.11)} ,

where

R0,i(3.11) =
βiK1

αi + vi
,

for i = 1, 3. The threshold constant

Rmin
0 (3.11) = min

i=1,3
{R0,i(3.11)}

gives the existence of nontrivial, boundary equilibria at (Ŝ1, Î1, 0) and (Š1, 0, J̌) when

Rmin
0 (3.11) > 1. Theorem 3.12 statesRmin

0 (3.11) > 1, R1(3.11) > 1, andR3(3.11) > 1

are sufficient conditions for permanence and the existence of an interior equilibrium

point in X . We also found permanence conditions when Rmax
0 > 1 and Rmin

0 <

1; see Proposition 3.16. To simulate system (3.11), data was taken from several

sources [7, 37, 45] for the initial and parameter values. Figures 3.6 and 3.7 show

the simulations for different values of the super-incidence rate for the δ = 0.00084

and δ = 0.04, respectively. The simulation showed the trajectory converged to the

equilibrium point (40.8, 51.1, 0.0) when δ = 0.00084 and (42.4, 24.1, 1.0) when δ =

0.04.
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Co-Infection Model

In Section 3.3, the co-infection subsystem was given by (3.19). The basic reproductive

number was given by

Rmax
0 (3.19) = max

i=1,2
{R0,i(3.19)} ,

where

R0,i(3.19) =
biKX

ai + ui
,

for i = 1, 3. The threshold constant

Rmin
0 (3.11) = min

i=1,3
{R0,i(3.11)}

gives the existence of nontrivial, boundary equilibria at (X̂, Ŷ1, 0, 0) and (X̌, 0, Y̌2, 0)

when Rmin
0 (3.19) > 1. We define the threshold constants for (X̂, Ŷ1, 0, 0)

R1(3.19) =
b2X̂

b21Ŷ1 + a2 + u2 + a12 + u12

and

R12(3.19) =
(a12 + u12)(b21Ŷ1 + a2 + u2)

b2X̂(a12 + u12 + d2(b12 + b21)Ŷ1)
.

The asymptotic behavior for (X̂, Ŷ1, 0, 0) is: (i) asymptotically stable if R1(3.19) < 1

and R12(3.19) > 1, and (ii) unstable if either: (1a) R1(3.19) > 1 and R12(3.19) < 1,

or (1b) R1(3.19) < 1 and R12(3.19) < 1. The symmetry of system (3.19) allowed an

analogous result for the (X̌, 0, Y̌2, 0) with the threshold constants

R2(3.19) =
b1X̌

b12Y̌2 + a1 + u1 + a12 + u12
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and

R21(3.19) =
(a12 + u12)(b12Y̌2 + a1 + v1)

b1X̌(a12 + u12 + d1Y̌2(b12 + b21))
.

Condition (1) is defined as the case when (1a) or (1b) is satisfied, and condition

(2) is when either: (2a) R2(3.19) > 1 and R21(3.19) < 1, or (2b) R2(3.19) < 1

and R21(3.19) < 1. Theorem 3.20 states system (3.19) exhibits permanence when

Rmin
0 (3.19) > 1 and conditions (1) and (2) are satisfied. To simulate system (3.19),

data was taken from several sources on swine data in Thailand [16, 17]. Figure 3.8

shows the simulation for system (3.19). The simulation showed the trajectory con-

verged to the equilibrium point (3.44, 1.22, 1.01, 0.59), hence exhibiting permanence.

Two Interacting Hosts Model

In Chapter 4, we considered subsystems of the IHS with multiple host species. In

Section 4.1, we considered the subsystem of the IHS with two host species with a

single circulating strain given by system (4.1). The basic reproductive number was

given by

Rmax
0 (4.1) = max

i=1,X
{R0,i(4.1)} .

where

R0,1(4.1) =
β1K1

α1 + v1

for R0,X(4.1) =
b1KX

a1 + u1

.

The threshold constant

Rmin
0 (4.1) = min

i=1,X
{R0,i(4.1)}

gives the existence of nontrivial boundary equilibria at (0, X̂, 0, Ŷ1) and (Ŝ1, 0, Î1, 0)

when Rmin
0 (4.1) > 1. The nontrivial boundary equilibrium point (0, X̂, 0, Ŷ1) is un-
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stable and (Ŝ1, 0, Î1, 0) is classified by the threshold constants

R11(4.1) =
rX

gÎ1 + a1 + u1

, and R12(4.1) =
gu1Î1

rX(gÎ1 + a1 + u1)
.

as: (i) asymptotically stable if R11(4.1) < 1 and R12(4.1) > 1, and (ii) unstable if

either: (1) R11(4.1) > 1 and R12(4.1) < 1, or (2) R11(4.1) > 1 and R12(4.1) < 1 .

Theorem 4.4 states system (4.1) exhibits permanence when Rmin
0 (4.1) > 1 and either

of the conditions R11(4.1) < 1 and R12(4.1) > 1 are not satisfied in the strict sense.

Figure 4.1 shows the simulation for system (4.1).

External Input Models

In Section 4.2, we considered the system (4.10) that has an external input of infec-

tions. This system is an approximation of system (4.1) that assumes the primary

host exhibits permanence. In this case, if R0,1(4.1) > 1 with I1(0) > 0, then the

susceptible and infectious subclasses of the primary host converge to positive steady

states. The primary host’s interaction term g · I1 in the intermediate host is replaced

by the constant φ. (0, 0) is the only boundary equilibrium point for system (4.10)

and is classified by the threshold constants

R1(4.10) =
rX

a1 + u1 + φ
and R2(4.10) =

φu1

rX(a1 + u1 + φ)
.

as: (i) stable under the conditions R1(4.10) < 1 and R2(4.10) > 1, (ii) unstable if

either: (1) R1(4.10) < 1 and R2(4.10) < 1, or (2) R1(4.10) > 1 and R2(4.10) < 1.

These results are summarized in Theorem 4.9.
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In Section 4.3, we introduced two more models with an external input: a super-

and co- infection model. The super-infection model has an external input of infection

for the super-strain, and the co-infection model has an external input for both the pri-

mary and secondary strains. In both cases, we noted the external inputs allow weaker

conditions for permanence than the results from Sections 3.2 and 3.3. Figure 4.2

shows the simulations for system (4.10) when φ = 0 and φ = 0.5.

Interacting Host System (IHS)

In Chapter 4.3, we considered the interacting host system (IHS) originally proposed

in Chapter 2. The basic reproductive number was given by

Rmax
0 (IHS) = max

{
β2K2

α2 + v2

,
b1KX

a1 + u1

,
b2KX

a2 + u2

,
b3KX

a3 + u3

,
β1K1

α1 + v1

,
β3K1

α3 + v3

}
.

We simulated two scenarios for the IHS. In the first scenario, we considered a situation

where there was interaction with the intermediate host and the primary and secondary

hosts with respect to the primary and secondary strains. The initial conditions were

positive for all the subclasses for each species, with the exception of the super-strain

subclasses for the primary and intermediate hosts; that is, J(0) = 0 and Y3(0) = 0.

Initially, we set the external input parameter ψ equal to zero so that there is no

interaction between the intermediate and primary hosts. We observed permanence

in the intermediate and secondary host, while the primary host was persistent with

respect to the susceptible and primary strain infectious subclasses. We then simulated

the same scenario with ψ = 0.05. We observed dampening oscillations for the primary

host’s super-strain subclass J . The primary strain was eradicated from the primary
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and intermediate host populations. This removed the possibility of co-infected and

super-infected subclasses in the intermediate host population. The predicted distance

between the super-strain epidemics was determined to be approximately 36.3 years.

In the next scenario, we considered a situation where the super-strain could not

persist in the primary host independent of the other host. That is, we chose parameter

values so that R0,3(3.11) < 1. With interaction, the simulation showed that the IHS

exhibits permanence with respect to the primary host. Moreover, the super-strain

was able to persist in the primary host, despite the high level of virulence.

6.2 Discussion

Throughout this project, we addressed the specific hypothesis that virulent strains,

which would otherwise be eradicated from a given host species, can be sustained

if there is a continued external input of highly virulent strains via a recombination

process in co-infected intermediate host species. We used certain aspects of influenza

to construct the IHS as an SIS model with species interaction and recombination in an

intermediate host species. We proved a number of results on the IHS and subsystems

of the IHS; in particular, we found the basic reproductive numbers and gave conditions

for permanence for each system. Given such a model, we were then able to address

three questions pertinent to the permanence of highly virulent pathogens. We now

return to these questions from Section 1.1.

What are the conditions for permanence in certain subsystems for single and mul-

tiple host species? In single host species, the conditions for permanence were given

in the form of a region of parameter space that can be written in the form of ba-

sic reproductive numbers of independent strains. For example, the super-infection
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subsystem of Section 3.2 exhibits permanence given the conditions Rmin
0 (3.11) > 1,

R1(3.11) > 1, and R3(3.11) > 1. In the case of multiple host species, we were able to

find similar results with respect to the parameter space for permanence; however, we

found that when an infecting host introduces a persistent strain into another host’s

population, the multi-host model can be approximated by a single host model with

external input. In this case, permanence is equivalent to instability at the origin. If

the host population is not dying out, then the system is permanent.

Is it possible to find permanence conditions under constraints that would suggest

otherwise if there were no interactions between host species? In Chapter 3, we found

permanence conditions for three single host subsystems of the IHS: a basic model, a

super-infection model, and a co-infection model. Typically, the models required the

basic reproductive number for each independent strain to be greater than one to ex-

hibit permanence; however, the super-infection model was the exception. In this case,

the system was able to exhibit permanence when the independent basic reproductive

number of the super-strain R0,3(3.11) < 1 if Rmax
0 (3.11) > 1 and R1(3.11) > 1. How-

ever, the super-strain incidence rate δ for the primary infectious subclass I1 must be

significantly larger than the incidence rate β3 of the susceptible subclass S1 for such

a situation to occur; that is, members of the super-infectious subclass J must infect

members of the primary infectious subclass I1 at a rate significantly larger than the

infecting rate of the susceptible subclass S1. It is not empirically clear whether or

not such a condition on parameters is reasonable to assume in reference to influenza.

In all other situations, we found that the conditions for permanence in the single

host system were based on basic reproductive numbers of independent strains; that

is, these reproductive numbers had to be greater than one. If a strain’s basic repro-
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ductive number was less than one, then it could not persist in the host population.

Hence, species interaction is a reasonable mechanism to induce permanence in epi-

demic models. Moreover, for persistence in an intermediate host (i.e., co-infection

system), basic reproductive numbers of individual strains must attain a sufficient

level or have influence from an outside factor such as an external input via species

interactions.

Can virulent strains, too virulent to independently sustain themselves in a host

population, continue to reemerge in a host population due to a recombination process

in an intermediate host? In the IHS, the super-infectious subclass J of the primary

host exhibited persistence despite the constrains that its independent basic repro-

ductive number R3(3.11) was below one and with R1(3.11) < 1. For this result to

happen, the super-strain needed to act as a continuous external input into the primary

host system from the intermediate host. The super-strain subclass of the intermediate

host was persistent when the primary and secondary strains were persistent.

The conclusions about the three questions suggest that species interactions, under

such circumstances, are a reasonable mechanism to sustain higher levels of virulence

in certain strains of influenza. That is, as long as intermediate host species, such

as pigs, can maintain significant levels of avian and human strains, new strains of

influenza remain a threat to human populations. Moreover, we claim that not only

are intermediate hosts a suitable candidate to facilitate recombination of strains [42],

but may also be suitable for maintaining new or super- strains if avian and human

strains are able to persist in intermediate host populations regardless of virulence.

The conditions for permanence on the single co-infection model suggest that the two

strains must have an independent basic reproductive number above one for the system
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to exhibit permanence. However, when an external input, such as from a primary

(humans) or secondary (birds) host, influences infection, the co-infection model is

able to exhibit permanence, contrary to the basic reproductive numbers of the two

strains. Recombination between strains is more likely with a persistent subclass of

co-infected hosts, which implies a higher probability of super-strains.

Several of the simulations of the IHS showed dynamics that reflected those of

influenza. One example is the dynamics displayed in Figure 5.5. These showed

reoccurring epidemic spikes of a super-pathogen, where each spike dampened a bit

more than the previous, the first having the highest number of infected individuals.

This simulation appeared similar to the major influenza pandemics of the 20th century

(see Table 5.1) in that the largest epidemic was the first, the 1918 Spanish Flu,

and successive outbreaks had less infected individuals than the previous pandemic.

Another example is the situation described by Cyranoski [11], which states avian

influenza may be infecting up to half of Java’s pigs. This implies that a pig infected

with a human strain has almost a 50 percent chance of acting as a “mixing vessel”.

The simulation of the intermediate host displayed in Figure 5.4 reflects a similar

situation to that of Java’s pigs. The simulation showed once the super-strain invaded

and eradicated the other strain in the primary host, the intermediate host population

was left with a large number (much greater than 50 percent) of individuals infected by

the secondary strain. Although the percentages of infected pigs as intermediate hosts

differ, we note there is a consistency of high avian prevalence in both the simulation

and in Java’s pigs. More accurate statistics may give a better understanding of where

the data fits into the parameter space of the model.
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It is not clear whether the IHS captures influenza’s dynamics enough to address

more specific questions about influenza. The model was clearly able to address ques-

tions from a theoretical perspective and to display dynamics that reflect those of in-

fluenza, but may need further development to address more specific questions about

influenza. A comparison of the simulations of the IHS and an analysis of empirical

data is a natural approach to address such issues. Many of the statistics we used in

the simulations of the IHS had a number of limitations. Most of the data was taken

from studies in Southeast Asia [6, 7, 16, 17, 23, 45, 48]; however, these data sets vary

by such factors as date, region, and strain-type. More accurate data could give insight

on how to improve the model. Despite the issues with the data, the model was chosen

in the given format to have interaction between three hosts with a simple recombi-

nation mechanism in the intermediate host. A model that considers factors such as

multiple strains in certain hosts and a more complicated recombination scheme might

be more adequate to address further questions that are pertinent to public health.
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