University of Miami

Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2018-05-04

On Chromatic Quasisymmetric Functions of

Directed Graphs

Brittney Ellzey
University of Miami, brittney.ellzey@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

Recommended Citation

Ellzey, Brittney, "On Chromatic Quasisymmetric Functions of Directed Graphs" (2018). Open Access Dissertations. 2091.
https://scholarlyrepository.miami.edu/oa_dissertations/2091

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact

repository.library@miami.edu.


https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/2091?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

ON THE CHROMATIC QUASISYMMETRIC FUNCTIONS
OF DIRECTED GRAPHS

By

Brittney Ellzey

A DISSERTATION

Submitted to the Faculty
of the University of Miami
in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2018



©2018
Brittney Ellzey
All Rights Reserved



UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

ON THE CHROMATIC QUASISYMMETRIC FUNCTIONS OF DIRECTED
GRAPHS

Brittney Ellzey

Approved:

Michelle L. Wachs, Ph.D. Richard P. Stanley, Ph.D.
Professor of Mathematics Professor of Mathematics
Bruno Benedetti, Ph.D. Guillermo J. Prado, Ph.D.
Assistant Professor of Dean of the Graduate School
Mathematics

Rafael Nepomechie, Ph.D.
Professor of Physics



ELLZEY, BRITTNEY (Ph.D., Mathematics)
On the Chromatic Quasisymmetric Functions of Directed Graphs (May 2018)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Michelle L. Wachs.
No. of pages of text. (135)

In 1912, Birkhoff introduced the chromatic polynomial of a graph, which counts
the number of proper colorings of a graph. In 1995, Stanley introduced the chro-
matic symmetric function of a graph, a symmetric function analog of the chromatic
polynomial of a graph. The Stanley-Stembridge e-positivity conjecture is a long-
standing conjecture that states that the chromatic symmetric function of a certain
class of graphs has nonnegative coefficients when expanded in the elementary sym-
metric function basis. In 2012, Shareshian and Wachs introduced the chromatic
quasisymmetric function of a labeled graph, a refinement of the chromatic symmetric
function. Shareshian and Wachs described their own e-positivity conjecture for chro-
matic quasisymmetric functions which generalizes the Stanley-Stembridge conjecture.
There is ample support for these e-positivity conjectures, including weaker positivity
results in other symmetric function bases.

In the first part of this thesis, we extend the work of Shareshian and Wachs from
labeled graphs to a wider class of graphs, namely directed graphs. We introduce the
notion of chromatic quasisymmetric function of a directed graph. For acyclic digraphs,
our definition is equivalent to that of Shareshian and Wachs. We give an expansion
in terms of Gessel’s fundamental quasisymmetric function basis for the chromatic
quasisymmetric function of all digraphs, which shows that all the coefficients are
nonnegative. We use this expansion to derive a power sum symmetric function ba-
sis expansion with positive coefficients for the chromatic quasisymmetric function of
all digraphs whose chromatic quasisymmetric function has symmetric function coef-

ficients. We describe a class of digraphs, which we call circular indifference digraphs,



and show that their chromatic quasisymmetric functions are symmetric. These cir-
cular indifference digraphs include the directed cycle, for which we provide an e-basis
generating function formula that shows that its chromatic quasisymmetric function
is e-positive. We generalize the e-positivity conjecture of Shareshian and Wachs to
the class of circular indifference digraphs. Our positivity results and computer calcu-
lations provide evidence for this conjecture.

A Smirnov word is a word over the positive integers such that consecutive letters
are distinct. The descent enumerator of Smirnov words is equivalent to the chromatic
quasisymmetric function of the path graph. Shareshian and Wachs found a nice e-
basis generating function expansion of this descent enumerator that shows that it
is e-positive. Specializing this result gave them a g-analog of Euler’s exponential
generating function of the classical Eulerian polynomials.

In the second part of this thesis, we consider descent enumerators for restricted
Smirnov words, where we put restrictions on the relationship between the first and
last letter. We also consider cyclic descent enumerators for Smirnov words. Our
work on these descent enumerators refines our work on the chromatic quasisymmetric
function of the directed cycle. We obtain nice e-basis generating function formulas
that show that some of these descent enumerators are e-positive. We also provide ex-
pansions for the various descent enumerators in Gessel’s fundamental quasisymmetric
function basis. By specializing our fundamental and e-basis expansions, we obtain
formulas for polynomials that are variations on the g-Eulerian polynomials studied
by Shareshian and Wachs. We give a factorization of the expansion coefficients of the
various descent enumerators in the power sum symmetric function basis involving the
Eulerian polynomials. In addition, this work with Smirnov word descent enumerators
enables us to derive an e-basis expansion formula for the chromatic quasisymmetric

function of the labeled cycle, which shows that it is e-positive. This is notable, be-



cause the labeled cycle is not a graph that is covered by any of the current e-positivity

conjectures.
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Chapter 1

Introduction

1.1 Graph colorings

A proper coloring of a graph G = (V, E) is a map k : V — P, where P denotes the
positive integers, such that for all {u,v} € E, we have that x(u) # x(v). In 1912
Birkhoff [8] introduced the chromatic polynomial of a graph, xg(k), which equals
the number of proper colorings of G using only the colors in [k] .= {1,2,... k}. For
example, let P, = ([n], F) be the path graph defined by F = {{i,i+1} | i € [n—1]}.
We see that

X, (k) = k(k — 1)1 (1)

since there are k choices for the color on vertex 1 and k& —1 choices for the other n —1
vertices. One can show that the chromatic polynomial is always a polynomial in k,
justifying its name (see Section 2.3 for more information).

In 1995 Stanley [58] introduced a symmetric function analog of the chromatic

polynomial. The chromatic symmetric function of a graph G = (V, E) is defined by

Xo(x) = > X, (1.2)

keC(Q)



where X = x1, %, ..., C(G) is the set of proper colorings of G and x,. = [T ey Tx(w)-
One can see that this is a symmetric function, because permuting the variables is
the same as permuting the colors in each proper coloring (see Section 3.1 for basic
information on symmetric functions). For a symmetric function f(x) and a positive
integer k, we let f(1*) denote the result when we set z; = 1 for 1 <i < k and z; = 0
for i > k in f(x). One can see that Xg(1%) = x¢(k), so the chromatic symmetric
function reduces to the chromatic polynomial.

Stanley showed a number of interesting results about Xq(x). He discusses ex-
pansions in various bases for the ring of symmetric functions, including the power
sum symmetric function basis (p-basis) and the elementary symmetric function basis
(e-basis). See Section 3.1 for the definitions of these bases. He shows that wXg(x)
is p-positive, i.e., wXs(x) has nonnegative coefficients when expanded in the p-basis,
where w is the standard involution on symmetric functions defined in Section 3.1.

A stronger property than p-positivity of wXg(x) is e-positivity of Xg(x), but
not all graphs have e-positive chromatic symmetric functions. Stanley shows that
the chromatic symmetric functions of the path graph P, and of the cycle graph
C, = ([n], E), defined by E = {{i,i+ 1} | i € [n — 1]} U {{1,n}}, are e-positive by

obtaining the formulas

T;Xpn (x)2" = - i(l a7 (1.3)

and
22(@ —1)ei(x)2"
%;ch (x)z" = ! - Z(Z - 1)ei(x)zi’ (1.4)

where ¢;(x) is the elementary symmetric function defined in Section 3.1. Equation
(1.3) is equivalent to a result of Carlitz, Scoville, and Vaughn [12] on Smirnov words,

which are defined in Section 1.2.



A long-standing conjecture about chromatic symmetric functions involves the e-
positivity of a particular class of graphs. We say that a poset P is (a + b)-free if it
contains no induced subposet that consists of a disjoint union of a chain of a vertices
and a chain of b vertices. The incomparability graph Inc(P) of a poset P is the graph
whose vertex set is the elements of P with edges between incomparable elements of

P.

Conjecture 1.1.1 (Stanley-Stembridge [58] [65]). Let P be a (3+1)-free poset. Then

Xine(p)(X) is e-positive.

This conjecture is stated in terms of chromatic symmetric functions, but it origi-
nated from Stembridge’s work on immanants, where it is stated in a weaker form in
terms of immanants [66, Conjecture 4.4]. It is also stated in an equivalent form in
terms of immanants by Stanley and Stembridge in [65, Conjecture 5.5]. We discuss
Stanley’s work on chromatic symmetric functions in more detail in Section 3.2.

In 2012 Shareshian and Wachs [52, 53] presented a refinement of the chromatic
symmetric function. We call a graph labeled if its vertex set is [n] == {1,2,...,n}.
For a labeled graph G = ([n], F) and a proper coloring x € C(G), define the number

of ascents of Kk as

asc(r) = [{{i, 7} € B[ i < j, k(i) <w()}-

Then the chromatic quasisymmetric function of a labeled graph G = ([n], E) is defined
by

Xa(x,t) = ) ey, (1.5)
keC(G)

Example 1.1.2. Suppose we have the following labeled graph G (pictured on the

left) and a proper coloring of G (pictured on the right).



In this proper coloring the edges {2,3} and {2,4} are ascents. Hence this coloring

corresponds to the term t2wozg2? 115 in Xg(x,t).

In the chromatic quasisymmetric function of a graph, the coefficients of powers of
t are not symmetric functions in general. They belong to a class of formal power series
called quasisymmetric functions. See Section 4.1 for a discussion of quasisymmetric
functions. Setting ¢ = 1 gives back Stanley’s chromatic symmetric function.

Shareshian and Wachs gave an expansion for X (x,t) in a certain basis for the
ring of quasisymmetric functions called Gessel’s fundamental basis (F-basis) when
G is the incomparability graph of a poset P on [n]. They also showed that when G
belongs to a class of labeled graphs called natural unit interval graphs, defined in
Section 4.2, Xq(x,t) is actually symmetric, i.e., the coefficients of t in Xg(x,t) are
symmetric functions. Shareshian and Wachs conjectured and Athanasiadis [4] proved
a p-positivity formula for wX(x,t) when G is a natural unit interval graph.

Shareshian and Wachs [54, Theorem 7.2] also prove the following e-basis expansion

formula for the chromatic quasisymmetric function of the labeled path.

Z ei(x)z"

%XPH == 1— ;[2 - 1]t€i(x)zi’ 1-6)

where

)y =1+t+ - +t"1

It is not hard to see that this formula establishes e-positivity of Xp (x,t). Note

that this a nice t-analog of Stanley’s generating function formula for the chromatic



symmetric function of the path given in (1.3). Shareshian and Wachs also give the

following e-positivity conjecture for chromatic quasisymmetric functions.

Conjecture 1.1.3 (Shareshian-Wachs [53] [52]). Let G = ([n], E) be a natural unit in-

terval graph. Then the palindromic' polynomial X (x,t) is e-positive and e-unimodal?®.

Unit interval graphs are the incomparability graphs of posets that are both (341)-
free and (2 + 2)-free, so the class of graphs considered in the Shareshian-Wachs con-
jecture is smaller than that of the Stanley-Stembridge conjecture; however, Guay-
Pacquet [35] showed that if the Stanley-Stembridge conjecture holds for incompa-
rability graphs of posets that are both (3 4 1)-free and (2 + 2)-free, then it holds
in general. Hence the Shareshian-Wachs e-positivity conjecture implies the Stanley-
Stembridge e-positivity conjecture. We describe the work of Shareshian and Wachs
on chromatic quasisymmetric functions of labeled graphs in more detail in Section 4.2.

There is an important connection between chromatic quasisymmetric functions
of natural unit interval graphs and Hessenberg varieties, which was conjectured by
Shareshian and Wachs and was proven by Brosnan and Chow [10] and later by Guay-
Paquet [36]. This connection to Hessenberg varieties gives a possible approach to
proving Conjecture 1.1.3. Clearman, Hyatt, Shelton, and Skandera [17] found an
algebraic interpretation of chromatic quasisymmetric functions of natural unit interval
graphs in terms of characters of type A Hecke algebras evaluated at Kazhdan-Lusztig
basis elements. Haglund and Wilson [38] discovered a connection between chromatic
quasisymmetric functions and Macdonald polynomials.

In Chapter 5 we extend the definition of chromatic quasisymmetric function to

directed graphs. Let = (V, E) be a directed graph and let k € C(B), i.e., let K be

!Shareshian and Wachs show that for a graph G = ([n], E), if Xg(x,t) is symmetric, then it is
palindromic, i.e., if Xg(x,t) = leli'() a;(x)t7, then a;(x) = a)p—;(x) for all 0 < j < |E|TA
2See Section 4.2 for the definition of e-unimodal.



a proper coloring of 8 We can define the ascents of k as

asc(w) = [{(i,5) € B[ £(i) < w(j)}-

Then the chromatic quasisymmetric function of a directed graph 8 is defined as

Xax,t)= > paselmx, . (1.7)
keC(T)

Example 1.1.4. Suppose we have a directed graph, which we call the directed cycle

%

Cs (pictured on the left), and a proper coloring of C’G (pictured on the right).

In this proper coloring the edges (2,3), (5,6), and (6,1) are ascents. Hence this

coloring corresponds to the term t*zox3r,x15 in Xz (x,1). Note that we put labels
%

on the vertices of Cg so that we may refer back to them; however, the labels of a

directed graph do not affect its chromatic quasisymmetric function, as the ascents

are counted using only the direction of the edges.

Any labeled graph can be turned into a directed graph by orienting edges from

smaller labels to larger labels. Below we show an example.
L & © Q £ O
90 00

By this process, one can see that our definition agrees with the definition of Shareshian
and Wachs for acyclic digraphs. Setting t = 1 gives us back the chromatic symmetric

function of the underlying undirected graph of 8



We give an expansion of the chromatic quasisymmetric function of any digraph
in terms of Gessel’s fundamental quasisymmetric function basis using a permutation
statistic we call G-descents (see Section 5.2 for the definition). Our formula does not
reduce to the Shareshian-Wachs formula in the case of incomparability graphs, so our
formula provides a new expansion in this case. We use our F-basis expansion to prove

one of our main results.

Theorem 1.1.5. Let 6 be a directed graph such that Xg(x,t) is symmetric. Then

wXz(x,t) is p-positive.

In fact, we derive a p-basis expansion for anz(x, t) when 8 is any digraph such
that Xz(x,t) is symmetric. In comparison the Athanasiadis-Shareshian-Wachs p-
positivity formula for wXg(x,t) applies only when G is a natural unit interval graph.
Our formula does not reduce to theirs, so we get a new formula in the case of natural
unit interval graphs. When 8 = (?n, the directed cycle, we show that the p-basis
expansion coefficients of wXz(x,?) have a nice factorization involving the classical
Eulerian polynomials defined in Section 2.1.

Next we address the question of which a give us symmetric Xz (x,t). We intro-
duce a class of directed graphs, which we call circular indifference digraphs (see Section
5.4 for the definition), and we show that if 8 is a circular indifference digraph, then
Xz (x,t) is symmetric. When natural unit interval graphs are turned into digraphs by
orienting each edge from smaller label to larger label, they are contained in the class
of circular indifference digraphs. In fact, all acyclic circular indifference digraphs can
be obtained this way. The simplest circular indifference digraph that is not acyclic is

the directed cycle, C_*:L = ([n], E) defined by £ = {(¢,i+1) |t € [n—1]} U{(n,1)}.



We provide the following generating function formula for Xz (x,?) in terms of the

elementary symmetric function basis:

> k[l — 1)ser(x)zF

k>2
X=(x,1)z . (1.8)
%:2 Cn 1—tz — 1]sen(x)2"
k>2

It is not hard to see that this formula establishes e-positivity of X (x,). Note that
this is a t-analog of Stanley’s formula for X (x), the chromatic symmetric function
of the undirected cycle as shown in (1.4). We also present and give evidence for
the following generalization of the Shareshian-Wachs e-positivity conjecture for all

circular indifference digraphs.

Conjecture 1.1.6. Let 8 = (V, E) be a circular indifference digraph. Then the

palindromic® polynomial Xa(x,t) is e-positive and e-unimodal.

Since natural unit interval graphs are contained in the class of circular indiffer-
ence digraphs, our conjecture implies the Shareshian-Wachs e-positivity conjecture,
which in turn implies the Stanley-Stembridge e-positivity conjecture. In addition,
Stanley [58] defines the class of circular indifference graphs, which are the underlying
undirected graphs of our circular indifference digraphs, and he suggests that they
may have e-positive chromatic symmetric functions. This generalized e-positivity
conjecture also encompasses this speculation of Stanley.

A connection between chromatic quasisymmetric functions of directed graphs and
LLT polynomials was explored by Alexandersson and Panova [2]. Chromatic qua-
sisymmetric functions of directed graphs also appear in the work of Awan and Bernardi

[5] on Tutte polynomials.

3Palindromicity is established in Proposition 5.1.8.



1.2 Smirnov words

A proper coloring of the path P, can be viewed as a word over the positive integers P
where adjacent letters are distinct. These words are sometimes called Smirnov words
(after [33], see also [57]). The second portion of this thesis, which is joint work with
Wachs [22], focuses on Smirnov words.

Let W, denote the set of Smirnov words of length n. We can define the number

of descents of a Smirnov word w = wyws - - - w, € W,, as
des(w) = {1 € [n — 1] | w; > wit1}]
The descent enumerator of Smirnov words is defined as

Wa(x,t) = Z pdeswlx,

where X, = Ty, Ty, * Ty, . The descent enumerator W, (x,t) arose in the work of
Shareshian and Wachs [54] on ¢-Eulerian polynomials and motivated their work on

chromatic quasisymmetric functions, as
Wn(X, t) = Xpn (X, t),

the chromatic quasisymmetric function for the labeled path. Thus (1.6) gives a nice
expansion for W,,(x,t) in the e-basis. The t = 1 case of (1.6), which was given in
(1.3), was originally proved by Carlitz, Scoville, and Vaughn [12] through their work
on Smirnov words. The symmetric function W, (x, 1) has also been studied by Stanley

[58] and Dollhopf, Goulden, and Greene [19].
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We can define a circular version of the descent enumerator of Smirnov words as

Wf(x,ﬂ _ Z tcdes(w)xw’
weWw,,
w1y AW,

where cdes(w) is the number of cyclic descents of o, defined by
cdes(w) == [{i € [n] | w; > w1}, (1.9)

where w,, 11 = w;. It is not difficult to see that

W’I’;LA(X7 t) = X(Tn)(xa t)a

the chromatic quasisymmetric function of the directed cycle. We obtain results on
W#(x,t), including the e-basis expansion formula (1.8), through our work with chro-
matic quasisymmetric functions of directed graphs.

In Chapter 6, we refine the work on W, (x,t) and W#(x,t) by considering the
descent enumerators of restricted Smirnov words, i.e., Smirnov words where we put
restrictions on the relationship between the first and last letters of the word. For

example we define

Wex,t) = Y ti=x,,

n
weW,
w1 <Wnp,

The descent enumerators W,” (x, t) and W~ (x, t) are defined similarly. It is an exercise
of Grinberg and Reiner [34] to show that these three descent enumerators of restricted
Smirnov words are symmetric. We expand upon this by providing expansions of these
restricted descent enumerators in various bases.

We obtain e-basis expansions for W= (x,t), W (x,t) and W, (x,t), which show
that W, =(x,t) and W,”(x,t) are e-positive and e-unimodal. From our e-basis expan-

sions, one can recover the e-basis expansion formulas (1.6) and (1.8) for W, (x,t) and
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W7 (x,t), respectively, using the relationships
W (x,t) = WS (x,t) + W, (x,t) + W, (x,1),

and

W7 (x,£) = W, (x. 1) + W (x, ).

However this does not provide new proofs of (1.6) and (1.8) as our proof relies on
these formulas.

In addition we obtain an e-basis expansion of another cyclic descent enumerator,

W )= Y 0,

’LUEWn

using

Wa(x,t) =Wy (x, 1) + W7 (x, 1) + W (x,1).
The expansion is given by

% Z ei(x)(tz)"

n; Wo(x,t)2" = - it[i e (1.10)

We are also able to derive an e-basis expansion formula for the chromatic qua-

sisymmetric function of the labeled cycle C,, = ([n], E'), defined by E = {{i,i + 1} |

i€ n—1}U{{l,n}}, using

Xo, (x,t) = WS (x,t) +tW, (x, ).

n

Note that the chromatic quasisymmetric function X¢, (x,t) of the labeled cycle is

different than the chromatic quasisymmetric function Xz»(x,t) of the directed cycle.
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From our expansion, one can see that X¢, (x,t) is e-positive. This is notable since
C,, is not covered by any of the current e-positivity conjectures for n > 4.

We obtain F-basis and p-basis expansions for the various descent enumerators de-
fined in this section. The p-basis expansions involve the classical Eulerian polynomials
given by

An(t) _ Z tdes(o)7

oe6,
where G,, is the symmetric group. By specialization of our F-basis and e-basis ex-
pansions, we get formulas for variations of the g-Eulerian polynomials defined by
Shareshian and Wachs, described below.

Shareshian and Wachs [54, 52| define the g-Eulerian polynomials A,,(q,t) by

An(q,t) — Z qmajzg(afl)tdes(a)’ (111)

ce6,

where maj, is a permutation statistic defined in Section 6.4. We note that A,(1,?)
are the classical Eulerian polynomials. By specializing their F-basis and e-basis

expansions of W,,(x,t), they obtain the formula

2" Z[i]t[;q'
Z An(qa t) [n] | = = Zi ) (112)
R

where [n], =14 q+ -+ ¢" " and [n],! = [n],[n — 1], [1],. Setting ¢ = 1 gives a
classical result of Euler on the Eulerian polynomials. See (2.1).
In Section 6.4, we study variations of the g-Eulerian polynomials. For example,

let us define the cyclic ¢-Eulerian polynomial A, (q,t) by

(g, 1) = 3 qnessalo e, (1.13)

0'6671
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Through specialization of our F-basis and e-basis expansions of V~Vn(x7 t), we obtain

the formula

8
~ n = exp,(tz
> Aulg,t) [Z] =2 by{f2) ot (1.14)
nj,!
nzl N S e
i>2 [2]4!
where exp,(2) == Y50 ﬁ We also obtain similar results for other variations of the

g-Eulerian polynomials. See Section 6.4.

This thesis is organized as follows. In Chapter 2, we review some classical results
on permutation statistics, Eulerian polynomials, g-analogs of Eulerian polynomials,
and the chromatic polynomial of a graph. In Chapter 3 we review some basic sym-
metric function theory and discuss the chromatic symmetric function. In Chapter 4
we review quasisymmetric function theory and discuss the chromatic quasisymmetric
function of labeled graphs. In Chapter 5 we present our results on chromatic qua-
sisymmetric functions of directed graphs. In Chapter 6 we present our results on
descent enumerators of restricted Smirnov words. In Appendix A we discuss some
relationships between various classes of graphs and directed graphs discussed in this

thesis.



Chapter 2

Combinatorial polynomials

2.1 Eulerian polynomials

For n € P, let [n] denote the set {1,2,--- ,n}. A permutation of [n] is a bijection
from [n] to itself. Let &,, denote the set of permutations of [n]. In this thesis, we will
most commonly express a permutation in one-line notation. By this we mean that
if o € G, then o : [n] — [n] is a bijection, and we can write 0 as 0 = gy09 - - - o,
where o; == o(i) and - represents concatenation.

A permutation statistic is a function f : &, — N, where N is the set of natural
numbers. Here we define a few commonly studied permutation statistics, as well as

a few sets associated with permutations.
Definition 2.1.1. Let n €¢ P and let 0 € G,,.

e The descent set of o is defined as

DES(0) ={ien—1]|0; > 041}

14
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e The number of descents of o is

des(o) .= | DES(0)]|.

o Similarly, the ascent set of o is defined as

ASC(o) ={i € [n—1]|0; < 0i31}-

e The number of ascents of o is

asc(o) = | ASC(o)|.

o The major index of o is

maj(c) = Y i

1€DES(0)

e The number of inversions of o is

inv(o) = [{(0:,0;) | i < j and o; > 0;}|.

e The number of excedances of o is

exc(o) = |{i € [n—1] | o; > i}|.

To make sure we understand these definitions fully, let us look at an example.
Let 0 = 132794568 € Sy. Then DES(0) = {2,5} so des(c) = 2. On the other
hand, all positions that are not descents are ascents, so ASC(o) = {1,3,4,6,7,8}
and hence asc(o) = 6. By adding the elements of DES(0), we see that maj(o) =

2+ 5 = 7. The inversions of o are the pairs (i, 7) that are out of order in o, so in
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this case inv(o) = |{(3,2),(7,4),(9,4),(7,5),(9,5),(7,6),(9,6),(9,8)}| = 8. Lastly,
the number of excedences of o is exc(o) = |[{2,4,5}] = 3.

The major index of a permutation was named after Major Percy MacMahon, who
did extensive work with permutations statistics. It is clear by reversing permutations,

i.e., letting o(i) = o(n + 1 — i), that ascents and descents are equidistributed, i.e.,

Z tdes(o’) — Z tasc(a).

€S, cc6,

MacMahon [42, vol. 1, p.186] was the first to observe that descents and excedances

are equidistributed, i.e.,

Z 2fdes(a) _ Z texc(cr)'

€S, ceS,

This result is surprising, because for a given permutation o € &,,, it is not in general
true that des(o) = exc(o). Any permutation statistic that is equidistributed with
des is called an FEulerian statistic. 'This is because this equidistribution result of
MacMahon is closely related to a set of polynomials defined years before by Euler.

The Eulerian polynomials, denoted by A, () for each n € N, were first introduced
in 1749 by Euler [23] in the formula

ST(k+1)h =

=1 (1 _ t)nJrl
while studying the Dirichlet eta function. Euler also proved the generating function

> = 407 1)

nl
"0 n!

where e* is the usual exponential function. In 1958, after the work of MacMahon,

Riordan [49] discovered that

An(t) — Z tasc(a) — Z tdes(a) _ Z texc(a)‘

ce6,, oel, ce6,,
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In fact, this is now how the Eulerian polynomials are usually defined.
The Eulerian polynomials have a number of interesting properties, including the

fact that they are both palindromic and unimodal, as defined below.

Definition 2.1.2. Let P(t) € Q[t] be a polynomial with coefficients in Q. Then P(t)
can be expressed as P(t) = Y1, a,t", where a; € Q for all i and a,, # 0.

We say that P(t) is palindromic if a; = a,,_; for each i € N with ¢ < n.

We say that P(t) is unimodal if there exists some j € P such that a; 1 < a; for
all 0 < < jand a; > a;4; for all j < i < n. In other words, the coefficients of P()

increase from ag to a; and then decrease from a; to a,.

It is not too difficult to see that that Eulerian polynomials are palindromic by
noting that for any o € &,, if des(o) = k, then des(c™") = asc(0) = n — 1 — k, where

Tev

o™ is the reverse of o, i.e., if 0 = 0y09---0,, then 0" = 0,0,_1---01. Showing

their unimodality is a bit trickier. See [26] for more information on this.

2.2 qg-analogs

A g-analog of an object has the property that setting ¢ = 1 gives back the original

object. For example for n € P, we define the g-analog of n, denoted [n], as
n], =1+q¢+¢@+--+q¢" "

Clearly setting ¢ = 1 in [n], returns the number n. We can also define the g-analog

of n! to be

One of the most classical g-analog results is the formula

Z qinv(o) — [n]q' — Z qmaj(a)'

€S, oe6,
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Rodriguez [51] proved the first inequality, and MacMahon [43] proved the second,
which shows that inversions and major index are equidistributed. In fact any permu-
tation statistic that is equidistributed with inv and maj is called a Mahonian statistic.
Letting ¢ = 1 in the formula above gives us the well-known fact that |&,| = n!.

A number of g-analogs of the Eulerian polynomials have been studied over the

years by looking at pairs of permutation statistics. For any two permutation statistics
fl? f27 define

A;fl’fz)(q,t) _ Z qfl(a)tfz(a).
oe6,

The g-analogs AV-des) (g t), Amaides) (g +) and AWV-ex)(q ) have been well studied.
(For a few of these studies, see [6, 7, 11, 16, 24, 25, 27, 28, 32, 37, 48, 55, 64, 63, 67].)
For example, Stanley [63] showed that

2" 1—1¢
[n],! N Equ(z(t —1)) ¢

3 A g1

n>0

where Exp,(2) = X, q(g)ﬁ Substituting ¢ = 1 gives the classical generating

I
q-

function formula of Euler (2.1). More recently, Shareshian and Wachs [54] found the

formula

. " 1 —1q)exp,(2
Z A;maj,exc) (q7 t) < _ ( Q) pq( ) 7 (22)
70 (]! exp,(ztq) —tqexp,(2)
where exp,(2) = >,>¢ ﬁ Again setting ¢ = 1 gives the classical generating function

formula of Euler (2.1). In Section 6.4 we obtain expansions of a few variations of these

g-analogs.

2.3 The chromatic polynomial

A graph G = (V, F) is defined as a set V' of vertices together with the edges, £, which
is a collection of pairs of vertices. We say G is simple if E does not contain loops,

i.e., no edge between a vertex and itself, and E does not contain multiple edges, i.e.,



19

there is at most one edge between any two distinct vertices. In this dissertation we
will assume that all graphs are simple.

A proper coloring k : V' — P of a graph G = (V, E) is an assignment of positive
integers, which we can think of as colors, to the vertices of G such that adjacent
vertices have different colors; in other words, if {i,5} € E, then k(i) # k(j). The
most famous theorem involving graph colorings is the Four-Color Theorem, which
states that any planar graph, i.e., any graph that can be drawn in the plane with no
intersecting edges, can be colored with at most four colors.

While attempting to prove the Four-Color Theorem, Birkhoff [8] introduced the
chromatic polynomial of a planar graph in 1912. This definition was later extended
to all graphs in 1933 by Whitney [68], who was a student of Birkhoff. The chromatic
polynomial of a graph, G, denoted xg(k), gives the number of proper colorings of G
using the colors of [k]. Though it is not obvious, the chromatic polynomial of a graph
is actually a polynomial. For example if G = P5, the path graph on 3 vertices, then
xa(k) = k(k —1)2 In fact, if G = (V, E) is any tree, i.e., any graph with no cycles,
then yg(k) = k(k — 1)VI=1.

The chromatic polynomial has a number of interesting properties. For example
Stanley [62] showed that for any graph G' = (V, E), the expression (—1)Vlyq(—1)
gives the number of acyclic orientations of G. The chromatic polynomial can even be
defined recursively. Let G = (V, E) be a graph and let e € E. Then G — e is the
graph with the edge e deleted, i.e., G —e = (V, E — e). On the other hand G\e is the
graph G with e contracted, i.e., if e = {u,v}, then to obtain G\e, we delete the edge

e from F and identify vertex u with vertex v. Then

Xa (k) = xa—e(k) — xcre(F).
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Since this graph G = (V, E) with E = ) has xg(k) = kIVI, we can calculate the
chromatic polynomial of any graph using this recursion. This recursion can also be
used to show by induction that every chromatic polynomial is actually a polynomial.

We would also like to present an interesting result of Whitney, but first we need

some notation. A set partition of [n] is defined as m = {By, Bs, ..., Bi}, where
o for each i, we have B; C [n] with B; # 0,
o foreach 1 <i < j <k, we have B; N B; = (), and
k
i=1

We call these B; the blocks of w. For example {{2,5,7},{1,3},{4},{6}} is a set
partition of [7]. We can create a poset I1,, on set partitions of [n], called the partition
lattice, such that for any two set partitions m, v € II,, we have that m <y, ~ if every
block of 7 is contained in a block of v, i.e., for each B; € 7, there exists a B; € vy
such that B; C B;.

Given a graph G = ([n], F) with vertex set [n], we say that = € II,, is connected if
for each block B; € 7, the induced subgraph of G on the vertices of B; is connected.
The connected set partitions form a subposet of 11,,, which we call the bond lattice
of GG, denoted L. The smallest element of Lg, which is the set partition where each
block contains only one element, will be denoted 0.

Lastly, let us define the Modbius function of a poset P, denoted pp. The Mobius
function is defined recursively from intervals of P into the integers. For any s € P,
we have that pp(s,s) = 1. For any s,t € P with s <p t, we have that up(s,t) =
— Y s<u<t p(s,u). More information on the Mobius function can be found in [59,
Chapter 3]. Whitney discovered the following expansion of the chromatic polynomial

of a graph.
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Theorem 2.3.1 (Whitney [69]). For any (simple) graph G,

xa(n) =Y p(0,mnl",

WELG

where |w| denotes the number of blocks of .

Though the chromatic polynomial did not help Birkhoff prove the Four Color
Theorem as he had hoped, it has become the topic of much mathematical study. The
chromatic polynomial has been generalized to the Tutte polynomial, which has appli-
cations to fields such as knot theory and computational physics. It is currently a major
topic of study in algebraic graph theory with many open problems surrounding it,
such as characterizing graphs with the same chromatic polynomials and determining
which polynomials are chromatic polynomials. Most importantly for us, the chro-
matic polynomial has been generalized to the chromatic symmetric function, which

has itself become a heavily studied topic in the field of algebraic combinatorics.



Chapter 3

Chromatic symmetric functions

In 1995 Stanley [58] introduced a symmetric function analog of the chromatic poly-
nomial, called the chromatic symmetric function. Before we delve into this topic, let

us review some standard theory on symmetric functions.

3.1 Symmetric functions

The theory of symmetric functions is quite broad, so here we will review only a
few basic definitions and results that we need for our work. More information on
symmetric functions can be found in [60, Chapter 7] and [41].

A symmetric function f(x) over a commutative ring R is a formal power series in
infinitely many variables, which we denote x = 1,29, x3, ..., with coefficients in R

so that for any permutation o of the positive integers P, we have that

f(x1, 29,23, ...) = f(Toq), To(), To@), - - - )-

In other words, permuting the variables does not change f(x). For the purposes of
this thesis, we will let R = Q, the field of rational numbers. Let Ag denote the Q-

algebra of symmetric functions with coefficients in Q. In fact Ag is a graded algebra

22
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with

Ag = AYBAGBALD - - -,

where Ag is the Q-vector space of homogeneous symmetric functions of degree n.
Now we would like to discuss a few bases for Ag, but first we must define the
notion of a partition. For any n € N, we say A is a partition of n, denoted A - n,
if A = (A, Ay, --) with Ay > Xy > --- | \; € N for each ¢ and 3%, \; = n. Notice
that using this definition, each partition ends with an infinite string of 0’s. For
notational convenience, we usually do not include the 0’s, so for example the partition
(5,5,3,2,0,0,---) of 15 would be written as (5, 5,3, 2). In addition, we let [(\) denote
the length of A, which is the number of \; # 0. For example {((5,5,3,2)) = 4. Let
Par,, denote the set of partitions of n and let Par := ;> Par; denote the set of all

partitions. So for example,
Pars = {(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1, 1) }.

One can show that dim(Ag) = | Par, |, so the bases for Ag are indexed by parti-
tions. The first basis we would like to discuss is the elementary symmetric function

basis, also known as the e-basis. For each m € P, define

em(Xx) = Z Ty Tiy Ty,

11 <t <<l

So for example e1(x) = 21 + 22 + 3+ -+ and ey(X) = x129 + 123 + X223+ -+ . We

also define ey(x) := 1. Then for any partition A = (A, Ay, -+, Ax) F n, we can define

ex(x) = ey, (X)er, (x) - - ey, (x).
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Then {ex(x) | A € Par,} form a Q-basis for Af and so {ex(x) | A € Par} form a
Q-basis for Ag. In fact, e;(x), e2(x),- - are algebraically independent and generate
Ag as a Q-algebra, so A = Qle;(x), ea(x), - - ].

The other basis we will use most often in this thesis is the power sum symmetric

function basis, also known as the p-basis. For each m € P, define

pm(x) =Y.

i>1

For example p;(x) = 21 + T2 + 13 + -+ and py(x) = 22 + 22 + 23 + - - - . We define

po(x) := 1. Then for any partition A = (Ay, Ao, -+, A\x) F n, we define

Pa(X) = pa, (X)pa, (%) -+ - Pa, (%)

As in the case of the elementary basis, {px(x) | A € Par, } form a Q-basis for A and
so {pa(x) | A € Par} form a Q-basis for Ag. In fact, pi(x), pa(x), - - - are algebraically
independent and generate Ag as a Q-algebra, so A = Q[p;(x), pa(x), - -]

The last basis we would like to define is the complete homogeneous symmetric

function basis, also known as the h-basis. For each m € P, define

hm(X) = Z LiyLijy " Tj,, -

il SiQS'“SinL

For example hy(x) = z1 + 2o + 23+ -+ and hy(x) = 22 + 235 + 2129 + - - - . We define

ho(x) := 1. Then for any partition A = (A1, Ag, -+, A\x) F n, we define

ha(x) = hy, (X)hy, (X) - - by (X).
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As in the case of the previous two bases, {hx(x) | A € Par, } form a Q-basis for Aj and
so {hx(x) | A € Par} form a Q-basis for Ag. In fact, hy(x), ha(x), - - - are algebraically
independent and generate Ag as a Q-algebra, so A = Q[hy(x), ho(x), - - ].

One important symmetric function basis that we do not define here but may refer-
ence on occasion is the Schur basis. The Schur basis is arguably the most interesting
and useful of the symmetric function bases; however, we do not use this basis in our
work, and as Schur functions are a bit more difficult to define than the three bases
described here, we will omit the definition. More information on Schur functions can
be found in [60, Chapter 7].

Throughout this thesis, we use w to denote the usual involution on Ag defined by
why(x) = ex(x).

It can be shown that for any partition A - n, we have that wpy(x) = (—1)""WMp,(x).

For any basis, b = {by | A F n}, of Af, we say that a symmetric function,
f(x) € Ag is b-positive if the expansion of the symmetric function in terms of the
by basis has nonnegative coefficients. It is a well-known fact that for any symmetric
function f(x) € Ag, if f(x) is h-positive, then it is also p-positive. In this thesis,
we will use the immediate corollary that for any symmetric function f(x) € A%, if
f(x) is e-positive, then wf(x) is p-positive. We also reference the fact that if f(x) is

e-positive, then f(x) is also Schur-positive.

3.2 Chromatic symmetric functions

As mentioned previously, Stanley defined a symmetric function refinement of the
chromatic polynomial called the chromatic symmetric function of a graph. We will

restate the definition here for convenience.
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Definition 3.2.1 (Stanley [58]). For any graph G = (V, E) let C(G) denote the set

of proper colorings of GG. The chromatic symmetric function of G is defined as

where X, = [l ey Tr(v)-

Notice that permuting the variables of X(x) is equivalent to permuting the colors
(which are positive integers); however, this simply gives us a different proper coloring
of G, so it does not change the expansion. Hence X (x) is a symmetric function. In
fact, if G has n vertices, then X¢(x) is homogeneous of degree n, so Xg(x) € Ag.

For a symmetric function f(x) € Ag and for k € P, we define f(1*) as the value
obtained from setting z; = 1 for i < k and z; = 0 for i > k in f(x). Then Xg(1%) is
the number of colorings of G that use only the colors in [k], hence X (x) = xg(k),

where x¢(k) is the chromatic polynomial of G evaluated at k.

O—0—0

As an example, let us calculate the chromatic symmetric function of the path
graph, P3, as shown above. There are 3! = 6 possible ways to color P; with 3
different colors and 2 possible ways to color P; with two different colors (by putting

one color on the outer two vertices and the other color on the middle vertex). Hence

Xp,(x) =6 > zmwjaop+ Y (xfa; + 2;27) (3.1)
i<j<k 1<j
= e91(x) + 3e3(x) (3.2)

Stanley proved the following p-basis expansion for the chromatic symmetric func-

tion of any graph.
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Theorem 3.2.2 (Stanley [58, Theorem 2.6]). Let G be any graph and let Lg denote

the bond lattice of G. Then

XG’(X) = Z M(OJW)ptype(ﬂ)(X>7

wE€ELg

where (0, ) is the Mobius function of L and type(r) is the partition formed by

ordering the sizes of the blocks of m in decreasing order.

It is clear that p,(1%) = k for any n, so specializing this result gives the result
of Whitney for chromatic polynomials (see Theorem 2.3.1). Now let us note two
useful facts. First the Mobius function of L alternates in sign, i.e., for all 7 € Lg,
we have (—1)""I"14(0, ) is always positive, where n is the number of vertices of G
and |7| is the number of blocks of 7. As we mentioned earlier for A - n, we have

wpa(x) = (—=1)""Wp, (x). Combining these two facts, we get the following corollary.

Corollary 3.2.3 (Stanley [58, Corollary 2.7]). For any (simple) graph G, we have

that wX(x) is p-positive. In fact

wXq(x) = D> [0, 7) |prype(m) (%).

w€Lg

The natural question to ask is whether X¢(x) has positive coefficients in other
symmetric function bases. Unfortunately, that is not always the case. For the claw

graph, K31, we have that Xg, (x) = e4(X) + begi(X) — 2e99(X) + €911(X).

K31

Then one could ask if there is a class of graphs with e-positive chromatic symmetric

functions. The most well-known conjecture involving chromatic symmetric functions
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of graphs is the Stanley-Stembridge e-positivity conjecture. First let us say that a
poset is (a+b)-free if it has no induced subposet that is the disjoint union of a chain
with a elements and a chain b elements. The incomparability graph of a poset P,
denoted Inc(P), is the graph with the elements of P as vertices and edges between

incomparable elements of P.

Conjecture 3.2.4 (Stanley-Stembridge [66] [58]). Let P be a (3+1)-free poset. Then

Xine(p) (%) 45 e-positive.

A weaker result that the chromatic symmetric functions of incomparability graphs
of (3+1)-free posets are Schur-positive follows from the work of Haiman [39]. Gasharov
[29] gave a combinatorial interpretation of the coefficients in the Schur basis in terms
of a combinatorial object called P-tableau.

The simplest connected graph that is the incomparability graph of a (3 4 1)-free
poset is the path graph, P,. Recall that we define P, = ([n], F) to be the graph on
[n] with edge set E = {{i,i+ 1} | i € [n — 1]}. Stanley gives a nice e-basis expansion

of the path, shown below.

Proposition 3.2.5 (Stanley [58, Proposition 5.3]). Let P, be the path graph. Then

> e (x)2"

%Xpn (x)2" = - ;(Z e (3.3)

Consequently, Xp, (x) is e-positive for all n € N.

Stanley also defines a class of graphs, which he names circular indifference graphs,
that seem to be e-positive. The simplest connected circular indifference graph that is
not the incomparability graph of a poset is the cycle C,,. For n > 2, let C,, = ([n], E)
be the graph with edge set E' = {{i,i+ 1} | i € [n — 1]} U {{1,n}}. Stanley proves

the following e-basis generating function formula for X¢ (x,t).
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Proposition 3.2.6 (Stanley [58, Proposition 5.4]). Let C,, be the cycle graph. Then

> (i — 1)ei(x)z’

;ch (x)2" = 12: S0 D) (3.4)

i>2

Consequently Xc¢, (X) is e-positive for all n € P with n > 2.

Since their introduction, chromatic symmetric functions have been extensively
studied. Some of these studies include [35], [61], [29], [30], [14], [13], [45], [40], [70],
46), [31], [47], [18].



Chapter 4

Chromatic quasisymmetric
functions of labeled graphs

In 2012 Shareshian and Wachs introduced a quasisymmetric generalization of the
chromatic symmetric function for labeled graphs. They did so by introducing an
extra variable to record the number of ascents of each proper coloring. Before we give
the formal definition of chromatic quasisymmetric functions, let us discuss some of

the basic theory of quasisymmetric functions.
4.1 Quasisymmetric functions

The main work of this thesis involves quasisymmetric functions, as one may suspect
by the title. As with symmetric functions, the theory of quasisymmetric functions
is quite rich; however, we will address only the basic definitions and results needed
for our work. More information on quasisymmetric functions can be found in [60,
Chapter 7].

A quasisymmetric function f(x) over a commutative ring R is a formal power series
in infinitely many variables, which we denote x = 1, x5, x3,..., with coefficients in

R so that for positive integers a1, as, ..., ag,i1,%2,...,%9 € N with i1 < iy < -+ < iy,

Ak
Tk

we have that the coefficient of zf'x}?---a{* in f(x) is the same as the coefficient
of 2{*x5? -+ - a}* in f(x). In other words, f(x) is invariant under shifting the indices

of the variables. Notice that all symmetric functions are quasisymmetric functions,
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but not all quasisymmetric functions are symmetric functions. For example f(x) =
Dicj<k zir;ry is a quasisymmetric function but not a symmetric function.

Let QSymg denote the Q-vector space of quasisymmetric functions, and let QSymy
denote the Q-vector space of homogeneous quasisymmetric functions of degree n.
Since the product of two quasisymmetric functions is quasisymmetric, we see that

QSymyg, is actually a graded algebra with

QSymg = QSym?Q & QSym}@ & QSym?Q G-

Before we describe a few bases of QSymg, let us define the notion of a composition.
For n € P, we define a composition of n to be an infinite sequence o = (aq, az, ... )
where each «; € N, there exists some k € P such that o; > 0 for ¢« < k and a; = 0 for
1 > k and such that }_; a; = n. For notational convenience we do not write the trailing
zeros, so for example the composition (4,1,6,2,0,0,...) of 13 can be written as
(4,1,6,2). Compositions are simply partitions where the parts need not be decreasing.
Let Comp(n) denote the set of compositions of n and define Comp(0) = {#}. We can

also let Comp = U,>o Comp(n). As an example, we have that
Comp(4) ={(4),(3,1),(1,3),(2,2),(2,1,1),(1,2,1),(1,1,2), (1,1,1,1)}.

There is a natural correspondence between Comp(n) and subsets of [n — 1] for

n € P. (Note that we will let [0] = 0.) Let n € P and (a3, aq,...,a;) € Comp(n).

This corresponds to the subset {aq, 01 + ag, ..., a1 + ag + -+ + a1} of [n — 1].
Similarly for a subset {aj,as,...,an} C [n— 1] with a1 < as < -+ < @, We can
associate the composition (ay,as — ay,...,n — a,,) of n. One can easily see that this
defines a bijection. From this we see that | Comp(n)| = 2"~!. It turns out that

dim(QSymg) = 271 for each n € PP, so our bases for QSymg will be indexed by

either compositions of n or subsets of n — 1.
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The most natural basis for QSymyg, is the monomial quasisymmetric basis. Let

n>1and a = (aj,as,...,a;) € Comp(n). Then

My(x)= > aPaf..af

172 1k
11 <2< <1l

Let My(x) = 1. If we let 1" denote the composition of n that contains all 1’s, we see
that M;.(x) = e,(x). Additionally, we have that M,)(x) = p,(x). On the other hand,
M1y = Yicj iz, is not a symmetric function. The set {M,(x) | & € Comp(n)}
forms a Q-basis for QSymg), and hence {M,(x) | a € Comp} forms a Q-basis for
QSymy .

The basis we will focus on in this thesis is Gessel’s fundamental quasisymmetric

function basis, also known as the F-basis. For n € P and for each S C [n — 1], we

define!

Fos(x) = > LiyTiy * T,y
1120220 Zin
i;>i,4 if jes

Define Fiyg(x) = 1. For example F, [,_1)(x) = en(x), and F), g(x) = h,(x). Again the
set {F,s5(x) | S C [n— 1]} forms a Q-basis for QSymg and hence {F, s(x) | n €
N, S C [n — 1]} forms a Q-basis for QSymg . Note that the involution w on Ag can

be extended to QSymg and can be described by wk), 5(x) = F, jn-1\5(X).

4.2 Chromatic quasisymmetric functions of labeled
graphs

Through their work on Eulerian quasisymmetric functions [54], Shareshian and Wachs

discovered a t-analog of Stanley’s e-basis expansion of the chromatic symmetric func-

!'Note that our definition is different from the standard definition of Gessel’s fundamental ba-
sis. Our F), 5(x) is equal to L,(g)(x) defined in [60, Chapter 7], where a(S) is the reverse of the
composition of n associated to S.
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tion of the path graph. This led them to introduce a quasisymmetric refinement of
Stanley’s chromatic symmetric function called the chromatic quasisymmetric function
of a graph. Let G = ([n], E) be a graph, and let s : [n] — P be a proper coloring
of G. We say that an edge {i,j} of G is an ascent of k if i < j and k(i) < K(j).
Let asc(k) denote the number of ascents of x. Then the chromatic quasisymmetric

function of G is given by

Xax,t)= > ey,
reC(G)

Henceforth when we use the term "labeled graph," we are referring to a graph with
vertex set [n]. Note that the chromatic quasisymmetric function of a labeled graph
depends on the labeling chosen and not just on the isomorphism class of the graph.
We can easily see that setting ¢ = 1 gives Stanley’s chromatic symmetric function.

In the Shareshian-Wachs chromatic quasisymmetric function of a labeled graph,
we can see that the coefficient of #/ for each j € N is a quasisymmetric function, so
Xa(x,t) € QSymglt], where QSymg|t] is the ring of polynomials in ¢ whose coeffi-
cients are in QSymg . Note that QSymg|[t] is equivalent to QSymgy, i.e., the ring of
quasisymmetric functions with coefficients in the ring Q[¢] of polynomials in ¢ with
coefficients in Q. In this thesis, we tend to view these chromatic quasisymmetric
functions as elements of QSymg|t], but we may sometimes view them as elements of
QSymg; when convenient.

The coefficients of the chromatic quasisymmetric function of a graph do not nec-
essarily have to be symmetric functions. The chromatic quasisymmetric function of
the labeled graph, P3;, which is a path on 3 vertices labeled 1 — 2 — 3, is symmetric?.
In fact,

Xp,(x,1) = e3(x) + t(eg(x) + e3(x)) + tes(x).

ZNote that many times the term "symmetric” is interchangeable with the term "palindromic”;
however, in this thesis we will use the term "symmetric” to imply that the coefficients of a function
f(x) € QSymg|t] are symmetric functions, i.e., that f(x) € Ag[t].



34

(Compare this with the chromatic symmetric function of P given in (3.2).) On the
other hand, the chromatic quasisymmetric function of the graph G given by 2—1—3

is not symmetric (see [52, Example 3.2]), since

Xg(x,t) = (F30(x) 4 F32)(x)) + 2tF39(x) + t*(F39(x) + F3 (13(x)).

Then one might ask if there is a nice class of graphs with symmetric chromatic
quasisymmetric functions. To answer this question, let us define the class of natural
unit interval graphs. Note that there are a number of equivalent ways to define these
graphs, so we choose one that is most convenient for us. See Appendix A for more

information.

Definition 4.2.1. Let I be a finite set of closed unit intervals on the real line. We can
write the intervals of I in the form [a;,a; + 1] for 1 <i <n with a1 < ay < -+ < ay,.
Let P be the poset on [n] such that ¢ <p j if a; + 1 < a;. Posets that can be formed
this way are called natural unit interval orders.

Natural unit interval graphs are the incomparability graphs of natural unit interval

orders.

Shareshian and Wachs showed that if G is a natural unit interval graph, then
Xg(x,t) is symmetric. Notice that in our earlier example, 1 — 2 — 3 is a natural unit
interval graph, but 2 — 1 — 3 is not.

Shareshian and Wachs used the theory of P-partitions to obtain a formula for
X¢(x,t) in terms of Gessel’s fundamental quasisymmetric basis when G is the incom-
parability graph of a poset that uses P-descents. We discuss this in detail in Section
5.2. Note that since natural unit interval graphs are incomparability graphs of posets,
this formula gives their F-basis expansion.

Using this F-basis expansion, Athanasiadis [4] was able to prove a conjecture of

Shareshian and Wachs for the p-basis expansion of the chromatic quasisymmetric
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function of natural unit interval graphs. This is discussed in detail in Section 5.3.
One of the most well-known conjectures resulting from their work is their e-positivity

conjecture.

Conjecture 4.2.2 (Shareshian-Wachs [52][53]). Let G = ([n], E) be a natural unit in-
terval graph. Then the palindromic® polynomial Xq(x,t) is e-positive and e-unimodal.

In other words, if Xg(x,t) = Z‘j]i'o a;(x)t?, then a;(x) is e-positive for all j and

|E

aj+1(x) — a;(x) is e-positive for all j < |271.

The class of unit interval graphs is equivalent to the class of incomparability graphs
of (3+ 1) and (2 + 2)-free posets, so the class of graphs for the Shareshian-Wachs
conjecture is smaller than the class of graphs for the Stanley-Stembridge conjecture.
However, Guay-Pacquet [35] proved that if the Stanley-Stembridge conjecture holds
for (34 1) and (24 2)-free posets, then it holds for all (3 + 1)-free posets. Hence, the
Shareshian-Wachs conjecture implies the Stanley-Stembridge conjecture.

Shareshian and Wachs [52] proved the weaker result that the chromatic quasisym-
metric functions of natural unit interval graphs are Schur-positive. They give a com-
binatorial interpretation of the coefficients in the Schur basis expansion using the P-
tableau described by Gasharov [29], and their result reduces to the result of Gasharov
in the t =1 case.

Shareshian and Wachs also obtained an e-basis generating function formula for
Xp,(x,t), which is a nice t-analog of the formula of Stanley’s (see (3.3)) in the case

of the unlabeled path. They showed the following:

Theorem 4.2.3 (Shareshian-Wachs [52][54]). Let P, = ([n], E) be the labeled path

graph. Then A
> ei(x)z
Py(x,t)2" = = y (4.1)
nZZO 1— Z[l — 1)se;(x)2*
i>2

3Shareshian and Wachs established that if G' is a natural unit interval graph, Xg(x,t) is a
palindromic polynomial in ¢; in other words, X¢(x,t) = E‘ilo ai(x)t" so that a;(x) = ag)_;(x) for

all 0 <¢ <|E].
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From this, one can obtain the corollary that Xp (x,t) is e-positive and e-unimodal.

Much work has been done on chromatic quasisymmetric functions in the past few
years. There is an important connection between chromatic quasisymmetric functions
of natural unit interval graphs and Hessenberg varieties, which was conjectured by
Shareshian and Wachs and was proven by Brosnan and Chow [10] and later by Guay-
Paquet [36]. This connection to Hessenberg varieties gives a possible approach to
proving Conjecture 4.2.2. Clearman, Hyatt, Shelton, and Skandera [17] found an
algebraic interpretation of chromatic quasisymmetric functions of natural unit interval
graphs in terms of characters of type A Hecke algebras evaluated at Kazhdan-Lusztig
basis elements. Recently, Haglund and Wilson [38] discovered a connection between

chromatic quasisymmetric functions and Macdonald polynomials.



Chapter 5

Chromatic quasisymmetric
functions of directed graphs

The definition of chromatic quasisymmetric functions of labeled graphs has a
natural extension to directed graphs, which we explore in this chapter. In Section
5.1, we give some basic results on chromatic quasisymmetric functions of digraphs
as well as a few examples. In Section 5.2 we present our F-basis expansion for
the chromatic quasisymmetric function of all digraphs, as well as a specialization of
this expansion that refines a result of Chung and Graham. In Section 5.3 we show
that for any digraph @ such that Xz(x,t) is symmetric, we have that wXz(x,1)
is p-positive and we give a combinatorial interpretation of the coefficients. For the
directed cycle C’_:L, we give a factorization of the coefficients of wXz»(x,t) in the
p-basis involving the Eulerian polynomials. In Section 5.4 we define the class of
circular indifference digraphs and show that these digraphs have symmetric chromatic
quasisymmetric functions. Lastly in Section 5.5 we present a generalized e-positivity
conjecture for circular indifference digraphs and provide some support. We prove
an e-basis expansion for Xz (x,t) showing that it is e-positive. We also provide a

combinatorial interpretation for the coefficients of Xp, (x,t) and Xz»(x,t) in the e-

37
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basis involving acyclic orientations. Note that most of the results of this chapter can

be found in the author’s papers [21, 20].
5.1 Basic properties

We extend the definition of chromatic quasisymmetric function from labeled graphs to
directed graphs, but before we discuss this further, let us fix some notation involving
directed graphs.

A directed graph (or digraph) G = (V, E) is a set of vertices V together with a set £
of ordered pairs of vertices, called edges. The pair (u,v) € E denotes an edge directed
from u to v. We say a directed graph 8 = (V, E) is simple if there are no loops, i.e.,
(v,v) ¢ E for all v € V, and for any distinct vertices u,v € V there can be at most
one edge directed from u to v. Note that we do allow two edges between u and v, but
the edges must have opposite orientations. For notational convenience, we distinguish
an undirected graph, G, from a directed graph, 8, with an arrow. Throughout this
paper, we will refer to the underlying undirected graph of a digraph 8 by which we
mean the simple undirected graph obtained by removing the orientation from the
edges of 8 and combining any double edges into single edges. By a proper coloring

of a digraph, we mean a proper coloring of the underlying undirected graph.

Definition 5.1.1. Let 8 be a directed graph and let 0(8) be the set of proper
colorings of 8 For a proper coloring k € C (8), we define the number of ascents of
as asc(k) = |{(,7) € E| k(1) < k(j)}|, i-e., the number of ascents of x is the number
of edges of C'_:L directed from a smaller color to a bigger color. Then the chromatic

quasisymmetric function of a directed graph 8 is

Xﬁ(X,t): Z tasc(n)xm
keC(T)

where x,; = [[,cy Tk-
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We see that setting t = 1 in Xz (x, 1) gives Stanley’s chromatic symmetric function
Xg(x) of the underlying undirected graph G of 8 If we take a labeled graph G =
([n], E), we can create a digraph 8 = ([n], E) by orienting each edge from smaller

label to larger label. Below we repeat our earlier example of this process.

9‘0 9‘0

Then we see that the Shareshian-Wachs definition of the chromatic quasisymmetric
function of G is the same as our definition of the chromatic quasisymmetric function
of 8 Every acyclic digraph can be obtained in this manner, so the Shareshian-Wachs
definition is the same as our definition when we restrict ourselves to acyclic digraphs.

Both of the following propositions follow easily from the definition of the chromatic

quasisymmetric function of a digraph.

Proposition 5.1.2. For any digraph G = (V, E) with |V| = n, we have Xg(x,t) €

QSymgt].

Proposition 5.1.3. Let 8 and ﬁ be digraphs on disjoint vertex sets and let G + ﬁ
denote the graph formed by the disjoint union of 8 and ﬁ Then Xm(x, t) =
Xa(x, t)Xﬁ(x,t).

Now let us look at a few examples of digraphs and their corresponding chromatic

quasisymmetric functions.

Example 5.1.4. For any digraph, 8, on whose underlying undirected graph is the
complete graph, K, it is easy to see that X4 (x,t) = p(t)e,(x), where p(t) = 3, ¢
and k varies over all proper colorings of 8 using only the colors in [n|. From this
we can see that Xg(x,1) is e-positive. Specifically if G is acyclic, then p(t) = [n]!,
where [n]; =1+t +---+t"' and [n]! = [n][n — 1], -+ [1]; (see [52, Example 2.4]).

By Proposition 5.5.6 if 8 contains all pairs of double edges, p(t) = nlt®.
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%
Example 5.1.5. Let P, = (V, E) denote the directed path on n vertices with vertex
set V = {vy,v9,--,v,} and edge set £ = {(v;,vi41) | 1 < i < n}. From the work
of Shareshian and Wachs [54, Theorem 7.2](see Theorem 4.2.3 in this thesis) on the

labeled path graph, we know

Z ek(x)zk

X (x,1)2" = = : (5.1)
nz>:0 Pn 1—-t Z - 1 tek 2
k>2

which refines Stanley’s formula for the chromatic symmetric function of the undirected
path, P, [58, Proposition 5.3| (see Proposition 3.2.5 in this thesis). From this formula,

we can see that Xz (x, t) is symmetric, e-positive, and e-unimodal [52, Corollary C.5].

%
Example 5.1.6. Let us define the directed cycle on n vertices, denoted C,, = (V, E),
as the digraph with vertex set V' = {vy,v9, -+ ,v,} and edge set E = {(v;,v;41) | 1 <

i <n}U{(vn,v1)}. In Theorem 5.5.2, we show that

> k[l — 1)ser(x)zF

k>2
X=(x,t)z : (5.2)
nz>:2 Cn 1—tz — 1)er(x)2F
k>2

and hence XC—>(X, t) is symmetric. In fact, in Corollary 5.5.4, we show that the co-
efficients are e-positive and e-unimodal. Equation (5.2) is a t-analog of Stanley’s
formula for the chromatic symmetric function of the undirected cycle, C,, [58, Propo-

sition 5.4](see Proposition 3.2.6 in this thesis).

Unfortunately, not every orientation of a given graph has a symmetric chromatic
quasisymmetric function. The smallest example of this is the path on 3 vertices. The

orientations of the path are given by
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There is only one orientation (ﬁ;) with a symmetric chromatic quasisymmetric func-
tion. The other two orientations (ITlg} and ITQI) do not have symmetric chromatic
quasisymmetric functions. See Example 5.2.3.

On the other hand, there are also graphs that do not admit any orientation whose
associated chromatic quasisymmetric function is symmetric. The graph K3, is given

by

K31

None of the orientations of K3; have chromatic quasisymmetric functions that are
symmetric.

Let p : QSymg — QSymg be the involution defined on the monomial quasisym-
metric function basis, M,, by p(M,) = My for each composition «, where o
is the reverse of a, i.e., if @ = (o, q,..., k) then " = (ag, ag_1,...,0a1). Note
that every symmetric function is fixed by p. We can extend p to QSymy[t] by linear-
ity. Then the next propositions follow easily from [52, Proposition 2.6, Corollary 2.7,
Corollary 2.8]. Note in [52], Shareshian and Wachs prove these statements for labeled

graphs; however, the same proof works for digraphs.

Proposition 5.1.7. Let 8 = (V, E) be a digraph on n vertices. Then

p(Xé(th)): Z tdes(ﬁ)xm

rer(G)

where des(k) is the number of directed edges (u,v) € E such that k(u) > k(v).
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Hence if Xg(x,t) is symmetric, then

Xaxt)= ), desx, .
ker(Q)

Proposition 5.1.8. For a digraph 8 = (V,E), if Xg(x,t) is symmetric, then

Xa (x,t) is palindromic in t with center of symmetry @

5.2 Expansion in Gessel’s fundamental quasisym-
metric function basis

Shareshian and Wachs gave an expansion for wXg(x,t) in terms of Gessel’s funda-
mental quasisymmetric basis when G is the incomparability graph of a poset P. The
t = 1 case of their formula for chromatic symmetric functions of incomparability
graphs was proved by Chow [13, Corollary 2].

To describe their expansion, we first need a couple of definitions. Recall that &,
is the group of permutations of [n]. Let P be a poset on [n] and let 0 € &,,. We can

define the set of P-descents of o as
DESP(O'> = {Z | g; >p Oi+1}~

Note that if P is the total order on [n], then P-descents are just the usual descents

of a permutation, as defined in Section 2.1.
Now let G = ([n], E) be a labeled graph and let ¢ € &,,. We can define the

number of G-inversions of o as

invg(o) = {{oi,0;} € E|i<jand o, > 0;}|



43

If G is the complete graph on [n], i.e., the graph with all possible edges, then G-

inversions are the usual inversions of a permutation, as defined in Section 2.1.

Theorem 5.2.1 (Shareshian-Wachs [52, Theorem 3.1], Chow (t=1) [13, Corollary
2]). Let P be a poset on [n] and let G = (|n], E) be the incomparability graph of P.

Then

wX(x,t) = 3 " F, ps, () (X). (5.3)

ce6,

Consequently wXq(x,t) is F-positive.

In this section, we present an F-basis expansion of ng(x, t) for all digraphs,
which shows that wXg(x,t) is F-positive for all digraphs. In general our formula
does not reduce to the formula of Shareshian and Wachs, so this gives another combi-
natorial description of the coefficients in the F-expansion for incomparability graphs
of posets.

We may assume without loss of generality that the vertex set of a digraph 8 is
[n]. The labeling chosen does not affect the chromatic quasisymmetric function of 8,
as it would for the chromatic quasisymmetric function of a labeled graph defined by
Shareshian and Wachs.

Let G = ([n], E) be a digraph and let ¢ € &,,. Define a G -inversion of o as a
directed edge (u,v) of @ such that o~ Yu) > o7 (v), i.e., v precedes u in o. Notice
that a 8—inversion does not need to be a usual inversion; if v < wu, then it will not

be. Let invg (o) be the number of G-inversions of o.

(D—(2)
O, ©

@ (9
O<—®)
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For example, let 8 be 5}’8, the directed cycle on [8] as shown above, and let
o = 25413786 € Gs. The a—inversions of o are (1,2), (3,4), (4,5), and (6,7), so
invg (o) = 4.

The notion of a 8—inversion of a permutation is an easy modification of the idea
of a G-inversion of a permutation defined by Shareshian and Wachs. On the other
hand since we do not generally work with incomparability graphs of posets, modifying
the idea of a P-descent of a permutation is a bit trickier. We do so by defining the
G-descents of a permutation for any labeled graph G = ([n], E).

Now let G = ([n], E) be an undirected graph and let ¢ = oy05---0, € &,.
For each = € [n], define the (G,0)-rank of x, denoted rank ) (x), as the length of

the longest subword o; 0y, - -- 0y, of o such that o;, = x and for each 1 < j < k,

k

{0i,,0i,..,} € E. We say o has a G-descent at i with 1 < ¢ < n if either of the

following conditions holds:
o rank(gq)(0;) > rank(g)(0iq1)

o rank(gq)(0;) = rank(g,o)(0iq1) and o; > 0541.
Let DES¢ (o) be the set of G-descents of o.

For example, let G = Cg be the cycle on 8 vertices labeled with [8] in cyclic
order. In other words, Cg is the underlying undirected graph of the directed cycle
%

Cy, pictured above. Let o = 25413786 € G&g. By attaching the (G, o)-rank of

each letter as a superscript, we get 215'4212337'8362. We can see from this that

DES¢(o) = {3,5,7}.
Theorem 5.2.2. Let G = ([n], E) be a digraph. Then

WX@(XJ) = Z tinva(U)Fn,DESG(a)(X>7 (5.4)

ce6,

where F, s(x) is Gessel’s fundamental quasisymmetric function and G is the under-

lying undirected graph of 8
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Proof. The first half of this proof closely follows the proof of [52, Theorem 3.1]. The
second part of the proof is quite different. Let G be the underlying undirected graph
of 3 and let Gz be an acyclic orientation of the graph G, possibly different from the
given orientation on 8 Then define asc(G3) to be the number of edges of Gz whose
orientation matches the orientation of 8 For each acyclic orientation G, we will let
C(G3) be the set of proper colorings, x, of G such that if (7, ) is a directed edge of

Ga, then k(i) < k(j). It is clear that

Xaxt)= > grselGe) N~ x, (5.5)

Ga€AO0(G) kEC(Ga)

where AO(G) is the set of acyclic orientations of G.

From each acyclic orientation, G, we can create a poset, P;, on [n] by letting
1 <p, j if there is an edge from 7 to j in Gz and extending transitively. We define
a labeling of P; as a bijection from P; to [n]. Now we give P; a decreasing labeling
wg : P — [n], ie, if @ <p, y, then wz(x) > ws(y). Let L(Ps,wz) be the set of
linear extensions of P; with the labeling w;. For any subset S C [n — 1], define
n—S={i|n—i¢€ S} Then by the theory of P-partitions (see [60, Chapter 7| for

a reference), we have

Z Xk — Z an,DEs(g) (X), (56)

k€C(Ga) c€L(P;,ws)

where DES(¢) is the usual descent set of a permutation, i.e., DES(c) = {i € [n — 1] |
o(i) >o(i+1)}.

Let e : P; — [n] be the identity map, i.e., the map that takes each element of
P, to its original label. Then L(P;,e) is the set of linear extensions of P; with its

original labeling, e. For o € L(P;,e), let wzo denote the product of w; and ¢ in &,,.
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For 0 € G,,, we have wzo € L(P;,w;) if and only if o € L(P;,¢). So (5.6) becomes

Z Xk = Z Fn,n—DES(waU) (X)

HEC(G(I) UEL(PFzye)

Combining this with (5.5) gives us that

Xa (X, t) = Z taSC(Ga) Z Fn,nfDES(waO') (X)

GL€A0(G) o€L(Pse)

Since each 0 € &, is a linear extension of a unique acyclic orientation, Gg(), of G,

we can rewrite this as

XB(Xa t) = Z taSC(Ga(U))an”—DES(wa(wU) (X)’

oeS,,

where w;g (o) is a decreasing labeling of F(,).

For 0 € &, let ASC(0) denote the usual ascent set of a permutation, i.e.,
ASC(o) = {i € [n—1] | (i) < o(i + 1)}. Also define 0™ € &, by letting
0™¥(i) = o(n+ 1 —1) for all 4. It is not hard to see that asc(Ga()) = invg(o™") and

n — DES(wa(s)0) = ASC((wa(r)0)™"), so we have

X@(Xﬂf) = Z tinva(Um)Fn,ASC((waw)U)m)(X)'

ce6,

Then by reversing o and letting ws(») be an increasing labeling of P4, we have

that

X@(X=t> = Z tinva(g)Fn»ASC(wamU) (x).

€S,

Finally applying the involution w to both sides of the equation gives us

wXg(x,t) = Z tinva(a)Fn,DES(wa(g)a)(X)'

ce6,
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Up to this point, wg(s) has been any increasing labeling of F5(,), but now we will
make it a specific one. Note that we will refer to the original labeling of the vertices of
G as the G-labeling of the graph. For each acyclic orientation GG; and for each vertex
v, define rank;(v) as the length of the longest chain of P; from a minimal element
of P; to v. We say v is a rank; i element if rank;(v) = . To determine the labeling
Wa(s), first we label the ranksy) 0 element with the smallest G-label as 1. Then we
label the ranks) 0 element with the next smallest G-label as 2. We continue this
process until all ranks,) O elements are labeled. Then we repeat this process with
the rankg,) 1 elements and continue inductively until all elements are labeled.

Notice that for all € [n], we have rank(g ) (2) = ranks)(x) + 1. So using the
labeling ;) constructed above, if ¢ is a descent of 10,0, then o(i + 1) was labeled
before o (i) in the labeling (). Then either o (i + 1) has a smaller a(c)-rank than
o(%) or they have the same a(o)-rank and o (i) > o(i + 1). But in either case, i is also
a G-descent of 0. A similar argument shows that if 7 is a G-descent of o, then 7 is also

a descent of w(,)0. Hence DES(w;(50) = DES¢(0), and the theorem is proven. [

Note that our formula requires that @ be labeled with [n]. Each labeling of the
vertices of 8 gives a distinct combinatorial description of the coefficients in the F-

basis.

= — —
Example 5.2.3. Let us give labelings to the digraphs P3, Ki5, and K5, mentioned

in Section 5.1 as follows:

@ >@ >®
—_—
P3
D @ >3 @ >2e 3
— —_—
K12 K21

To expand the chromatic quasisymmetric function of each of these in the F-basis,

we need to calculate DESg (o) and invg (o) for each o € &3. Since DESg(o) only
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_>
depends on the underlying undirected graph, this will be the same for each of P;,

— —
K15, and K5;. The calculations are shown in the chart below.

o | DES¢(o) | invg (o) | invi (o) | inve— (o)
123 0 0 1 1
132 0 1 2 0
213 0 1 0 2
231 | {2} 1 0 2
312 | {1} 1 2 0
321 0 2 1 1

Using this, we have that

(,UXF;(X, t) = (Fgﬂ)(X)) + t(2F37Q)(X) + F37{1}(X> + F37{2} (X)) + t2<F37@(X)) (57)
h3 (X) + t(hgl (X) + h3 (X)) + tzhg(X) (58)

WX (%,1) = (Fp(x) + Fa (%)) +H(2F50(x)) + £ (Fy9(x) + F3,03(x),  (5.9)
WX (%,1) = (Fap(x) + Fa 1y (%)) + H(2F5p(x)) + 2 (F3p(%) + Fy q2(x)). (5.10)

From these expansions, one can see that Xz (x,t) is symmetric and palindromic,
3

but X (x,t) and X (x,1) are neither.

Example 5.2.4. Now let us look at an example of a the digraph P; with 3 differ-

ent labelings, shown below, and calculate the F-basis expansion of wXp,(x,t) in 3

different ways.

——@——0
—_—
P3
>D——>@ ————0
—_ —_
G,



The G-descents and 8—inversions for each of these graphs is shown in the chart

below
o | DESp,(0) | DESg,(0) | DESg,(0) | invi(0) | invg (o) | invg (o)
123 0 0 0 0 ! 1
132 0 {2} 0 1 1 2
213 0 0 {1} 1 2 1
231 | {2} 0 0 1 1 0
312 | {1} 0 0 1 0 1
321 0 {1} {2} 2 1 1

In all three cases we get that
wXp(x,t) = (Fag(x)) + (2F5(x) + F3 (1)(%) + Fs q2y(x)) + ¢*(F3 (x)).

By specializing (5.4), we obtain a t-analog of a result of Chung and Graham [15,
Theorem 2| on the chromatic polynomial of a graph, which we became aware of after
obtaining our results. Let us define the t-analog of the chromatic polynomial of a

digraph 8 as
tasc(m)

I

>

HEnm(a)

X (m7 t) -

where ﬁm(a) is the set of proper colorings of 8 using only colors in [m]. From the

definition, we can see that for any m € P,

xa(m,t) = Xg(1™,1).

Also, if we set t = 1, we see that

Xa(m, 1) = xa(m),
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where G is the underlying undirected graph of 8 and xg(m) is the chromatic poly-
nomial.

For k,l € P and a digraph 8 = ([n], E) with underlying undirected graph, G, let
6z (k,1) denote the number of permutations o € &,, such that | DESg(o)| = k and

invg (o) = I.

Corollary 5.2.5 (t=1 case [15, Theorem 2]). Let G = ([n], E) be a digraph on n

vertices. Then

xg(m,t) =3 dg(k, D)t

k>0
Consequently', this is a polynomial in m whose coefficients are palindromic polyno-

mials in t.

Proof. We know that for any S C [n— 1] with |S| = k, we have F,, g(1™) = (m+n-1=F)
(see [60, Section 7.19]). Applying w to both sides of (5.4) gives us that Xz(x,t) =

Z Fyy [n—1\ DES& (o) (x)tinv@(”). Then we have
oeS,

xga(m,t) = Xg(1™,1)

= Y Fupn-1)\ DESa (o) (172

o€,

- Z (m+|DESG(U)\)tinVEE(U)
o€,

= > 0k, D)(™HR)E

k>0

! Athanasiadis [3] observed this when G = Inc(P).
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Example 5.2.6. Let us compute xz (m,t) using our calculations of DESp,(c) and

IHVH< ) from Example 5.2.3.

Xp(m, 1) = <z>+2t<rg>+2t< >+t2( )
50

3 2

:%(1+4t—|—t2) 2(1+2t—|—t2 (1+1t+ )

We see that the coefficient of each power of m is a palindromic polynomial in ¢. If we

set t =1, we get

Xg(m,1) = m? —2m* +m

= m(m - 1)2a

which is the chromatic polynomial xp,(m) of Ps.

5.3 Expansion in the power sum symmetric func-
tion basis

In [58], Stanley shows that for any graph G, the symmetric function wXg(x) is
p-positive (see Theorem 3.2.2). Since not every graph has a symmetric chromatic
quasisymmetric function, here we restrict ourselves to graphs that do. In this sec-
tion, we establish p-positivity for all symmetric wXg(x,?) by deriving a p-expansion
formula. In Section 5.4, we introduce a class of digraphs with symmetric chromatic
quasisymmetric functions, which includes natural unit interval graphs as well as the
directed cycle, thereby extending the symmetry result of Shareshian and Wachs. Our
p-expansion formula does not reduce to the Shareshian-Wachs-Athanasiadis formula
[52] [4] for natural unit interval graphs mentioned in the introduction. It reduces to

a new formula.
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Before we discuss our p-basis expansion, we would like to review the p-basis expan-
sion of Athanasiadis, Shareshian, and Wachs. In addition, we would like to call atten-
tion to an interesting and useful result of Adin and Roichman [1] that Athanasiadis
[4] used to prove the p-basis expansion for chromatic quasisymmetric functions of

natural unit interval graphs.

5.3.1 From the fundamental quasisymmetric function basis

to the power sum symmetric function basis

Let A Fn with A = (A1, A\, ..., A;). Define s; = A\ + Ao+ ...+ A, for 1 < i <[ and
so = 0. A set A C [n— 1] is A-unimodal if for 0 < i < [, the intersection of A with

each set of the form {s; + 1,..., 8,41 — 1} is either the empty set or a prefix of the
latter. Additionally, define S(\) = {s1, 2, -+, -1}

Example 5.3.1. Let A = (5,3,3,2,1) - 14. Then S(\) = {5,8,11,13}. Let A be
the set A = {1,2,3,6,11}. Let us check the following intersections to see if A is
A-unimodal:

ANnd1,2,3,4} ={1,2,3},

An{6,7} = {6},
An{9,10} =0,
An{12} = 0.

We see that A is A-unimodal, because {1, 2,3} is a prefix of {1,2,3,4} and {6} is a
prefix of {7}. On the other hand if we let B = {1,2,4,6,11} then B is not A-unimodal,
because BN {1,2,3,4} = {1,2,4} is not a prefix of {1,2,3,4}.

For each A - n, let
zy = [[ma(AW)lim™ W,
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where m;(\) is the multiplicity of 7 in A for each 4, i.e., the number of parts of A equal
to i. The following result is implicit in the work of Adin and Roichman [1, Theorem

3.6], and stated explicitly and proved by Athanasiadis.

Proposition 5.3.2 (Athansiadis [4, Proposition 3.2]). Let X (x) € A% be a homoge-
neous symmetric function of degree n over a commutative Q-algebra R and suppose

that

X(x) = Z ask, s(x)

SCln—1]

for some as € R. Then

X(x) =3z 'max) Y (=1)FWlag,

A SeUs

where Uy, is the set of A\-unimodal subsets of [n — 1].

Example 5.3.3. Recall from Example 5.2.3 that (,UXF;(X, t) is symmetric and
wXp (%, 1) = (14 2t + t*) Fyg(x) + 2t F3 13(x) + 2t F3 9y (x).

So we can find the p-basis expansion of wXF;(X, t) using this proposition. Let us first

calculate a few useful values for each A F 3, shown in the chart below.

A SO U, Z
(3) 0 015,12}y | ;3
2,0) | {2} | {0, {1}, {2}, {1,2}} | !
(LLY) | {12} | {0, {1}, {2}, {1,2}} | §

Then applying Proposition 5.3.2 to our F-basis expansion of w X3 (x,t) gives us
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1

WX (6,1) = 2ps([(= 1)1+ 2+ #%) + (1) (1))
+ ;p21(x)[(—1)@\{2}(1 + 2t + %) + (—1)‘{1}\{2”@) + (_1)I{2}\{2}\(t)]
+ épm(x)[(—n'@\{l’?}l(l + 2t + 1) + (—1)‘{1}\{1’2”(15) + (—1)|{2}\{1’2}‘(t)].

Simplifying this gives us
1 2 1 2 1 2
U.JXF;(X,t) = gpg(X)(l +t+1 ) + §p21(x)(1 + 2t +t ) + 6p111(x)(1 + 4t +t )

Athanasiadis used the F-basis decomposition of Shareshian and Wachs [52](see
Theorem 5.2.1 of this thesis) along with Proposition 5.3.2 to prove the p-basis expan-
sion conjecture of Shareshian and Wachs. To state this theorem, we first need a bit
of notation.

Let P be a poset on [n] and let 0 € &,,. As defined in the previous chapter,
the P-descents of ¢ are given by DESp(0) = {i € [n — 1] | 0, >p 0i41}. A non-
trivial left-to-right P-maximum of a word w = wyws - - - w, with distinct letters over
[n] is a w; with 7 > 1 such that w; >p w; for all ¢ < j. Now for any partition
A= (A1, A2, ..., Ap) F n, define Np) to be the subset of permutations o € &,, such
that when o is cut into contiguous segments aq, o, ..., q,, of sizes Ay, Ag, ..., Ay,

each «; contains no P-descents and no nontrivial left-to-right P-maxima.

Theorem 5.3.4 (Conjectured by Shareshian-Wachs [58], proved by Athanasiadis [4]).
Let P be a natural unit interval order on [n|, and let G = ([n], E) be the incompara-

bility graph of P. Then

wXg(x,t) = Z z/\_lp,\(x) Z tinvc(g),

AFn g€Np A
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where again invg(o) = |[{{0s,0;} € E | i > j,0, < 0;}|. Consequently wX¢(x,t) is

p-positive when G is a natural unit interval graph.

In the special case that G is the path graph P,, Shareshian and Wachs obtained

a nice factorization of the coefficients in the p-basis, namely

>

ey,
WX, (x.1) = 32 25 a3 Ay (1) T[T A (5.11)

AFn =1

where [()) is the length of A, i.e., the number of parts of A, and A, (t) is the Eulerian

polynomial.

5.3.2 A power sum symmetric function expansion for di-

rected graphs

Let G = ([n], E) be an undirected labeled graph and let w = wyws - - - wy be a word
with distinct letters in [n]. We say w; with 1 < j < k is a G-isolated letter of w if
there is no w; with 1 <4 < j such that {w;, w;} € E.

Now for any undirected labeled graph G = ([n], E) and any partition A - n with
A= (A1, A2, -+, \), we define Ny(G) as the set of all 0 € &,, such that when o
is divided up into contiguous segments o, s, - -+ , g of sizes A, Ao, -+, \;, each «;
has no G-isolated letters and contains no G-descents of 0. Note that the G-descents
here are determined by the entire ¢ and cannot be determined by looking at the «a;’s
individually.

Let G = Cg, the cycle on 8 vertices labeled cyclically with [8] and let o =
43587162 € Gg. Then attaching the (G, o)-rank to each letter gives 4'325%81721%6323
and hence DESq(0) = {3,5,7}. If A = (3,2,2,1), then ay = 435,00 = 87,03 =
16, a4 = 2. None of the «; contain any G-descents; however, in ag, 6 is a G-isolated

letter, so o ¢ N,(G). However if A = (3,2,1,1,1), then 0 € N,(G).
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For each A F n, let zy = [T, m;(\)!li™ W, where m;()) is the multiplicity of 4 in

for each ¢, i.e., the number of parts of A equal to 7.

Theorem 5.3.5. Let G be a digraph such that Xz (x,t) is symmetric. Then wXg(x,t)

is p-positive. In fact,

wXz(x,t) = z7'pax) Y tinva (@) (5.12)
AFn UENA(G)

where G is the underlying undirected graph of 8

We would like to point out that the proof by Athanasiadis [4, Theorem 3.1] of
Theorem 5.3.4 does not generalize to the directed graph case. He uses the F-basis
decomposition for natural unit interval graphs given by Shareshian and Wachs [52,
Theorem 3.1] (see Theorem 5.2.1 of this thesis) involving P-descents, Proposition
5.3.2, and a formula for the coefficient of Lp,(x) [52, Lemma 7.4]. Although we also
use Proposition 5.3.2, our proof involves a sign-reversing involution as well as our

F-basis decomposition given in Theorem 5.2.2.

Proof of Theorem 5.3.5. Combining Proposition 5.3.2 with our F-basis expansion
(5.4), we have that

wXz(x,t) ZZA pa(x Z (_1)\DESG(U)\S(A)ltinV8(0)7 (5.13)
An ce6,
DESG(O')EUA

where U, is the set of Ad-unimodal sets on [n — 1].

For each A F n, let us define the set

D)\(G) = {0’ €6, | DESG(O') € U)\}

Note that Ny(G) C Dy(G). In order to prove the theorem, we will construct for

each A F n a sign-reversing, invg(o)-preserving involution, 7y, on D)(G)\N,(G).
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That is vy : DA(G)\NA(G) — D\(G)\N,A(G) will satisfy the following for all o €
DA(G)\NA(G):

« v, changes | DES¢(0)\S(A)| by 1, and

o invg(o) = invg(a(o)).

Now let us fix some useful notation. Let ¢ = gj09---0, € 6&,. We define a
total order, <¢, on [n] by x <¢ y if rank ) (z) < rankg ) (y) or if rankg ) (x) =
rank(c,)(y) and x < y. Using this notation, there is a G-descent of o at 7 if and only
if 0, >¢ 0i41.

Fix A and let 0 € D\(G)\N\(G). Break ¢ up into contiguous segments of sizes
A1, Ag, - Ay called aig, g, - - - . Then let «; be the first segment of o that either has
a G-isolated letter or a G-descent. Since DESq (o) € U,, there must exist a unique k
such that s;_1+1 < k < s; and o isof the form o; = 05, 41 05, 42 Ok—1 Ok Opt1 -+ - Os,,
where 05, 11 > 0s, 42 >G ** >G Ok—1 >G Ok <G Ok+1 <G - <@g Os, -

Define the involution by setting v\(0) = ajag - - @; - -y, where @; is obtained

from «; by considering the following cases using the k£ from the previous paragraph:

First define o,, as the largest G-isolated letter in «; such that m > k, ie., o,
is the G-isolated letter with the largest label that appears after oy. If there are no

G-isolated letters after oy, then define o,, = 0.

Case 1: 0, # 0 and 0,,, > 05, ,11-

Obtain @; by moving o, before o, , 1. Since o, is a G-isolated letter and thus
is not connected to any letter before it in «;, this rearrangement will not affect the
number of 8—inversions, but it will create one new GG-descent between o,,, and oy, | 41.

Notice that vy(c) € DA(G)\NA(G).
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Case 2a: o, = 0.

Case 2b: 0, # 0 and 0,,, < 05, ,41.

In both cases, obtain &; by moving o, ,+1 to the first spot after o, that will not
create a new G-descent. We see that this reduces the number of G-descents by 1.
Now notice that wherever we finally place o5, 41, all the o; that come before this
position must satisfy o; <g o, ,41. It follows that there is no edge between o, |11
and o; since if there were then we would have rank(g (o) > rankge) (s, ,+1)-

Hence this rearrangement does not affect the number of B—inversions. Notice that

(o) € DA(G)\NA(G).

Now notice that we have covered all cases and these cases are mutually exclusive.
We leave it to the reader to check that Case 1 and Case 2 will reverse each other, so
this is the involution we were looking for.

Then the only elements of D, (G) that remain in (5.13) are those of N,(G). Since
these permutations have all their G-descents in S(\) by definition, the theorem is

proven. ]

In [52, Proposition 7.8|, Shareshian and Wachs showed that when G is a natural
unit interval graph, the coefficient of each z; 'py(x) in wXg(x,t) factors. Though
the coefficients do not generally factor in the digraph case, we show in Theorem 5.3.7
below that the coefficient of each zy 'px(x) in wX5(x, t) does have a nice factorization
involving the Eulerian polynomials when 8 is the directed cycle, C_’n), as defined in
Example 5.1.6. We show in Section 5.4 that X (x,?) is symmetric.

The following lemma is a special case of [9, Theorem 3.1] but is proven here for

completeness.
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Lemma 5.3.6. Let Ax(t) denote the Eulerian polynomial. For k > 2, we have

S @ =14, 4(b).

geBy
o k—cycle

Proof. If we write each ¢ in cycle form with k& written as the last element of the
cycle, i.e., o0 = (01,09, -+ ,0r_1, k), then we obtain y = o109+ 0,1 € S_1. This
gives us a bijection between k-cycles o € & and elements y € Sy_;. In addition,
exc(o) = asc(u)+ 1 since the pair (oy_1, k) will always form an excedance, but (k, oy)

will never form an excedance. Hence, we have the following:

Z texc(a) _ Z tl—l—asc(u)

o€y, HEGK 1
o k—cycle
= tAk,1<t)
]
Theorem 5.3.7. Let A = (A, Ay, -+ , \p) be a partition of n. If k > 2, then
. k
Z thC—?;(g) = TLtAk_1<t) H[)\Z]t, (514)
O’GNcn,A i=1
where [n]; =1+t + - +t""'. In the case that A = (n), we have
S @) = ntln — 1] (5.15)

0€Nc,, ,(n)

Hence the coefficient of %pn(x) in an(X, t) is nt[n — 1], and for all other \ - n,

the coefficient of z) 'px(x) in wXzr(x,1) is ntAy—1(t) I [l
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Proof. For the following proof, we will fix the labeling of (T)'n by [n] so that F (C_‘Z) =
{({,i+1) | 1 <i<n}U{(n,1)}. Note that any labeling of the vertices of C’—>n with
[n] will work the same way.

Let A = (A1, Ag, -+, Ax) be a partition of n and let 0 € &,, be partitioned into
pieces of size Aq, Ao, -+, A\p so that 0 = aqas - - - ay, where - represents concatenation.
Then we know o € N¢,  if and only if each a; has no C),-descents and no C,-isolated
letters.

For each «;, we will construct a connected acyclic digraph a on the letters of o
such that the underlying undirected graph, G;, is an induced subgraph of C,.

Let a be the directed graph whose vertex set is the set of letters of ; and whose
edges have the form (a,b) if b precedes a in «; and {a,b} € E(C,). Then each a is
a connected acyclic digraph with a unique sink, which is the first letter of «;. Indeed
if there were another sink, then the second sink would be a C),-isolated letter of «;.
Hence if A # (n), each underlying undirected graph, G;, is a path of length \; in C,,.
If A= (n), then Gy = C,,.

For example, let n = 9, A = (4,3,2) and o = 546389721. Then a; = 5463,

ay = 897, and ag = 21. The corresponding acyclic digraphs are as shown below:

©
(4 & Q@ O,

9 (o)
9 (=)

G,

We can uniquely recover o from the k-tuple (C_r'l> , C_¥2>, e ,CT;) For each vertex =
in each @, let us define rank(x) as follows. Let xz € a and let V. be the set of
all vertices y in CZ), e ,(T_i such that {z,y} is an edge of C,. If x is a sink of a,
then rank(zr) = max{1, y&v; (rank(y) + 1)}. If = is not a sink of C?Z-, then there exists

a unique vertex z of a such that (z,z) € E(a) Then rank(x) = max{rank(z) +
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1, yev.(rank(y) 4+ 1) }. Then create each «; by starting with all vertices of a of rank 1
in increasing order of their label, then all vertices of a of rank 2 in increasing order
of their label, etc. Then we have 0 = ayas - - - . Notice that for all = € [n], we have
that rank(z) = rank, - ().

Notice that the number of C—fl—inversions of a; is the number of directed edges of

%
@ that are oriented in the same direction as the corresponding directed edge of C,.

Case 1: A = (n). In this case (7; is an acyclic orientation of C,, with a unique
sink. So we need to find the number of (?n—inversions of the corresponding o, i.e.,
the number of edges of C71> that are oriented the same direction as the corresponding
edge in C’_:L In order to construct an acyclic orientation of C,, with a unique sink (and
hence a unique source), we have n choices for a sink and then n — 1 choices remaining
for a source. There are two paths from the sink to the source. One path is oriented
as in C_:L and the other path is oriented opposite C_:L The number of edges of the path
oriented the same direction as C’—; can be 1,2,---, or n — 1, depending on the choice

of the source. So

Soovel =t + 2 4+ 1" = ntln — 1.
0E€NGy ()

Case 2: A\ # (n). For a,b € P with b < a, define a V-digraph 7a,b to be a digraph
with vertex set {vy,ve, - ,v,} and edge set {(v;,vip1) | 1 <@ < b} U{(viz1,v;) | b <
i < a}. We will call v; the first vertex of 7(1,;, and v, the last vertex of Va,b. For
1 <7 < a we say the successor of v; is v;41. Let V,; denote the underlying undirected
graph of 7,171). For all a,b € P with b < a, we can see that V,; is a path. For example,

7472 is shown below:



62

Let A = (A1, Ag, -+ -, A). Then we will construct a bijection from N¢, y to the set
M, of (k + 2)-tuples (z, u, 7,\1,5,1, 7,\27;,2, e 77Ak,bk)> where

e € [n],
e 1€ Gy is a k-cycle, and
o for each i, we have 1 < b; < \;.

Let o0 € N¢, . Recall our earlier map from o € N¢, » to the k-tuples (C_T*i, C_T’;, cee (?k)
For each 1 < i < k, define b; as one more than the number of edges of a that
match the orientation of C'_:L Then 7 Asb; 1S simply a without labels. To determine
w=(ay,as,--- ,ag), we start by letting a; = j; where GT]: contains the vertex labeled
1. From the remaining a , let G—j: be the digraph with the smallest label on its sink.
Then let as = j5. From the remaining @, let GTJ: be the digraph with the smallest
label on its sink. Then let a3 = j3. We continue this process until we find a;. Lastly,
to determine z, suppose 1 is on the d** vertex of az Then z = A+ X+ -+ X1 +d.

In the other direction, suppose we have
(@, u, 7)\1,b177)\2,b27 e ,ka,bk) € M.

For each 1 <7 < k, we will say that the successor of the last vertex of 7 Asb; 15 the
first vertex of 7&@»%@)'

There exists unique 1 <i < kand 1 <d < \;such that z = A+ o+ -+ X1 +d.

Place a 1 on the d vertex of 7 Ab;- Then place a 2 on its successor, and continue
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labeling successors in order until all n vertices are labeled. Now the labeled 7 Asbi 1S
the same as a, so we can recover o as described earlier. One can check that this is
a bijection.

Now suppose we have some o € G,, that corresponds to
(IE, M, 7)\1,b17 7)\2,b27 R 7/\@@) € M)\'

—)
Notice that using the bijection, the number of C),-inversions of «; is equal to b; — 1.
_)
One can check that the number of C,-inversions between distinct «; in o is the same
_>
as the number of excedances of =t because for each i € [k], there is an edge of C,

directed from the last vertex of 7 Ab; O the first vertex of 7 A Then one can

MONMON
see that

invg (o) = exc(u™) 4+ (by — 1) + (by — 1) + -+ (b — 1).

Using Lemma 5.3.6, we see that

Z texc(;rl) _ Z teXC(#) — tAk_l(t).

HEGy HES
w k—cycle w k—cycle

Now since for each 1 < i < k, we have 1 < b; < )\;, and since we have n choices for x

in the bijection, we can see that (5.14) is true. ]

5.4 Symmetry

In this section, we define circular indifference digraphs and show that they have

symmetric chromatic quasisymmetric functions. For a,b € [n], we define the circular
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interval [a,b] of [n] as

{a,a+1,a+2,...,b} ifa<b
la,b] =

{a,a+1,a+2,---,n,1,2,--- b} ifa>b

Definition 5.4.1. We call a digraph, 8 = ([n], E), a circular indifference digraph if

there exists a collection of circular intervals, I, of [n] such that
E ={(i,7) | [, j] is contained in a circular interval of I}.

Example 5.4.2. Suppose we have the set of circular intervals I = {[1, 3], [2, 4], [4, 5], [5, 1]}

Then the corresponding circular indifference digraph is shown below.

The underlying undirected graphs of these circular indifference digraphs are the
circular indifference graphs defined by Stanley in [58]. We discuss circular indifference
graphs and their relation to other well-known classes of graphs in Appendix A.

In [52, Theorem 4.5], Shareshian and Wachs show that X (x, t) is symmetric if G is
a natural unit interval graph. As discussed in Appendix A, when natural unit interval
graphs are viewed as digraphs, they are acyclic circular indifference digraphs. Next
we extend the symmetry result of Shareshian and Wachs to all circular indifference
digraphs. Our proof of symmetry is similar to that of Shareshian and Wachs. First
we need the following lemmas.

Let us define five digraphs we will need for the next lemma.
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o Kpo = ({a,b,c}, {(b,a), (b,0)}).
o Ko = ({a,b,c}, {(a,b), (,B)}).
<_
o Ku = ({a,b,c}, {(a,b), (b,a), (b,c)}).
<_
o Ko = ({a,b,¢}, {(a,b), (b,a), (c,b)}).
R
o Py = ({a7b7 C}’ {<a7b)v (bv CL), <b7 C), (C’ b)})

Below we see all five digraphs.

@ O, © @ ® ©
Gr—b (© Gr—b (©
Ky Ky
Py

Lemma 5.4.3. Let 8 be a digraph that has no induced subdigraphs isomorphic to

— S5 S

Ko, Ko1, K19, K91 or P3. Then the underlying undirected graph, G, is claw-free, i.e.,

G does not contain an induced subgraph isomorphic to Ks;.

Proof. Let 8 be a digraph whose underlying undirected graph is the claw, Kj3;. It is
not difficult to see that 8 must have an induced subdigraph isomorphic to one of the
five digraphs listed. But this means that any digraph that contains an induced claw

subgraph must contain a forbidden subdigraph. O

For the next lemma, we need a few definitions. We say that a digraph, 8, is
connected if its underlying undirected graph, G, is connected. We say that a subdi-
graph, ﬁ, is a connected component of 8 if H is a connected component of G. As

in Example 5.1.5, we say a digraph, 8 = (V, E) is a directed path if its vertex set is
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V = {v1,v9, -+ ,v,} and its edge set is £ = {(v;,vi11) | 1 < i < n}. As defined in
Example 5.1.6, we say a digraph, 8 = (V, E), is a directed cycle if its vertex set is

V ={vy,v9,- -+ ,v,} and its edge set is £ = {(v;,viy1) | 1 <@ <n}U{(v,,v1)}.

Lemma 5.4.4. Let 8 be a digraph that has no induced subdigraphs isomorphic to

— s 5

—

Ko, K91, K19, K91 or P3. Let k be a proper coloring of 8 For a € P, define Gy, as

the induced subdigraph ofa of all vertices colored by a or a+1. Then each connected
s

component of Gy, s either a directed cycle with an even number of vertices or a

directed path.

Proof. Let Gy, be the underlying undirected graph of (—;Z First note that Gy,
cannot have any cycles of odd length, because then two vertices with the same color
would be adjacent, which contradicts the fact that x is a proper coloring.

We can also see that G, , cannot have any vertex adjacent to more than two other
vertices. Indeed, suppose vertex v were adjacent to vertices w;, ws, and ws in Gy 4,

as in the following figure:

()

O
() )

Since G, has no 3-cycles, wy, ws, and ws have no edges between them. Then we
see that G, , contains a claw as an induced subgraph, but this contradictions Lemma
5.4.3

Then since every vertex has degree at most 2, every connected component of G, ,

must be either a path or a cycle of even length. Since every induced subdigraph of

— =
8 must avoid K9, Ko1, K12, Ko, and P3, the only possible connected components

are the ones listed in the lemma. O
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Theorem 5.4.5. Let 8 be a digraph that has no induced subdigraphs isomorphic to

— S
Ko, Ko, K19, K91, or P;. Then Xa(x, t) is symmetric.

Proof. By Proposition 5.1.3, we can assume without loss of generality that 8 is
connected.

We will construct an involution, ¢,, for each a € P on the set of proper colorings
of 8 that switches the number of occurrences of the color a and the number of
occurrences the color a 4+ 1, leaves the number of occurrences of all other colors the
same, and does not change the number of ascents of the coloring. This will then prove
the theorem.

So let k be a proper coloring of 8 and let é—:a be the induced subdigraph of 8
containing only the vertices colored by a and a+1. By Lemma 5.4.4, each component
of @ is a directed path or a directed cycle of even length.

Let ¢, (k) be the the coloring of 8 obtained from x by replacing each occurrence
of a with a 4+ 1 and replacing each a + 1 with a in the components of G—>M that are
paths with an odd number of vertices. For the other components of é—,:a) (paths and
cycles with an even number of vertices), the colors of ¢,(k) are the same as those of
K.

Note that in a path of with an odd number of vertices in CT,G, exactly half of
the edges are ascents of k. Hence, if we change all a’s to a 4+ 1’s and vice versa, we
will change all ascents to descents and vice versa, but the number of ascents of k
is preserved. It is then easy to see that ¢, is an involution that meets the desired
conditions and hence the theorem is proven.

[]

Lemma 5.4.6. Circular indifference digraphs do not have any induced subdigraphs

== =

. i — —
isomorphic to Ko, Ko1, K19, K91, or Ps.

Proof. Let 8 be a circular indifference digraph arising from a set of circular intervals,

—
I, on [n], and suppose 8 contains an induced subdigraph, ﬁ, isomorphic to Kis.
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Suppose H has vertex set {a,b,c} and edge set {(b,a),(b,c)}. Then the circular
intervals [b, a] and [b, ¢] are both contained in circular intervals of I. But then either
[b,a] C [b, ] and hence [a, c] C [b, ¢], which is contained in a circular interval of I, or
[b,c] C [b,a] and hence [c,a] C [b,a], which is contained in a circular interval of I.
Either way there is an edge between a and ¢ in 8, which is a contradiction. Similar

—
arguments show that 8 cannot contain any induced subdigraphs isomorphic to Koy,

=

%
Ky, Koy, or Ps. O

Corollary 5.4.7. Let 8 be a digraph such that all connected components of 8 are

circular indifference digraphs. Then Xz (x, t) is symmetric.
Proof. Combine Lemma 5.4.6 with Theorem 5.4.5. O]

It turns out that the class of digraphs from Theorem 5.4.5 are not the only digraphs
with symmetric chromatic quasisymmetric functions. In fact, let C,, = ([n], E') be the
labeled cycle with £ = {{i,i+1} | ¢ € [n—1]}U{{1,n}}. If we turn C,, into a digraph
by orienting each edge from smaller label to larger label, then we get the directed
cycle with one edge oriented backwards. The chromatic quasisymmetric function of
the labeled cycle is symmetric (see [34, Exercise 2.84]), but its associated directed
graph contains induced subdigraphs isomorphic to both 1721} and I?lg See Section

6.6 for further results on the chromatic quasisymmetric function of the labeled cycle.

5.5 Expansion in the elementary symmetric func-
tion basis

In this section, we provide some evidence for our generalized e-positivity conjecture,

which we restate here.
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Conjecture 5.5.1. Let 8 = (V, E) be a circular indifference digraph. Then the

palindromic® polynomial Xa(x,t) is e-positive and e-unimodal. In other words, if
|E| A

Xa(x,t) = > a;(x)t?, then aj(x) is e-positive for all j and aji1(x) — aj(x) is e-
j=0

positive for all j < ‘ElT_l

Below we take a look at the simplest example of a circular indifference digraph
_>
that is not acyclic, namely the directed cycle, C,, and prove an e-basis generating

function formula for Xz (x,?).

—>
Theorem 5.5.2. Let C,, be the directed cycle of length n. Then

> k[k — 1)ser(x)2F

k>2
3 X (x, )z , (5.16)
= O 1 — tz — 1)en(x)2F

B E>2

where [n], =14+t 4+t + -+ "L,

Proof. This proof is more involved than Stanley’s proof for the ¢ = 1 case (see Propo-
sition 3.2.6), but it also uses the Transfer-Matrix Method [59, Section 4.7]. So let
us start with a brief review of the transfer matrix method. A walk of length d
on a directed graph 8 = ([n], E) is a sequence of vertices vy, vy,...,vq such that
(vi—1,v;) € E for all i € [d]. A walk is closed if vy = vy. We attach weights in
some commutative ring R to the edges of G. Let wt : £ — R be the weight func-
tion. Now define the weight wt(w) of a walk w = v, v1,...,v4 to be the product
wt(vg, v1) Wt(’Ul,Uz) Wt (Vg_1,04).

Let ¢ = ) be the digraph with £ = {(i,7) | i # j}. Let us attach a weight

to each edge (i,j) so that wt((7,7)) = tx; if ¢ < j and wt((i,7)) = x; if ¢ > j. For

example if n = 3 then 8 is shown below.

2See Proposition 5.1.8
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_>
We can view all proper colorings of all C, for d > 2 using only n colors as closed
walks of length d on 8 Each time we take a step, the colors either increase (and we

need to count an ascent) or decrease. The weighted adjacency matrix of 8 is given

by i i
0 t$2 t!Eg c. lfa?n
r1 0 txzg ... tx,

A = T To O e tmn
r1 T9 x3 ... O

Let Q(z) = det( — zA). By [59, Corollary 4.7.3], we know that

—2Q'(2)
X (X7 t)|zl,m2,..‘mnzd = T 57 N -
2 e, Q)
So we need to compute
1 —troz —trsz ... —tx,z
—T1Z 1 —trsz ... —tx,z
Q(z) = det(] — zA) =det |~z —z02 1 ... —txpz

—T12Z —X92 —XT3Z ... 1
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First let us describe the notation we will use. For o € &,,, FIX(0) = {i | (i) = i},
exc(o) = [{i | o(i) > i}|, and sgn(o) is the usual sign function on permutations. We
say o is a derangement if FIX (o) = (). Also for any S C [n], define xg = [;cq Z;-

Then

Q(z) — Z Sgn(a)<_1)n—|FIX(a)|Zn—|FIX(cr)|texc(o)X[n]\FIX(U)

0'6671

=1+ Z(—l)kzk Z Xg Z sgn(a)texc(")
k=1

SCln] o€,
IS|=k  FIX(0)=[n]\S

LN Yok X s
k=1

SC[n] o€6y
|S|=Fk o is a derangement
n
exc(o
= Z FFen(wy, xg, ..., 1) Z sgn(o)t @),
k=1 geSy

o is a derangement

By [44, Corollary 5.11], we have that

> sgn (o)t = (—1)" 1k — 1],.

ceSy,
o is a derangement

Hence

n

Qz) =1+ Z(—l)kzkek(xl, Ty, .oy ) (— 1) [k — 1),

k=1
=1t ex(21, 22, .., 2y) [k — 1];2".
k>2
Then we have
—2Q'(z (=t ex(w1, oy ooy mn) K[k — 1],2F )
k>2
=t ex(w1, 22, ...,z K[k — 1],2".
k>2

Letting n go to infinity gives us our result. O
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Now let us look at some consequence of this expansion. But first we need a simple

lemma.

Lemma 5.5.3. Let (gn(t))n>0 be a sequence of polynomials in Q[t], such that each

gn(t) positive, palindromic, and unimodal with center of symmetry ”"2”, where r s

some fized constant in N. If (G,(X,t))n>0 i a sequence of polynomials in Ag[t] that

satisfies
Z gn(t)en(x)z
G X t n>0
nz>:0 1 —1 Z - 1 tek
k>2

then each G, (x,t) is palindromic, e-positive, and e-unimodal with center of symmetry

n+r
5 -

Proof. We use Propositions B.1 and B.3 of [52]. Since

1 . . "
1=t [k — 1en(x kT ) (Zt[l—l]tei(x)z> ; (5.17)

m>0 \i>2
>2
we have,
Gu(x,t) = ) Yoo en(x). e, ()" g, (¢) [T 1R — 1
m>1 1=2

For each nonzero gy, (t), the polynomial t™ g, (t) [T, [k; — 1]; is a product of palin-
dromic, positive, unimodal polynomials. Hence, the product is also palindromic,

positive and unimodal with center of symmetry equal to

kv +r &ki—2 n+r
-1 =
m + 5 +Z 5 5

=2
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Since each such product has the same center of symmetry, G, (x,t) is palindromic,

e-positive, and e-unimodal with center of symmetry "3 O

Then the following corollary follows easily from Theorem 5.5.2 and Lemma 5.5.3.

Corollary 5.5.4. Xa»(x,t) is a palindromic, e-positive and e-unimodal polynomial
mt.

In fact, for each n > 2 we have

X ) = e X it — it — U thuy — T (5.18)
AFn ()=

where (1 = (i1, fi2, -+ -, fy(x)) 5 a composition of n, l(X) is the length of X, and A\(p) =
A means that when the parts of | are written in decreasing order, we get the partition

A.

Now let us take a look at e-basis expansions of another class of digraphs, namely
digraphs whose underlying undirected graph is the complete graph, i.e the graph with

an edge between every distinct pair of vertices.

Proposition 5.5.5. Let 8 = ([n], E) be a digraph whose underlying undirected graph,

G, is the complete graph, K,. Then

Xa(x,t) = p(t)en(x),

where

p(t) _ Z tinvg(a)‘

O'EGn

As a result, Xg(x,t) is symmetric and e-positive.

Proof. Since every vertex of 8 is adjacent to every other vertex, we can see that for

every o = 0103 -0, € &, we have rank(; ) (0;) = i for each i € [n], so o contains
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no G-descents. Taking w of both sides of our F-basis expansion from Theorem 5.2.2

and the fact that wF, g(x) = e,(x) gives us our result. O

In [52], Shareshian and Wachs introduce a class of graphs, which they call G,,,
graphs, where n € P and 1 < r < n. The vertices of G,,, are labeled by [n| and
for 1 <7 < j < n there is an edge between ¢ and j if 0 < j — 7 < r. For example,
G, is the graph on n vertices with no edges, G, 2 is the labeled path on n elements,
and G, is the complete graph on n elements. Shareshian and Wachs proved that
their e-positivity conjecture holds for all G,,, when r =1,2,n —2,n — 1,n and they
tested by computer all Gy, , for n < 8. Hence if these graphs are turned into digraphs
by orienting their edges from smaller label to larger label, our e-positivity conjecture
holds for the same graphs.

We present a circular analog of these graphs, which we will call 5};7“ where n € P
and 1 < r < n. We define 8277, = ([n], E), where E = {(i,7) | 0 < j—i (mod n) < r}.
In other words, 8fm is the circular indifference digraph on [n] arising from the set of

circular intervals
I={li+r—-1]]|1<i<n—r+1}U{fi,i+r—1—n]|n—r+2<i<n}.

For example, Ge | = ([n], 0), 8%2 is the directed cycle, C’—>n, and 8gn = ([n], E),

n,l1

where E = {(i,7) | i # j}. Corollary 5.5.4 proves that our e-positivity conjecture

(Conjecture 5.5.1) holds for 86 It is easy to see that our e-positivity conjecture

n,2*

holds for 8%1 Below we show that our conjecture holds for Bﬁw when r =n —1,n.

We used a computer to test our conjecture for all other Bg,r for n < 8.

Proposition 5.5.6. For alln > 1 we have

Xz, (x,1) = nlea(x)t®), (5.19)
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and

Xz, (x,t) = ne,(x)t"2 )AL (1), (5.20)

n,n—1

Proof. First we will prove (5.19). From Proposition 5.5.5, we see that

Xz, (x,t) =en(x) D £, )

r 0cEB,

But since every pair (7, j) is an edge, we see that for every o € &, invg. (o) = (5).

Combining this with the fact that |&,| = n!, we have our formula for Xz, (x,1).
Now let us prove (5.20). The graph Ge = ([n], E) has edge set E = {(i,]) |

n,n—1

i—7#0,1,1 —n}. The set, E, can be divided into two types: the exterior edges,

{<1’ 2)’ (273)7 T (n - 17”)7 (n’ 1)}7

—>
which form the directed cycle, C),, and the interior edges, which are the remaining
edges. Note that the interior edges are two-way edges; that is, if (a,b) is an interior
edge, then so is (b, a). Below is 8273 where the exterior edges are solid black arrows

and the interior edges are dotted red arrows.

(L—2)

(@ )—3)

Again we will use Proposition 5.5.5, so we know

Xac (X’ t) _ en(X) Z tinVazynil(U)‘

n,n—1
o€6,,
Notice that for each ¢ € &,,, we have (3) —n 8% n_1-inversions coming from the

interior edges. In order to count the 86 -inversions from the exterior edges, recall

n,n—1

% .
that the exterior edges form the directed cycle, Cy,, so we need to find >°, s Ve (),
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Setting A = 1" in (5.14) gives us that ¥ ,ce, t™@ (7 = ntA, ;(t). Combining all this

gives us (5.20). O

The following theorem can be easily proven using the same proof technique as

Stanley used to prove [58, Theorem 3.3].

Theorem 5.5.7. Let 8 be a digraph on n vertices such that X@(X,t) is symmetric.

Suppose we have the expansion Xz (x,t) = Y ex(t)ex(x). Then
AFn

S oat)= > treel@l) (5.21)

AFn GL€A0L(G)

where G is the underlying undirected graph of 8, AO(Q) is the set of acyclic orien-
tations of G with exactly k sinks and ascg(Ga) is the number of directed edges ofa

that are oriented as in Gj.

Corollary 5.5.8. Let 8 be a digraph on n vertices such that Xg(x, t) is symmetric.
Then

)= Y e,
G2€A0:(G)

So for any symmetric Xz (x,t), the coefficient of e,(x) in the e-basis expansion is a

polynomial in t with nonnegative coefficients.

For the directed path and the directed cycle, we can refine (5.21) by giving a
combinatorial interpretation of each ¢, (t) in terms of acyclic orientations. We already
know that the c,(¢) have positive coefficients by the formula for the directed path
given in [54, Theorem 7.2] (see Theorem 4.2.3 of this thesis) and by our formula
for the directed cycle (see Theorem 5.5.2 and Corollary 5.5.4), but perhaps these
interpretations can be generalized to show e-positivity for a larger class of graphs.

%
For the next proposition, let C,, = ([n], £') denote the directed cycle, where

E={@i+1)]|1<i<n}Uu{(n1)},
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and let C,, denote its underlying undirected graph. For an acyclic orientation of C,,,
denoted Gj, we say that ¢ and j are consecutive sinks of G if ¢ and j are both sinks
of Gz and there are no other sinks in the circular interval [, j].

Proposition 5.5.9. Let Xz (x,t) = Y _ ca(t)ex(x). Then
AFn

at)= > w©)
GL€A05(Cy)

where AO(C,,) is the set of all acyclic orientations Gz of C, such that the number
of vertices between consecutive sinks of Gz is Ay — 1, Aoa — 1,..., Ay — 1 in any order

%
and asc=>(Gg) is the number of directed edges of C,, that are oriented as in Gj.

&

Example 5.5.10. In the acyclic orientation of Cy shown below, there are 3 vertices
between sinks 2 and 6, 1 vertex between sinks 6 and 8 and 2 vertices between sinks
8 and 2, so this corresponds to es32. There are 3 edges that match the original cyclic
orientation of CT}'Q, shown by the dotted red arrows, hence this acyclic orientation

corresponds to t3e3s.

Proof. By Corollary 5.5.4

o= >t — Ustlps — -ty — 1z, (5.22)
pA(p)=A

where po = (ju1, pia, - - -, fy(n)) is @ composition of n, [(A) is the length of A, and A(u) = A
means that when the parts of 1 are written in decreasing order, this is the partition

A



78

It follows from this that ¢, = 0 if any of the parts of A = 1. We also have AO,(C},)
is empty in that case, which means that the result holds in that case. We can now
assume that A has no parts of size 1.

For a,b € P with 1 < b < a, define a mountain, ]\_4:,1, = (V, E), as a digraph on a
vertices V' = {vy,vq,- -+ , v, } with edge set £ = {(v;,v;i—1) | 1 <@ < a—b}U{(vs, vi11) |
a—b <i < a}. We will say v; is the first vertex of the mountain and v, is the last. For
eachi=1,2,--- ,a—1, we say that v;, is the successor of v; and v; is the predecessor

%
of v;41. Below, we show M3 3.

We can obtain an acyclic orientation of C,, from each term of the inner sum
of (5.22) as follows. For each 1 < i <,I()), suppose we choose the t/* term from
the t[u; — 1]; factor. From this choice of j;'s, we can create a sequence of moun-
tains, J\_4>m+17j1,J\_4>u2+17j2, e ]\—/}mmHszv on pairwise disjoint vertex sets. Then we
attach the mountains by identifying the last vertex of ]\7 pi+1,, with the first vertex

— —
of M., 41, for 1 <i <I()\) and by identifying the last vertex of M, 11, with

WIIEN)
ﬁ
the first vertex of M, 11,
_>
We will place the label 1 on one of the vertices, v, from M, 1, j, excluding the
last vertex, so the p factor in (5.22) is for our p; choices. We label the successor of

v with 2 and continue labeling successors in order until we reach the predecessor of

V.
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It should be clear that we get a unique acyclic orientation in this manner and that
every acyclic orientation can be built with this method. This proves our proposition.

[]

For the following proposition, let ]37: = ([n], ) denote the directed path, where
E={(i,i+1)|1<i<n}, and let P, denote the underlying undirected graph. For
an acyclic orientation of P,, denoted (G5, we say that ¢ and j are consecutive sinks of
G if 1 and j are both sinks of GG, and there are no other sinks in the circular interval
i, 7]. Notice that this includes the sink with the largest label and the sink with the

smallest label.

Proposition 5.5.11. Let Xz (x,t) = > caex. Then
' AFn

c\ = Z 135CE; (Ga)7
Gz€AOL(Py)

where AOX(P,) is the set of all acyclic orientations of P, such that the number of
vertices between consecutive sinks is \y—1, \a—1,..., Ay —1 in any order and ascy (Ga)

_>
is the number of directed edges of P, that are oriented as in Gj.

Example 5.5.12. In the acyclic orientation of Py shown below, there are 3 vertices
between sinks 2 and 6, 1 vertex between sinks 6 and 8 and 1 vertex between sinks
8 and 2, so this corresponds to eso2. There are 4 edges that match the original
orientation of ?’8, shown by the dotted red arrows, hence this acyclic orientation

corresponds to ttes9s.
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Proof. In [54, Theorem 7.2] (see Theorem 4.2.3 of this thesis), Shareshian and Wachs

showed that

> ep(x)zF

k>0
Xp X t
nz>0 1-2‘:2 _1t6k
k>2

From this we can get that for n > 1,

Xp(xt) = ex(x) D [waletlpe — Ust[pg — 1o -ty — s (5.23)
A A=A

(see [52, Table 1]).

We can obtain an acyclic orientation of P, from each term of the inner sum of
(5.23) as follows. For each 2 < i < [(\), suppose we choose t/* from the ¢[u; —1]; factor.
From this choice of j;’s, we can create a sequence of mountains, J\_4>“2+1,j2, e ]\7mm+mm,
with disjoint vertex sets. Then we attach the mountains by identifying the last vertex
of M, 11, with the first vertex of M, 41, for 2 <i < I(\).

Now suppose we choose the ¢/ term from the [u]; factor. Then let 51 = (V,E)
denote the digraph with vertex set {vy,ve, -+ ,v;41} and edge set E = {(v;, viy1) |
1 <i < j}. We will say vy is the first vertex of 61 and vj;; is the last. For each
1=1,2,--- 7, we say that v;; is the successor of v; and v; is the predecessor of v; ;.
Let a (V, E) denote the digraph with vertex set {vy, ve,- -+ ,v,,_;} and edge set
E={(vi,v;i_1) | 1 <i<p —j}. We will say v is the first vertex of 52 and vy, _; is
the last. For each ¢ =1,2,--- ju; — 7 — 1, we say that v;,; is the successor of v; and
v; is the predecessor of v; .

Then identify the last vertex of 51 with the first vertex of M uat1,5, and identify
the first vertex of 52 with the last vertex of ﬁmmﬂmm'
Label the resulting digraph by placing 1 on the first vertex, v, of 51. Label the

successor of v with 2, and continue labeling successors in order until all vertices are

labeled.
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It should be clear that we get a unique acyclic orientation in this manner and that
every acyclic orientation can be built with this method. This proves our proposition.

[]

We would like to point out that a weaker conjecture than Conjecture 5.5.1 is that
the chromatic quasisymmetric functions of all circular indifference digraphs are Schur-
positive. To our knowledge this is an open question. In the Schur basis expansions
of Gasharov [29] for the chromatic symmetric functions of incomparability graphs of
(3+1)-free posets and of Shareshian and Wachs [52] for the chromatic quasisymmetric
functions of natural unit interval graphs, the coefficients are interpreted in terms of
P-tableau, which use the structure of the poset associated with the graph. Since
circular indifference digraphs are not incomparability graphs of posets in general, one

would need a different type of tableau to describe the coefficients.



Chapter 6

Restricted Smirnov words

A proper coloring of the path P, can be viewed as a word over the positive integers P
where adjacent letters are distinct. These words are sometimes called Smirnov words
(after [33], see also [57]). In fact, the chromatic quasisymmetric function Xp (x,t) of

the path is equal to the descent enumerator of Smirnov words, defined by

Wn(X,t) — Z tdeS(U))ij

’u)EWn

where W, is the set of Smirnov words of length n and for w € W,, we let
des(w) = |{i € [n — 1] | w; > wit1}]-

In this chapter we study the descent enumerators of restricted Smirnov words,
where we put restrictions on the relationship between the first and last letter of each

word. We define the restricted descent enumerators

Wie(x,t) = > pleswix

n
weW,
w1 <Wn

82
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W7 (x,t) = > tdeswix, .

weWw,,
W1 >Wh

and

Wo(x,t) = > td=tx,,

n
weWw,,
W1=Wn

It is an exercise of Grinberg and Reiner [34] that these restricted descent enumerators
are symmetric. In this chapter we present our joint work with Wachs [22] where we
expand these restricted descent enumerators in various bases.

In Section 6.1 we discuss some basic properties of restricted Smirnov word de-
scent enumerators and describe their relationship with chromatic quasisymmetric
functions. In Section 6.2 we present e-basis generating function formulas for the re-
stricted Smirnov word descent enumerators W,=(x,t), W (x,t), and W7 (x,t) and
show that WS (x,t) and W, (x,t) are e-positive and e-unimodal. We use these for-
mulas to derive an e-basis expansion of a variation of the Smirnov word descent
enumerator W, (x,t) involving cyclic descents.

In Section 6.3 we provide expansions for the various descent enumerators in terms
of Gessel’s fundamental quasisymmetric function basis. By applying the stable prin-
cipal specialization to our F-basis and e-basis expansions, we obtain variations of
the g-Eulerian polynomials A, (q,t) studied by Shareshian and Wachs and defined in
Section 1.2, that involve the permutation statistic maj., paired with descents, cyclic
descent, and cyclic ascents. We present these expansions in Section 6.4. In Section 6.5
we use our [-basis expansions to find p-basis expansions of these descent enumerators
and give a combinatorial interpretation for their coefficients.

From the e-basis expansion of the restricted Smirnov word descent enumerators,
we can derive an e-basis expansion of the chromatic quasisymmetric function of the
labeled cycle, C),, which is e-positive. Our results on this can be found in Section

6.6. Although it follows from our e-basis expansion that the coefficient of ¢ in the
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restricted Smirnov word descent enumerators are symmetric functions, in Section 6.7

we present a combinatorial proof of their symmetry.

6.1 Basic definitions and properties

In this section, we define the restricted Smirnov word descent enumerators that we
will be studying in the following sections and state some relationships between them,
as well as their relationship to chromatic quasisymmetric functions.

We define the descent enumerator of Smirnov words of length n to be

W, (x,t) = Z pdeswly

weWw,

where W, is the set of Smirnov words and des(w) = [{i € [n — 1] | w; > w1}
Let P, = ([n], E) be the labeled path. By reading each proper coloring of P, in
reverse, we see that W, (x,t) = Xp, (x,t). Hence the Shareshian and Wachs formula

for Xp, (x,t) given in Theorem 4.2.3 is equivalent to the generating function formula,

> er(x)ZF

an(X,t)z" SR ey ST (6.1)

Similarly we can define a circular version of W, (x,t) given by

Wf(x,t): Z tcdes(w)xw’
we;éWn

where cdes(w) is the number of cyclic descents of w, that is

cdes(w) = |{i € [n] | w; > wis1}|
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with w, 1 = wy. Let C’_:L be the directed cycle described in Example 5.1.6. We see
that by reading each proper coloring of C—>'n in the reverse order, we have Wf (x,t) =
Xz (x,t). It follows that our formula given in Theorem 5.5.2 is equivalent to the
generating function formula,

> k[l — 1)ser(x)2F

k>2

Tt [k — Use(x)2F

k>2

jf(x, t)z"

(6.2)

3
[\
N

Now let us define the following descent enumerators of restricted Smirnov words

that we will study in this chapter:

We(x,t) = > pleswiy

n
weW,
w1 <Wnp

Wy (x,t) = > t°Wx,,
weWw,,
W1 >Wh,

and

Wo(x,t) = > td=tx,,

n
weWw,,
W1 =Wn

These refine W, (x,t) and W7 (x,t), because we have that
Walx,1) = Wis (5, 1) + W7 (x,8) + Wi (x,1) (6.3)
and
W7 (x,1) = WS (x,1) + W7 (x,1). (6.4)
In addition, we consider a few more descent enumerators of Smirnov words, given

by

Wf(x, t) = Z pleswiy
weWw,,
w1 AW,
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Wa(x,t) = 3 9=,

weWw,,

and

Wﬁ(x,t) = Z geasew)

weW,

where casc(w) is the number of cyclic ascents of w defined by
casc(w) = |{i € [n] : w; < w1}

with w11 = wy.
We will use the fact that

W (x,t) = W (x,8) + W7 (x, 1)

n

and

Wa(x,t) = W7 (x,t) + W (x,1).

Note that there is a natural involution on Smirnov words defined by reversing

each word. So if w = wyws---w, € W, then we can define w"

= WpWp—q + - Wy
and we see that w™ € W,. When we reverse a word, descents become ascents and
vice versa, so we have that des(w) = asc(w™”) = n — 1 — des(w™") and similarly
rev) —

cdes(w) = casc(w = n — cdes(w"). Hence using this involution, we get the

following identities:

Wy (x,t) =" Wi (x, 1) (6.5)

and

We(x,t) = t"W,(x,t71). (6.6)

Using the same involution, it is easy to see that if the roles of W<(x,t) and
W>(x,t) are switched in (6.5) and the roles of W, (x,t) and W¢(x,t) are switched in

(6.6), these identities still hold.
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6.2 Expansion in the elementary symmetric func-

tion basis

In this section we present and prove our main result on restricted Smirnov word

enumerators, giving generating function formulas for them in terms of the elementary

symmetric function basis.

Theorem 6.2.1. We have

< no_ 1 i
7; Ws(x,t)z" = Dix.t.7) g;ai(t) ei(x)z
> no_ 1 i
nng (x,t)z" = Dx.i.2) ;bz(t) ei(x)z
n _ 1 . 3 7
,; W=o(x,t)2" = D(x.t.2) (e1(x)z — QZQCZ(t) ei(x)z"),
where
D(x,t,z) = 1-— Zt[z — 1]se;(x) 2",
d.. _ =,
wt) = Gl =TG0e
bi(t) = t7 et = : (i —j)t,
ci(t) = it[i — 2],
for alli > 2.

Before proving the theorem, we observe that

a;(t) + bi(t)

T+ G+ Dt+ G+ D4+ G+ D)2 !

(i), + itli — 2),.

(6.10)
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Hence,

ai(t) +bi(t) — ci(t) = [ie,

which shows that Theorem 6.2.1 refines (6.1) since W= (x,t) + W, (x,t) + W= (x,t) =
W, (x,t). Also

ta;(t) + bi(t) = itfi — 1],

which shows that Theorem 6.2.1 also refines (6.2) since tW,s(x,t) + W, (x,t) =
W#(x,1).

We prove (6.9) first. Then we use (6.9), (6.1), and (6.2) to derive (6.7). Equation
(6.8) follows from (6.7). Our proof of (6.9) uses the transfer-matrix method discussed
in [60] and borrows ingredients from the proof of Theorem 5.5.2. See the proof of
Theorem 5.5.2 for a review of the transfer matrix method.

We will need the following result from [59, Section 4.7]. Let a = ([k], E) be a
digraph with edge weights w : £ — R, where R is some commutative ring. Let A be
the weighted adjacency matrix of 8 For each 4, j € [k], define W, ;,, to be the set of

walks of length n from ¢ to j on 8 and let

Uijn = Z wt(w).

’LUEWq‘,,j,n

Theorem 4.7.2 of [59] states that for all ¢, j € [k],

n (=L det(I — zA - j, i)
S Uijn?" = Tl =4 , (6.11)

n>0

where (B : j,1) is the matrix obtained from B by removing row j and column i.

Proof of (6.9). As in the proof of Theorem 5.5.2, we view a Smirnov word wyws . . . w,
over the alphabet [k] as a walk wy,ws, ..., w, of length n — 1 on the digraph 8 =
([k], E), where

E={(i,j):i,j €[k and i # j},



and we set

wt((4,7)) :

x; if

t.ZEj if

i< j

1> .

Note that if w is a Smirnov word over the alphabet [k] then

where w; is the first letter of w. Hence

W (1, ... xp, t) =

W=

n

It follows from this and (6.11) that

ZWf(xl,...,xk,t)z

n>1

(.I'l,...

k
y Tk 07 07 s 7t) = inUi,i,nfl-
=1

k
z Z ZT;
=1

k

i=1

23k widet(] — zA 1 i0)

4@y = 2, wt(w),

Z Ui,i,nzn

n>0
det(I — zA :i,1)
det(I — zA)

det(I — zA)

where A is the weighted adjacency matrix of 8, ie.,

tl’l

t.Tl

tlEl

X2

t.ﬁl]g

tl‘g

Zs3

xs3

tl’3

Tk

T

Tk

?

89

(6.12)
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In the proof of Theorem 5.5.2, we showed that!

det(I — 2A) =1- e;j(xq,...,ax) t[j — 127 (6.13)

Jj=2

It follows that

det(l — zA :i,1) = 1—ZGj(xl,...,:fi,...,xk)t[j—1]tzj,

Jj=2

where ; denotes deletion of x;. Multiplying both sides by x; and summing over all

i € [k] yields,

k k k
indet([—zA Di,i) = le — ZZmiej(xl,...,:fl-,...,xk)t[j — 1],
i=1

i=1 7>214=1

One can see that

k
in€j<xla te 7fi7 te 73:]6) = (.] + 1)ej+1(1:17 s 7xk)7
i=1

since both sides enumerate (j + 1)-subsets of [k] with a distinguished element. Hence

k
S zpdet(I — zA:i,1) = eq(wr, ... xk) — 3 (4 Dejra(a, ..., zp)t]f — 127
i=1

Jj=2

Upon multiplying both sides by z, we see that the numerator of the right hand side
of (6.12) is

61(1’1, s 71716)2 - Zjej(l‘h B ,l’k)t[] - Q]tz]
Jj=3

!This is obtained from the formula in the proof of Theorem 5.5.2 by replacing ¢ with ¢t~ and
each z; with tz;
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It therefore follows from (6.12) and (6.13) that

n €@, m)z = Y gssgei(wn, . wp)t[f — 2)27
ZW Ty, .o, T, 1)2" = ; . .
n>1 1 _ZJZQ ej(xl,...,zk)t[] - 1]152]

The desired result (6.9) follows by taking the limit as k& goes to infinity. O

Proof of (6.7). 1t follows from (6.3), (6.1), and (6.9) that

(6.14)
SWEx, )"+ > W (x,8)2" = Y Welx,t) = > Wr(x,t)
n>1 n>1 n>1 n>1
_ B(x,t,2)
 D(x,t,2)’
where
B(x,t,z) = Y [ilie;(x)2" — (ex(x)z = Y _it[i — 2]; ei(x)2")
i>1 i>2
= > lilses(x)2" + > it[i — 2]y ei(x)z’
i>2 i>2
= > ([i]s + itli — 2])ei(x)2" .
i>2
It follows from (6.4) and (6.2) that
(6.15)
tOWE(x,0)2") + W (x,0)z" = Y Wi(x,t)
n>1 n>1 n>2
- Cxtz
 D(x,t,2)’

where

C(x,t,2) = itli — 1], e;(x)z".
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By subtracting (6.14) from (6.15), we obtain

C(x,t,2) — B(x,t,2)
D(x,t, z)
]

Siza (1! — [i]y)ei(x) 2"
D(x,t,z)

(t—1)> Wys(x,t)2"

n>1

Note that
t—1DA+2t+3 4+ (G —1t"?) = (i— )t —[i —1]

Hence

Simo(1+ 26+ 32+ -+ (1 — 1)t"72) e5(x) 2
< n o __ 1=
2 Wb t)et = Dlx.t.2)

as desired. O

Proof of (6.8). Recall that W (x,t) = t" 'W=(x,t7!). Tt follows from this and (6.7)

that
SWo(x,t)2" = 7Y Ws(x, t7h)(t2)"
n>1 n>1
_ 1 iz @it ei(x)t'!
D(x,t71,tz)
Diz2 bit)e i(x)2’
D(x,t 1 tz)
Since D(x,t7!,tz) = D(x,t,z), the result holds. ]

We obtain equivalent formulations of (6.7) and (6.8) by multiplying the numerators

and denominators of the right side of the equations by ¢ — 1.
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Corollary 6.2.2. We have

;(iti_l — [1]s) es(x)2"
2 Wikt = 7tE(x, z) — E(x,t2) (6.16)
> (t[i]s — it) ei(x)z’

YWD = e B (6.17)

where E(x,z) == > en(x)z".
n>0
We have the following immediate consequence of Theorem 6.2.1 and Lemma 5.5.3.

Corollary 6.2.3 (of Theorem 6.2.1). For all n > 2, W(x,t) and W (x,t) are

e-positive.

Note that it follows from Theorem 6.2.1 that the coefficient of e, (x) in the e-basis
expansion of W=(x,t) is —nt[n — 2], if n > 2. Hence W~ (x,1) fails to be e-positive.
However, observe that the coefficient ¢, (t) of e)(x) is in N[t] if the smallest part of A
is 1, and —c)(t) € N[t] otherwise.

Recall that

W7(x,t)= > O

n
weWw,,
w1 #wn

Since W7 (x,t) = W.=(x,t) + W, (x,t), it follows from Corollary 6.2.3 that W7 (x,t)

is e-positive. We can say more.

Corollary 6.2.4 (of Theorem 6.2.1). We have,

> (il +it[i — 2]p)es(x) 2

W#(x,t)" = =2 . 6.18
,; T(x,t)z Dx.12) (6.18)

Consequently, W7 (x,t) is palindromic, e-positive, and e-unimodal, with center of

symmetry "5+,
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Proof. Equation (6.18) is evident from Theorem 6.2.1. The consequence follows from
Lemma 5.5.3 since [i]; + it[i — 2]; is palindromic, positive, and unimodal with center

of symmetry % ]

We defined two other variations on the descent enumerator given by

Wa(x,t) = Z Lyt edes®)

wEWn
Wk, t) = 3 o),
’LUEWn

where

cdes(w) = [{i € [n] : w; > w1},
casc(w) = {i € [n] : w; < wiq1},

and wy41 = w.

From Theorem 6.2.1, we can also obtain the following expansions.

Corollary 6.2.5 (of Theorem 6.2.1). We have,

Z it ey (x)2! % Z ei(x)(tz)’

= i>1 i>0
)" = = = = 1
2 Webe D" = =563 D(x,1,2) (619
£y iei(x)zt 22 ei(x)2
~ i>1 i>0
“Ux, 1) = —= = = i 2
;Wn(x, )2 D(x,t,z) D(x,t,2) (6.20)

Consequently, W,(x,t) and W2(x,t) are e-positive.

Remark 6.2.6. For the sake of comparison, note that equation (6.1) can be restated

as ,
D ei(x)2
14+ ) W(x,t)" = =

=i D(x,t, z)
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Proof. Equation (6.19) follows from the fact that

Wa(x,t) = W7 (x,t) + Wi (x,1)

and equations (6.2) and (6.9). Alternatively, one uses the fact that

Wo(x,t) = tWE(x,8) + (Wa(x, 1) — W (x, 1)) (6.21)

n

and equations (6.7) and (6.1).
Equation (6.20) follows from equation (6.19) and the fact that W2(x, t) = "W, (x,t~1).
So one can replace t by t~! and z by ¢z in (6.19) to obtain (6.20).

The consequence follows from Lemma 5.5.3. O]

Note that it follows from (6.19) that the coefficient of es 5 in Wi(x, t) is (3t2)(t) +
(2t)(t[2];) = 5t3+2t2, which is not palindromic. Hence Ws(x, t) fails to be palindromic.

Similarly Wg(x, t) fails to be palindromic.

6.3 Expansion in Gessel’s fundamental quasisym-
metric function basis

In [52], Shareshian and Wachs provided a formula for the chromatic quasisymmetric
functions of labeled incomparability graphs in Gessel’s fundamental quasisymmetric
function basis in terms of P-descents, which is given in Theorem 5.2.1. Note that
the labeled path P, = ([n], E) with edge set £ = {{i,i + 1} | i« C [n — 1]} is the
incomparability graph of the poset P on [n] defined by i <p j if j —i > 2. For
o € 6, define DES>y(0) ={i € [n—1] | 0(i) —o(i + 1) > 2}. Then we can see that
for any 0 € &,,, we have DESp(0) = DES>5(0). Also for G = P, one can check that

invg(o) = des(o™!). Hence by applying (5.3) to Xp, (x,t) = W, (x,t), we obtain the
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following expansion:

wWi(x,t) = Y Fn7DES22(J—1)(X)tdeS(U). (6.22)

UEGn

Note that this is a different expansion than the one obtained by applying (5.4).

In this section, we give analogous expansions for wW,<(x, t), wW.S(x, 1), wW,(x, 1),
and wWT‘Z (x, ). These expansions immediately yield expansions for other descent enu-
merators such as W7 (x,t) = Xz (x,t) and for the chromatic quasisymmetric func-
tion of the directed cycle X¢, (x,t). These expansion formulas are different from the
ones obtained by applying (5.4).

For 0 € G,,, define
ASCsy(0) ={ien—1]:0(+1)—o(i) > 2}.
Theorem 6.3.1. For alln > 1,

wW(x,t) = Y t*OF, peso1)(X) (6.23)

UEGn
o(l)<o(n)

an> (X,t) = Z tdes(g)Fn,ASCZQ(Uq)(X) (6.24)
€6,
o(l)>o(n)

wVVn(x,t) = Z thes(a)Fn,DEszz(U—l)(X) (6.25)

0'6671

WWTCLL(X,t) = Z tcaSC(U)FmDESZQ(U—l)(X). (626)

oEB,
Proof of (6.23). The first part of the proof is similar to that of [52, Theorem 3.1} and
Theorem 5.2.2 applied to the n-cycle C),. The second part diverges somewhat from
these proofs.
Part 1: Given an acyclic orientation a of C,,, let E;(C,,) be the set of directed

edges of C,, under the orientation a. Let AO; be the set of acyclic orientations a of
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C,, such that (n,1) € E;3(C,). For each a € AO_, let W; C W, be the set of Smirnov

words w = wyws - - - w, such that the following hold:
o w, < W,
o w; < wjiyq if (1,14 1) € E3(C,) and @ € [n — 1],
o w; > wipy if (i +1,i) € E3(C,) and i € [n — 1].

Let asc(a) be the number of edges of F5(C,,) of the form (i,i + 1) for i € [n — 1].

Then by reversing the Smirnov words, we can see that

W, t) = Y x50 = S @ 5~ (6.27)

weW, acAO; weWs
W1 >Wn,

Now for each acyclic orientation a € AO; define a poset P; on [n] by letting
i <p, jif (i,7) € Ez(C,) and taking the transitive closure of these relations. Let
us define a labeling of P; to be a bijection from P; to [n]. So a labeling is just a
permutation in &,,. A labeling p is said to be decreasing if p(i) > p(j) for all i <p, j.
For any labeling p of P;, let L(P;,p) be the set of linear extensions of P; with the
labeling p.

Now fix a decreasing labeling p; of P; for each a € AO;,. For any subset S C [n—1],
define n — S = {i | n —i € S}. Then by the theory of P-partitions [60, Corollary

7.19.5], we have that
Z Xw = Z FTL,TL*DES(O’)? (628)

weWs o€L(Pa,pa)
where DES(¢) is the usual descent set of a permutation, i.e., DES(c) = {i € [n—1] :
o(i) >o(i+1)}.
Let e : P; — [n] be the identity labeling of P;, and hence L(F;,e) is the set of
linear extensions of P; with its original labeling. Note that o € L(P;,e) if and only

if pao € L(Ps,pa), where pzo denotes the product of p; and ¢ in &,,. Hence from
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(6.28), we have

Z Xy = Z Fn,n—DES(pacr)- (629)

weWs oc€L(Ps,e)
Note that if o € L(P;,e) and a € AO; then ¢ '(1) > o7!(n). Conversely, every
permutation o € &,, with ¢71(1) > ¢7!(n) is a linear extension in L(P;,¢) for a
unique a € AO; . Let a(o) denote the unique acyclic orientation of C,, associated

with 0. Now combining this with (6.27) and (6.29) yields,

Wn< (Xa t) = Z taSC(a(o))Fn,n—DES(p@(U)U)7
€6,
o~ (1)>071(n)

where recall p; () is a decreasing labeling of Py (). Note that asc(a(o)) = des((o)™1),

where ot is the reverse of o. Hence

Wn< (x,t) = Z tdeS((UR)_l)ann—DES((PamU)' (6.30)
ceG,
o ' (1)>0"(n)

Part 2: As in the proof of [52, Theorem 3.1], our next step is to construct a
particular decreasing labeling pa(,) of Py for each o € L(F;,e). However since C,,
is not the incomparability graph of a poset, the construction used in the proof of [52,
Theorem 3.1} does not work in this case. The construction used here is also quite
different from that of Theorem 5.2.2. Let p be the "smallest" maximal element of Fj(,)
(that is, p is maximal in the poset P;(,) and is less than all the other maximal elements
in the natural order on [n]) and let pz»)(p) = 1. Now remove p from the poset and
let ¢ be the smallest maximal element of the remaining poset and let pg(»)(q) = 2.
Continue this process inductively. It is clear that ps) is a decreasing labeling of
P

Claim. If  and y are incomparable in P = Py, then z < y implies pa()(z) <

ﬁ&(a) (y)
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Proof of Claim. One can see this by drawing the Hasse diagram of P minus the edge
(n,1) as a zig-zag path on [n] with the elements of [n]| increasing as one moves from
left to right. The path consists of up-segments and down-segments. An up-segment
is a maximal chain of P of the form a <pa+1<p --- <p a+ j, where 7 > 1, and
a down-segment is a maximal chain with top and bottom removed unless it’s 1 or n,
of the forma >pa+1>p--- >p a+ j, where j > 0.

Below we see an example of one such P on [§].

In our example, the up-segments are 3 <p 4 and 6 <p 7, and the down segments are
1>p 2 5and8.

Between any two down-segments there is an up-segment. Let «; be the ¢th segment
from the left for each ¢. One can see that under the labeling ps(+), the segment a4
gets the smallest labels, the segment oy gets the next smallest labels, and so on. Now
if 2 and y are incomparable, they are in different segments «; and «;. Clearly if z < y
then ¢ < 7, which implies that x gets a smaller label then y. Hence, the claim holds.

Now we show that

DES (pa(o)0) = [n — 1]\ ASCs5(0), (6.31)

for all o € &,,. If i € DES(pa(0)0) then pa0)0(i) > paeyo(i + 1). It thus follows from
the claim that if o(i) and o(i + 1) are incomparable in Py then o(i) > o(i 4 1),
which implies ¢ ¢ ASCsq(0). On the other hand if o(i) and o(i + 1) are comparable

in P, then o(i + 1) covers o(i) since 0 € L(Ps),e). This implies that either
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o(i+1)=0(i)+1oro(i+1)=0(i) — 1. In either case, i ¢ ASC>s(c). Thus

DES(pa()0) C [n — 1] \ ASCx2(0).

Conversely, if i ¢ DES(pa(0)0) then pa)o(i) < pa@yo (i + 1). It thus follows from
the claim that if o(i) and o(i + 1) are incomparable in P,y then o(i) < o(i 4 1).
Since j and j+1 are comparable in P;,) for all j € [n—1}, we have o(i+1)—o (i) > 2.
Thus i € ASC>5(0). On the other hand if (i) and o(i + 1) are comparable in Pj(,)

then o(i) <p

a(o)

o(i + 1) since 0 € L(Py),e). But since p is a decreasing labeling
Pa(0)0 (1) > Payo(i + 1), which contradicts our assumption that i ¢ DES(pa()0).

Hence this case is impossible. We have shown

DES(pa(0)0) 2 [n — 1]\ ASCx2(0),

which completes the proof of (6.31).
Recall that the involution w acts by wF, ¢ = F, ,—1)\s. Hence by (6.31), equa-

tion (6.30) becomes

wWi(x,1) = > IR asca)
o€,
o' (1)>071(n)
_ Z tdes(g_l)Fn,DESzg(a)
o€,

o~ 1)<o~(n)
]

Proof of (6.24). A similar proof can be given here. One can also use (6.23) to prove

this. Indeed, by the involution on W, which reverses Smirnov words, we obtain

W2 (x,t) =" "We(x, t7h).
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By the involution on &,,, which reverses permutations,

Z tdes(U)Fn,ASCZQ(a—l) — Z tn_l_des(U)Fn,DEszz(U_l)’

oe6, oe6,
o(1)>o(n) o(l)<o(n)
The result now follows from (6.23). O

Proof of (6.25). We use the fact that W, (x,t) = tW,=(x,t) + (W, (x,t) — W=(x,1)).
By (6.22) and (6.23),

Wy (x,t) —wW S (x,t) = Z tdeS(U)Fn,DEszz(rl)-

€6,
a(l)>o(n)

It follows from this and (6.23) that

Wn(X, t) _ Z tdes(a)—HFn,DESzz(a*l) + Z tdeS(U)FmDESZz(U*l)

ceG,, ce6,
o(l)<o(n) o(1)>o(n)
_ Z theS(U)Fn,DESZQ(O'*l)‘
oce6,

]

Proof of (6.26). This follows from (6.25) and the fact that W(x,t) = t"W,(x,t ).
O]

6.4 Specializations

There are various ways to specialize expansions in the fundamental quasisymmetric
functions to obtain enumerative results. One way is by setting x; = 1 if i € [m)]

and z; = 0 otherwise, in a formal power series f(x). Recall that we denote this
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specialization by f(1™). It is not difficult to show that (see [60, Section 7.19]),

m+n—1-—|5
Fn,S(]-m) — ( | ‘)7

n

for all S C [n — 1]. It is evident that

W,(1m ) = > el

weW,,N[m|"

Hence by (6.22) and the fact that wF, g = F}, —1)\s:

S e Y g <m+!DESZ2<a—1>|>

weW,N[m|™ ceS, n

for all m,n € P. From this we see that >, cy, Apm» tdes(w) g a polynomial in m with
coefficients in Q[t]. Analogous enumerative results can by obtained by applying the
same specialization to the expansions in Theorem 6.3.1. In this section we obtain
different enumerative results by applying a different specialization, called the stable
principal specialization, to the expansions in Theorem 6.3.1.

In [54] Shareshian and Wachs prove that by taking stable principal specialization

of W, (x,t) one gets the g-analog of the Eulerian polynomials defined by

An<q7t) — Z qmaj(d)fexc(a‘)texc(o-)’

o€,

where maj(o) = > iandexc(o) = |[{i|o(i) > i}|. Shareshian and Wachs obtain
i€DES(0)
in [52], the following g-analog of MacMahon'’s classical result equating the distribution

of exc and des on G,,:

An(q,t) _ Z qmajZZ(U_l)tdes(U)7 (632)

ceS,,

where maj,(0) = Y i
B i€DES >4 (0)
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Now let

(i) = [ilgli = 1]y...[1], and exp,(2) :zg[;j;.

The following g-analog of Euler’s exponential generating function for Eulerian poly-

nomials, ‘
" Z[l]t [;]q!
> At = —= = (6.33)
n>1 A Zt[i —1]; i

is obtained in [54] by taking stable principal specialization of both sides of (6.1).

In this section, we refine their result for the following variations of A, (q,?):

A7<l (q7 t) = Z qmajzz(a'_l)tdes(o'),

An(q,t) = Z qmajzz(afl)tcdes(a)’

o€,

AZ(Q»” = Z qmajzz(Ufl)tcasc(g).

o€,

Theorem 6.4.1. We have

o gt . [Z]t[j [
Dy e — (6.34)
n>2 1 ;t[i — 1] i

n 2 ex z
> Anla.t) [; ;=0 Py(t2) > (6.35)
T e
S A% (g, 1) [;]n = 12 e Py (2) s (6.36)
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For the sake of comparison, note that (6.33) can be restated as

1+ Au(g,1) [nzf = ©XP,(2) - (6.37)
n>1 q- 1_Zt[l_1]t :
i>2 [2]4!

Proof. The stable principal specialization ps(G(x)) of a quasisymmetric function G(x)
is obtained from G(x) by substituting ¢"~! for z; for all 4 > 1. Tt is not difficult to

see that '
> ¢
B ieS
ps(Fr,s(x)) = 1-q¢)(1—¢q?)...(1—¢q")

for all S C [n — 1] (see [60, Lemma 7.19.10]). In particular

1
1—q)(1—=¢?)...(1—q")

ps(wen(x)) = ps(w b (n-1)(x)) = ps(Frg(x)) = (

Hence by (6.23),

A (g, 1)
(I-q)(1—=¢*...(1—=q")

ps(wlW,r(x, 1)) =

We apply w to both sides of (6.7), take the stable principal specialization, and replace
z by (1 —q)z to get (6.34).
Equations (6.35) and (6.36) are obtained similarly, using Corollary 6.2.5 and The-

orem 6.3.1. O

Note that for n > 2, A,(1,t) = A%(1,t). When ¢ is set equal to 1, (6.36) and

(6.37) reduce respectively to

tz e*

S A1) =
n>1 I 1

i>2
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and

n

1+ 3 A (1) =

|
n21 BRSNS

1>2

eZ

Hence for n > 2,

An(1,t) = A%(1,t) = ntA,_1(1,1).

This can easily be proved directly by observing that

Aa 1 t Z Z tcasc T)

0eB, T1€C,
o(n)=n

where C, is the set of circular rearrangements of o. For o € &,, such that o(n) = n,

Z tcasc(‘r) — ntcasc(a) — ntasc(a\n,1)+1’
T7€Cs

where o|,,—1 denotes the restriction of o to [n — 1].

6.5 Expansion in the power sum symmetric func-
tion basis

In [52, Proposition 7.9], Shareshian and Wachs proved that for each A F n, the

coefficient of 2y 'py(x) in wW,(x,1) is

1)
Ay (@) TN (6.38)

i=1

where Ag(t) are the classical Eulerian polynomials defined in Section 2.1.

From Theorem 5.3.7, we know that the coefficient of 1p,(x) in WwW7(x,t) is

ntln — 1]y, (6.39)
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and for A F n with I(\) > 2, the coefficient of z; 'py(x) in wWW7(x, 1) is

ey
TLtAl()\)_l@) H[/\l]t (640)

=1

Here we present some more results of this style for the restricted Smirnov word enu-

merators.

Theorem 6.5.1. For all A\ n, the coefficient of 2y 'px in WW,=(x,t) equals

d (N
g Ao H

=1
where Ay(t) = t71.
From this theorem, we get the following corollary.

Corollary 6.5.2. The coefficient of zy 'px(x,t) in wW,(x,t) is

1)
A1) S At TN (6.41)
i=1 j#i

where again we let Ag(t) =t~

Proof. Recall that W, (x,t) = tWS(x,t) + (W,(x,t) — W=(x,1)). Fix A\ F n with
[(A) = k. Then combining (6.38) with Theorem 6.5.1 gives us that the coefficient of

2 A (x) in Wy, (x, 1) is

(=1L A, ﬂ D)+ At ﬁmt. (6.42)

d =1 =1

When A = (n) and hence k = 1, one can easily check that the corollary holds. If

A # (n) and hence k > 2, we can use the well-known identity that

Ap(t) =t(1 =) A, (t) + (1 + (k — 1)t) Ap—1(t)
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along with (6.42) to prove the corollary. ]

In this thesis, we present a combinatorial proof of Theorem 6.5.1 using our F-basis
expansion of Theorem 6.3.1, but in the author’s paper with Wachs [22], we give an
algebraic proof that uses our e-basis expansion from Theorem 6.2.1. For our proof of
Theorem 6.5.1, we will need a lemma, but first let us define some notation.

For 0 € &,,, define the number of (< 2)-inversions of o by inv.y(c) = des(c™1),
ie.,

invs(0) = |{i € [n—1] | o71(5) > o1 (i + 1)}I.

For a word w = wyws - - - w; with distinct letters over the alphabet [n], we say that w;

with i > 1 is a (> 2)*-mazimum of w if
2<w;—w; <n-—1

for all 1 < j < i. Note that if 1 precedes n in w, then n is not considered a (> 2)*-

maximum.
Let A = (A, Ao, -+, A) F n and define N5 as the set of all 0 € &,, such that

o(1) < o(n) and when 0!

, written in one-line notation, is broken up into contiguous
segments oy, g, -+, of sizes A, A9, -+, A\, respectively, each «a; has no (> 2)-

descents and no (> 2)*-maxima.

Lemma 6.5.3. For alln > 1,

wWE(x,1) = 3 2itpa(x) Y =@ (6.43)

An oENS

Proof. Note that this proof is similar to that of Theorem 5.3.5. Combining Propo-

sition 5.3.2, Equation (6.23), and the fact that for all o € &,,, we know des(o) =
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inv_,(c~1), we have that

an< (X, t) _ Z Z;lp)\(X) Z (_1)|DESZQ(0*1)\S(A)\tinv<2(a*1) (644)
AFn O'Een
o(l)<o(n)
DE822(0'71 eUx

For each A F n, define
Dy ={0 €&, |0o(l) <o(n) and DESsy(c7 ") € Uy}

Notice that Ny C D5. We will find a sign-reversing, inv_s-preserving involution

o5 : Dy — Dy that fixes all elements of Ny and for each o € DY\ N5, we have
« (¢X)(0) =0,
« ¢x changes | DESs2(071)\S(A)| by 1, and
o invy(o7t) = invey (o5 (o7h)).

Let A = (A1, Ag,-++,A) F nand 0 € DY\Ny, and let 07!, written in one-line
notation, be broken into contiguous segments o, g, -+ ,a; of sizes A\, Ao, -+, N\
respectively. Let ¢ be the smallest index such that «; contains a (> 2)-descent or a

(> 2)*-maximum. Then «; is of the form

al - 0-87;_1—‘1-10-8,;_1—"-2 T Uk—lo-ko-k+1 e 0-87;7

where s; —sj_1 > 2for s;1 +1 < j <kands; —s;j11 <2fork <j<s; Then ¢5

will change «; according to the following cases and will fix all other «;.

Define o, as the largest (> 2)*-maximum of «; such that m > k. If there is no
such m, then define o, =0

Case 1:0,, # 0
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Then move o, before o, 1. This will increase (> 2)-descents by 1 since o, —
0s,_,+1 > 2. 1f m # s;, we should check that we do not create a (> 2)-descent between
Om—1 and o,,41. But 0, — 0,,_1 > 2 and since there is not a (> 2)-descent between
om and 0,41, we know o, — 01 < 2. S0 0411 > 041, meaning we do not create a
new (> 2)-descent here. Since o, —0; > 2 for all s;,_; +1 < j < m, then this will not
change the (< 2)-inversions of o~!. Since we do not allow n to be a (> 2)-maximum
if it follows 1, we will still have that ¢5(0)(1) < ¢5(0)(n). One can easily see that

ox (o) is still in D5.

Case 2:0,, =0

Then move o, 41 to the first place after o that will not create a new (> 2)-
descent. This will decrease the (> 2)-descents by 1 . This will not change the (< 2)-
inversions, because for all o; with s,_; +1 < j < k we have that o5, , 41 —s; > 2
and for any o; with k > j if |o; — 05, 41| < 2, then o5, , 41 would be placed before
o; since this would not create a new (> 2)-descent. Notice that 1 # o, , 41 in this
case, because this would imply that «; has no (> 2)*-maxima and no (> 2)-descents.
Hence we still have that ¢5(0)(1) < ¢5(0)(n). One can easily see that ¢5 (o) is still
in DY.

Note that Case 1 and Case 2 will reverse each other and hence ¢5 (o) is an
involution. The only elements of D5 that remain are those of Ny. Since for all

o € Ny, we have DESso(07!') C S()), we are done. O

Proof of Theorem 6.5.1. Note that this proof is similar to the proof of Theorem 5.3.7.

We will use the fact that for each A - n, the coefficient of 23 'py(x) in W,=(x, 1) is

des(o) _ invea (o)
ot ot :

0ENY oENYT
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Let A\ = (A1, A, -+, Ax) be a partition of n and let ¢ € Ny so that o~ ! is
partitioned into pieces, aq, g, - - -,y of sizes A1, Ao, - -+ , A\ so that 0 = ajan - - - ay,
where - represents concatenation. Then we know o € Ny if and only if each «; has

0 (> 2)-descents and no (> 2)*-maxima.

Let C,, = ([n], E) be a graph defined by F = {{i,i + 1} | i € [n — 1]} U{{1,n}}.
For each «;, we will construct a connected acyclic digraph a on the letters of a; such
that the underlying undirected graph G; is an induced subgraph of C,,.

Let a be the directed graph whose vertex set is the set of letters of «; and whose
edges have the form (a,b) if b precedes a in «; and {a,b} € E(C,,).

For example, let n = 9, A = (4,3,2) and o = 543687921. Then a; = 5436,

as = 879, and ag = 21. The corresponding acyclic digraphs as as shown below:

©
(4 & Q@ O,

9 (o)
9 (=)

G,

Define a sink of a digraph to be a vertex with no outgoing edges.
Claim: For each o0 € N with 0 = ajag - - - ay, the a associated to each «; is a

connected acyclic digraph with a unique sink, which is the first letter of «;.

Proof of claim: 1t is clear from the way 3@ is defined that it must be acyclic. Then
we only need to show that there is a unique sink, which would also imply that 8@ is
connected.

Suppose some a has two distinct sinks. Then let a; = ajas---ay, be the part
of o associated to a It is clear that a; must be a sink. So let a; be the sink with

I # 1 such that I is minimal. Then the induced subgraph of C,, on the vertices of
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{a1,as,...,a;_1} is connected; otherwise, this set would contain more than one sink

of C?Z

Case 1: n € {aj,as,...,a;_1}.

Suppose a; = n. Then in order to avoid (> 2)-descents, we must have a;4; =
n—1la1 =n—2,...,a;-1 =n— (I —1—j). But then again to avoid a (> 2)-
descent, we must have a; = n — (I — j). But then there would be an edge of 3,

oriented from a; to ay_q, contradicting the fact that a; is a sink of a )

Case 2: n ¢ {aj,as,...,a5_1}.

Since {ay, as, . ..,a;_1} form a connected subgraph of C,,, we must have that there
exists ¢,d € P such that {aj,as,...,a;1} = {¢,c+1,...,d}. Then we cannot have
a; < ¢—2, because this would create a (> 2)-descent between a;_; and a;. We cannot
have a; > d + 2, because either this makes a; a (> 2)*-maximum or in the case that
¢ =1 and a; = n, this means there is an edge from a; = n to 1 in a-, contradicting
the assumption that a; is a sink. Then we must have that a; =c—1or a; =d + 1.
But then there is an edge from a; to ¢ or d, respectively, so a; cannot be a sink of C?l

So our claim is proven.

From the claim, we see that if A\ # (n), each underlying undirected graph, G;, is
a path of length \; in C,,. If A = (n), then G; = C,,.

We can uniquely recover ¢ from the k-tuple (Cj’i, 5’;, e ,(7;:) Indeed for each
a, recreate «; by starting with the sink of a Then remove this vertex from a
and choose the sink of the remaining digraph with the smallest label to be the second
letter of c;. Then remove this sink from the remaining digraph and repeat the process

until all vertices of 8@ have been used.
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Notice that the number of (< 2)-inversions of «; is the number of directed edges

of the associated 3@ of the form (j,7 + 1) with j € [n — 1].

Case 1: A = (n).

In this case (71> is an acyclic orientation of C), with a unique sink (and hence a
unique source, i.e., a vertex with no incoming edges) and so that the edge between
1 and n is oriented from n to 1. So we need to find the number of (< 2)-inversions
of the corresponding o~ !, i.e., the number of edges of C—T‘l> of the form (i,7 4+ 1). In
order to construct an acyclic orientation of C,, meeting our criteria, we can choose
any 1 < j < n to be our sink. Then we must choose a k with 7 < k < n to be our
source. Then 671) has edges of the form (i,i+1)for 1 <i<j—land k <i<n-—1.
Summing over all acyclic orientations of C,, with a unique sink and with the edge

tj_1+n_k = % [n]t

(n,1), we get that the coefficient of 1p, in wW(x,t) is Xi<jcpen

Case 2: A\ # (n).

For a,b € P with b < a, define a V-digraph 7,1,1, to be a digraph with vertex set
{v1,v9,- -+ ,v,} and edge set {(vi, viy1) | 1 <@ < b} U{(vig1,v:) | b <i < a}. We will
call vy the first vertex of 7(1,;, and v, the last vertex of 7%1,. For 1 < i < a we say
the successor of v; is v;41. Let V,, denote the underlying undirected graph of Va,b.
For all a,b € P with b < a, we can see that V, is a path. For example, 7472 is shown

below:

=
Vi

Case 2a: 0 € N5 with 1 and n in the same «;
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Let A = (A1, A2, -+, Ax). Then we will construct a bijection from the set
N5 (s) :={o € N5 |1 and n in the same «; of o}

to the set MY of (k + 3)-tuples
(I’j’ /”L7 7)\1,1)1’ 7)\271127 e ) ?)\Imbk)’

where
o 1€ Gy is a k-cycle

e 250 < Ag

for each 7 # I, we have 1 < b; < \;
e 1<j<b -1

Let 0 € N (s). Define I so that a; contains 1 and n. Recall our earlier map from
o € Ny to the k-tuples (C_T’1>,C_¥2>, . ,CT;Z) For each 1 < i < k, define b; as one more
than the number of edges of C?l of the form (4,7 + 1) for some ¢ € [n —1]. Then 7,\1,
is simply a without labels. Since 1 and n are in 8 7, we will automatically have
2 < by < A;. To determine p = (ay,as, - -+ ,ax), we start by letting a; = I. From the
remaining 8, with ¢ # I, let GT]Z be the digraph with the smallest label on its sink.
Then let as = j5. From the remaining C?i, let GTJ: be the digraph with the smallest
label on its sink. Then let a3 = j3. We continue this process until we find a;. Lastly,
let 7 be the label on the sink of CT;

In the other direction, suppose we have

(Ivjv Ly 7>\17b17 7/\2,1327 e 77)\1“1719) € M)?
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For each 1 <7 < k, we will say that the successor of the last vertex of 7,\1-,1;1- is the

_>
first vertex of 7 A Place the label j on the sink of GG;. Then place a 7+ 1 on its

(%) abu(i) .
successor, a j + 2 on the successor of that vertex, etc. When we finally place the label
n on a vertex, then place a 1 on its successor, a 2 on the successor of that vertex,
etc. until all vertices are labeled. Now the labeled 7 b i the same as @ , SO wWe can

recover o as described earlier. One can check that this is a bijection.

Now suppose we have some o € Ny (s) that corresponds to
(Iajv 2 7)\1,1717 7)\2,1127 ) 7>\k7bk) S M}%

Notice that using the bijection, the number of (< 2)-inversions of «; is equal to b; — 1
for ¢ # I and equal to b; — 2 when ¢ = I. One can check that the number of (< 2)-
inversions between distinct ; in o~! is the same as the number of excedances of p=1.

Using Lemma 5.3.6, we see that

3 pexe(nt) _ 3 texel) — ¢ A, (t).

HES, HES
u k—cycle w k—cycle

Then we get the following formula

Ai A] b[*l
Z 7flnv<2(0'_ ) — Z texc(,u‘ )( H Z tbifl)(z Z tb172)
cENZ(s) HES) 1§;’§k bi=1 br=2 j=1
Ar
= tA (O IT (2 (b = 1) 2)
1<i<k b =2
£l
d k
a0 T

Case 2b: 0 € N with 1 and n in different «;
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Let A = (A1, A2, -+, Ax). Then we will construct a bijection from the set
Ny (d) =={o € N5 | 1 and n in different «; of o}

to the set Mfl of (k + 2)-tuples
Gt Vs Vst V),

where

o j€[K]

o 1€ Sy isa k-cycle with u(j) < j
o for each i, we have 1 < b; < \;

Let 0 € N5 (d). Recall our earlier map from o € N to the k-tuples (CT;, CT;, cee CT;Z)
For each 1 < i < k, define b; as one more than the number of edges of a of the form
(7,i+1) for some i € [n—1]. Then 7,\i7bi is simply C?Z without labels. Define j so that
a; contains n. To determine p = (ay,az,--- ,ay), we start by letting a; = j; where
GTJ: contains the vertex labeled 1. From the remaining 571-, let GT]: be the digraph with
the smallest label on its sink. Then let ay = js. From the remaining a, let G—J: be
the digraph with the smallest label on its sink. Then let a3 = j3. We continue this
process until we find a,. Notice that a; will be 7, so since 1 precedes n in o, we have
that a; = u(j) < ay.

In the other direction, suppose we have
(j7 22 7)\1,b17 7)\271727 T 7)\k’bk) € Mg

For each 1 <7 < k, we will say that the successor of the last vertex of 7,\1-,1;1- is the

%
first vertex of V} At b Place the label n on the last vertex of Gj. Then place a 1

(i) *
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on its successor, a 2 on the successor of that vertex, etc. until all vertices are labeled.
Now the labeled 7 A b, 1S the same as a-, so we can recover o as described earlier.
One can check that this is a bijection.

Now suppose we have some o € N (d) that corresponds to
(j’ H, 7/\1,b1a 7)\z,bza Ty 7)\k,bk) € Md

Notice that using the bijection, the number of (< 2)-inversions of «; is equal to b; — 1.
One can check that the number of (< 2)-inversions between distinct a; in 07! is one

less than the number of excedances of ~1. Then one can see that

. k—1 Ai
Z tmv<2(cr*1) _ Z texc(/,nfl)—l(H tbi—1>
geNS(d) j=1 neSy i=1b;=1
u is a k-cycle
n(3)<i
k—1 k
— Z texc(ufl)_l(n[/\i]”
j=1 HES), i=1
u is a k-cycle
BrG)>g
k
= > (exe(u eI TN
pneSy =1
u is a k-cycle
d k
= S (A O[T

=1

Then Case 1 gives us our result when A\ = (n), and putting together Case 2a

and Case 2b gives us our result when A # (n).
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6.6 The labeled cycle

Let C,, = ([n], E) be the labeled cycle, i.e., let E = {{i,i+1} |i € [n—1]}U{{1,n}}.
Recall that the chromatic quasisymmetric function X¢, (x,¢) of the labeled cycle is
different than the chromatic quasisymmetric function X c—,:(X, t) of the directed cycle.
In this section, we will present a generating function for the chromatic quasisymmetric
function X¢, (x,t) of the labeled cycle in terms of the elementary basis, which follows
from our work on descent enumerators of Smirnov words. Using our formula we
show that X, (x,t) is e-positive. This is interesting, because for n > 4, C,, is not
a natural unit interval graph, nor is it a circular indifference digraph (when turned
into a digraph by orienting edges from smaller label to larger label). So X¢, (x,1)
is not included in the e-positivity conjecture of Shareshian and Wachs (Conjecture
4.2.2), nor in the generalized e-positivity conjecture (Conjecture 5.5.1). In fact, it is
not even included in the symmetry result of Shareshian and Wachs for labeled graphs
or our symmetry result for directed graphs (see Corollary 5.4.7).

From each proper coloring  : [n] — P of the labeled cycle C,,, we can form a
Smirnov word w = k(n)k(n — 1)---k(1). From this correspondence, we see that we
get the relationship

Xo, (x,t) = WS (x,t) + tW, (x, ). (6.45)

Since W,s(x,t) and W, (x,t) are symmetric, we get that X¢, (x,?) is symmetric as
well. By combining (6.45) with the formulas given in Theorem 6.2.1, we get the

following corollary.

Corollary 6.6.1 (of Theorem 6.2.1). We have,

3 Xe, (x,1)2" = Z"ZQ([Q]t[i]t&Z t[’g Aelx)z (6.46)

n>2
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where D(x,t,2) =1 =Y t[i — 1;e;(x)2" as defined in (6.10), and [—n], = 51 =
i>2
—t~"[nl; forn > 0.

Note that (6.46) reduces to Stanley’s formula (3.4) for the chromatic symmetric

function X¢, (x) when ¢ = 1.
Theorem 6.6.2. Let n > 2.
1. If n is odd, X¢,(x,t) is e-positive, palindromic, and e-unimodal with center of
symmetry g
2. If n is even,

(a) Xc,(x,t) is e-positive and palindromic with center of symmetry %3, but is
not e-unimodal.
(b) Xc, (x,t)+tze,3(x) is e-positive, palindromic, and e-unimodal with center

of symmetry 3.

Proof. Let U,(x,t) and V,,(x,t) be defined respectively by

([2]e[20: + 2£%[2 — 3]e)ea(x) 2

%:2 Ul 02 = D(x,t,z2)
and
n 2isa([2]efi]e +it?[i — 3l)ei(x)z"
%Vn(x, e = D(x,t,z) '

Then X¢, (x,t) = U, (x,t) + Va(x,1).

We have,

n (T+t)ey(x)2?
2 Unx,1)" = D(x.t, 2)

n>2

It follows from (5.17) that

m

Un(x,) = Y > ese, - e, (14 ) [[ (ki — 1] (6.47)

m>1 . =2
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Note that for any k£ > 3

(L+ D[k, = L+t 4267 4 - 42771 7 4 th

and for k = 2,

(1+t)[k), =1+t +2+ 1

k+1
5

In either case, (1 + t%)[k]; is palindromic and unimodal with center of symmetry

We will now use Propositions B.1 and B.3 of [52]. Consider the term of the right
side of (6.47) corresponding to the (m—1)-tuple (ko, ..., k). If k; > 3 for some j then
since (1+t?)[k; — 1], is positive, palindromic, and unimodal, t™~ (14 ¢2) [T, [k — 1]

is a product of positive, palindromic and unimodal polynomials. Hence t™ (1 +

t2) T, [k; — 1]; is positive, palindromic and unimodal with center of symmetry

k,. m
— 14+ 2
m +2+; 5

i#]

It follows that the coefficient of each e, in U, (x,t), where A has a part of size at least
3, is positive, palindromic and unimodal with center of symmetry 7. If A does not
have a part of size at least 3 then all the parts must be 2, which means that n is
even. Hence if n is odd then U, (x,1) is e-positive, palindromic, and e-unimodal with
center of symmetry 5

Now if A does not have a part of size at least 3 then A = 2™, where n = 2m. By
(6.47), the coefficient of ey in U,(x,t) is t™ (1 + ?). Tt follows that if n is even,
Un(x,t) + t™egm is e-positive, palindromic, and e-unimodal, with center of symmetry

m =

0|3

It follows from Lemma 5.5.3 that V,,(x,t) is also e-positive, palindromic, and e-
unimodal, with center of symmetry 7. Since X¢, (x,t) = U, (x, 1)+ V,(x, ), Parts (1)

and (2b) hold. Palindromicity of X¢ (x,t) in the even case follows from Part (2b).
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The assertion in Part (2a) that X¢, (x,t) is not e-unimodal in the even case follows

from the fact the coefficient of egn(x) is not unimodal. O

6.7 Combinatorial proof of symmetry

It follows from our e-basis expansions of W= (x,t), W~ (x,t), and X¢, (x,t) that they
have symmetric function coefficients. In this section, we give a combinatorial proof

of symmetry.
Theorem 6.7.1. W;s(x,t), W (x,t), and X¢, (x,t) are in Ag|t].

Proof. For this proof, we will view Smirnov words w = wyws - --w, with w; < w,
as proper colorings C<(C,,)of the labeled cycle graph C,, = ([n], E') where the colors
increase along the edge {1,n}, i.e., kK € C<(C,) means that x : [n] — P is a proper
coloring of C,, and k(1) < k(n). Then des(w) is the number of edges {i,i + 1} of C),
where k(i) > k(i + 1).

For each a € P, we will define an involution w, on the set C<(C,,) that exchanges
the number of vertices colored with a and the number of vertices colored with a + 1
but does not change the number of descents of the coloring. This then proves the
theorem.

Notice that for any a € P and any coloring k € C<(C,,), either the entire graph is
colored with the colors a and a+ 1 (in which case n must be even) or the parts of the
graph colored with a and a 4+ 1 form a set of disjoint paths (see Lemma 5.4.4). For
the purpose of describing w,, we will define an a-chain as a maximal path in C,, such
that each vertex is colored with either a or a 4 1, and define the length of an a-chain
to be the number of vertices in the path. Now let k € C'<(C,,) and define w, (k) as

follows:

(1) For a-chains of odd length, w,(x) switches the colors a and a+1 on the vertices.
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(2) If both vertex 1 and vertex n are contained in an a-chain of odd length, then

let i be the end vertex of the chain with the smallest value.

(2a) If i is even, then after the a and a + 1’s are switched, shift the colors down a

vertex, i.e., wy(k)(j— 1) = k(j) for 1 < j < n, and w,(k)(n) = k(1).

(2b) If iis odd, then after the a and a+ 1’s are switched, shift the colors up a vertex,

e, wa(k)(J+1)=~r(j) for 1 <j<n,and w,(k)(1) = k(n).

First let us check that w, is well defined, i.e., that for any x € Cs we have that
wa (k) € Cx. It is easy to see that w,(k) is a proper coloring of C,,, so we just need to
check that w,(k)(1) < w,(k)(n). If at most one of 1 or n is colored with a or a + 1
then w, should not affect the relative order. If both 1 and n are colored with ¢ and
a + 1 then we must have k(1) = a and x(n) = a + 1. If these are contained in an
even a-chain, then the colors do not change, so their relative order remains the same.
If they are contained in an odd a-chain, then initially their colors will be switched;
however, whether we fall into Case 2a or Case 2b, once the colors are rotated, we
again have w,(k)(1) = a and w,(k)(n) = a + 1, so again their relative orders remain
the same. Hence w, is well-defined.

Note that w, is an involution, which follows easily from the fact that step 2 will
cause an odd a-chain that contains 1 and n to still be an odd a-chain that contains 1
and n and the label of vertex i mentioned in step 2 switches parity, hence, applying
wq(we(k)) = k. Similarly it is easy to see that w, switches the number of occurrences
of the color @ and the number of occurrences of the color a + 1.

Now we need to check that w, preserves descents. Clearly, w, preserves the number
of descents in a-chains of even length, because nothing changes. In chains of odd
length that do not contain 1 and n, notice that there is always the same number of
ascents as descents, so once the colors are switched, all ascents become descents and

vice versa, but the number of descents remains the same.
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To see that w, preserves the number of descents in a-chains of odd length that

contain 1 and n, let us look at the two cases. Let i be the end of the a-chain containing

1 and n with smallest label, and let n-j be the label on the other end of the a-chain.

We can divide this a-chain into two parts, P, and P,. Let P; be the part of the a-chain

from 1 to i and let P, be the part of the a-chain from n-j to n.

(3a)

If i is even, then in k we see that P; contains one more ascent than descent, but
P, contains the same number of ascents as descents. Once the colors of a and
a+ 1 are switched, P, still contains the same number of ascents as descents, but
now P; contains one more descent than ascent. When we rotate the colors, P;
loses a vertex, but now it has the same number of ascents as descents, and P,
gains a vertex, but now it has one more ascent than descent. Also notice that
when we rotate the colors, it does not change the number of descents of the rest

of the coloring.

If i is odd, then in xk we see that P; contains the same number of ascents as
descents, but P, contains one more ascents than descent. Once the colors of a
and a+ 1 are switched, P; still contains the same number of ascents as descents,
but now P contains one more descent than ascent. When we rotate the colors,
P loses a vertex, but now it has the same number of ascents as descents, and
P, gains a vertex, but now it has one more ascent than descent. Also notice
that when we rotate the colors, it does not change the number of descents of

the rest of the coloring.

Hence w, is an involution that changes the number of occurrences of a and a + 1

in each proper coloring in C<(C,,) and preserves the number of descents, so we see

that W=(x,t) € Az[t].

Notice that if we apply w, to C~(C,,), the set of colorings, x, of C,, with k(1) >

r(n),

then w, preserves the number of descents of the coloring and switches the
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number of occurrences of color a and color a + 1, so this shows that W~ (x,t) is
symmetric as well.

We can also apply w, to all proper colorings of C,,. We see that w, would preserve
the descents of each coloring and switch the number of occurrences of color a and

color a + 1, which shows that X¢, (x,?) is symmetric. O
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Appendix A

Graph classes

In this section, we will discuss a few properties of circular indifference digraphs, which
we defined in Section 5.4. Then we will take a look at how these graphs relate to

other graphs found in the literature.

Definition A.0.1. Suppose we have a finite collection of arcs positioned around a
circle of any radius so that no arc properly contains another. We consider the starting
point of an arc as the counterclockwise-most endpoint of the arc. We can construct a
digraph, which we call a proper circular arc digraph by assigning a vertex to each arc
and having an edge from arc A to arc B if the starting point of arc B is contained in

arc A. The underlying undirected graph is called a proper circular arc graph.

Example A.0.2. Here we see a collection of proper circular arcs positioned around

a circle and the corresponding proper circular arc digraph.
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Theorem A.0.3. Let 8 be a connected digraph. Then the following statements are

equivalent:
1. 8 s a proper circular arc digraph.
2. 8 1s a circular indifference digraph.

Proof. First let’s show (2) = (1). Let @ be a circular indifference digraph on [n]

that comes from the set of circular intervals

I'={lai, b}, [az, b, -, [ak, by]}

of [n]. From these intervals, we can construct a set of intervals

I= {IL,a1], 2,3, -, [y 0]}

such that for each i € [n], we have that [i, ¢;] is the largest circular interval that is
contained in an interval of I and that has ¢ as its left endpoint. It is easy to see that
each interval in / must be contained in an interval of I and vice versa, so I and I are
both associated to 8

We will construct n proper arcs on a circle so that the corresponding proper
circular arc graph is 8 Draw a circle and place n points equally spaced around the
circle. Label these points in cyclic order with [n]. For each circular interval of I, we
will place an arc on the circle. Start with a circular interval [i,c;] € I of maximal
size and draw an arc from slightly before i to slightly after ¢;. Continue this process
with all the circular intervals of I in weakly decreasing order of their sizes. Note that
if the next interval has right endpoint the same ¢; as a previous interval, the newest
arc (coming from a circular interval of smaller size) should extend slightly past the

previous arc to avoid having one interval properly contained in another.
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The arc we construct from the interval [i, ¢;] that starts just before i on the circle
is the arc that corresponds to vertex ¢ in 8 Since arc ¢ will contain the starting
points of all the arcs corresponding to the vertices in [i, ¢;|, we have that (i, ) is an
edge of the proper circular arc digraph for each ¢+ < j < ¢;. From here, we can see
that the proper circular arc digraph associated to this set of arcs is isomorphic to the
circular indifference digraph, Zf, we started with.

Here is an example of this process. Suppose we have the circular intervals
I = {[17 3]7 [374]7 [47 5]7 [57 1]}

on [n]. Then

I= {[1,3],[2,3], 3, 4], [4,5], [5, 1]}.

The arcs that we would draw are shown in the figure below. We can see that both 1

and the arcs on this circle are associated with the digraph given below.

&

Now let’s show (1) = (2).
Let 8 be a proper circular arc digraph on n vertices that comes from some proper

arc representation on a circle. Label one of the arcs 1. Now find the first arc that
begins clockwise after arc 1. Label this arc 2. Then find the next arc that begins
clockwise after arc 2. Label this arc 3. Continue this until all n arcs are labeled with

the labels [n]. Now create a set of circular intervals of [n], called I, as follows.
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Let I be the set of all [7, j] such that arc ¢ contains the starting point of arc j. If
arc ¢ contains the starting point of arc j, then it must also contain the starting point
of all arcs in [4, j], hence we can see that the proper circular arc digraph associated
with the set of arcs on the circle is isomorphic to the circular indifference digraph on

[n] associated with I. O

Another class of graphs we want to look at is the class of simple digraphs that do
— —
not have any induced subgraphs isomorphic to K75 and Ky; as defined in Section 5.4

and displayed below.

@<—O®—@ @—>®<—0©

— =
For notational convenience, we will call these { Ko, K }-free digraphs.

Theorem A.0.4. Let G be a simple connected graph. Then the following statements

are equivalent:
1. G is isomorphic to a proper circular arc graph.
2. G is isomorphic to a circular indifference graph.
3. G admits an orientation that makes it a {[71;, [Tgi}—free digraph.

Proof. The equivalence of (1) and (3) was shown by Skrien in [56], and the equivalence
of (1) and (2) follows from Theorem A.0.3. O

Now let us look at the non-circular version of these graphs.

Definition A.0.5. Suppose that we have a collection of intervals, I, of the ordered
set [n]. Then we can construct a graph, G = ([n], E), with edge set E = {{i,j} | i #

j and 7, j contained in the same interval of /}. This is called an indifference graph.
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Definition A.0.6. Suppose we have a finite collection of intervals on the real line. We
can associate a graph to this interval representation by letting each interval correspond
to a vertex and allowing two distinct vertices to be adjacent if their corresponding
intervals overlap. This is called an interval graph. If no interval properly contains
another, this is called a proper interval graph. If each interval has length 1, this is

called a unit interval graph.

Note that unit interval graphs are just natural unit interval graphs, defined in
Section 4.2, without the labels. The following theorem is the acyclic or non-circular

version of Theorem A.0.4.

Theorem A.0.7. Let G be a simple graph. Then the following statements are equiv-

alent:
1. G is isomorphic to a proper interval graph.
2. G is isomorphic to a unit interval graph.
3. G is isomorphic to an indifference graph.
4. G admits an acyclic orientation that makes it a {ITH), Ia}—free digraph.

The equivalence of (1) and (2) was shown by Roberts in [50]. The equivalence of
(1) and (4) was shown by Skrien in [56]. The equivalence of (1) and (3) is well-known,
but can be shown by an analogous argument to the one given in the proof of Theorem
A.0.3.

Note that if we turn a natural unit interval graph of Shareshian and Wachs into a
digraph by orienting edges from smaller labels to larger labels, then we get an acyclic
{ES, K—gi}—free digraph, and in fact, every acyclic {Eg, K—gl>}—free digraph comes from
a natural unit interval graph (see [52, Section 4] for more information on natural unit

interval graphs).
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