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In 1912, Birkhoff introduced the chromatic polynomial of a graph, which counts

the number of proper colorings of a graph. In 1995, Stanley introduced the chro-

matic symmetric function of a graph, a symmetric function analog of the chromatic

polynomial of a graph. The Stanley-Stembridge e-positivity conjecture is a long-

standing conjecture that states that the chromatic symmetric function of a certain

class of graphs has nonnegative coefficients when expanded in the elementary sym-

metric function basis. In 2012, Shareshian and Wachs introduced the chromatic

quasisymmetric function of a labeled graph, a refinement of the chromatic symmetric

function. Shareshian and Wachs described their own e-positivity conjecture for chro-

matic quasisymmetric functions which generalizes the Stanley-Stembridge conjecture.

There is ample support for these e-positivity conjectures, including weaker positivity

results in other symmetric function bases.

In the first part of this thesis, we extend the work of Shareshian and Wachs from

labeled graphs to a wider class of graphs, namely directed graphs. We introduce the

notion of chromatic quasisymmetric function of a directed graph. For acyclic digraphs,

our definition is equivalent to that of Shareshian and Wachs. We give an expansion

in terms of Gessel’s fundamental quasisymmetric function basis for the chromatic

quasisymmetric function of all digraphs, which shows that all the coefficients are

nonnegative. We use this expansion to derive a power sum symmetric function ba-

sis expansion with positive coefficients for the chromatic quasisymmetric function of

all digraphs whose chromatic quasisymmetric function has symmetric function coef-

ficients. We describe a class of digraphs, which we call circular indifference digraphs,



and show that their chromatic quasisymmetric functions are symmetric. These cir-

cular indifference digraphs include the directed cycle, for which we provide an e-basis

generating function formula that shows that its chromatic quasisymmetric function

is e-positive. We generalize the e-positivity conjecture of Shareshian and Wachs to

the class of circular indifference digraphs. Our positivity results and computer calcu-

lations provide evidence for this conjecture.

A Smirnov word is a word over the positive integers such that consecutive letters

are distinct. The descent enumerator of Smirnov words is equivalent to the chromatic

quasisymmetric function of the path graph. Shareshian and Wachs found a nice e-

basis generating function expansion of this descent enumerator that shows that it

is e-positive. Specializing this result gave them a q-analog of Euler’s exponential

generating function of the classical Eulerian polynomials.

In the second part of this thesis, we consider descent enumerators for restricted

Smirnov words, where we put restrictions on the relationship between the first and

last letter. We also consider cyclic descent enumerators for Smirnov words. Our

work on these descent enumerators refines our work on the chromatic quasisymmetric

function of the directed cycle. We obtain nice e-basis generating function formulas

that show that some of these descent enumerators are e-positive. We also provide ex-

pansions for the various descent enumerators in Gessel’s fundamental quasisymmetric

function basis. By specializing our fundamental and e-basis expansions, we obtain

formulas for polynomials that are variations on the q-Eulerian polynomials studied

by Shareshian and Wachs. We give a factorization of the expansion coefficients of the

various descent enumerators in the power sum symmetric function basis involving the

Eulerian polynomials. In addition, this work with Smirnov word descent enumerators

enables us to derive an e-basis expansion formula for the chromatic quasisymmetric

function of the labeled cycle, which shows that it is e-positive. This is notable, be-



cause the labeled cycle is not a graph that is covered by any of the current e-positivity

conjectures.
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Chapter 1

Introduction

1.1 Graph colorings

A proper coloring of a graph G = (V,E) is a map κ : V → P, where P denotes the

positive integers, such that for all {u, v} ∈ E, we have that κ(u) 6= κ(v). In 1912

Birkhoff [8] introduced the chromatic polynomial of a graph, χG(k), which equals

the number of proper colorings of G using only the colors in [k] := {1, 2, . . . , k}. For

example, let Pn = ([n], E) be the path graph defined by E = {{i, i+ 1} | i ∈ [n− 1]}.

We see that

χPn(k) = k(k − 1)n−1 (1.1)

since there are k choices for the color on vertex 1 and k−1 choices for the other n−1

vertices. One can show that the chromatic polynomial is always a polynomial in k,

justifying its name (see Section 2.3 for more information).

In 1995 Stanley [58] introduced a symmetric function analog of the chromatic

polynomial. The chromatic symmetric function of a graph G = (V,E) is defined by

XG(x) :=
∑

κ∈C(G)
xκ, (1.2)

1



2

where x = x1, x2, . . . , C(G) is the set of proper colorings of G and xκ = ∏
v∈V xκ(v).

One can see that this is a symmetric function, because permuting the variables is

the same as permuting the colors in each proper coloring (see Section 3.1 for basic

information on symmetric functions). For a symmetric function f(x) and a positive

integer k, we let f(1k) denote the result when we set xi = 1 for 1 ≤ i ≤ k and xi = 0

for i > k in f(x). One can see that XG(1k) = χG(k), so the chromatic symmetric

function reduces to the chromatic polynomial.

Stanley showed a number of interesting results about XG(x). He discusses ex-

pansions in various bases for the ring of symmetric functions, including the power

sum symmetric function basis (p-basis) and the elementary symmetric function basis

(e-basis). See Section 3.1 for the definitions of these bases. He shows that ωXG(x)

is p-positive, i.e., ωXG(x) has nonnegative coefficients when expanded in the p-basis,

where ω is the standard involution on symmetric functions defined in Section 3.1.

A stronger property than p-positivity of ωXG(x) is e-positivity of XG(x), but

not all graphs have e-positive chromatic symmetric functions. Stanley shows that

the chromatic symmetric functions of the path graph Pn and of the cycle graph

Cn = ([n], E), defined by E = {{i, i + 1} | i ∈ [n − 1]} ∪ {{1, n}}, are e-positive by

obtaining the formulas

∑
n≥0

XPn(x)zn =

∑
i≥0

ei(x)zi

1−
∑
i≥2

(i− 1)ei(x)zi
(1.3)

and
∑
n≥2

XCn(x)zn =

∑
i≥2

i(i− 1)ei(x)zi

1−
∑
i≥2

(i− 1)ei(x)zi
, (1.4)

where ei(x) is the elementary symmetric function defined in Section 3.1. Equation

(1.3) is equivalent to a result of Carlitz, Scoville, and Vaughn [12] on Smirnov words,

which are defined in Section 1.2.
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A long-standing conjecture about chromatic symmetric functions involves the e-

positivity of a particular class of graphs. We say that a poset P is (a + b)-free if it

contains no induced subposet that consists of a disjoint union of a chain of a vertices

and a chain of b vertices. The incomparability graph Inc(P ) of a poset P is the graph

whose vertex set is the elements of P with edges between incomparable elements of

P.

Conjecture 1.1.1 (Stanley-Stembridge [58] [65]). Let P be a (3+1)-free poset. Then

XInc(P )(x) is e-positive.

This conjecture is stated in terms of chromatic symmetric functions, but it origi-

nated from Stembridge’s work on immanants, where it is stated in a weaker form in

terms of immanants [66, Conjecture 4.4]. It is also stated in an equivalent form in

terms of immanants by Stanley and Stembridge in [65, Conjecture 5.5]. We discuss

Stanley’s work on chromatic symmetric functions in more detail in Section 3.2.

In 2012 Shareshian and Wachs [52, 53] presented a refinement of the chromatic

symmetric function. We call a graph labeled if its vertex set is [n] := {1, 2, . . . , n}.

For a labeled graph G = ([n], E) and a proper coloring κ ∈ C(G), define the number

of ascents of κ as

asc(κ) := |{{i, j} ∈ E | i < j, κ(i) < κ(j)}|.

Then the chromatic quasisymmetric function of a labeled graphG = ([n], E) is defined

by

XG(x, t) :=
∑

κ∈C(G)
tasc(κ)xκ. (1.5)

Example 1.1.2. Suppose we have the following labeled graph G (pictured on the

left) and a proper coloring of G (pictured on the right).
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In this proper coloring the edges {2, 3} and {2, 4} are ascents. Hence this coloring

corresponds to the term t2x2x8x
2
11x15 in XG(x, t).

In the chromatic quasisymmetric function of a graph, the coefficients of powers of

t are not symmetric functions in general. They belong to a class of formal power series

called quasisymmetric functions. See Section 4.1 for a discussion of quasisymmetric

functions. Setting t = 1 gives back Stanley’s chromatic symmetric function.

Shareshian and Wachs gave an expansion for XG(x, t) in a certain basis for the

ring of quasisymmetric functions called Gessel’s fundamental basis (F -basis) when

G is the incomparability graph of a poset P on [n]. They also showed that when G

belongs to a class of labeled graphs called natural unit interval graphs, defined in

Section 4.2, XG(x, t) is actually symmetric, i.e., the coefficients of t in XG(x, t) are

symmetric functions. Shareshian and Wachs conjectured and Athanasiadis [4] proved

a p-positivity formula for ωXG(x, t) when G is a natural unit interval graph.

Shareshian and Wachs [54, Theorem 7.2] also prove the following e-basis expansion

formula for the chromatic quasisymmetric function of the labeled path.

∑
n≥0

XPn(x, t)zn =

∑
i≥0

ei(x)zi

1−
∑
i≥2

[i− 1]tei(x)zi
, (1.6)

where

[n]t := 1 + t+ · · ·+ tn−1.

It is not hard to see that this formula establishes e-positivity of XPn(x, t). Note

that this a nice t-analog of Stanley’s generating function formula for the chromatic
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symmetric function of the path given in (1.3). Shareshian and Wachs also give the

following e-positivity conjecture for chromatic quasisymmetric functions.

Conjecture 1.1.3 (Shareshian-Wachs [53] [52]). Let G = ([n], E) be a natural unit in-

terval graph. Then the palindromic1 polynomial XG(x, t) is e-positive and e-unimodal2.

Unit interval graphs are the incomparability graphs of posets that are both (3+1)-

free and (2 + 2)-free, so the class of graphs considered in the Shareshian-Wachs con-

jecture is smaller than that of the Stanley-Stembridge conjecture; however, Guay-

Pacquet [35] showed that if the Stanley-Stembridge conjecture holds for incompa-

rability graphs of posets that are both (3 + 1)-free and (2 + 2)-free, then it holds

in general. Hence the Shareshian-Wachs e-positivity conjecture implies the Stanley-

Stembridge e-positivity conjecture. We describe the work of Shareshian and Wachs

on chromatic quasisymmetric functions of labeled graphs in more detail in Section 4.2.

There is an important connection between chromatic quasisymmetric functions

of natural unit interval graphs and Hessenberg varieties, which was conjectured by

Shareshian and Wachs and was proven by Brosnan and Chow [10] and later by Guay-

Paquet [36]. This connection to Hessenberg varieties gives a possible approach to

proving Conjecture 1.1.3. Clearman, Hyatt, Shelton, and Skandera [17] found an

algebraic interpretation of chromatic quasisymmetric functions of natural unit interval

graphs in terms of characters of type A Hecke algebras evaluated at Kazhdan-Lusztig

basis elements. Haglund and Wilson [38] discovered a connection between chromatic

quasisymmetric functions and Macdonald polynomials.

In Chapter 5 we extend the definition of chromatic quasisymmetric function to

directed graphs. Let −→G = (V,E) be a directed graph and let κ ∈ C(−→G), i.e., let κ be
1Shareshian and Wachs show that for a graph G = ([n], E), if XG(x, t) is symmetric, then it is

palindromic, i.e., if XG(x, t) =
∑|E|
j=0 aj(x)tj , then aj(x) = a|E|−j(x) for all 0 ≤ j ≤ |E|−1

2 .
2See Section 4.2 for the definition of e-unimodal.
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a proper coloring of −→G. We can define the ascents of κ as

asc(κ) := |{(i, j) ∈ E | κ(i) < κ(j)}|.

Then the chromatic quasisymmetric function of a directed graph −→G is defined as

X−→
G

(x, t) :=
∑

κ∈C(−→G)

tasc(κ)xκ. (1.7)

Example 1.1.4. Suppose we have a directed graph, which we call the directed cycle
−→
C6 (pictured on the left), and a proper coloring of −→C6 (pictured on the right).

In this proper coloring the edges (2, 3), (5, 6), and (6, 1) are ascents. Hence this

coloring corresponds to the term t3x2x
2
8x

2
11x15 in X−→

C6
(x, t). Note that we put labels

on the vertices of −→C6 so that we may refer back to them; however, the labels of a

directed graph do not affect its chromatic quasisymmetric function, as the ascents

are counted using only the direction of the edges.

Any labeled graph can be turned into a directed graph by orienting edges from

smaller labels to larger labels. Below we show an example.

By this process, one can see that our definition agrees with the definition of Shareshian

and Wachs for acyclic digraphs. Setting t = 1 gives us back the chromatic symmetric

function of the underlying undirected graph of −→G.
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We give an expansion of the chromatic quasisymmetric function of any digraph

in terms of Gessel’s fundamental quasisymmetric function basis using a permutation

statistic we call G-descents (see Section 5.2 for the definition). Our formula does not

reduce to the Shareshian-Wachs formula in the case of incomparability graphs, so our

formula provides a new expansion in this case. We use our F -basis expansion to prove

one of our main results.

Theorem 1.1.5. Let −→G be a directed graph such that X−→
G

(x, t) is symmetric. Then

ωX−→
G

(x, t) is p-positive.

In fact, we derive a p-basis expansion for ωX−→
G

(x, t) when −→G is any digraph such

that X−→
G

(x, t) is symmetric. In comparison the Athanasiadis-Shareshian-Wachs p-

positivity formula for ωXG(x, t) applies only when G is a natural unit interval graph.

Our formula does not reduce to theirs, so we get a new formula in the case of natural

unit interval graphs. When −→G = −→Cn, the directed cycle, we show that the p-basis

expansion coefficients of ωX−→
G

(x, t) have a nice factorization involving the classical

Eulerian polynomials defined in Section 2.1.

Next we address the question of which −→G give us symmetric X−→
G

(x, t). We intro-

duce a class of directed graphs, which we call circular indifference digraphs (see Section

5.4 for the definition), and we show that if −→G is a circular indifference digraph, then

X−→
G

(x, t) is symmetric. When natural unit interval graphs are turned into digraphs by

orienting each edge from smaller label to larger label, they are contained in the class

of circular indifference digraphs. In fact, all acyclic circular indifference digraphs can

be obtained this way. The simplest circular indifference digraph that is not acyclic is

the directed cycle, −→Cn = ([n], E) defined by E = {(i, i+ 1) | i ∈ [n− 1]} ∪ {(n, 1)}.
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We provide the following generating function formula for X−→
Cn

(x, t) in terms of the

elementary symmetric function basis:

∑
n≥2

X−→
Cn

(x, t)zn =
t
∑
k≥2

k[k − 1]tek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
. (1.8)

It is not hard to see that this formula establishes e-positivity of X−→
Cn

(x, t). Note that

this is a t-analog of Stanley’s formula for XCn(x), the chromatic symmetric function

of the undirected cycle as shown in (1.4). We also present and give evidence for

the following generalization of the Shareshian-Wachs e-positivity conjecture for all

circular indifference digraphs.

Conjecture 1.1.6. Let −→G = (V,E) be a circular indifference digraph. Then the

palindromic3 polynomial X−→
G

(x, t) is e-positive and e-unimodal.

Since natural unit interval graphs are contained in the class of circular indiffer-

ence digraphs, our conjecture implies the Shareshian-Wachs e-positivity conjecture,

which in turn implies the Stanley-Stembridge e-positivity conjecture. In addition,

Stanley [58] defines the class of circular indifference graphs, which are the underlying

undirected graphs of our circular indifference digraphs, and he suggests that they

may have e-positive chromatic symmetric functions. This generalized e-positivity

conjecture also encompasses this speculation of Stanley.

A connection between chromatic quasisymmetric functions of directed graphs and

LLT polynomials was explored by Alexandersson and Panova [2]. Chromatic qua-

sisymmetric functions of directed graphs also appear in the work of Awan and Bernardi

[5] on Tutte polynomials.
3Palindromicity is established in Proposition 5.1.8.
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1.2 Smirnov words

A proper coloring of the path Pn can be viewed as a word over the positive integers P

where adjacent letters are distinct. These words are sometimes called Smirnov words

(after [33], see also [57]). The second portion of this thesis, which is joint work with

Wachs [22], focuses on Smirnov words.

Let Wn denote the set of Smirnov words of length n. We can define the number

of descents of a Smirnov word w = w1w2 · · ·wn ∈ Wn as

des(w) := |{i ∈ [n− 1] | wi > wi+1}|.

The descent enumerator of Smirnov words is defined as

Wn(x, t) :=
∑
w∈Wn

tdes(w)xw,

where xw = xw1xw2 · · ·xwn . The descent enumerator Wn(x, t) arose in the work of

Shareshian and Wachs [54] on q-Eulerian polynomials and motivated their work on

chromatic quasisymmetric functions, as

Wn(x, t) = XPn(x, t),

the chromatic quasisymmetric function for the labeled path. Thus (1.6) gives a nice

expansion for Wn(x, t) in the e-basis. The t = 1 case of (1.6), which was given in

(1.3), was originally proved by Carlitz, Scoville, and Vaughn [12] through their work

on Smirnov words. The symmetric functionWn(x, 1) has also been studied by Stanley

[58] and Dollhopf, Goulden, and Greene [19].
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We can define a circular version of the descent enumerator of Smirnov words as

W̃ 6=
n (x, t) =

∑
w∈Wn

w1 6=wn

tcdes(w)xw,

where cdes(w) is the number of cyclic descents of σ, defined by

cdes(w) := |{i ∈ [n] | wi > wi+1}|, (1.9)

where wn+1 := w1. It is not difficult to see that

W̃ 6=
n (x, t) = X−→

Cn
(x, t),

the chromatic quasisymmetric function of the directed cycle. We obtain results on

W̃ 6=
n (x, t), including the e-basis expansion formula (1.8), through our work with chro-

matic quasisymmetric functions of directed graphs.

In Chapter 6, we refine the work on Wn(x, t) and W̃ 6=
n (x, t) by considering the

descent enumerators of restricted Smirnov words, i.e., Smirnov words where we put

restrictions on the relationship between the first and last letters of the word. For

example we define

W<
n (x, t) =

∑
w∈Wn
w1<wn

tdes(w)xw.

The descent enumeratorsW>
n (x, t) andW=

n (x, t) are defined similarly. It is an exercise

of Grinberg and Reiner [34] to show that these three descent enumerators of restricted

Smirnov words are symmetric. We expand upon this by providing expansions of these

restricted descent enumerators in various bases.

We obtain e-basis expansions for W<
n (x, t),W>

n (x, t) and W=
n (x, t), which show

that W<
n (x, t) and W>

n (x, t) are e-positive and e-unimodal. From our e-basis expan-

sions, one can recover the e-basis expansion formulas (1.6) and (1.8) for Wn(x, t) and
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W̃ 6=
n (x, t), respectively, using the relationships

Wn(x, t) = W<
n (x, t) +W>

n (x, t) +W=
n (x, t),

and

W̃ 6=
n (x, t) = tW<

n (x, t) +W>
n (x, t).

However this does not provide new proofs of (1.6) and (1.8) as our proof relies on

these formulas.

In addition we obtain an e-basis expansion of another cyclic descent enumerator,

W̃n(x, t) :=
∑
w∈Wn

tcdes(w)xw,

using

W̃n(x, t) = tW<
n (x, t) +W>

n (x, t) +W=
n (x, t).

The expansion is given by

∑
n≥1

W̃n(x, t)zn =

∂
∂t

∑
i≥0

ei(x)(tz)i

1−
∑
i≥2

t[i− 1]tei(x)
. (1.10)

We are also able to derive an e-basis expansion formula for the chromatic qua-

sisymmetric function of the labeled cycle Cn = ([n], E), defined by E = {{i, i + 1} |

i ∈ [n− 1]} ∪ {{1, n}}, using

XCn(x, t) = W<
n (x, t) + tW>

n (x, t).

Note that the chromatic quasisymmetric function XCn(x, t) of the labeled cycle is

different than the chromatic quasisymmetric function X−→
Cn

(x, t) of the directed cycle.
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From our expansion, one can see that XCn(x, t) is e-positive. This is notable since

Cn is not covered by any of the current e-positivity conjectures for n ≥ 4.

We obtain F -basis and p-basis expansions for the various descent enumerators de-

fined in this section. The p-basis expansions involve the classical Eulerian polynomials

given by

An(t) =
∑
σ∈Sn

tdes(σ),

where Sn is the symmetric group. By specialization of our F -basis and e-basis ex-

pansions, we get formulas for variations of the q-Eulerian polynomials defined by

Shareshian and Wachs, described below.

Shareshian and Wachs [54, 52] define the q-Eulerian polynomials An(q, t) by

An(q, t) =
∑
σ∈Sn

qmaj≥2(σ−1)tdes(σ), (1.11)

where maj≤2 is a permutation statistic defined in Section 6.4. We note that An(1, t)

are the classical Eulerian polynomials. By specializing their F -basis and e-basis

expansions of Wn(x, t), they obtain the formula

∑
n≥1

An(q, t) zn

[n]q!
=

∑
i≥1

[i]t
zi

[i]q!

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

, (1.12)

where [n]q := 1 + q + · · ·+ qn−1 and [n]q! := [n]q[n− 1]q · · · [1]q. Setting q = 1 gives a

classical result of Euler on the Eulerian polynomials. See (2.1).

In Section 6.4, we study variations of the q-Eulerian polynomials. For example,

let us define the cyclic q-Eulerian polynomial Ãn(q, t) by

Ãn(q, t) :=
∑
σ∈Sn

qmaj≥2(σ−1)tcdes(σ). (1.13)
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Through specialization of our F -basis and e-basis expansions of W̃n(x, t), we obtain

the formula ∑
n≥1

Ãn(q, t) zn

[n]q!
=

∂
∂t

expq(tz)

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

, (1.14)

where expq(z) := ∑
i≥0

zi

[i]q! . We also obtain similar results for other variations of the

q-Eulerian polynomials. See Section 6.4.

This thesis is organized as follows. In Chapter 2, we review some classical results

on permutation statistics, Eulerian polynomials, q-analogs of Eulerian polynomials,

and the chromatic polynomial of a graph. In Chapter 3 we review some basic sym-

metric function theory and discuss the chromatic symmetric function. In Chapter 4

we review quasisymmetric function theory and discuss the chromatic quasisymmetric

function of labeled graphs. In Chapter 5 we present our results on chromatic qua-

sisymmetric functions of directed graphs. In Chapter 6 we present our results on

descent enumerators of restricted Smirnov words. In Appendix A we discuss some

relationships between various classes of graphs and directed graphs discussed in this

thesis.



Chapter 2

Combinatorial polynomials

2.1 Eulerian polynomials

For n ∈ P, let [n] denote the set {1, 2, · · · , n}. A permutation of [n] is a bijection

from [n] to itself. Let Sn denote the set of permutations of [n]. In this thesis, we will

most commonly express a permutation in one-line notation. By this we mean that

if σ ∈ Sn, then σ : [n] → [n] is a bijection, and we can write σ as σ = σ1σ2 · · · σn,

where σi := σ(i) and · represents concatenation.

A permutation statistic is a function f : Sn → N, where N is the set of natural

numbers. Here we define a few commonly studied permutation statistics, as well as

a few sets associated with permutations.

Definition 2.1.1. Let n ∈ P and let σ ∈ Sn.

• The descent set of σ is defined as

DES(σ) := {i ∈ [n− 1] | σi > σi+1}.

14
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• The number of descents of σ is

des(σ) := |DES(σ)|.

• Similarly, the ascent set of σ is defined as

ASC(σ) := {i ∈ [n− 1] | σi < σi+1}.

• The number of ascents of σ is

asc(σ) := |ASC(σ)|.

• The major index of σ is

maj(σ) :=
∑

i∈DES(σ)
i.

• The number of inversions of σ is

inv(σ) := |{(σi, σj) | i < j and σi > σj}|.

• The number of excedances of σ is

exc(σ) := |{i ∈ [n− 1] | σi > i}|.

To make sure we understand these definitions fully, let us look at an example.

Let σ = 132794568 ∈ S9. Then DES(σ) = {2, 5} so des(σ) = 2. On the other

hand, all positions that are not descents are ascents, so ASC(σ) = {1, 3, 4, 6, 7, 8}

and hence asc(σ) = 6. By adding the elements of DES(σ), we see that maj(σ) =

2 + 5 = 7. The inversions of σ are the pairs (i, j) that are out of order in σ, so in
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this case inv(σ) = |{(3, 2), (7, 4), (9, 4), (7, 5), (9, 5), (7, 6), (9, 6), (9, 8)}| = 8. Lastly,

the number of excedences of σ is exc(σ) = |{2, 4, 5}| = 3.

The major index of a permutation was named after Major Percy MacMahon, who

did extensive work with permutations statistics. It is clear by reversing permutations,

i.e., letting σ(i) = σ(n+ 1− i), that ascents and descents are equidistributed, i.e.,

∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

tasc(σ).

MacMahon [42, vol. 1, p.186] was the first to observe that descents and excedances

are equidistributed, i.e., ∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ).

This result is surprising, because for a given permutation σ ∈ Sn, it is not in general

true that des(σ) = exc(σ). Any permutation statistic that is equidistributed with

des is called an Eulerian statistic. This is because this equidistribution result of

MacMahon is closely related to a set of polynomials defined years before by Euler.

The Eulerian polynomials, denoted by An(t) for each n ∈ N, were first introduced

in 1749 by Euler [23] in the formula

∑
k≥1

(k + 1)ntk = An(t)
(1− t)n+1

while studying the Dirichlet eta function. Euler also proved the generating function

∑
n≥0

An(t)z
n

n! = (1− t)ez
etz − tez

, (2.1)

where ez is the usual exponential function. In 1958, after the work of MacMahon,

Riordan [49] discovered that

An(t) =
∑
σ∈Sn

tasc(σ) =
∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ).
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In fact, this is now how the Eulerian polynomials are usually defined.

The Eulerian polynomials have a number of interesting properties, including the

fact that they are both palindromic and unimodal, as defined below.

Definition 2.1.2. Let P (t) ∈ Q[t] be a polynomial with coefficients in Q. Then P (t)

can be expressed as P (t) = ∑n
i=0 ant

n, where ai ∈ Q for all i and an 6= 0.

We say that P (t) is palindromic if ai = an−i for each i ∈ N with i ≤ n.

We say that P (t) is unimodal if there exists some j ∈ P such that ai−1 ≤ ai for

all 0 < i ≤ j and ai ≥ ai+1 for all j ≤ i < n. In other words, the coefficients of P (t)

increase from a0 to aj and then decrease from aj to an.

It is not too difficult to see that that Eulerian polynomials are palindromic by

noting that for any σ ∈ Sn if des(σ) = k, then des(σrev) = asc(σ) = n− 1− k, where

σrev is the reverse of σ, i.e., if σ = σ1σ2 · · ·σn, then σrev = σnσn−1 · · ·σ1. Showing

their unimodality is a bit trickier. See [26] for more information on this.

2.2 q-analogs

A q-analog of an object has the property that setting q = 1 gives back the original

object. For example for n ∈ P, we define the q-analog of n, denoted [n]q as

[n]q := 1 + q + q2 + · · ·+ qn−1.

Clearly setting q = 1 in [n]q returns the number n. We can also define the q-analog

of n! to be

[n]q! := [1]q[2]q · · · [n]q.

One of the most classical q-analog results is the formula

∑
σ∈Sn

qinv(σ) = [n]q! =
∑
σ∈Sn

qmaj(σ).
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Rodriguez [51] proved the first inequality, and MacMahon [43] proved the second,

which shows that inversions and major index are equidistributed. In fact any permu-

tation statistic that is equidistributed with inv and maj is called a Mahonian statistic.

Letting q = 1 in the formula above gives us the well-known fact that |Sn| = n!.

A number of q-analogs of the Eulerian polynomials have been studied over the

years by looking at pairs of permutation statistics. For any two permutation statistics

f1, f2, define

A(f1,f2)
n (q, t) =

∑
σ∈Sn

qf1(σ)tf2(σ).

The q-analogs A(inv,des)(q, t), A(maj,des)(q, t), and A(inv,exc)(q, t) have been well studied.

(For a few of these studies, see [6, 7, 11, 16, 24, 25, 27, 28, 32, 37, 48, 55, 64, 63, 67].)

For example, Stanley [63] showed that

∑
n≥0

A(inv,des)
n (q, t) zn

[n]q!
= 1− t

Expq(z(t− 1))− t ,

where Expq(z) := ∑
n≥0 q

(n2) zn

[n]q! . Substituting q = 1 gives the classical generating

function formula of Euler (2.1). More recently, Shareshian and Wachs [54] found the

formula ∑
n≥0

A(maj,exc)
n (q, t) zn

[n]q!
=

(1− tq) expq(z)
expq(ztq)− tq expq(z) , (2.2)

where expq(z) = ∑
n≥0

zn

[n]q! . Again setting q = 1 gives the classical generating function

formula of Euler (2.1). In Section 6.4 we obtain expansions of a few variations of these

q-analogs.

2.3 The chromatic polynomial

A graph G = (V,E) is defined as a set V of vertices together with the edges, E, which

is a collection of pairs of vertices. We say G is simple if E does not contain loops,

i.e., no edge between a vertex and itself, and E does not contain multiple edges, i.e.,
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there is at most one edge between any two distinct vertices. In this dissertation we

will assume that all graphs are simple.

A proper coloring κ : V → P of a graph G = (V,E) is an assignment of positive

integers, which we can think of as colors, to the vertices of G such that adjacent

vertices have different colors; in other words, if {i, j} ∈ E, then κ(i) 6= κ(j). The

most famous theorem involving graph colorings is the Four-Color Theorem, which

states that any planar graph, i.e., any graph that can be drawn in the plane with no

intersecting edges, can be colored with at most four colors.

While attempting to prove the Four-Color Theorem, Birkhoff [8] introduced the

chromatic polynomial of a planar graph in 1912. This definition was later extended

to all graphs in 1933 by Whitney [68], who was a student of Birkhoff. The chromatic

polynomial of a graph, G, denoted χG(k), gives the number of proper colorings of G

using the colors of [k]. Though it is not obvious, the chromatic polynomial of a graph

is actually a polynomial. For example if G = P3, the path graph on 3 vertices, then

χG(k) = k(k − 1)2. In fact, if G = (V,E) is any tree, i.e., any graph with no cycles,

then χG(k) = k(k − 1)|V |−1.

The chromatic polynomial has a number of interesting properties. For example

Stanley [62] showed that for any graph G = (V,E), the expression (−1)|V |χG(−1)

gives the number of acyclic orientations of G. The chromatic polynomial can even be

defined recursively. Let G = (V,E) be a graph and let e ∈ E. Then G − e is the

graph with the edge e deleted, i.e., G− e = (V,E − e). On the other hand G\e is the

graph G with e contracted, i.e., if e = {u, v}, then to obtain G\e, we delete the edge

e from E and identify vertex u with vertex v. Then

χG(k) = χG−e(k)− χG\e(k).
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Since this graph G = (V,E) with E = ∅ has χG(k) = k|V |, we can calculate the

chromatic polynomial of any graph using this recursion. This recursion can also be

used to show by induction that every chromatic polynomial is actually a polynomial.

We would also like to present an interesting result of Whitney, but first we need

some notation. A set partition of [n] is defined as π = {B1, B2, . . . , Bk}, where

• for each i, we have Bi ⊆ [n] with Bi 6= ∅,

• for each 1 ≤ i < j ≤ k, we have Bi ∩Bj = ∅, and

•
k⋃
i=1

Bi = [n].

We call these Bi the blocks of π. For example {{2, 5, 7}, {1, 3}, {4}, {6}} is a set

partition of [7]. We can create a poset Πn on set partitions of [n], called the partition

lattice, such that for any two set partitions π, γ ∈ Πn we have that π <Πn γ if every

block of π is contained in a block of γ, i.e., for each Bi ∈ π, there exists a Bj ∈ γ

such that Bi ⊆ Bj.

Given a graph G = ([n], E) with vertex set [n], we say that π ∈ Πn is connected if

for each block Bi ∈ π, the induced subgraph of G on the vertices of Bi is connected.

The connected set partitions form a subposet of Πn, which we call the bond lattice

of G, denoted LG. The smallest element of LG, which is the set partition where each

block contains only one element, will be denoted 0̂.

Lastly, let us define the Möbius function of a poset P , denoted µP . The Möbius

function is defined recursively from intervals of P into the integers. For any s ∈ P,

we have that µP (s, s) = 1. For any s, t ∈ P with s <P t, we have that µP (s, t) =

−∑s≤u<t µP (s, u). More information on the Möbius function can be found in [59,

Chapter 3]. Whitney discovered the following expansion of the chromatic polynomial

of a graph.
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Theorem 2.3.1 (Whitney [69]). For any (simple) graph G,

χG(n) =
∑
π∈LG

µ(0̂, π)n|π|,

where |π| denotes the number of blocks of π.

Though the chromatic polynomial did not help Birkhoff prove the Four Color

Theorem as he had hoped, it has become the topic of much mathematical study. The

chromatic polynomial has been generalized to the Tutte polynomial, which has appli-

cations to fields such as knot theory and computational physics. It is currently a major

topic of study in algebraic graph theory with many open problems surrounding it,

such as characterizing graphs with the same chromatic polynomials and determining

which polynomials are chromatic polynomials. Most importantly for us, the chro-

matic polynomial has been generalized to the chromatic symmetric function, which

has itself become a heavily studied topic in the field of algebraic combinatorics.



Chapter 3

Chromatic symmetric functions

In 1995 Stanley [58] introduced a symmetric function analog of the chromatic poly-

nomial, called the chromatic symmetric function. Before we delve into this topic, let

us review some standard theory on symmetric functions.

3.1 Symmetric functions

The theory of symmetric functions is quite broad, so here we will review only a

few basic definitions and results that we need for our work. More information on

symmetric functions can be found in [60, Chapter 7] and [41].

A symmetric function f(x) over a commutative ring R is a formal power series in

infinitely many variables, which we denote x = x1, x2, x3, . . . , with coefficients in R

so that for any permutation σ of the positive integers P, we have that

f(x1, x2, x3, . . . ) = f(xσ(1), xσ(2), xσ(3), . . . ).

In other words, permuting the variables does not change f(x). For the purposes of

this thesis, we will let R = Q, the field of rational numbers. Let ΛQ denote the Q-

algebra of symmetric functions with coefficients in Q. In fact ΛQ is a graded algebra

22
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with

ΛQ = Λ0
Q⊕Λ1

Q⊕Λ2
Q⊕ · · · ,

where Λn
Q is the Q-vector space of homogeneous symmetric functions of degree n.

Now we would like to discuss a few bases for ΛQ, but first we must define the

notion of a partition. For any n ∈ N, we say λ is a partition of n, denoted λ ` n,

if λ = (λ1, λ2, · · · ) with λ1 ≥ λ2 ≥ · · · , λi ∈ N for each i and ∑k
i=1 λi = n. Notice

that using this definition, each partition ends with an infinite string of 0’s. For

notational convenience, we usually do not include the 0’s, so for example the partition

(5, 5, 3, 2, 0, 0, · · · ) of 15 would be written as (5, 5, 3, 2). In addition, we let l(λ) denote

the length of λ, which is the number of λi 6= 0. For example l((5, 5, 3, 2)) = 4. Let

Parn denote the set of partitions of n and let Par := ⋃
i≥0 Pari denote the set of all

partitions. So for example,

Par5 = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}.

One can show that dim(Λn
Q) = |Parn |, so the bases for ΛQ are indexed by parti-

tions. The first basis we would like to discuss is the elementary symmetric function

basis, also known as the e-basis. For each m ∈ P, define

em(x) :=
∑

i1<i2<···<im
xi1xi2 · · ·xim .

So for example e1(x) = x1 + x2 + x3 + · · · and e2(x) = x1x2 + x1x3 + x2x3 + · · · . We

also define e0(x) := 1. Then for any partition λ = (λ1, λ2, · · · , λk) ` n, we can define

eλ(x) := eλ1(x)eλ2(x) · · · eλk(x).
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Then {eλ(x) | λ ∈ Parn} form a Q-basis for Λn
Q and so {eλ(x) | λ ∈ Par} form a

Q-basis for ΛQ. In fact, e1(x), e2(x), · · · are algebraically independent and generate

ΛQ as a Q-algebra, so Λ = Q[e1(x), e2(x), · · · ].

The other basis we will use most often in this thesis is the power sum symmetric

function basis, also known as the p-basis. For each m ∈ P, define

pm(x) :=
∑
i≥1

xmi .

For example p1(x) = x1 + x2 + x3 + · · · and p2(x) = x2
1 + x2

2 + x2
3 + · · · . We define

p0(x) := 1. Then for any partition λ = (λ1, λ2, · · · , λk) ` n, we define

pλ(x) := pλ1(x)pλ2(x) · · · pλk(x).

As in the case of the elementary basis, {pλ(x) | λ ∈ Parn} form a Q-basis for Λn
Q and

so {pλ(x) | λ ∈ Par} form a Q-basis for ΛQ. In fact, p1(x), p2(x), · · · are algebraically

independent and generate ΛQ as a Q-algebra, so Λ = Q[p1(x), p2(x), · · · ].

The last basis we would like to define is the complete homogeneous symmetric

function basis, also known as the h-basis. For each m ∈ P, define

hm(x) :=
∑

i1≤i2≤···≤im
xi1xi2 · · ·xim .

For example h1(x) = x1 + x2 + x3 + · · · and h2(x) = x2
1 + x2

2 + x1x2 + · · · . We define

h0(x) := 1. Then for any partition λ = (λ1, λ2, · · · , λk) ` n, we define

hλ(x) := hλ1(x)hλ2(x) · · ·hλk(x).
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As in the case of the previous two bases, {hλ(x) | λ ∈ Parn} form a Q-basis for Λn
Q and

so {hλ(x) | λ ∈ Par} form a Q-basis for ΛQ. In fact, h1(x), h2(x), · · · are algebraically

independent and generate ΛQ as a Q-algebra, so Λ = Q[h1(x), h2(x), · · · ].

One important symmetric function basis that we do not define here but may refer-

ence on occasion is the Schur basis. The Schur basis is arguably the most interesting

and useful of the symmetric function bases; however, we do not use this basis in our

work, and as Schur functions are a bit more difficult to define than the three bases

described here, we will omit the definition. More information on Schur functions can

be found in [60, Chapter 7].

Throughout this thesis, we use ω to denote the usual involution on ΛQ defined by

ωhλ(x) = eλ(x).

It can be shown that for any partition λ ` n, we have that ωpλ(x) = (−1)n−l(λ)pλ(x).

For any basis, b = {bλ | λ ` n}, of Λn
Q, we say that a symmetric function,

f(x) ∈ Λn
Q is b-positive if the expansion of the symmetric function in terms of the

bλ basis has nonnegative coefficients. It is a well-known fact that for any symmetric

function f(x) ∈ Λn
Q, if f(x) is h-positive, then it is also p-positive. In this thesis,

we will use the immediate corollary that for any symmetric function f(x) ∈ Λn
Q, if

f(x) is e-positive, then ωf(x) is p-positive. We also reference the fact that if f(x) is

e-positive, then f(x) is also Schur-positive.

3.2 Chromatic symmetric functions

As mentioned previously, Stanley defined a symmetric function refinement of the

chromatic polynomial called the chromatic symmetric function of a graph. We will

restate the definition here for convenience.
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Definition 3.2.1 (Stanley [58]). For any graph G = (V,E) let C(G) denote the set

of proper colorings of G. The chromatic symmetric function of G is defined as

XG(x) =
∑

κ∈C(G)
xκ,

where xκ = ∏
v∈V xκ(v).

Notice that permuting the variables of XG(x) is equivalent to permuting the colors

(which are positive integers); however, this simply gives us a different proper coloring

of G, so it does not change the expansion. Hence XG(x) is a symmetric function. In

fact, if G has n vertices, then XG(x) is homogeneous of degree n, so XG(x) ∈ Λn
Q.

For a symmetric function f(x) ∈ Λn
Q and for k ∈ P, we define f(1k) as the value

obtained from setting xi = 1 for i ≤ k and xi = 0 for i > k in f(x). Then XG(1k) is

the number of colorings of G that use only the colors in [k], hence XG(x) = χG(k),

where χG(k) is the chromatic polynomial of G evaluated at k.

As an example, let us calculate the chromatic symmetric function of the path

graph, P3, as shown above. There are 3! = 6 possible ways to color P3 with 3

different colors and 2 possible ways to color P3 with two different colors (by putting

one color on the outer two vertices and the other color on the middle vertex). Hence

XP3(x) = 6
∑
i<j<k

xixjxk +
∑
i<j

(x2
ixj + xix

2
j) (3.1)

= e21(x) + 3e3(x) (3.2)

Stanley proved the following p-basis expansion for the chromatic symmetric func-

tion of any graph.
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Theorem 3.2.2 (Stanley [58, Theorem 2.6]). Let G be any graph and let LG denote

the bond lattice of G. Then

XG(x) =
∑
π∈LG

µ(0̂, π)ptype(π)(x),

where µ(0̂, π) is the Möbius function of LG and type(π) is the partition formed by

ordering the sizes of the blocks of π in decreasing order.

It is clear that pn(1k) = k for any n, so specializing this result gives the result

of Whitney for chromatic polynomials (see Theorem 2.3.1). Now let us note two

useful facts. First the Möbius function of LG alternates in sign, i.e., for all π ∈ LG,

we have (−1)n−|π|µ(0̂, π) is always positive, where n is the number of vertices of G

and |π| is the number of blocks of π. As we mentioned earlier for λ ` n, we have

ωpλ(x) = (−1)n−l(λ)pλ(x). Combining these two facts, we get the following corollary.

Corollary 3.2.3 (Stanley [58, Corollary 2.7]). For any (simple) graph G, we have

that ωXG(x) is p-positive. In fact

ωXG(x) =
∑
π∈LG

|µ(0̂, π)|ptype(π)(x).

The natural question to ask is whether XG(x) has positive coefficients in other

symmetric function bases. Unfortunately, that is not always the case. For the claw

graph, K31, we have that XK31(x) = e4(x) + 5e31(x)− 2e22(x) + e211(x).

Then one could ask if there is a class of graphs with e-positive chromatic symmetric

functions. The most well-known conjecture involving chromatic symmetric functions
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of graphs is the Stanley-Stembridge e-positivity conjecture. First let us say that a

poset is (a+b)-free if it has no induced subposet that is the disjoint union of a chain

with a elements and a chain b elements. The incomparability graph of a poset P,

denoted Inc(P ), is the graph with the elements of P as vertices and edges between

incomparable elements of P .

Conjecture 3.2.4 (Stanley-Stembridge [66] [58]). Let P be a (3+1)-free poset. Then

XInc(P )(x) is e-positive.

A weaker result that the chromatic symmetric functions of incomparability graphs

of (3+1)-free posets are Schur-positive follows from the work of Haiman [39]. Gasharov

[29] gave a combinatorial interpretation of the coefficients in the Schur basis in terms

of a combinatorial object called P -tableau.

The simplest connected graph that is the incomparability graph of a (3 + 1)-free

poset is the path graph, Pn. Recall that we define Pn = ([n], E) to be the graph on

[n] with edge set E = {{i, i+ 1} | i ∈ [n− 1]}. Stanley gives a nice e-basis expansion

of the path, shown below.

Proposition 3.2.5 (Stanley [58, Proposition 5.3]). Let Pn be the path graph. Then

∑
n≥0

XPn(x)zn =

∑
i≥0

ei(x)zi

1−
∑
i≥2

(i− 1)ei(x)zi
. (3.3)

Consequently, XPn(x) is e-positive for all n ∈ N.

Stanley also defines a class of graphs, which he names circular indifference graphs,

that seem to be e-positive. The simplest connected circular indifference graph that is

not the incomparability graph of a poset is the cycle Cn. For n ≥ 2, let Cn = ([n], E)

be the graph with edge set E = {{i, i + 1} | i ∈ [n − 1]} ∪ {{1, n}}. Stanley proves

the following e-basis generating function formula for XCn(x, t).



29

Proposition 3.2.6 (Stanley [58, Proposition 5.4]). Let Cn be the cycle graph. Then

∑
n≥2

XCn(x)zn =

∑
i≥2

i(i− 1)ei(x)zi

1−
∑
i≥2

(i− 1)ei(x)zi
. (3.4)

Consequently XCn(x) is e-positive for all n ∈ P with n ≥ 2.

Since their introduction, chromatic symmetric functions have been extensively

studied. Some of these studies include [35], [61], [29], [30], [14], [13], [45], [40], [70],

[46], [31], [47], [18].



Chapter 4

Chromatic quasisymmetric
functions of labeled graphs

In 2012 Shareshian and Wachs introduced a quasisymmetric generalization of the

chromatic symmetric function for labeled graphs. They did so by introducing an

extra variable to record the number of ascents of each proper coloring. Before we give

the formal definition of chromatic quasisymmetric functions, let us discuss some of

the basic theory of quasisymmetric functions.

4.1 Quasisymmetric functions

The main work of this thesis involves quasisymmetric functions, as one may suspect

by the title. As with symmetric functions, the theory of quasisymmetric functions

is quite rich; however, we will address only the basic definitions and results needed

for our work. More information on quasisymmetric functions can be found in [60,

Chapter 7].

A quasisymmetric function f(x) over a commutative ringR is a formal power series

in infinitely many variables, which we denote x = x1, x2, x3, . . . , with coefficients in

R so that for positive integers a1, a2, . . . , ak, i1, i2, . . . , ik ∈ N with i1 < i2 < · · · < ik,

we have that the coefficient of xa1
i1 x

a2
i2 · · ·x

ak
ik in f(x) is the same as the coefficient

of xa1
1 x

a2
2 · · ·xakk in f(x). In other words, f(x) is invariant under shifting the indices

of the variables. Notice that all symmetric functions are quasisymmetric functions,

30
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but not all quasisymmetric functions are symmetric functions. For example f(x) =∑
i<j<k x

2
ixjx

3
k is a quasisymmetric function but not a symmetric function.

Let QSymQ denote theQ-vector space of quasisymmetric functions, and let QSymn
Q

denote the Q-vector space of homogeneous quasisymmetric functions of degree n.

Since the product of two quasisymmetric functions is quasisymmetric, we see that

QSymQ is actually a graded algebra with

QSymQ = QSym0
Q⊕QSym1

Q⊕QSym2
Q⊕ · · · .

Before we describe a few bases of QSymQ, let us define the notion of a composition.

For n ∈ P, we define a composition of n to be an infinite sequence α = (α1, α2, . . . )

where each αi ∈ N, there exists some k ∈ P such that αi > 0 for i ≤ k and αi = 0 for

i > k and such that∑i αi = n. For notational convenience we do not write the trailing

zeros, so for example the composition (4, 1, 6, 2, 0, 0, . . . ) of 13 can be written as

(4, 1, 6, 2). Compositions are simply partitions where the parts need not be decreasing.

Let Comp(n) denote the set of compositions of n and define Comp(0) = {∅}. We can

also let Comp = ⋃
n≥0 Comp(n). As an example, we have that

Comp(4) = {(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}.

There is a natural correspondence between Comp(n) and subsets of [n − 1] for

n ∈ P. (Note that we will let [0] = ∅.) Let n ∈ P and (α1, α2, . . . , αk) ∈ Comp(n).

This corresponds to the subset {α1, α1 + α2, . . . , α1 + α2 + · · · + αk−1} of [n − 1].

Similarly for a subset {a1, a2, . . . , am} ⊆ [n − 1] with a1 < a2 < · · · < am, we can

associate the composition (a1, a2 − a1, . . . , n− am) of n. One can easily see that this

defines a bijection. From this we see that |Comp(n)| = 2n−1. It turns out that

dim(QSymn
Q) = 2n−1 for each n ∈ P, so our bases for QSymn

Q will be indexed by

either compositions of n or subsets of n− 1.
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The most natural basis for QSymQ is the monomial quasisymmetric basis. Let

n ≥ 1 and α = (a1, a2, . . . , ak) ∈ Comp(n). Then

Mα(x) =
∑

i1<i2<···<ik
xa1
i1 x

a2
i2 · · ·x

ak
ik .

Let M∅(x) = 1. If we let 1n denote the composition of n that contains all 1’s, we see

thatM1n(x) = en(x). Additionally, we have thatM(n)(x) = pn(x). On the other hand,

M(2,1) = ∑
i<j x

2
ixj is not a symmetric function. The set {Mα(x) | α ∈ Comp(n)}

forms a Q-basis for QSymn
Q, and hence {Mα(x) | α ∈ Comp} forms a Q-basis for

QSymQ .

The basis we will focus on in this thesis is Gessel’s fundamental quasisymmetric

function basis, also known as the F -basis. For n ∈ P and for each S ⊆ [n − 1], we

define1

Fn,S(x) =
∑

i1≥i2≥···≥in
ij>ij+1 if j∈S

xi1xi2 · · ·xin .

Define F0,∅(x) = 1. For example Fn,[n−1](x) = en(x), and Fn,∅(x) = hn(x). Again the

set {Fn,S(x) | S ⊆ [n − 1]} forms a Q-basis for QSymn
Q and hence {Fn,S(x) | n ∈

N, S ⊆ [n − 1]} forms a Q-basis for QSymQ . Note that the involution ω on Λn
Q can

be extended to QSymn
Q and can be described by ωFn,S(x) = Fn,[n−1]\S(x).

4.2 Chromatic quasisymmetric functions of labeled

graphs

Through their work on Eulerian quasisymmetric functions [54], Shareshian and Wachs

discovered a t-analog of Stanley’s e-basis expansion of the chromatic symmetric func-
1Note that our definition is different from the standard definition of Gessel’s fundamental ba-

sis. Our Fn,S(x) is equal to Lα(S)(x) defined in [60, Chapter 7], where α(S) is the reverse of the
composition of n associated to S.
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tion of the path graph. This led them to introduce a quasisymmetric refinement of

Stanley’s chromatic symmetric function called the chromatic quasisymmetric function

of a graph. Let G = ([n], E) be a graph, and let κ : [n] → P be a proper coloring

of G. We say that an edge {i, j} of G is an ascent of κ if i < j and κ(i) < κ(j).

Let asc(κ) denote the number of ascents of κ. Then the chromatic quasisymmetric

function of G is given by

XG(x, t) =
∑

κ∈C(G)
tasc(κ)xκ.

Henceforth when we use the term "labeled graph," we are referring to a graph with

vertex set [n]. Note that the chromatic quasisymmetric function of a labeled graph

depends on the labeling chosen and not just on the isomorphism class of the graph.

We can easily see that setting t = 1 gives Stanley’s chromatic symmetric function.

In the Shareshian-Wachs chromatic quasisymmetric function of a labeled graph,

we can see that the coefficient of tj for each j ∈ N is a quasisymmetric function, so

XG(x, t) ∈ QSymQ[t], where QSymQ[t] is the ring of polynomials in t whose coeffi-

cients are in QSymQ . Note that QSymQ[t] is equivalent to QSymQ[t], i.e., the ring of

quasisymmetric functions with coefficients in the ring Q[t] of polynomials in t with

coefficients in Q. In this thesis, we tend to view these chromatic quasisymmetric

functions as elements of QSymQ[t], but we may sometimes view them as elements of

QSymQ[t] when convenient.

The coefficients of the chromatic quasisymmetric function of a graph do not nec-

essarily have to be symmetric functions. The chromatic quasisymmetric function of

the labeled graph, P3, which is a path on 3 vertices labeled 1− 2− 3, is symmetric2.

In fact,

XP3(x, t) = e3(x) + t(e21(x) + e3(x)) + t2e3(x).
2Note that many times the term "symmetric” is interchangeable with the term "palindromic”;

however, in this thesis we will use the term "symmetric” to imply that the coefficients of a function
f(x) ∈ QSymQ[t] are symmetric functions, i.e., that f(x) ∈ ΛQ[t].
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(Compare this with the chromatic symmetric function of P3 given in (3.2).) On the

other hand, the chromatic quasisymmetric function of the graph G given by 2− 1− 3

is not symmetric (see [52, Example 3.2]), since

XG(x, t) = (F3,∅(x) + F3,{2}(x)) + 2tF3,∅(x) + t2(F3,∅(x) + F3,{1}(x)).

Then one might ask if there is a nice class of graphs with symmetric chromatic

quasisymmetric functions. To answer this question, let us define the class of natural

unit interval graphs. Note that there are a number of equivalent ways to define these

graphs, so we choose one that is most convenient for us. See Appendix A for more

information.

Definition 4.2.1. Let I be a finite set of closed unit intervals on the real line. We can

write the intervals of I in the form [ai, ai + 1] for 1 ≤ i ≤ n with a1 < a2 < · · · < an.

Let P be the poset on [n] such that i <P j if ai + 1 < aj. Posets that can be formed

this way are called natural unit interval orders.

Natural unit interval graphs are the incomparability graphs of natural unit interval

orders.

Shareshian and Wachs showed that if G is a natural unit interval graph, then

XG(x, t) is symmetric. Notice that in our earlier example, 1− 2− 3 is a natural unit

interval graph, but 2− 1− 3 is not.

Shareshian and Wachs used the theory of P -partitions to obtain a formula for

XG(x, t) in terms of Gessel’s fundamental quasisymmetric basis when G is the incom-

parability graph of a poset that uses P -descents. We discuss this in detail in Section

5.2. Note that since natural unit interval graphs are incomparability graphs of posets,

this formula gives their F -basis expansion.

Using this F -basis expansion, Athanasiadis [4] was able to prove a conjecture of

Shareshian and Wachs for the p-basis expansion of the chromatic quasisymmetric
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function of natural unit interval graphs. This is discussed in detail in Section 5.3.

One of the most well-known conjectures resulting from their work is their e-positivity

conjecture.

Conjecture 4.2.2 (Shareshian-Wachs [52][53]). Let G = ([n], E) be a natural unit in-

terval graph. Then the palindromic3 polynomial XG(x, t) is e-positive and e-unimodal.

In other words, if XG(x, t) = ∑|E|
j=0 aj(x)tj, then aj(x) is e-positive for all j and

aj+1(x)− aj(x) is e-positive for all j ≤ |E|−1
2 .

The class of unit interval graphs is equivalent to the class of incomparability graphs

of (3 + 1) and (2 + 2)-free posets, so the class of graphs for the Shareshian-Wachs

conjecture is smaller than the class of graphs for the Stanley-Stembridge conjecture.

However, Guay-Pacquet [35] proved that if the Stanley-Stembridge conjecture holds

for (3 + 1) and (2 + 2)-free posets, then it holds for all (3 + 1)-free posets. Hence, the

Shareshian-Wachs conjecture implies the Stanley-Stembridge conjecture.

Shareshian and Wachs [52] proved the weaker result that the chromatic quasisym-

metric functions of natural unit interval graphs are Schur-positive. They give a com-

binatorial interpretation of the coefficients in the Schur basis expansion using the P -

tableau described by Gasharov [29], and their result reduces to the result of Gasharov

in the t = 1 case.

Shareshian and Wachs also obtained an e-basis generating function formula for

XPn(x, t), which is a nice t-analog of the formula of Stanley’s (see (3.3)) in the case

of the unlabeled path. They showed the following:

Theorem 4.2.3 (Shareshian-Wachs [52][54]). Let Pn = ([n], E) be the labeled path

graph. Then

∑
n≥0

Pn(x, t)zn =

∑
i≥0

ei(x)zi

1−
∑
i≥2

[i− 1]tei(x)zi
. (4.1)

3Shareshian and Wachs established that if G is a natural unit interval graph, XG(x, t) is a
palindromic polynomial in t; in other words, XG(x, t) =

∑|E|
i=0 ai(x)ti so that ai(x) = a|E|−i(x) for

all 0 ≤ i ≤ |E|.
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From this, one can obtain the corollary thatXPn(x, t) is e-positive and e-unimodal.

Much work has been done on chromatic quasisymmetric functions in the past few

years. There is an important connection between chromatic quasisymmetric functions

of natural unit interval graphs and Hessenberg varieties, which was conjectured by

Shareshian and Wachs and was proven by Brosnan and Chow [10] and later by Guay-

Paquet [36]. This connection to Hessenberg varieties gives a possible approach to

proving Conjecture 4.2.2. Clearman, Hyatt, Shelton, and Skandera [17] found an

algebraic interpretation of chromatic quasisymmetric functions of natural unit interval

graphs in terms of characters of type A Hecke algebras evaluated at Kazhdan-Lusztig

basis elements. Recently, Haglund and Wilson [38] discovered a connection between

chromatic quasisymmetric functions and Macdonald polynomials.



Chapter 5

Chromatic quasisymmetric
functions of directed graphs

The definition of chromatic quasisymmetric functions of labeled graphs has a

natural extension to directed graphs, which we explore in this chapter. In Section

5.1, we give some basic results on chromatic quasisymmetric functions of digraphs

as well as a few examples. In Section 5.2 we present our F -basis expansion for

the chromatic quasisymmetric function of all digraphs, as well as a specialization of

this expansion that refines a result of Chung and Graham. In Section 5.3 we show

that for any digraph −→G such that X−→
G

(x, t) is symmetric, we have that ωX−→
G

(x, t)

is p-positive and we give a combinatorial interpretation of the coefficients. For the

directed cycle −→Cn, we give a factorization of the coefficients of ωX−→
Cn

(x, t) in the

p-basis involving the Eulerian polynomials. In Section 5.4 we define the class of

circular indifference digraphs and show that these digraphs have symmetric chromatic

quasisymmetric functions. Lastly in Section 5.5 we present a generalized e-positivity

conjecture for circular indifference digraphs and provide some support. We prove

an e-basis expansion for X−→
Cn

(x, t) showing that it is e-positive. We also provide a

combinatorial interpretation for the coefficients of XPn(x, t) and X−→
Cn

(x, t) in the e-

37
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basis involving acyclic orientations. Note that most of the results of this chapter can

be found in the author’s papers [21, 20].

5.1 Basic properties

We extend the definition of chromatic quasisymmetric function from labeled graphs to

directed graphs, but before we discuss this further, let us fix some notation involving

directed graphs.

A directed graph (or digraph)−→G = (V,E) is a set of vertices V together with a set E

of ordered pairs of vertices, called edges. The pair (u, v) ∈ E denotes an edge directed

from u to v. We say a directed graph −→G = (V,E) is simple if there are no loops, i.e.,

(v, v) /∈ E for all v ∈ V, and for any distinct vertices u, v ∈ V there can be at most

one edge directed from u to v. Note that we do allow two edges between u and v, but

the edges must have opposite orientations. For notational convenience, we distinguish

an undirected graph, G, from a directed graph, −→G, with an arrow. Throughout this

paper, we will refer to the underlying undirected graph of a digraph −→G by which we

mean the simple undirected graph obtained by removing the orientation from the

edges of −→G and combining any double edges into single edges. By a proper coloring

of a digraph, we mean a proper coloring of the underlying undirected graph.

Definition 5.1.1. Let −→G be a directed graph and let C(−→G) be the set of proper

colorings of −→G. For a proper coloring κ ∈ C(−→G), we define the number of ascents of κ

as asc(κ) = |{(i, j) ∈ E | κ(i) < κ(j)}|, i.e., the number of ascents of κ is the number

of edges of −→Cn directed from a smaller color to a bigger color. Then the chromatic

quasisymmetric function of a directed graph −→G is

X−→
G

(x, t) =
∑

κ∈C(−→G)

tasc(κ)xκ,

where xκ = ∏
v∈V xκ.
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We see that setting t = 1 inX−→
G

(x, t) gives Stanley’s chromatic symmetric function

XG(x) of the underlying undirected graph G of −→G . If we take a labeled graph G =

([n], E), we can create a digraph −→G = ([n], E) by orienting each edge from smaller

label to larger label. Below we repeat our earlier example of this process.

Then we see that the Shareshian-Wachs definition of the chromatic quasisymmetric

function of G is the same as our definition of the chromatic quasisymmetric function

of −→G. Every acyclic digraph can be obtained in this manner, so the Shareshian-Wachs

definition is the same as our definition when we restrict ourselves to acyclic digraphs.

Both of the following propositions follow easily from the definition of the chromatic

quasisymmetric function of a digraph.

Proposition 5.1.2. For any digraph −→G = (V,E) with |V | = n, we have X−→
G

(x, t) ∈

QSymn
Q[t].

Proposition 5.1.3. Let −→G and −→H be digraphs on disjoint vertex sets and let −−−−→G+H

denote the graph formed by the disjoint union of −→G and −→H . Then X−−−→
G+H(x, t) =

X−→
G

(x, t)X−→
H

(x, t).

Now let us look at a few examples of digraphs and their corresponding chromatic

quasisymmetric functions.

Example 5.1.4. For any digraph, −→G, on whose underlying undirected graph is the

complete graph,Kn, it is easy to see thatX−→
G

(x, t) = p(t)en(x), where p(t) = ∑
κ t

asc(κ)

and κ varies over all proper colorings of −→G using only the colors in [n]. From this

we can see that X−→
G

(x, t) is e-positive. Specifically if −→G is acyclic, then p(t) = [n]t!,

where [n]t = 1 + t + · · ·+ tn−1 and [n]t! = [n]t[n− 1]t · · · [1]t (see [52, Example 2.4]).

By Proposition 5.5.6 if −→G contains all pairs of double edges, p(t) = n!t(n2).
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Example 5.1.5. Let −→Pn = (V,E) denote the directed path on n vertices with vertex

set V = {v1, v2, · · · , vn} and edge set E = {(vi, vi+1) | 1 ≤ i < n}. From the work

of Shareshian and Wachs [54, Theorem 7.2](see Theorem 4.2.3 in this thesis) on the

labeled path graph, we know

∑
n≥0

X−→
Pn

(x, t)zn =

∑
k≥0

ek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
, (5.1)

which refines Stanley’s formula for the chromatic symmetric function of the undirected

path, Pn [58, Proposition 5.3] (see Proposition 3.2.5 in this thesis). From this formula,

we can see that X−→
Pn

(x, t) is symmetric, e-positive, and e-unimodal [52, Corollary C.5].

Example 5.1.6. Let us define the directed cycle on n vertices, denoted −→Cn = (V,E),

as the digraph with vertex set V = {v1, v2, · · · , vn} and edge set E = {(vi, vi+1) | 1 ≤

i < n} ∪ {(vn, v1)}. In Theorem 5.5.2, we show that

∑
n≥2

X−→
Cn

(x, t)zn =
t
∑
k≥2

k[k − 1]tek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
, (5.2)

and hence X−→
Cn

(x, t) is symmetric. In fact, in Corollary 5.5.4, we show that the co-

efficients are e-positive and e-unimodal. Equation (5.2) is a t-analog of Stanley’s

formula for the chromatic symmetric function of the undirected cycle, Cn [58, Propo-

sition 5.4](see Proposition 3.2.6 in this thesis).

Unfortunately, not every orientation of a given graph has a symmetric chromatic

quasisymmetric function. The smallest example of this is the path on 3 vertices. The

orientations of the path are given by
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There is only one orientation (−→P3) with a symmetric chromatic quasisymmetric func-

tion. The other two orientations (−−→K12 and −−→K21) do not have symmetric chromatic

quasisymmetric functions. See Example 5.2.3.

On the other hand, there are also graphs that do not admit any orientation whose

associated chromatic quasisymmetric function is symmetric. The graph K31 is given

by

None of the orientations of K31 have chromatic quasisymmetric functions that are

symmetric.

Let ρ : QSymQ → QSymQ be the involution defined on the monomial quasisym-

metric function basis, Mα, by ρ(Mα) = Mαrev for each composition α, where αrev

is the reverse of α, i.e., if α = (α1, α2, . . . , αk) then αrev = (αk, αk−1, . . . , α1). Note

that every symmetric function is fixed by ρ. We can extend ρ to QSymZ[t] by linear-

ity. Then the next propositions follow easily from [52, Proposition 2.6, Corollary 2.7,

Corollary 2.8]. Note in [52], Shareshian and Wachs prove these statements for labeled

graphs; however, the same proof works for digraphs.

Proposition 5.1.7. Let −→G = (V,E) be a digraph on n vertices. Then

ρ(X−→
G

(x, t)) =
∑

κ∈κ(−→G)

tdes(κ)xκ,

where des(κ) is the number of directed edges (u, v) ∈ E such that κ(u) > κ(v).
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Hence if X−→
G

(x, t) is symmetric, then

X−→
G

(x, t) =
∑

κ∈κ(−→G)

tdes(κ)xκ.

Proposition 5.1.8. For a digraph −→G = (V,E), if X−→
G

(x, t) is symmetric, then

X−→
G

(x, t) is palindromic in t with center of symmetry |E|2 .

5.2 Expansion in Gessel’s fundamental quasisym-

metric function basis

Shareshian and Wachs gave an expansion for ωXG(x, t) in terms of Gessel’s funda-

mental quasisymmetric basis when G is the incomparability graph of a poset P . The

t = 1 case of their formula for chromatic symmetric functions of incomparability

graphs was proved by Chow [13, Corollary 2].

To describe their expansion, we first need a couple of definitions. Recall that Sn

is the group of permutations of [n]. Let P be a poset on [n] and let σ ∈ Sn. We can

define the set of P -descents of σ as

DESP (σ) = {i | σi >P σi+1}.

Note that if P is the total order on [n], then P -descents are just the usual descents

of a permutation, as defined in Section 2.1.

Now let G = ([n], E) be a labeled graph and let σ ∈ Sn. We can define the

number of G-inversions of σ as

invG(σ) = |{{σi, σj} ∈ E | i < j and σi > σj}|.
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If G is the complete graph on [n], i.e., the graph with all possible edges, then G-

inversions are the usual inversions of a permutation, as defined in Section 2.1.

Theorem 5.2.1 (Shareshian-Wachs [52, Theorem 3.1], Chow (t=1) [13, Corollary

2]). Let P be a poset on [n] and let G = ([n], E) be the incomparability graph of P.

Then

ωX(x, t) =
∑
σ∈Sn

tinvG(σ)Fn,DESP (σ)(x). (5.3)

Consequently ωXG(x, t) is F -positive.

In this section, we present an F -basis expansion of ωX−→
G

(x, t) for all digraphs,

which shows that ωX−→
G

(x, t) is F -positive for all digraphs. In general our formula

does not reduce to the formula of Shareshian and Wachs, so this gives another combi-

natorial description of the coefficients in the F -expansion for incomparability graphs

of posets.

We may assume without loss of generality that the vertex set of a digraph −→G is

[n]. The labeling chosen does not affect the chromatic quasisymmetric function of −→G,

as it would for the chromatic quasisymmetric function of a labeled graph defined by

Shareshian and Wachs.

Let −→G = ([n], E) be a digraph and let σ ∈ Sn. Define a −→G -inversion of σ as a

directed edge (u, v) of −→G such that σ−1(u) > σ−1(v), i.e., v precedes u in σ. Notice

that a −→G -inversion does not need to be a usual inversion; if v < u, then it will not

be. Let inv−→
G

(σ) be the number of −→G -inversions of σ.
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For example, let −→G be −→C8, the directed cycle on [8] as shown above, and let

σ = 25413786 ∈ S8. The
−→
C8-inversions of σ are (1, 2), (3, 4), (4, 5), and (6, 7), so

inv−→
C8

(σ) = 4.

The notion of a −→G -inversion of a permutation is an easy modification of the idea

of a G-inversion of a permutation defined by Shareshian and Wachs. On the other

hand since we do not generally work with incomparability graphs of posets, modifying

the idea of a P -descent of a permutation is a bit trickier. We do so by defining the

G-descents of a permutation for any labeled graph G = ([n], E).

Now let G = ([n], E) be an undirected graph and let σ = σ1σ2 · · ·σn ∈ Sn.

For each x ∈ [n], define the (G, σ)-rank of x, denoted rank(G,σ)(x), as the length of

the longest subword σi1σi2 · · ·σik of σ such that σik = x and for each 1 ≤ j < k,

{σij , σij+1} ∈ E. We say σ has a G-descent at i with 1 ≤ i < n if either of the

following conditions holds:

• rank(G,σ)(σi) > rank(G,σ)(σi+1)

• rank(G,σ)(σi) = rank(G,σ)(σi+1) and σi > σi+1.

Let DESG(σ) be the set of G-descents of σ.

For example, let G = C8 be the cycle on 8 vertices labeled with [8] in cyclic

order. In other words, C8 is the underlying undirected graph of the directed cycle
−→
C8, pictured above. Let σ = 25413786 ∈ S8. By attaching the (G, σ)-rank of

each letter as a superscript, we get 2151421233718362. We can see from this that

DESG(σ) = {3, 5, 7}.

Theorem 5.2.2. Let −→G = ([n], E) be a digraph. Then

ωX−→
G

(x, t) =
∑
σ∈Sn

tinv−→
G

(σ)Fn,DESG(σ)(x), (5.4)

where Fn,S(x) is Gessel’s fundamental quasisymmetric function and G is the under-

lying undirected graph of −→G.
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Proof. The first half of this proof closely follows the proof of [52, Theorem 3.1]. The

second part of the proof is quite different. Let G be the underlying undirected graph

of −→G and let Gā be an acyclic orientation of the graph G, possibly different from the

given orientation on −→G. Then define asc(Gā) to be the number of edges of Gā whose

orientation matches the orientation of −→G. For each acyclic orientation Gā, we will let

C(Gā) be the set of proper colorings, κ, of G such that if (i, j) is a directed edge of

Gā, then κ(i) < κ(j). It is clear that

X−→
G

(x, t) =
∑

Gā∈AO(G)
tasc(Gā) ∑

κ∈C(Gā)
xκ, (5.5)

where AO(G) is the set of acyclic orientations of G.

From each acyclic orientation, Gā, we can create a poset, Pā, on [n] by letting

i <Pā j if there is an edge from i to j in Gā and extending transitively. We define

a labeling of Pā as a bijection from Pā to [n]. Now we give Pā a decreasing labeling

wā : Pā → [n], i.e., if x <Pā y, then wā(x) > wā(y). Let L(Pā, wā) be the set of

linear extensions of Pā with the labeling wā. For any subset S ⊆ [n − 1], define

n − S = {i | n − i ∈ S}. Then by the theory of P-partitions (see [60, Chapter 7] for

a reference), we have

∑
κ∈C(Gā)

xκ =
∑

σ∈L(Pā,wā)
Fn,n−DES(σ)(x), (5.6)

where DES(σ) is the usual descent set of a permutation, i.e., DES(σ) = {i ∈ [n− 1] |

σ(i) > σ(i+ 1)}.

Let e : Pā → [n] be the identity map, i.e., the map that takes each element of

Pā to its original label. Then L(Pā, e) is the set of linear extensions of Pā with its

original labeling, e. For σ ∈ L(Pā, e), let wāσ denote the product of wā and σ in Sn.
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For σ ∈ Sn, we have wāσ ∈ L(Pā, wā) if and only if σ ∈ L(Pā, e). So (5.6) becomes

∑
κ∈C(Gā)

xκ =
∑

σ∈L(Pā,e)
Fn,n−DES(wāσ)(x).

Combining this with (5.5) gives us that

X−→
G

(x, t) =
∑

Gā∈AO(G)
tasc(Gā) ∑

σ∈L(Pā,e)
Fn,n−DES(wāσ)(x).

Since each σ ∈ Sn is a linear extension of a unique acyclic orientation, Gā(σ), of G,

we can rewrite this as

X−→
G

(x, t) =
∑
σ∈Sn

tasc(Gā(σ))Fn,n−DES(wā(σ)σ)(x),

where wā(σ) is a decreasing labeling of Pā(σ).

For σ ∈ Sn, let ASC(σ) denote the usual ascent set of a permutation, i.e.,

ASC(σ) = {i ∈ [n − 1] | σ(i) < σ(i + 1)}. Also define σrev ∈ Sn by letting

σrev(i) = σ(n+ 1− i) for all i. It is not hard to see that asc(Gā(σ)) = inv−→
G

(σrev) and

n−DES(wā(σ)σ) = ASC((wā(σ)σ)rev), so we have

X−→
G

(x, t) =
∑
σ∈Sn

tinv−→
G

(σrev)Fn,ASC((wā(σ)σ)rev)(x).

Then by reversing σ and letting w̃ā(σ) be an increasing labeling of Pā(σ), we have

that

X−→
G

(x, t) =
∑
σ∈Sn

tinv−→
G

(σ)Fn,ASC(w̃ā(σ)σ)(x).

Finally applying the involution ω to both sides of the equation gives us

ωX−→
G

(x, t) =
∑
σ∈Sn

tinv−→
G

(σ)Fn,DES(w̃ā(σ)σ)(x).
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Up to this point, w̃ā(σ) has been any increasing labeling of Pā(σ), but now we will

make it a specific one. Note that we will refer to the original labeling of the vertices of

G as the G-labeling of the graph. For each acyclic orientation Gā and for each vertex

v, define rankā(v) as the length of the longest chain of Pā from a minimal element

of Pā to v. We say v is a rankā i element if rankā(v) = i. To determine the labeling

w̃ā(σ), first we label the rankā(σ) 0 element with the smallest G-label as 1. Then we

label the rankā(σ) 0 element with the next smallest G-label as 2. We continue this

process until all rankā(σ) 0 elements are labeled. Then we repeat this process with

the rankā(σ) 1 elements and continue inductively until all elements are labeled.

Notice that for all x ∈ [n], we have rank(G,σ)(x) = rankā(σ)(x) + 1. So using the

labeling w̃ā(σ) constructed above, if i is a descent of w̃ā(σ)σ, then σ(i+ 1) was labeled

before σ(i) in the labeling w̃ā(σ). Then either σ(i + 1) has a smaller ā(σ)-rank than

σ(i) or they have the same ā(σ)-rank and σ(i) > σ(i+ 1). But in either case, i is also

a G-descent of σ. A similar argument shows that if i is a G-descent of σ, then i is also

a descent of w̃ā(σ)σ. Hence DES(w̃ā(σ)σ) = DESG(σ), and the theorem is proven.

Note that our formula requires that −→G be labeled with [n]. Each labeling of the

vertices of −→G gives a distinct combinatorial description of the coefficients in the F -

basis.

Example 5.2.3. Let us give labelings to the digraphs −→P3,
−−→
K12, and

−−→
K21 mentioned

in Section 5.1 as follows:

To expand the chromatic quasisymmetric function of each of these in the F -basis,

we need to calculate DESG(σ) and inv−→
G

(σ) for each σ ∈ S3. Since DESG(σ) only
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depends on the underlying undirected graph, this will be the same for each of −→P3,
−−→
K12, and

−−→
K21. The calculations are shown in the chart below.

σ DESG(σ) inv−→
P3

(σ) inv−−→
K12

(σ) inv−−→
K21

(σ)

123 ∅ 0 1 1

132 ∅ 1 2 0

213 ∅ 1 0 2

231 {2} 1 0 2

312 {1} 1 2 0

321 ∅ 2 1 1

Using this, we have that

ωX−→
P3

(x, t) = (F3,∅(x)) + t(2F3,∅(x) + F3,{1}(x) + F3,{2}(x)) + t2(F3,∅(x)) (5.7)

= h3(x) + t(h21(x) + h3(x)) + t2h3(x) (5.8)

ωX−−→
K12

(x, t) = (F3,∅(x) + F3,{2}(x)) + t(2F3,∅(x)) + t2(F3,∅(x) + F3,{1}(x)), (5.9)

ωX−−→
K21

(x, t) = (F3,∅(x) + F3,{1}(x)) + t(2F3,∅(x)) + t2(F3,∅(x) + F3,{2}(x)). (5.10)

From these expansions, one can see that X−→
P3

(x, t) is symmetric and palindromic,

but X−−→
K12

(x, t) and X−−→
K21

(x, t) are neither.

Example 5.2.4. Now let us look at an example of a the digraph P3 with 3 differ-

ent labelings, shown below, and calculate the F -basis expansion of ωXP3(x, t) in 3

different ways.



49

The G-descents and −→G -inversions for each of these graphs is shown in the chart

below

σ DESP3(σ) DESG1(σ) DESG2(σ) inv−→
P3

(σ) inv−→
G1

(σ) inv−→
G2

(σ)

123 ∅ ∅ ∅ 0 1 1

132 ∅ {2} ∅ 1 1 2

213 ∅ ∅ {1} 1 2 1

231 {2} ∅ ∅ 1 1 0

312 {1} ∅ ∅ 1 0 1

321 ∅ {1} {2} 2 1 1

In all three cases we get that

ωX−→
P3

(x, t) = (F3,∅(x)) + t(2F3,∅(x) + F3,{1}(x) + F3,{2}(x)) + t2(F3,∅(x)).

By specializing (5.4), we obtain a t-analog of a result of Chung and Graham [15,

Theorem 2] on the chromatic polynomial of a graph, which we became aware of after

obtaining our results. Let us define the t-analog of the chromatic polynomial of a

digraph −→G as

χ−→
G

(m, t) =
∑

κ∈κm(−→G)

tasc(κ),

where κm(−→G) is the set of proper colorings of −→G using only colors in [m]. From the

definition, we can see that for any m ∈ P,

χ−→
G

(m, t) = X−→
G

(1m, t).

Also, if we set t = 1, we see that

χ−→
G

(m, 1) = χG(m),
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where G is the underlying undirected graph of −→G and χG(m) is the chromatic poly-

nomial.

For k, l ∈ P and a digraph −→G = ([n], E) with underlying undirected graph, G, let

δ−→
G

(k, l) denote the number of permutations σ ∈ Sn such that |DESG(σ)| = k and

inv−→
G

(σ) = l.

Corollary 5.2.5 (t=1 case [15, Theorem 2]). Let −→G = ([n], E) be a digraph on n

vertices. Then

χ−→
G

(m, t) =
∑
k,l≥0

δ−→
G

(k, l)(m+k
n )tl.

Consequently1, this is a polynomial in m whose coefficients are palindromic polyno-

mials in t.

Proof. We know that for any S ⊆ [n−1] with |S| = k, we have Fn,S(1m) = (m+n−1−k
n )

(see [60, Section 7.19]). Applying ω to both sides of (5.4) gives us that X−→
G

(x, t) =∑
σ∈Sn

Fn,[n−1]\DESG(σ)(x)tinv−→
G

(σ). Then we have

χ−→
G

(m, t) = X−→
G

(1m, t)

=
∑
σ∈Sn

Fn,[n−1]\DESG(σ)(1m)tinv−→
G

(σ)

=
∑
σ∈Sn

(m+|DESG(σ)|
n )tinv−→

G
(σ)

=
∑
k,l≥0

δ−→
G

(k, l)(m+k
n )tl.

1Athanasiadis [3] observed this when G = Inc(P ).
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Example 5.2.6. Let us compute χ−→
P3

(m, t) using our calculations of DESP3(σ) and

inv−→
P3

(σ) from Example 5.2.3.

χ−→
P3

(m, t) =
(
m

3

)
+ 2t

(
m

3

)
+ 2t

(
m+ 1

3

)
+ t2

(
m

3

)

= m3

6 (1 + 4t+ t2)− m2

2 (1 + 2t+ t2) + m

3 (1 + t+ t2)

We see that the coefficient of each power of m is a palindromic polynomial in t. If we

set t = 1, we get

χ−→
P3

(m, 1) = m3 − 2m2 +m

= m(m− 1)2,

which is the chromatic polynomial χP3(m) of P3.

5.3 Expansion in the power sum symmetric func-

tion basis

In [58], Stanley shows that for any graph G, the symmetric function ωXG(x) is

p-positive (see Theorem 3.2.2). Since not every graph has a symmetric chromatic

quasisymmetric function, here we restrict ourselves to graphs that do. In this sec-

tion, we establish p-positivity for all symmetric ωX−→
G

(x, t) by deriving a p-expansion

formula. In Section 5.4, we introduce a class of digraphs with symmetric chromatic

quasisymmetric functions, which includes natural unit interval graphs as well as the

directed cycle, thereby extending the symmetry result of Shareshian and Wachs. Our

p-expansion formula does not reduce to the Shareshian-Wachs-Athanasiadis formula

[52] [4] for natural unit interval graphs mentioned in the introduction. It reduces to

a new formula.
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Before we discuss our p-basis expansion, we would like to review the p-basis expan-

sion of Athanasiadis, Shareshian, and Wachs. In addition, we would like to call atten-

tion to an interesting and useful result of Adin and Roichman [1] that Athanasiadis

[4] used to prove the p-basis expansion for chromatic quasisymmetric functions of

natural unit interval graphs.

5.3.1 From the fundamental quasisymmetric function basis

to the power sum symmetric function basis

Let λ ` n with λ = (λ1, λ2, ..., λl). Define si = λ1 + λ2 + ... + λi, for 1 ≤ i ≤ l and

s0 = 0. A set A ⊆ [n − 1] is λ-unimodal if for 0 ≤ i < l, the intersection of A with

each set of the form {si + 1, ..., si+1 − 1} is either the empty set or a prefix of the

latter. Additionally, define S(λ) = {s1, s2, · · · , sl−1}.

Example 5.3.1. Let λ = (5, 3, 3, 2, 1) ` 14. Then S(λ) = {5, 8, 11, 13}. Let A be

the set A = {1, 2, 3, 6, 11}. Let us check the following intersections to see if A is

λ-unimodal:

A ∩ {1, 2, 3, 4} = {1, 2, 3},

A ∩ {6, 7} = {6},

A ∩ {9, 10} = ∅,

A ∩ {12} = ∅.

We see that A is λ-unimodal, because {1, 2, 3} is a prefix of {1, 2, 3, 4} and {6} is a

prefix of {7}. On the other hand if we let B = {1, 2, 4, 6, 11} then B is not λ-unimodal,

because B ∩ {1, 2, 3, 4} = {1, 2, 4} is not a prefix of {1, 2, 3, 4}.

For each λ ` n, let

zλ :=
∏
i

mi(λ)!imi(λ),
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where mi(λ) is the multiplicity of i in λ for each i, i.e., the number of parts of λ equal

to i. The following result is implicit in the work of Adin and Roichman [1, Theorem

3.6], and stated explicitly and proved by Athanasiadis.

Proposition 5.3.2 (Athansiadis [4, Proposition 3.2]). Let X(x) ∈ Λn
R be a homoge-

neous symmetric function of degree n over a commutative Q-algebra R and suppose

that

X(x) =
∑

S⊆[n−1]
aSFn,S(x)

for some aS ∈ R. Then

X(x) =
∑
λ`n

z−1
λ pλ(x)

∑
S∈Uλ

(−1)|S\S(λ)|aS,

where Uλ is the set of λ-unimodal subsets of [n− 1].

Example 5.3.3. Recall from Example 5.2.3 that ωX−→
P3

(x, t) is symmetric and

ωX−→
P3

(x, t) = (1 + 2t+ t2)F3,∅(x) + 2tF3,{1}(x) + 2tF3,{2}(x).

So we can find the p-basis expansion of ωX−→
P3

(x, t) using this proposition. Let us first

calculate a few useful values for each λ ` 3, shown in the chart below.

λ S(λ) Uλ z−1
λ

(3) ∅ {∅, {1}, {1, 2}} 1
3

(2,1) {2} {∅, {1}, {2}, {1, 2}} 1
2

(1,1,1) {1, 2} {∅, {1}, {2}, {1, 2}} 1
6

Then applying Proposition 5.3.2 to our F -basis expansion of ωX−→
P3

(x, t) gives us
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ωX−→
P3

(x, t) = 1
3p3(x)[(−1)|∅\∅|(1 + 2t+ t2) + (−1)|{1}\∅|(t)]

+ 1
2p21(x)[(−1)|∅\{2}|(1 + 2t+ t2) + (−1)|{1}\{2}|(t) + (−1)|{2}\{2}|(t)]

+ 1
6p111(x)[(−1)|∅\{1,2}|(1 + 2t+ t2) + (−1)|{1}\{1,2}|(t) + (−1)|{2}\{1,2}|(t)].

Simplifying this gives us

ωX−→
P3

(x, t) = 1
3p3(x)(1 + t+ t2) + 1

2p21(x)(1 + 2t+ t2) + 1
6p111(x)(1 + 4t+ t2).

Athanasiadis used the F -basis decomposition of Shareshian and Wachs [52](see

Theorem 5.2.1 of this thesis) along with Proposition 5.3.2 to prove the p-basis expan-

sion conjecture of Shareshian and Wachs. To state this theorem, we first need a bit

of notation.

Let P be a poset on [n] and let σ ∈ Sn. As defined in the previous chapter,

the P -descents of σ are given by DESP (σ) = {i ∈ [n − 1] | σi >P σi+1}. A non-

trivial left-to-right P -maximum of a word w = w1w2 · · ·wk with distinct letters over

[n] is a wj with j ≥ 1 such that wj >P wi for all i < j. Now for any partition

λ = (λ1, λ2, . . . , λm) ` n, define NP,λ to be the subset of permutations σ ∈ Sn such

that when σ is cut into contiguous segments α1, α2, . . . , αm of sizes λ1, λ2, . . . , λm,

each αi contains no P -descents and no nontrivial left-to-right P -maxima.

Theorem 5.3.4 (Conjectured by Shareshian-Wachs [58], proved by Athanasiadis [4]).

Let P be a natural unit interval order on [n], and let G = ([n], E) be the incompara-

bility graph of P . Then

ωXG(x, t) =
∑
λ`n

z−1
λ pλ(x)

∑
σ∈NP,λ

tinvG(σ),
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where again invG(σ) = |{{σi, σj} ∈ E | i > j, σi < σj}|. Consequently ωXG(x, t) is

p-positive when G is a natural unit interval graph.

In the special case that G is the path graph Pn, Shareshian and Wachs obtained

a nice factorization of the coefficients in the p-basis, namely

ωXPn(x, t) =
∑
λ`n

z−1
λ pλ(x)Al(λ)(t)

l(λ)∏
i=1

[λi]t, (5.11)

where l(λ) is the length of λ, i.e., the number of parts of λ, and An(t) is the Eulerian

polynomial.

5.3.2 A power sum symmetric function expansion for di-

rected graphs

Let G = ([n], E) be an undirected labeled graph and let w = w1w2 · · ·wk be a word

with distinct letters in [n]. We say wj with 1 < j ≤ k is a G-isolated letter of w if

there is no wi with 1 ≤ i < j such that {wi, wj} ∈ E.

Now for any undirected labeled graph G = ([n], E) and any partition λ ` n with

λ = (λ1, λ2, · · · , λl), we define Nλ(G) as the set of all σ ∈ Sn such that when σ

is divided up into contiguous segments α1, α2, · · · , αl of sizes λ1, λ2, · · · , λl, each αi

has no G-isolated letters and contains no G-descents of σ. Note that the G-descents

here are determined by the entire σ and cannot be determined by looking at the αi’s

individually.

Let G = C8, the cycle on 8 vertices labeled cyclically with [8] and let σ =

43587162 ∈ S8. Then attaching the (G, σ)-rank to each letter gives 4132528172126323

and hence DESG(σ) = {3, 5, 7}. If λ = (3, 2, 2, 1), then α1 = 435, α2 = 87, α3 =

16, α4 = 2. None of the αi contain any G-descents; however, in α3, 6 is a G-isolated

letter, so σ /∈ Nλ(G). However if λ = (3, 2, 1, 1, 1), then σ ∈ Nλ(G).
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For each λ ` n, let zλ = ∏
imi(λ)!imi(λ), where mi(λ) is the multiplicity of i in λ

for each i, i.e., the number of parts of λ equal to i.

Theorem 5.3.5. Let −→G be a digraph such that X−→
G

(x, t) is symmetric. Then ωX−→
G

(x, t)

is p-positive. In fact,

ωX−→
G

(x, t) =
∑
λ`n

z−1
λ pλ(x)

∑
σ∈Nλ(G)

tinv−→
G

(σ), (5.12)

where G is the underlying undirected graph of −→G.

We would like to point out that the proof by Athanasiadis [4, Theorem 3.1] of

Theorem 5.3.4 does not generalize to the directed graph case. He uses the F -basis

decomposition for natural unit interval graphs given by Shareshian and Wachs [52,

Theorem 3.1] (see Theorem 5.2.1 of this thesis) involving P -descents, Proposition

5.3.2, and a formula for the coefficient of 1
n
pn(x) [52, Lemma 7.4]. Although we also

use Proposition 5.3.2, our proof involves a sign-reversing involution as well as our

F -basis decomposition given in Theorem 5.2.2.

Proof of Theorem 5.3.5. Combining Proposition 5.3.2 with our F -basis expansion

(5.4), we have that

ωX−→
G

(x, t) =
∑
λ`n

z−1
λ pλ(x)

∑
σ∈Sn

DESG(σ)∈Uλ

(−1)|DESG(σ)\S(λ)|tinv−→
G

(σ), (5.13)

where Uλ is the set of λ-unimodal sets on [n− 1].

For each λ ` n, let us define the set

Dλ(G) := {σ ∈ Sn | DESG(σ) ∈ Uλ}.

Note that Nλ(G) ⊆ Dλ(G). In order to prove the theorem, we will construct for

each λ ` n a sign-reversing, invG(σ)-preserving involution, γλ, on Dλ(G)\Nλ(G).
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That is γλ : Dλ(G)\Nλ(G) → Dλ(G)\Nλ(G) will satisfy the following for all σ ∈

Dλ(G)\Nλ(G):

• γ2
λ(σ) = σ,

• γλ changes |DESG(σ)\S(λ)| by 1, and

• inv−→
G

(σ) = inv−→
G

(γλ(σ)).

Now let us fix some useful notation. Let σ = σ1σ2 · · ·σn ∈ Sn. We define a

total order, <G, on [n] by x <G y if rank(G,σ)(x) < rank(G,σ)(y) or if rank(G,σ)(x) =

rank(G,σ)(y) and x < y. Using this notation, there is a G-descent of σ at i if and only

if σi >G σi+1.

Fix λ and let σ ∈ Dλ(G)\Nλ(G). Break σ up into contiguous segments of sizes

λ1, λ2, · · ·λl called α1, α2, · · ·αl. Then let αi be the first segment of σ that either has

a G-isolated letter or a G-descent. Since DESG(σ) ∈ Uλ, there must exist a unique k

such that si−1+1 ≤ k ≤ si and αi is of the form αi = σsi−1+1 σsi−1+2 · · · σk−1 σk σk+1 · · ·σsi ,

where σsi−1+1 >G σsi−1+2 >G · · · >G σk−1 >G σk <G σk+1 <G · · · <G σsi .

Define the involution by setting γλ(σ) := α1α2 · · · α̃i · · ·αl, where α̃i is obtained

from αi by considering the following cases using the k from the previous paragraph:

First define σm as the largest G-isolated letter in αi such that m > k, i.e., σm

is the G-isolated letter with the largest label that appears after σk. If there are no

G-isolated letters after σk, then define σm = 0.

Case 1: σm 6= 0 and σm > σsi−1+1.

Obtain α̃i by moving σm before σsi−1+1. Since σm is a G-isolated letter and thus

is not connected to any letter before it in αi, this rearrangement will not affect the

number of −→G -inversions, but it will create one new G-descent between σm and σsi−1+1.

Notice that γλ(σ) ∈ Dλ(G)\Nλ(G).
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Case 2a: σm = 0.

Case 2b: σm 6= 0 and σm < σsi−1+1.

In both cases, obtain α̃i by moving σsi−1+1 to the first spot after σk that will not

create a new G-descent. We see that this reduces the number of G-descents by 1.

Now notice that wherever we finally place σsi−1+1, all the σj that come before this

position must satisfy σj <G σsi−1+1. It follows that there is no edge between σsi−1+1

and σj since if there were then we would have rank(G,σ)(σj) > rank(G,σ)(σsi−1+1).

Hence this rearrangement does not affect the number of −→G -inversions. Notice that

γλ(σ) ∈ Dλ(G)\Nλ(G).

Now notice that we have covered all cases and these cases are mutually exclusive.

We leave it to the reader to check that Case 1 and Case 2 will reverse each other, so

this is the involution we were looking for.

Then the only elements of Dλ(G) that remain in (5.13) are those of Nλ(G). Since

these permutations have all their G-descents in S(λ) by definition, the theorem is

proven.

In [52, Proposition 7.8], Shareshian and Wachs showed that when G is a natural

unit interval graph, the coefficient of each z−1
λ pλ(x) in ωXG(x, t) factors. Though

the coefficients do not generally factor in the digraph case, we show in Theorem 5.3.7

below that the coefficient of each z−1
λ pλ(x) in ωX−→

G
(x, t) does have a nice factorization

involving the Eulerian polynomials when −→G is the directed cycle, −→Cn, as defined in

Example 5.1.6. We show in Section 5.4 that X−→
Cn

(x, t) is symmetric.

The following lemma is a special case of [9, Theorem 3.1] but is proven here for

completeness.
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Lemma 5.3.6. Let Ak(t) denote the Eulerian polynomial. For k ≥ 2, we have

∑
σ∈Sk

σ k−cycle

texc(σ) = tAk−1(t).

Proof. If we write each σ in cycle form with k written as the last element of the

cycle, i.e., σ = (σ1, σ2, · · · , σk−1, k), then we obtain µ = σ1σ2 · · ·σk−1 ∈ Sk−1. This

gives us a bijection between k-cycles σ ∈ Sk and elements µ ∈ Sk−1. In addition,

exc(σ) = asc(µ)+1 since the pair (σk−1, k) will always form an excedance, but (k, σ1)

will never form an excedance. Hence, we have the following:

∑
σ∈Sk

σ k−cycle

texc(σ) =
∑

µ∈Sk−1

t1+asc(µ)

= tAk−1(t).

Theorem 5.3.7. Let λ = (λ1, λ2, · · · , λk) be a partition of n. If k ≥ 2, then

∑
σ∈NCn,λ

tinv−→
Cn

(σ) = ntAk−1(t)
k∏
i=1

[λi]t, (5.14)

where [n]t := 1 + t+ · · ·+ tn−1. In the case that λ = (n), we have

∑
σ∈NCn,(n)

tinv−→
Cn

(σ) = nt[n− 1]t. (5.15)

Hence the coefficient of 1
n
pn(x) in ωX−→

Cn
(x, t) is nt[n − 1]t and for all other λ ` n,

the coefficient of z−1
λ pλ(x) in ωX−→

Cn
(x, t) is ntAk−1(t)∏k

i=1[λi]t.



60

Proof. For the following proof, we will fix the labeling of −→Cn by [n] so that E(−→Cn) =

{(i, i + 1) | 1 ≤ i < n} ∪ {(n, 1)}. Note that any labeling of the vertices of −→Cn with

[n] will work the same way.

Let λ = (λ1, λ2, · · · , λk) be a partition of n and let σ ∈ Sn be partitioned into

pieces of size λ1, λ2, · · · , λk so that σ = α1α2 · · ·αk, where · represents concatenation.

Then we know σ ∈ NCn,λ if and only if each αi has no Cn-descents and no Cn-isolated

letters.

For each αi, we will construct a connected acyclic digraph −→Gi on the letters of αi

such that the underlying undirected graph, Gi, is an induced subgraph of Cn.

Let −→Gi be the directed graph whose vertex set is the set of letters of αi and whose

edges have the form (a, b) if b precedes a in αi and {a, b} ∈ E(Cn). Then each −→Gi is

a connected acyclic digraph with a unique sink, which is the first letter of αi. Indeed

if there were another sink, then the second sink would be a Cn-isolated letter of αi.

Hence if λ 6= (n), each underlying undirected graph, Gi, is a path of length λi in Cn.

If λ = (n), then G1 = Cn.

For example, let n = 9, λ = (4, 3, 2) and σ = 546389721. Then α1 = 5463,

α2 = 897, and α3 = 21. The corresponding acyclic digraphs are as shown below:

We can uniquely recover σ from the k-tuple (−→G1,
−→
G2, · · · ,

−→
Gk). For each vertex x

in each −→Gi, let us define rank(x) as follows. Let x ∈ −→Gi and let Vx be the set of

all vertices y in −→G1, · · · ,
−−→
Gi−1 such that {x, y} is an edge of Cn. If x is a sink of −→Gi,

then rank(x) = max{1, max
y∈Vx(rank(y) + 1)}. If x is not a sink of −→Gi, then there exists

a unique vertex z of −→Gi such that (x, z) ∈ E(−→Gi). Then rank(x) = max{rank(z) +
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1, max
y∈Vx(rank(y) + 1)}. Then create each αi by starting with all vertices of −→Gi of rank 1

in increasing order of their label, then all vertices of −→Gi of rank 2 in increasing order

of their label, etc. Then we have σ = α1α2 · · ·αk. Notice that for all x ∈ [n], we have

that rank(x) = rank(Cn,σ)(x).

Notice that the number of −→Cn-inversions of αi is the number of directed edges of
−→
Gi that are oriented in the same direction as the corresponding directed edge of −→Cn.

Case 1: λ = (n). In this case −→G1 is an acyclic orientation of Cn with a unique

sink. So we need to find the number of −→Cn-inversions of the corresponding σ, i.e.,

the number of edges of −→G1 that are oriented the same direction as the corresponding

edge in −→Cn. In order to construct an acyclic orientation of Cn with a unique sink (and

hence a unique source), we have n choices for a sink and then n−1 choices remaining

for a source. There are two paths from the sink to the source. One path is oriented

as in −→Cn and the other path is oriented opposite −→Cn. The number of edges of the path

oriented the same direction as −→Cn can be 1, 2, · · · , or n− 1, depending on the choice

of the source. So

∑
σ∈NCn,(n)

tinv−→
Cn

(σ) = n(t+ t2 + · · ·+ tn−1) = nt[n− 1]t.

Case 2: λ 6= (n). For a, b ∈ P with b ≤ a, define a V -digraph −→V a,b to be a digraph

with vertex set {v1, v2, · · · , va} and edge set {(vi, vi+1) | 1 ≤ i < b} ∪ {(vi+1, vi) | b ≤

i < a}. We will call v1 the first vertex of −→V a,b and va the last vertex of −→V a,b. For

1 ≤ i < a we say the successor of vi is vi+1. Let Va,b denote the underlying undirected

graph of −→V a,b. For all a, b ∈ P with b ≤ a, we can see that Va,b is a path. For example,
−→
V 4,2 is shown below:
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Let λ = (λ1, λ2, · · · , λk). Then we will construct a bijection from NCn,λ to the set

Mλ of (k + 2)-tuples (x, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk), where

• x ∈ [n],

• µ ∈ Sk is a k-cycle, and

• for each i, we have 1 ≤ bi ≤ λi.

Let σ ∈ NCn,λ. Recall our earlier map from σ ∈ NCn,λ to the k-tuples (−→G1,
−→
G2, · · · ,

−→
Gk).

For each 1 ≤ i ≤ k, define bi as one more than the number of edges of −→Gi that

match the orientation of −→Cn. Then
−→
V λi,bi is simply −→Gi without labels. To determine

µ = (a1, a2, · · · , ak), we start by letting a1 = j1 where −→Gj1 contains the vertex labeled

1. From the remaining −→Gi, let
−→
Gj2 be the digraph with the smallest label on its sink.

Then let a2 = j2. From the remaining −→Gi, let
−→
Gj3 be the digraph with the smallest

label on its sink. Then let a3 = j3. We continue this process until we find ak. Lastly,

to determine x, suppose 1 is on the dth vertex of −→Gi. Then x = λ1 +λ2 + · · ·+λi−1 +d.

In the other direction, suppose we have

(x, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Mλ.

For each 1 ≤ i ≤ k, we will say that the successor of the last vertex of −→V λi,bi is the

first vertex of −→V λµ(i),bµ(i) .

There exists unique 1 ≤ i ≤ k and 1 ≤ d ≤ λi such that x = λ1+λ2+· · ·+λi−1+d.

Place a 1 on the dth vertex of −→V λi,bi . Then place a 2 on its successor, and continue
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labeling successors in order until all n vertices are labeled. Now the labeled −→V λi,bi is

the same as −→Gi, so we can recover σ as described earlier. One can check that this is

a bijection.

Now suppose we have some σ ∈ Sn that corresponds to

(x, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Mλ.

Notice that using the bijection, the number of −→Cn-inversions of αi is equal to bi − 1.

One can check that the number of −→Cn-inversions between distinct αi in σ is the same

as the number of excedances of µ−1, because for each i ∈ [k], there is an edge of −→Cn

directed from the last vertex of −→V λi,bi to the first vertex of −→V λµ(i),bµ(i) . Then one can

see that

inv−→
Cn

(σ) = exc(µ−1) + (b1 − 1) + (b2 − 1) + · · · (bk − 1).

Using Lemma 5.3.6, we see that

∑
µ∈Sk

µ k−cycle

texc(µ−1) =
∑
µ∈Sk

µ k−cycle

texc(µ) = tAk−1(t).

Now since for each 1 ≤ i ≤ k, we have 1 ≤ bi ≤ λi, and since we have n choices for x

in the bijection, we can see that (5.14) is true.

5.4 Symmetry

In this section, we define circular indifference digraphs and show that they have

symmetric chromatic quasisymmetric functions. For a, b ∈ [n], we define the circular
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interval [a, b] of [n] as

[a, b] :=


{a, a+ 1, a+ 2, ..., b} if a ≤ b

{a, a+ 1, a+ 2, · · · , n, 1, 2, · · · , b} if a > b

.

Definition 5.4.1. We call a digraph, −→G = ([n], E), a circular indifference digraph if

there exists a collection of circular intervals, I, of [n] such that

E = {(i, j) | [i, j] is contained in a circular interval of I}.

Example 5.4.2. Suppose we have the set of circular intervals I = {[1, 3], [2, 4], [4, 5], [5, 1]}.

Then the corresponding circular indifference digraph is shown below.

The underlying undirected graphs of these circular indifference digraphs are the

circular indifference graphs defined by Stanley in [58]. We discuss circular indifference

graphs and their relation to other well-known classes of graphs in Appendix A.

In [52, Theorem 4.5], Shareshian andWachs show thatXG(x, t) is symmetric ifG is

a natural unit interval graph. As discussed in Appendix A, when natural unit interval

graphs are viewed as digraphs, they are acyclic circular indifference digraphs. Next

we extend the symmetry result of Shareshian and Wachs to all circular indifference

digraphs. Our proof of symmetry is similar to that of Shareshian and Wachs. First

we need the following lemmas.

Let us define five digraphs we will need for the next lemma.
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• −−→K12 = ({a, b, c}, {(b, a), (b, c)}).

• −−→K21 = ({a, b, c}, {(a, b), (c, b)}).

•
←−−−−→
K12 = ({a, b, c}, {(a, b), (b, a), (b, c)}).

•
←−−−−→
K21 = ({a, b, c}, {(a, b), (b, a), (c, b)}).

•
←−−→
P3 = ({a, b, c}, {(a, b), (b, a), (b, c), (c, b)}).

Below we see all five digraphs.

Lemma 5.4.3. Let −→G be a digraph that has no induced subdigraphs isomorphic to
−−→
K12,

−−→
K21,

←−−−−→
K12,

←−−−−→
K21 or

←−−→
P3. Then the underlying undirected graph, G, is claw-free, i.e.,

G does not contain an induced subgraph isomorphic to K31.

Proof. Let −→G be a digraph whose underlying undirected graph is the claw, K31. It is

not difficult to see that −→G must have an induced subdigraph isomorphic to one of the

five digraphs listed. But this means that any digraph that contains an induced claw

subgraph must contain a forbidden subdigraph.

For the next lemma, we need a few definitions. We say that a digraph, −→G, is

connected if its underlying undirected graph, G, is connected. We say that a subdi-

graph, −→H, is a connected component of −→G if H is a connected component of G. As

in Example 5.1.5, we say a digraph, −→G = (V,E) is a directed path if its vertex set is
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V = {v1, v2, · · · , vn} and its edge set is E = {(vi, vi+1) | 1 ≤ i < n}. As defined in

Example 5.1.6, we say a digraph, −→G = (V,E), is a directed cycle if its vertex set is

V = {v1, v2, · · · , vn} and its edge set is E = {(vi, vi+1) | 1 ≤ i < n} ∪ {(vn, v1)}.

Lemma 5.4.4. Let −→G be a digraph that has no induced subdigraphs isomorphic to
−−→
K12,

−−→
K21,

←−−−−→
K12,

←−−−−→
K21 or

←−−→
P3. Let κ be a proper coloring of −→G . For a ∈ P, define −−→Gκ,a as

the induced subdigraph of −→G of all vertices colored by a or a+1. Then each connected

component of −−→Gκ,a is either a directed cycle with an even number of vertices or a

directed path.

Proof. Let Gκ,a be the underlying undirected graph of −−→Gκ,a. First note that Gκ,a

cannot have any cycles of odd length, because then two vertices with the same color

would be adjacent, which contradicts the fact that κ is a proper coloring.

We can also see that Gκ,a cannot have any vertex adjacent to more than two other

vertices. Indeed, suppose vertex v were adjacent to vertices w1, w2, and w3 in Gκ,a,

as in the following figure:

Since Gκ,a has no 3-cycles, w1, w2, and w3 have no edges between them. Then we

see that Gκ,a contains a claw as an induced subgraph, but this contradictions Lemma

5.4.3

Then since every vertex has degree at most 2, every connected component of Gκ,a

must be either a path or a cycle of even length. Since every induced subdigraph of
−→
G must avoid −−→K12,

−−→
K21,

←−−−−→
K12,

←−−−−→
K21, and

←−−→
P3, the only possible connected components

are the ones listed in the lemma.
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Theorem 5.4.5. Let −→G be a digraph that has no induced subdigraphs isomorphic to
−−→
K12,

−−→
K21,

←−−−−→
K12,

←−−−−→
K21, or

←−−→
P3. Then X−→G (x, t) is symmetric.

Proof. By Proposition 5.1.3, we can assume without loss of generality that −→G is

connected.

We will construct an involution, φa, for each a ∈ P on the set of proper colorings

of −→G that switches the number of occurrences of the color a and the number of

occurrences the color a + 1, leaves the number of occurrences of all other colors the

same, and does not change the number of ascents of the coloring. This will then prove

the theorem.

So let κ be a proper coloring of −→G and let −−→Gκ,a be the induced subdigraph of −→G

containing only the vertices colored by a and a+1. By Lemma 5.4.4, each component

of −−→Gκ,a is a directed path or a directed cycle of even length.

Let φa(κ) be the the coloring of −→G obtained from κ by replacing each occurrence

of a with a + 1 and replacing each a + 1 with a in the components of −−→Gκ,a that are

paths with an odd number of vertices. For the other components of −−→Gκ,a (paths and

cycles with an even number of vertices), the colors of φa(κ) are the same as those of

κ.

Note that in a path of with an odd number of vertices in −−→Gκ,a, exactly half of

the edges are ascents of κ. Hence, if we change all a’s to a + 1’s and vice versa, we

will change all ascents to descents and vice versa, but the number of ascents of κ

is preserved. It is then easy to see that φa is an involution that meets the desired

conditions and hence the theorem is proven.

Lemma 5.4.6. Circular indifference digraphs do not have any induced subdigraphs

isomorphic to −−→K12,
−−→
K21,

←−−−−→
K12,

←−−−−→
K21, or

←−−→
P3.

Proof. Let −→G be a circular indifference digraph arising from a set of circular intervals,

I, on [n], and suppose −→G contains an induced subdigraph, −→H , isomorphic to −−→K12.
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Suppose −→H has vertex set {a, b, c} and edge set {(b, a), (b, c)}. Then the circular

intervals [b, a] and [b, c] are both contained in circular intervals of I. But then either

[b, a] ⊂ [b, c] and hence [a, c] ⊂ [b, c], which is contained in a circular interval of I, or

[b, c] ⊂ [b, a] and hence [c, a] ⊂ [b, a], which is contained in a circular interval of I.

Either way there is an edge between a and c in −→G, which is a contradiction. Similar

arguments show that −→G cannot contain any induced subdigraphs isomorphic to −−→K21,
←−−−−→
K12,

←−−−−→
K21, or

←−−→
P3.

Corollary 5.4.7. Let −→G be a digraph such that all connected components of −→G are

circular indifference digraphs. Then X−→
G

(x, t) is symmetric.

Proof. Combine Lemma 5.4.6 with Theorem 5.4.5.

It turns out that the class of digraphs from Theorem 5.4.5 are not the only digraphs

with symmetric chromatic quasisymmetric functions. In fact, let Cn = ([n], E) be the

labeled cycle with E = {{i, i+1} | i ∈ [n−1]}∪{{1, n}}. If we turn Cn into a digraph

by orienting each edge from smaller label to larger label, then we get the directed

cycle with one edge oriented backwards. The chromatic quasisymmetric function of

the labeled cycle is symmetric (see [34, Exercise 2.84]), but its associated directed

graph contains induced subdigraphs isomorphic to both −−→K21 and −−→K12. See Section

6.6 for further results on the chromatic quasisymmetric function of the labeled cycle.

5.5 Expansion in the elementary symmetric func-

tion basis

In this section, we provide some evidence for our generalized e-positivity conjecture,

which we restate here.
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Conjecture 5.5.1. Let −→G = (V,E) be a circular indifference digraph. Then the

palindromic2 polynomial X−→
G

(x, t) is e-positive and e-unimodal. In other words, if

X−→
G

(x, t) =
|E|∑
j=0

aj(x)tj, then aj(x) is e-positive for all j and aj+1(x) − aj(x) is e-

positive for all j ≤ |E|−1
2 .

Below we take a look at the simplest example of a circular indifference digraph

that is not acyclic, namely the directed cycle, −→Cn, and prove an e-basis generating

function formula for X−→
Cn

(x, t).

Theorem 5.5.2. Let −→Cn be the directed cycle of length n. Then

∑
n≥2

X−→
Cn

(x, t)zn =
t
∑
k≥2

k[k − 1]tek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
, (5.16)

where [n]t = 1 + t+ t2 + · · ·+ tn−1.

Proof. This proof is more involved than Stanley’s proof for the t = 1 case (see Propo-

sition 3.2.6), but it also uses the Transfer-Matrix Method [59, Section 4.7]. So let

us start with a brief review of the transfer matrix method. A walk of length d

on a directed graph −→G = ([n], E) is a sequence of vertices v0, v1, . . . , vd such that

(vi−1, vi) ∈ E for all i ∈ [d]. A walk is closed if v0 = vd. We attach weights in

some commutative ring R to the edges of G. Let wt : E → R be the weight func-

tion. Now define the weight wt(w) of a walk w := v0, v1, . . . , vd to be the product

wt(v0, v1) wt(v1, v2) . . .wt(vd−1, vd).

Let −→G = ([n], E) be the digraph with E = {(i, j) | i 6= j}. Let us attach a weight

to each edge (i, j) so that wt((i, j)) = txj if i < j and wt((i, j)) = xj if i > j. For

example if n = 3 then −→G is shown below.
2See Proposition 5.1.8
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We can view all proper colorings of all −→Cd for d ≥ 2 using only n colors as closed

walks of length d on −→G . Each time we take a step, the colors either increase (and we

need to count an ascent) or decrease. The weighted adjacency matrix of −→G is given

by

A =



0 tx2 tx3 . . . txn

x1 0 tx3 . . . txn

x1 x2 0 . . . txn
... ... ... . . . ...

x1 x2 x3 . . . 0


.

Let Q(z) = det(I − zA). By [59, Corollary 4.7.3], we know that

∑
d≥2

X−→
C d

(x, t)|x1,x2,...xnz
d = −zQ

′(z)
Q(z) .

So we need to compute

Q(z) = det(I − zA) = det



1 −tx2z −tx3z . . . −txnz

−x1z 1 −tx3z . . . −txnz

−x1z −x2z 1 . . . −txnz
... ... ... . . . ...

−x1z −x2z −x3z . . . 1


.
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First let us describe the notation we will use. For σ ∈ Sn, FIX(σ) = {i | σ(i) = i},

exc(σ) = |{i | σ(i) > i}|, and sgn(σ) is the usual sign function on permutations. We

say σ is a derangement if FIX(σ) = ∅. Also for any S ⊆ [n], define xS = ∏
i∈S xi.

Then

Q(z) =
∑
σ∈Sn

sgn(σ)(−1)n−|FIX(σ)|zn−|FIX(σ)|texc(σ)x[n]\FIX(σ)

= 1 +
n∑
k=1

(−1)kzk
∑
S⊆[n]
|S|=k

xS
∑
σ∈Sn

FIX(σ)=[n]\S

sgn(σ)texc(σ)

= 1 +
n∑
k=1

(−1)kzk
∑
S⊆[n]
|S|=k

xS
∑
σ∈Sk

σ is a derangement

sgn(σ)texc(σ)

= 1 +
n∑
k=1

(−1)kzkek(x1, x2, ..., xn)
∑
σ∈Sk

σ is a derangement

sgn(σ)texc(σ).

By [44, Corollary 5.11], we have that

∑
σ∈Sk

σ is a derangement

sgn(σ)texc(σ) = (−1)k+1t[k − 1]t.

Hence

Q(z) = 1 +
n∑
k=1

(−1)kzkek(x1, x2, ..., xn)(−1)k+1t[k − 1]t

= 1− t
∑
k≥2

ek(x1, x2, ..., xn)[k − 1]tzk.

Then we have

−zQ′(z) = −z(−t
∑
k≥2

ek(x1, x2, ..., xn)k[k − 1]tzk−1)

= t
∑
k≥2

ek(x1, x2, ..., xn)k[k − 1]tzk.

Letting n go to infinity gives us our result.



72

Now let us look at some consequence of this expansion. But first we need a simple

lemma.

Lemma 5.5.3. Let (gn(t))n≥0 be a sequence of polynomials in Q[t], such that each

gn(t) positive, palindromic, and unimodal with center of symmetry n+r
2 , where r is

some fixed constant in N. If (Gn(x, t))n≥0 is a sequence of polynomials in ΛQ[t] that

satisfies

∑
n≥0

Gn(x, t)zn =

∑
n≥0

gn(t)en(x)zn

1− t
∑
k≥2

[k − 1]tek(x)zk

then each Gn(x, t) is palindromic, e-positive, and e-unimodal with center of symmetry
n+r

2 .

Proof. We use Propositions B.1 and B.3 of [52]. Since

1
1− t

∑
k≥2

[k − 1]tek(x)zk
=
∑
m≥0

∑
i≥2

t[i− 1]tei(x)zi
m , (5.17)

we have,

Gn(x, t) =
∑
m≥1

∑
k1 ≥ 0

k2, . . . , km ≥ 2∑m

i=1 ki = n

ek1(x) . . . ekm(x)tm−1gk1(t)
m∏
i=2

[ki − 1]t.

For each nonzero gk1(t), the polynomial tm−1gk1(t)
∏m
i=2[ki− 1]t is a product of palin-

dromic, positive, unimodal polynomials. Hence, the product is also palindromic,

positive and unimodal with center of symmetry equal to

m− 1 + k1 + r

2 +
m∑
i=2

ki − 2
2 = n+ r

2 .
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Since each such product has the same center of symmetry, Gn(x, t) is palindromic,

e-positive, and e-unimodal with center of symmetry n+r
2 .

Then the following corollary follows easily from Theorem 5.5.2 and Lemma 5.5.3.

Corollary 5.5.4. X−→
Cn

(x, t) is a palindromic, e-positive and e-unimodal polynomial

in t.

In fact, for each n ≥ 2 we have

X−→
Cn

(x, t) =
∑
λ`n

eλ(x)
∑

µ:λ(µ)=λ
µ1t[µ1 − 1]tt[µ2 − 1]t · · · t[µl(λ) − 1]t, (5.18)

where µ = (µ1, µ2, · · · , µl(λ)) is a composition of n, l(λ) is the length of λ, and λ(µ) =

λ means that when the parts of µ are written in decreasing order, we get the partition

λ.

Now let us take a look at e-basis expansions of another class of digraphs, namely

digraphs whose underlying undirected graph is the complete graph, i.e the graph with

an edge between every distinct pair of vertices.

Proposition 5.5.5. Let −→G = ([n], E) be a digraph whose underlying undirected graph,

G, is the complete graph, Kn. Then

X−→
G

(x, t) = p(t)en(x),

where

p(t) =
∑
σ∈Sn

tinv−→
G

(σ).

As a result, X−→
G

(x, t) is symmetric and e-positive.

Proof. Since every vertex of −→G is adjacent to every other vertex, we can see that for

every σ = σ1σ2 · · ·σn ∈ Sn we have rank(G,σ)(σi) = i for each i ∈ [n], so σ contains
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no G-descents. Taking ω of both sides of our F -basis expansion from Theorem 5.2.2

and the fact that ωFn,∅(x) = en(x) gives us our result.

In [52], Shareshian and Wachs introduce a class of graphs, which they call Gn,r

graphs, where n ∈ P and 1 ≤ r ≤ n. The vertices of Gn,r are labeled by [n] and

for 1 ≤ i < j ≤ n there is an edge between i and j if 0 < j − i < r. For example,

Gn,1 is the graph on n vertices with no edges, Gn,2 is the labeled path on n elements,

and Gn,n is the complete graph on n elements. Shareshian and Wachs proved that

their e-positivity conjecture holds for all Gn,r when r = 1, 2, n− 2, n− 1, n and they

tested by computer all Gn,r for n ≤ 8. Hence if these graphs are turned into digraphs

by orienting their edges from smaller label to larger label, our e-positivity conjecture

holds for the same graphs.

We present a circular analog of these graphs, which we will call −→G c
n,r, where n ∈ P

and 1 ≤ r ≤ n.We define −→G c
n,r = ([n], E), where E = {(i, j) | 0 < j−i (mod n) < r}.

In other words, −→G c
n,r is the circular indifference digraph on [n] arising from the set of

circular intervals

I = {[i, i+ r − 1] | 1 ≤ i ≤ n− r + 1} ∪ {[i, i+ r − 1− n] | n− r + 2 ≤ i ≤ n}.

For example, −→G c
n,1 = ([n], ∅), −→G c

n,2 is the directed cycle, −→Cn, and
−→
G c
n,n = ([n], E),

where E = {(i, j) | i 6= j}. Corollary 5.5.4 proves that our e-positivity conjecture

(Conjecture 5.5.1) holds for −→G c
n,2. It is easy to see that our e-positivity conjecture

holds for −→G c
n,1. Below we show that our conjecture holds for −→G c

n,r when r = n− 1, n.

We used a computer to test our conjecture for all other −→G c
n,r for n ≤ 8.

Proposition 5.5.6. For all n ≥ 1 we have

X−→
Gc
n,n

(x, t) = n!en(x)t(
n
2), (5.19)
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and

X−→
Gc
n,n−1

(x, t) = nen(x)t(
n−1

2 )−n+1An−1(t). (5.20)

Proof. First we will prove (5.19). From Proposition 5.5.5, we see that

X−→
Gc
n,n

(x, t) = en(x)
∑
σ∈Sn

t
inv−→

Gcn,n
(σ)
.

But since every pair (i, j) is an edge, we see that for every σ ∈ Sn, inv−→
Gc
n,n

(σ) = (n2).

Combining this with the fact that |Sn| = n!, we have our formula for X−→
Gc
n,n

(x, t).

Now let us prove (5.20). The graph −→G c
n,n−1 = ([n], E) has edge set E = {(i, j) |

i− j 6= 0, 1, 1− n}. The set, E, can be divided into two types: the exterior edges,

{(1, 2), (2, 3), · · · , (n− 1, n), (n, 1)},

which form the directed cycle, −→Cn, and the interior edges, which are the remaining

edges. Note that the interior edges are two-way edges; that is, if (a, b) is an interior

edge, then so is (b, a). Below is −→G c
4,3 where the exterior edges are solid black arrows

and the interior edges are dotted red arrows.

Again we will use Proposition 5.5.5, so we know

X−→
Gc
n,n−1

(x, t) = en(x)
∑
σ∈Sn

t
inv−→

Gc
n,n−1

(σ)
.

Notice that for each σ ∈ Sn, we have (n2) − n
−→
G c
n,n−1-inversions coming from the

interior edges. In order to count the −→G c
n,n−1-inversions from the exterior edges, recall

that the exterior edges form the directed cycle, −→Cn, so we need to find ∑σ∈Sn t
inv−→

Cn
(σ).
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Setting λ = 1n in (5.14) gives us that ∑σ∈Sn t
inv−→

Cn
(σ) = ntAn−1(t). Combining all this

gives us (5.20).

The following theorem can be easily proven using the same proof technique as

Stanley used to prove [58, Theorem 3.3].

Theorem 5.5.7. Let −→G be a digraph on n vertices such that X−→
G

(x, t) is symmetric.

Suppose we have the expansion X−→
G

(x, t) =
∑
λ`n

cλ(t)eλ(x). Then

∑
λ`n
l(λ)=k

cλ(t) =
∑

Gā∈AOk(G)
tasc−→

G
(Gā), (5.21)

where G is the underlying undirected graph of −→G , AOk(G) is the set of acyclic orien-

tations of G with exactly k sinks and asc−→
G

(Gā) is the number of directed edges of −→G

that are oriented as in Gā.

Corollary 5.5.8. Let −→G be a digraph on n vertices such that X−→
G

(x, t) is symmetric.

Then

c(n)(t) =
∑

Gā∈AO1(G)
tasc−→G (Gā).

So for any symmetric X−→
G

(x, t), the coefficient of en(x) in the e-basis expansion is a

polynomial in t with nonnegative coefficients.

For the directed path and the directed cycle, we can refine (5.21) by giving a

combinatorial interpretation of each cλ(t) in terms of acyclic orientations. We already

know that the cλ(t) have positive coefficients by the formula for the directed path

given in [54, Theorem 7.2] (see Theorem 4.2.3 of this thesis) and by our formula

for the directed cycle (see Theorem 5.5.2 and Corollary 5.5.4), but perhaps these

interpretations can be generalized to show e-positivity for a larger class of graphs.

For the next proposition, let −→Cn = ([n], E) denote the directed cycle, where

E = {(i, i+ 1) | 1 ≤ i < n} ∪ {(n, 1)},
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and let Cn denote its underlying undirected graph. For an acyclic orientation of Cn,

denoted Gā, we say that i and j are consecutive sinks of Gā if i and j are both sinks

of Gā and there are no other sinks in the circular interval [i, j].

Proposition 5.5.9. Let X−→
Cn

(x, t) =
∑
λ`n

cλ(t)eλ(x). Then

cλ(t) =
∑

Gā∈AOλ(Cn)
tasc−→

Cn
(Gā),

where AOλ(Cn) is the set of all acyclic orientations Gā of Cn such that the number

of vertices between consecutive sinks of Gā is λ1 − 1, λ2 − 1,...,λk − 1 in any order

and asc−→
Cn

(Gā) is the number of directed edges of −→Cn that are oriented as in Gā.

Example 5.5.10. In the acyclic orientation of C9 shown below, there are 3 vertices

between sinks 2 and 6, 1 vertex between sinks 6 and 8 and 2 vertices between sinks

8 and 2, so this corresponds to e432. There are 3 edges that match the original cyclic

orientation of −→C9, shown by the dotted red arrows, hence this acyclic orientation

corresponds to t3e432.

Proof. By Corollary 5.5.4

cλ =
∑

µ:λ(µ)=λ
µ1t[µ1 − 1]tt[µ2 − 1]t · · · t[µl(λ) − 1]t, (5.22)

where µ = (µ1, µ2, · · · , µl(λ)) is a composition of n, l(λ) is the length of λ, and λ(µ) = λ

means that when the parts of µ are written in decreasing order, this is the partition

λ.
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It follows from this that cλ = 0 if any of the parts of λ = 1. We also have AOλ(Cn)

is empty in that case, which means that the result holds in that case. We can now

assume that λ has no parts of size 1.

For a, b ∈ P with 1 ≤ b < a, define a mountain, −→Ma,b = (V,E), as a digraph on a

vertices V = {v1, v2, · · · , va} with edge set E = {(vi, vi−1) | 1 < i ≤ a−b}∪{(vi, vi+1) |

a−b ≤ i < a}.We will say v1 is the first vertex of the mountain and va is the last. For

each i = 1, 2, · · · , a−1, we say that vi+1 is the successor of vi and vi is the predecessor

of vi+1. Below, we show −→M5,3.

We can obtain an acyclic orientation of Cn from each term of the inner sum

of (5.22) as follows. For each 1 ≤ i ≤, l(λ), suppose we choose the tji term from

the t[µi − 1]t factor. From this choice of ji’s, we can create a sequence of moun-

tains, −→Mµ1+1,j1 ,
−→
Mµ2+1,j2 , · · ·

−→
Mµl(λ)+1,jl(λ) , on pairwise disjoint vertex sets. Then we

attach the mountains by identifying the last vertex of −→Mµi+1,ji with the first vertex

of −→Mµi+1+1,ji+1 for 1 ≤ i < l(λ) and by identifying the last vertex of −→Mµl(λ)+1,jl(λ) with

the first vertex of −→Mµ1+1,j1 .

We will place the label 1 on one of the vertices, v, from −→Mµ1+1,j1 , excluding the

last vertex, so the µ1 factor in (5.22) is for our µ1 choices. We label the successor of

v with 2 and continue labeling successors in order until we reach the predecessor of

v.



79

It should be clear that we get a unique acyclic orientation in this manner and that

every acyclic orientation can be built with this method. This proves our proposition.

For the following proposition, let −→Pn = ([n], E) denote the directed path, where

E = {(i, i+ 1) | 1 ≤ i < n}, and let Pn denote the underlying undirected graph. For

an acyclic orientation of Pn, denoted Gā, we say that i and j are consecutive sinks of

Gā if i and j are both sinks of Gā, and there are no other sinks in the circular interval

[i, j]. Notice that this includes the sink with the largest label and the sink with the

smallest label.

Proposition 5.5.11. Let X−→
Pn

(x, t) =
∑
λ`n

cλeλ. Then

cλ =
∑

Gā∈AOλ(Pn)
tasc−→

Pn
(Gā),

where AOλ(Pn) is the set of all acyclic orientations of Pn such that the number of

vertices between consecutive sinks is λ1−1, λ2−1,...,λk−1 in any order and asc−→
Pn

(Gā)

is the number of directed edges of −→Pn that are oriented as in Gā.

Example 5.5.12. In the acyclic orientation of P8 shown below, there are 3 vertices

between sinks 2 and 6, 1 vertex between sinks 6 and 8 and 1 vertex between sinks

8 and 2, so this corresponds to e422. There are 4 edges that match the original

orientation of −→P8, shown by the dotted red arrows, hence this acyclic orientation

corresponds to t4e422.
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Proof. In [54, Theorem 7.2] (see Theorem 4.2.3 of this thesis), Shareshian and Wachs

showed that

∑
n≥0

XPn(x, t)zn =

∑
k≥0

ek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
.

From this we can get that for n ≥ 1,

X−→
Pn

(x, t) =
∑
λ`n

eλ(x)
∑

µ:λ(µ)=λ
[µ1]tt[µ2 − 1]tt[µ3 − 1]t · · · t[µl(λ) − 1]t. (5.23)

(see [52, Table 1]).

We can obtain an acyclic orientation of Pn from each term of the inner sum of

(5.23) as follows. For each 2 ≤ i ≤ l(λ), suppose we choose tji from the t[µi−1]t factor.

From this choice of ji’s, we can create a sequence of mountains, −→Mµ2+1,j2 , · · ·
−→
Mµl(λ)+1,jl(λ) ,

with disjoint vertex sets. Then we attach the mountains by identifying the last vertex

of −→Mµi+1,ji with the first vertex of −→Mµi+1+1,ji+1 for 2 ≤ i < l(λ).

Now suppose we choose the tj term from the [µ1]t factor. Then let −→Q 1 = (V,E)

denote the digraph with vertex set {v1, v2, · · · , vj+1} and edge set E = {(vi, vi+1) |

1 ≤ i ≤ j}. We will say v1 is the first vertex of −→Q 1 and vj+1 is the last. For each

i = 1, 2, · · · , j, we say that vi+1 is the successor of vi and vi is the predecessor of vi+1.

Let −→Q 2 = (V,E) denote the digraph with vertex set {v1, v2, · · · , vµ1−j} and edge set

E = {(vi, vi−1) | 1 < i ≤ µ1 − j}. We will say v1 is the first vertex of −→Q 2 and vµ1−j is

the last. For each i = 1, 2, · · · , µ1 − j − 1, we say that vi+1 is the successor of vi and

vi is the predecessor of vi+1.

Then identify the last vertex of −→Q 1 with the first vertex of −→Mµ2+1,j2 and identify

the first vertex of −→Q 2 with the last vertex of −→Mµl(λ)+1,jl(λ) .

Label the resulting digraph by placing 1 on the first vertex, v, of −→Q 1. Label the

successor of v with 2, and continue labeling successors in order until all vertices are

labeled.
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It should be clear that we get a unique acyclic orientation in this manner and that

every acyclic orientation can be built with this method. This proves our proposition.

We would like to point out that a weaker conjecture than Conjecture 5.5.1 is that

the chromatic quasisymmetric functions of all circular indifference digraphs are Schur-

positive. To our knowledge this is an open question. In the Schur basis expansions

of Gasharov [29] for the chromatic symmetric functions of incomparability graphs of

(3+1)-free posets and of Shareshian and Wachs [52] for the chromatic quasisymmetric

functions of natural unit interval graphs, the coefficients are interpreted in terms of

P -tableau, which use the structure of the poset associated with the graph. Since

circular indifference digraphs are not incomparability graphs of posets in general, one

would need a different type of tableau to describe the coefficients.



Chapter 6

Restricted Smirnov words

A proper coloring of the path Pn can be viewed as a word over the positive integers P

where adjacent letters are distinct. These words are sometimes called Smirnov words

(after [33], see also [57]). In fact, the chromatic quasisymmetric function XPn(x, t) of

the path is equal to the descent enumerator of Smirnov words, defined by

Wn(x, t) :=
∑
w∈Wn

tdes(w)xw,

where Wn is the set of Smirnov words of length n and for w ∈ Wn we let

des(w) := |{i ∈ [n− 1] | wi > wi+1}|.

In this chapter we study the descent enumerators of restricted Smirnov words,

where we put restrictions on the relationship between the first and last letter of each

word. We define the restricted descent enumerators

W<
n (x, t) :=

∑
w∈Wn
w1<wn

tdes(w)xw,

82
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W>
n (x, t) :=

∑
w∈Wn
w1>wn

tdes(w)xw,

and

W=
n (x, t) :=

∑
w∈Wn
w1=wn

tdes(w)xw.

It is an exercise of Grinberg and Reiner [34] that these restricted descent enumerators

are symmetric. In this chapter we present our joint work with Wachs [22] where we

expand these restricted descent enumerators in various bases.

In Section 6.1 we discuss some basic properties of restricted Smirnov word de-

scent enumerators and describe their relationship with chromatic quasisymmetric

functions. In Section 6.2 we present e-basis generating function formulas for the re-

stricted Smirnov word descent enumerators W<
n (x, t), W>

n (x, t), and W=
n (x, t) and

show that W<
n (x, t) and W>

n (x, t) are e-positive and e-unimodal. We use these for-

mulas to derive an e-basis expansion of a variation of the Smirnov word descent

enumerator W̃n(x, t) involving cyclic descents.

In Section 6.3 we provide expansions for the various descent enumerators in terms

of Gessel’s fundamental quasisymmetric function basis. By applying the stable prin-

cipal specialization to our F -basis and e-basis expansions, we obtain variations of

the q-Eulerian polynomials An(q, t) studied by Shareshian and Wachs and defined in

Section 1.2, that involve the permutation statistic maj≥2 paired with descents, cyclic

descent, and cyclic ascents. We present these expansions in Section 6.4. In Section 6.5

we use our F -basis expansions to find p-basis expansions of these descent enumerators

and give a combinatorial interpretation for their coefficients.

From the e-basis expansion of the restricted Smirnov word descent enumerators,

we can derive an e-basis expansion of the chromatic quasisymmetric function of the

labeled cycle, Cn, which is e-positive. Our results on this can be found in Section

6.6. Although it follows from our e-basis expansion that the coefficient of t in the
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restricted Smirnov word descent enumerators are symmetric functions, in Section 6.7

we present a combinatorial proof of their symmetry.

6.1 Basic definitions and properties

In this section, we define the restricted Smirnov word descent enumerators that we

will be studying in the following sections and state some relationships between them,

as well as their relationship to chromatic quasisymmetric functions.

We define the descent enumerator of Smirnov words of length n to be

Wn(x, t) =
∑
w∈Wn

tdes(w)xw,

where Wn is the set of Smirnov words and des(w) = |{i ∈ [n − 1] | wi > wi+1}|.

Let Pn = ([n], E) be the labeled path. By reading each proper coloring of Pn in

reverse, we see that Wn(x, t) = XPn(x, t). Hence the Shareshian and Wachs formula

for XPn(x, t) given in Theorem 4.2.3 is equivalent to the generating function formula,

∑
n≥0

Wn(x, t)zn =

∑
k≥0

ek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
. (6.1)

.

Similarly we can define a circular version of Wn(x, t) given by

W̃ 6=
n (x, t) =

∑
w∈Wn

w1 6=wn

tcdes(w)xw,

where cdes(w) is the number of cyclic descents of w, that is

cdes(w) = |{i ∈ [n] | wi > wi+1}|
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with wn+1 := w1. Let
−→
Cn be the directed cycle described in Example 5.1.6. We see

that by reading each proper coloring of −→Cn in the reverse order, we have W̃ 6=
n (x, t) =

X−→
Cn

(x, t). It follows that our formula given in Theorem 5.5.2 is equivalent to the

generating function formula,

∑
n≥2

W̃ 6=
n (x, t)zn =

t
∑
k≥2

k[k − 1]tek(x)zk

1− t
∑
k≥2

[k − 1]tek(x)zk
. (6.2)

Now let us define the following descent enumerators of restricted Smirnov words

that we will study in this chapter:

W<
n (x, t) :=

∑
w∈Wn
w1<wn

tdes(w)xw,

W>
n (x, t) :=

∑
w∈Wn
w1>wn

tdes(w)xw,

and

W=
n (x, t) :=

∑
w∈Wn
w1=wn

tdes(w)xw.

These refine Wn(x, t) and W̃ 6=
n (x, t), because we have that

Wn(x, t) = W<
n (x, t) +W>

n (x, t) +W=
n (x, t) (6.3)

and

W̃ 6=
n (x, t) = tW<

n (x, t) +W>
n (x, t). (6.4)

In addition, we consider a few more descent enumerators of Smirnov words, given

by

W 6=
n (x, t) :=

∑
w∈Wn

w1 6=wn

tdes(w)xw,
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W̃n(x, t) :=
∑
w∈Wn

tcdes(w)xw,

and

W̃ a
n (x, t) :=

∑
w∈Wn

tcasc(w)xw,

where casc(w) is the number of cyclic ascents of w defined by

casc(w) = |{i ∈ [n] : wi ≤ wi+1}|

with wn+1 := w1.

We will use the fact that

W 6=
n (x, t) = W<

n (x, t) +W>
n (x, t)

and

W̃n(x, t) = W̃ 6=
n (x, t) +W=

n (x, t).

Note that there is a natural involution on Smirnov words defined by reversing

each word. So if w = w1w2 · · ·wn ∈ Wn, then we can define wrev := wnwn−1 · · ·w1

and we see that wrev ∈ Wn. When we reverse a word, descents become ascents and

vice versa, so we have that des(w) = asc(wrev) = n − 1 − des(wrev) and similarly

cdes(w) = casc(wrev) = n − cdes(wrev). Hence using this involution, we get the

following identities:

W>
n (x, t) = tn−1W<

n (x, t−1) (6.5)

and

W̃ a
n (x, t) = tnW̃n(x, t−1). (6.6)

Using the same involution, it is easy to see that if the roles of W<(x, t) and

W>(x, t) are switched in (6.5) and the roles of W̃n(x, t) and W̃ a
n (x, t) are switched in

(6.6), these identities still hold.
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6.2 Expansion in the elementary symmetric func-

tion basis

In this section we present and prove our main result on restricted Smirnov word

enumerators, giving generating function formulas for them in terms of the elementary

symmetric function basis.

Theorem 6.2.1. We have

∑
n≥1

W<
n (x, t)zn = 1

D(x, t, z)
∑
i≥2

ai(t) ei(x)zi (6.7)

∑
n≥1

W>
n (x, t)zn = 1

D(x, t, z)
∑
i≥2

bi(t) ei(x)zi (6.8)

∑
n≥1

W=
n (x, t)zn = 1

D(x, t, z)(e1(x)z −
∑
i≥2

ci(t) ei(x)zi), (6.9)

where

D(x, t, z) := 1−
∑
i≥2

t[i− 1]tei(x)zi, (6.10)

ai(t) := d

dt
[i]t =

i−2∑
j=0

(j + 1)tj,

bi(t) := ti−1ai(t−1) =
i−1∑
j=1

(i− j)tj,

ci(t) := it[i− 2]t,

for all i ≥ 2.

Before proving the theorem, we observe that

ai(t) + bi(t) = 1 + (i+ 1)t+ (i+ 1)t2 + · · ·+ (i+ 1)ti−2 + ti−1

= [i]t + it[i− 2]t.
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Hence,

ai(t) + bi(t)− ci(t) = [i]t,

which shows that Theorem 6.2.1 refines (6.1) since W<
n (x, t)+W>

n (x, t)+W=
n (x, t) =

Wn(x, t). Also

tai(t) + bi(t) = it[i− 1]t,

which shows that Theorem 6.2.1 also refines (6.2) since tW<
n (x, t) + W>

n (x, t) =

W̃ 6=
n (x, t).

We prove (6.9) first. Then we use (6.9), (6.1), and (6.2) to derive (6.7). Equation

(6.8) follows from (6.7). Our proof of (6.9) uses the transfer-matrix method discussed

in [60] and borrows ingredients from the proof of Theorem 5.5.2. See the proof of

Theorem 5.5.2 for a review of the transfer matrix method.

We will need the following result from [59, Section 4.7]. Let −→G = ([k], E) be a

digraph with edge weights w : E → R, where R is some commutative ring. Let A be

the weighted adjacency matrix of −→G. For each i, j ∈ [k], define Wi,j,n to be the set of

walks of length n from i to j on −→G and let

Ui,j,n :=
∑

w∈Wi,j,n

wt(w).

Theorem 4.7.2 of [59] states that for all i, j ∈ [k],

∑
n≥0

Ui,j,nz
n = (−1)i+j det(I − zA : j, i)

det(I − zA) , (6.11)

where (B : j, i) is the matrix obtained from B by removing row j and column i.

Proof of (6.9). As in the proof of Theorem 5.5.2, we view a Smirnov word w1w2 . . . wn

over the alphabet [k] as a walk w1, w2, . . . , wn of length n − 1 on the digraph −→G =

([k], E), where

E = {(i, j) : i, j ∈ [k] and i 6= j},
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and we set

wt((i, j)) :=


xj if i < j

txj if i > j.

Note that if w is a Smirnov word over the alphabet [k] then

tdes(w)xw = xw1 wt(w),

where w1 is the first letter of w. Hence

W=
n (x1, . . . , xk, t) := W=

n (x1, . . . , xk, 0, 0, . . . , t) =
k∑
i=1

xiUi,i,n−1.

It follows from this and (6.11) that

∑
n≥1

W=
n (x1, . . . , xk, t)zn = z

k∑
i=1

xi
∑
n≥0

Ui,i,nz
n

= z
k∑
i=1

xi
det(I − zA : i, i)

det(I − zA)

= z
∑k
i=1 xi det(I − zA : i, i)

det(I − zA) , (6.12)

where A is the weighted adjacency matrix of −→G , i.e.,

A =



0 x2 x3 . . . xk

tx1 0 x3 . . . xk

tx1 tx2 0 . . . xk
... ... ... . . . ...

tx1 tx2 tx3 . . . 0


.
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In the proof of Theorem 5.5.2, we showed that1

det(I − zA) = 1−
∑
j≥2

ej(x1, . . . , xk) t[j − 1]tzj. (6.13)

It follows that

det(I − zA : i, i) = 1−
∑
j≥2

ej(x1, . . . , x̂i, . . . , xk) t[j − 1]tzj,

where x̂i denotes deletion of xi. Multiplying both sides by xi and summing over all

i ∈ [k] yields,

k∑
i=1

xi det(I − zA : i, i) =
k∑
i=1

xi −
∑
j≥2

k∑
i=1

xiej(x1, . . . , x̂i, . . . , xk) t[j − 1]tzj.

One can see that

k∑
i=1

xiej(x1, . . . , x̂i, . . . , xk) = (j + 1)ej+1(x1, . . . , xk),

since both sides enumerate (j+ 1)-subsets of [k] with a distinguished element. Hence

k∑
i=1

xi det(I − zA : i, i) = e1(x1, . . . , xk)−
∑
j≥2

(j + 1)ej+1(x1, . . . , xk)t[j − 1]tzj.

Upon multiplying both sides by z, we see that the numerator of the right hand side

of (6.12) is

e1(x1, . . . , xk)z −
∑
j≥3

j ej(x1, . . . , xk)t[j − 2]tzj.

1This is obtained from the formula in the proof of Theorem 5.5.2 by replacing t with t−1 and
each xi with txi
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It therefore follows from (6.12) and (6.13) that

∑
n≥1

W=
n (x1, . . . , xk, t)zn =

e1(x1, . . . , xk)z −
∑
j≥3 j ej(x1, . . . , xk)t[j − 2]tzj

1−∑j≥2 ej(x1, . . . , xk) t[j − 1]tzj
.

The desired result (6.9) follows by taking the limit as k goes to infinity.

Proof of (6.7). It follows from (6.3), (6.1), and (6.9) that

(6.14)∑
n≥1

W<
n (x, t)zn +

∑
n≥1

W>
n (x, t)zn =

∑
n≥1

Wn(x, t)−
∑
n≥1

W=
n (x, t)

= B(x, t, z)
D(x, t, z) ,

where

B(x, t, z) =
∑
i≥1

[i]tei(x)zi − (e1(x)z −
∑
i≥2

it[i− 2]t ei(x)zi)

=
∑
i≥2

[i]tei(x)zi +
∑
i≥2

it[i− 2]t ei(x)zi

=
∑
i≥2

([i]t + it[i− 2]t)ei(x)zi .

It follows from (6.4) and (6.2) that

(6.15)

t(
∑
n≥1

W<
n (x, t)zn) +

∑
n≥1

W>
n (x, t)zn =

∑
n≥2

W̃ 6=
n (x, t)

= C(x, t, z)
D(x, t, z) ,

where

C(x, t, z) =
∑
i≥2

it[i− 1]t ei(x)zi.
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By subtracting (6.14) from (6.15), we obtain

(t− 1)
∑
n≥1

W<
n (x, t)zn = C(x, t, z)−B(x, t, z)

D(x, t, z)

=
∑
i≥2(iti−1 − [i]t)ei(x)zi

D(x, t, z) .

Note that

(t− 1)(1 + 2t+ 3t2 + · · ·+ (i− 1)ti−2) = (i− 1)ti−1 − [i− 1]t

= iti−1 − [i]t.

Hence ∑
n≥1

W<
n (x, t)zn =

∑
i≥2(1 + 2t+ 3t2 + · · ·+ (i− 1)ti−2) ei(x)zi

D(x, t, z)

as desired.

Proof of (6.8). Recall that W>
n (x, t) = tn−1W<

n (x, t−1). It follows from this and (6.7)

that

∑
n≥1

W>
n (x, t)zn = t−1 ∑

n≥1
W<
n (x, t−1)(tz)n

= t−1
∑
i≥2 ai(t−1)ei(x)tizi
D(x, t−1, tz)

=
∑
i≥2 bi(t)ei(x)zi
D(x, t−1, tz) .

Since D(x, t−1, tz) = D(x, t, z), the result holds.

We obtain equivalent formulations of (6.7) and (6.8) by multiplying the numerators

and denominators of the right side of the equations by t− 1.
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Corollary 6.2.2. We have

∑
n≥1

W<
n (x, t)zn =

∑
i≥2

(iti−1 − [i]t) ei(x)zi

tE(x, z)− E(x, tz) (6.16)

∑
n≥1

W>
n (x, t)zn =

∑
i≥2

(t[i]t − it) ei(x)zi

tE(x, z)− E(x, tz) , (6.17)

where E(x, z) :=
∑
n≥0

en(x)zn.

We have the following immediate consequence of Theorem 6.2.1 and Lemma 5.5.3.

Corollary 6.2.3 (of Theorem 6.2.1). For all n ≥ 2, W<
n (x, t) and W>

n (x, t) are

e-positive.

Note that it follows from Theorem 6.2.1 that the coefficient of en(x) in the e-basis

expansion of W=
n (x, t) is −nt[n− 2]t if n ≥ 2. Hence W=

n (x, t) fails to be e-positive.

However, observe that the coefficient cλ(t) of eλ(x) is in N[t] if the smallest part of λ

is 1, and −cλ(t) ∈ N[t] otherwise.

Recall that

W 6=
n (x, t) :=

∑
w∈Wn

w1 6=wn

xwt
des(w).

Since W 6=
n (x, t) = W<

n (x, t) +W>
n (x, t), it follows from Corollary 6.2.3 that W 6=

n (x, t)

is e-positive. We can say more.

Corollary 6.2.4 (of Theorem 6.2.1). We have,

∑
n≥1

W 6=
n (x, t)zn =

∑
i≥2

([i]t + it[i− 2]t)ei(x)zi

D(x, t, z) . (6.18)

Consequently, W 6=
n (x, t) is palindromic, e-positive, and e-unimodal, with center of

symmetry n−1
2 .
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Proof. Equation (6.18) is evident from Theorem 6.2.1. The consequence follows from

Lemma 5.5.3 since [i]t + it[i− 2]t is palindromic, positive, and unimodal with center

of symmetry i−1
2 .

We defined two other variations on the descent enumerator given by

W̃n(x, t) :=
∑
w∈Wn

xwt
cdes(w)

W̃ a
n (x, t) :=

∑
w∈Wn

xwt
casc(w),

where

cdes(w) = |{i ∈ [n] : wi > wi+1}|,

casc(w) = |{i ∈ [n] : wi ≤ wi+1}|,

and wn+1 := w1.

From Theorem 6.2.1, we can also obtain the following expansions.

Corollary 6.2.5 (of Theorem 6.2.1). We have,

∑
n≥1

W̃n(x, t)zn =

∑
i≥1

iti−1ei(x)zi

D(x, t, z) =

∂
∂t

∑
i≥0

ei(x)(tz)i

D(x, t, z) (6.19)

∑
n≥1

W̃ a
n (x, t)zn =

t
∑
i≥1

iei(x)zi

D(x, t, z) =
tz ∂

∂z

∑
i≥0

ei(x)zi

D(x, t, z) . (6.20)

Consequently, W̃n(x, t) and W̃ a
n (x, t) are e-positive.

Remark 6.2.6. For the sake of comparison, note that equation (6.1) can be restated

as

1 +
∑
n≥1

Wn(x, t)zn =

∑
i≥0

ei(x)zi

D(x, t, z) .
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Proof. Equation (6.19) follows from the fact that

W̃n(x, t) = W̃ 6=
n (x, t) +W=

n (x, t)

and equations (6.2) and (6.9). Alternatively, one uses the fact that

W̃n(x, t) = tW<
n (x, t) + (Wn(x, t)−W<

n (x, t)) (6.21)

and equations (6.7) and (6.1).

Equation (6.20) follows from equation (6.19) and the fact that W̃ a
n (x, t) = tnW̃n(x, t−1).

So one can replace t by t−1 and z by tz in (6.19) to obtain (6.20).

The consequence follows from Lemma 5.5.3.

Note that it follows from (6.19) that the coefficient of e3,2 in W̃5(x, t) is (3t2)(t) +

(2t)(t[2]t) = 5t3+2t2, which is not palindromic. Hence W̃5(x, t) fails to be palindromic.

Similarly W̃ a
5 (x, t) fails to be palindromic.

6.3 Expansion in Gessel’s fundamental quasisym-

metric function basis

In [52], Shareshian and Wachs provided a formula for the chromatic quasisymmetric

functions of labeled incomparability graphs in Gessel’s fundamental quasisymmetric

function basis in terms of P -descents, which is given in Theorem 5.2.1. Note that

the labeled path Pn = ([n], E) with edge set E = {{i, i + 1} | i ⊆ [n − 1]} is the

incomparability graph of the poset P on [n] defined by i <P j if j − i ≥ 2. For

σ ∈ Sn, define DES≥2(σ) = {i ∈ [n− 1] | σ(i)− σ(i+ 1) ≥ 2}. Then we can see that

for any σ ∈ Sn, we have DESP (σ) = DES≥2(σ). Also for G = Pn one can check that

invG(σ) = des(σ−1). Hence by applying (5.3) to XPn(x, t) = Wn(x, t), we obtain the
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following expansion:

ωWn(x, t) =
∑
σ∈Sn

Fn,DES≥2(σ−1)(x)tdes(σ). (6.22)

Note that this is a different expansion than the one obtained by applying (5.4).

In this section, we give analogous expansions for ωW<
n (x, t), ωW<

n (x, t), ωW̃n(x, t),

and ωW̃ a
n (x, t). These expansions immediately yield expansions for other descent enu-

merators such as W̃ 6=
n (x, t) = X−→

C n
(x, t) and for the chromatic quasisymmetric func-

tion of the directed cycle XCn(x, t). These expansion formulas are different from the

ones obtained by applying (5.4).

For σ ∈ Sn, define

ASC≥2(σ) := {i ∈ [n− 1] : σ(i+ 1)− σ(i) ≥ 2}.

Theorem 6.3.1. For all n ≥ 1,

ωW<
n (x, t) =

∑
σ∈Sn

σ(1)<σ(n)

tdes(σ)Fn,DES≥2(σ−1)(x) (6.23)

ωW>
n (x, t) =

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,ASC≥2(σ−1)(x) (6.24)

ωW̃n(x, t) =
∑
σ∈Sn

tcdes(σ)Fn,DES≥2(σ−1)(x) (6.25)

ωW̃ a
n (x, t) =

∑
σ∈Sn

tcasc(σ)Fn,DES≥2(σ−1)(x). (6.26)

Proof of (6.23). The first part of the proof is similar to that of [52, Theorem 3.1] and

Theorem 5.2.2 applied to the n-cycle Cn. The second part diverges somewhat from

these proofs.

Part 1: Given an acyclic orientation ā of Cn, let Eā(Cn) be the set of directed

edges of Cn under the orientation ā. Let AO>
n be the set of acyclic orientations ā of
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Cn such that (n, 1) ∈ Eā(Cn). For each ā ∈ AO>
n , let Wā ⊆ Wn be the set of Smirnov

words w = w1w2 · · ·wn such that the following hold:

• wn < w1,

• wi < wi+1 if (i, i+ 1) ∈ Eā(Cn) and i ∈ [n− 1],

• wi > wi+1 if (i+ 1, i) ∈ Eā(Cn) and i ∈ [n− 1].

Let asc(ā) be the number of edges of Eā(Cn) of the form (i, i+ 1) for i ∈ [n− 1].

Then by reversing the Smirnov words, we can see that

W<
n (x, t) =

∑
w∈Wn
w1>wn

xwtasc(w) =
∑

ā∈AO>n

tasc(ā) ∑
w∈Wā

xw. (6.27)

Now for each acyclic orientation ā ∈ AO>
n define a poset Pā on [n] by letting

i <Pā j if (i, j) ∈ Eā(Cn) and taking the transitive closure of these relations. Let

us define a labeling of Pā to be a bijection from Pā to [n]. So a labeling is just a

permutation in Sn. A labeling ρ is said to be decreasing if ρ(i) > ρ(j) for all i <Pā j.

For any labeling ρ of Pā, let L(Pā, ρ) be the set of linear extensions of Pā with the

labeling ρ.

Now fix a decreasing labeling ρā of Pā for each ā ∈ AO>
n . For any subset S ⊆ [n−1],

define n − S = {i | n − i ∈ S}. Then by the theory of P-partitions [60, Corollary

7.19.5], we have that ∑
w∈Wā

xw =
∑

σ∈L(Pā,ρā)
Fn,n−DES(σ), (6.28)

where DES(σ) is the usual descent set of a permutation, i.e., DES(σ) = {i ∈ [n− 1] :

σ(i) > σ(i+ 1)}.

Let e : Pā → [n] be the identity labeling of Pā, and hence L(Pā, e) is the set of

linear extensions of Pā with its original labeling. Note that σ ∈ L(Pā, e) if and only

if ρāσ ∈ L(Pā, ρā), where ρāσ denotes the product of ρā and σ in Sn. Hence from
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(6.28), we have ∑
w∈Wā

xw =
∑

σ∈L(Pā,e)
Fn,n−DES(ρāσ). (6.29)

Note that if σ ∈ L(Pā, e) and ā ∈ AO>
n then σ−1(1) > σ−1(n). Conversely, every

permutation σ ∈ Sn with σ−1(1) > σ−1(n) is a linear extension in L(Pā, e) for a

unique ā ∈ AO>
n . Let ā(σ) denote the unique acyclic orientation of Cn associated

with σ. Now combining this with (6.27) and (6.29) yields,

W<
n (x, t) =

∑
σ∈Sn

σ−1(1)>σ−1(n)

tasc(ā(σ))Fn,n−DES(ρā(σ)σ),

where recall ρā(σ) is a decreasing labeling of Pā(σ). Note that asc(ā(σ)) = des((σR)−1),

where σR is the reverse of σ. Hence

W<
n (x, t) =

∑
σ∈Sn

σ−1(1)>σ−1(n)

tdes((σR)−1)Fn,n−DES((ρā(σ)σ). (6.30)

Part 2: As in the proof of [52, Theorem 3.1], our next step is to construct a

particular decreasing labeling ρ̃ā(σ) of Pā(σ) for each σ ∈ L(Pā, e). However since Cn

is not the incomparability graph of a poset, the construction used in the proof of [52,

Theorem 3.1] does not work in this case. The construction used here is also quite

different from that of Theorem 5.2.2. Let p be the "smallest" maximal element of Pā(σ)

(that is, p is maximal in the poset Pā(σ) and is less than all the other maximal elements

in the natural order on [n]) and let ρ̃ā(σ)(p) = 1. Now remove p from the poset and

let q be the smallest maximal element of the remaining poset and let ρ̃ā(σ)(q) = 2.

Continue this process inductively. It is clear that ρ̃ā(σ) is a decreasing labeling of

Pā(σ).

Claim. If x and y are incomparable in P := Pā(σ), then x < y implies ρ̃ā(σ)(x) <

ρ̃ā(σ)(y).
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Proof of Claim. One can see this by drawing the Hasse diagram of P minus the edge

(n, 1) as a zig-zag path on [n] with the elements of [n] increasing as one moves from

left to right. The path consists of up-segments and down-segments. An up-segment

is a maximal chain of P of the form a <P a + 1 <P · · · <P a + j, where j ≥ 1, and

a down-segment is a maximal chain with top and bottom removed unless it’s 1 or n,

of the form a >P a+ 1 >P · · · >P a+ j, where j ≥ 0.

Below we see an example of one such P on [8].

In our example, the up-segments are 3 <P 4 and 6 <P 7, and the down segments are

1 >P 2, 5 and 8.

Between any two down-segments there is an up-segment. Let αi be the ith segment

from the left for each i. One can see that under the labeling ρ̃ā(σ), the segment α1

gets the smallest labels, the segment α2 gets the next smallest labels, and so on. Now

if x and y are incomparable, they are in different segments αi and αj. Clearly if x < y

then i < j, which implies that x gets a smaller label then y. Hence, the claim holds.

Now we show that

DES(ρ̃ā(σ)σ) = [n− 1] \ ASC≥2(σ), (6.31)

for all σ ∈ Sn. If i ∈ DES(ρ̃ā(σ)σ) then ρ̃ā(σ)σ(i) > ρ̃ā(σ)σ(i+ 1). It thus follows from

the claim that if σ(i) and σ(i + 1) are incomparable in Pā(σ) then σ(i) > σ(i + 1),

which implies i /∈ ASC≥2(σ). On the other hand if σ(i) and σ(i+ 1) are comparable

in Pā(σ) then σ(i + 1) covers σ(i) since σ ∈ L(Pā(σ), e). This implies that either
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σ(i+ 1) = σ(i) + 1 or σ(i+ 1) = σ(i)− 1. In either case, i /∈ ASC≥2(σ). Thus

DES(ρ̃ā(σ)σ) ⊆ [n− 1] \ ASC≥2(σ).

Conversely, if i /∈ DES(ρ̃ā(σ)σ) then ρ̃ā(σ)σ(i) < ρ̃ā(σ)σ(i+ 1). It thus follows from

the claim that if σ(i) and σ(i + 1) are incomparable in Pā(σ) then σ(i) < σ(i + 1).

Since j and j+1 are comparable in Pā(σ) for all j ∈ [n−1], we have σ(i+1)−σ(i) ≥ 2.

Thus i ∈ ASC≥2(σ). On the other hand if σ(i) and σ(i + 1) are comparable in Pā(σ)

then σ(i) <Pā(σ) σ(i + 1) since σ ∈ L(Pā(σ), e). But since ρ is a decreasing labeling

ρ̃ā(σ)σ(i) > ρ̃ā(σ)σ(i + 1), which contradicts our assumption that i /∈ DES(ρ̃ā(σ)σ).

Hence this case is impossible. We have shown

DES(ρ̃ā(σ)σ) ⊇ [n− 1] \ ASC≥2(σ),

which completes the proof of (6.31).

Recall that the involution ω acts by ωFn,S := Fn,[n−1]\S. Hence by (6.31), equa-

tion (6.30) becomes

ωW<
n (x, t) =

∑
σ∈Sn

σ−1(1)>σ−1(n)

tdes((σR)−1)Fn,n−ASC≥2(σ)

=
∑
σ∈Sn

σ−1(1)<σ−1(n)

tdes(σ−1)Fn,DES≥2(σ)

Proof of (6.24). A similar proof can be given here. One can also use (6.23) to prove

this. Indeed, by the involution on Wn which reverses Smirnov words, we obtain

W>
n (x, t) = tn−1W<

n (x, t−1).
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By the involution on Sn, which reverses permutations,

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,ASC≥2(σ−1) =
∑
σ∈Sn

σ(1)<σ(n)

tn−1−des(σ)Fn,DES≥2(σ−1).

The result now follows from (6.23).

Proof of (6.25). We use the fact that W̃n(x, t) = tW<
n (x, t) + (Wn(x, t)−W<

n (x, t)).

By (6.22) and (6.23),

ωWn(x, t)− ωW<
n (x, t) =

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,DES≥2(σ−1).

It follows from this and (6.23) that

W̃n(x, t) =
∑
σ∈Sn

σ(1)<σ(n)

tdes(σ)+1Fn,DES≥2(σ−1) +
∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,DES≥2(σ−1)

=
∑
σ∈Sn

tcdes(σ)Fn,DES≥2(σ−1).

Proof of (6.26). This follows from (6.25) and the fact that W̃ a
n (x, t) = tnW̃n(x, t−1).

6.4 Specializations

There are various ways to specialize expansions in the fundamental quasisymmetric

functions to obtain enumerative results. One way is by setting xi = 1 if i ∈ [m]

and xi = 0 otherwise, in a formal power series f(x). Recall that we denote this
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specialization by f(1m). It is not difficult to show that (see [60, Section 7.19]),

Fn,S(1m) =
(
m+ n− 1− |S|

n

)
,

for all S ⊆ [n− 1]. It is evident that

Wn(1m, t) =
∑

w∈Wn∩[m]n
tdes(w).

Hence by (6.22) and the fact that ωFn,S = Fn,[n−1]\S,

∑
w∈Wn∩[m]n

tdes(w) =
∑
σ∈Sn

tdes(σ)
(
m+ |DES≥2(σ−1)|

n

)
,

for all m,n ∈ P. From this we see that ∑w∈Wn∩[m]n t
des(w) is a polynomial in m with

coefficients in Q[t]. Analogous enumerative results can by obtained by applying the

same specialization to the expansions in Theorem 6.3.1. In this section we obtain

different enumerative results by applying a different specialization, called the stable

principal specialization, to the expansions in Theorem 6.3.1.

In [54] Shareshian and Wachs prove that by taking stable principal specialization

of Wn(x, t) one gets the q-analog of the Eulerian polynomials defined by

An(q, t) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ),

where maj(σ) =
∑

i∈DES(σ)
i and exc(σ) = |{i | σ(i) > i}|. Shareshian and Wachs obtain

in [52], the following q-analog of MacMahon’s classical result equating the distribution

of exc and des on Sn:

An(q, t) =
∑
σ∈Sn

qmaj≥2(σ−1)tdes(σ), (6.32)

where maj≥2(σ) =
∑

i∈DES≥2(σ)
i.
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Now let

[i]q! := [i]q[i− 1]q . . . [1]q and expq(z) :=
∑
i≥0

zi

[i]q!
.

The following q-analog of Euler’s exponential generating function for Eulerian poly-

nomials,

∑
n≥1

An(q, t) zn

[n]q!
=

∑
i≥1

[i]t
zi

[i]q!

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

(6.33)

is obtained in [54] by taking stable principal specialization of both sides of (6.1).

In this section, we refine their result for the following variations of An(q, t):

A<n (q, t) :=
∑
σ∈Sn

σ(1)<σ(n)

qmaj≥2(σ−1)tdes(σ),

Ãn(q, t) :=
∑
σ∈Sn

qmaj≥2(σ−1)tcdes(σ),

Ãan(q, t) :=
∑
σ∈Sn

qmaj≥2(σ−1)tcasc(σ).

Theorem 6.4.1. We have

∑
n≥2

A<n (q, t) zn

[n]q!
=

∂
∂t

∑
i≥2

[i]t
zi

[i]q!

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

(6.34)

∑
n≥1

Ãn(q, t) zn

[n]q!
=

∂
∂t

expq(tz)

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

(6.35)

∑
n≥1

Ãan(q, t) zn

[n]q!
=

tz ∂
∂z

expq(z)

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

. (6.36)
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For the sake of comparison, note that (6.33) can be restated as

1 +
∑
n≥1

An(q, t) zi

[n]q!
=

expq(z)

1−
∑
i≥2

t[i− 1]t
zi

[i]q!

. (6.37)

Proof. The stable principal specialization ps(G(x)) of a quasisymmetric function G(x)

is obtained from G(x) by substituting qi−1 for xi for all i ≥ 1. It is not difficult to

see that

ps(Fn,S(x)) =

∑
i∈S

qi

(1− q)(1− q2) . . . (1− qn)

for all S ⊆ [n− 1] (see [60, Lemma 7.19.10]). In particular

ps(ωen(x)) = ps(ωFn,[n−1](x)) = ps(Fn,∅(x)) = 1
(1− q)(1− q2) . . . (1− qn) .

Hence by (6.23),

ps(ωW<
n (x, t)) = A<n (q, t)

(1− q)(1− q2) . . . (1− qn) .

We apply ω to both sides of (6.7), take the stable principal specialization, and replace

z by (1− q)z to get (6.34).

Equations (6.35) and (6.36) are obtained similarly, using Corollary 6.2.5 and The-

orem 6.3.1.

Note that for n ≥ 2, Ãn(1, t) = Ãan(1, t). When q is set equal to 1, (6.36) and

(6.37) reduce respectively to

∑
n≥1

Ãan(1, t)z
n

n! = tz ez

1−
∑
i≥2

t[i− 1]t
zi

i!
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and

1 +
∑
n≥1

An(1, t)z
n

n! = ez

1−
∑
i≥2

t[i− 1]t
zi

i!

.

Hence for n ≥ 2,

Ãn(1, t) = Ãan(1, t) = ntAn−1(1, t).

This can easily be proved directly by observing that

Ãan(1, t) =
∑
σ∈Sn
σ(n)=n

∑
τ∈Cσ

tcasc(τ),

where Cσ is the set of circular rearrangements of σ. For σ ∈ Sn such that σ(n) = n,

∑
τ∈Cσ

tcasc(τ) = ntcasc(σ) = ntasc(σ|n−1)+1,

where σ|n−1 denotes the restriction of σ to [n− 1].

6.5 Expansion in the power sum symmetric func-

tion basis

In [52, Proposition 7.9], Shareshian and Wachs proved that for each λ ` n, the

coefficient of z−1
λ pλ(x) in ωWn(x, t) is

Al(λ)(t)
l(λ)∏
i=1

[λi]t, (6.38)

where Ak(t) are the classical Eulerian polynomials defined in Section 2.1.

From Theorem 5.3.7, we know that the coefficient of 1
n
pn(x) in ωW̃ 6=

n (x, t) is

nt[n− 1]t, (6.39)
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and for λ ` n with l(λ) ≥ 2, the coefficient of z−1
λ pλ(x) in ωW̃ 6=

n (x, t) is

ntAl(λ)−1(t)
l(λ)∏
i=1

[λi]t. (6.40)

Here we present some more results of this style for the restricted Smirnov word enu-

merators.

Theorem 6.5.1. For all λ ` n, the coefficient of z−1
λ pλ in ωW<

n (x, t) equals

d

dt
(tAl(λ)−1(t)

l(λ)∏
i=1

[λi]t),

where A0(t) = t−1.

From this theorem, we get the following corollary.

Corollary 6.5.2. The coefficient of z−1
λ pλ(x, t) in ωW̃n(x, t) is

Al(λ)−1(t)
l(λ)∑
i=1

λit
λi
∏
j 6=i

[λj]t, (6.41)

where again we let A0(t) = t−1.

Proof. Recall that W̃n(x, t) = tW<
n (x, t) + (Wn(x, t) − W<

n (x, t)). Fix λ ` n with

l(λ) = k. Then combining (6.38) with Theorem 6.5.1 gives us that the coefficient of

z−1
λ pλ(x) in ωW̃n(x, t) is

(t− 1) d
dt

(tAk−1(t)
k∏
i=1

[λi]t) + Ak(t)
k∏
i=1

[λi]t. (6.42)

When λ = (n) and hence k = 1, one can easily check that the corollary holds. If

λ 6= (n) and hence k ≥ 2, we can use the well-known identity that

Ak(t) = t(1− t)A′k−1(t) + (1 + (k − 1)t)Ak−1(t)
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along with (6.42) to prove the corollary.

In this thesis, we present a combinatorial proof of Theorem 6.5.1 using our F -basis

expansion of Theorem 6.3.1, but in the author’s paper with Wachs [22], we give an

algebraic proof that uses our e-basis expansion from Theorem 6.2.1. For our proof of

Theorem 6.5.1, we will need a lemma, but first let us define some notation.

For σ ∈ Sn, define the number of (< 2)-inversions of σ by inv<2(σ) := des(σ−1),

i.e.,

inv<2(σ) := |{i ∈ [n− 1] | σ−1(i) > σ−1(i+ 1)}|.

For a word w = w1w2 · · ·wl with distinct letters over the alphabet [n], we say that wi

with i > 1 is a (≥ 2)*-maximum of w if

2 ≤ wi − wj < n− 1

for all 1 ≤ j < i. Note that if 1 precedes n in w, then n is not considered a (≥ 2)*-

maximum.

Let λ = (λ1, λ2, · · · , λl) ` n and define N<
λ as the set of all σ ∈ Sn such that

σ(1) < σ(n) and when σ−1, written in one-line notation, is broken up into contiguous

segments α1, α2, · · · , αl of sizes λ1, λ2, · · · , λl respectively, each αi has no (≥ 2)-

descents and no (≥ 2)*-maxima.

Lemma 6.5.3. For all n ≥ 1,

ωW<
n (x, t) =

∑
λ`n

z−1
λ pλ(x)

∑
σ∈N<

λ

tdes(σ) (6.43)

Proof. Note that this proof is similar to that of Theorem 5.3.5. Combining Propo-

sition 5.3.2, Equation (6.23), and the fact that for all σ ∈ Sn, we know des(σ) =
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inv<2(σ−1), we have that

ωW<
n (x, t) =

∑
λ`n

z−1
λ pλ(x)

∑
σ∈Sn

σ(1)<σ(n)
DES≥2(σ−1)∈Uλ

(−1)|DES≥2(σ−1)\S(λ)|tinv<2(σ−1) (6.44)

For each λ ` n, define

D<
λ := {σ ∈ Sn | σ(1) < σ(n) and DES≥2(σ−1) ∈ Uλ}.

Notice that N<
λ ⊆ D<

λ . We will find a sign-reversing, inv<2-preserving involution

φ<λ : D<
λ → D<

λ that fixes all elements of N<
λ and for each σ ∈ D<

λ \N<
λ , we have

• (φ<λ )2(σ) = σ,

• φ<λ changes |DES≥2(σ−1)\S(λ)| by 1, and

• inv<2(σ−1) = inv<2(φ<λ (σ−1)).

Let λ = (λ1, λ2, · · · , λl) ` n and σ ∈ D<
λ \N<

λ , and let σ−1, written in one-line

notation, be broken into contiguous segments α1, α2, · · · , αl of sizes λ1, λ2, · · · , λl

respectively. Let i be the smallest index such that αi contains a (≥ 2)-descent or a

(≥ 2)*-maximum. Then αi is of the form

αi = σsi−1+1σsi−1+2 · · · σk−1σkσk+1 · · ·σsi ,

where sj − sj−1 ≥ 2 for si−1 + 1 < j ≤ k and sj − sj+1 < 2 for k ≤ j < si. Then φ<λ

will change αi according to the following cases and will fix all other αj.

Define σm as the largest (≥ 2)*-maximum of αi such that m > k. If there is no

such m, then define σm = 0

Case 1:σm 6= 0
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Then move σm before σsi−1+1. This will increase (≥ 2)-descents by 1 since σm −

σsi−1+1 ≥ 2. If m 6= si, we should check that we do not create a (≥ 2)-descent between

σm−1 and σm+1. But σm − σm−1 ≥ 2 and since there is not a (≥ 2)-descent between

σm and σm+1, we know σm− σm+1 < 2. So σm+1 > σm−1, meaning we do not create a

new (≥ 2)-descent here. Since σm−σj ≥ 2 for all si−1 + 1 ≤ j < m, then this will not

change the (< 2)-inversions of σ−1. Since we do not allow n to be a (≥ 2)-maximum

if it follows 1, we will still have that φ<λ (σ)(1) < φ<λ (σ)(n). One can easily see that

φ<λ (σ) is still in D<
λ .

Case 2:σm = 0

Then move σsi−1+1 to the first place after σk that will not create a new (≥ 2)-

descent. This will decrease the (≥ 2)-descents by 1 . This will not change the (< 2)-

inversions, because for all σj with si−1 + 1 < j ≤ k we have that σsi−1+1 − sj ≥ 2

and for any σj with k > j if |σj − σsi−1+1| < 2, then σsi−1+1 would be placed before

σj since this would not create a new (≥ 2)-descent. Notice that 1 6= σsi−1+1 in this

case, because this would imply that αi has no (≥ 2)*-maxima and no (≥ 2)-descents.

Hence we still have that φ<λ (σ)(1) < φ<λ (σ)(n). One can easily see that φ<λ (σ) is still

in D<
λ .

Note that Case 1 and Case 2 will reverse each other and hence φ<λ (σ) is an

involution. The only elements of D<
λ that remain are those of N<

λ . Since for all

σ ∈ N<
λ , we have DES≥2(σ−1) ⊆ S(λ), we are done.

Proof of Theorem 6.5.1. Note that this proof is similar to the proof of Theorem 5.3.7.

We will use the fact that for each λ ` n, the coefficient of z−1
λ pλ(x) in W<

n (x, t) is

∑
σ∈N<

λ

tdes(σ) =
∑
σ∈N<

λ

tinv<2(σ−1).
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Let λ = (λ1, λ2, · · · , λk) be a partition of n and let σ ∈ N<
λ so that σ−1 is

partitioned into pieces, α1, α2, · · · , αk of sizes λ1, λ2, · · · , λk so that σ = α1α2 · · ·αk,

where · represents concatenation. Then we know σ ∈ N<
λ if and only if each αi has

no (≥ 2)-descents and no (≥ 2)*-maxima.

Let Cn = ([n], E) be a graph defined by E = {{i, i + 1} | i ∈ [n− 1]} ∪ {{1, n}}.

For each αi, we will construct a connected acyclic digraph −→Gi on the letters of αi such

that the underlying undirected graph Gi is an induced subgraph of Cn.

Let −→Gi be the directed graph whose vertex set is the set of letters of αi and whose

edges have the form (a, b) if b precedes a in αi and {a, b} ∈ E(Cn).

For example, let n = 9, λ = (4, 3, 2) and σ = 543687921. Then α1 = 5436,

α2 = 879, and α3 = 21. The corresponding acyclic digraphs as as shown below:

Define a sink of a digraph to be a vertex with no outgoing edges.

Claim: For each σ ∈ N<
λ with σ = α1α2 · · ·αk, the

−→
Gi associated to each αi is a

connected acyclic digraph with a unique sink, which is the first letter of αi.

Proof of claim: It is clear from the way −→Gi is defined that it must be acyclic. Then

we only need to show that there is a unique sink, which would also imply that −→Gi is

connected.

Suppose some −→Gi has two distinct sinks. Then let αi = a1a2 · · · aλi be the part

of σ associated to −→Gi. It is clear that a1 must be a sink. So let aI be the sink with

I 6= 1 such that I is minimal. Then the induced subgraph of Cn on the vertices of
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{a1, a2, . . . , aI−1} is connected; otherwise, this set would contain more than one sink

of −→Gi.

Case 1: n ∈ {a1, a2, . . . , aI−1}.

Suppose aj = n. Then in order to avoid (≥ 2)-descents, we must have aj+1 =

n − 1, aj+1 = n − 2, . . . , aI−1 = n − (I − 1 − j). But then again to avoid a (≥ 2)-

descent, we must have aI = n − (I − j). But then there would be an edge of −→Gi

oriented from aI to aI−1, contradicting the fact that aI is a sink of −→Gi.

Case 2: n /∈ {a1, a2, . . . , aI−1}.

Since {a1, a2, . . . , aI−1} form a connected subgraph of Cn, we must have that there

exists c, d ∈ P such that {a1, a2, . . . , aI−1} = {c, c + 1, . . . , d}. Then we cannot have

aI ≤ c−2, because this would create a (≥ 2)-descent between aI−1 and aI . We cannot

have aI ≥ d+ 2, because either this makes aI a (≥ 2)*-maximum or in the case that

c = 1 and aI = n, this means there is an edge from aI = n to 1 in −→Gi, contradicting

the assumption that aI is a sink. Then we must have that aI = c− 1 or aI = d + 1.

But then there is an edge from aI to c or d, respectively, so aI cannot be a sink of −→Gi.

So our claim is proven.

From the claim, we see that if λ 6= (n), each underlying undirected graph, Gi, is

a path of length λi in Cn. If λ = (n), then G1 = Cn.

We can uniquely recover σ from the k-tuple (−→G1,
−→
G2, · · · ,

−→
Gk). Indeed for each

−→
Gi, recreate αi by starting with the sink of −→Gi. Then remove this vertex from −→Gi

and choose the sink of the remaining digraph with the smallest label to be the second

letter of αi. Then remove this sink from the remaining digraph and repeat the process

until all vertices of −→Gi have been used.
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Notice that the number of (< 2)-inversions of αi is the number of directed edges

of the associated −→Gi of the form (j, j + 1) with j ∈ [n− 1].

Case 1: λ = (n).

In this case −→G1 is an acyclic orientation of Cn with a unique sink (and hence a

unique source, i.e., a vertex with no incoming edges) and so that the edge between

1 and n is oriented from n to 1. So we need to find the number of (< 2)-inversions

of the corresponding σ−1, i.e., the number of edges of −→G1 of the form (i, i + 1). In

order to construct an acyclic orientation of Cn meeting our criteria, we can choose

any 1 ≤ j < n to be our sink. Then we must choose a k with j < k ≤ n to be our

source. Then −→G1 has edges of the form (i, i+ 1) for 1 ≤ i ≤ j − 1 and k ≤ i ≤ n− 1.

Summing over all acyclic orientations of Cn with a unique sink and with the edge

(n, 1), we get that the coefficient of 1
n
pn in ωW<

n (x, t) is ∑1≤j<k≤n t
j−1+n−k = d

dt
[n]t.

Case 2: λ 6= (n).

For a, b ∈ P with b ≤ a, define a V -digraph −→V a,b to be a digraph with vertex set

{v1, v2, · · · , va} and edge set {(vi, vi+1) | 1 ≤ i < b} ∪ {(vi+1, vi) | b ≤ i < a}. We will

call v1 the first vertex of −→V a,b and va the last vertex of −→V a,b. For 1 ≤ i < a we say

the successor of vi is vi+1. Let Va,b denote the underlying undirected graph of −→V a,b.

For all a, b ∈ P with b ≤ a, we can see that Va,b is a path. For example, −→V 4,2 is shown

below:

Case 2a: σ ∈ N<
λ with 1 and n in the same αi
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Let λ = (λ1, λ2, · · · , λk). Then we will construct a bijection from the set

N<
λ (s) := {σ ∈ N<

λ | 1 and n in the same αi of σ}

to the set Ms
λ of (k + 3)-tuples

(I, j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk),

where

• I ∈ [k] with λI ≥ 2

• µ ∈ Sk is a k-cycle

• 2 ≤ bI ≤ λI

• for each i 6= I, we have 1 ≤ bi ≤ λi

• 1 ≤ j ≤ bI − 1

Let σ ∈ N<
λ (s). Define I so that αI contains 1 and n. Recall our earlier map from

σ ∈ N<
λ to the k-tuples (−→G1,

−→
G2, · · · ,

−→
Gk). For each 1 ≤ i ≤ k, define bi as one more

than the number of edges of −→Gi of the form (i, i+ 1) for some i ∈ [n− 1]. Then −→V λi,bi

is simply −→Gi without labels. Since 1 and n are in −→G I , we will automatically have

2 ≤ bI ≤ λI . To determine µ = (a1, a2, · · · , ak), we start by letting a1 = I. From the

remaining −→Gi with i 6= I, let −→Gj2 be the digraph with the smallest label on its sink.

Then let a2 = j2. From the remaining −→Gi, let
−→
Gj3 be the digraph with the smallest

label on its sink. Then let a3 = j3. We continue this process until we find ak. Lastly,

let j be the label on the sink of −→GI .

In the other direction, suppose we have

(I, j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Ms

λ .
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For each 1 ≤ i ≤ k, we will say that the successor of the last vertex of −→V λi,bi is the

first vertex of −→V λµ(i),bµ(i) . Place the label j on the sink of −→GI . Then place a j+ 1 on its

successor, a j+2 on the successor of that vertex, etc. When we finally place the label

n on a vertex, then place a 1 on its successor, a 2 on the successor of that vertex,

etc. until all vertices are labeled. Now the labeled −→V λi,bi is the same as −→Gi, so we can

recover σ as described earlier. One can check that this is a bijection.

Now suppose we have some σ ∈ N<
λ (s) that corresponds to

(I, j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Ms

λ .

Notice that using the bijection, the number of (< 2)-inversions of αi is equal to bi− 1

for i 6= I and equal to bi − 2 when i = I. One can check that the number of (< 2)-

inversions between distinct αi in σ−1 is the same as the number of excedances of µ−1.

Using Lemma 5.3.6, we see that

∑
µ∈Sk

µ k−cycle

texc(µ−1) =
∑
µ∈Sk

µ k−cycle

texc(µ) = tAk−1(t).

Then we get the following formula

∑
σ∈N<

λ (s)
tinv<2(σ−1) =

∑
µ∈Sk

texc(µ−1)(
∏

1≤i≤k
i 6=I

λi∑
bi=1

tbi−1)(
λI∑
bI=2

bI−1∑
j=1

tbI−2)

= tAk−1(t)(
∏

1≤i≤k
i 6=I

[λi]t)(
λI∑
bI=2

(bI − 1)tbI−2)

= tAk−1(t) d
dt

k∏
i=1

[λi]t

Case 2b: σ ∈ N<
λ with 1 and n in different αi
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Let λ = (λ1, λ2, · · · , λk). Then we will construct a bijection from the set

N<
λ (d) := {σ ∈ N<

λ | 1 and n in different αi of σ}

to the set Md
λ of (k + 2)-tuples

(j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk),

where

• j ∈ [k]

• µ ∈ Sk is a k-cycle with µ(j) < j

• for each i, we have 1 ≤ bi ≤ λi

Let σ ∈ N<
λ (d). Recall our earlier map from σ ∈ N<

λ to the k-tuples (−→G1,
−→
G2, · · · ,

−→
Gk).

For each 1 ≤ i ≤ k, define bi as one more than the number of edges of −→Gi of the form

(i, i+1) for some i ∈ [n−1]. Then −→V λi,bi is simply −→Gi without labels. Define j so that

αj contains n. To determine µ = (a1, a2, · · · , ak), we start by letting a1 = j1 where
−→
Gj1 contains the vertex labeled 1. From the remaining −→Gi, let

−→
Gj2 be the digraph with

the smallest label on its sink. Then let a2 = j2. From the remaining −→Gi, let
−→
Gj3 be

the digraph with the smallest label on its sink. Then let a3 = j3. We continue this

process until we find ak. Notice that ak will be j, so since 1 precedes n in σ, we have

that a1 = µ(j) < ak.

In the other direction, suppose we have

(j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Md

λ .

For each 1 ≤ i ≤ k, we will say that the successor of the last vertex of −→V λi,bi is the

first vertex of −→V λµ(i),bµ(i) . Place the label n on the last vertex of −→Gj. Then place a 1
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on its successor, a 2 on the successor of that vertex, etc. until all vertices are labeled.

Now the labeled −→V λi,bi is the same as −→Gi, so we can recover σ as described earlier.

One can check that this is a bijection.

Now suppose we have some σ ∈ N<
λ (d) that corresponds to

(j, µ,−→V λ1,b1 ,
−→
V λ2,b2 , · · · ,

−→
V λk,bk) ∈Md

λ .

Notice that using the bijection, the number of (< 2)-inversions of αi is equal to bi−1.

One can check that the number of (< 2)-inversions between distinct αi in σ−1 is one

less than the number of excedances of µ−1. Then one can see that

∑
σ∈N<

λ (d)
tinv<2(σ−1) =

k−1∑
j=1

∑
µ∈Sk

µ is a k-cycle
µ(j)<j

texc(µ−1)−1(
k∏
i=1

λi∑
bi=1

tbi−1)

=
k−1∑
j=1

∑
µ∈Sk

µ is a k-cycle
µ−1(j)>j

texc(µ−1)−1(
k∏
i=1

[λi]t)

=
∑
µ∈Sk

µ is a k-cycle

(exc(µ−1))texc(µ−1)−1(
k∏
i=1

[λi]t)

= d

dt
(tAk−1(t))(

k∏
i=1

[λi]t).

Then Case 1 gives us our result when λ = (n), and putting together Case 2a

and Case 2b gives us our result when λ 6= (n).
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6.6 The labeled cycle

Let Cn = ([n], E) be the labeled cycle, i.e., let E = {{i, i+1} | i ∈ [n−1]}∪{{1, n}}.

Recall that the chromatic quasisymmetric function XCn(x, t) of the labeled cycle is

different than the chromatic quasisymmetric function X−→
Cn

(x, t) of the directed cycle.

In this section, we will present a generating function for the chromatic quasisymmetric

function XCn(x, t) of the labeled cycle in terms of the elementary basis, which follows

from our work on descent enumerators of Smirnov words. Using our formula we

show that XCn(x, t) is e-positive. This is interesting, because for n ≥ 4, Cn is not

a natural unit interval graph, nor is it a circular indifference digraph (when turned

into a digraph by orienting edges from smaller label to larger label). So XCn(x, t)

is not included in the e-positivity conjecture of Shareshian and Wachs (Conjecture

4.2.2), nor in the generalized e-positivity conjecture (Conjecture 5.5.1). In fact, it is

not even included in the symmetry result of Shareshian and Wachs for labeled graphs

or our symmetry result for directed graphs (see Corollary 5.4.7).

From each proper coloring κ : [n] → P of the labeled cycle Cn, we can form a

Smirnov word w = κ(n)κ(n − 1) · · ·κ(1). From this correspondence, we see that we

get the relationship

XCn(x, t) = W<
n (x, t) + tW>

n (x, t). (6.45)

Since W<
n (x, t) and W>

n (x, t) are symmetric, we get that XCn(x, t) is symmetric as

well. By combining (6.45) with the formulas given in Theorem 6.2.1, we get the

following corollary.

Corollary 6.6.1 (of Theorem 6.2.1). We have,

∑
n≥2

XCn(x, t)zn =
∑
i≥2([2]t[i]t + it2[i− 3]t)ei(x)zi

D(x, t, z) , (6.46)
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where D(x, t, z) := 1 −
∑
i≥2

t[i − 1]tei(x)zi as defined in (6.10), and [−n]t := t−n−1
t−1 =

−t−n[n]t for n ≥ 0.

Note that (6.46) reduces to Stanley’s formula (3.4) for the chromatic symmetric

function XCn(x) when t = 1.

Theorem 6.6.2. Let n ≥ 2.

1. If n is odd, XCn(x, t) is e-positive, palindromic, and e-unimodal with center of

symmetry n
2 .

2. If n is even,

(a) XCn(x, t) is e-positive and palindromic with center of symmetry n
2 , but is

not e-unimodal.

(b) XCn(x, t)+tn2 e2n2 (x) is e-positive, palindromic, and e-unimodal with center

of symmetry n
2 .

Proof. Let Un(x, t) and Vn(x, t) be defined respectively by

∑
n≥2

Un(x, t)zn = ([2]t[2]t + 2t2[2− 3]t)e2(x)z2

D(x, t, z)

and ∑
n≥2

Vn(x, t)zn =
∑
i≥3([2]t[i]t + it2[i− 3]t)ei(x)zi

D(x, t, z) .

Then XCn(x, t) = Un(x, t) + Vn(x, t).

We have, ∑
n≥2

Un(x, t)zn = (1 + t2)e2(x)z2

D(x, t, z) .

It follows from (5.17) that

Un(x, t) =
∑
m≥1

∑
k2, . . . , km ≥ 2∑m

i=2 ki = n− 2

e2ek2 . . . ekmt
m−1(1 + t2)

m∏
i=2

[ki − 1]t. (6.47)
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Note that for any k ≥ 3

(1 + t2)[k]t = 1 + t+ 2t2 + · · ·+ 2tk−1 + tk + tk+1,

and for k = 2,

(1 + t2)[k]t = 1 + t+ t2 + t3.

In either case, (1 + t2)[k]t is palindromic and unimodal with center of symmetry k+1
2 .

We will now use Propositions B.1 and B.3 of [52]. Consider the term of the right

side of (6.47) corresponding to the (m−1)-tuple (k2, . . . , km). If kj ≥ 3 for some j then

since (1 + t2)[kj−1]t is positive, palindromic, and unimodal, tm−1(1 + t2)∏m
i=2[ki−1]t

is a product of positive, palindromic and unimodal polynomials. Hence tm−1(1 +

t2)∏m
i=2[ki − 1]t is positive, palindromic and unimodal with center of symmetry

m− 1 + kj
2 +

m∑
i=2
i 6=j

ki − 2
2 = n

2 .

It follows that the coefficient of each eλ in Un(x, t), where λ has a part of size at least

3, is positive, palindromic and unimodal with center of symmetry n
2 . If λ does not

have a part of size at least 3 then all the parts must be 2, which means that n is

even. Hence if n is odd then Un(x, t) is e-positive, palindromic, and e-unimodal with

center of symmetry n
2 .

Now if λ does not have a part of size at least 3 then λ = 2m, where n = 2m. By

(6.47), the coefficient of eλ in Un(x, t) is tm−1(1 + t2). It follows that if n is even,

Un(x, t) + tme2m is e-positive, palindromic, and e-unimodal, with center of symmetry

m = n
2 .

It follows from Lemma 5.5.3 that Vn(x, t) is also e-positive, palindromic, and e-

unimodal, with center of symmetry n
2 . Since XCn(x, t) = Un(x, t)+Vn(x, t), Parts (1)

and (2b) hold. Palindromicity of XCn(x, t) in the even case follows from Part (2b).
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The assertion in Part (2a) that XCn(x, t) is not e-unimodal in the even case follows

from the fact the coefficient of e2m(x) is not unimodal.

6.7 Combinatorial proof of symmetry

It follows from our e-basis expansions of W<
n (x, t), W>

n (x, t), and XCn(x, t) that they

have symmetric function coefficients. In this section, we give a combinatorial proof

of symmetry.

Theorem 6.7.1. W<
n (x, t), W>

n (x, t), and XCn(x, t) are in ΛZ[t].

Proof. For this proof, we will view Smirnov words w = w1w2 · · ·wn with w1 < wn

as proper colorings C<(Cn)of the labeled cycle graph Cn = ([n], E) where the colors

increase along the edge {1, n}, i.e., κ ∈ C<(Cn) means that κ : [n] → P is a proper

coloring of Cn and κ(1) < κ(n). Then des(w) is the number of edges {i, i + 1} of Cn

where κ(i) > κ(i+ 1).

For each a ∈ P, we will define an involution ωa on the set C<(Cn) that exchanges

the number of vertices colored with a and the number of vertices colored with a + 1

but does not change the number of descents of the coloring. This then proves the

theorem.

Notice that for any a ∈ P and any coloring κ ∈ C<(Cn), either the entire graph is

colored with the colors a and a+ 1 (in which case n must be even) or the parts of the

graph colored with a and a + 1 form a set of disjoint paths (see Lemma 5.4.4). For

the purpose of describing ωa, we will define an a-chain as a maximal path in Cn such

that each vertex is colored with either a or a+ 1, and define the length of an a-chain

to be the number of vertices in the path. Now let κ ∈ C<(Cn) and define ωa(κ) as

follows:

(1) For a-chains of odd length, ωa(κ) switches the colors a and a+1 on the vertices.
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(2) If both vertex 1 and vertex n are contained in an a-chain of odd length, then

let i be the end vertex of the chain with the smallest value.

(2a) If i is even, then after the a and a + 1’s are switched, shift the colors down a

vertex, i.e., ωa(κ)(j− 1) = κ(j) for 1 < j ≤ n, and ωa(κ)(n) = κ(1).

(2b) If i is odd, then after the a and a+1’s are switched, shift the colors up a vertex,

i.e., ωa(κ)(j + 1) = κ(j) for 1 ≤ j < n, and ωa(κ)(1) = κ(n).

First let us check that ωa is well defined, i.e., that for any κ ∈ C<
n we have that

ωa(κ) ∈ C<
n . It is easy to see that ωa(κ) is a proper coloring of Cn, so we just need to

check that ωa(κ)(1) < ωa(κ)(n). If at most one of 1 or n is colored with a or a + 1

then ωa should not affect the relative order. If both 1 and n are colored with a and

a + 1 then we must have κ(1) = a and κ(n) = a + 1. If these are contained in an

even a-chain, then the colors do not change, so their relative order remains the same.

If they are contained in an odd a-chain, then initially their colors will be switched;

however, whether we fall into Case 2a or Case 2b, once the colors are rotated, we

again have ωa(κ)(1) = a and ωa(κ)(n) = a + 1, so again their relative orders remain

the same. Hence ωa is well-defined.

Note that ωa is an involution, which follows easily from the fact that step 2 will

cause an odd a-chain that contains 1 and n to still be an odd a-chain that contains 1

and n and the label of vertex i mentioned in step 2 switches parity, hence, applying

ωa(ωa(κ)) = κ. Similarly it is easy to see that ωa switches the number of occurrences

of the color a and the number of occurrences of the color a+ 1.

Now we need to check that ωa preserves descents. Clearly, ωa preserves the number

of descents in a-chains of even length, because nothing changes. In chains of odd

length that do not contain 1 and n, notice that there is always the same number of

ascents as descents, so once the colors are switched, all ascents become descents and

vice versa, but the number of descents remains the same.
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To see that ωa preserves the number of descents in a-chains of odd length that

contain 1 and n, let us look at the two cases. Let i be the end of the a-chain containing

1 and n with smallest label, and let n-j be the label on the other end of the a-chain.

We can divide this a-chain into two parts, P1 and P2. Let P1 be the part of the a-chain

from 1 to i and let P2 be the part of the a-chain from n-j to n.

(3a) If i is even, then in κ we see that P1 contains one more ascent than descent, but

P2 contains the same number of ascents as descents. Once the colors of a and

a+1 are switched, P2 still contains the same number of ascents as descents, but

now P1 contains one more descent than ascent. When we rotate the colors, P1

loses a vertex, but now it has the same number of ascents as descents, and P2

gains a vertex, but now it has one more ascent than descent. Also notice that

when we rotate the colors, it does not change the number of descents of the rest

of the coloring.

(3b) If i is odd, then in κ we see that P1 contains the same number of ascents as

descents, but P2 contains one more ascents than descent. Once the colors of a

and a+1 are switched, P1 still contains the same number of ascents as descents,

but now P2 contains one more descent than ascent. When we rotate the colors,

P2 loses a vertex, but now it has the same number of ascents as descents, and

P1 gains a vertex, but now it has one more ascent than descent. Also notice

that when we rotate the colors, it does not change the number of descents of

the rest of the coloring.

Hence ωa is an involution that changes the number of occurrences of a and a+ 1

in each proper coloring in C<(Cn) and preserves the number of descents, so we see

that W<
n (x, t) ∈ ΛZ [t].

Notice that if we apply ωa to C>(Cn), the set of colorings, κ, of Cn with κ(1) >

κ(n), then ωa preserves the number of descents of the coloring and switches the
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number of occurrences of color a and color a + 1, so this shows that W>(x, t) is

symmetric as well.

We can also apply ωa to all proper colorings of Cn. We see that ωa would preserve

the descents of each coloring and switch the number of occurrences of color a and

color a+ 1, which shows that XCn(x, t) is symmetric.



Appendix
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Appendix A

Graph classes

In this section, we will discuss a few properties of circular indifference digraphs, which

we defined in Section 5.4. Then we will take a look at how these graphs relate to

other graphs found in the literature.

Definition A.0.1. Suppose we have a finite collection of arcs positioned around a

circle of any radius so that no arc properly contains another. We consider the starting

point of an arc as the counterclockwise-most endpoint of the arc. We can construct a

digraph, which we call a proper circular arc digraph by assigning a vertex to each arc

and having an edge from arc A to arc B if the starting point of arc B is contained in

arc A. The underlying undirected graph is called a proper circular arc graph.

Example A.0.2. Here we see a collection of proper circular arcs positioned around

a circle and the corresponding proper circular arc digraph.
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Theorem A.0.3. Let −→G be a connected digraph. Then the following statements are

equivalent:

1. −→G is a proper circular arc digraph.

2. −→G is a circular indifference digraph.

Proof. First let’s show (2) =⇒ (1). Let −→G be a circular indifference digraph on [n]

that comes from the set of circular intervals

I = {[a1, b1], [a2, b2], · · · , [ak, bk]}

of [n]. From these intervals, we can construct a set of intervals

Ĩ = {[1, c1], [2, c2], ..., [n, cn]}

such that for each i ∈ [n], we have that [i, ci] is the largest circular interval that is

contained in an interval of I and that has i as its left endpoint. It is easy to see that

each interval in I must be contained in an interval of Ĩ and vice versa, so I and Ĩ are

both associated to −→G .

We will construct n proper arcs on a circle so that the corresponding proper

circular arc graph is −→G . Draw a circle and place n points equally spaced around the

circle. Label these points in cyclic order with [n]. For each circular interval of Ĩ , we

will place an arc on the circle. Start with a circular interval [i, ci] ∈ Ĩ of maximal

size and draw an arc from slightly before i to slightly after ci. Continue this process

with all the circular intervals of Ĩ in weakly decreasing order of their sizes. Note that

if the next interval has right endpoint the same ci as a previous interval, the newest

arc (coming from a circular interval of smaller size) should extend slightly past the

previous arc to avoid having one interval properly contained in another.
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The arc we construct from the interval [i, ci] that starts just before i on the circle

is the arc that corresponds to vertex i in −→G. Since arc i will contain the starting

points of all the arcs corresponding to the vertices in [i, ci], we have that (i, j) is an

edge of the proper circular arc digraph for each i < j ≤ ci. From here, we can see

that the proper circular arc digraph associated to this set of arcs is isomorphic to the

circular indifference digraph, −→G, we started with.

Here is an example of this process. Suppose we have the circular intervals

I = {[1, 3], [3, 4], [4, 5], [5, 1]}

on [n]. Then

Ĩ = {[1, 3], [2, 3], [3, 4], [4, 5], [5, 1]}.

The arcs that we would draw are shown in the figure below. We can see that both I

and the arcs on this circle are associated with the digraph given below.

Now let’s show (1) =⇒ (2).

Let −→G be a proper circular arc digraph on n vertices that comes from some proper

arc representation on a circle. Label one of the arcs 1. Now find the first arc that

begins clockwise after arc 1. Label this arc 2. Then find the next arc that begins

clockwise after arc 2. Label this arc 3. Continue this until all n arcs are labeled with

the labels [n]. Now create a set of circular intervals of [n], called I, as follows.
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Let I be the set of all [i, j] such that arc i contains the starting point of arc j. If

arc i contains the starting point of arc j, then it must also contain the starting point

of all arcs in [i, j], hence we can see that the proper circular arc digraph associated

with the set of arcs on the circle is isomorphic to the circular indifference digraph on

[n] associated with I.

Another class of graphs we want to look at is the class of simple digraphs that do

not have any induced subgraphs isomorphic to −−→K12 and −−→K21 as defined in Section 5.4

and displayed below.

For notational convenience, we will call these {−−→K12,
−−→
K21}-free digraphs.

Theorem A.0.4. Let G be a simple connected graph. Then the following statements

are equivalent:

1. G is isomorphic to a proper circular arc graph.

2. G is isomorphic to a circular indifference graph.

3. G admits an orientation that makes it a {−−→K12,
−−→
K21}-free digraph.

Proof. The equivalence of (1) and (3) was shown by Skrien in [56], and the equivalence

of (1) and (2) follows from Theorem A.0.3.

Now let us look at the non-circular version of these graphs.

Definition A.0.5. Suppose that we have a collection of intervals, I, of the ordered

set [n]. Then we can construct a graph, G = ([n], E), with edge set E = {{i, j} | i 6=

j and i, j contained in the same interval of I}. This is called an indifference graph.
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Definition A.0.6. Suppose we have a finite collection of intervals on the real line. We

can associate a graph to this interval representation by letting each interval correspond

to a vertex and allowing two distinct vertices to be adjacent if their corresponding

intervals overlap. This is called an interval graph. If no interval properly contains

another, this is called a proper interval graph. If each interval has length 1, this is

called a unit interval graph.

Note that unit interval graphs are just natural unit interval graphs, defined in

Section 4.2, without the labels. The following theorem is the acyclic or non-circular

version of Theorem A.0.4.

Theorem A.0.7. Let G be a simple graph. Then the following statements are equiv-

alent:

1. G is isomorphic to a proper interval graph.

2. G is isomorphic to a unit interval graph.

3. G is isomorphic to an indifference graph.

4. G admits an acyclic orientation that makes it a {−−→K12,
−−→
K21}-free digraph.

The equivalence of (1) and (2) was shown by Roberts in [50]. The equivalence of

(1) and (4) was shown by Skrien in [56]. The equivalence of (1) and (3) is well-known,

but can be shown by an analogous argument to the one given in the proof of Theorem

A.0.3.

Note that if we turn a natural unit interval graph of Shareshian and Wachs into a

digraph by orienting edges from smaller labels to larger labels, then we get an acyclic

{
−−→
K12,

−−→
K21}-free digraph, and in fact, every acyclic {−−→K12,

−−→
K21}-free digraph comes from

a natural unit interval graph (see [52, Section 4] for more information on natural unit

interval graphs).
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