
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2012-06-02

The Topology of k–Equal Partial Decomposition
Lattices
Julian A. Moorehead
University of Miami, julianm1382@yahoo.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Moorehead, Julian A., "The Topology of k–Equal Partial Decomposition Lattices" (2012). Open Access Dissertations. 799.
https://scholarlyrepository.miami.edu/oa_dissertations/799

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/799?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


UNIVERSITY OF MIAMI

THE TOPOLOGY OF K–EQUAL PARTIAL DECOMPOSITION LATTICES

By

Julian A. Moorehead

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

June 2012



c©2012
Julian A. Moorehead
All Rights Reserved



UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

THE TOPOLOGY OF K–EQUAL PARTIAL DECOMPOSITION LATTICES

Julian A. Moorehead

Approved:

Michelle Wachs Galloway, Ph.D.
Professor of Mathematics

Drew Armstrong, Ph.D.
Assistant Professor of
Mathematics

Orlando Alvarez, Ph.D.
Professor of Physics

Dean of the Graduate School

Marvin Mielke, Ph.D.
Professor of Mathematics



MOOREHEAD, JULIAN A. (Ph.D., Mathematics)
The Topology of k–Equal Partial Decomposition Lattices (June 2012)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Michelle Wachs Galloway.
No. of pages in text. (118)

The lattice Bn of subsets of the set {1, 2, ..., n} ordered by inclusion and the

lattice Πn of partitions of {1, 2, ..., n} ordered by refinement are two of the most

fundamental examples in the theory of partially ordered sets (posets). A natural

well-studied q–analogue of the subset lattice is the lattice Bn(q) of subspaces of

the n–dimensional vector space Fn
q over the field Fq with q elements ordered

by inclusion. There are many justifications for viewing this as a q–analogue. One

comes from the fact that the number of maximal chains of Bn is n!, while the

number of maximal chains of Bn(q) equals the q–analogue of n! which is defined

by

[n]q! := [n]q[n− 1]q . . . [1]q,

where [n]q := 1 + q + · · ·+ qn−1. Another justification comes from studying

the topology of a certain simplicial complex associated with the poset, called the

order complex. The order complex associated with Bn is homeomorphic to a

single sphere of dimension n− 2, while the order complex associated with Bn(q)



has the homotopy type of a wedge of q(
n
2) spheres of dimension n− 2.

It is well-known that the order complex associated with Πn has the homotopy

type of a wedge of (n− 1)! spheres of dimension n− 3. Various q–analogues of

the partition lattice Πn have been proposed over the years, starting with the

Dowling lattices introduced in a 1973 paper of Dowling. Posets studied by Welker

and by Hanlon, Hersh, and Shareshian involve direct sum decompositions of

vector spaces over Fq. While these posets have interesting properties analogous

to those of Πn, such as having the homotopy type of a wedge of spheres, none

have the desirable property that the number of spheres is a q–analogue of (n−1)!.

The q–analogue proposed in this thesis is the poset Πn(q) of direct sum

decompositions of subspaces of Fn
q whose summands all have dimension at

least 2, ordered by inclusion of summands. This is actually a q–analogue of a

poset that is isomorphic to Πn, namely the poset of partitions of subsets

of {1, 2, ..., n} in which each block has size at least 2. We show that the order

complex associated with Πn(q) has the homotopy type of a wedge of f(q)[n−1]q!

spheres of dimension n− 3 where f(q) is a polynomial in q that is equal to 1

when q is set equal to 1.

In order to prove this result, we initiate a study of a much more general class

of posets, which includes Πn, Πn(q), and the k–equal partition lattices introduced

by Björner, Lovász, and Yao in 1992. The k–equal partition lattice Π=k
n is



the subposet of Πn consisting of partitions for which each block has size

at least k or 1. In this general class, the roles of Bn and Bn(q) in the

definitions of Πn and Πn(q) are played by an arbitrary geometric lattice L. We

use shellability theory to prove that the order complex associated with a general

k–equal decomposition lattice Π=k
L has the homotopy type of a wedge of spheres

in varying dimensions when k > 2 and just in dimension n− 3 when k = 2.

Shellability theory also enables us to derive a complicated formula for the number

of spheres in each dimension. The nontrivial step of reducing the complicated

formula in the case of Π=2
Bn(q) = Πn(q) to the desired fn(q)[n− 1]q! formula

uses Stanley’s theory of exponential structures.
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Chapter 1

Introduction

From a combinatorics perspective, the application of topology to the theory

of partially ordered sets greatly enriched the field. Beginning with the Möbius

function and its connection to the reduced Euler characteristic of the order complex

of a poset, poset topology has become an important tool itself, with applications

to subspace arrangements and complexity theory, among other things. For further

information on topology of posets, see [21].

Given any finite poset P , define a chain as any totally ordered subset of P ,

and define the order complex ∆(P ) of P as the abstract simplicial complex whose

faces are the chains of P . Using simplicial homology over the ring of integers Z,

the reduced homology associated to the order complex ∆(P ) is then denoted

by H̃j(P ), and the reduced cohomology is then denoted by H̃j(P ), so that by

slight abuse of terminology, we can discuss (co)homology of posets. The rank of

the reduced homology group H̃i(P ) is called a reduced Betti number of P , and

is denoted by β̃i(P ).

Certain posets have additional structure which we make use of to analyze

topological results of their order complex combinatorially. Let P be a poset; a

1
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lower bound of two elements x, y ∈ P is an element z ∈ P such that z ≤ x and

z ≤ y. Upper bounds are defined similarly. A lattice is defined as a poset such

that every pair of elements has both a greatest lower bound and a least upper

bound. For pairs of elements x and y, if it exists then the greatest lower bound

is denoted x ∧ y, and if it exists, the least upper bound is denoted x ∨ y.

A poset P is ranked or pure if for every element x, every maximal chain

whose largest element is x has the same length, denoted ρ(x), and called the

rank of x. If P has unique elements 0̂ and 1̂ such that for all x ∈ P ,

0̂ ≤ x ≤ 1̂, then P is called bounded. Let P be bounded; define the proper part

of P by P := P − {0̂, 1̂}.

For arbitrary posets, a Hasse diagram is a directed graph whose vertices are

elements of the poset and whose edges are the covering relations of the partial

order. Let E(P ) denote the set of coverings of P , and define an edge labeling as

any function Ψ : E(P ) → Z. If P is bounded and admits an edge labeling that

satisfies the conditions of Definition 2.2.3 below, then P is called EL-shellable,

and the edge labeling is called an EL-labeling. A maximal chain

0̂ = c0 < c1 < · · · < cm−1 < cm = 1̂ ⊆ P

is said to be falling if the labels of the chain weakly decrease as the chain is read

in increasing order. The following theorem of Björner and Wachs connects these

labelings to the topology of posets.

Theorem (see Theorem 2.2.5). Let P be a finite EL-shellable poset under

edge labeling Ψ. Then ∆(P ) has the homotopy type of a wedge of spheres.

Furthermore, for each i the number of spheres of dimension i− 2, and therefore

rank(H̃i−2(P )), is equal to the number of falling chains of P (under Ψ) of length

i.
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The Boolean algebra Bn is defined to be the poset consisting of all subsets of

{1, 2, ..., n} ordered by containment. Labeling each edge by the unique element in

the larger subset which is not in the smaller subset makes Bn EL-shellable. There

is a unique falling chain; its length is n and its label sequence is n, n− 1, ..., 1.

Therefore, ∆(Bn) has homotopy type of a single sphere of dimension n− 2. The

edge labeling of B3 is given in the following diagram:

The Boolean algebra is a fundamental example of a well-studied type of

lattice called a geometric lattice; Björner [2] showed all geometric lattices are

EL-shellable.

There is a special class of geometric lattices called the partition lattices, denoted

by Πn. The elements of Πn are the set partitions of {1, 2, ..., n}, ordered by

refinement. The edges of Πn come about by merging exactly two blocks of the

finer partition. An edge labeling which assigns to each edge the largest element of

the two merging blocks makes Πn EL-shellable [22]. It can be shown that there

are (n− 1)! falling chains of this EL-labeling of Πn. It follows that ∆(Πn) has

the homotopy type of a wedge of (n− 1)! spheres of dimension n− 3.
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The k–equal partition lattice Π=k
n is the induced subposet of Πn consisting

of partitions that contain no non-singleton blocks of size less than integer k.

Note that when k = 2, there are no restrictions on blocks, so Π=2
n = Πn. The

lattice Π=k
n originated in the work of Björner, Lovász, and Yao [4] on the k–equal

problem in complexity theory, where a lower bound on the complexity of the so

called k–equal problem in computer science is given in terms of the Betti numbers

of Π=k
n . The order complex ∆(Π=k

n ) was then shown by Björner and Welker [9]

to have the homotopy type of a wedge of spheres of varying dimensions. Since

Π=k
n is not pure in general, Björner and Wachs [7] then extended the notion of

shellability from pure to nonpure simplicial complexes, and proved the following

result.

Theorem (see Proposition 2.5.3). The lattice Π=k
n is EL-shellable for all

integers 2 ≤ k ≤ n. Moreover, the order complex ∆(Π=k
n ) has the homotopy

type of a wedge of spheres, where the number of spheres β̃d(Π=k
n ) of dimension

d is 0 unless d = n − 3− t(k − 2) for some positive integer t. If k = 2, then

d = n− 3 and

β̃n−3(Π=2
n ) =

bn
2
c∑

t=1

∑
j1+···+jt=n,

ji≥2 ∀ i

(
n− 1

j1 − 1, j2, ..., jt

) t∏
i=1

(ji − 1).

If k > 2, then for each possible d,

β̃d(Π=k
n ) =

∑
j1+···+jt=n,

ji≥k ∀ i

(
n− 1

j1 − 1, j2, ..., jt

) t∏
i=1

(
ji − 1

k − 1

)
.

For q a prime power and n a nonnegative integer, let Bn(q) be the lattice

of subspaces of Fn
q , the n–dimensional vector space over the field of order q,

ordered by containment. This subspace lattice is considered to be a q–analogue
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of the Boolean algebra for several reasons. Define [n]q =
n∑

i=1

qi−1 for positive

integer n, and further, define [0]q! = 1, and

[
n
r

]
q

=
[n]q!

[r]q![n− r]q!
. Note that

when q = 1, [n]q = n, and so [n]q! = n!, and

[
n
r

]
q

=

(
n

r

)
.

One reason we consider Bn(q) to be a q–analogue of Bn is that the number

of elements of rank r of Bn(q) (i.e., the number of r–dimensional subspaces)

is

[
n
r

]
q

, while for the Boolean algebra Bn, the number of elements of rank r is(
n

r

)
. Another reason is that the number of maximal chains of Bn(q) is [n]q!,

while the number of maximal chains of Bn is n!; there are many results like

this for this pair of lattices. The lattice Bn(q) is another example of a geometric

lattice.

There have been several q–analogues of the partition lattice introduced

in the literature; the Dowling lattices [11], and the f -q–order analogues of

Bennett, Dempsey and Sagan [1] and Simion [15] are various examples. Other

examples build on the idea of subspace lattices, including the lattice of direct sum

decompositions of Fn
q , analyzed by Welker [23], who proved that the proper part

of this lattice has the homotopy type of a wedge of
1

n

n−1∏
i=1

(qi − 1)fn(q) spheres of

dimension n− 2, where fn(q) is a polynomial with integer coefficients.

Hanlon, Hersh, and Shareshian [13] then introduced the lattice of partial direct

sum decompositions. A partial direct sum decomposition is a set of subspaces

{U1, ..., Ut} of Fn
q whose sum is direct. These partial decompositions are ordered

by {U1, ..., Ut} ≤ {W1, ...,Ws} if each summand Ui is a subspace of some

summand Wj. Using discrete Morse theory, they find that the proper part of this

lattice has homotopy type of a wedge of
1

n
q(

n
2)

n−1∏
i=1

(qi − 1) spheres of dimension

2n− 3.
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Both of these examples present analogues which do not have the property that

the nonvanishing Betti number of its proper part at q = 1 yields (n− 1)!, which

is the nonvanishing Betti number of Πn. Thus, one can say that they are not

true q–analogues of Πn in the purely topological sense, nor were they intended

to be. The lattice of direct sum decompositions was introduced by Stanley [18]

for the purpose of obtaining analogues of the compositional formula (see Section

7.1). The lattice of partial direct sum decompositions was introduced by Hanlon,

Hersh, and Shareshian in order to obtain a GLn(Fq)–analogue of the action of

the symmetric group on the homology of the proper part of the partition lattice.

We introduce then a new q–analogue Πn(q) of the partition lattice. For

every positive integer n > 1 and prime power q, let Πn(q) denote the lattice of

partial direct sum decompositions of Fn
q in which no summand has dimension 1.

Unlike Πn, it turns out that Πn(q) is not a geometric lattice. However, we show

in Theorem 7.2.1 that ∆(Πn(q)) has the homotopy type of a wedge of spheres of

dimension n− 3, where the number of spheres is a nice q–analogue of (n− 1)!.

In order to prove this result, we first construct a q–analogue of Π=k
n for

general k ≥ 2. Define Π=k
n (q) as the lattice of partial direct sum decompositions

of Fn
q in which no summand has dimension less than k. This lattice is really

a q–analogue of the lattice of partial partitions of {1, ..., n} with block sizes at

least k, which is isomorphic to the k–equal partition lattice Π=k
n . Note that

Π=2
n (q) = Πn(q).

Theorem (see Corollary 6.2.13). The lattice Π=k
n (q) is EL-shellable for all

integers 2 ≤ k ≤ n. Moreover, the order complex ∆(Π=k
n (q)) has the homotopy

type of a wedge of spheres, where the number of spheres β̃d(Π=k
n (q)) of dimension

d is 0 unless d = n − 3− t(k − 2) for some positive integer t. If k = 2, then
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d = n− 3 and

β̃n−3(Π=2
n (q)) =

bn
2
c∑

t=1

∑
λ`n

`(λ)=t
λi≥2 ∀ i

(t− 1)!

(
t∏

i=1

q(
λi−1

2 )[λi − 1]q

)
qe2(λ)[n]q!

t∏
i=1

[λi]q!

n∏
j=1

1

aj(λ)!
,

where e2(λ) =
∑

1≤i<j≤t

λiλj and aj(λ) is the number of parts of λ of size j. If

k > 2, then for each possible d,

β̃d(Π=k
n (q)) =

∑
λ`n

`(λ)=t
λi≥k ∀ i

(t− 1)!

(
t∏

i=1

q(
λi−k+1

2 )
[
λi − 1
k − 1

]
q

)
qe2(λ)[n]q!

t∏
i=1

[λi]q!

n∏
j=1

1

aj(λ)!
.

We show that the complicated formula above reduces nicely when k = 2. We

use the theory of exponential structures developed by Stanley [18] to obtain the

following result.

Theorem (see Theorem 7.2.1). The lattice Πn(q) is EL-shellable. The order

complex ∆(Πn(q)) has the homotopy type of a wedge of β̃n−3(Πn(q)) spheres of

dimension n− 3, where

β̃n−3(Πn(q)) = g̃n(q)q(
n−1

2 ) [n− 1]q! and g̃n(q) =
1

nq

(
[n]q − (1− q)n−1

)
.

Note that g̃n(q)q(
n−1

2 ) = 1 when q = 1, making Πn(q) an appealing q–

analogue of Πn. To get these results, we examine the even more general situation

of decomposing a geometric lattice. Let L be a finite geometric lattice. Define

an independent set of L to be any subset T = {x1, ..., xt} ⊆ L − {0̂} such

that ρ(x1 ∨ · · · ∨ xt) =
t∑

i=1

ρ(xi). This notion of set independence generalizes the

notions of direct sum decompositions of finite vector spaces and set partitions of

finite sets simultaneously.

For each positive integer k, let Π=k
L be the poset of independent subsets of

L consisting of elements all of rank at least k. The order relation on independent
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subsets is given by {x1, ..., xt} ≤ {y1, ..., ys} if each xi is less than some yj

in L. Note that when L = Bn, we have Π=k
Bn

= Π=k
n , and when L = Bn(q),

we have Π=k
Bn(q) = Π=k

n (q). We show that the poset Π=k
L is a lattice; we call

Π=k
L the k-equal partial decomposition lattice of L. We also find an EL-labeling

of Π=k
L and count its falling chains, giving us the following general theorem. Let

Lx = {y ∈ L | y ≤ x} and (Lx)k = {y ∈ Lx | ρ(y) ≥ k}. For an independent set

T , let r(T ) =
∑
x∈T

ρ(x).

Theorem (see Theorem 6.2.8). The lattice Π=k
L is EL-shellable for all integers

2 ≤ k ≤ n. Moreover, the order complex ∆(Π=k
L ) has the homotopy type of a

wedge of spheres, where the number of spheres β̃d(Π=k
L ) of dimension d is 0

unless d = n−3− t(k−2) for some positive integer t. If k = 2, then d = n−3

and

β̃n−3(Π=2
L ) =

bn
2
c∑

t=1

∑
T∈Π=2

L
r(T )=n
|T |=t

(t− 1)!
∏
x∈T

β̃ρ(x)−3((Lx)2).

If k > 2, then for each possible d,

β̃d(Π=k
L ) =

∑
T∈Π=k

L
r(T )=n
|T |=t

(t− 1)!
∏
x∈T

β̃ρ(x)−k−1((Lx)k).

In Chapter 2, we present preliminary information, including definitions,

examples, and previous theorems, though we prove only a small selection of these

theorems which turn out to be special cases of more general results presented

subsequently. Chapter 3 discusses the notion of q–analogues, and presents several

well-known results about q–analogues and rank selection. Chapter 4 also presents

a review of several previously proven theorems and lemmas concerning geometric
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lattices, but these results are more fundamental to later work, and so are given in

more detail. Our new results begin in Chapter 5.

In Chapter 5, we introduce the concept of independent sets, and examine the

consequences of independence pertaining to Π=k
L . Moreover in Chapter 6 we

construct an explicit EL-labeling of the k–equal partial decomposition lattice,

and exhibit a formula for determining the homotopy type of ∆(Π=k
L ), as well as

the specialization of this result which applies to both L = Bn and L = Bn(q).

Chapter 7 details results concerning the lattice Πn(q), which is shown to be a

q–analogue of the partition lattice Πn. Specifically, we use exponential structures

to simplify the computation of the number of spheres, as well as extending other

well-known results for Πn to Πn(q).



Chapter 2

Background

2.1 Basic Definitions

Let P be a set. A partial ordering ≤P is a binary relation on the elements

of P satisfying the following axioms for all elements a, b, c ∈ P :

• If a ≤P b and b ≤P c, then a ≤P c.

• a ≤P a.

• If a ≤P b and b ≤P a, then a = b.

We call the set P a partially ordered set, or poset for short. When the poset

P and the partial order ≤P are understood, we will write simply ≤. Further,

if x ≤P y and x 6= y, we frequently write simply x <P y. Hereafter, when we

discuss posets, we shall always mean posets with finitely many elements. Given

two posets P and Q, if there exists a bijection φ : P → Q such that for all

pairs x, y ∈ P , x ≤P y if and only if φ(x) ≤Q φ(y), then P and Q are called

isomorphic.

10
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Let P be a poset, and let x, y ∈ P be such that x < y. If x ≤ z ≤ y

implies that x = z or y = z for all z ∈ P , then we say that y covers x,

denoted by x <· y. For any poset P , define the Hasse diagram of P to be the

directed graph whose vertices are elements of P and whose edges are covering

relations; Hasse diagrams are standardly drawn so that the smaller elements are

below the larger elements. For this reason, the set of covering relations of P is

also known as the edge set E(P ). An example of the Hasse diagram of the positive

divisors of 48 ordered by divisibility is given below:

For any poset P , we define a pair of elements a, b ∈ P to be comparable

if either a ≤ b or b ≤ a; a pair of elements failing this condition is called

incomparable. For example, in the Hasse diagram above, 2 and 6 are comparable,

but 4 and 6 are incomparable. We then define a totally ordered set P as any

poset such that for all pairs a, b ∈ P , then necessarily a and b are comparable.

Given C ⊆ P , the set C is called a chain if it is totally ordered; a chain C

is maximal if for any element a ∈ P − C, then the set {a} ∪ C is not a chain.

The length of C is one less than its cardinality. The poset P is pure (or also

ranked or graded) if all of its maximal chains have the same length. We define the

integer `(P ) as the length of the longest chain of P , and call this the length of

P . If P is pure, we define a rank function ρ : P → N by, for each x ∈ P , setting
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ρ(x) equal to the length of the longest chain whose largest element is x.

In the poset of divisors of 48 illustrated above, the subset {2, 6, 24} is a chain

of length 2, as it is totally ordered. This chain is not maximal, however, since the

inclusion of the number 12 leaves the new set totally ordered. On the other hand,

the subset {1, 3, 6, 12, 24, 48} is a maximal chain, since no other divisor of 48 is

also divisible by 3, and thus would be incomparable to the prime number 3. The

poset is pure since each maximal chain has length 5.

If there exists an element 0̂ ∈ P such that 0̂ ≤ x for all x ∈ P , then 0̂ is

unique and is called the minimum element of P , or the bottom element. Similarly,

if there exists 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P , then 1̂ is also unique and

is called the maximum or top element. If P has both a top and a bottom, we say

that it is bounded. For example, the divisors of 48 are bounded by 1 and 48. If P

is bounded, define its proper part P by P = P − {0̂, 1̂}; that is, the proper part

of P is obtained by removing the top and bottom of P . We can also artificially

adjoin to P a top and bottom; that is, we define P̂ := P ∪ {0̂, 1̂}, where these

elements satisfy the definition of top and bottom.

A subposet of P is a set T ⊆ P with a partial order ≤T such that if

a ≤T b, then a ≤P b. The subposet T is called induced if for all pairs a, b ∈ T ,

we have a ≤P b if and only if a ≤T b. For example, chains are induced subposets.

Given x, y ∈ P , define the open interval (x, y) as the induced subposet on the set

{z ∈ P | x < z < y}, and the closed interval [x, y] as the induced subposet on the

set {z ∈ P | x ≤ z ≤ y}. Note that if x <· y, then (x, y) = ∅. If P is bounded,

a lower interval is a closed interval of the form [0̂, x], and an upper interval has

the form [x, 1̂], where x ∈ P .

Given x, y ∈ P , define a lower bound as an element a ∈ P such that a ≤ x

and a ≤ y; an upper bound is an element b ∈ P such that x ≤ b and y ≤ b. If
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the set of lower bounds of x and y has a top element then we call this element

the meet of x and y, denoted by x ∧ y. Similarly, a bottom element of the set

of upper bounds is called the join of x and y, denoted x∨ y. We illustrate this

with a diagram:

In this poset, the elements x and y as well as their meet and join are all

labeled. On the other hand, the pair z and y do not have a join, since both

x ∨ y and the element w are incomparable upper bounds of z and y, with

no upper bounds less than either of these, so that the set of upper bounds has no

minimum.

If every pair of elements of a poset has both a meet and a join, then the poset

is called a lattice. If L is a lattice, we can extend the definition of meets and

joins to collections of more than two elements; for example, the meet of the set

{x1, ..., xk} ⊆ L is defined as the unique maximum element of the set {z ∈ L | z ≤

xi ∀ i}. In particular, meets and joins in lattices are associative, commutative, and

idempotent binary operations (see [16]). Furthermore, all lattices are bounded.

The set of divisors of 48 forms a lattice, where the meet of two integers is their

greatest common divisor, and their join is their least common multiple. More

generally, if every pair of elements of a poset has a join, then the poset is called

a join semilattice; similarly, if every pair of elements has a meet, then the poset
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is called a meet semilattice. Therefore, a lattice is both a join semilattice and a

meet semilattice. Further, if a join semilattice has a bottom, then it is a lattice;

similarly, if a meet semilattice has a top, then it is a lattice (see [16]). Suppose P

is bounded, and define its atoms as those elements that cover 0̂.

Given poset P , let IC(P ) be the set of closed intervals of P . Define the

Möbius function µ : IC(P ) → Z recursively as follows:

• If x ∈ P , then µ([x, x]) = 1.

• If x < y, then

µ([x, y]) = −

 ∑
z | x≤z<y

µ([x, z])

 .

As this function is defined on intervals, it is customary to eliminate the interval

brackets and simply indicate the bounds of the interval in question. However, we

will avoid this notation to make it more clear that this is a function on intervals of

P . Further, if P is bounded, then we call the value µ(P ) = µ([0̂, 1̂]) the Möbius

invariant of P . For various interpretations and uses of this Möbius function, see

for example [16].

As an example, we can compute the Möbius function of the indicated interval

[x, y]:
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Here, we write the value of the µ([x, z]) next to each vertex z.

Given two posets P and Q with their respective partial orders, define a

new poset called the (direct) product P ×Q with partial order ≤P×Q such that

(p1, q1) ≤P×Q (p2, q2) if p1 ≤P p2 and q1 ≤Q q2. With this definition, it can be

shown that

µ([(p1, q1), (p2, q2)]) = µ([p1, p2]) · µ([q1, q2]) (2.1.1)

for every closed interval of P×Q (see [16]). Note that the definition is symmetric,

so that P × Q ∼= Q× P . Further, if P is pure of length n and Q is pure of

length m, then P ×Q is pure of length n+m.

2.2 Shellability and EL-labelings

In this section, we relate posets to topology.

Definition 2.2.1. A family of sets ∆ on vertex set V is an (abstract) simplicial

complex if ∆ satisfies the following properties:

• If Y ⊆ X ∈ ∆, then Y ∈ ∆.

• Every singleton subset of V is an element of ∆.

The elements of ∆ are called its faces ; a face is maximal if it is not contained

in any other face. Define a simplex as a simplicial complex with only one maximal

face. Define the dimension of a face F as dim(F ) = |F | − 1. The complex

consisting of only the empty set is called the empty simplicial complex, and has
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dimension −1. We refer to the empty set as the degenerate empty complex, and

say that it has dimension −2, even though it is not a proper simplicial complex.

The complex ∆ is pure if all of its maximal faces have the same dimension;

this dimension is referred to as the dimension of ∆. For any poset P , its order

complex ∆(P ) is the simplicial complex whose vertex set is P and whose faces

are the chains of P . Accordingly, maximal faces of ∆(P ) correspond to maximal

chains of P . Note that P is pure if and only if ∆(P ) is pure.

For example, consider the poset P , with the following Hasse diagram:

Then ∆(P ) =
{
{a, b, c}, {a, b}, {a, c}, {b, c}, {d, c}, {a}, {b}, {c}, {d}, ∅

}
. We see

here that the maximal faces of this simplicial complex are {a, b, c} and {d, c},

which correspond to the two maximal chains of the poset. Geometrically, using

standard depictions of simplices, we can represent this complex as:

Here, the shaded triangle represents the 2-simplex {a, b, c}.

A natural question is what topological properties does the order complex of a

poset (or equivalently, its geometric realization) have? In the small example above,

it is evident that the geometric realization of the order complex is contractible. In

general, we can see that if there is a bottom or top element in the poset, then the
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order complex will be contractible, being a cone. Thus, we will only consider the

proper part of a bounded poset.

It is not in general a simple task to determine the topology of the order

complex of an arbitrary poset. On the other hand, some techniques do exist

which make these computations more tractable. For instance, shellability theory

gives a standard method of obtaining topological results. Originally, shellability

was defined only for pure simplicial complexes [10]. This definition was extended

to include nonpure complexes by Björner and Wachs [7, 8]; this is the definition

we present below.

Given a face F of a simplicial complex ∆, denote by 〈F 〉 the simplicial

complex generated by F . That is, 〈F 〉 = {G ∈ ∆ | G ⊆ F}. A simplicial complex

is shellable if there exists a linear ordering of its maximal faces, F1, F2, ..., Fn such

that for 1 < k ≤ n, 〈Fk〉 ∩

(
k−1⋃
i=1

〈Fi〉

)
is a pure simplicial complex of dimension

dim(Fk)− 1.

Below, we give an example of a shelling order for a geometric nonpure simplicial

complex, where the numbers indicate the linear order of the maximal faces. Here,

there are 5 maximal faces; four 1-faces, and one 2-face (which is shaded):

The use of shellability as a topological tool comes from the following theorem:

Theorem 2.2.2 ( [7, Theorem 4.1] ). A shellable simplicial complex has the

homotopy type of a wedge of spheres, where for each i, the number of i–spheres is
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the number ri of i–dimensional maximal faces whose entire boundary is contained

in the union of earlier maximal faces.

Since a shellable complex ∆ has the homotopy type of a wedge of spheres, in

each dimension the reduced integral (co)homology groups are

H̃i(∆) ∼= H̃ i(∆) ∼= Zri .

For instance in the shellable geometric complex above, the only face whose entire

boundary is contained in the union of earlier maximal faces is labeled 5, and this

face has dimension 1, so that the complex has the homotopy type of a single

1–sphere.

For a pure bounded poset P , Björner also introduced a method to establish

shellability of its order complex without resorting to the abstract definition [3].

This method is to construct what is called an edge-lexicographic labeling (or EL-

labeling for short) on the poset. Such a labeling also gives a very convenient

combinatorial way of computing the reduced (co)homology. The original definition

of this technique applied only to pure posets; Björner and Wachs extended the

definition to nonpure posets [7], and this is the definition we will use subsequently.

Definition 2.2.3. Let P be a bounded poset, with edge set E(P ). An EL-

labeling is a function Ψ : E(P ) → Λ, where Λ is a fixed totally ordered set, such

that Ψ satisfies the following conditions for any comparable pair x < y:

1. There exists a maximal chain c = {c0, c1, ..., ck} in [x, y] with

x = c0 <· c1 <· · · · <· ck = y, such that Ψ(ci−1 <· ci) <Λ Ψ(ci <· ci+1) for all

integers 0 < i < k. That is, the labels of the chain strictly increase when

read upwards in the Hasse diagram of P . Such a maximal chain is called

rising.
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2. There can be only one rising chain in [x, y]. That is, a rising chain must

exist and be unique.

3. The unique rising chain of [x, y] has a sequence of labels that, when read

from the bottom to the top, lexicographically precedes the label sequence of

every other maximal chain of [x, y] (also read upwards) in the lexicographic

order induced from Λ.

Notice that a poset may admit distinct EL-labelings. There is also a more

general version of this technique called chain-lexicographic labeling, or CL-labeling

[7]; in fact, Theorem 2.2.4 below applies to this more general case. However, an

EL-labeling is a special type of CL-labeling, and since we can exhibit EL-labelings

for all the posets we consider subsequently, we will not define the more general

CL-labelings.

We now give a nonexample to illustrate the requirements that an EL-labeling

must possess. Consider the poset of Figure 2.1, given by its Hasse diagram. Here,

the edges are labeled by integers under their usual total order. We can verify

that the only rising maximal chain of the entire poset is the bold (leftmost) chain.

Now, we consider the set of maximal chains. They carry label sequences (reading

from bottom to top) of (1, 2, 3), (1, 3, 2), (2, 3, 1), and (3, 2), of which the bold

chain is lexicographically the smallest.

The conditions of Definition 2.2.3 are easy to verify for the maximal chains of

the poset of Figure 2.1, but we observe that this is still not an EL-labeling since

all proper intervals of this poset are single chains, most of which are not rising.

For instance, the interval [a, 1̂] consists of a single length 2 chain whose labels

decrease. Similarly, consider the alternative labeling of Figure 2.2.
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Figure 2.1: An edge labeling.

Figure 2.2: An alternative edge labeling.

Now, the dashed chain is also rising, and so the uniqueness of the rising chain

fails. In this second labeling, we could then try to permute the labels of bold chain

to be for instance (2, 1, 3); this would again give us a unique rising chain (the

dashed chain), but now the unique rising maximal chain is not lexicographically

first among all maximal chains, as the chain labeled (1, 3, 2) is now first.

In actuality, the poset of Figures 2.1 and 2.2 does not admit an EL-labeling.

As an example of a poset that does admit an EL-labeling, consider the following:
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Since any proper interval consists of only a single labeled edge, we only need to

verify that there is a single rising maximal chain which is lexicographically first,

and this is easily seen to be the leftmost chain. Notice that the non-rising chains

don’t have unique label sequences, but that this is not required in any case.

A poset P for which an EL-labeling exists is said to be EL-shellable. This is

because of the following theorem which connects these lexicographic labelings to

the earlier notions of shellability:

Theorem 2.2.4 ( [7, Theorem 5.8] ). If a poset P is EL-shellable, then ∆(P )

is a shellable complex.

If poset P is EL-shellable, we define its falling chains as the maximal chains

whose label sequences weakly decrease when read upwards in the Hasse diagram;

that is, we are allowed to repeat labels, but we cannot increase at any step from

the previous label. Now we can compute the homotopy type of ∆(P ) in the

following way:

Theorem 2.2.5 ( [7, Theorem 5.9] ). Let P be a finite EL-shellable poset

under edge labeling Ψ. Then ∆(P ) has the homotopy type of a wedge of spheres.

Furthermore, for each i, the number of spheres of dimension i − 2 is equal to

the number ri of falling chains of P of length i. Consequently,

rank
(
H̃ i−2(∆(P ))

)
= rank

(
H̃i−2(∆(P ))

)
= ri.
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Given a poset P , the rank of the reduced homology group H̃i(∆(P )) is

called a reduced Betti number of P , and is denoted by β̃i(P ). According to this

theorem, if we can construct an EL-labeling on a bounded poset, then we can

compute its proper part’s reduced (co)homology by simply counting how many

falling chains it contains of each given length. This transforms a topological

problem into a combinatorial problem, for which techniques may exist to simplify

the computations if the labels are chosen in special ways.

Notice that because the dimension of (co)homology is two less than the length

of the chain, we have negatively indexed (co)homology for a poset whose length

is less than 2. For instance, the two element chain c1, which has length 1, has

proper part equal to the empty set. We then have β̃−1(c1) = 1. We will not

consider posets with length less than 1.

The connection to topology is then further strengthened by the following

important fundamental theorem of P. Hall. First, given a simplicial complex ∆,

define the reduced Euler characteristic

χ̃(∆) =
∑
i≥−1

(−1)ifi,

where for each i, we let fi equal the number of faces of ∆ of dimension i.

Theorem 2.2.6 ( see [16] ). Let P be a bounded poset. Then µ(P ) = χ̃(∆(P )).

Further, by the Euler-Poincaré formula we obtain

µ(P ) = χ̃(∆(P )) =
∑
i≥−1

(−1)iβ̃i(P ),

so that we may obtain the Möbius invariant of an EL-shellable poset by counting

its falling chains. If β̃i(P ) = 0 for all i < `(P )− 2 (as is the case when P is
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pure and EL-shellable), then

µ(P ) = (−1)`(P )β̃`(P )−2(P ). (2.2.1)

Let P be bounded and ranked with `(P ) = n. For any subset

S ⊆ {1, 2, ..., n− 1}, define the rank-selected subposet to be the induced subposet

PS := {x ∈ P | ρ(x) ∈ S}.

Given an EL-labeling Ψ of P , for a maximal chain

c := 0̂ = c0 <· c1 <· · · · <· cn = 1̂,

define the descent set Des(c) by

Des(c) := {i ∈ {1, 2, ..., n− 1} | Ψ(ci−1 <· ci) ≥ Ψ(ci <· ci+1)}.

The next theorem of Björner and Wachs connects shellability of P to

shellability of its rank-selected subposets:

Theorem 2.2.7 ( [6, Theorem 8.1] ). Let P be a pure EL-shellable poset of

length n, and let S ⊆ {1, 2, ..., n − 1}. Then ∆(PS) has the homotopy type of

a wedge of (|S| − 1)–spheres. The number of spheres is the number of maximal

chains of P with descent set S.

2.3 The Boolean Algebra

Now, we consider some examples of posets for which we can construct an

EL-labeling. Let cn be the chain of length n ≥ 1. This poset is EL-shellable
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using any increasing labeling of its edges; further, cn has zero falling chains unless

n = 1, so that the unique edge of the chain is both rising and falling. For n > 1,

cn has an order complex consisting of a single simplex of dimension n− 2, which

is contractible. Alternatively, we can compute the Möbius function directly for a

chain, and observe that µ(cn) = 0 if n > 1, and that µ(c1) = −1.

The second poset we consider is the Boolean algebra Bn on n elements.

The Boolean algebra Bn consists of all subsets of [n] := {1, 2, ..., n}, ordered by

containment. For example, {1, 3, 5} <· {1, 2, 3, 5} in B5. Note that if x <· y in

Bn, there is a unique element in the set y−x, the complement of x in y. Further,

we have 0̂ = ∅, and 1̂ = [n]. We construct an edge labeling Ψ : E(Bn) → [n] by

defining Ψ(x <· y) to be the unique element of y − x.

As an example, we illustrate the Hasse diagram of B3, with the labeling Ψ

indicated above:

This labeling of Bn is an EL-labeling, as the rising chain in any interval [x, y]

of length at least 1 will be the chain in which we add the elements of y− x to x

in order from smallest to largest. Further, maximal chains of [x, y] correspond

bijectively to permutations of the set y − x. This observation allows us to see
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that there is a unique rising chain, and that this chain is lexicographically first,

as the set of permutations of any set S has a single increasing permutation, and

it is lexicographically first.

Further, as there is only one permutation of [n] that can be written in weakly

decreasing order, namely n, (n− 1), (n− 2), · · · , 1, there can be only one falling

chain of Bn. Now, since Bn has only one falling chain, we have that ∆(Bn)

has the homotopy type of a single sphere of dimension n− 2 by Theorem 2.2.5.

This is also easy to see directly since ∆(Bn) is the barycentric subdivision of the

boundary of the (n− 1)-simplex, and so is homeomorphic to the (n− 2)-sphere

(see [21]).

It is clear that Bn is a lattice with x ∧ y = x ∩ y and x ∨ y = x ∪ y, for

all x, y ∈ Bn. We discuss in Section 4.2 a generalization of the EL-labeling Ψ of

Bn above which applies to a wider class of lattices.

2.4 Partition Lattices

Now we describe another important family of posets. Let n be a positive

integer, and define the partition lattice Πn to be the poset of set partitions of

[n], ordered by refinement. That is, x = {B1, B2, ..., Bt} ∈ Πn if:

• Bi 6= ∅ for all i.

•
t⋃

i=1

Bi = [n].

• Bi ∩Bj = ∅ for all i 6= j.
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The elements Bi of x are called blocks. Further, we say x ≤ y in Πn if and

only if each block of x is contained in a block of y.

To denote the elements of Πn, we list the elements of its blocks without set

brackets, and separate the blocks by vertical bars. For instance, in Πn, the bottom

element 0̂ has only blocks of size 1, so we write 0̂ = 1|2|3| · · · |n. The top element

1̂ is the partition consisting of a single block, and so we write 1̂ = 123 · · ·n.

Further, the atoms of Πn have exactly one block of size 2 while each other block

is of size 1. Note that Πn is pure, with rank function ρ satisfying ρ(x) = n−k,

where k is the number of blocks of x ∈ Πn. The partition lattice Π4 is illustrated

below:

We now describe an EL-labeling of Πn due to Wachs [22].

Proposition 2.4.1. Let x <· y in Πn, with x = {B1, B2, ...Bt}. Then there is a

unique pair of distinct indices i, j ∈ [t] such that Bk ∈ y for all k ∈/ {i, j}, and

(Bi ∪Bj) ∈ y. The edge labeling which assigns to x <· y the label max(Bi ∪Bj)

is an EL-labeling of Πn.
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Proof. Consider first the upper interval [a, 1̂], for a = {A1, A2, ..., At} ∈ Πn.

Label the blocks of a so that max(Ai) < max(Ai+1) for each i. We construct

the first edge of a maximal chain c by forming block A1 ∪ A2, which receives

the label max(A2). Further, no other possible merger will receive this label, since

any other pair of blocks has a larger maximum.

Notice that max(A1 ∪ A2) = max(A2). Therefore, after this first step, the

blocks A1 ∪ A2 and A3 have the smallest maxima remaining. We merge

in the second step A1 ∪ A2 and A3, which receives the label max(A3),

which is the smallest label possible at this step. Continuing in this fashion by

merging

j⋃
i=1

Ai with Aj+1 at each step in the chain, we generate the labels

max(A2),max(A3), ...,max(At) in sequence, and so c is a rising chain in this

interval.

Notice that the set of possible labels for any maximal chain in this interval is

Λ = {max(Ai) | i = 2, 3, ..., t}, since max(A1) can never be a label. Now there

is a unique way to arrange the labels of Λ into a strictly rising sequence; since

|Λ| = t−1, and c is a chain with strictly increasing label sequence of length t−1,

it must be uniquely rising. It is also lexicographically minimal among maximal

chains, since it clearly takes on the smallest possible values at each step.

Now that upper intervals have the uniquely rising chain, we consider the

arbitrary interval [a, b], for a = {A1, A2, ..., At}, and b = {B1, B2, ...Bs}, where

we arrange both sets in order of their increasing maxima, as before. Observe

that for any distinct blocks Ai and Aj, that we may only merge these blocks

if there exists Bk such that Ai ∪ Aj ⊆ Bk. Consider a fixed Bk, and let

{Ak,1, Ak,2, ..., Ak,jk
} be the set of blocks of a which are subsets of Bk.

Since we must merge these jk blocks together in some order, from the above

discussion of upper intervals, we see that there is a unique way to do this which
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generates strictly increasing labels. Further, notice that since b is a partition,

that no label arising in the formation of Bk can be used in the formation of any

other block distinct from Bk.

We combine these observations to see that there is a unique way to generate

the smallest possible label above any element in a maximal chain of [a, b], by

shuffling together the unique rising chains formed by each block Bk. Therefore,

each interval has the requisite rising chain, and so this is an EL-labeling of Πn.

We claim that for the labeling of Proposition 2.4.1, the falling chains will all

have constant label n. Indeed, joining any block with the block containing n

will always produce this label, and any edge below 1̂ ∈ Πn is always of this type.

Therefore, to be falling, we must have labels which are weakly larger than n at

each edge. Since no label is larger than n, this implies that all the labels can only

be exactly n.

Figure 2.3: An EL-labeling of Π4.
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We illustrate this with Π4 in Figure 2.3. We have indicated the edges in the

middle of the diagram that are part of falling chains in bold; further, notice all

these edges share the same label of 4, as do all edges below 1̂.

Proposition 2.4.2. The order complex ∆(Πn) has the homotopy type of a wedge

of (n− 1)! spheres of dimension n− 3.

Proof. Observe first that Πn is pure of length n − 1. It follows from Theorem

2.2.5 and Proposition 2.4.1 that the homotopy type of ∆(Πn) is that of a wedge

of spheres, where the number of spheres equals the number of falling chains of the

EL-labeling. Now we count the falling chains. Since falling chains have constant

label n along their whole length, we need only count at each rank how many

elements will generate such a label.

There will be n − 1 atoms whose label above 0̂ is n, corresponding to

choosing any of the other n − 1 elements to pair with n in the atom. Thus,

for an edge above an atom, since the block containing n now has two elements,

we have n− 2 singleton blocks available to choose from to merge with the block

containing n, and any of these generates label n. Similarly, at rank i, the block

containing n will have i + 1 elements, leaving n − i − 1 singletons to choose

from. Thus, the number of falling chains is
n−2∏
i=0

(n− i− 1) = (n− 1)!.

2.5 k–Equal Partition Lattices

In this section, we discuss a subposet of the partition lattice introduced by

Björner, Lovász, and Yao [4]. Let 2 ≤ k ≤ n be an integer, and define Π=k
n
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as the induced subposet of Πn consisting of partitions in which every block has

either size 1 or size at least k. Björner, Lovász, and Yao show that Π=k
n is also

a lattice and call it the k–equal partition lattice [4].

Below we illustrate a portion of Π=3
7 .

For brevity, we have omitted all the parts of size 1. It is easy to see that even

in this small example there are several distinct types of covering relations. It is

also easy to see that not every maximal chain has the same length, hence Π=3
7 is

not pure.

When k = 2, there are no disallowed block sizes; therefore, Π=2
n = Πn. It is

further evident that Π=k
n is also pure in the case when k > n

2
, since in this event,

each element other than the minimum can consist of only one nonsingleton block

of size at least k. This case is related to posets called truncated Boolean algebras ;

these will be discussed further in Section 3.3. On the other hand, for all other

values of k with 2 < k ≤ n
2
, the lattices are not pure.

Björner, Lovász, and Yao used the topology of Π=k
n to find a lower bound on

the k–equal problem of complexity theory [4]. Later, Björner and Welker showed
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that ∆(Π=k
n ) has the homotopy type of a wedge of spheres of varying dimensions

[9]. Björner and Wachs then showed that ∆(Π=k
n ) is shellable [7]. In fact, this

family of lattices was the motivating example for extending shellability theory to

simplicial complexes that are not pure [7].

We now describe the EL-labeling of Π=k
n that Björner and Wachs used to

establish shellability of ∆(Π=k
n ). We first create the linearly ordered product

set Λ = [2] × [n] as our label set, where the order is lexicographic. That is,

(1, 1) < (1, 2) < · · · < (1, n) < (2, 1) < · · · < (2, n). Next, observe there are only

three distinct types of covering relations. Let x = x1|x2| · · · |xm, where we omit

the singleton blocks of x and the nonsingleton blocks are ordered arbitrarily:

Type I - Creation:

Let y = x1| · · · |xm|z, where z is a subset of [n] of cardinality k. In this

case, we label the edge x <· y with (2, a), where a = max(z).

Type II - Expansion:

Let y = x1| · · · |xm−1|z, where z = xm ∪ {a} for a ∈ [n]. In this case, we

label the edge x <· y with (2, a).

Type III - Merger:

Let y = x1| · · · |xm−2|z, where z = xm−1 ∪ xm. That is, we replace two

blocks of x by the union of the two blocks. In this case, we label the edge

x <· y with (1, a), where a = max(z).

As an example, consider the following interval of Π=2
8 , complete with edge

labeling described by the above label rules:



32

It can be checked that this labeling is an EL-labeling of this interval. We can see

in this example that there are only two chains which are falling in the interval

(the dashed edges are those which belong only to falling chains). Denote this edge

labeling by Ψ.

Proposition 2.5.1 ( [7, Theorem 6.1] ). The edge labeling Ψ is an EL-labeling

of Π=k
n .

From the definition of Ψ, we see that a falling chain of Π=k
n will be one in

which we create and/or expand some t blocks, followed by t − 1 mergers. To

count the number of falling chains of Π=k
n of length d, we can use the following

proposition:

Proposition 2.5.2 ( [9, Theorem 4.5] ). Let 1 < k ≤ n. Define Bn,k(t) by

Bn,k(t) = (t− 1)! ·
∑

0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij .

The order complex ∆(Π=k
n ) has the homotopy type of a wedge of spheres, where
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the number of spheres β̃d−2(Π=k
n ) of dimension d− 2 is given by

β̃d−2(Π=k
n ) =



bn
k
c∑

t=1

Bn,k(t), k = 2 and d = n− 1

Bn,k(n−d−1
k−2

), k > 2 and n−d−1
k−2

∈ P

0, otherwise.

The original proof of Proposition 2.5.2 did not make use of the EL-shellability

of Π=k
n , as the notion of EL-shellability was not extended to nonpure posets until

after this formula was found. However, the EL-labeling Ψ gives a proof of this

formula which shows how the falling chains must be constructed.

Proof idea. Since a merger carries a label which is strictly less than the label

of either a creation or an expansion, to be falling a chain cannot have a merger

precede a creation or an expansion. Given a falling chain c there is a unique x ∈ c

such that below x there are only creations and expansions, and above x there

are only mergers. We call such an element the pivot of c. Let x = {B1, ..., Bt}

be the pivot of c. Then |Bi| ≥ k for each i. We will count how many falling

chains pass through the pivot x.

The length of such a chain will be d = n − 1 − t(k − 2), as we must have t

creation steps, creating t blocks with a total of tk elements; since the pivot

has n total elements in nonsingleton blocks, the remaining n − tk elements

must be part of some expansion. Finally, if there are t blocks in the pivot, it

will take t− 1 mergers to join them together, giving a total number of edges as

t+ (n− tk) + (t− 1) = n− 1− t(k− 2). Notice that if k = 2, then d = n− 1 for

all values of t, while if k > 2, there is a unique value of d for each value of t.

This accounts for the formula for β̃d−2(Π=k
n ), provided we can show that Bn,k(t)



34

equals the number of falling chains whose pivot x has t blocks.

One can show that there are (t− 1)! falling chains above x, and that there

are ∑
0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij ,

falling chains below x. Hence, Bn,k(t) is indeed the number of falling chains

whose pivot has t blocks.

An alternative formula due to Björner and Wachs [7] is given below:

Proposition 2.5.3 ( [7, Corollary 6.3] ). Let 1 < k ≤ n. Define Bn,k(t) by

Bn,k(t) =
∑

j1+···+jt=n,
ji≥k ∀ i

(
n− 1

j1 − 1, j2, ..., jt

) t∏
i=1

(
ji − 1

k − 1

)
.

The order complex ∆(Π=k
n ) has the homotopy type of a wedge of spheres, where

the number of spheres β̃d−2(Π=k
n ) of dimension d− 2 is given by

β̃d−2(Π=k
n ) =



bn
k
c∑

t=1

Bn,k(t), k = 2 and d = n− 1

Bn,k(n−d−1
k−2

), k > 2 and n−d−1
k−2

∈ P

0, otherwise.

Proof. Again we count falling chains with pivot x. Let x = {B1, ..., Bt} ∈ Π=k
n

be a pivot. Index the blocks so that n ∈ B1, and let ji = |Bi| for each i.

Since n ∈ B1, there are n− 1 elements remaining to be distributed among the

t labeled blocks; further, of these, only j1 − 1 may be chosen for B1. Therefore,

the number of ways to distribute the elements of [n] among the t blocks while

keeping n ∈ B1 is

(
n− 1

j1 − 1, j2, ..., jt

)
.

Then for each block Bi, we need to choose k elements of the block to form

the initial creation, and the remaining elements will form expansions. However,
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the creation step which will be expanded to form Bi must contain max(Bi), as

previously observed. Therefore, we can only choose k−1 other elements for each

creation; since there are ji elements in block Bi, this leaves us

(
ji − 1

k − 1

)
possible

choices for the initial creation. As the blocks are disjoint, there is a unique falling

sequence of expansions of Bi given a fixed creation.

Now we arrange our mergers so that we merge B1 first with B2, then merge

B3 into B1 ∪ B2, and continue by merging Bi into
i−1⋃
j=1

Bj. Notice that this

gives a unique falling merger sequence among this chosen ordered collection of

blocks.

Notice that the formula of Proposition 2.5.2 presumes that expansions can be

performed on any existing block, and depend only on their relative order in the

sequence of steps. Meanwhile, the formula of Proposition 2.5.3 presumes that once

there are no more singleton blocks in the chain, the remaining merger labels of

blocks are not affected by the order such mergers are performed in, and so can

be specified beforehand. These two properties may not hold in a more general

setting; in Section 6.2 we will give a modification of these formulas which takes

these observations into account.



Chapter 3

q–Analogues

3.1 Permutation Enumeration

A q–analogue is a loosely defined term in general, best illustrated by example.

The simplest example is the q–analogue of the positive integer n, denoted by

[n]q, and defined by

[n]q =
n∑

i=1

qi−1 =
qn − 1

q − 1
.

Observe that by setting q = 1 in the sum, we get [n]1 = n, while in the fractional

expression, we must take the limit as q approaches 1. To avoid taking limits, we

will use the sum definition, though the fraction equivalent may be used whenever

we assume q 6= 1. Now that we have defined a q–analogue of an integer, we can

extend this to other integer-related ideas.

For instance, the q–analogue of n! is given by

[n]q! = [n]q[n− 1]q · · · [2]q[1]q,

and it is easy to see that [n]1! = n!. Further, we can define [0]q = 0, so that

36
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[0]q! = 1. We define the q–binomial coefficient,[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
,

for all nonnegative integers 0 ≤ k ≤ n. Notice that the q–binomial coefficients are

also symmetric; that is,

[
n
k

]
q

=

[
n

n− k

]
q

. Further, they also satisfy an analogue

of Pascal’s identity: [
n
k

]
q

=

[
n− 1

k

]
q

+ qn−k

[
n− 1
k − 1

]
q

.

Define the q–multinomial coefficients[
n

k1, k2, ..., kj

]
q

=
[n]q!

[k1]q![k2]q! · · · [kj]q!
,

subject to the condition that k1 + k2 + · · · + kj = n, completely analogous to

the usual multinomial coefficients. Given these definitions alone, it is a surprising

fact that q–multinomial coefficients are always in fact polynomials in q; this is

in part because for positive integers m and n, with m a divisor of n, we have

[n]q
[m]q

=

n
m∑

i=1

qm(i−1).

Now we examine some of the connections between q–analogues and permutation

enumeration. Denote by Sn the set of all permutations (written as words) of

[n]. For the word σ ∈ Sn, denote by σ(i) the ith entry of the word σ. Given

σ ∈ Sn, define an inversion of σ to be a pair (i, j) such that i < j and

σ(i) > σ(j); for instance, the only inversions of the word σ = 123645 are the

pairs (4, 5) and (4, 6). Define

inv(σ) := |{(i, j) | i < j, σ(i) > σ(j)}|,

and define

Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i+ 1)}.
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Proposition 3.1.1. For all n ≥ 1,

∑
σ∈Sn

qinv(σ) = [n]q!.

More generally, given any word ω := ω(1)ω(2) · · ·ω(n) over alphabet [m],

define

inv(ω) := |{(i, j) | i < j, ω(i) > ω(j)}|.

Let M be a multiset with ai copies of i for each i ∈ [m]. Let the cardinality

of M be n = a1 + · · ·+ am, and let SM be the set of arrangements of M.

Proposition 3.1.2 ( see [16] ).

∑
ω∈SM

qinv(ω) =

[
n

a1, a2, ..., am

]
q

3.2 q–Analogues of Posets

We can also form q–analogues of more elaborate structures; for instance, a

q–analogue of the Boolean algebra, denoted Bn(q), is defined to be the poset of

all subspaces of the n–dimensional vector space Fn
q ordered by containment,

where Fq denotes the finite field of order q. In particular, we must restrict the

value of q here to be a prime power for the definition to make sense.

We call Bn(q) the subspace lattice, as it is clear that any two subspaces have

a meet, which is their intersection, and that they also have a join, which is their

sum. Notice that Bn(q) is bounded, with bottom the trivial subspace (0), and

top Fn
q . Note that just as Bn is pure with rank function satisfying ρ(x) = |x|
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for each x ∈ Bn, the lattice Bn(q) is also pure, with rank function satisfying

ρ(x) = dim(x) for each x ∈ Bn(q). That Bn(q) can be viewed as a q–analogue

of Bn comes from the following well-known properties:

• The total number of maximal chains of Bn is n!; the total number of

maximal chains of Bn(q) is [n]q!.

• The total number of elements of rank r of Bn is

(
n

r

)
; the total number

of elements of rank r of Bn(q) is

[
n
r

]
q

.

• The Möbius invariant of Bn is µ(Bn) = (−1)n; the Möbius invariant of

Bn(q) is µ(Bn(q)) = (−1)nq(
n
2).

• Let P be a ranked bounded poset, and define the polynomial χ(P, t) =∑
x∈P

µ([0̂, x])t`(P )−ρ(x). This is called the characteristic polynomial of P .

Then χ(Bn, t) = (t− 1)n, and χ(Bn(q), t) =
n∏

i=1

(t− qi−1)

This is not an exhaustive list of properties for which these two lattices have

similar formulas, but we can easily see that for each of them, setting q = 1 for

Bn(q) gives the same result that Bn has.

The second property above for Bn(q) states that the number of r–dimensional

subspaces of Fn
q is

[
n
r

]
q

. This is the m = 0 case of the following result, which

we will need later in Section 6.2.

Lemma 3.2.1. Let V be an m–dimensional subspace of Fn
q . The number of

distinct p–dimensional subspaces W ⊂ Fn
q such that V ∩W = (0) is

qmp

[
n−m

p

]
q

.
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Proof. Suppose that V has ordered basis (v1, ..., vm). We build W by choosing

an ordered basis (w1, w2, ..., wp) in sequence. To choose w1, we select a vector

w1 such that w1 ∈/ V . There are qn−qm such vectors we may choose for w1. By

our choice of w1, we observe that (v1, ..., vm, w1) is also a linearly independent

set, and therefore (v1, ..., vm, w1) is an ordered basis for the subspace we will

denote by U1.

Note that dim(U1) = m+ 1. Now given subspace Ui with dim(Ui) = m+ i

and ordered basis (v1, ..., vm, w1, ..., wi) for some fixed integer 1 ≤ i < p, we

observe that there are qm+i vectors in Ui, and thus we choose a vector wi+1

outside of Ui, for which there are qn − qm+i choices. We then observe that the

set (v1, ..., vm, w1, ..., wi, wi+1) is linearly independent, and so we define Ui+1 as

the subspace with ordered basis (v1, ..., vm, w1, ..., wi+1).

Thus, we have recursively defined the sequence of subspaces U1, U2, ..., Up,

where Ui has ordered basis (v1, ..., vm, w1, ..., wi) for each i. Notice that there

are

p∏
i=1

(qn − qm+i−1) possible ways to choose the sequence of vectors w1, ..., wp.

Now the sequence (w1, ..., wp) is an ordered basis of a subspace of Fn
q ; denote

this space by W . Further, since (v1, ..., vm, w1, ..., wp) is linearly independent,

V ∩W = (0); we can also observe that Up = V ⊕W .

On the other hand, any nontrivial subspace W has multiple ordered bases in

general. In particular, if we let V = (0), then Up = W , and so

p∏
i=1

(qp − qi−1)

counts the number of ways to select an ordered basis for W , since m = 0 in this

case. Therefore, of the

p∏
i=1

(qn− qm+i−1) possible ordered bases, exactly

p∏
i=1

(qp−

qi−1) will correspond to the same subspace W . Hence, there are

p∏
i=1

qn − qm+i−1

qp − qi−1

distinct subspaces W such that dim(W ) = p, dim(V ) = m, and V ∩W = (0).
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To simplify this product, recall that [n]q =
qn − 1

q − 1
. Thus, we have

p∏
i=1

qn − qm+i−1

qp − qi−1
= (qm)p

p∏
i=1

qn−m − qi−1

qp − qi−1

= qmp

p∏
i=1

q(n−m)−i+1 − 1

qp−i+1 − 1

= qmp

p∏
i=1

[(n−m)− i+ 1]q
[p− i+ 1]q

= qmp

[
n−m

p

]
q

We now describe a labeling of the edges of Bn(q) which can be used to derive

the first and third properties listed above. Each subspace U of Fn
q can be

represented by a unique n × n reduced row echelon matrix M(U) whose row

vectors span U . Label the columns of M(U) from right to left, and let

C(U) = {j ∈ [n] | column j of M(U) contains a leading 1}.

It is not difficult to verify that if U <·Bn(q) V , then C(U) <·Bn C(V ).

We construct an edge labeling Ψ : E(Bn(q)) → [n] by letting Ψ(U <·Bn(q) V )

be the unique element of C(V ) − C(U). We state the next two results without

proof.

Proposition 3.2.2 ( see [15] ). The labeling Ψ is an EL-labeling of Bn(q).

Proposition 3.2.3. For each maximal chain c := (0) = U0 <· U1 <· · · · <· Un = Fn
q

the label sequence

(Ψ(U0 <· U1),Ψ(U1 <· U2), ...,Ψ(Un−1 <· Un))

is a permutation in Sn.
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Moreover for each σ ∈ Sn, the number of maximal chains of Bn(q) with

label sequence σ is qinv(σ).

Corollary 3.2.4. The number of maximal chains of Bn(q) is [n]q!.

Proof. We use Proposition 3.1.1.

Corollary 3.2.5. The order complex ∆(Bn(q)) has the homotopy type of a wedge

of q(
n
2) (n− 2)–spheres.

There have been several q–analogues of the partition lattice introduced in the

literature, starting with the Dowling lattices [11], and a class of lattices studied

by Bennett, Dempsey and Sagan [1] and Simion [15]. One example which builds

on the idea of the subspace lattice is the lattice DSn(q) ∪ {0̂} of direct sum

decompositions of Fn
q , as was studied by Welker [23], who proved that ∆(DSn(q)−

{1̂}) has the homotopy type of a wedge of
1

n

n−1∏
i=1

(qi−1)fn(q) spheres of dimension

n − 2, where fn(q) is a polynomial with integer coefficients. We will discuss

DSn(q) in more detail in Section 7.1.

Hanlon, Hersh, and Shareshian [13] then introduced the lattice PDn(q) of

partial direct sum decompositions. A partial direct sum decomposition is a set

of subspaces {U1, ..., Ut} of Fn
q whose sum is direct. That is, given the set

{U1, ..., Ut}, there exists some subspace V ⊆ Fn
q such that every vector v ∈ V

can be expressed uniquely as v = u1 + u2 + · · ·+ ut, where ui ∈ Ui for each i.

These partial decompositions are ordered by {U1, ..., Ut} ≤ {W1, ...,Ws} if

each Ui is contained in some Wj. Using discrete Morse theory, they find that this

lattice has homotopy type of a wedge of
1

n
q(

n
2)

n−1∏
i=1

(qi − 1) spheres of dimension

2n− 3. Note that both this formula and the formula of Welker reduce to 0 when

q = 1, therefore are not q–analogues of (n− 1)!.
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In Chapter 5 we introduce a new q–analogue of the k–equal partition lattice

which is an induced subposet of PDn(q), which we then study throughout the

remaining chapters. Our new q–analogue has the homotopy type of a wedge of

(n− 3)–spheres. The number of spheres in the k = 2 case is a nice q–analogue

of (n−1)!, namely [n−1]q! times a polynomial in q which immediately reduces

to 1 when q is set equal to 1.

3.3 Rank Selection

Recall that the rank-selected subposet PS of P is the induced subposet

consisting of elements whose ranks belong to a fixed set S, with S ⊆ [`(P )− 1].

Theorem 3.3.1. For S ⊆ [n− 1],

(1) The order complex ∆((Bn)S) has the homotopy type of a wedge of (|S|−1)–

spheres, where the number of spheres is
∣∣∣{σ ∈ Sn | Des(σ) = S}

∣∣∣.
(2) The order complex ∆((Bn(q))S) has the homotopy type of a wedge of (|S|−

1)–spheres, where the number of spheres is
∑

σ∈Sn
Des(σ)=S

qinv(σ).

Proof. (1) This follows from Theorem 2.2.7 and the EL-labeling Ψ : Bn →

[n] given in Section 2.3, which induces a bijection from maximal chains to

permutations in Sn.

(2) This follows from Theorem 2.2.7 and Propositions 3.2.2 and 3.2.3.
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We consider now a certain type of rank selected subposet.

Definition 3.3.2. Let P be a bounded ranked poset, with length `(P ) = n, and

rank function ρ. For a fixed integer k such that 1 < k < n, the (lower) truncation

Pk of P is the rank-selected subposet corresponding to S = {k, k+1, ..., n− 1};

that is,

Pk = {x ∈ P | k ≤ ρ(x) ≤ n− 1}.

Note that we may define upper truncations similarly; however, we shall mean

lower truncation whenever we say truncation. Further, since a truncation Pk is

not usually bounded, we shall work with P̂k whenever we need bounded posets,

such as for EL-shellability. Note that P̂k is a pure lattice.

Figure 3.1: The truncation (B5)3.

Proposition 3.3.3. The order complex ∆((Bn)k) has the homotopy type of a

wedge of spheres of dimension n−k−1, where the number of spheres is

(
n− 1

k − 1

)
.

Proof. Note that we can apply Theorem 3.3.1 with S = {k, k + 1, ..., n− 1}. For

a permutation to have descent set S, we must have that n is in position k,

and all elements in positions i < k are arranged in increasing order, while those

in positions i > k are arranged in decreasing order. The number of ways to

distribute the numbers 1, ..., n− 1 into these two groups is

(
n− 1

k − 1

)
, and each

such choice has a unique chain with descent set S.
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Proposition 3.3.4. The order complex ∆((Bn(q))k) has the homotopy type

of a wedge of spheres of dimension n − k − 1, where the number of spheres is

q(
n−k+1

2 )
[
n− 1
k − 1

]
q

.

Proof. From Theorem 3.3.1, we know that S = {k, k + 1, ..., n− 1} allows us to

find the number of spheres as
∑

σ∈Sn
Des(σ)=S

qinv(σ). Now, we establish the equivalence

of this sum to q(
n−k+1

2 )
[
n− 1
k − 1

]
q

. If Des(σ) = S, then σ = a1 · · · ak−1nbk+1 · · · bn,

where ai < ai+1 for 1 ≤ i < k − 1 and bj > bj+1 for k + 1 ≤ j < n.

Each pair (j1, j2) with k ≤ j1 < j2 ≤ n is an inversion, and thus there are(
n− k + 1

2

)
such inversions. Therefore, since every σ with this descent set

contains at least this many inversions, we factor out q(
n−k+1

2 ) from the sum and

consider the remaining possible inversions.

Now let W be the set of words consisting of (k − 1) 1s and (n − k) 2s.

By Proposition 3.1.2 we have for W that
∑
ω∈W

qinv(ω) =

[
n− 1
k − 1

]
q

. Now the set of

permutations with descent set {k, k + 1, ..., n− 1} is in bijection with words ω

consisting of (k−1) 1s and (n−k) 2s. The bijection takes the positions of the 1s

of ω to form the increasing subword, followed by n, followed by the positions of

the 2s to form the decreasing subword. For example, if n = 9 and k = 6, then

ω = 11212112 is identified uniquely with 124679853.

The only inversions of ω come from having a 2 precede a 1. Therefore, all of

the inversions of ω correspond to inversions of type ai > bj in σ, and so the

number of inversions of ω equals the number of inversions of σ corresponding

to a pair of indices (j1, j2) with j1 < k < j2. Since each σ had q(
n−k+1

2 )

more inversions not counted by ω, we take the product to arrive at the expression∑
σ∈Sn

Des(σ)=S

qinv(σ) = q(
n−k+1

2 )
[
n− 1
k − 1

]
q

, as claimed.



Chapter 4

Geometric Lattices

4.1 Preliminaries

Recall that if a poset P is bounded, we call the elements which cover 0̂ its

atoms. If every x ∈ P is the join of some set of atoms (where the join of the

empty set is 0̂), then P is called atomic. We have the following simple lemma

concerning the atomicity of lattices:

Lemma 4.1.1. Let L be an atomic lattice. For distinct elements x, y ∈ L, if

x <· y, then there exists an atom a such that a < y and a � x.

Proof. Suppose that L is atomic and x <· y, but no such atom exists. This

implies that every atom b < y is such that b ≤ x. By the definition of joins, we

must have that

 ∨
b<y

ρ(b)=1

b

 ≤ x. Thus, we cannot express y as the join of any

set of atoms, a contradiction.

The following proposition establishes an important collection of equivalent

conditions about lattices (see [16]):

46
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Proposition 4.1.2. If L is a finite lattice, then the following are equivalent:

• L is pure and its rank function ρ satisfies for each pair x, y ∈ L

ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y).

• For each pair of elements x, y ∈ L, if (x ∧ y) <· x, then y <· (x ∨ y).

• For each pair of elements x, y ∈ L, if x and y both cover x ∧ y, then

x ∨ y covers both x and y.

A lattice L which satisfies any of the conditions of Proposition 4.1.2 is called

(upper) semimodular. This is usually shortened to simply semimodular when there

is no confusion, although there is a dual notion of lower semimodularity. We have

the following lemma concerning semimodularity.

Lemma 4.1.3. Let L be a semimodular lattice, and S ⊆ L. Then

ρ

(∨
y∈S

y

)
≤
∑
y∈S

ρ(y).

Proof. Using Proposition 4.1.2, we proceed by induction on the cardinality of S.

If |S| = 2, then since both ρ(x ∨ z) + ρ(x ∧ z) ≤ ρ(x) + ρ(z) and ρ(x ∧ z) ≥ 0

by the nonnegativity of ρ, we can conclude that ρ(x∨ z) ≤ ρ(x)+ρ(z). Consider

now T = S ∪{a} for some element a ∈/ S. Then by the associativity of the join,

ρ

(∨
y∈T

y

)
= ρ

(
a ∨

∨
y∈S

y

)

≤ ρ(a) + ρ

(∨
y∈S

y

)

≤ ρ(a) +
∑
y∈S

ρ(y)

=
∑
y∈T

ρ(y).
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We now define a lattice to be geometric if it is both atomic and semimodular.

It follows from Proposition 4.1.2 that every geometric lattice is pure. As a

consequence of atomicity and Lemma 4.1.3, we have the following:

Corollary 4.1.4. Let L be a geometric lattice, and fix x ∈ L. If x = a1∨· · ·∨as

for distinct atoms a1, ..., as, then s ≥ ρ(x). Moreover, there exists some collection

of atoms {a1, ..., aρ(x)} with x = a1 ∨ · · · ∨ aρ(x).

Proof. Since an atom has rank 1, observe that
s∑

i=1

ρ(ai) = s. By Lemma 4.1.3,

we have ρ(x) = ρ

(
s∨

i=1

ai

)
≤ s, as claimed. To show the existence of a set of

atoms of cardinality exactly ρ(x), assume that x cannot be expressed as the

join of exactly ρ(x) atoms, and that x is minimal among all elements with this

property. Since x 6= 0̂, which is the join of ρ(0̂) = 0 atoms, there exists y ∈ L

such that y <· x.

Then by assumption, we have that y is the join of ρ(y) atoms. But notice

that for any atom a < x such that a � y (which exists by Lemma 4.1.1), we

have by semimodularity that y <· (a∨y), and a∨y = x, since we assumed that x

covers y. Thus, we can express x as the join of ρ(x) atoms, contradicting our

assumption. Therefore, every x can be expressed as the join of ρ(x) atoms.

Example 4.1.5. The Boolean algebra Bn is geometric. Recall that for X,Y ∈

Bn, we have that X∧Y = X∩Y and X∨Y = X∪Y ; further, recall that ρ(X) =

|X|. Clearly, Bn is atomic since X =
∨
a∈X

{a} for every X ∈ Bn. Moreover, it is

clear that Bn is semimodular, since in fact |X|+ |Y | = |X ∩ Y |+ |X ∪ Y | for

all finite subsets X, Y of a set.

Example 4.1.6. The subspace lattice Bn(q) is also geometric. Recall that for

X, Y ∈ Bn(q), we have that X ∧Y = X ∩Y and X ∨Y = X+Y ; further, recall
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that ρ(X) = dim(X). Clearly, Bn(q) is atomic since X =
∨

u∈X−(0)

(u), where by

(u) we mean the linear subspace spanned by the vector u. Moreover, it is clear

that Bn(q) is semimodular, since in fact dim(X) + dim(Y ) = dim(X ∩ Y ) +

dim(X + Y ) for all finite dimensional subspaces X, Y of a vector space.

Example 4.1.7. The partition lattice Πn is also geometric. Recall that atoms

of Πn are partitions with a single block of size 2 while all other blocks have size

1. For π = {B1, B2, ..., Bt} ∈ Πn, observe that for each Bi = {bi1, bi2, ..., bim} such

that m ≥ 2, we may write Bi =
m−1⋃
j=1

{bij, bij+1}. Therefore, we can construct each

block of π by joining atoms, and thus Πn is atomic.

To see that Πn is semimodular, consider three partitions γ, α, and β such

that γ <· α and γ <· β. Clearly γ = α ∧ β. Let γ = {γ1, γ2, ..., γm}. We obtain

α from γ by merging γi ∪ γj, and we obtain β by merging γk ∪ γ`. We have

two cases.

In the first case, suppose {i, j} ∩ {k, `} = ∅. Then we clearly have that α∨ β

is obtained from γ by performing both mergers γi∪γj and γk∪γ`, and so covers

both α and β. In the second case, assume that i = k. Then we can obtain

α∨ β from γ by merging γi ∪ γj ∪ γ`, which also covers both α and β. Thus,

we have that Πn is semimodular.

4.2 Shellability of Geometric Lattices

Björner [2] proved that all geometric lattices are EL-shellable. We present the

labeling in this section and a proof that it is an EL-labeling.
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Definition 4.2.1. Let L be a geometric lattice with a totally ordered atom set

A. The edge labeling Ψ : E(L) → A is given by defining

Ψ(x<·Ly) = minA{a ∈ A | a ≤L y, a �L x},

for each edge x<·Ly in L.

Notice that the label λ = Ψ(x<·Ly) is an atom of L. Further, by minA we

mean minimum with respect to <A. Also, since x <· y, and λ � x, we see that

x∨λ = y. Thus, we can equivalently say that λ is the smallest atom with respect

to <A such that x ∨ λ = y. This set of atoms whose minimum we seek cannot

be empty by Lemma 4.1.1. If L = Bn, then Ψ is precisely the EL-labeling of

Section 2.3.

Theorem 4.2.2. Let L be a geometric lattice. Then the labeling Ψ of Definition

4.2.1 is an EL-labeling.

Proof. To prove this, we must show that in any interval [x, y] ⊆ L, there is a

unique rising chain which lexicographically precedes all other maximal chains in

the interval. We begin by showing that we can construct a rising chain in the

interval:

Claim 4.2.3. Given a geometric lattice L with linearly ordered atom set A and

an interval [x, y] ⊆ L of length n ≥ 1, the chain c0 <· c1 <· · · · <· cn generated

by setting c0 = x and for each 0 < i < n defining ci := ci−1 ∨ zi, where

zi = minA{z ∈ A | z ≤ y, z � ci−1}, is rising.
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Proof of Claim 4.2.3. We first show that Ψ(ci−1 <· ci) = zi. Since zi ≤L ci and

zi �L ci−1, we have that

Ψ(ci−1 <· ci) = minA{a ∈ A | a ≤L ci, a �L ci−1}

≤A zi

Now since {a ∈ A | a ≤L ci, a �L ci−1} ⊆ {a ∈ A | a ≤L y, a �L ci−1}, we also

have that Ψ(ci−1 <· ci) ≥A zi, and so Ψ(ci−1 <· ci) = zi.

Now we need to show that zi <A zi+1 for each i. Notice that {a ∈ A | a ≤

y, a � ci} ( {a ∈ A | a ≤ y, a � ci−1}. Therefore,

zi = minA{a ∈ A | a ≤ y, a � ci−1}

≤A minA{a ∈ A | a ≤ y, a � ci}

= zi+1

Since zi ∈/ {a ∈ A | a ≤ y, a � ci}, we see that zi 6= zi+1. Thus, we have that

Ψ(ci−1 <· ci) <A Ψ(ci <· ci+1) for each i, and the chain c0 <· c1 <· · · · <· cn is

rising.

Now given that there is a rising chain in the interval, we must show it is unique.

Claim 4.2.4. The chain constructed in Claim 4.2.3 is the only rising chain in the

interval [x, y].

Proof of Claim 4.2.4. Let x = x0 <· x1 <· · · · <· xn = y be a rising chain of the

interval different from the chain c0 <· c1 <· · · · <· cn of Claim 4.2.3. Since the

chains are different, there exists some index i for which xj = cj for all j < i,

and xi 6= ci, since c0 = x0 = x. Let λi1 = Ψ(ci−1 <· ci) , and λi2 = Ψ(ci−1 <· xi).

Since λi1 = minA{a ∈ A | a ≤L y, a �L ci−1}, we must have that λi1 <A λi2 ,

since if λi1 = λi2 , then ci = ci−1 ∨λi1 = ci−1 ∨λi2 = xi. Further, this also implies
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that λi1 �L xi, since a covering must take as its label the smallest available less

than the larger element of the edge. Since λi1 ≤L y and is smaller in the atom

order than all remaining atoms also less than y, there will be some step k in the

chain at which λi1 �L xk−1 but λi1 ≤L xk.

Hence Ψ(xk−1 <· xk) = λi1 . Therefore the chain x = x0 <· x1 <· · · · <· xn = y

has a descent, since it has label λi2 precede λi1 . This contradicts the assumption

that the chain is rising; thus, c0 <· c1 <· · · · <· cn is uniquely rising.

Claim 4.2.5. The chain constructed in Claim 4.2.3 lexicographically precedes all

other chains of the interval [x, y].

Proof of Claim 4.2.5. To see that c0 <· c1 <· · · · <· cn lexicographically precedes

all other chains, we begin at its first label. Now since c0 = x, the first label of

the chain is z1 = minA{a ∈ A | a �L x, a ≤L y}. Any other chain which does

not use z1 as its first label will therefore succeed this constructed chain in the

lexicographic order since its first label is strictly larger.

On the other hand, if the first label of any other chain is also z1, then the

second element in the chain is by definition x∨ z1 = c1. Thus, the chains coincide

along this first edge. We now repeat this argument for z2, but only on chains

whose first label was z1, as we have already established that only these may equal

or precede the constructed chain. By repeating this argument for each step in the

chain, we see that the chain c0 <· c1 <· · · · <· cn lexicographically precedes every

other chain.

Combining these three claims, the edge labeling Ψ is an EL-labeling of L.
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As an example of this edge labeling, we illustrate Π4 labeled in this fashion

in Figure 4.1; notice that here we use an arbitrary index for the atoms, and label

edges with this index for brevity. The labeled bold edges in the middle of Figure

4.1 are part of a falling chain. Notice that the falling chains of this labeling are

different from the falling chains of the labeling used in Figure 2.3, but that there

are still exactly six falling chains in both cases.

Figure 4.1: A geometric labeling of Π4.



Chapter 5

Partial Decomposition Posets

5.1 Definition and Examples

Recall that if every pair of elements in a poset P has a join, we call P a

join semilattice. Let P be a ranked join semilattice, with rank function ρ. A

set T = {x1, ..., xm} ⊆ P is called independent if
m∑

i=1

ρ(xi) = ρ

(
m∨

i=1

xi

)
and

ρ(xi) 6= 0 for each i. Define the partial decomposition poset ΠP of P as the

set of independent sets T of P , where we define the order relation ≤ΠP
for any

pair T, S ∈ ΠP by saying that T ≤ΠP
S if and only if ∀ x ∈ T there exists

y ∈ S such that x ≤P y.

It is easy to verify that the order relation ≤ΠP
is a partial order. Note that

ΠP has a bottom element, namely the empty set; to distinguish this from 0̂ ∈ P

when P is bounded, we denote the minimum T0 := ∅. Also, observe that since

1̂ ∈ P exists, the element T1 := {1̂} is maximum in ΠP . Consider the following

example— let P be the join semilattice given by the following Hasse diagram:

54
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Figure 5.1: The poset P .

Applying the definition, we have that ΠP is given by

Define now for positive integer k the k–equal partial decomposition poset Π=k
P

as the induced subposet of ΠP given by

Π=k
P = {T ∈ ΠP | ρ(x) ≥ k ∀ x ∈ T}.

Further, note that if k = `(P ), then Π=k
P

∼= c1, the length one chain, while if

k = 1, then Π=1
P = ΠP . We will only consider k > 1 in general. For instance,

for the poset P of Figure 5.1, Π=2
P is given by
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Consider the following two fundamental examples of partial decomposition

posets.

Example 5.1.1. Let P be the Boolean algebra Bn. Let T = {A1, A2, ..., At} ⊂

Bn, with Ai 6= ∅ for each i. Since ρ(Ai) = |Ai| in Bn and also Ai∨Aj = Ai∪Aj,

we have that T is independent if and only if
t∑

i=1

|Ai| =

∣∣∣∣∣
t⋃

i=1

Ai

∣∣∣∣∣. Clearly, we have

that T is independent if and only if the sets A1, ..., At are mutually disjoint.

Observe that ΠBn is the set of partial partitions of [n]. This lattice was

introduced and denoted Π≤n by Hanlon, Hersh, and Shareshian [13, Definition

3.1]. They give the definition in terms of partitions of subsets of [n] rather than

in terms of independent sets.

We can identify T ∈ Π=k
Bn

with the element T ′ in the k–equal partition lattice

Π=k
n by requiring that each set Ai ∈ T is a block of T ′ and if a ∈/

t⋃
i=1

Ai, then

{a} is a singleton block of T ′. This map between Π=k
Bn

and Π=k
n is a bijection,

since its inverse simply forgets the singleton blocks of T ′.

Further, it preserves the order relation, since given T ≤Π=k
Bn
S, any singleton of

S ′ must also be a singleton of T ′. Therefore, since each block of T is contained

in some block of S and any singleton block of T ′ is contained in a block of S ′,

we must have that T ′ ≤Π=k
n
S ′. Therefore, we have that Π=k

Bn
∼= Π=k

n for each

positive integer 2 ≤ k ≤ n. Notice that since Π=2
n = Πn, we have that

Π=2
Bn
∼= Πn.
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Example 5.1.2. Let P = Bn(q) for prime power q. Let T = {U1, ..., Ut} ⊂

Bn(q), with Ui 6= (0) for each i. To be independent, since ρ(Ui) = dim(Ui)

and also Ui ∨ Uj = Ui + Uj, we have that T is independent if and only if
t∑

i=1

dim(Ui) = dim(U1 + · · ·+ Ut).

Let V be a finite dimensional vector space over the field Fq, and let

U1, U2, ..., Ut be nontrivial subspaces of V . Recall that the sum U1 + · · ·+Ut is

defined as the smallest subspace of V so that for any vector v ∈ U1 + · · ·+ Ut,

we may write v = u1 + · · · + ut for some collection of vectors ui ∈ Ui for each

i. The sum is called direct and denoted by U1 ⊕ · · · ⊕ Ut if one of the following

equivalent conditions hold:

• Every vector v ∈ U1+· · ·+Ut has a unique expression as a sum, v =
t∑

i=1

ui,

where ui ∈ Ui for each i.

• For each i, we have that Ui ∩ (U1 + · · ·+Ui−1 +Ui+1 + · · ·+Ut) = (0), the

trivial subspace.

• dim(U1 + · · ·+ Ut) =
t∑

i=1

dim(Ui).

We call U1⊕· · ·⊕Ut a partial direct sum decomposition of V . Therefore, the

set T = {U1, ..., Ut} is independent if and only if U1⊕· · ·⊕Ut is a partial direct

sum decomposition of V = Fn
q . Thus, we have that ΠBn(q) is the poset PDn(q)

of all partial direct sum decompositions of Fn
q , discussed in Section 3.2. On the

other hand, the poset Π=k
Bn(q) is the poset of partial direct sum decompositions

whose summands all have dimension at least k, which has so far not been studied.

From the observation that Bn(q) can be viewed as a q–analogue of Bn, and

Π=2
Bn

∼= Πn, we can hope that Π=2
Bn(q) can also be viewed as a new q–analogue
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of Πn; we will provide further justification in Chapters 6 and 7. Because of these

results, we will later use the alternative notation Π=k
n (q) for Π=k

Bn(q).

5.2 Preliminary Lemmas About Independent Sets

Before proving more substantial results concerning partial decomposition

posets, we prove some results concerning the nature of ΠL for L a geometric

lattice. For these lemmas, we always assume that L is a geometric lattice with

atom set A.

Lemma 5.2.1. A set T is independent in L if and only if every subset of T

is independent in L.

Proof. In one direction, the proof is completely trivial. To show the other

direction, assume that T is independent and some subset S of T is not

independent. Denote T − S by S ′.

Since T is independent, we have that S 6= T . By the assumption that S is

not independent and by Lemma 4.1.3, ρ

(∨
y∈S

y

)
<
∑
y∈S

ρ(y). Now observe that by

join associativity we have that ρ

(∨
y∈T

y

)
= ρ

((∨
y∈S′

y

)
∨

(∨
y∈S

y

))
. Applying

Lemma 4.1.3 to this, we obtain

ρ

((∨
y∈S′

y

)
∨

(∨
y∈S

y

))
≤ ρ

(∨
y∈S′

y

)
+ ρ

(∨
y∈S

y

)

<
∑
y∈S′

ρ(y) +
∑
y∈S

ρ(y)

=
∑
y∈T

ρ(y).
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Thus, T could not be independent, a contradiction.

Lemma 5.2.2. Let T = {x1, x2, ..., xm} be an independent set of L. If b ∈ A

is such that b � (x1 ∨ · · · ∨ xm), then both {x1, ..., (xm ∨ b)} and {x1, ..., xm, b}

are also independent sets of L.

Proof. Notice that b � xm, so by semimodularity, since b ∧ xm = 0̂, we have

that ρ(b ∨ xm) = ρ(xm) + 1 = ρ(xm) + ρ(b). By the associativity of the join,

observe that ρ

(
b ∨

m∨
i=1

xi

)
= ρ

(
(b ∨ xm) ∨

m−1∨
i=1

xi

)
, so that the independence of

{x1, ..., xm, b} implies the independence of {x1, ..., (xm ∨ b)}.

Let z =
m∨

i=1

xi. Since b � z and b is an atom, we have that b ∧ z = 0̂,

and so b ∧ z <· b. Therefore by semimodularity we have that z <· b ∨ z, so that

ρ(b∨z) = ρ(z)+1 = ρ(z)+ρ(b). Now since T is independent, we have that ρ(z) =
m∑

i=1

ρ(xi). Combining these results gives that ρ

(
b ∨

m∨
i=1

xi

)
= ρ(b) +

m∑
i=1

ρ(xi),

and so T ∪ {b} is independent.

Lemma 5.2.3. Let T be an independent set of L, and suppose x ∈ T and

S ⊆ T − {x}. Then x ∧
∨
y∈S

y = 0̂.

Proof. Since S and S ∪ {x} are both subsets of T , by Lemma 5.2.1 they are

independent. By the semimodularity of L and the independence of both S and

S ∪ {x} we then have

ρ(x) + ρ

(∨
y∈S

y

)
≥ ρ

(
x ∨

(∨
y∈S

y

))
+ ρ

(
x ∧

(∨
y∈S

y

))

= ρ(x) +
∑
y∈S

ρ(y) + ρ

(
x ∧

(∨
y∈S

y

))

= ρ(x) + ρ

(∨
y∈S

y

)
+ ρ

(
x ∧

(∨
y∈S

y

))
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This gives that 0 ≥ ρ

(
x ∧

(∨
y∈S

y

))
. However, since ρ is a nonnegative

function, we conclude that ρ

(
x ∧

(∨
y∈S

y

))
= 0; moreover, since 0̂ is the only

element of L of rank 0, we have x ∧

(∨
y∈S

y

)
= 0̂, as claimed.

Corollary 5.2.4. If T ≤ΠL
S, then each element x ∈ T is less than a unique

element y ∈ S in L.

Proof. Since the elements of any independent set must have meet 0̂, there can be

no distinct elements y1, y2 ∈ S such that x ≤L y1 and x ≤L y2 for any x ∈ T ,

as (y1 ∧ y2) would not be 0̂, a contradiction.

Lemma 5.2.5. Let T be an independent set of L, and let x ∈ T . If w <L x,

then the set (T − {x}) ∪ {w} is independent.

Proof. Without loss of generality, assume that w <· x. Since L is geometric,

there exists an atom a such that w∨ a = x. Let z =
∨

y∈T−{x}

y. By associativity

of the join, z ∨ x = z ∨ (w ∨ a) = (z ∨ w) ∨ a. By semimodularity, we have that

ρ(z ∨ x) = ρ((z ∨ w) ∨ a) ≤ ρ(z ∨ w) + ρ(a) = ρ(z ∨ w) + 1. By the independence

of T and Lemma 5.2.1, we also have that ρ(z ∨ x) = ρ(z) + ρ(x). Combining

this inequality and equation gives that ρ(z) + ρ(x)− 1 ≤ ρ(z ∨w). Since ρ(w) =

ρ(x)− 1, we have that ρ(z) + ρ(w) ≤ ρ(z ∨w). But semimodularity also requires

that ρ(z)+ρ(w) ≥ ρ(z∨w); therefore, we must have that ρ(z∨w) = ρ(z)+ρ(w),

and so (T − {x}) ∪ {w} is independent.

Lemma 5.2.6. Let R be an independent subset of L. Let T ⊆ L be such that∨
y∈R

y ∈ T and R ∩ T = ∅. Then T is independent if and only if

S =

(
T −

{∨
y∈R

y

})
∪R is independent.
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Proof. Let z =
∨
y∈R

y. We have that

ρ

(∨
y∈S

y

)
= ρ

 ∨
y∈T−{z}

y

 ∨

(∨
y∈R

y

)
= ρ

 ∨
y∈T−{z}

y

 ∨ z


= ρ

(∨
y∈T

y

)
.

We also have that

∑
y∈S

ρ(y) =

 ∑
y∈T−{z}

ρ(y)

+ ρ

(∨
y∈R

y

)

=

 ∑
y∈T−{z}

ρ(y)

+ ρ(z)

=
∑
y∈T

ρ(y).

Therefore S is independent if and only if T is independent.

Note that by combining Lemmas 5.2.5 and 5.2.6, if T ⊆ L is an independent

set, then we can replace any x ∈ T by any independent subset R ⊆ [0̂, x] ⊂ L

and maintain independence.

5.3 Establishing That Π=k
L Is a Lattice

As an application of the results of Section 5.2, we next show that Π=k
L is also

a lattice when L is geometric. Let L be a geometric lattice, and 0 < k < `(L)
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a fixed integer. For the pair of distinct elements T, S ∈ Π=k
L , define

T � S :=

{
(x ∧ y) ∈ L | x ∈ T, y ∈ S, ρ(x ∧ y) ≥ k

}
. (5.3.1)

Lemma 5.3.1. Let L be a geometric lattice, and 0 < k < `(L) a fixed integer.

Fix T, S ∈ Π=k
L . If T � S is independent, then T � S = T ∧ S.

Proof. Let U ∈ Π=k
L be an arbitrary lower bound of T and S. Then for each

element z ∈ U , by Corollary 5.2.4 and the definition of the order relation, there

exists a unique x ∈ T and a unique y ∈ S such that z ≤L x and z ≤L y; thus

z is a lower bound of x and y in L.

Now since x, y, z ∈ L, by the definition of meets we have z ≤L (x ∧ y).

Thus, each element in U is less than or equal to the meet of some unique pair of

elements, one from T and one from S. Since we define T � S to be the set of

all such meets, we conclude U ≤Π=k
L
T � S. Thus, T � S is the meet.

Theorem 5.3.2. Let L be a geometric lattice, and 0 < k ≤ `(L) a fixed integer.

Then Π=k
L is a lattice.

Proof. When k = `(L), since Π=k
L
∼= c1, it is trivially a lattice; assume then that

k < `(L). We have already defined T � S given any two elements T, S ∈ Π=k
L ,

and shown that if it is independent, then it is the meet. We now show that T �S

is independent. To show this, we use the results of the Section 5.2. These give

us three processes which allow us to transform a given independent set into a

“smaller” independent set in Π=k
L .

Consider T and T � S. We begin by deleting all elements of T which are

not greater than any element of T �S, using Lemma 5.2.1. Next, we can look for

any element of T which is greater than a single element of T �S; let x ∈ T and

y ∈ T � S be such a pair, and assume x 6= y, or else there is nothing more to do.

Since y <L x, by Lemma 5.2.5 the set (T − {x}) ∪ {y} is independent.
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Last, assume there are multiple elements of T �S less than some fixed element

of x ∈ T . That is, let {y1, ..., yj} ⊆ T �S be such that each yi ≤L x. Since each

yi ≤L x, we must also have that (y1 ∨ · · · ∨ yj) ≤L x. If x 6= (y1 ∨ · · · ∨ yj), then

we use Lemma 5.2.5 to replace x by this join. Notice by the definition of T � S,

that there must exist distinct z1, ..., zj ∈ S such that yi ≤L zi for each i, since

they are all less than the same x ∈ T .

Therefore, since each yi can be obtained by application of Lemma 5.2.5 to

S, the set {y1, ..., yj} is also independent. Applying Lemma 5.2.6 to the join

y1 ∨ · · · ∨ yj allows us to preserve independence as we replace y1 ∨ · · · ∨ yj by

the subset {y1, ..., yj}.

Combining these three processes shows that T � S is independent, since each

of its elements can be obtained from T in a way which preserves independence;

thus, T � S = T ∧ S, so Π=k
L is a meet semilattice. Recall that T1 = {1̂} is

maximum in Π=k
L . Since any meet semilattice with a top element is a lattice, we

have that Π=k
L is a lattice.

For example, consider L = B9 and k = 2. Using traditional block notation,

let T = 123|4567|89 and S = 128|3459|67. Now T ∧ S = 12|45|67. We can

obtain T ∧ S from T by deleting block 89, replacing block 123 by 12, and then

splitting block 4567 to form the set of blocks 45|67.

Because Π=k
L is a lattice when L is geometric, we shall call it the k–

equal partial decomposition lattice. It can easily be verified that these lattices

are only pure either when k = 2, or when k > n
2
. Specifically, we have that

`(Π=2
L ) = `(L) − 1, while for k > 2, the lattice has maximal chains of length

(`(L)− 1)− t(k − 2) for each positive integer t ≤ `(L)
k

.
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Now being a lattice, we may ask whether Π=k
L is also semimodular. We

previously observed that Π=k
Bn

∼= Π=k
n was not pure whenever k > 2; since

semimodularity implies purity, this lattice is also not semimodular. When k = 2,

we have the following result:

Proposition 5.3.3. For k = 2, there exists a subspace lattice Bn(q) such that

Π=2
Bn(q) is not semimodular.

The implication of this statement is that it is not true in general that Π=k
L

is geometric, even if L itself is geometric. This contrasts with the result that

Π=2
Bn
∼= Πn, which is geometric; the proposition implies this is an exceptional case.

Proof. Consider L = B10(2), the lattice of subspaces of the vector space F10
2 . We

will construct a pair of elements T ,S ∈ Π=2
B10(2) which will fail the condition for

semimodularity; namely, we will show that T ∧ S <· T but S is not covered by

T ∨ S.

We use m× 10 reduced row echelon matrices with nonzero rows to represent

m–dimensional subspaces of F10
2 . Consider the following four subspaces of F10

2 :

T =


0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0

, S1 =


1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1

,

S2 =

 1 1 1 0 0 0 1 1 1 0

0 0 0 1 1 1 0 0 0 0

, S3 =


1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0

.

We now define the sets T = {T} and S = {S1, S2, S3}. It is not difficult to

check both that S is independent and that from the characterization of the meet
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of independent sets given in (5.3.1), T ∧ S = {V }, where

V =

 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0

.

It is clear that V <· T in B10(2); hence T ∧ S <· T . Suppose now that

S <· T ∨ S. Then we must have that T ∨ S has one of the following forms:

(1) {Si ∨ Sj, Sk} for some permutation ijk of the indices 1, 2, 3 such that

T ⊆ Si ∨ Sj; or (2) {Si, Sj, S
′
k} for some permutation ijk of the indices 1, 2, 3

where Sk<·Bn(q)S
′
k and T ⊆ S ′k.

We can see now that (1) is not possible by considering the vector a =

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0). Note that a ∈ T , but a ∈/ Si ∨ Sj for any pair i, j, as

we can see from the following pairwise joins:

S1 ∨ S2 =



1 0 1 0 1 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


,

S1 ∨ S3 =



1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1


,
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S2 ∨ S3 =



1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0


.

We now show that (2) is also not possible. Since a ∈/ Sk but a ∈ T ⊆ S ′k, we

see that S ′k = Sk ∨ (a). Notice however that a can be expressed as the sum of

the vectors (0, 0, 0, 0, 0, 0, 0, 0, 1, 1) ∈ S1 and (0, 0, 0, 1, 0, 0, 0, 0, 1, 1) ∈ S2 ∨ S3.

Therefore, we have that a ∈ Si ∨ Sj ∨ Sk, and so Si ∨ Sj ∨ Sk = Si ∨ Sj ∨ S ′k.

This contradicts the independence of {Si, Sj, S
′
k}, hence S is not covered by

T ∨ S.



Chapter 6

The Topology of Π=k
L

6.1 The EL-Shellability of Π=k
L

We now will show that Π=k
L is EL-shellable if L is a geometric lattice and

k ≥ 2 is an integer. Denote by A the atom set of L, and fix a linear order <A

on A. Since A is linearly ordered, given any subset S ⊆ A, define w(S) to

be the strictly increasing word on the letters of S. That is, if S = {a1, ..., as} is

such that ai <A ai+1 for each i ∈ [s− 1], then w(S) = a1a2 · · · as.

Since L is geometric, any element x ∈ L can be written as a join of some

collection of atoms of L. We say that a set of atoms Bx = {a1, ..., am} is a basis

of x if x =
m∨

i=1

ai and ρ(x) = |Bx|. We then use the order <A to induce a

lexicographic order on the set of words of the form w(Bx) for a fixed x ∈ L.

That is, given two words w1 = a1a2 · · · am and w2 = b1b2 · · · bm, then w1 < w2

if there exists unique index 1 ≤ j ≤ m such that ai = bi whenever i < j and

aj <A bj. Since there is a bijective correspondence between increasing words and

subsets of A, this induces a lexicographic order on bases of x. Now we define a

special basis in the following way:

67
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Definition 6.1.1. Given a linear order <A of the atoms of geometric lattice L,

a basis Ux = {a1, ..., am} of x ∈ L is said to be the unique minimal basis of x

if w(Ux) ≤ w(Bx) for any basis Bx of x.

We will always denote the unique minimal basis of the element x by Ux.

Further, we can make the following observation concerning this basis:

Lemma 6.1.2. Fix x ∈ L for a geometric lattice L with a given linear atom

order <A. Suppose Ux = {a1, ..., am} where a1 <A a2 <A · · · <A am. Then the

label sequence of the unique rising chain of [0̂, x] under the EL-labeling ΨL of

L induced by the atom order (defined in Definition 4.2.1) is (a1, a2, ..., am).

Proof. Recall that the edge y <· z of L is labeled by finding the smallest atom

a in A such that y ∨ a = z, and assigning y <· z the label a. We then

can construct a maximal chain x0<· x1<· · · ·<· xm of [0̂, x] by defining for each

0 ≤ j ≤ m the element xj =
∨
i≤j

ai. Note that x0 = 0̂, while xm = x by the

definition of a basis. That these elements form a maximal chain is a consequence

of semimodularity, as we see that xj <· xj+1 for each j. Consider the edge

xj <· xj+1 for a fixed 0 ≤ j < m. Suppose that the label of the edge xi <· xi+1 is

ai+1 for each 0 ≤ i < j, and that there exists atom b <A aj+1 which is minimal

among all atoms such that xj ∨ b = xj+1; the edge xj <· xj+1 must receive label

b.

Furthermore, if such a b existed, there would exist a basis Bx such that the

first j + 1 letters of w(Bx) are a1 · · · ajb. Regardless of the remaining atoms in

this basis, w(Bx) would then lexicographically precede w(Ux). Therefore, no such

atom b can exist, and so the edge xj <· xj+1 must receive label aj+1 for each

j. Since a1 <A a2 <A · · · <A am, the maximal chain 0̂ = x0 <· x1 <· · · · <· xm = x
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has label sequence (a1, ..., am), and thus is the rising chain of [0̂, x].

Once we have Ux for each x ∈ L, we can use this basis to generate covering

labels in Π=k
L . First, we observe that there are only three types of coverings

in Π=k
L , generalizing the three observed for the k–equal partition lattice. We

summarize these coverings as follows.

Proposition 6.1.3. Given a geometric lattice L and a fixed integer 2 ≤ k ≤

`(L), then T <· S for T, S ∈ Π=k
L if and only if one of the following hold:

Type I - Creation:

There exists a unique y ∈/ T such that S = T ∪ {y} and ρ(y) = k.

Type II - Expansion:

There exists a unique x ∈ T and y ∈ S such that x<·Ly and

S = (T − {x}) ∪ {y}.

Type III - Merger:

There exist unique and distinct x, y ∈ T such that S = (T−{x, y})∪{x∨y}.

We can now assign labels to each type of edge as follows:

Definition 6.1.4. Let L be a geometric lattice with linearly ordered atom set A,

and fix an integer 2 ≤ k ≤ `(L). Define the edge labeling Ψ : E(Π=k
L ) → [2]× A

by labeling each type of covering step described in Proposition 6.1.3 as follows:

Type I - Creation:

Ψ(T <· S) = (2, b), where b = maxA(Uy).
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Type II - Expansion:

Ψ(T <· S) = (2, b), where b = minA{a ∈ A | a ∨ x = y}.

Type III - Merger:

Ψ(T <· S) = (1, b), where b = maxA(Ux ∪ Uy).

We now order the label set lexicographically, so that (1, ∗) < (2, ∗) for any

arbitrary entries in the second component, while for fixed m, we use the atom

ordering of L to say that (m, a) < (m, b) if and only if a <A b. This is

well-defined, since the second component is always an atom of L, which we call

the labeling atom of the covering relation.

Further, we have the following lemma concerning mergers and their labels:

Lemma 6.1.5. Let T be an independent set of geometric lattice L, and let

x, y ∈ T be distinct. Then

maxA(Ux∨y) ≤A maxA(Ux ∪ Uy).

Proof. We have x ∨ y =

( ∨
b∈Ux

b

)
∨

∨
b∈Uy

b

 =

 ∨
b∈Ux∪Uy

b

. Since {x, y} ⊆ T

is independent, Ux ∩ Uy = ∅ by Lemma 5.2.3. Therefore Ux ∪ Uy is a basis for

x ∨ y.

Let 0̂ = z0 <· z1 <· · · · <· zm−1 <· zm = x ∨ y be the rising chain of [0̂, x ∨ y]

under the labeling ΨL of L induced by the linear order of A given in Definition

4.2.1. By Lemma 6.1.2, we have that a := maxA(Ux∨y) = ΨL(zm−1 <· x∨y). This

implies that a = minA{b ∈ A | b ≤L x ∨ y, b �L zm−1}.

Assume that maxA(Ux∪Uy) <A a; thus, for all b ∈ Ux∪Uy, we have b <A a.

By the minimality of a, we have that b ∈ Ux ∪ Uy implies b ≤L zm−1. Thus,
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b∈Ux∪Uy

b ≤L zm−1 �L x ∨ y. This contradicts that Ux ∪ Uy is a basis of x ∨ y;

thus, we must have that maxA(Ux∨y) ≤A maxA(Ux ∪ Uy).

With this labeling, we now state and prove the following main theorem:

Theorem 6.1.6. Given a geometric lattice L and a positive integer 1 < k ≤

`(L), the labeling Ψ of Definition 6.1.4 for the partial decomposition lattice Π=k
L

is an EL-labeling.

Proof. The proof of this theorem generalizes the proof of Proposition 2.5.1 for the

k–equal partition lattice [7]. Clearly, if k = `(L), the lattice is EL-shellable, being

isomorphic to the chain c1; assume then that k < `(L). We begin by analyzing

upper intervals [S, T1], of which there are two types.

The first type of upper interval is of the form [S, T1], for S 6= T0 ∈ Π=k
L . We

start by indexing the elements of S = {x1, ..., xp} so that for all pairs of indices

i < j,

maxA(Uxi
) <A maxA(Uxj

). (6.1.1)

This is well-defined, since no atom is less than two elements of S simultaneously

by Lemma 5.2.3. For each i ∈ {1, ..., p}, define wi =
i∨

j=1

xj. Now define Si =

{wi, xi+1, xi+2, ..., xp} for each i, with 1 ≤ i ≤ p. In particular, observe that

S1 = S, and Sp = {wp}; also, observe that wi = wi−1 ∨ xi, and that Si =

(Si−1 − {wi−1, xi}) ∪ {wi}.

Let ρ(wp) = r. Define (recursively) for each i with p+1 ≤ i ≤ `(L)− r the

following:

• bi = minA{a ∈ A | a � wi−1}

• wi = wi−1 ∨ bi
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Further, define Si = {wi} for each i with p+ 1 ≤ i ≤ `(L)− r.

Claim 6.1.7. The maximal chain c := S1 <· S2 <· · · · <· Sp <· Sp+1 <· · · · <· S`(L)−r

is rising in the upper interval [S, T1].

Proof of Claim 6.1.7. First, observe that Si−1 <· Si for each i, since when

i ≤ p, each wi is the merger of the two elements wi−1 and xi of Si−1, while

when i > p, each wi is an expansion of Si−1. For the mergers, we need to

show that for each i, we have maxA(Uwi
) <A maxA(Uxi+1

), which will imply

that the labeling atom for each merge is maxA(Uxi+1
). For i = 1 it is clear

that maxA(Uw1) = maxA(Ux1) <A maxA(Ux2) by (6.1.1). Assume now that the

inequality holds for some i ≥ 1. By Lemma 6.1.5, the definition of wi+1, and

(6.1.1), we have that

maxA(Uwi+1
) = maxA(Uwi∨xi+1

)

≤A maxA{maxA(Uwi
),maxA(Uxi+1

)}

= maxA(Uxi+1
)

<A maxA(Uxi+2
).

Therefore, by induction on i, we have maxA(Uwi
) <A maxA(Uxi+1

) for all

1 ≤ i ≤ p− 1.

Thus, for each i ∈ [p− 1],

Ψ(Si <· Si+1) = (1,maxA(Uxi+1
)). (6.1.2)

Now we can see that the sequence of labels for this chain is precisely

(1,maxA(Ux2)), ..., (1,maxA(Uxp)), (2, bp+1), ..., (2, b`(L)−r). By the choice of indices

for the elements of S from (6.1.1), the merger subsequence is strictly increasing.

That the expansion subsequence is strictly increasing is a consequence of the fact

that since each bi is the smallest atom available at the (i− p)th expansion step,
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these labels must increase, since the minimum of the set of available atoms must

get strictly larger after every expansion. Thus, the chain c is rising.

(Proof of Theorem 6.1.6 continued) Note that if |S| = 1, then p = 1, so there are

no merger labels in this chain. Similarly, if wp = 1̂, there will be no expansion

labels. Further, observe that in this interval, any creation or expansion which

precedes a merger automatically generates a descent. Since only mergers can

reduce the cardinality of an independent set, and we must finish with a singleton

independent set, we must have that any rising chain must consist of a sequence of

mergers followed by a sequence of expansions, where one of these sequences may

be empty.

Now since we must merge all the elements of S first, and we defined wp =
p∨

i=1

xi, every rising chain must pass through the element Sp = {wp}. Therefore,

we may consider the two separate intervals, [S, Sp] and [Sp, T1]; either one of

these intervals may be singleton, in which case there are no chains, and no further

analysis needed. In the interval [S, Sp], we seek a rising chain cm, which must

consist of only mergers, while in [Sp, T1], we seek a rising chain ce, which must

consist of only expansions. Since these intervals intersect at only one element,

then the set cm ∪ ce is a maximal chain of [S, T1], and will be rising.

Notice that by our construction of c in Claim 6.1.7, if we define

cm = S1 <· S2 <· · · · <· Sp and ce = Sp <· Sp+1 <· · · · <· S`(L)−r, then these two

chains are each rising in their respective intervals. Now to show that c = cm ∪ ce

is the only rising chain in [S, T1], we can show that cm and ce are uniquely

rising in their respective intervals.

Claim 6.1.8. The chain cm is the only rising chain in the interval [S, Sp].
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Proof of Claim 6.1.8. Notice that since wp =

p∨
i=1

xi, we cannot perform any type

of covering step in this interval except mergers, since both expansions and creations

require an increase in the sum of the ranks of the elements of an independent set.

Let dm be a rising chain of [S, Sp]. Since each covering step is a merger in

this interval, consider the covering step which arises from merging together two

distinct elements u, v ∈ R1 for some R1 ∈ dm. By definition, the label this step

receives must be (1, b), where b = maxA{maxA(Uu),maxA(Uv)}.

Assume that maxA(Uu) <A maxA(Uv), so that the label of the merger u ∨ v

is (1,maxA(Uv)). If v = v1 ∨ v2 was the result of the previous merger of the

two elements v1, v2 ∈ R2 for some R2 ∈ dm with R2 <L R1, then assume

that maxA(Uv1) <A maxA(Uv2), so that the merger v1 ∨ v2 generates the label

(1,maxA(Uv2)). Now by Lemma 6.1.5 we have that maxA(Uv) ≤A maxA(Uv1 ∪

Uv2) = maxA(Uv2), so we have that (1,maxA(Uv)) ≤ (1,maxA(Uv2). But this

implies that dm is not rising, since the label (1,maxA(Uv2) precedes the label

(1,maxA(Uv)).

Hence we have shown that each covering of dm is a merger u ∨ v where

v ∈ S and the label of the merger is (1,maxA(Uv)). It follows that there is a

permutation σ ∈ Sp such that dm := S ′1 <· S ′2 <· · · · <· S ′p, where for each i

we have w′
i :=

i∨
j=1

xσ(j), S
′
i = {w′

i, xσ(i+1), xσ(i+2), ..., xσ(p)}, and Ψ(S ′i−1 <· S ′i) =

(1,maxA(Uxσ(i)
)). Since dm is rising, by (6.1.1) we must have that σ is the

unique increasing word, σ = 123 · · · p. Therefore dm = cm, and the rising chain is

unique.

Claim 6.1.9. The chain ce is the only rising chain in the interval [Sp, T1].

Proof of Claim 6.1.9. Notice that since both Sp and T1 are singleton sets, if

R ∈ [Sp, T1] is such that |R| > 1, then any maximal chain containing R must
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contain a creation followed by a merger, and so is not rising. Therefore, any

rising chain in this interval consists entirely of expansions only. Let fe be a

maximal chain consisting of only expansions in the interval with label sequence

(2, dp+1), ..., (2, d`(L)−r), and let i be the first index at which bi 6= di, with bi

the ith label of the chain ce.

Since by definition bi is the smallest atom available at this step not less than

wi−1, we must have that bi <A di. Further, we have that bi �L (wi−1 ∨ di), by

the definition of the edge labeling of an expansion. But since every atom is less

than 1̂, we have that bi will become an expansion label of fe eventually, being

the smallest atom available. Thus, we have bi = di+k for some positive integer

k; thus, fe is not rising, as (2, di) precedes (2, bi) in the label sequence.

Therefore, the chain c has a uniquely rising label sequence in [S, T1].

Claim 6.1.10. The chain c is lexicographically first among all maximal chains

of [S, T1].

Proof of Claim 6.1.10. To show that c is lexicographically first among all

maximal chains, we make use of the fact given in (6.1.2) that the rising chain

we have constructed uses at each step the smallest possible label available. Since

no label can be smaller at each step than the label of the rising chain, it cannot be

preceded by any other maximal chain in the interval. Thus, these upper intervals

of this type have the rising maximal chain we seek.

(Proof of Theorem 6.1.6 continued) Now consider the upper interval [T0, T1] =

Π=k
L . We must clearly begin our sequence with a creation, since we cannot arrive

at T1 unless we have at least one element. However, if we have multiple creations,
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we will have to have a merger which follows them, creating a descent. Since we

can have only one creation, the remaining steps are expansions only.

Claim 6.1.11. Denote the rising chain of L by CL := 0̂ <· c1 <· · · · <· c`(L)−1 <· 1̂,

under the EL-labeling ΨL given in Definition 4.2.1. Then the chain

CΠ=k
L

:= T0 <· {ck} <· {ck+1} <· · · · <· {c`(L)−1} <· T1 is a rising chain of Π=k
L .

Proof of Claim 6.1.11. By Lemma 6.1.2, the labeling atom of the creation

T0 <· {ck} is the same as the largest label in the unique rising chain of [0̂, ck]L.

However, this chain is a subset of CL. Thus, we have Ψ(T0 <· {ck}) =

(2,ΨL(ck−1 <· ck)), while Ψ({ci} <· {ci+1}) = (2,ΨL(ci <· ci+1)) for each i ≥ k.

The label sequence of CΠ=k
L

is therefore

(2,ΨL(ck−1 <· ck)), (2,ΨL(ck <· ck+1)), ..., (2,ΨL(c`(L)−1 <· 1̂)),

and so since CL is rising, we have that CΠ=k
L

is also rising.

Claim 6.1.12. The chain CΠ=k
L

is uniquely rising among all maximal chains of

Π=k
L .

Proof of Claim 6.1.12. Since we cannot have mergers and maintain a rising chain,

assume D := T0 <· {dk} <· {dk+1} <· · · · <· {d`(L)−1} <· T1 is a rising chain. By

Lemma 6.1.2, Ψ(T0 <· {dk}) = (2, a) where a is the largest label in the uniquely

rising chain Dk of the interval [0̂, dk]L under the EL-labeling ΨL of Definition

4.2.1. The labels given to the expansions above {dk} are directly taken from a

maximal chain of the interval [dk, 1̂]L, as in Claim 6.1.11.

Since D is rising and Ψ({di} <· {di+1}) = (2,ΨL(di<·Ldi+1)) for each i, we

have E := dk <· dk+1 <· · · · <· d`(L)−1 <· d`(L) = 1̂ is rising in L. Further since

Ψ(T0 <· {dk}) < Ψ({dk} <· {dk+1}), we must have that a <A ΨL(dk <· dk+1). But

notice that since Dk ∩E = {dk}, the chain Dk ∪E is a rising maximal chain of
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L, and so we must have that D = CΠ=k
L

by the uniqueness of the rising chain of

L.

Claim 6.1.13. The chain CΠ=k
L

is lexicographically first among all maximal

chains of Π=k
L .

Proof of Claim 6.1.13. Notice by Theorem 4.2.2 and Lemma 6.1.2 that every atom

a <A maxA(Uck
) is such that a ≤L ck−1. Therefore, if Ψ(T0 <· {dk}) = (2, a)

is such that a <A maxA(Uck
) for some atom {dk} ∈ Π=k

L , then b ∈ Udk

implies that b ≤L ck−1. By the definitions of bases and joins, we then have that

dk ≤L ck−1, which contradicts the fact that ρ(dk) = k by the definition of Π=k
L .

Now suppose Ψ(T0 <· {dk}) = (2,maxA(Uck
)); that is, we have that a :=

maxA(Uck
) = maxA(Udk

). Then since
∨

b∈Udk
−{a}

b ≤L ck−1 from the previous

observations, and ck−1 ∨ a = ck, we have that dk =
∨

b∈Udk

b ≤L ck. Thus, if

ρ(dk) = k, then we must have that dk = ck. Therefore, only one creation has a

label as small as the creation label of CΠ=k
L

. Since the chains above this creation

are maximal chains of the upper interval [{ck}, T1], Claim 6.1.10 gives that the

unique rising chain is lexicographically first in this interval. Therefore, the chain

CΠ=k
L

is lexicographically first among all chains of Π=k
L .

(Proof of Theorem 6.1.6 continued) Thus, any upper interval of the form [S, T1]

contains the maximal chain we seek. Now consider an arbitrary interval [S, T ],

with S = {s1, ..., sm}, and T = {t1, ..., tu}. First consider two distinct elements

ti, th ∈ T . By Lemma 5.2.3 ti ∧ th = 0̂ for any such pair. By the definition of

labeling atoms, we see that any label in any chain generated by ti cannot also be

a label in a chain generated by th since it would imply an atom simultaneously

less than both.
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For a fixed ti ∈ T , denote by Si the element of [S, T ] such that Si = {ti}∪V i,

where V i = {s ∈ S | s �L ti}. Observe that since V i ⊂ S, by applying

Lemma 5.2.6 to T , we have that Si is independent. In particular, every element

Z ∈ [S, Si] must satisfy V i ⊆ Z. We now observe that the interval [S, Si] is

isomorphic to the upper interval [S − V i, {ti}] of Π=k
Lti

, where Lti = [0̂, ti] ⊆ L;

here, the isomorphism is given by the map which forgets the subset V i common

to every element of [S, Si]. Note that lower intervals of geometric lattices are also

geometric.

Since Π=k
Lti

= [T0, {ti}] is a lower interval of Π=k
L , the edge labeling Ψ of Π=k

L

restricts to the edge labeling of Definition 6.1.4 with L = Lti for Π=k
Lti

. Using

Claims 6.1.7 and 6.1.11, we know that every upper interval of Π=k
Lti

has a rising

chain; we have also shown that such chains are unique in Claims 6.1.8, 6.1.9, and

6.1.12. Let S − V i = Ri
1 <· Ri

2 <· Ri
3 <· · · · <· Ri

mi
= {ti} be the rising chain of

the upper interval [S − V i, {ti}] ⊂ Π=k
Lti

for each i, and denote Ψ(Ri
j <· Ri

j+1)

by λi
j.

Denote the set of all λi
j by Λ. Note that since ti ∧ th = 0̂ and λi

j ≤L ti

for each i and each j, we have that λi1
j1
6= λi2

j2
if i1 6= i2. Since the label set

[2] × A is totally ordered, Λ is also totally ordered. Observe that S =
t⋃

i=1

Ri
1,

while T =
t⋃

i=1

Ri
mi

. Further, any union of the form
t⋃

i=1

Ri
ji
, where ji is arbitrary

for each i, is independent by Lemmas 5.2.5 and 5.2.6.

We now define the chain C to be S = Z0 <· Z1 <· Z2 <· · · · <· Zv = T , where

Z1 := (S − Ri
1) ∪ Ri

2 and we choose i such that λi
1 = min(Λ). To recursively

define the remaining elements, let Λp be the set of labels of Λ which have been

used to form Zp for each integer p. We then define Zp+1 := (Zp − Ri
j) ∪ Ri

j+1,

where λi
j = min(Λ− Λp). Notice that each Zp is independent, being a union of
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the form
t⋃

i=1

Ri
ji
. Further, we have Ψ(Zp <· Zp+1) = λi

j. Moreover, as we select

λi
j to be minimum at each step, we must have that C is rising.

Now we show that C is the only rising chain of [S, T ]. Note that every

maximal chain of [S, T ] has a similar description to that of C. Indeed, let D

be the maximal chain S = D0 <· D1 <· D2 <· · · · <· Dv = T . Then for each i ∈ [u],

there is a unique maximal chain Mi(D) := S − V i = Y i
1 <· Y i

2 <· · · · <· Y i
mi

= {ti}

of [S − V i, {ti}] such that for all h ≥ 0 we have that Dh+1 = (Dh − Y i
j )∪ Y i

j+1

for some i, j.

We have that Ψ(Dh <· Dh+1) = Ψ(Y i
j <· Y i

j+1). Hence, the label set of D is

Ω :=
u⋃

i=1

Υi(D), where Υi(D) is the label set of Mi(D) for each i. Assume D

is rising. Then each Mi(D) is rising. Since each [S − V i, {ti}] has a unique

rising chain, we have that Mi(D) = Mi(C) for each i, where C is the rising

chain constructed above. Therefore, we have Υi(D) = Υi(C); consequently, we

have that Ω = Λ, the label set of C. Since Λ is totally ordered, there is a unique

way to arrange its labels in increasing order; therefore, D = C.

We can see that C is also lexicographically first since at each step we

choose the smallest available label of all types in the interval. That is, since

each Mi(C) := S − V i = Ri
1 <· Ri

2 <· Ri
3 <· · · · <· Ri

mi
= {ti} is lexicographically

minimal, the labels it generates are all as small as possible at each step. Further,

since we construct C by choosing the smallest label of Λ at each step, we must

have that C is also lexicographically minimal.

Thus in any interval, there is a unique rising maximal chain which is lexicographically

first among all maximal chains. Therefore, Ψ is an EL-labeling, so that Π=k
L is

EL-shellable.
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6.2 The Falling Chains of Π=k
L

The EL-labeling of Π=k
L is a generalization of the EL-labeling of Björner and

Wachs for the k–equal partition lattice described in Section 2.5. Recall that when

L = Bn, all the labels of a falling chain which were of the merger type had to be

exactly (1, n); this constancy does not hold in general.

Fix a positive integer n. We say that the multiset λ = {λ1, λ2, ..., λt} is an

integer partition of n if λi ∈ P for each i and λ1 + λ2 + · · · + λt = n. Each

λi ∈ λ is called a part of λ; the length of λ is defined as the number of parts of

λ, and is denoted by `(λ). We will always index the parts of λ so that λi ≥ λi+1

for each i. We frequently call λ simply a partition when the context is clear. If

λ is a partition of n, then we indicate this relationship by λ ` n. For example,

λ = {3, 3, 2, 1, 1} is a partition of 10, so we write λ ` 10, and `(λ) = 5.

Given any element T = {x1, ..., xt} ∈ ΠL, define the type of T , denoted

type(T ), to be the multiset of integers {ρ(x1), ρ(x2), ..., ρ(xt)}. Define the total

rank r(T ) of T to be

r(T ) :=
∑
x∈T

ρ(x).

For a fixed partition (i.e., multiset) λ = {λ1, ..., λt}, define

ΠL,λ := {T ∈ ΠL | type(T ) = λ}. (6.2.1)

For a general geometric lattice L and a fixed element x ∈ L, define

Lx = [0̂, x].

Let ρ(x) ≥ k and define

Π=k
L (x) = {T ∈ [T0, {x}] | |T | ≤ 1}.

Recall from Definition 3.3.2 that a truncation Pk of a ranked bounded poset

P is the induced subposet consisting of all elements of ranks in the set S =
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{k, k+ 1, ..., `(P )− 1}. Also, recall that by P̂ we mean to adjoin both a top and

bottom element to the poset P .

Lemma 6.2.1. Let L be a geometric lattice, and fix x ∈ L with ρ(x) ≥ k.

Then Π=k
L (x) ∼= (̂Lx)k.

Proof. We show these two posets are isomorphic by constructing a bijection

between them. Define φ : (̂Lx)k → Π=k
L (x) by

φ(z) =


{x}, z = 1̂

{z}, z ∈ (Lx)k

∅, z = 0̂

This map is well-defined since if z ∈ (Lx)k, then both z ≤L x and ρ(z) ≥ k

hold, so that {z} ∈ Π=k
L (x). It is clearly bijective, and moreover, it is clear

that φ(z1) ≤Π=k
L (x) φ(z2) if and only if z1 ≤

(̂Lx)k
z2. Thus, the posets are

isomorphic.

We now turn attention to counting falling chains of Π=k
L ; we begin with a few

lemmas.

Lemma 6.2.2. Let L be a geometric lattice, and T = {x1, x2, ..., xt} ∈ Π=k
L . If

r(T ) = `(L), then [T, T1] ∼= Πt.

Proof. Notice that since the total rank of T is `(L), all covering relations of

[T, T1] must be mergers, since it is not possible to raise the total rank. Arrange

the indices of the xi ∈ T so that maxA(Uxi
) <A maxA(Uxi+1

) for 1 ≤ i < t.

Define the function φ : Πt → [T, T1] by

φ({B1, B2, ..., Bm}) =

{∨
i∈B1

xi,
∨

i∈B2

xi, ...,
∨

i∈Bm

xi

}
,
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For example, let t = 9; we have

φ
({
{1, 3, 6}, {2}, {4, 5, 7}, {8, 9}

})
= {x1 ∨ x3 ∨ x6, x2, x4 ∨ x5 ∨ x7, x8 ∨ x9}.

Similarly, it is easy to see that φ(0̂) = T and φ(1̂) = T1. To show that φ is

well-defined, we must show that φ({B1, B2, ..., Bm}) is an independent set. By

Lemma 5.2.1, the set {xi ∈ T | i ∈ Bj} is independent for any block Bj. Hence,

we have ρ

∨
i∈Bj

xi

 =
∑
i∈Bj

ρ(xi). Therefore,

m∑
j=1

ρ

∨
i∈Bj

xi

 =
m∑

j=1

∑
i∈Bj

ρ(xi)

=
∑
x∈T

x

= ρ

(∨
x∈T

x

)

= ρ

 m∨
j=1

∨
i∈Bj

xi

 .

Thus, φ is well-defined. This map is clearly order-preserving, so we need only to

show that it is a bijection.

To show φ is a bijection, we show first that it is surjective. Note that if

S = {y1, ..., ym} ∈ [T, T1], then each yi is the join of some subset of T , as mergers

are the only covering steps in this interval. Define Bj := {i ∈ [t] | xi <L yj} for

each j; we can see that φ({B1, ..., Bm}) = {y1, ..., ym}, and so φ is surjective.

For injectivity, it is enough to show that for subsets A,B ⊂ [t] we have that∨
i∈A

xi =
∨
i∈B

xi implies A = B.

Suppose
∨
i∈A

xi =
∨
i∈B

xi and A 6= B. Without loss of generality assume that

there exists j ∈ A such that j ∈/ B. Now

xj ∨
∨
i∈B

xi = xj ∨
∨
i∈A

xi =
∨
i∈A

xi =
∨
i∈B

xi,
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since j ∈ A. Since {xi ∈ T | i ∈ B} ∪ {xj} ⊂ T is independent, we cannot have

that xj ∨
∨
i∈B

xi =
∨
i∈B

xi. Therefore, there is no j ∈ A such that j ∈/ B, and

thus A = B.

Corollary 6.2.3. Let L be a geometric lattice, and T ∈ Π=k
L an independent

set such that r(T ) = `(L). The number of falling chains of [T, T1] is (t − 1)!

under any EL-labeling of Π=k
L .

Proof. Recall from Proposition 2.4.2 that Πt has the homotopy type of a wedge

of (t− 1)! spheres of dimension t− 3. By Theorem 2.2.5, the number of falling

chains of [T, T1] under any EL-labeling must therefore be (t− 1)!.

Lemma 6.2.4. Let L be a geometric lattice, and T = {x1, ..., xt} ∈ Π=k
L . Then

[T0, T ] ∼= Π=k
Lx1

× Π=k
Lx2

× · · · × Π=k
Lxt
.

Proof. By Corollary 5.2.4, if S = {y1, ..., ys} ∈ [T0, T ], then each yj ∈ S is less

than a unique xi ∈ T . Therefore, define Si = {z ∈ S | z ≤L xi} for each i;

notice that some of the Si may be empty, but that
t⋃

i=1

Si = S and Si ∩ Sj = ∅

whenever i 6= j. By the definition of Lxi
and Lemma 5.2.1, we must have that

Si ∈ Π=k
Lxi

. We define the map ϕ : [T0, T ] → Π=k
Lx1

× Π=k
Lx2

× · · · × Π=k
Lxt

by

ϕ(S) = (S1, S2, ..., St).

To show that ϕ is a bijection, we now define a map ψ : Π=k
Lx1

×Π=k
Lx2

× · · · ×

Π=k
Lxt

→ [T0, T ] by

ψ(S1, S2, ..., St) =
t⋃

i=1

Si.

Observe here that Si∩Sj = ∅ as a consequence of Lemma 5.2.3. To see that
t⋃

i=1

Si

is independent, we apply Lemma 5.2.6, which implies that we can replace each

xi ∈ T by the elements of Si and preserve independence; thus, ψ is well-defined.
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Now consider the composition ψ◦ϕ. It is clear that ψ◦ϕ = id, since ϕ takes

S to a collection of nonintersecting subsets of S whose union is S, and then ψ

forms the union of these sets. For the composition ϕ ◦ψ, since if z ∈
t⋃

i=1

Si then

there exists a unique Sj such that z ∈ Sj, and therefore z ≤L xj for a unique

xj ∈ T , we also have that ϕ ◦ ψ = id, and so this pair of maps are bijections.

They clearly preserve order; thus, [T0, T ] ∼= Π=k
Lx1

× Π=k
Lx2

× · · · × Π=k
Lxt

.

Now given geometric lattice L and T ∈ Π=k
L , define [T0, T ]CE to be the

subposet of [T0, T ] which consists of only creation and expansion coverings. Note

that Π=k
L (x) = [T0, {x}]CE; moreover, [T0, T ]CE is not necessarily equal as a set

to [T0, T ], nor is it an induced subposet.

Lemma 6.2.5. The restriction of Ψ to [T0, T ]CE is an EL-labeling.

Proof. This is because for all R <[T0,T ]CE
S, the rising chain of [R,S] has no

mergers.

Lemma 6.2.6. Let L be a geometric lattice, and T = {x1, ..., xt} ∈ Π=k
L . Then

[T0, T ]CE
∼= (Lx1)k × (Lx2)k × · · · × (Lxt)k.

Consequently, [T0, T ]CE is pure.

Proof. Since we do not allow mergers in [T0, T ]CE, we observe that for each

S ∈ [T0, T ]CE, we have |Si| ≤ 1 for each i, where Si is defined as in the proof

of Lemma 6.2.4. Therefore, we have Si ∈ Π=k
L (xi) for each i. We then have that

the map ς : [T0, T ]CE → Π=k
L (x1)× Π=k

L (x2)× · · · × Π=k
L (xt), given by

ς(S) = (S1, S2, ..., St),

is order-preserving.
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Similarly, define ϑ : Π=k
L (x1)× Π=k

L (x2)× · · · × Π=k
L (xt) → [T0, T ]CE by

ϑ((S1, ..., St)) =
t⋃

i=1

Si.

By the definition of Π=k
L (xi), we have that each Si is a set of cardinality at most

1, where if Si = {s}, then s ≤L xi. Thus by the independence of T and Lemma

5.2.5, we have that

(
t⋃

i=1

Si

)
≤Π=k

L
T , so ϑ is well-defined. Moreover, it is clear

that ς ◦ ϑ = id, since by Lemma 5.2.3 we must have that Si ∩ Sj = ∅ whenever

i 6= j. Similarly, we have that ϑ ◦ ς = id, as the Si are defined to have union S.

Thus, we have [T, T0]CE
∼= Π=k

L (x1)× Π=k
L (x2)× · · · × Π=k

L (xt).

To complete the proof of the isomorphism, we apply Lemma 6.2.1. The

consequence follows from the fact that products of pure posets are pure.

Corollary 6.2.7. Let L be a geometric lattice and T ∈ Π=k
L . Then

µ([T0, T ]CE) =
∏
x∈T

µ((̂Lx)k).

Consequently, we have

β̃r(T )−(k−1)|T |−2((T0, T )CE) =
∏
x∈T

β̃ρ(x)−k−1((Lx)k).

Proof. The first formula is a clear consequence of Lemma 6.2.6 and (2.1.1). Since

Lx is pure and EL-shellable, by Theorem 2.2.7 we have that β̃i((Lx)k) = 0 for

all i < ρ(x)− k − 1. Now by (2.2.1) we can write

β̃ρ(x)−k−1((Lx)k) = |µ((̂Lx)k)|.

By Lemma 6.2.6, [T0, T ]CE is pure of length
∑
x∈T

`(Π=k
L (x)) =

∑
x∈T

(ρ(x)−k+1) =

r(T )− (k − 1)t. Since by Lemma 6.2.5 [T0, T ]CE is also EL-shellable, we have

β̃r(T )−(k−1)t−2((T0, T )CE) = |µ([T0, T ]CE)|,

so the consequence holds.
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Using these results, we can now give the following general counting formula for

Π=k
L .

Theorem 6.2.8. Let L be a geometric lattice, with `(L) = n, and fix an integer

2 ≤ k ≤ n. For integer 1 ≤ t ≤ n
k
, define BL,k(t) by

BL,k(t) =
∑

T∈Π=k
L

r(T )=n
|T |=t

(t− 1)!
∏
x∈T

β̃ρ(x)−k−1((Lx)k).

The order complex ∆(Π=k
L ) has the homotopy type of a wedge of spheres, where

the number of spheres β̃d−2(Π=k
L ) of dimension d− 2 is given by

β̃d−2(Π=k
L ) =



bn
k
c∑

t=1

BL,k(t), k = 2 and d = n− 1

BL,k(n−d−1
k−2

), k > 2 and n−d−1
k−2

∈ P

0, otherwise.

Proof. To compute the Betti number β̃d−2(Π=k
L ), we make use of Theorems 2.2.5

and 6.1.6, and count the number of falling chains of Π=k
L of length d. Recall that

by Definition 6.1.4, the label (1, b) a merger receives in a chain is strictly less

than the label given to any creation or expansion, as these are of the form (2, b).

Therefore, for the chain c to be falling, there must exist a unique element T ∈ c

such that the labels of coverings below T cannot be mergers, and coverings above

T (if any exist) must all be mergers. Define such an element T ∈ c as the pivot

of c.

The number of falling chains with pivot T equals the number f1 of falling

chains of [T0, T ]CE times the number f2 of falling chains of [T, T1] consisting

only of mergers. To compute f1, we recall from Lemma 6.2.5 that the restriction
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of Ψ to [T0, T ]CE is an EL-labeling. It follows from Theorem 2.2.5 and Corollary

6.2.7 that

f1 =
∏
x∈T

β̃ρ(x)−k−1((Lx)k).

To compute f2 we note that the independence of the pivot T guarantees

that r(T ) = `(T ) = n because mergers do not increase the total rank. Since

creations and expansions do increase the total rank we also see that all maximal

chains of [T, T1] consist only of mergers. Thus by Corollary 6.2.3,

f2 = (|T | − 1)!.

We can now conclude that the number of falling chains with pivot T is

(|T | − 1)!
∏
x∈T

β̃ρ(x)−k−1((Lx)k).

Now consider the length d of a falling chain whose pivot is T . If |T | = t

for some positive integer t, then observe that d = t + (n − kt) + (t − 1) =

(n − 1) − t(k − 2). We see that this is so because firstly each of the t elements

of T corresponds to exactly one creation, which contributes a total of tk to the

total rank. Since we know that r(T ) = n, and each expansion adds 1 to r(T ),

there must be n− tk expansions. Finally, a total of t− 1 mergers are necessary

to combine t elements to form a singleton set, as a merger reduces cardinality

by one.

Note further that if k = 2, then all the chains must be the same length

d = n− 1, so that we must sum over all possible values of t to obtain all falling

chains of this length. On the other hand, if k > 2, then each value of t determines

a unique length d, and thus the value of β̃d−2(Π=k
L ).
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While Theorem 6.2.8 gives a clean expression for finding the number of falling

chains of each length, we observe that in practice the number of elements of Π=k
L

can be almost prohibitively large for usefulness. For instance, we can compute

that µ(Π=2
Π6

) = 6600, for which it is necessary to sum over 2101 different elements

of Π=2
Π6

. We now give a simplification of Theorem 6.2.8 which applies to a large

class of interesting posets.

Define a lattice L to be lower interval isomorphic if Lx
∼= Ly whenever

ρ(x) = ρ(y). Note that both Bn and Bn(q) are lower interval isomorphic. For

a lower interval isomorphic geometric lattice L and integer 1 < k < `(L), define

the function fL : P → N by fL(m) = β̃m−k−1((Lz)k), for some z ∈ L such that

ρ(z) = m. This function is well-defined given lower interval isomorphism.

Theorem 6.2.9. Let L be a lower interval isomorphic geometric lattice with

`(L) = n, and fix an integer 2 ≤ k ≤ n. For 1 ≤ t ≤ n
k
, define BL,k(t) by

BL,k(t) =
∑
λ`n

`(λ)=t
λi≥k ∀ i

(t− 1)!

(
t∏

i=1

fL(λi)

)∣∣∣∣ΠL,λ

∣∣∣∣.
The order complex ∆(Π=k

L ) has the homotopy type of a wedge of spheres, where

the number of spheres β̃d−2(Π=k
L ) of dimension d− 2 is given by

β̃d−2(Π=k
L ) =



bn
k
c∑

t=1

BL,k(t), k = 2 and d = n− 1

BL,k(n−d−1
k−2

), k > 2 and n−d−1
k−2

∈ P

0, otherwise.

(6.2.2)

Proof. We apply Theorem 6.2.8 to L. We obtain the following, by removing the

dependence on T and summing over all types:∑
T∈Π=k

L
r(T )=n
|T |=t

(t− 1)!
∏
x∈T

β̃ρ(x)−k−1((Lx)k) =
∑

T∈Π=k
L

r(T )=n
|T |=t

(t− 1)!
∏
x∈T

fL(ρ(x))
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=
∑
λ`n

`(λ)=t
λi≥k ∀ i

∑
T∈ΠL,λ

(t− 1)!
t∏

i=1

fL(λi)

=
∑
λ`n

`(λ)=t
λi≥k ∀ i

(t− 1)!

(
t∏

i=1

fL(λi)

)∣∣∣∣ΠL,λ

∣∣∣∣

Recall not only that Bn is lower interval isomorphic, but that Π=k
Bn

∼= Π=k
n ,

for which similar results were given in Propositions 2.5.2 and 2.5.3.

Lemma 6.2.10. If L = Bn, then fBn(p) =

(
p− 1

k − 1

)
and for λ ` m ≤ n

|ΠBn,λ| =
(

n

λ1, ..., λt, (n−m)

) n∏
j=1

1

aj(λ)!
, where aj(λ) equals the number of parts

of λ of size j.

Proof. To prove the lemma, we observe that Bn is lower interval isomorphic,

since we have specifically that the lower interval [0̂, x] is isomorphic to the smaller

Boolean algebra Bρ(x). Since Lx = Bρ(x), we have that (Lx)k = (Bρ(x))k. By

Proposition 3.3.3, this gives that fBn(p) =

(
p− 1

k − 1

)
.

We will now show that |ΠBn,λ| =

(
n

λ1, ..., λt, (n−m)

) n∏
j=1

1

aj(λ)!
. We

manipulate the multinomial coefficient to obtain(
n

λ1, ..., λt, (n−m)

)
=

n!

λ1!λ2! · · ·λt!(n−m)!

=
n!

λ1!(n− λ1)!

(n− λ1)!

λ2!(n− λ1 − λ2)!
· · · (n− λ1 − · · · − λt−1)!

λt!(n−m)!

=

(
n

λ1

)(
n− λ1

λ2

)
· · ·
(
n− λ1 − · · · − λt−1

λt

)
=

(
n

λ1

)(
n− λ1

λ2

)
· · ·
(
n−m+ λt

λt

)
.
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From this, we can see that the product of binomial coefficients counts the number

of ways to choose a sequence of subsets of [n] such that the size of the ith set

is λi, and the subsets are mutually disjoint; thus, they form a set partition of

A ⊂ [n] where |A| = m.

Now we observe that this expression overcounts the number of set partitions

of A of type λ, since without loss of generality the sequences B1, B2, ..., Bt

and B2, B1, ..., Bt are counted as being distinct in this multinomial coefficient if

|B1| = |B2|, but correspond to the same set partition {B1, ..., Bt}. Thus, we need

to determine how many sequences counted by

(
n

λ1, ..., λt, (n−m)

)
correspond

to the same set partition S. Since there are aj(λ) parts of λ which equal j,

we observe that there are aj(λ) blocks of S which have cardinality j.

We choose an arrangement of the blocks of S in which the cardinalities are

weakly increasing. Therefore, we must arrange the a1(λ) blocks of size 1 in

any order first, for which there are a1(λ)! possible arrangements. Following this,

we can see that for each j > 1, we must choose one of the aj(λ)! arrangements

consisting solely of the aj(λ) blocks of size j, and this arrangement must follow

the arrangement consisting of blocks of size j − 1 in the overall sequence.

Therefore, there are
n∏

j=1

aj(λ)! distinct arrangements of the blocks of S whose

block sizes weakly decrease. We conclude that the number of distinct set partitions

whose block sizes correspond to the integer partition λ is

|ΠBn,λ| =
(

n

λ1, ..., λt, (n−m)

) n∏
j=1

1

aj(λ)!
.

Corollary 6.2.11. Let L = Bn. Then BBn,k(t) is given by

BBn,k(t) =
∑
λ`n

`(λ)=t
λi≥k ∀ i

(t− 1)!

(
t∏

i=1

(
λi − 1

k − 1

))(
n

λ1, ..., λt

) n∏
j=1

1

aj(λ)!
.
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Lemma 6.2.12. Let L = Bn(q). Then fBn(q)(p) = q(
p−k+1

2 )
[
p− 1
k − 1

]
q

and for

λ ` m,

|ΠBn(q),λ| = qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

n∏
j=1

1

aj(λ)!
, (6.2.3)

where aj(λ) equals the number of parts of λ of size j and e2(λ) =
∑

1≤i<j≤t

λiλj.

Proof. To prove the lemma, we observe that Bn(q) is lower interval isomorphic,

since we have specifically that the lower interval [0̂, x] is isomorphic to the

smaller subspace lattice Bρ(x)(q). Since we have that Lx
∼= Bρ(x)(q), then we

have that (Lx)k
∼= (Bρ(x)(q))k. By Proposition 3.3.4, this gives that fBn(q)(p) =

q(
p−k+1

2 )
[
p− 1
k − 1

]
q

.

Now we need to show that (6.2.3) holds. To prove this, we recall from Lemma

3.2.1 that given the r–dimensional subspace V , the number of s–dimensional

subspaces W such that V ∩W = (0) is qrs

[
n− r

s

]
q

. We now choose a sequence

of subspaces W1, ...,Wt such that dim(Wi) = λi for each 1 ≤ i ≤ t given

the partition λ, and V = W1 ⊕ · · · ⊕ Wt for V ⊂ Fn
q an m–dimensional

subspace. The number of choices for each Wi after choosing W1, ...,Wi−1

is q(λ1+···+λi−1)λi

[
n− λ1 − · · · − λi−1

λi

]
q

. Therefore, the number of sequences of

subspaces W1, ...,Wt is([
n
λ1

]
q

)(
qλ1λ2

[
n− λ1

λ2

]
q

)
· · ·

(
q(λ1+···+λt−1)λt

[
n−m + λt

λt

]
q

)

= qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

.

Now we observe that this expression overcounts the number of independent

sets of subspaces of Bn(q) of type λ, since without loss of generality the
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sequences W1,W2, ...,Wt and W2,W1, ...,Wt are counted as being distinct in the

product if dim(W1) = dim(W2), but correspond to the same set of subspaces

{W1, ...,Wt}. Thus, we need to determine how many sequences counted by

qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

correspond to the same independent set S of subspaces.

Since there are aj(λ) parts of λ which equal j, we observe that there are aj(λ)

elements of S which have dimension j.

We choose an arrangement of the elements of S in which the dimensions

are weakly increasing. Therefore, we must arrange the a1(λ) subspaces of

dimension 1 in any order first, for which there are a1(λ)! possible arrangements.

Following this, we can see that for each j > 1, we must choose one of the aj(λ)!

arrangements consisting solely of the aj(λ) subspaces of dimension j, and this

arrangement must follow the arrangement consisting of subspaces of dimension

j − 1 in the overall sequence,

Therefore, there are
n∏

j=1

aj(λ)! distinct arrangements of S in which the

dimensions weakly decrease. We conclude that the number of distinct independent

sets of subspaces whose dimensions correspond to the partition λ is

|ΠBn(q),λ| = qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

n∏
j=1

1

aj(λ)!
.

Corollary 6.2.13. Let L = Bn(q). Then BBn(q),k(t) is given by

BBn(q),k(t) =
∑
λ`n

`(λ)=t
λi≥k ∀ i

(t− 1)!

(
t∏

i=1

q(
λi−k+1

2 )
[
λi − 1
k − 1

]
q

)
qe2(λ)

[
n

λ1, ..., λt

]
q

n∏
j=1

1

aj(λ)!
.

Now we can recognize Corollary 6.2.13 as a direct q–analogue of Corollary

6.2.11. The only new terms we have obtained that do not directly correspond to
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terms in this original formula are all powers of q, and thus this q–analogue is

clear.



Chapter 7

The Case of Π=2
n (q)

Now that we have shown Π=k
L is EL-shellable for the geometric lattice L

and k > 1, we will examine more closely the case of Π=2
Bn(q). Since Bn(q) is

lower interval isomorphic, Theorem 6.2.9 will apply, and we will get several nice

results concerning this lattice.

We will begin to use the notation Π=k
n (q) rather than Π=k

Bn(q), following

the observation from Corollaries 6.2.11 and 6.2.13 that this is a q–analogue of

Π=k
Bn

∼= Π=k
n . In this section, we will describe various results concerning Π=2

n (q).

Specifically, the main ideas concern counting the falling chains of each possible

length, and showing further justification that this lattice is a q–analogue of Π=2
n
∼=

Πn.

7.1 Exponential Structures

As a preliminary before proving the main results of this section, we first define

an exponential structure, following [17] and [18]:

94
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Definition 7.1.1. An exponential structure is a sequence of posets Q1, Q2, ...,

satisfying each of the following three axioms:

• For each positive integer n, Qn is finite with a unique top element and is

pure of length n− 1.

• Every upper interval of Qn is isomorphic to a partition lattice Πt for some

integer t.

• Suppose we have element π of Qn and some minimal element ρ with ρ ≤

π. Then the interval [ρ, π] is isomorphic to Πa1
1 ×Πa2

2 ×· · ·×Πan
n for some

unique collection of nonnegative integers a1, ..., an satisfying
∑

iai = n.

We call (a1, ..., .an) the shape of π. It is then also required that the subposet

Λπ = {σ ∈ Qn|σ ≤ π} be isomorphic to Qa1
1 ×Qa2

2 ×· · ·×Qan
n . In particular,

if ρ′ is another minimal element with ρ′ ≤ π, then [ρ, π] ∼= [ρ′, π].

Further, if Q1, Q2, ... satisfies these conditions, we denote by M(n) for each

positive integer n the number of minimal elements of Qn, and call this the

denominator sequence of the exponential structure.

Note that we use here shape rather than the usual nomenclature of type, as

in [18]; this is to avoid confusion later with our previous use of type in terms

of independent sets. The prototypical exponential structure is the sequence of

partition lattices, given by Qn = Πn; here, we have that M(n) = 1.

Define the poset DSn(q) to consist of all collections {W1,W2, ...,Wk} of

subspaces of Fn
q such that dim(Wi) > 0 for all i and Fn

q = W1 ⊕ · · · ⊕

Wk, and partially ordered such that {W1, ...,Wk} ≤DSn(q) {V1, ..., Vm} whenever

each Wi is contained some Vj. Note that DSn(q) is the subposet of ΠBn(q)
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consisting exactly of independent sets of total rank n. Stanley [18] observes

that DS1(q), DS2(q), ... is an exponential structure with denominator sequence

M(n) =
q(

n
2)[n]q!

n!
. This follows from Lemmas 6.2.2 and 6.2.4; we can also establish

the value of M(n) using Lemma 6.2.12.

Specifically, recall from Lemma 6.2.12 that qe2(λ)

[
n

λ1, ..., λt

]
q

t∏
j=1

1

aj(λ)
is the

number of distinct direct sum decompositions of Fn
q into subspaces whose

dimensions form the partition λ. We now show that to be minimum in DSn(q),

the direct sum must have exactly n summands of dimension 1 each. Clearly,

there can be no direct sum strictly smaller than such a decomposition in the

partial order, so that such elements are minimal.

On the other hand, any summand with dimension larger than 1 can be

decomposed into a direct sum of smaller subspaces. Thus, the minimal elements

of DSn(q) are characterized by the unique partition λ = {1, 1, ..., 1} ` n; by

Lemma 6.2.12, since e2({1, 1, ..., 1}) =
∑

1≤i<j≤t

1 =

(
n

2

)
, [1]q! = 1, and aj(λ) = 0

unless j = n, in which case an(λ) = n, we get that M(n) =
q(

n
2)[n]q!

n!
.

This is the structure analyzed by Welker in [23], and is another typical example

of an exponential structure; note however that Welker adds a minimum element

to this poset to make it a lattice. Observe that Π=2
n (q) fails the condition that

its upper intervals are isomorphic to some partition lattice Πt, so the sequence

Π=2
1 (q),Π=2

2 (q), ... is not an exponential structure.

Now any exponential structure Q1, Q2, ... allows us to make use of the

compositional formula, in which we are given functions f : P → Q and g : N → Q

with g(0) = 1, and we define a new function h : N → Q that satisfies the following

conditions:
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• h(0) = 1

• h(n) =
∑
π∈Qn

f(1)a1f(2)a2 · · · f(n)ang(|π|) for n ≥ 1,

where (a1, ..., an) is the shape of π, and |π| = a1 + · · ·+ an. The compositional

formula says that if we define three formal power series in Q[[x]] by

F (x) =
∑
n≥1

f(n)
xn

n!M(n)
,

G(x) =
∑
n≥0

g(n)
xn

n!
,

H(x) =
∑
n≥0

h(n)
xn

n!M(n)
,

then we have the relation H(x) = G(F (x)), the composition of G(x) and F (x).

7.2 Applying Exponential Structures to Π=2
n (q)

Recalling Theorem 6.2.9 and Corollary 6.2.13, we have the following formula

for the number β̃n−3(Π=2
n (q)) of falling chains of Π=2

n (q) under the EL-labeling

Ψ of Definition 6.1.4:

β̃n−3(Π=2
n (q)) =

bn
2
c∑

t=1

∑
λ`n

`(λ)=t
λi≥2 ∀ i

(t−1)!

(
t∏

i=1

q(
λi−1

2 ) [λi − 1]q

)
qe2(λ)

[
n

λ1, ..., λt

]
q

n∏
j=1

1

aj(λ)!
.

While this formula is decent, we obtain the following more convenient form:

Theorem 7.2.1. For any integer n > 2, the number β̃n−3(Π=2
n (q)) of falling

chains of Π=2
n (q) under the EL-labeling Ψ of Definition 6.1.4 is

β̃n−3(Π=2
n (q)) = g̃n(q) · q(

n−1
2 ) [n− 1]q!,
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where we define the polynomial

g̃n(q) =
1

nq

(
[n]q − (1− q)n−1

)
.

Before we prove this result, we observe several facts. First, we have that

µ(Π=2
n (q)) = (−1)n−1β̃n−3(Π=2

n (q)), since the lattice is pure of length n − 1.

Second, since g̃n(1) = 1 for all n > 1, β̃n−3(Π=2
n (q)) forms a direct q–analogue

of (n − 1)!. Last, there are also other ways of writing the polynomial g̃n; some

alternate formulations are given below in Proposition 7.3.8.

To prove Theorem 7.2.1, we apply the theory of exponential structures from

Section 7.1. To this end, we will use the exponential structure DS1(q), DS2(q), ...,

and begin with the following definition.

Definition 7.2.2. Let q be a fixed prime power. Define:

• f : P → Q by

f(n) = q(
n−1

2 )[n− 1]q

• g : N → Q by

g(0) = 1, and g(n) = (n− 1)! for n ≥ 1

Theorem 7.2.3. For the positive integer n ≥ 2,

β̃n−3(Π=2
n (q)) =

∑
π∈DSn(q)

f(1)a1f(2)a2 · · · f(n)ang(|π|),

with f(n) and g(n) defined in Definition 7.2.2.

Proof. For each π ∈ DSn(q), we can write π = {V1, V2, ..., Vt} for some positive

integer t, and such that dim(V1) ≥ dim(V2) ≥ · · · ≥ dim(Vt). Let λi = dim(Vi)

for each 1 ≤ i ≤ t, and denote by λ the partition {λ1, λ2, ..., λt}; note that λ
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is a partition of n, since π is a direct sum decomposition of Fn
q . We define the

type of π to be the partition λ, and denote this by type(π) = λ. Let ai(λ)

denote the number of parts of λ which equal i, for each 1 ≤ i ≤ n.

Claim 7.2.4. Given π ∈ DSn(q) with type(π) = λ for n ≥ 1, the sequence

(a1(λ), ..., an(λ)) is the shape of π.

Proof of Claim 7.2.4. Recall that a minimal element ρ ∈ DSn(q) is a direct sum

decomposition of Fn
q into n one-dimensional summands. If ρ ≤ π, then each

summand of ρ is contained in a single summand of π. Arrange the summands

of ρ so that for π = {V1, V2, ..., Vt}, with λi = dim(Vi) for each 1 ≤ i ≤ t,

we have that ρ = {W1,1, ...,W1,λ1 ,W2,1, ...,W2,λ2 , ...,Wt,λt}, where each of the λi

summands of the form Wi,j is contained in Vi.

Now since we can only place Wi1,j1 and Wi2,j2 together in a single subspace

when i1 = i2, we can see that there is an isomorphism from [ρ, π] to the poset

Πλ1 × Πλ2 × · · · × Πλt = Π
a1(λ)
1 × Π

a2(λ)
2 × · · · × Π

an(λ)
n , given by identifying Wi,j

with the number j in Πλi
. Since the shape of π is unique, we have that

(a1(λ), ..., an(λ)) is the shape of π.

(Proof of Theorem 7.2.3 continued) Since we have that the shape of π is

(a1(λ), ..., an(λ)), we must also have that |π| = `(λ), the number of parts of

λ. Since the shape of π depends only on the type of π, we observe now that we

have

∑
π∈DSn(q)

f(1)a1 · · · f(n)ang(|π|) =
∑
λ`n

∑
π∈DSn(q)
type(π)=λ

f(1)a1(λ) · · · f(n)an(λ)g(`(λ)) (7.2.1)

=
∑
λ`n

f(1)a1(λ) · · · f(n)an(λ)g(`(λ))

∣∣∣∣{π ∈ DSn(q) | type(π) = λ}
∣∣∣∣ (7.2.2)
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=

bn
2
c∑

t=1

∑
λ`n

λi≥2 ∀ i
`(λ)=t

g(t)

(
t∏

i=1

f(λi)

)∣∣∣∣ΠBn(q),λ

∣∣∣∣ (7.2.3)

=

bn
2
c∑

t=1

∑
λ`n

λi≥2 ∀ i
`(λ)=t

(t− 1)!

(
t∏

i=1

q(
λi−1

2 ) [λi − 1]q

)
qe2(λ)

[
n

λ1, ..., λt

]
q

n∏
j=1

1

aj(λ)!
(7.2.4)

Here, we can see that (7.2.2) follows from (7.2.1) by noticing that the terms in

the summation depend only on the type of π, so that we may collect all elements

π ∈ DSn(q) with type λ. Then (7.2.3) follows from (7.2.2) by collecting all

partitions λ with the same number of parts t, since g(`(λ)) depends only

on this value, and restricting each part of λ to be at least 2 since f(1) = 0.

Further, to see that {π ∈ DSn(q) | type(π) = λ} = ΠBn(q),λ, where ΠBn(q),λ is

as in (6.2.1), we note that T ∈ DSn(q) if and only if T ∈ ΠBn(q) and type(T )

is a partition of n. Lastly, we use Lemma 6.2.12 and the definitions of f(n)

and g(n) from Definition 7.2.2 to obtain (7.2.4), which is exactly the value of

β̃n−3(Π=2
n (q)) given by (6.2.2) and Corollary 6.2.13.

We will now apply the compositional formula to the exponential structure

DS1(q), DS2(q), ... and the functions f and g of Definition 7.2.2. Let

h(n) =


∑

π∈DSn(q)

f(1)a1f(2)a2 · · · f(n)ang(|π|), n ≥ 1

1, n = 0

Now we see that for n ≥ 2, we can write h(n) = β̃n−3(Π=2
n (q)) by Theorem 7.2.3.

Further, it is clear that h(1) = 0, since there is only one direct sum decomposition

of F1
q, which has only one summand of dimension 1, and f(1) = 0.
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Thus, using Definition 7.2.2 and Theorem 7.2.3, we have that

H(x) =
∑
n≥0

h(n)
xn

n!M(n)
= 1 +

∑
n≥2

β̃n−3(Π=2
n (q))

xn

q(
n
2)[n]q!

.

By the compositional formula, we have H(x) = G(F (x)), where

G(x) =
∑
n≥0

g(n)
xn

n!

= 1 +
∑
n≥1

(n− 1)!
xn

n!

= 1 +
∑
n≥1

xn

n

= 1− log(1− x),

and

F (x) =
∑
n≥1

f(n)
xn

n!M(n)

=
∑
n≥2

q(
n−1

2 )[n− 1]q
xn

q(
n
2)[n]q!

(7.2.5)

=
∑
n≥2

xn

qn[n− 1]q!
−
∑
n≥2

xn

qn[n]q!
, (7.2.6)

since for all integers n ≥ 1 we have the identities [n − 1]q =
1

q
([n]q − 1) and

q(
n−1

2 )

q(
n
2)

=
1

qn−1
, so that we can rewrite the coefficient of xn in (7.2.5) as

q(
n−1

2 )[n− 1]q

q(
n
2)[n]q!

=

1
q
([n]q − 1)

qn−1[n]q!
=

1

qn[n− 1]q!
− 1

qn[n]q!
,

from which (7.2.6) follows.

Now using the q–exponential eq(x) :=
∑
n≥0

xn

[n]q!
, we can rewrite F (x) as

F (qz) = z (eq (z)− 1)− (eq (z)− 1− z)

= 1 + eq (z) (z − 1) ,
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where z = x
q

for notational simplicity. Composing this with G(x) gives

G
(
F (qz)

)
= 1− log

(
1− F (qz)

)
= 1− log

(
(1− z)eq(z)

)
,

which implies

G
(
F (x)

)
= 1− log

(
1− x

q

)
− log

(
eq

(
x

q

))
.

Now we wish to find a power series representation of G(F (x)). To accomplish

this, we find power series for each of the logarithms in the formula above, then

add them term by term. For the first, standard calculation gives − log(1− x
q
) =∑

n≥1

xn

nqn
. To evaluate the logarithm of the q–exponential, we use the following

lemma:

Lemma 7.2.5. The following formal power series identity holds:

log(eq(z)) =
∑
n≥1

(
(1− q)n−1

[n]q

zn

n

)
.

Before proving this lemma, we use its result to find that

G(F (x)) = 1 +
∑
n≥1

xn

nqn
−
∑
n≥1

(
(1− q)n−1

[n]q

xn

nqn

)
= 1 +

∑
n≥1

xn

n

(
1

qn
− (1− q)n−1

[n]qqn

)

= 1 +
∑
n≥1

xn

 1
qn

([n]q − (1− q)n−1)q(
n−1

2 )[n− 1]q!

q(
n
2)[n]q!

 .

Setting this now equal to H(x) = 1+
∑
n≥2

β̃n−3(Π=2
n (q))

xn

q(
n
2)[n]q!

, we conclude that

β̃n−3(Π=2
n (q)) = 1

qn
([n]q − (1 − q)n−1)q(

n−1
2 )[n − 1]q!, which is what was claimed

in Theorem 7.2.1. We also note that this formula agrees with our result that
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h(1) = 0. Thus, once we prove Lemma 7.2.5 concerning the logarithm of the

q–exponential, we will have proven Theorem 7.2.1.

Proof of Lemma 7.2.5. To prove the lemma, we use several standard techniques

involving formal power series (see for instance [14]). Recall first that as a power

series, we have that log(1 + z) =
∑
n≥1

(−1)n−1zn

n
. Further, to compose two power

series E(z) and L(z) to form L(E(z)), we must have that E(z) has constant

term 0, in which case we replace each z in the series expansion of L(z) by the

series E(z). Consider the series E(z) = eq(z) − 1 =
∑
n≥1

zn

[n]q!
; this series has

constant term 0, so we may form the composition

log(eq(z)) = log(1 + (eq(z)− 1)) =
∑
n≥1

(−1)n−1 (eq(z)− 1)n

n
.

Notice that since (eq(z) − 1) has no constant term, then every power

(eq(z)− 1)n also has no constant term. Thus, the formal power series log(eq(z))

has no constant term as well. Further, the constant term of the claimed series∑
n≥1

(1− q)n−1

[n]q

zn

n
is also zero, and so the two series both have no constant

term. Therefore, the two series are equal if and only if they have the same

formal power series derivative with respect to z. We use this fact along with

the derivative of logarithm series to claim that if we can show that
∂
∂z
eq(z)

eq(z)
=∑

n≥1

(
(1− q)n−1

[n]q
zn−1

)
, then the original power series formula will logically follow.

In the ring of formal power series, a fraction of two series is defined as the

series whose product with the denominator equals the numerator; thus, we need

to show that ∂
∂z
eq(z) = eq(z) ·

∑
n≥1

(
(1− q)n−1

[n]q
zn−1

)
. Writing this now in series

notation, and reindexing to start all series at n = 0, we can write this as∑
n≥0

zn n+ 1

[n+ 1]q!
=

(∑
n≥0

zn

[n]q!

)(∑
n≥0

(1− q)n

[n+ 1]q
zn

)
.
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Multiplying the two series on the right and collecting powers of z gives that

we wish to show

∑
n≥0

zn n+ 1

[n+ 1]q!
=
∑
n≥0

zn

(
n∑

i=0

1

[i]q!
· (1− q)n−i

[n+ 1− i]q

)
.

Equating the coefficients of z on both sides of this gives us that we wish to prove

for all nonnegative integers n that

n+ 1

[n+ 1]q!
=

n∑
i=0

1

[i]q!
· (1− q)n−i

[n+ 1− i]q
.

We can show that this equation holds for various values of n; for instance, for

n = 0, we have
1

[0]q!
· (1− q)0

[1]q
=

1

[1]q
, while for n = 1,

1

[0]q!
· (1− q)1

[2]q
+

1

[1]q
· (1− q)0

[1]q
=

1− q

[2]q
+ 1 =

2

[2]q
.

To prove this for general n, we first rewrite this equation as

n+ 1 =
n∑

i=0

(
[n+ 1]q!

[i]q! · [n− i]q!
· [n− i]q!(1− q)n−i

[n+ 1− i]q

)
.

Now inside the summation on the right, we have that

[n+ 1]q!

[i]q! · [n− i]q!
· [n− i]q!(1− q)n−i

[n+ 1− i]q
=

[
n + 1

i

]
q

· [n− i]q! · (1− q)n−i

=

[
n + 1

i

]
q

n−i∏
j=1

(1− qj).

We use this simplification now and rewrite the statement once more as

n+ 1 =
n∑

i=0

([
n + 1

i

]
q

·
n−i∏
j=1

(1− qj)

)

Define P (n) =
n∑

i=0

([
n + 1

i

]
q

·
n−i∏
j=1

(1− qj)

)
for each integer n ≥ 0. Then we

can say equivalently that we wish to show that for all integers n ≥ 0, that

P (n) = n + 1. We have already observed that P (0) = 1 and P (1) = 2 (after
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suitably rearranging the case above with n = 1). To prove the result in general,

we will prove that R(n) := P (n+1)−P (n) is such that R(n) ≡ 1 for all n ≥ 0.

We can see that, for instance, R(0) = P (1) − P (0) = 2 − 1 = 1. We begin by

writing

R(n) =
n+1∑
i=0

([
n + 2

i

]
q

·
n+1−i∏

j=1

(1− qj)

)
−

n∑
i=0

([
n + 1

i

]
q

·
n−i∏
j=1

(1− qj)

)
.

In the first term (the P (n + 1) sum), we observe that if we fix a particular

product
k∏

j=1

(1−qj) for some fixed integer k ≤ n, then its coefficient is

[
n + 2

n + 1− k

]
q

.

Similarly, the same product has coefficient

[
n + 1
n− k

]
q

in the P (n) sum. Further,

in P (n + 1), in the term with i = 0, for which the product is
n+1∏
j=1

(1 − qj), we

observe that this product does not appear in P (n), but its coefficient is exactly 1

in P (n+ 1). Now we use both the q–analogue of Pascal’s identity as well as the

symmetry of the q–binomial coefficients to observe that[
n + 2

n + 1− k

]
q

−
[
n + 1
n− k

]
q

= qn+1−k

[
n + 1

k

]
q

.

We combine this with the previous results to see that

R(n) =
n+1∑
k=0

(
qn+1−k ·

k−1∏
j=0

(1− qn+1−j)

)
,

since when k = n + 1, the term simplifies to
n∏

j=0

(1 − qn+1−j) =
n+1∏
j=1

(1 − qj), the

unique term outlined above, and for the remaining terms (using the convention

that a void product is 1),

[
n + 1

k

]
q

·
k∏

j=1

(1− qj) =
k−1∏
j=0

(1− qn+1−j).

For example, just to verify, we can see that

R(0) =
1∑

k=0

(
q1−k ·

k−1∏
j=0

(1− q1−j)

)
= q1 + q0 · (1− q) = 1,
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and

R(1) =
2∑

k=0

(
q2−k ·

k−1∏
j=0

(1− q2−j)

)
= q2 + q1 · (1− q2) + q0 · (1− q2)(1− q) = 1.

We now show that R(n) = 1 for all n by induction on n. Assume that

R(n) = 1 for some integer n ≥ 0. By the formula we have derived above for

R(n), we see that

R(n+ 1) =
n+2∑
k=0

(
qn+2−k ·

k−1∏
j=0

(1− qn+2−j)

)
.

When k = 0, the void product gives that this term is exactly qn+2. We remove

this term from the sum and write then

R(n+ 1) = qn+2 +
n+2∑
k=1

(
qn+2−k ·

k−1∏
j=0

(1− qn+2−j)

)
.

If we now reindex this sum by setting i = k − 1, we can write

R(n+ 1) = qn+2 +
n+1∑
i=0

(
qn+1−i ·

i∏
j=0

(1− qn+2−j)

)
.

As the product inside this sum is now never void, the factor corresponding to

j = 0 is common to all terms in the sum; we factor this out to obtain

R(n+ 1) = qn+2 + (1− qn+2) ·
n+1∑
i=0

(
qn+1−i ·

i∏
j=1

(1− qn+2−j)

)
.

Reindexing this product now by setting ` = j − 1, we have

R(n+ 1) = qn+2 + (1− qn+2) ·
n+1∑
i=0

(
qn+1−i ·

i−1∏
`=0

(1− qn+1−`)

)
.

But now we can observe that this summation is exactly equal to the formula

we defined for R(n), so we can rewrite this one last time as

R(n+ 1) = qn+2 + (1− qn+2) ·R(n),
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and now from our inductive hypothesis that R(n) = 1, this reduces so that

R(n + 1) = qn+2 + (1 − qn+2) = 1. Thus R(n) = 1 for all positive integers n,

since R(0) = 1.

This then gives that P (n+1) = P (n)+1 for all positive integers n; combining

this with P (0) = 1 and P (1) = 2, we conclude that P (n) = n + 1 for all

nonnegative integers n. Using this, we conclude further that since the derivatives

of the two series coincide term for term and they share the same constant term,

we have that log(eq(z)) =
∑
n≥1

(
(1− q)n−1

[n]q

zn

n

)
, as claimed.

7.3 Further Results for Π=2
n (q)

Recall from Proposition 5.3.3 that it is natural to use matrices to represent

subspaces of Bn(q). As we have shown that Π=k
n (q) is a q–analogue of Π=k

n , we

would like to include the Boolean algebra Bn as the case Bn(1). To make this

compatibility possible, we can use the following definition.

Definition 7.3.1. Define Fn
1 to be the set of n coordinate vectors each of

length n, and each composed of a single entry which is a 1 and the remaining

(n − 1) entries all 0. We do not define either addition or scalar multiplication

over this object, so it is not an actual vector space. For example, F3
1 ={

(1, 0, 0), (0, 1, 0), (0, 0, 1)
}
. A subspace of Fn

1 is then a subset of these coordinate

vectors, and a direct sum is a set partition of these coordinate vectors.
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If we now label the columns of these coordinate vectors of Fn
1 from right

to left, i.e., (n, n−1, ..., 3, 2, 1) as the column labels, then there is a bijection from

subspaces of Fn
1 to subsets of [n], and another bijection from direct sums to set

partitions of [n], both of which preserve the partial order on both posets. Notice

that if we use this definition to describe the lattice Bn(1), then Bn(1) ∼= Bn for

each positive integer n. Thus, from now on, we will include Bn as the member

of the family Bn(q) when q = 1.

Now we can exhibit further results; for instance, consider the following

definition:

Definition 7.3.2. Given any ranked bounded poset P , the Whitney numbers of

the first kind are the sequence of integers denoted by w0, w1, w2, ..., wk, ..., such

that each wk is the sum of the Möbius invariants of the lower intervals of length

k in P . Similarly, the Whitney numbers of the second kind are the sequence of

integers denoted by W0,W1,W2, ...,Wk, ... such that each Wk is the number of

elements of rank k in P . In other words,

wk =
∑
t∈P

ρ(t)=k

µ([0̂, t]), and Wk =
∑
t∈P

ρ(t)=k

1

A well-known result concerning the partition lattice Πn is that

wk = s(n, n−k), where s(n, i) is a Stirling number of the first kind, and similarly,

Wk = S(n, n − k), where S(n, i) is a Stirling number of the second kind (see

[16]). The next proposition demonstrates that these Whitney numbers of the

second kind extend naturally to Π=2
n (q):
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Proposition 7.3.3. For j > 0, the Whitney number of the second kind Wj for

Π=2
n (q) is

Wj =
∑

λ`m≤n
`(λ)=t

λi≥2 ∀ i
j=m−t

qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

n∏
i=1

1

ai(λ)!
,

where ai(λ) equals the number of parts of λ of size i, and e2(λ) =∑
1≤i1<i2≤t

λi1λi2.

Here, both m and t are variables which are allowed to change, provided their

difference j = m − t is fixed. Note that if t = 1, then e2(λ) = 0. Also, since

Π=2
n (q) is bounded, we must have that W0 = 1. The proof of this proposition

relies on (6.2.3) and the following simple lemma:

Lemma 7.3.4. Let T ∈ Π=2
n (q), and let t = |T | and m = r(T ). Then

ρ(T ) = m− t in Π=2
n (q).

Proof. Since all maximal chains of Π=2
n (q) are of the same length, we need only

compute the ranks of a single maximal chain passing through T . For this chain, we

can choose the portion below T to consist only of creations and expansions, since

such chains exist by construction. To generate T , we need exactly t creations;

since each creation adds exactly 2 to the total rank r(T ) of T , we have that

m ≥ 2t.

Clearly, the number of expansions necessary is m − 2t, since each expansion

adds 1 to the sum of the ranks. There are then a total of t + m − 2t = m − t

covering steps below T , so the rank in Π=2
n (q) is as claimed.

Notice that setting q = 1 gives an alternative formula for the Stirling numbers

of the second kind in terms of binomial coefficients and partitions.
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Example 7.3.5. Consider n = 5. Since m ≤ 5 and t ≤ 5
2
, we have the following

possibilities for each value of j:

j 1 2 2 3 3 4

m 2 3 4 4 5 5

t 1 1 2 1 2 1

Notice that j ≯ 4. We can use this table and Proposition 7.3.3 to calculate

the following with Maple:

i Wi

0 1

1
[

5
2, 3

]
q

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

2
[

5
3, 2

]
q

+
q4

2

[
5

2, 2, 1

]
q

=

1 + q + 2q2 + 2q3 +
5
2
q4 + 2q5 + 3q6 +

5
2
q7 + 3q8 +

5
2
q9 + 2q10 + q11 +

1
2
q12

3
[

5
4, 1

]
q

+ q6

[
5

3, 2

]
q

=

1 + q + q2 + q3 + q4 + q6 + q7 + 2q8 + 2q9 + 2q10 + q11 + q12

4
[
5
5

]
q

= 1

> 4 0

Observe that when q = 1, we get the sequence 1, 10, 25, 15, 1, 0, 0..., which

is the sequence of Stirling numbers of the second kind with n = 5, as expected.

Now using the result of Theorem 7.2.1 and (2.1.1), we can also demonstrate a

formula for the Whitney numbers of the first kind, combining our knowledge of

Möbius invariants and the number of elements of each rank type in the lattice.
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Proposition 7.3.6. For j > 0, the Whitney number of the first kind wj for

Π=2
n (q) is

wj = (−1)j
∑

λ`m≤n
`(λ)=t

λi≥2 ∀ i
j=m−t

qe2(λ)

[
n

λ1, ..., λt, (n−m)

]
q

n∏
i=1

1

ai(λ)!

t∏
i=1

g̃λi
(q)q(

λi−1
2 )[λi − 1]q!,

where

g̃λi
(q) =

1

λiq

(
[λi]q − (1− q)λi−1

)
,

ai(λ) is the number of parts of λ of size i, and e2(λ) =
∑

1≤i1<i2≤t

λi1λi2.

We examine the case when n = 5 as an example. Recalling from Example

7.3.5 the allowable values of m and t for each j, we can compute the following

table using Maple:

i wi

0 1

1 −
[

5
2, 3

]
q

= −(1 + q + 2q2 + 2q3 + 2q4 + q5 + q6)

2 (q2 + q)
[

5
3, 2

]
q

+
q4

2

[
5

2, 2, 1

]
q

=

q + 2q2 + 3q3 +
9
2
q4 + 5q5 + 5q6 +

9
2
q7 + 4q8 +

5
2
q9 + 2q10 + q11 +

1
2
q12

3 −(1− 1
2
q +

1
2
q2)q3[3]q!

[
5

4, 1

]
q

− (q8 + q7)
[

5
3, 2

]
q

=

−
(

q3 +
5
2
q4 + 4q5 + 5q6 +

13
2

q7 + 7q8 +
13
2

q9 + 6q10 + 5q11 +
7
2
q12 + 2q13 + q14

)
4 (1− q + q2)q6[4]q!

[
5
5

]
q

=

q6 + 2q7 + 3q8 + 4q9 + 4q10 + 4q11 + 3q12 + 2q13 + q14

> 4 0

Now if we evaluate these polynomials when q = 1, we obtain the following

sequence: 1,−10, 35,−50, 24, 0, 0, ..., which is exactly the sequence of Stirling
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numbers of the first kind for n = 5, as desired. Notice that because they are

defined in terms of sums over partitions, neither of these formulas appears to have

a simple recurrence relation, as do the Stirling numbers.

We also have alternate formulations for the polynomial g̃n(q). We begin with

a definition.

Definition 7.3.7. Fix positive integers n and h such that 0 < h < n, and fix

a circular arrangement of the letters of [n]. Let an,h be the number of distinct

subsets of [n] of size h such that no two letters in the subset are adjacent in

the arrangement. Define the Lucas polynomial L∗n(x) by L∗n(x) :=
∑
h≥1

an,hx
h−1.

Note that the Lucas polynomials have varying definitions in the literature,

usually by taking an,h as coefficients of different powers of x. Further, these

polynomials have both a closed form and a recursive form. For example, we have

a6,3 = 2, which we can see directly in the following diagram, which illustrates the

only two possible subsets of size 3:

Proposition 7.3.8. The following polynomials are all equal for all positive

integers n:

• gn(x) = 1
n
L∗n(x)

•
∑
i≥0

(
n− i− 2

i

)
xi

i+ 1
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•
∑
t≥1

(
n− t

t

)
xt−1

n− t

The following polynomials are all equal for all positive integers n:

• g̃n(q) = 1
nq

(
[n]q − (1− q)n−1

)

•
∑
m≥0

(
(−q)m

∑
i≥0

(
n−i−2

i

)(
i

i−m

)
i+ 1

)

•
∑
m≥0

(
(−q)m

∑
t≥1

(
n−t

t

)(
t−1

m−t+1

)
n− t

)

• 1
n

n−2∑
i=0

(
qi + (1− q)i

)
• 1

n

n−2∑
i=0

(
1 + (−1)i

(
n− 1

i+ 1

))
qi

Further, gn(q2 − q) = g̃n(q) for all positive integers n.

We could use the different expressions for the polynomial g̃n and appropriate

algebraic manipulation to express the number of falling chains, and thus the

Möbius invariant; for instance, we could write

β̃n−3(Π=2
n (q)) =

(
1

n
L∗n(q2 − q)

)
q(

n−1
2 )[n− 1]q!.

Proof of Proposition 7.3.8. The proof is relatively simple, and relies entirely on the

fact that each of the polynomials above is a solution of the following equivalent

recurrence relations on these polynomials, with initial conditions g1(x) = g̃1(q) =

0 and g2(x) = g̃2(q) = 1:

gn(x) =
1

n
·
(

1 + (n− 1) · gn−1(x) + (n− 2) · x · gn−2(x)

)
g̃n(q) =

1

n
·
(

1 + (n− 1) · g̃n−1(q) + (n− 2) · (q2 − q) · g̃n−2(q)

)
From these recurrence relations, we see that gn(q2 − q) = g̃n(q).
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Note that these recurrences coincide with recurrence satisfied by the Lucas

polynomials. Now these recurrence relations induce the following recurrence

relation on the Möbius invariants of these lattices directly:

Proposition 7.3.9. For the sequence of Möbius invariants

(
µ(Π=2

n (q))

)
n>2

, the

following recurrence relation holds, with the initial conditions µ(Π=2
1 (q)) = 0 and

µ(Π=2
2 (q)) = −1:

n · µ(Π=2
n (q)) = (−1)n−1q(

n−1
2 )[n− 1]q!− (n− 1)(qn−2[n− 1]q)µ(Π=2

n−1(q))

+(n− 2)(q2 − q)(qn−2[n− 1]q)(q
n−3[n− 2]q)µ(Π=2

n−2(q))

Since the initial terms alternate in sign, it can be easily shown that the Möbius

invariants alternate in sign as well, as each of the terms in the recurrence have the

same sign for all n. As the Betti numbers of ∆(Π=2
n (q)) are the absolute values

of the Möbius invariants, the related recurrence of the Betti numbers is:

n · β̃n−3(Π=2
n (q)) = q(

n−1
2 )[n− 1]q! + (n− 1)(qn−2[n− 1]q) · β̃n−4(Π=2

n−1(q))

+(n− 2)(q2 − q)(qn−2[n− 1]q)(q
n−3[n− 2]q) · β̃n−5(Π=2

n−2(q))

We conclude with a few observations. Recall the characteristic polynomial

χ(P, t) of a bounded ranked poset P with `(P ) = n is given by χ(P, t) =∑
z∈P

µ([0̂, z])tn−ρ(z) =
n∑

i=0

wit
n−i, for wi the Whitney numbers of the first kind. In

the case that P = Π=2
n (q), the characteristic polynomials can be computed rather

straightforwardly, and thus these Möbius invariants can be computed recursively

in this manner as well. This can be achieved by recalling that for T ∈ Π=2
n (q)

such that T = {B1, B2, ..., Bt} 6= T1, and dim(Bi) = ai for each i, we have by

Lemma 6.2.4 and (2.1.1) that µ([T0, T ]) =
t∏

i=1

µ(Π=2
ai

(q)).
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We can then find all elements S in Π=2
n (q) with the same rank. In so doing,

we can compute all of the coefficients of the characteristic polynomial other than

the coefficient of t. Now since 0 =
∑

0̂≤z≤1̂

µ([0̂, z]) in any bounded poset, the

remaining coefficient, which is the invariant µ(Π=2
n (q)), is completely determined.

For example, in the case when n = 3, we need only find the number of atoms

of the lattice, since each will have Möbius invariant -1, and these are the only

elements which are neither bottom nor top elements. The number of atoms is

simply the number of two-dimensional subspaces of the three-dimensional vector

space over the field of order q, which is 1 + q + q2. Thus, observing that there

is a bottom element (a fact which is true for all n > 1, so that the coefficient of

tn is always 1 for this family of lattices), the first two terms of the characteristic

polynomial are t3 − (1 + q + q2)t2.

In order to make the coefficients sum to zero, this then uniquely determines

the coefficient of t as q + q2, which direct examination shows to be the Möbius

invariant µ(Π=2
3 (q)) in this case. Now the polynomial

χ(Π=2
3 (q), t) = t3 − (1 + q + q2)t2 + (q + q2)t (7.3.1)

factors as t(t − 1)(t − (q2 + q)), similar to the case of Πn, whose characteristic

polynomial factors as χ(Πn, t) =
n−1∏
i=1

(t− i) (see [16]).

However, a repetition of these procedures for n = 4 using (7.3.1) yields a

characteristic polynomial of t4− (q4 + q3 +2q2 + q+1)t3 + 1
2
(q8 + q7 +2q6 +3q5 +

5q4 + 4q3 + 4q2 + 2q)t2− 1
2
(q2− q+ 2)q3(q+ 1)(q2 + q+ 1)t, which has roots t = 0,

t = 1, and t = 1
2
(q3 + q2 + 2q + 1±

√
−q6 + q4 + 1). This technique is not likely

to be fruitful for proving results, as it is computationally intensive and does not

appear to yield factorizable polynomials following a general pattern.
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On the other hand, now that we have formulas for the Whitney numbers, we

can compute both the characteristic polynomial as well as the rank generating

function of Π=2
n (q). The rank generating function F (P, t) is defined for any

ranked poset P by F (P, t) =
∑
z∈P

tρ(z), and in the case of bounded posets of

length n, it can be expressed as the polynomial F (P, t) =
n∑

i=0

Wit
i.

Finally, it would be insightful to provide a bijective proof that g̃n(q) =

1
n
L∗n(q2 − q), especially in connection with the recurrence relation satisfied by

the Möbius invariants. However, no such bijections are known currently.



References

[1] C. Bennett, K. Dempsey, and B. Sagan, Partition lattice q–analogs related
to q–Stirling numbers, J. Algebraic Combinatorics 3 (1994), 261-283.

[2] A. Björner, The homology and shellability of matroids and geometric
lattices, Matroid Applications (N. White, ed.), Cambridge Univ. Press,
1992, pp. 226-283. MR 94a:52030.

[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans.
AMS 260 (1980), 159-183.

[4] A. Björner, L. Lovász, and A. Yao, Linear decision trees: volume estimates
and topological bounds, Proc. 24th ACM Symp. on Theory of Computing
(1992), 170-177.

[5] A . Björner and B. Sagan, Subspace arrangements of type Bn and Dn, J.
Algebraic Combin., 5 (1996), 291314.

[6] A. Björner and M.L. Wachs, On lexicographically shellable posets, Trans.
Amer. Math. Soc. 277 1983, 323-341.

[7] A. Björner and M.L. Wachs, Shellable nonpure complexes and posets. I,
Trans. Amer. Math. Soc. 348 (1996), 1299-1327.

[8] A. Björner and M.L. Wachs, Shellable nonpure complexes and posets. II,
Trans. Amer. Math. Soc. 349 (1997), 3945-3975.

[9] A. Björner and V. Welker, The homology of “k–equal” manifolds and related
partition lattices, Advances in Math. 110 (1995), 277-313.

[10] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres,
Math. Scand. 29 (1971), 197-205.

[11] T. Dowling, A class of geometric lattices based on finite groups, J.
Combinatorial Th. B, 14 (1973), 6186.

[12] E. Gottlieb, On the homology of the h,k-equal Dowling lattice, J. Discrete
Math. 17 2003, 50-71.

117



118

[13] P. Hanlon, P. Hersh, and J. Shareshian, A GLn(q) analogue of the partition
lattice, preprint 2009.

[14] I. Niven, Formal power series, The Amer. Math. Monthly. 76 1969, 871-
890.

[15] R. Simion, On q–analogues of partially ordered sets, J. Combin. Theory,
Ser. A 72 (1995), 135-183.

[16] R.P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge University
Press, 1997.

[17] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University
Press, 1999.

[18] R.P. Stanley, Exponential Structures, Studies in Applied Math. 59, (1978)
73-82.

[19] R.P. Stanley, Finite lattices and Jordan-Hölder sets, Alg. Univ. 4 (1974),
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