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In this paper, we derive and study a model for three species interacting via in-

traguild predation. We assume logistic growth for both the resource and consumer

species, and functional responses with saturation, interspecific interference, and in-

traspecific interference for the predator-prey interactions. This leads to Beddington-

DeAngelis-type functional responses. We consider local and global properties of the

resource-consumer subsystem, and give conditions for permanence. We then consider

permanence in the full system, along with the effects varying some of the parameters

has on the invasibility and exclusion of each species. We also look at the effects that

harvesting each species in the system has on the ecological community. We then

consider a linear food chain, apparent competition, resource competition, and inter-

specific killing as special cases of our intraguild predation model. Finally, we discuss

the biological mechanisms underlying our results.
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Chapter 1

Introduction and Background

1.1 Introduction

The mathematical study of population dynamics dates back over 200 years. The work

of Malthus in the late 1790s focused on modeling human populations and in the 1830s

and 1840s, Verhulst used the logistic equation to study self-regulating populations.

As mathematical theory has grown and the tools needed to study evermore complex

species interactions has developed, theoretical models have also evolved. In the early

part of the 20th century, Lotka and Volterra proposed a model for an interacting

predator and prey species, using a system of coupled ordinary differential equations.

Since then, many more models have been proposed and studied representing various

types of species interactions. One type of species interaction known to be ubiquitous

in nature is intraguild predation. In [56], Rosenheim defines intraguild predation as

being a species interaction which occurs when two predators that compete for a shared

resource also engage in predator-prey interactions with each other. The intraguild

competitor at the higher trophic level is commonly referred to as the IGpredator while

the other intraguild competitor is the IGprey. We will use the terminology predator

to refer to the IGpredator and consumer to refer to the IGprey.

1
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Many examples of intraguild predation are known to exist in ecological commu-

nities involving mammals, fish, insects, and plants, among other species. Among

the many examples are the following. In the northern prairies of the United States

and Canada, coyotes (Canis latrans) and bobcats (Lynx refus) compete with racoons

(Procyon lotor) for small mice, juvenile birds, eggs, frogs, crayfish and crabs. But coy-

otes and bobcats also feed upon racoons, who are an invasive species [24, 39, 42]. In

Guam, brown tree snakes (Boiga irregularis) compete with mangrove monitor lizards

(Varanus indicus) for small vertebrates, invertebrates, and bird and reptile eggs. But,

both species consume each other in a form of intraguild predation known as mutual

intraguild predation [23]. In Australia, China, Cyprus, Italy, Morocco, New Zealand,

Spain, and South Africa, Eurasian perch (Perca fluvitilis) is an invasive species who

competes with freshwater fish such as common bully (Gobiomorphis cotidianus) for

zooplankton and macroinvertebrates. But eurasian perch also consume freshwater

fish [40]. Many more examples are given by Bampfylde and Lewis in [7] and Polis,

Holt, and Myers in [54].

In this paper, we will study a model for three species interacting via intraguild

predation. We will being by deriving the model using a time budget analysis similar to

the ones used by Holling [32] and Beddington [8]. We will assume saturation effects for

the consumers and predators interacting with the resource, as well as with each other.

We will also assume the consumers and predators exhibit interference competition

among themselves. This will lead to Beddington-DeAngelis-type nonlinear functional

responses. Much work has been done to understand how the Beddington-DeAngelis

functional response affects the dynamics of interacting species. The seminal work by

Cantrell and Cosner [14] established conditions under which a predator-prey system

with logistic growth for the prey species and Beddington-DeAngelis function response

will be permanent. They discussed how intraspecific interference affects the local

stability of the interior equilibrium, how it affects global asymptotical stability of the
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interior equilibrium, and proved the existence of at least one periodic orbit. Since

then, Hwang [37] has proven the uniqueness of the periodic orbit and other models

have confirmed that mutual interference can stabilize predator-prey interactions and

can lead to Turing spatial patterns [3, 20]. Additionally, models with Beddington-

DeAngelis functional response can exhibit complex dynamics, including Saddle-node,

Transcritical, HopfAndronov, and BogdanovTakens bifurcations and chaos [29, 44,

50, 69].

One of the earliest mathematical treatments of intraguild predation was by Holt

and Polis in [35] who found that intraguild predation could destabilize a positive equi-

librium in a Lotka-Volterra model with linear functional responses. They conjectured

that nonlinear functional responses could lead to more robust coexistence of all three

species than they found in their paper. In [47], McCann and Hastings incorporated

nonlinear functional responses and showed that omnivory could in fact work as a sta-

bilizing agent. Other studies of intraguild predation, such as [2, 6, 7, 34, 41], have also

incorporated nonlinear functional responses. These studies have also confirmed the

suspicions of Holt and Polis, although the functional responses used in those studies

turn out to be special cases of the functional responses we use in this paper.

We will also follow Holt and Polis’ suggestion of incorporating an alternative food

source exclusively for the consumer species. The addition of alternative food sources

has been studied in [18, 30, 34]. In these studies, the alternative food sources were

incorporated into the models via additional dynamic equations. These studies found

that having an alternative food source for the consumer species can lead to coexis-

tence even when the consumer species is not superior to the predator in exploitation

competition. In this paper, we will take a different approach. We will assume that

in the absence of the basal resource or the top predator, the consumer species grows

logistically. Thus, we will have both the resource and consumer species growing logis-

tically in the absence of each other and the predator. This modeling assumption seems
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to be rare. Magal, Ruan, and Cosner [45] make such an assumption, although they

do so in the context of a two-species predator-prey model. Bampfylde and Lewis [7]

use logistic growth for the consumer and predator species in an intraguild predation

model, although they do not model the resource explicitly.

In studying our intraguild predation model, we will use topics and techniques

from Differential Equations and Dynamical Systems. Among these will be standard

topics such as equilibria and stability, bifurcations, linearization, Lyapunov functions,

and sub- and supersolutions. For more information, see [28, 53, 66]. Because of the

complexity of the model under consideration, it will also be necessary to establish

coexistence from the perspective of permanence. In the following section, we give

some necessary background on permanence. The discussion on permanence will follow

from [12, 13, 15, 36, 59].

Aside from the ecological reasons for studying intraguild predation, or any model

of interacting species for that matter, there can also be practical reasons. There

are many people who harvest members of ecological communities for food, business,

sport, population control, or other reasons. Among these species that are harvested

by humans are members of ecological communities exhibiting intraguild predation. It

is important to understand the effects of harvesting on ecological communities before

such actions are undertaken as harvesting species at one level can have unintended

consequences at another level. In [52], Palomares et. al. study an intraguild predation

ecosystem where Iberian lynx (Felis pardina) and Egyptian mongooses (Herpestes

ichneumon) compete for European rabbits (Oryctolagus cuniculus) in southwestern

Spain. Iberian lynx also consume Egyptian mongooses [51]. Rabbits are of economic

concern because they are game for many hunting areas and are the primary food

source for many endangered predators [19]. Palomares et. al. found that when the

lynx is not present, the rabbits suffered greater mortality from predation and lower

growth rate. Thus, if preservation of rabbits is of economic interest then harvesting
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the lynx may not be a good strategy, despite one’s initial instinct that reducing one

of the rabbits’ predators should benefit the rabbits.

Another ecological community with intraguild predation in which harvesting takes

place consists of the European green crab (Carcinus maenas) as the predator species,

the Shore crab (Hemigrapsus sanguineus, H. oregonensis) as the consumer species,

and the resource is any combination of mussels, clams, scallops, snails, isopods, bar-

nacles, or algae [26, 27, 38]. According to [25, 33, 43], European green crabs are

known to have negative effects on clams, both soft-shelled and hard-shelled, scallops,

and other commercially harvested species. More specifically, green crabs consume,

among other species, blue mussel (Mytilus edulis), soft-shell clam (Mya arenaria), and

manila clam (Venerupis philippinarum) [43, 48]. In 1996, crab predation in Toma-

les Bay resulted in a nearly 40% loss in annual production of manila clams for one

producer, and it is estimated that the average annual losses to shellfisheries on the

East Coast due to green crab predation are $22.6 million [43]. In this scenario, it

is of interest to understand the effects of harvesting at two levels of the community:

harvesting the resource for commercial reasons and harvesting the predators to con-

trol their biological invasion. More examples of harvesting or species removal within

communities exhibiting intraguild predation can be found in [1, 16, 55, 67].

In our model, we will consider constant-effort harvesting, as opposed to constant-

yield harvesting, which is also known as constant-quota harvesting. This is done

for two reasons. One is analytical tractability. Some early mathematical work on

constant-yield harvesting was done by Brauer and Soudack [11, 10] in 1979. Because

they were working with fairly nice 2-D predator-prey systems, they were able to treat

many of the cases which can arise under constant-yield prey harvesting or constant-

yield predator harvesting. But even simple 2-D models with constant-yield harvesting

can exhibit complicated dynamics, such as Bogdanov-Takens bifurcations [68]. In

our case, the system yields prohibitively complicated calculations, even in the case
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without harvesting. With constant-yield harvesting, obtaining useful information

becomes even more difficult and prohibitive. The second reason is to preserve the

extinction equilibrium at the origin in a natural way. It is clear that biologically, the

origin is always an equilibrium point and with constant-effort harvesting, it remains

so mathematically.

Constant effort harvesting has been used in many populations models with har-

vesting. Some of the earliest work was done by Schaefer in [58], who studied a

single-species model with a population growing logistically and subject to constant-

effort harvesting. May et. al. [46] followed this work with a number of multi-species

models incorporating constant-effort harvesting. Often, models of interacting species

which incorporate constant-effort harvesting are interested in obtaining information

about the maximum sustainable yield (MSY) for the harvested population. Though

interesting, MSY is beyond the scope of our current analysis. For more information

about MSY and other economically interesting questions related to harvesting, the

reader is referred to the book by Clark [17].

In addition to studying ecological communities exhibiting intraguild predation,

we will also study models for a linear food chain (where the predator species does

not consume the resource), resource competition (where the predators do not feed

upon the consumer species), and apparent competition (where consumers do not

eat the resource). By setting certain attack rates in the model to zero, we will

be able to study these types of ecological communities as special cases of intraguild

predation. Just as intraguild predation models can exhibit chaos [64], these “simpler”

ecological communities can exhibit dynamics can also be quite complicated. For

instance, the work of Hastings and Powell [31] found chaos in a three-species food

chain, and Takeuchi and Adachi [63] found periodic motion and chaos in a model

for apparent competition. Many models have studied the effects of harvesting on

ecological communities which are special cases of intraguild predation, including
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Another ecological interaction which can be studied as a special case in our model

is interspecific killing. Intraguild predation where the predator kills but does not con-

sume the consumer species has been previously documented. For example, Eurasian

lynx (Lynx lynx ) and red fox (Vulpes vulpes) compete for roe deer (Capreolus capreo-

lus) and mountain hares (Lepus timidus), but the lynx are also known to kill without

consuming the fox [62]. Another example occurs between arctic foxes (Alopex lago-

pus) and red foxes (Vulpes vulpes), which compete for food [21, 22, 65, 60], but where

red foxes are known to attack without consuming arctic foxes. To study these cases,

the conversion rate from consumer to predator species will be small or zero.

1.2 Background on Permanence

Since our model will consist of a system of ordinary differential equations, we will

cast our discussion of permanence in the light of flows and dynamical systems. The

discussion could equally well be applied to semiflows and semi-dynamical systems if

our system consisted of partial differential equations instead.

Let Y be a complete metric space and suppose we can write Y as Y = Y0 ∪ ∂Y0,

where Y0 is open. Let π : Y × R → Y be a flow under which Y0 and ∂Y0 are forward

invariant.

Definition 1.1. Let (Y, d) be a metric space and let π be a dynamical system on

(Y, d). A set A which is compact, invariant under π and such that for all bounded

subsets U of Y ,

lim
t→∞

sup
u∈U

inf
v∈A

d (π(u, t), v) = 0

is called a global attractor for π.

Definition 1.2. We say that π is dissipative if there is a bounded subset U of Y so

that for any u ∈ Y , π(u, t) ∈ U for all sufficiently large t.
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Theorem 1.1 (Bilotti and La Salle, 1971). If Y is a complete metric space, π is

dissipative, and for all t > t0 ≥ 0, the set π(U, t) = {π(u, t) : u ∈ U} is precompact

if U is bounded, then π has a nonempty global attractor.

Definition 1.3. A dynamical system π is called weakly persistent if ∀ y ∈ Y ,

lim sup
t→∞

d (π(y, t), ∂Y0) > 0. We say that π is persistent if lim sup is replaced by

lim inf in the definition of weak persistence. We call π uniformly persistent if ∀ y ∈

Y, ∃ ε > 0 such that lim inf
t→∞

d (π(y, t), ∂Y0) > ε.

Definition 1.4. We say that π is permanent if it is uniformly persistent and dissi-

pative.

Before we can state the theorem which we will be using to establish permanence,

we need the following definitions.

Definition 1.5. A collection U of subsets of a space Y is said to be a covering of Y

if the union of the elements of U is equal to Y .

Let U = {Uk}nk=1 where Uk ⊂ Y . We call U a covering of Y if Y = ∪n
k=1Uk.

Definition 1.6. Suppose an invariant set M for π has a neighborhood U such that

M is the maximal invariant subset of U . The M is said to be isolated.

Notation: ω (∂Y0) = ∪u∈∂Y0ω(u) ⊆ ∂Y0

Definition 1.7. Suppose the sets Mk (k = 1, .., N) are pairwise disjoint and are

isolated and invariant with respect to π on ∂Y0 and Y . If ω (∂Y0) has a covering

M = ∪N
k=1Mk then ω (∂Y0) is called isolated and M is called an isolated covering.

Definition 1.8. If N1 and N2 are two, not necessarily distinct, isolated invariant sets

then the set N1 is said to be chained to N2 if ∃ u �∈ N1∪N2 with u ∈ W u(N1)∩W s(N2).

Notation: If N1 is chained to N2 then we write N1 → N2.
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Definition 1.9. A finite sequence N1, . . . , Nk of isolated invariant sets is a chain if

N1 → N2 · · · → Nk. The chain is a cycle if Nk = N1.

Definition 1.10. The set ω(∂Y0) is said to be acyclic if there exists an isolated

covering ∪N
k=1Mk such that no subset of {Mk} is a cycle.

We are now ready to state the following theorem due to Butler, Freedman, and

Waltman [12].

Theorem 1.2. Suppose that Y is a complete metric space with Y = Y0 ∪ ∂Y0 where

Y0 is open. Suppose that a flow on Y leaves both Y0 and ∂Y0 forward invariant, maps

bounded sets in Y to precompact sets for t > 0, and is dissipative. If in addition

(i) ω (∂Y0) is isolated and acyclic,

(ii) W S (Mk) ∩ Y0 = ∅ for all k, where ∪N
k=1Mk is the isolated covering used in the

definition of acyclicity of ∂Y0,

then the flow is permanent; i.e., there exists ε > 0 such that any trajectory with initial

data in Y0 will be bounded away from ∂Y0 by a distance greater than ε for t sufficiently

large.

Note: At the boundary equilibria, at least one of the species is absent. Condition

(ii) in Theorem (1.2) says that near each boundary equilibrium, each species which

is absent at that equilibrium must be able to invade the system. So condition (ii) is

a condition about invasibility. Essentially what we need is for the boundary to be

repelling and to ensure that we do not have any heteroclinic orbits in the boundary.

In studying the 2-dimensional resource - consumer subsystem, we will take Y0 =

R
2
+ so that ∂Y0 = {(R, 0) : R ≥ 0} ∪ {(0, C) : C ≥ 0}. We will see that ω (∂Y0) will

consist of the non-dimensionalized equilibria (0, 0), (1, 0), and (0, 1). Clearly, ω (∂Y0)

is isolated. We will see that for all (R, 0) ∈ {(R, 0) : 0 < R < 1}, dR
dt

> 0 and for

all (R, 0) ∈ {(R, 0) : R > 1}, dR
dt

< 0. Thus, any trajectory in {(R, 0) : R ≥ 0} other
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than (0, 0) approaches (1, 0). For all (0, C) ∈ {(0, C) : 0 < C < 1}, dC
dt

> 0 and for

all (0, C) ∈ {(0, C) : C > 1}, dC
dt

< 0. Thus, any trajectory in {(0, C) : C ≥ 0} other

than (0, 0) approaches (0, 1). It follows from these features of that ∂Y0 is acyclic.

In studying the full 3-dimensional model, we will take Y0 = R
3
+ so that ∂Y0 =

{(R,C, 0) : R ≥ 0, C ≥ 0}∪{(0, C, P ) : C ≥ 0, P ≥ 0}∪{(R, 0, P ) : R ≥ 0, P ≥ 0}.

We shall return to acyclicity in this case, which requires a bit more work than it did

in the 2-dimensional case, in chapter 4.



Chapter 2

The Model

2.1 Construction of the Model

The model we will be interested in studying is a three-species model for intraguild

predation. We will assume that the basal resource grows logistically in the absence

of any predators. We will also assume that the consumer species is a generalist who

grows logistically in the absence of basal resource or predation, but who also exploits

the basal resource as part of its diet. The top predator is a specialist, feeding on both

the basal resource and the consumer species, who has a mortality rate proportional

to its population density. All three model species will also be subjected to constant

effort harvesting. We let R represent the density of the basal resource, C represent

the density of the consumer species, and P represent the density of the top predator.

Table 2.1 gives a description of the parameters which will be used in the general form

of our model system which we will be interested in studying. That model system is

11
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Table 2.1: Description of parameters in system (2.1)

Parameter Description
rR intrinsic growth rate of basal resource in the absence of

predation
rK intrinsic growth rate of consumer species in the absence of

basal resource and predation
KR environmental carrying capacity for basal resource
KC environmental carrying capacity for consumer species

fRC(R,C, P ) functional response of consumer species to basal resource
fRP (R,C, P ) functional response of top predator to basal resource
fCP (R,C, P ) functional response of top predator to consumer species

αRC conversion efficiency of basal resource to consumer species
αRP conversion efficiency of basal resource to top predator
αCP conversion efficiency of consumer species to top predator
mP mortality rate of top predator
HR rate at which the basal resource is harvested
HC rate at which consumers are harvested
HP rate at which predators are harvested

dR

dt
= rRR

(
1− R

KR

)
− fRC(R,C, P )− fRP (R,C, P )−HRR

dC

dt
= rCC

(
1− C

KC

)
+ αRCfRC(R,C, P )− fCP (R,C, P )−HCC (2.1)

dP

dt
= αRPfRP (R,C, P ) + αCPfCP (R,C, P )−mPP −HPP

2.2 Derivation of the Functional Responses

In order to derive the functional response of the consumer species to the basal resource,

the top predator to the basal resource, and the top predator to the consumer, we use

a time budget analysis similar to the ones used by Holling [32] and Beddington [8].

A summary of parameters can be found in Table (2.2).
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2.2.1 Consumer-Resource Functional Response

The total time consumers spend attempting to forage for food, TC , consists of four

components: the time they spend searching for the basal resource, tRCS, the time

they spend handling the basal resource, tRCH , the time they spend interacting with

other consumers, tC , and the time they spend avoiding predation, tPC . Thus, we have

that

TC = tRCS + tRCH + tC + tPC (2.2)

The number of basal resource encountered by consumers during time TC , NRC ,

depends on the rate at which consumers attack basal resource, eRC , the part of TC

consumers spend searching for basal resource, and the density of the basal resource.

The number of other consumers encountered by consumers during time TC , NC ,

depends on the rate at which consumers encounter other consumers, eC , the part of

TC consumers spend interacting with other consumes, and the density of the consumer

population. The number of predators encountered by consumers during time TC ,

NPC , depends on the rate at which consumers encounter predators, eCP , the time

consumers spend avoiding or escaping from predators, and the density of the predator

population. Thus, we have the following relations.

NRC = eRCtRCSR

NC = eCtRCSC

NPC = eCP tRCSP

The part of TC consumers spend handling encountered basal resource depends

on the number of encounters between consumers and basal resource during TC and

the length of time required for consumers to handle each encountered basal resource,

hRC . The part of TC consumers spend interacting with other consumers depends on

the number of other consumers encountered by consumers during TC and the length
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of time for each interaction between consumers, hC . The part of TC consumers spend

avoiding predation depends on the number of predators encountered by consumers

during TC and the length of time required for consumers to avoid or escape each

encountered predator, hPC . This gives us

tRCH = NRChRC = eRChRCtRCSR (2.3)

tC = NChC = eChCtRCSC (2.4)

tPC = NPChPC = eCPhPCtRCSP (2.5)

Thus, substituting equations (2.3), (2.4), and (2.5) into equation (2.2), we get

TC = tRCS + eRChRCtRCSR + eChCtRCSC + eCPhPCtRCSP

= tRCS (1 + eRChRCR + eChCC + eCPhPCP )

The per capita rate of encounters of consumers with basal resource is the number

of basal resource encountered by consumers during time TC , NRC , divided by the time

TC . Thus the consumer functional response to the basal resource is

NRC

TC

=
eRCtRCSR

tRCS (1 + eRChRCR + eChCC + eCPhPCP )

=
eRCR

1 + eRChRCR + eChCC + eCPhPCP

Thus, the overall rate at which consumers encounter the basal resource is

fRC(R,C, P ) =
eRCRC

1 + eRChRCR + eChCC + eCPhPCP
(2.6)
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2.2.2 Predator-Resource Functional Response

The total time predators spend attempting to forage for food, TP , consists of four

components: the time they spend searching for food (basal resources or consumers),

tPS, the time they spend handling encountered basal resource, tRPH , the time they

spend handling encountered consumers, tCPH , and the time they spend interacting

with other predators, tP . Thus, we have that

TP = tPS + tRPH + tCPH + tP (2.7)

The number of encounters with the basal resource by predators during time TP

depends on the rate at which predators attack basal resource, eRP , the part of TP con-

sumers spend searching for basal resource, and the density of the basal resource. The

number of consumers encountered by predators during time TP depends on the rate

at which predators attack consumers, eCP , the part of TP predators spend searching

for consumers, and the density of the consumer population. The number of other

predators encountered by predators during time TP depends on the rate at which

predators encounter other predators, eP , the time predators spend interacting with

other predators, and the density of the predator population. Thus, we have the

following relations.

NRP = eRP tPSR

NCP = eCP tPSC

NP = eP tPSP

The part of TP predators spend handling encountered basal resource depends

on the number of encounters between predators and basal resource during TP and

the length of time required for predators to handle each encountered basal resource,
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hRP . The part of TP predators spend handling encountered consumers depends on

the number of consumers encountered by predators during TP and the length of

time required for predators to handle each encountered consumer, hCP . The part

of TP predators spend interacting with other predators depends on the number of

other predators encountered by predators during TP and the length of time for each

interaction between predators, hP . This gives us

tRPH = NRPhRP = eRPhRP tPSR (2.8)

tCP = NCPhCP = eCPhCP tPSC (2.9)

tP = NPhP = ePhP tPSP (2.10)

Thus, substituting equations (2.8), (2.9), and (2.10) into equation (2.7), we get

TP = tPS + eRPhRP tPSR + eCPhCP tPSC + ePhP tPSP

= tPS (1 + eRPhRPR + eCPhCPC + ePhPP )

The per capita rate of encounters of predators with basal resource is the number

of basal resource encountered by predators during time TP , NRP , divided by the time

TP . Thus the predator functional response to the basal resource is

NRP

TP

=
eRP tPSR

tPS (1 + eRPhRPR + eCPhCPC + ePhPP )

=
eRPR

1 + eRPhRPR + eCPhCPC + ePhPP

Thus, the overall rate at which the basal resource is encountered by predators is

fRP (R,C, P ) =
eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
(2.11)
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2.2.3 Predator-Consumer Functional Response

The per capita rate of encounters of predators with consumers depends on the preda-

tor’s time utilization, which remains the same as in the previous section. In this case,

the predator functional response to the consumers is

NCP

TP

=
eCP tPSC

tPS (1 + eRPhRPR + eCPhCPC + ePhPP )

=
eCPC

1 + eRPhRPR + eCPhCPC + ePhPP
(2.12)

Thus, the overall rate at which predators encounter consumers is

fCP (R,C, P ) =
eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
(2.13)

2.3 The Model and Special Cases

Upon substituting equations (2.6), (2.11), and (2.13) into system (2.1) gives us the

model system which we will focus our attention on.

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
−HRR

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP
(2.14)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
−HCC

dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

−mPP −HPP

In the case where the top predator does not feed on the basal resource; i.e., when

eRP = 0, then the top predator feeds upon only the consumer and the consumers
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Table 2.2: Summary of parameters used in the derivation of the functional responses.

Parameter Description
TC time consumers spend searching for resources, handling captured

resources, interacting with other consumers, and avoiding predation
TP time predators spend searching for resources, handling captured

resources, searching for consumers, handling captures consumers,
and interacting with other predators

tRCS the part of TC consumers spend searching for basal resource
tRCH the part of TC consumers spend handling encountered basal resource
tC the part of TC consumers spend interacting with other consumers
tPC the part of TC consumers spend avoiding predation
tPS the part of TP predators spend searching for food (basal resource or

consumers)
tRPH the part of TP predators spend handling encountered basal resource
tCPH the part of TP predators spend handling encountered consumers
tP the part of TP predators spend interacting with other predators
eRC rate at which consumers attack basal resource
eC rate at which consumers encounter other consumers
eCP rate at which consumers encounter predators or predators attack

consumers
eRP rate at which predators attack basal resource
eP rate at which predators encounter other predators
NRC number of basal resource encountered by consumers during TC

NC number of other consumers encountered by consumers during TC

NPC number of predators encountered by consumers during TC

NRP number of basal resource encountered by predators during TP

NCP number of consumers encountered by predators during TP

NP number of other predators encountered by predators during TP

hRC length of time for consumers to handle each encountered basal
resource

hC length of time required for each interaction between consumers
hPC length of time required for consumers to avoid/escape each

encountered predator
hRP length of time required for predators to handle each encountered

basal resource
hCP length of time required for predators to handle each encountered

consumer
hP length of time required for each interaction between predators
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feed upon only the basal resource. In such a case, there is no competition between

the consumers and top predators. This represents a linear food chain and the model

system becomes

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC + eCPhPCP
−HRR

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP
(2.15)

− eCPCP

1 + eCPhCPC + ePhPP
−HCC

dP

dt
=

αCP eCPCP

1 + eCPhCPC + ePhPP
−mPP −HPP

In the case where the consumers do not feed on the basal resource; i.e., when

eRC = 0, then the top predator preys upon both the basal resource and the consumers,

but the basal resource has no other predators. In such a case, the basal resource and

the consumers compete for refuges and for survival from the top predator. This

represents apparent competition and the model system becomes

dR

dt
= rRR

(
1− R

KR

)
− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
−HRR

dC

dt
= rCC

(
1− C

KC

)
− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
−HCC (2.16)

dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

−mPP −HPP

In the case where the top predator does not feed on the consumers; i.e., when

eCP = 0, then the consumers have no predators and the only food source for the

predators is the basal resource. In such a case, the consumers and predators compete

for the basal resource. This represents resource competition and the model becomes
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dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC

− eRPRP

1 + eRPhRPR + ePhPP
−HRR

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC
−HCC (2.17)

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP −HPP

In the case where the top predator attacks but does not consume the consumers;

i.e., when αCP = 0, then the consumers experience predation but the predators do

not experience growth from their interactions with the consumers. In such a case, we

have interspecific killing and the model becomes

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
−HRR

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP
(2.18)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
−HCC

dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
−mPP −HPP

2.4 Non-dimensionalized Model

To simplify the model, we make the following substitutions for the variables R, C, P ,

and t:

R̃ = 1
KR

R, C̃ = 1
KC

C, P̃ = ePhPP , t̃ = rRt
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From the chain rule we have

dR̃

dt̃
=

dR̃

dR
· dR
dt

· dt
dt̃

=

(
1

KR

)(
dR

dt

)(
1

rR

)
=

1

rRKR

dR

dt

dC̃

dt̃
=

dC̃

dC
· dC
dt

· dt
dt̃

=

(
1

KC

)(
dC

dt

)(
1

rR

)
=

1

rRKC

dC

dt
(2.19)

dP̃

dt̃
=

dP̃

dP
· dP
dt

· dt
dt̃

= (ePhP )

(
dP

dt

)(
1

rR

)
=

ePhP

rR

dP

dt

If we plug in the equations in system (2.18) into (2.19) and make the substitutions

for the non-dimensionalized parameters, we get

dR̃

dt̃
= R̃

(
1− R̃

)
− eRCKCR̃C̃

rR

(
1 + eRChRCKRR̃ + eChCKCC̃ + eCP hPC

eP hP
P̃
)

− eRP R̃P̃

rRePhP

(
1 + eRPhRPKRR̃ + eCPhCPKCC̃ + P̃

) − HRR̃

rR

dC̃

dt̃
=

rC
rR

C̃
(
1− C̃

)
+

αRCeRCKRR̃C̃

rR

(
1 + eRChRCKRR̃ + eChCKCC̃ + eCP hPC

eP hP
P̃
)

− eCP C̃P̃

rRePhP

(
1 + eRPhRPKRR̃ + eCPhCPKCC̃ + P̃

) − HCC̃

rR

dP̃

dt̃
=

αRP eRPKRR̃P̃

rR

(
1 + eRPhRPKRR̃ + eCPhCPKCC̃ + P̃

)
+

αCP eCPKCC̃P̃

1 + eRPhRPKRR̃ + eCPhCPKCC̃ + P̃
− mP

rR
P̃ − HP P̃

rR

We now make the following parameter substitutions:

r̃ = rC
rR
, h̃PCP = eCP hPC

eP hP
, h̃CPP = eCP hCP

eP hP
, ẽRC = eRCKC

rR

ẽRP = eRP

rReP hP
, α̃RC = αRCeRCKR

rR
, ẽPC = eCP

rReP hP
, α̃RP = αRP eRPKR

rR

α̃CP = αCP eCPKC

rR
, m̃P = mP

rR
, h̃RP = eRPhRPKR, h̃RC = eRChRCKR

h̃C = eChCKC , h̃CP = eCPhCPKC , h̃PC = eCPhPCKC , H̃R = HR

rR

H̃C = HC

rR
, H̃P = HP

rR
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This leads to the system

dR̃

dt̃
= R̃

(
1− R̃

)
− ẽRCC̃R̃

1 + h̃RCR̃ + h̃PCP P̃ + h̃CC̃
− ẽRP P̃ R̃

1 + h̃RP R̃ + h̃CP C̃ + P̃
− H̃RR̃

dC̃

dt̃
= r̃C̃

(
1− C̃

)
+

α̃RCR̃C̃

1 + h̃RCR̃ + h̃CPP P̃ + h̃CC̃
− ẽCP P̃ C̃

1 + h̃RP R̃ + h̃CP C̃ + P̃
− H̃CC̃

dP̃

dt̃
=

α̃RP R̃P̃

1 + h̃RP R̃ + h̃PCC̃ + P̃
+

α̃CP C̃P̃

1 + h̃RP R̃ + h̃CP C̃ + P̃
− m̃P P̃ − H̃P P̃

For the sake of aesthetics, we drop the tildes while keeping in mind that we are

now working with the non-dimensionalized system. This gives us

dR

dt
= R (1−R)− eRCCR

1 + hRCR + hPCPP + hCC
− eRPPR

1 + hRPR + hCPC + P
−HRR

dC

dt
= rC (1− C) +

αRCRC

1 + hRCR + hCPPP + hCC
− eCPPC

1 + hRPR + hCPC + P
−HCC

(2.20)

dP

dt
=

αRPRP

1 + hRPR + hPCC + P
+

αCPCP

1 + hRPR + hCPC + P
−mPP −HPP



Chapter 3

Analysis of 2-D Subsystems

Before studying the dynamics of the full system with harvesting, we study the dy-

namics of each of the subsystems with one species absent.

3.1 No Basal Resource Subsystem

See Cantrell and Cosner [14] for the following results. (Note: all parameters are in

terms of the original, dimensionalized parameters.)

The system we consider here is the following.

dC

dt
= rCC

(
1− C

KC

)
− eCPCP

1 + eCPhCPC + ePhPP

dP

dt
=

αCP eCPCP

1 + eCPhCPC + ePhPP
−mPP (3.1)

It is clear from an examination of the isoclines that there will be an equilibrium

in the first quadrant, whose C-value is given by

C
∗
=

KC [rCePhPαCP + eCP (mPhCP − αCP )]

2rCαCP ePhP

+

√(
KC [rCePhPαCP + eCP (mPhCP − αCP )]

)2
+ 4KCmP rCαCP ePhP

2rCαCP ePhP

(3.2)

23
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if and only if the isocline for dP
dt

= 0 becomes positive at some value C < KC , which

will be true if and only if

αCP eCPKC > (eCPhCPKC + 1)mP . (3.3)

Theorem 3.1. The system (3.1) is always dissipative in the first quadrant. It is

permanent if and only if (3.3) holds. If the inequality in (3.3) is reversed then P → 0

as t → ∞.

Lemma 3.2. Suppose that (3.3) holds and that

(eCPhCPKC − 1) (αCP eCPKC − eCPhCPKCmP )− 2eCPhCPKCmP > 0. (3.4)

If ePhP is sufficiently small then the positive equilibrium of (3.1) is unstable. If in

addition αCP eCPKC is sufficiently large then the equilibrium is an unstable spiral

point, and (3.1) has a limit cycle.

Lemma 3.3. If

eCPhCPKC

(
1− C

∗)
< 1 (3.5)

then
(
C

∗
, P

∗)
is globally asymptotically stable.

3.2 No Consumers Subsystem

See Cantrell and Cosner [14] for the following results. (Note: all parameters are in

terms of the original, dimensionalized parameters.)

The system we consider here is the following.

dR

dt
= rRR

(
1− R

KR

)
− eRPRP

1 + eRPhRPR + ePhPP

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP (3.6)
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It is clear from an examination of the isoclines that there will be an equilibrium

in the first quadrant if and only if the isocline for dP
dt

= 0 becomes positive at some

value R < KR, which will be true if and only if

αRP eRPKR > (eRPhRPKR + 1)mP (3.7)

Theorem 3.4. The system (3.6) is always dissipative in the first quadrant. It is

permanent if and only if (3.7) holds. If the inequality in (3.7) is reversed then P → 0

as t → ∞.

Lemma 3.5. Suppose that (3.7) holds and that

(eRPhRPKR − 1) (αRP eRPKR − eRPhRPKRmP )− 2eRPhRPKRmP > 0. (3.8)

If ePhP is sufficiently small then the positive equilibrium of (3.6) is unstable. If in

addition αRP eRPKR is sufficiently large then the equilibrium is an unstable spiral

point, and (3.6) has a limit cycle.

Lemma 3.6. If

eRPhRPKR

(
1−R

∗)
< 1 (3.9)

then
(
R

∗
, P

∗)
is globally asymptotically stable.

Note: Here R
∗
is given by

R
∗
=

KR[rRePhPαRP + eRP (mPhRP − αRP )]

2rRαRP ePhP

+

√(
KR[rRePhPαRP + eRP (mPhRP − αRP )]

)2
+ 4KRmP rRαRP ePhP

2rRαRP ePhP

(3.10)
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3.3 No Predators Subsystem

3.3.1 Equilibria

In the case where the predators are absent, the non-dimensionalized system becomes

dR

dt
= R(1−R)− eRCCR

1 + hRCR + hCC
(3.11)

dC

dt
= rC(1− C) +

αRCRC

1 + hRCR + hCC

To find the equilibria, we set each of the equations in (3.11) equal to zero and

solve the resulting system of simultaneous equations. This gives us equilibria of (0, 0),

(1, 0), (0, 1), and
(
R

∗
, C

∗)
, where R

∗
is a solution of the cubic equation

(
αRCh

2
C + rh2

RCeRC

)
R3

+
(
rhChRCeRC + 2rhRCeRC − 2αRCh

2
C − rh2

RCeRC + 2αRChCeRC

)
R2

+
(
rhCeRC − 2rhRCeRC − rhChRCeRC − 2αRChCeRC + αRCe

2
RC + αRCh

2
C

+ reRC + rhRCe
2
RC

)
R +

(
re2RC − reRC − reRChC

)
= 0 (3.12)

and C
∗
is given by

C
∗
= −hRC

(
R

∗)2
+ (1− hRC)R

∗ − 1

hCR
∗ + (eRC − hC)

. (3.13)

If we let h(R) = a3R
3 + a2R

2 + a1R + a0, where a3 = αRCh
2
C + rh2

RCeRC , a2 =

rhChRCeRC+2rhRCeRC−2αRCh
2
C−rh2

RCeRC+2αRChCeRC , a1 = rhCeRC−2rhRCeRC−

rhChRCeRC − 2αRChCeRC + αRCe
2
RC + αRCh

2
C + reRC + rhRCe

2
RC , and a0 = re2RC −

reRC − reRChC , then we can rewrite equation (3.12) in the form h(R) = 0.

To better understand the equilibria, we plot the resource and consumer nullclines

and see under which conditions these graphs intersect. The resource nullclines are
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the line R = 0 and the curve

C =
−hRCR

2 + (hRC − 1)R + 1

hCR + (eRC − hC)
. (3.14)

The consumer nullclines are the line C = 0 and the curves

C =
r (hRCR + 1− hC)±

√
r2 (hRCR + 1 + hC)

2 + 4rhCαRCR

−2rhC

. (3.15)

For the moment, we will define f(R) to be the positive branch of the resource

nullcline and g(R) to be the positive branch of the consumer nullcline. The positive

branch of the consumer nullcline is obtained in the case where the square root in the

numerator is subtracted. In order to determine the number of the equilibria from the

nullclines we need some properties of these nullclines.

The resource nullcline (3.14) has an R-intercept at R = 1, a C-intercept of C =

1
eRC−hC

, a vertical asymptote at R = 1− eRC

hC
, and a slant asymptote of C = −hRC

hC
R+

hRCeRC−hC

h2
C

. It also has a removable discontinuity at the point
(
− 1

hRC
, 0
)
in the (R,C)-

plane. We will abuse the terminology a little here and call the point
(
− 1

hRC
, 0
)
an

R-intercept of the resource isocline.

The consumer nullcline (3.15) has an R-intercept at R = − r
rhRC+αRC

, C-intercepts

at C = − 1
hC

and C = 1, and a horizontal asymptote of C = 1 + αRC

rhRC
as R → ∞.

It is easy to see that the three equilibria we already have, (0, 0), (1, 0), and (0, 1)

are recovered from the intersections of the resource nullcline R = 0 with the consumer

nullcline C = 0, the resource nullcline (3.14) with the consumer nullcline C = 0 at

the resource nullcline’s R-intercept R = 1, and the resource nullcline R = 0 with the

consumer nullcline (3.15) at the consumer nullcline’s C-intercept C = 1, respectively.

For any possible interior equilibria, we need to determine if and when the resource

nullcline (3.14) intersects the consumer nullcline (3.15). There are several cases to

consider in this endeavor.
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(1) The resource nullcline’s vertical asymptote is less than the resource nullcline’s

R-intercept of R = − 1
hRC

. This gives the condition that

eRC > hC +
hC

hRC

. (3.16)

There are two subcases here.

(a) The resource nullcline’s C-intercept is greater than the consumer nullcline’s

C-intercept. This gives the condition that

eRC < hC + 1. (3.17)

Note that in this case, the condition becomes

hC +
hC

hRC

< eRC < hC + 1 (3.18)

which implies that hC < hRC . This case gives either one, two, or three inte-

rior equilibria as shown in figure 3.1. Note that figures 3.1a and 3.1b each

give us one interior equilibrium. In figure 3.1a, the consumer nullcline’s hor-

izontal asymptote is close to 1, so the consumer nullcline does not increase

very rapidly. Therefore, the consumer nullcline does not intersect the re-

source nullcine until after the resource nullcine begins to decrease. On the

other hand, in figure 3.1b, the consumer nullcline’s horizontal asymptote is

much greater than 1. So the consumer nullcline increases very rapidly and

intersects the resource nullcline while the resource nullcline is still increasing.

(b) The resource nullcline’s C-intercept is less than the consumer nullcline’s



29

0

0

Resource
C

on
su

m
er

s

Resource Isocline
Consumer Isocline

1

1

(a) hRC = 3.7, hC = 0.05, eRC = 0.9, r = 1.0, αRC = 0.25

(b) hRC = 82.8, hC = 0.00001, eRC = 0.45, r = 0.1, αRC = 420.25

(c) hRC = 82.8, hC = 0.00001, eRC = 0.3333, r = 0.1, αRC = 80.25

(d) hRC = 82.8, hC = 0.00001, eRC = 0.45, r = 0.1, αRC = 80.25

Figure 3.1: Case (1)(a), where the resource nullcline’s vertical asymptote is less than
the resource nullcline’s R-intercept R = − 1

hRC
, and the resource nullcline’s C-intercept is

greater than the consumer nullcline’s C-intercept.
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C-intercept. This gives the condition that

eRC > hC + 1. (3.19)

Note that in this case, the condition becomes

eRC > max

(
hC +

hC

hRC

, hC + 1

)
(3.20)

Another way of saying this is

eRC > hC +
hC

hRC

if hC > hRC (3.21)

eRC > hC + 1 if hC < hRC (3.22)

This case gives us either zero, one, or two interior equilibria as shown in

figure 3.2.

(2) The resource nullcline’s vertical asymptote is greater than the resource nullcline’s

R-intercept of R = − 1
hRC

but less than 0. This gives the condition that

hC < eRC < hC +
hC

hRC

. (3.23)

There are two subcases here.

(a) The resource nullcline’s C-intercept is greater than the consumer nullcline’s

C-intercept. This gives us the condition that

eRC < hC + 1 (3.24)
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(a) hRC = 3.7, hC = 0.05, eRC = 2.3, r = 1.0, αRC = 0.25
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(b) hRC = 3.7, hC = 0.05, eRC = 1.47, r = 1.0, αRC = 0.25
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(c) hRC = 3.7, hC = 0.05, eRC = 1.3, r = 1.0, αRC = 0.25

Figure 3.2: Case (1)(b), where the resource nullcline’s vertical asymptote is less than the
resource nullcline’s R-intercept R = − 1

hRC
, and the resource nullcline’s C-intercept is less

than the consumer nullcline’s C-intercept
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Figure 3.3: Case (2)(a), where the resource nullcline’s vertical asymptote is greater than
the resource nullcline’s R-intercept R = − 1

hRC
but less than 0, and the resource nullcline’s

C-intercept is greater than the consumer nullcline’s C-intercept. Here the parameter values
are hRC = 1.25, hC = 0.75, eRC = 1.0, r = 0.01, αRC = 0.25

Note that in this case, the condition becomes

hC < eRC < min

(
hC +

hC

hRC

, hC + 1

)
(3.25)

Another way of saying this is

hC < eRC < hC +
hC

hRC

if hC < hRC (3.26)

hC < eRC < hC + 1 if hC > hRC (3.27)

This case gives us one interior equilibrium, as shown in figure 3.3.

(b) The resource nullcline’s C-intercept is less than the consumer nullcline’s

C-intercept. This gives us the condition that

eRC > hC + 1 (3.28)

Note that in this case, the condition becomes

hC + 1 < eRC < hC +
hC

hRC

(3.29)



33

0

0

Resource
C

on
su

m
er

s

Resource Isocline
Consumer Isocline

Figure 3.4: Case (2)(b), where the resource nullcline’s vertical asymptote is greater than
the resource nullcline’s R-intercept R = − 1

hRC
but less than 0, and the resource nullcline’s

C-intercept is less than the consumer nullcline’s C-intercept. Here the parameter values are
hRC = 0.25, hC = 0.75, eRC = 2.25, r = 0.01, αRC = 0.25
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Figure 3.5: Case (3), where the resource nullcline’s vertical asymptote is greater than 0.
Here the parameter values are hRC = 1.25, hC = 1.75, eRC = 1.0, r = 0.01, αRC = 0.25

which implies that hC > hRC . This case gives us no interior equilibria, as

shown in figure 3.4.

(3) The resource nullcline’s vertical asymptote is greater than 0. This gives us the

condition that eRC < hC . This gives us one interior equilibrium, as shown in

figure 3.5.

To get a better idea of when we might have interior equilibria and how many

we might have, we note that h(1) = αRC + eRC + rhRCe
2
RC + re2RC > 0 and h(0) =

reRC (eRC − 1− hC) < 0 if 1
eRC−hC

> 1 ⇔ eRC < hC + 1. In such a case, the
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Intermediate Value Theorem guarantees ∃ R
∗ ∈ (0, 1) such that h

(
R

∗)
= 0; i.e., if

eRC < hC +1 then there exists a solution to equation (3.12). Such is the case in cases

(1)(a) and (2)(a).

We can also use Descartes’ Rule of Signs, which tells us that in order to pos-

sibly be in the case where there are three interior equilibria, we must have three

sign changes between a3, a2, a1, and a0. This requires the sign of each coefficient

to change. Since a3 > 0 for all biologically relevant parameter choices (i.e., all pa-

rameters are ≥ 0), then we must have a3 > 0, a2 < 0, a1 > 0, and a0 < 0. But

a0 = reRC (eRC − 1− hC) < 0 ⇔ 1
eRC−hC

> 1 ⇔ eRC < hC + 1.

From equation (3.13), we can determine conditions when C
∗
will be positive.

It turns out that if 0 > − 1
hRC

> 1 − eRC

hC
, as we have in cases (1)(a) and (1)(b),

then C
∗
> 0 if − 1

hRC
< R

∗
< 1. As noted above, the Intermediate Value Theorem

guarantees that in case (1)(a) there exists an R
∗ ∈ (0, 1), so we know that in case

(1)(a) we have at least one interior equilibrium. If 0 > 1 − eRC

hC
> − 1

hRC
, as we have

in case (2)(a) and (2)(b), then C
∗
> 0 provided that 1 − eRC

hC
< R

∗
< 1. As noted

above, the Intermediate Value Theorem guarantees that in case (2)(a) there exists an

R
∗ ∈ (0, 1), so we know that in case (2)(a) we have at least one interior equilibrium.

If 1− eRC

hC
> 0 > − 1

hRC
, as we have in case (3), then C

∗
> 0 if 1− eRC

hC
< R

∗
< 1.

In case (1)(b), we can see that there will be no interior equilibria if the maximum

of the resource isocline is less than the consumer isocline’s C-intercept and there will

be two interior equilibria if the maximum of the resource isocline is greater than the

consumer isocline’s horizontal asymptote. If the resource isocline has a maximum, it

occurs at

R1 =
2hRC(eRC − hC)−

√
4h2

RC(eRC − hC)2 + 4hChRC(eRChRC − hChRC − eRC)

−2hChRC

.

So if f(R1) < 1 then there will be no interior equilibria in case (1)(b), and if

f(R1) > 1 + αRC

rhRC
then there will be two interior equilibria in case (1)(b).
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In case (1)(b), 2 interior equilibria coalesce into 1 then to 0, so there is a saddle-

node bifurcation for eRC .

3.3.2 Permanence

Theorem 3.7. System (3.11) is dissipative.

Proof. We have that dR
dt

≤ R(1 − R), so the resource equation is a lower solution to

the logistic equation. Thus, ∀ ε > 0 ∃ t1 = t1(R0) such that R < 1 + ε for t ≥ t1. In

particular, there must be a t1 such that R(t) < 2 ∀ t ≥ t1. For t ≥ t1, the consumer

equation is a lower solution to

dv

dt
= rv(1− v) +

2αRCv

1 + hCv
(3.30)

Equation (3.30) has two possible non-trivial equilibria:

v1 =
rhC − r +

√
r2h2

C + 2r2hC + r2 − 4αRChC

2rhC

(3.31)

v2 =
rhC − r −

√
r2h2

C + 2r2hC + r2 − 4αRChC

2rhC

(3.32)

This leads to three possibilities for the stability of the equilibria:

(i) If r ≤ 2αRC and hC ≤ 1 then v0 = 0 is stable.

(ii) If r > 2αRC , or if r = 2αRC and hC > 1 then v0 = 0 is unstable and v1 > 0 is

stable.

(iii) If r < 2αRC and hC > 1 then v0 = 0 and v2 > 0 are unstable while v1 > 0 is

stable.

For case (i), C → 0 as t → ∞, so ∀ ε > 0 there exists (∃) t2 = t2(C0) such that C < ε

for t ≥ t2. For cases (ii) and (iii), ∀ ε > 0 ∃ t3 = t3(C0) such that C < v1 + ε for

t ≥ t3.
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Thus, in either case, ∃ tC(C0) = max (t2, t3) such that C < v1 + ε for t ≥ tC . So,

there is a t∗ > 0 such that

R < 1 + ε

C < v1 + ε

for t ≥ t∗. Thus, the system (3.11) is dissipative.

Theorem 3.8. System (3.11) is permanent if

eRC < hC + 1. (3.33)

Proof. To establish permanence, all that remains is to check the invasibility condition

near each equilibrium. Linearizing the resource equation in system (3.11) about (0, 0)

gives

dR

dt
= R.

Since the intrinsic growth rate is 1 > 0, R can invade C when C = 0.

The linearization of the consumer equation in system (3.11) about (0, 0) gives

dC

dt
= rC.

Since the intrinsic growth rate is r > 0, C can invade R when R = 0.

The linearization of the consumer equation in (3.11) about (1, 0) gives

dC

dt
=

(
r +

αRC

1 + hRC

)
C.

Since the intrinsic growth rate is r + αRC

1+hRC
> 0, C can invade R when R is at its

carrying capacity of R = 1.
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Linearizing the resource equation in (3.11) about (0, 1) gives

dR

dt
=

(
1− eRC

1 + hC

)
C.

Because of inequality (3.33), the intrinsic growth rate is 1− eRC

1+hC
> 0. Thus, R can

invade C when C is at its carrying capacity of C = 1.

3.3.3 Local Stability

The local stability of the boundary equilibria is given by the following.

Theorem 3.9. With regards to local stability of the boundary equilibria, the following

hold.

(i) (0, 0) is an unstable node.

(ii) (1, 0) is a saddle.

(iii) (0, 1) is a saddle if (3.33) holds and a stable node if (3.33) is reversed.

Note that system (3.11) is permanent if (3.33) holds. But (3.33) is exactly the

condition required for (0, 1) to be a saddle, in which case an interior equilibrium will

exist. So the system is not permanent if (0, 1) is a stable node.

Proof. The Jacobian matrix J for system (3.11) is

J(R,C) =

⎛
⎜⎜⎜⎜⎝
1− 2R− hCeRCC2+eRCC

(1+hRCR+hCC)2
−hRCeRCR2+eRCR

(1+hRCR+hCC)2

hCαRCC2+αRCC
(1+hRCR+hCC)2

r − 2rC + αRChRCR2+αRCR
(1+hRCR+hCC)2

⎞
⎟⎟⎟⎟⎠ . (3.34)

(i) The Jacobian of the linearization of (3.11) about (0, 0) is

J(0, 0) =

⎛
⎜⎝1 0

0 r

⎞
⎟⎠ .
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The eigenvalues are then λ1 = 1 > 0 and λ2 = r > 0. Since this has two positive

eigenvalues, (0, 0) is an unstable node.

(ii) The Jacobian of the linearization of (3.11) about (1, 0) is

J(1, 0) =

⎛
⎜⎝−1 − eRC

1+hRC

0 r + αRC

1+hRC

⎞
⎟⎠ .

The eigenvalues are then λ1 = −1 < 0 and λ2 = r + αRC

1+hRC
> 0. Since there is

one positive eigenvalue and one negative eigenvalue, (1, 0) is a saddle.

(iii) The Jacobian of the linearization of (3.11) about (0, 1) is

J(0, 1) =

⎛
⎜⎝1− eRC

1+hC
0

αRC

1+hC
−r

⎞
⎟⎠ .

The eigenvalues are then λ1 = −r < 0 and λ2 = 1 − eRC

1+hC
. The sign on λ2

depends on the value of eRC relative to the value of hC + 1. If eRC < hC + 1;

i.e., if (3.33) holds, then λ2 > 0 and there is one positive eigenvalue and one

negative eigenvalue. In this case, (0, 1) is a saddle. If eRC > hC+1; i.e., if (3.33)

is reversed, then λ2 < 0 and there are two negative eigenvalues. In this case,

(0, 1) is a stable node.

Determining the local stability of an interior equilibrium E
∗
=
(
R

∗
, C

∗)
in the

conventional manner, as was done with the boundary equilibria, leads to prohibitively

messy calculations. Nevertheless, we can try to determine the stability properties by

first constructing a rectangular region Ω about E
∗
which is compact and studying

the direction of the flow of the system along ∂Ω. We will then show that Ω can be

made arbitrarily close to E
∗
, which will eliminate the possibility of having limit cycles



39

Figure 3.6: The rectangular region Ω in case (1)(a) when there is one interior equilibrium.

within Ω.

Before defining Ω, we note that the resource isocline divides R2
≥0 into two regions:

one region, ΓRB, which is bounded by the R-axis, the C-axis, and the resource isocline,

and its complement, ΓRU , which contains values of R which are unbounded. Similarly,

the consumer isocline divides R2
≥0 into two regions: one region, ΓCB, which is bounded

by theR-axis, C-axis, and the consumer isocline (though it contains unbounded values

of R), and its complement, ΓCU , which contains unbounded values of C.

We define Ω by Ω = {(R,C) : (R,C) ∈ [RL, RR]× [CB, CT ]} for some values

RL, RR, CB, CT . We will require that the left side of Ω, L = {RL} × [CB, CT ] and

the right side of Ω, R = {RR} × [CB, CT ], be entirely contained (except possibly

at their endpoints which we allow to be on the isoclines) on opposite sides of the

resource isocline; i.e., either L ⊂ ΓRB while R ⊂ ΓRU or L ⊂ ΓRU while R ⊂ ΓRB.

Similarly, we will require the top of Ω, T = [RL, RR] × {CT} and the bottom of Ω,

B = [RL, RR] × {CB} to be entirely contained (except possibly at their endpoints

which we allow to be on the isoclines) on opposite sides of the consumer isocline; i.e.,

T ⊂ ΓCB while B ⊂ ΓCU . We show a typical Ω in Figure (3.6) for case (1)(a) when

there is one interior equilibrium.
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To determine the direction of the flow along L and R, we need to determine the

sign of dR
dt

= R
[
1−R− eRCC

1+hRCR+hCC

]
. Since we must have R ≥ 0, this amounts to

determining the sign of 1− R − eRCC
1+hRCR+hCC

. To determine the direction of the flow

along T and B, we need to determine the sign of dC
dt

= C
[
r(1− C) + αRCR

1+hRCR+hCC

]
.

Since we must have C ≥ 0, this amounts to determining the sign of r(1 − C) +

αRCR
1+hRCR+hCC

.

Lemma 3.10. Along T ⊂ ΓCU ,
dC
dt

< 0.

Proof. First let us consider the case where T lies entirely above the consumer isocline’s

horizontal asymptote; i.e., CT > 1 + αRC

rhRC
. Then we have that C > 1 + αRC

rhRC
which

implies that −rC < −r − αRC

hRC
. So,

r − rC +
αRCR

1 + hRCR + hCC
< r − r − αRC

hRC

+
αRCR

1 + hRCR + hCC

= −αRC

hRC

+
αRCR

1 + hRCR + hCC

< −αRC

hRC

+
αRCR

1 + hRCR

=
−αRC (1 + hRCR) + hRCαRCR

hRC (1 + hRCR)

= − αRC

hRC (1 + hRCR)

< 0

So, along T , dC
dt

< 0 when T lies entirely above the consumer isocline’s horizontal

asymptote.

But by the definition of isocline, we must also have that dC
dt

< 0 along T , even

when T is not above the consumer isocline’s horizontal asymptote. So, as long as

T ⊂ ΓCU , then
dC
dt

< 0.

Lemma 3.11. Along B ⊂ ΓCB,
dC
dt

> 0.

Proof. Let us first consider the case where CB < 1. We have that r(1 − C) +
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αRCR
1+hRCR+hCC

> r(1 − C). If CB < 1 then r(1 − C) > 0. Thus, along B, we have

that dC
dt

> 0 provided that CB < 1.

But as before, the definition of isocline implies that we must have dC
dt

> 0 along

B, even when CB > 1. So, as long as B ⊂ ΓCB, then
dC
dt

> 0.

Lemma 3.12. Along the side contained in ΓRU ,
dR
dt

< 0.

Proof. First note that 1 − R − eRCC
1+hRCR+hCC

< 1 − R. We know that R
∗
< 1. In the

case where RR > 1, we have that 1−R < 0 so that dR
dt

< 0 along the side within ΓCU .

But again, the definition of isocline ensure that dR
dt

< 0, even when RR is not

greater than 1. So, along the side within ΓRU ,
dR
dt

< 0.

Lemma 3.13. Along the side within ΓRB,
dR
dt

> 0.

Proof. Note that lim
R,C→0

(
1−R− eRCC

1 + hRCR + hCC

)
= 1. Therefore, ∃ εR, εC > 0

such that R < εR and C < εC ⇒ 1−R− eRCC
1+hRCR+hCC

> 0; i.e., such that dR
dt

> 0.

Once more, the definition of isocline tells us that dR
dt

> 0, even when C > εC and

dR
dt

> 0 along the side within ΓCB, even when R > εR. So, along the side within ΓRB,

dR
dt

> 0.

So far we have shown that any Ω we can construct with T ⊂ ΓCU ,B ⊂ ΓCB,L ⊂

ΓRB,R ⊂ ΓRU , or T ⊂ ΓCU ,B ⊂ ΓCB,L ⊂ ΓRU ,R ⊂ ΓRB, will be such that dC
dt

< 0

along T , dC
dt

> 0 along B, dR
dt

< 0 along the side within ΓRU , and
dR
dt

> 0 along the

side within ΓRB. Next we need to show that we can construct Ω with sides arbitrarily

close to a given E
∗
. To this end, we have the following lemma.

Lemma 3.14. Let εT > 0, εL > 0, εB > 0, and εR > 0 be given. Then we can

construct a rectangular region Ω with the properties described prior to Lemma 3.10

such that d
(
T , C

∗) ≤ εT , d
(
L, R∗) ≤ εL, d

(
B, C∗) ≤ εB, and d

(
R, R

∗) ≤ εR.

Proof. We start with Case 1, where the resource nullcline’s vertical asymptote is

less than the resource nullcline’s R-intercept. Assume that E
∗
is to the right of the

R-value where the resource isocline attains its maximum value.
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Note that in this case, ∂f
∂R

< 0 so f will cross into Ω either through T to the left

of E
∗
or through L above E

∗
, and will cross out of Ω either through B to the right of

E
∗
or through R below E

∗
. In order for Ω to have the properties described prior to

Lemma 3.10, namely that L andR remain entirely on one side of the resource isocline,

we cannot have f cross into Ω through L above E
∗
or out of Ω through R below E

∗
.

In order to ensure that f will cross into Ω through T to the left of E
∗
, we will need to

make sure that the maximum value of RL is the location where the resource isocline

intersects the line C = CT or the maximum value of CT is the location where the

resource isocline intersects the line R = RL. Since we will want to be able to make

the sides of Ω arbitrarily close to E
∗
, we will make sure the maximum value of CT the

location where the resource isocline intersects the line R = RL. Likewise, in order for

f to cross out of Ω through B to the right of E
∗
, we must have that the minimum

value of RR is the location where the resource isocline intersects the line C = CB or

the maximum value of CB is the location where the resource isocline intersects the

line RR. In order for the sides of Ω to be made arbitrarily close to E
∗
, we will make

sure the minimum value of CB is the location where the resource isocline intersects

the line RR.

Similarly, ∂g
∂R

> 0 in this case, so g will cross into Ω either through B to the left

of E
∗
or through L below E

∗
, and will cross out of Ω either through T to the right

of E
∗
or through R above E

∗
. In order for T and B to remain entirely on one side

of the consumer isocline, both requirements for Ω, g cannot cross into Ω through B

to the left of E
∗
or out of Ω through T to the right of E

∗
. In order to ensure that g

will cross into Ω through L below E
∗
, we will need to make sure that the minimum

value of RL is the location where the consumer isocline intersects the line C = CB or

the maximum value of CB is the location where the consumer isocline intersects the

line R = RL. In order to be able to make the sides of Ω as close to E
∗
as we would

like, we will need the minimum value of RL to be the location where the consumer
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isocline intersects the line C = CB. Likewise, in order for g to cross out of Ω through

R above E
∗
, we must have that the maximum value of RR is the location where

the consumer isocline intersects the line C = CT or the minimum value of CT is the

location where the resource isocline intersects the line R = RR. In order to have the

sides of Ω arbitrarily close to E
∗
, we need to make sure the maximum value of RR is

the location where the consumer intersects the line C = CT .

Now, we make the following notational definitions:

PR =
{
(R,C) : R = R

∗
+ εR

}
∩ {(R,C) : C = f(R)}

PB =
{
(R,C) : C = C

∗ − εB
}
∩ {(R,C) : C = g(R)}

PL =
{
(R,C) : R = R

∗ − εL
}
∩ {(R,C) : C = f(R)}

PT =
{
(R,C) : C = C

∗
+ εT

}
∩ {(R,C) : C = g(R)}

Let d = min {dR, dB, dL, dT}, where

dR = d
(
PR,

{
(R,C) : C = C

∗})
dB = d

(
PB,

{
(R,C) : R = R

∗})
dL = d

(
PL,

{
(R,C) : C = C

∗})
dT = d

(
PT ,

{
(R,C) : R = R

∗})

Suppose that d is realized at the point Pi =
(
R̃i, C̃i

)
(i = R,B, L, or T ). If i = T

(or B) then we begin by constructing Ω by letting RR = min
{
R̃T , R

∗
+ εR

}
(or

RL = max
{
R̃B, R

∗ − εL

}
, respectively). If i = R (or L) then we begin constructing

Ω by letting CB = max
{
C̃R, C

∗ − εB

}
(or CT = min

{
C̃T , C

∗
+ εT

}
, respectively).

We then proceed to construct the remaining sides of Ω in clockwise order by letting
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the next two sides be determined as follows:

RL = max
{
R

∗ − εL, {(R,C) : C = f(R)} ∩ {(R,C) : C = CB}
}

CT = min
{
C

∗
+ εT , {(R,C) : C = g(R)} ∩ {(R,C) : R = RL}

}
RR = min

{
R

∗
+ εR, {(R,C) : C = f(R)} ∩ {(R,C) : C = CT}

}
CB = max

{
C

∗ − εB, {(R,C) : C = g(R)} ∩ {(R,C) : R = RR}
}

If the last side of Ω is R, we let RR = min
{
R

∗
+ εR, R̃T

}
. If the last side of

Ω is B, we let CB = max
{
C

∗ − εB, C̃R

}
. If the last side of Ω is L, we let RL =

max
{
R

∗ − εL, R̃B

}
. And if the last side of Ω is T , we let RT = min

{
R

∗
= εT , R̃L

}
.

This will give us Ω with the desired properties.

Now we assume that E
∗
is to the left of the R-value where the resource isocline

attains its maximum value.

Note that in this case, ∂f
∂R

> 0 so f will cross into Ω either through B to the left

of E
∗
or through L below E

∗
, and will cross out of Ω either through T to the right

of E
∗
or through R above E

∗
. In order for Ω to have the properties described prior

to Lemma 3.10, namely that L and R remain entirely on one side of the resource

isocline, we cannot have f cross into Ω through L below E
∗
or out of Ω through R

above E
∗
. In order to ensure that f will cross into Ω through B to the left of E

∗
, we

will need to make sure the maximum value of RL is the location where the resource

isocline intersects the line C = CB or the minimum value of CB is the location where

the resource isocline intersects the line R = RL. Since we will want to be able to

make the sides of Ω arbitrarily close to E
∗
, we will make sure the minimum value of

CB is the location where the resource isocline intersects the line R = RL. Likewise,

in order for f to cross out of Ω through T to the right of E
∗
, we must have that
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the minimum value of RR is the location where the resource isocline intersects the

line C = CT or the maximum value of CT is the location where the resource isocline

intersects the line R = RR. In order to be able to make the sides of Ω as close to E
∗

as we want, we will make sure the maximum value of CT is the location where the

resource isocline intersects the line R = RR.

Similarly, ∂g
∂R

> 0 in this case, so g will cross into Ω either through L below E
∗

or through B to the left of E
∗
, and will cross out of Ω either through R above E

∗
or

through T to the right of E
∗
. In order for T and B to remain entirely on one side

of the consumer isocline, both requirements for Ω, g cannot cross into Ω through B

to the left of E
∗
or out of Ω through T to the right of E

∗
. In order to ensure that g

will cross into Ω through L below E
∗
, we will need to make sure that the minimum

value of RL is the location where the consumer isocline intersect the line C = CB or

the maximum value of CB is the location where the consumer isocline intersects the

line R = RL. Since we will want to make the sides of Ω arbitrarily close to E
∗
, we

will make sure the minimum value of RL is the location where the consumer isocline

intersects the line C = CB. Likewise, in order for g to cross out of Ω through R above

E
∗
, we must have that the maximum value of RR is the location where the consumer

isocline intersects the line C = CT or the minimum value of CT is the location where

the consumer isocline intersects the line R = RR. In order to be able to make the

sides of Ω as close to E
∗
as we want, we will need the maximum value of RR is the

location where the consumer isocline intersects the line C = CT .

Claim: If ∂f
∂R

< ∂g
∂R

, then one of the following must be true:

(a) f crosses through R above E
∗

(b) g crosses through T to the right of E
∗
.

Note that this will guarantee that Ω cannot be constructed as described prior to

Lemma 3.10 with sides arbitrarily close to E
∗
.
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Proof of claim: If the consumer isocline crosses out of Ω through T then we are

done. So suppose that the consumer isocline does not cross through T . Then the

maximum possible value of RR, RR,max, is the location where the consumer isocline

intersects the line C = CT . But since 0 < ∂f
∂R

< ∂g
∂R

, the R-value where the resource

isocline intersects the line C = CT would have to be greater than RR,max, so the

resource isocline does not cross out of Ω through T . Thus, the resource isocline

crosses out of Ω through R.

A similar proof shows that either the resource isocline crosses through L below

E
∗
or the consumer isocline crosses through B to the left of E

∗
. So in order to be

able to construct Ω as desired, we need ∂f
∂R

> ∂g
∂R

, which we assume to be the case in

what follows.

Let Pi (i = R,B, L, or T ) be defined as earlier in this proof. Then we construct

Ω by first letting RR = min
{
PT , R

∗
+ εR

}
. Next we let CT =

min
{
C

∗
+ εT , {(R,C) : R = RR} ∩ {(R,C) : g(R) = 0}

}
. We then let RL =

max
{
R

∗ − εL,
{
(R,C) : C = C

∗ − εB
}
∩ {(R,C) : g(R) = 0}

}
. Finally we let CB =

max {C∗ − εB, {(R,C) : R = RL} ∩ {(R,C) : f(R) = 0}}. This will give us Ω with

the desired properties.

If we are is Cases 2 or 3, ∂f
∂R

< 0 and ∂g
∂R

> 0, so the proof proceeds the same as

in Case 1 with E
∗
to the right of the R-value where the resource isocline attains its

maximum value.

Thus, we have proved the following theorem.

Theorem 3.15. If

1. ∂f
∂R

< 0 and ∂g
∂R

> 0 then E
∗
is locally stable node.

2. ∂f
∂R

> 0, ∂g
∂R

> 0, and ∂f
∂R

> ∂g
∂R

then E
∗
is a saddle.

3. ∂f
∂R

> 0, ∂g
∂R

> 0, and ∂g
∂R

> ∂f
∂R

then we cannot construct Ω around E
∗
.



47

Before we state the local stability of each interior equilibrium point, let us intro-

duce the following notation.

1. In case (1)(a), when there are three interior equilibria, we will denote the interior

equilibria by Ei, where i = 1, 2, 3 and where the R-value of E1 is less than the

R-value of E2, which is less than the R-value of E3. In case (1)(b), when there

are two interior equilibria, we will denote the interior equilibria in a similar

fashion.

2. The R-value where the resource isocline attains its maximum value will be

denoted by Rmax.

3. The right hand side of the resource equation in system (3.11) will be represented

by F (R,C) and the right hand side of the consumer equation in system (3.11)

will be represented by G(R,C).

4. We will let δ = ∂F
∂C

∂G
∂R

(
f ′(R)
g′(R)

− 1
)
and τ = −

[
∂F
∂C

f ′(R) +
∂G
∂R

g′(R)

]
.

Theorem 3.16. 1. In case (1)(a), when there is one interior equilibrium which is

to the right of Rmax, E
∗
is a stable node.

2. In case (1)(a), when there is one interior equilibrium which is to the left of

Rmax, E
∗
could be a node, focus, or center. In case (1)(a), when there are three

interior equilibria, E
∗
1 could be a node, focus, or center, E2 is a saddle, and E3

is a stable node. E
∗
or E1 will be a node if τ 2 − 4δ ≥ 0, a focus if τ 2 − 4δ < 0

and τ �= 0, and will need further investigation if τ = 0. E
∗
or E1 will be stable

if τ < 0 and unstable if τ > 0.

3. In case (1)(b), when there are two interior equilibria, E1 is a saddle and E2 is

a stable node.

4. In case (2)(a), when there is one interior equilibrium, and in case (3), the

interior equilibrium E
∗
is a stable node.
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Proof. 1. In case (1)(a), when there is one interior equilibrium which is to the right

of Rmax, we have
∂f
∂R

< 0 and ∂g
∂R

> 0. So by part (i) of theorem (3.15), we have

that E
∗
is a stable node.

2. In case (1)(a), when there are three interior equilibria, we have that ∂f
∂R

> 0,

∂g
∂R

> 0, and ∂f
∂R

> ∂g
∂R

at E2, and
∂f
∂R

< 0 and ∂g
∂R

> 0 at E3. So by parts (ii)

and (i), respectively, of theorem (3.15), E2 is a saddle and E3 is a stable node.

At E
∗
, in the case where there is one interior equilibrium which is to the left

of Rmax, or at E1, in the case where there are three interior equilibria, we have

∂f
∂R

> 0, ∂g
∂R

> 0, and ∂g
∂R

> ∂f
∂R

. So by part (iii) of theorem (3.15), we cannot

construct Ω around E
∗
or E

∗
1 to determine local stability.

But, the resource isocline is given by F (R,C) = 0 ⇔ C = f(R). Similarly, the

consumer isocline is given by G(R,C) = 0 ⇔ C = g(R). So differentiating both

equations with respect to R gives us ∂F
∂R

+ ∂F
∂C

f ′(R) = 0 and ∂G
∂R

+ ∂G
∂C

g′(R) = 0.

Using these in the Jacobian gives us

J =

⎛
⎜⎝∂F

∂R
∂F
∂C

∂G
∂R

∂G
∂C

⎞
⎟⎠ =

⎛
⎜⎝−∂F

∂C
f ′(R) ∂F

∂C

∂G
∂R

−
∂G
∂R

g′(R)

⎞
⎟⎠ .

It is easy to see that δ = det (J) and τ = tr(J). To determine the sign of δ,

we first note that ∂F
∂C

< 0 and ∂G
∂R

> 0. Since we are in the case where ∂f
∂R

> 0,

∂g
∂R

> 0, and ∂g
∂R

> ∂f
∂R

, then we have that δ > 0. Therefore, we have that E
∗
or

E1 will be a node if τ 2 − 4δ ≥ 0 and a focus if τ 2 − 4δ < 0 and τ �= 0. If τ = 0

then linearly we have a center, but in the nonlinear case, we need to investigate

further by looking at higher order terms. E
∗
or E1 will be stable if τ < 0 and

unstable if τ > 0.

3. In case (1)(b), when there are two interior equilibria, we have ∂f
∂R

> 0, ∂g
∂R

> 0,

and ∂f
∂R

> ∂g
∂R

at E1, and
∂f
∂R

< 0 and ∂g
∂R

> 0 at E2. So by parts (ii) and (i),
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respectively, of theorem (3.15), E1 is a saddle and E2 is a stable node.

4. In case (2)(a), when there is one interior equilibrium, and in case (3), we have

∂f
∂R

< 0 and ∂g
∂R

> 0. So by part (i) of theorem (3.15), E
∗
is a stable node.

Remark: The conclusions of theorem (3.15) are consistent with the analysis of E1

is part (ii) of theorem (3.16). To see this, note that if ∂f
∂R

< 0 and ∂g
∂R

> 0 then δ > 0.

Also in this case, τ < 0. So ∂f
∂R

< 0 and ∂g
∂R

> 0 implies than E
∗
is a stable node

provided τ 2 − 4δ ≥ 0. Similarly, if ∂f
∂R

> 0, ∂g
∂R

> 0, and ∂f
∂R

> ∂g
∂R

then δ < 0 so E
∗
is

a saddle.

3.3.4 Global Stability

Theorem 3.17. The non-trivial equilibrium
(
R

∗
, C

∗)
is globally asymptotically stable

whenever it exists, provided hRC < 1
1−R∗

(
or equivalently R

∗
> 1− 1

hRC

)
.

Proof. Let V1(R) = R − R
∗ − R

∗
ln
(

R
R

∗
)
and V2(C) = C − C

∗ − C
∗
ln
(

C
C

∗
)
. Then

V (R,C) = V1(R) + βV2(C) is a Lyapunov function. To compute ∂V
∂t
, we first need

dV1(R)
dt

and dV2(C)
dt

. To this end, we have

dV1(R)

dt
=

dV1

dR

dR

dt

=

[
1−R

∗
(
R

∗

R

)
1

R∗

] [
R(1−R)− eRCCR

1 + hRCR + hCC

]

=
(
R−R

∗) [
1−R− eRCC

1 + hRCR + hCC

]

If
(
R

∗
, C

∗)
exists then R

∗
and C

∗
must satisfy

0 = R
∗ (

1−R
∗)− eRCC

∗
R

∗

1 + hRCR
∗ + hCC

∗

⇒0 = 1−R
∗ − eRCC

∗

1 + hRCR
∗ + hCC

∗

⇔1 = R
∗
+

eRCC
∗

1 + hRCR
∗ + hCC

∗
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Thus,

dV1(R)

dt
=
(
R−R

∗)[
R

∗ −R+
eRCC

∗

1 + hRCR
∗ + hCC

∗ − eRCC

1 + hRCR+ hCC

]

=−
(
R−R

∗)2
+
(
R−R

∗)
[
eRCC

∗
(1 + hRCR+ hCC)− eRCC

(
1 + hRCR

∗
+ hCC

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

=−
(
R−R

∗)2
+
(
R−R

∗)[eRCC
∗
+ eRChRCC

∗
R− eRCC − eRChRCCR

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=−
(
R−R

∗)2
+
(
R−R

∗)
[
eRCC

∗
+ eRChRCC

∗
R− eRCC − eRChRCCR

∗
+ eRChRCC

∗
R

∗ − eRChRCC
∗
R

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=−
(
R−R

∗)2
+
(
R−R

∗)
[(

eRChRCC
∗
R− eRChRCC

∗
R

∗)
+
(
eRCC

∗ − eRCC − eRChRCCR
∗
+ eRChRCC

∗
R

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

=−
(
R−R

∗)2
+
(
R−R

∗)
[
eChRCC

∗ (
R−R

∗)
+ eRC

[(
C

∗ − C
)
+ hRCR

∗ (
C

∗ − C
)]

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=−
(
R−R

∗)2
+
(
R−R

∗)[eRChRCC
∗ (

R−R
∗)− eRC

(
1 + hRCR

∗) (
C − C

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

Likewise we have

dV2(C)

dt
=
dV2

dC

dC

dt

=

[
1− C

∗
(
C

∗

C

)
1

C∗

] [
rC(1− C) +

αRCRC

1 + hRCR + hCC

]

=
(
C − C

∗) [
r − rC +

αRCR

1 + hRCR + hCC

]

If
(
R

∗
, C

∗)
exists, then R

∗
and C

∗
must satisfy

0 = rC
∗ (

1− C
∗)

+
αRCR

∗
C

∗

1 + hRCR
∗ + hCC

∗

⇒0 = r
(
1− C

∗)
+

αRCR
∗

1 + hRCR
∗ + hCC

∗

⇔r = rC
∗ − αRCR

∗

1 + hRCR
∗ + hCC

∗



51

dV2(C)

dt
=
(
C − C

∗)[
rC

∗ − rC +
αRCR

1 + hRCR+ hCC
− αRCR

∗

1 + hRCR
∗ + hCC

∗

]

=− r
(
C − C

∗)2
+
(
C − C

∗)
[
αRCR

(
1 + hRCR

∗
+ hCC

∗)− αRCR
∗
(1 + hRCR+ hCC)

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=− r
(
C − C

∗)2
+
(
C − C

∗)[αRCR− αRCR
∗
+ αRChCRC

∗ − αRChCCR
∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=− r
(
C − C

∗)2
+
(
C − C

∗)
[
αRCR− αRCR

∗
+ αRChCRC

∗ − αRChCCR
∗
+ αRChCC

∗
R

∗ − αRChCC
∗
R

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

=− r
(
C − C

∗)2
+
(
C − C

∗)
[(

αRChCRC
∗ − αRChCC

∗
R

∗
+ αRCR− αRCR

∗)
+
(
−αRChCCR

∗
+ αRChCC

∗
R

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

=− r
(
C − C

∗)2
+
(
C − C

∗)[−αRChCR
∗ (

C − C
∗)

+ αRC

(
hCC

∗
+ 1

) (
R−R

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

=− r
(
C − C

∗)2
+
(
C − C

∗)[−αRChCR
∗ (

C − C
∗)

+ αRC

(
hCC

∗
+ 1

) (
R−R

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

Thus,

∂V

∂t
=−

(
R−R

∗)2
+
(
R−R

∗)[eRChRCC
∗ (

R−R
∗)− eRC

(
1 + hRCR

∗) (
C − C

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

− βr
(
C − C

∗)2
+ β

(
C − C

∗)[−αRChCR
∗ (

C − C
∗)

+ αRC

(
hCC

∗
+ 1

) (
R−R

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

]

=
(
R−R

∗)2 [−1 +
eRChRCC

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

+ β
(
C − C

∗)2 [−r − αRChCR
∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR+ hCC)

]

+
βαRC

(
hCC

∗
+ 1

)
− eRC

(
1 + hRCC

∗)
(1 + hRCR

∗ + hCC
∗) (1 + hRCR+ hCC)

(
R−R

∗)(
C − C

∗)

To get the coefficient of the
(
R−R

∗) (
C − C

∗)
term to equal zero, we must have

0 = βαRC

(
hCC

∗
+ 1

)
− eRC

(
1 + hRCR

∗)
⇒ β =

eRC

(
1 + hRCR

∗)
αRC (1 + hCC

∗)
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This gives

∂V

∂t
=

[
−1 +

eRChRCC
∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR + hCC)

] (
R−R

∗)2
− eRC (1 + hRC)

αRC (1 + hCC
∗)

[
r +

αRChCR
∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR + hCC)

] (
C − C

∗)2

The coefficient of the
(
C − C

∗)2
term is always negative. So if the coefficient of

the
(
R−R

∗)2
term is also negative, then we will have ∂V

∂t
< 0. Thus, we want

− 1 +
eRChRCC

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR + hCC)

=− 1 + hRC
eRCC

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR + hCC)
< 0

But R
∗
and C

∗
satisfy

1−R
∗ − eRCC

∗

1 + hRCR
∗ + hCC

∗ = 0

⇒ 1−R
∗
=

eRCC
∗

1 + hRCR
∗ + hCC

∗

But,

−1 +
eRChRCC

∗

(1 + hRCR
∗ + hCC

∗) (1 + hRCR + hCC)
< −1 + hRC

eRCC
∗

(1 + hRCR
∗ + hCC

∗)

= −1 + hRC

(
1−R

∗)

Thus, if

hRC

(
1−R

∗)
< 1 ⇔ hRC <

1

1−R∗ ⇔ R
∗
> 1− 1

hRC

(3.35)

then
(
R

∗
, C

∗)
will be globally asymptotically stable when it exists.
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3.3.5 Simulations

In case (1)(a) when there are three interior equilibria, our system undergoes a sub-

critial Hopf bifurcation near the equilibrium with minimal R
∗
, as seen in figure 3.7.
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(a) hRC = 1001, hC = 0.01, eRC = 0.1935266666, r = 0.033333, αRC = 852.685166666, initial
conditions: (0.0012, 12.5), forward time

(b) hRC = 1001, hC = 0.0001, eRC = 0.1935266666, r = 0.033333, αRC = 852.685166666, initial
conditions: (0.00025, 6.7) and (0.0012, 12.5), backward time

(c) hRC = 1001, hC = −0.01, eRC = 0.1935266666, r = 0.033333, αRC = 852.685166666, initial
conditions: (0.00025, 6.7), forward time

Figure 3.7: Subcritical Hopf bifurcation as hC changes.



Chapter 4

Analysis of the Full Model without
Harvesting

4.1 Dissipativity

We now consider the full non-dimensionalized system:

dR

dt
= R (1−R)− eRCCR

1 + hRCR + hPCPP + hCC
− eRPPR

1 + hRPR + hCPC + P
dC

dt
= rC (1− C) +

αRCRC

1 + hRCR + hCPPP + hCC
− eCPPC

1 + hRPR + hCPC + P
(4.1)

dP

dt
=

αRPRP

1 + hRPR + hPCC + P
+

αCPCP

1 + hRPR + hCPC + P
−mPP

In order to establish dissipativity of the full system, we need the following lemma.

Lemma 4.1. Consider the equation

dx

dt
=

ax

1 + bx
− cx. (4.2)

(i) If a < c then x0 = 0 is the unique non-negative equilibrium point and it is stable.

(ii) If a > c then x0 = 0 is an unstable equilibrium and x1 =
a−c
bc

is stable.
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Proof. We first determine the equilibria of this equation.

ax

1 + bx
− cx = 0

x

(
a

1 + bx
− c

)
= 0

So,

x = 0 or
a

1 + bx
− c = 0

a

1 + bx
= c

1 + bx =
a

c

x =
a− c

bc

So the equilibria are x0 = 0 and x1 =
a−c
bc

and if a < c then x1 is negative so that x0

is the only non-negative equilibrium.

We next determine the stability of each of the equilibria by linearizing about the

equilibria. To this end, we have

f ′(x) =
(1 + bx)(a)− ax(b)

(1 + bx)2
− c

=
a

(1 + bx)2
− c

At x = x0 we get

f ′(0) = a− c
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If a < c then f ′(0) < 0 so that x0 = 0 is stable. At x = x1 we get

f ′
(
a− c

bc

)
=

a[
1 + b

(
a−c
bc

)]2 − c

=
a(

1 + a−c
c

)2 − c

=
a
a2

c2

− c

=
c2

a
− c

= c
( c
a
− 1

)

If a > c, which is the case when x1 > 0, then f ′(x1) < 0 and f ′(x0) > 0 so that

x1 =
a−c
bc

is stable and x0 = 0 is unstable.

Theorem 4.2. The system (4.1) is dissipative.

Proof. From the first equation in the system we have

dR

dt
≤ R(1−R)

so the resource equation is a lower solution to the logistic equation. Thus, ∀ ε >

0 ∃ t1 = t1(R0) such that R < 1 + ε for t ≥ t1. In particular, there must be a t1 such

that R(t) < 2 ∀ t ≥ t1.

From the second equation in the system we have

dC

dt
≤ rC(1− C) +

αRCRC

1 + hRCR + hCPPP + hCC

≤ rC(1− C) +
αRCRC

1 + hCC

Thus, for t ≥ t1, the consumer equation is a lower solution to equation (3.30). We

have already established that ∃ tC = tC(C0) such that C < v1 + ε for t ≥ tC . In

particular, there must be a tC such that C(t) < 2v1 ∀ t ≥ tC .
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From the third equation in the system we have

dP

dt
≤ αRPRP

1 + P
+

αCPCP

1 + P
−mpP

If t ≥ tC then the predator equation is a lower solution to the equation

dy

dt
=

2αRPy

1 + y
+

2αCPv1y

1 + y
−mPy

=
2 (αRP + αcpv1) y

1 + y
−mPy

which is equation (4.2) with a = 2 (αRP + αcpv1) , b = 1, c = mP .

Lemma (4.1) tells us that if 2(αRP + αCPv1) < mP then x0 = 0 is stable. So

∀ ε > 0 ∃ t4 = t4(P0) such that P < ε for t ≥ t4. And if 2(αRP + αCPv1) > mP

then x0 = 0 is unstable, but x1 =
2(αRP+αCP v1)−mP

mP
is stable, so ∀ ε > 0 ∃ t5 = t5(P0)

such that P < x1 + ε for t ≥ t5. In either case, ∃ tP (P0) = max (t4, t5) such that

P (t) < x1 + ε for t ≥ tP .

Thus, ∃ t∗ > 0 such that

R(t) < 1 + ε

C(t) < v1 + ε

P (t) < x1 + ε

for t ≥ t∗. Thus, system (4.1) is dissipative.
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4.2 Bounds on Boundary Equilibria

4.2.1 Bounds in the (R,P )-Plane and (C, P )-Plane

In theR−P subsystem (3.6), the logistic equation is a supersolution to theR equation.

So, we have that

R
∗ ≤ KR. (4.3)

In the C − P subsystem (3.1), the logistic equation is a supersolution to the C

equation. So, we have that

C
∗ ≤ KC . (4.4)

In order to get the upper bound on P
∗
in the (R,P )-plane, we first note that from

Cantrell and Cosner [14], we have

P
∗
=

αRP eRPR
∗ −mP

(
1 + eRPhRPR

∗)
mP ePhP

=
R

∗
eRP (αRP −mPhRP )−mP

mP ePhP

and in the (C, P )-plane, we have

P
∗
=

αCP eCPC
∗ −mP

(
1 + eCPhCPR

∗)
mP ePhP

=
C

∗
eCP (αCP −mPhCP )−mP

mP ePhP

.

In the (R,P )-plane, this gives us

P
∗
=

R
∗
(αRP eRPKR − eRPhRPKRmP )−mP

ePhPmP

.
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In dimensionalized terms this becomes

P
∗
=

1
KR

R
∗
(αRP eRPKR − eRPhRPKRmP )−mP

ePhPmP

=
R

∗
(αRP eRP − eRPhRPmP )−mP

ePhPmP

Thus, using inequality (4.3), we have that

P
∗
<

αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

(4.5)

which implies

P
∗
<

KRαRP eRP

ePhPmP

. (4.6)

Similarly, in the (C, P )-plane, we get

P
∗
<

αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

(4.7)

which implies

P
∗
<

KCαCP eCP

ePhPmP

. (4.8)

The qualitative behavior of inequalities (4.5) and (4.6) is the same if

mP <
αRP

hRP

. (4.9)

Likewise, the qualitative behavior of inequalities (4.7) and (4.8) is the same if

mP <
αCP

hCP

. (4.10)

Thus, anytime we use the upper bound on P
∗
in the (R,P )-plane or (C, P )-plane, we

will assume inequalities (4.9) or (4.10) hold.

Biological Remark: The assumption that inequalities (4.9) and (4.10) hold is not
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unreasonable to assume biologically. Inequality (4.9) says that the efficiency with

which the predators gain from consuming the resource compared to the time they

spend handling encountered resource is greater than the predators’ natural mortality

rate. In fact, this is a necessary condition for the predators’ growth rate to be positive.

To see this, note that

0 ≤ dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP

=
αRP

hRP

P

(
eRPR

eRPR + 1
hRP

(1 + ePhPP )

)
−mPP

≤ αRP

hRP

P −mPP

=

(
αRP

hRP

−mP

)
P

Furthermore, the interior equilibrium
(
R

∗
, P

∗)
exists in the (R,P )-plane if and only

if inequality (3.7) is satisfied. But inequality (3.7) implies inequality (4.9). So having

the interior equilibrium
(
R

∗
, P

∗)
in the (R,P )-plane is sufficient for having inequality

(4.9) hold. Similarly, having inequality (3.3) is sufficient for having inequality (4.10)

hold.

To get lower bounds on R
∗
and C

∗
we first note that in the (R,P )-plane, at

equilibrium, we have

rR

(
1− R

∗

KR

)
=

eRPP
∗

1 + eRPhRPR
∗ + ePhPP

∗

≤ eRPP
∗

1 + ePhPP
∗

If we solve for R
∗
, we get

R
∗ ≥ KR

(
1− eRPP

∗

rR (1 + ePhPP
∗)

)
(4.11)
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If we use inequality (4.6) in inequality (4.11) then we get

R
∗ ≥ KR

⎛
⎝1−

αRP e2RPKR

eP hPmP

rR

(
1 + αRP eRPKR

mP

)
⎞
⎠ (4.12)

Now, we will assume 2eRP ≤ rRePhP . We will see what the reasons for this

assumption are momentarily. But first, let us note that

2eRP ≤ rRePhP ⇒ 2eRP (αRP eRPKR) < rRePhP (αRP eRPKR)

⇒ 2αRP e
2
RPKR ≤ rRePhPαRP eRPKR + rRePhPmP

⇒ αRP e
2
RPKR

rR(ePhPmP + ePhPαRP eRPKR)
≤ 1

2

⇔
αRP e2RPKR

eP hPmP

rR

(
1 + αRP eRPKR

mP

) ≤ 1

2

⇒ R
∗ ≥ KR

2

Remark: The above calculation shows that 2eRP < rRePhP is a sufficient condition

for having R
∗ ≥ KR

2
. One reason for making this assumption is that working with a

lower bound of KR

2
is more analytically tractable than working with

αRP e2RPKR
eP hPmP

rR

(
1+

αRP eRPKR
mP

) .

The other reason is bioeconomic in nature.

Biological Remarks:

1. In the case where we have a single species growing logistically subject to constant

effort harvesting, if the harvesters are harvesting with the optimal level of effort

to attain the maximum sustainable yield, the equilibrium population density is

K
2
. As noted in Clark 2005, any level of effort greater than the optimal level

will cause the stock resource to be driven asymptotically to extinction, which

produces no yield. Thus, it is reasonable to assume that any harvesters who

want to avoid resource extinction will harvest with an effort less than or equal

to the optimal effort, which means the resource population density will be at
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least K
2
.

2. The condition 2eRP ≤ rRePhP put a limit on the rate at which the predators

can attack the resource relative to the resource’s intrinsic growth rate and the

amount of intraspecific interference among the predators. The larger rR is or

the more intraspecific interference among the predators there is, the more the

predators can attack the resource. The idea of having a limit on the rate at

which the predators attack the resource is already present in this model. Note

that in the (R,P )-plane, if the resource population is going to grow, we must

have

0 ≤ dR

dt
= rRR

[
1− R

KR

− eRP

rRePhP

(
P

1
eP hP

+ eRP hRP

eP hP
R + P

)]

≤ rRR

(
1− eRP

rRePhP

)

So, it is necessary to have eRP < rRePhP if the resource population is to grow.

In other words, it is already a necessary condition to have a limit on the rate

at which the predators can attack the resource in this model.

So, in the (R,P )-plane, we have

R
∗ ≥ KR

2
. (4.13)

Similarly, if we require 2eCP ≤ rCePhP then in the (C, P )-plane, we have

C
∗ ≥ KC

2
. (4.14)

To get the lower bound on P in the (R,P )-plane, note that we have

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP.



64

By inequalities (4.13) and (4.3), we have KR

2
< R

∗
< KR. So, we have that

dP

dt
≥

1
2
αRP eRPKRP

1 + eRPhRPKR + ePhPP
−mPP.

Let P̃ be a solution to

dP̃

dt
≥

1
2
αRP eRPKRP̃

1 + eRPhRPKR + ePhP P̃
−mP P̃ .

Then P̃ is a subsolution to the predator equation and at equilibrium,

P̃ =
1
2
αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

.

Thus,

P
∗ ≥ max

{
0,

1
2
αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

}
. (4.15)

In the (C, P )-plane,

P
∗ ≥ max

{
0,

1
2
αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

}
. (4.16)

4.2.2 Bounds in the (R,C)-Plane

In the (R,C)-plane, the logistic equation is a supersolution to the resource equation

and a subsolution to the consumer equation. Thus we know that R
∗ ≤ KR and

C
∗ ≥ KC .

For R
∗
, we have three possibilities when eRC > rReChC and one possibility when

eRC < rReChC . When eRC > rReChC , we could have 0 ≤ R
∗ ≤ KR, 0 ≤ R

∗ ≤ 1
2
KR,

or 1
2
KR ≤ R

∗ ≤ KR. When eRC > rReChC , we have KR

(
1− eRC

rReChC

)
≤ R

∗ ≤ KR. In

case (1)(a) when there is one interior equilibrium, we could either have 0 ≤ R ≤ 1
2
KR

or 1
2
≤ R

∗ ≤ KR. When there are three interior equilibria, we have two equilibria with

0 ≤ R
∗ ≤ 1

2
KR and one equilibrium with 1

2
KR ≤ R

∗ ≤ KR. In case (1)(b) when there
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are two interior equilibria, we have one equilibrium with 0 ≤ R
∗ ≤ KR and one with

1
2
KR ≤ R

∗ ≤ KR. In case (2) there is one interior equilibrium with 0 ≤ R
∗ ≤ KR. In

case (3) there is one interior equilibrium with KR

(
1− eRC

rReChC

)
≤ R

∗ ≤ KR.

The consumer equation in the (R,C)-plane is

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC
.

For the upper bound on C
∗
, we can either find a supersolution to this equation or

we can use the consumer isocline’s horizontal asymptote. The consumer isocline’s

horizontal asymptote, in dimensionalized terms, is C = KC + KCαRC

rChRC
. The values of

the parameters determine which upper bound is sharper.

If we use the resource isocline’s horizontal asymptote to bound C
∗
, then

C
∗ ≤ KC +

KCαRC

rChRC

. (4.17)

If 0 < R
∗ ≤ KR, we have that

dC

dt
≤ rCC

(
1− C

KC

)
+

αRCeRCKRC

1 + eRChRCR + eChCC

≤ rCC

(
1− C

KC

)
+

αRCeRCKRC

1 + eChCC

Let C̃ be a solution to

dC̃

dt
= rCC̃

(
1− C̃

KC

)
+

αRCeRCKRC̃

1 + eChCKC

.

Then C̃ is a supersolution to the consumer equation and at equilibrium,

C̃ = KC +
KCαRCeRCKR

rC(1 + eChCKC)



66

So,

C
∗ ≤ KC +

KCαRCeRCKR

rC(1 + eChCKC)
. (4.18)

Thus, if eRCKR

1+eChCKC
< 1

hRC
⇔ eRChRCKR < 1 + eChCKC then (4.18) gives us a

sharper bound on C
∗
. But, if 1 + eChCKC < eRChRCKR then (4.17) gives us a

sharper bound on C
∗
.

If 0 < R
∗ ≤ 1

2
KR then C

∗ ≤ KC +
1
2
KCαRCeRCKR

rC(1+eChCKC)
if 1

2
eRChRCKR < 1 + eChCKC

and C
∗ ≤ KC + KCαRC

rChRC
if 1 + eChCKC < 1

2
eRChRCKR.

If 1
2
KR < R

∗
< KR then

dC

dt
≤ rCC

(
1− C

KC

)
+

αRCeRCKRC

1 + eRChRCR + eChCC

≤ rCC

(
1− C

KC

)
+

αRCeRCKRC

1 + 1
2
eRChRCKR + eChCC

Let C̃ be a solution to

dC̃

dt
= rCC̃

(
1− C̃

KC

)
+

αRCeRCKRC̃

1 + 1
2
eRChRCKR + eChCKC

.

Then C̃ is a supersolution to the consumer equation and at equilibrium,

C̃ = KC +
KCαRCeRCKR

rC
(
1 + 1

2
eRChRCKR + eChCKC

)
So,

C
∗ ≤ KC +

KCαRCeRCKR

rC
(
1 + 1

2
eRChRCKR + eChCKC

) . (4.19)

Thus, if eRCKR

1+ 1
2
eRChRCKR+eChCKC

< 1
hRC

⇔ 1
2
eRChRCKR < 1+ eChCKC then (4.19) gives

us a sharper bound on C
∗
. But, if 1 + eChCKC < 1

2
eRChRCKR then (4.17) gives us a

sharper bound on C
∗
.
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If KR

(
1− eRC

rReChC

)
< R

∗ ≤ KR then

dC

dt
≤ rCC

(
1− C

KC

)
+

αRCeRCKRC

1 + eRChRCR + eChCKC

≤ αRCeRCKRC

1 + eRChRCKR

(
1− eRC

rReChC

)
+ eChCKC

Let C̃ be a solution to

dC̃

dt
= rCC̃

(
1− C̃

KC

)
+

αRCeRCKR

1 + eRChRCKR

(
1− eRC

rReChC

)
+ eChCKC

.

Then C̃ is a supersolution to the consumer equation and at equilibrium,

C̃ = KC +
KCαRCeRCKR

rC

[
1 + eRChRCKR

(
1− eRC

rReChC

)
+ eChCKC

] .

So,

C̃ ≤ KC +
KCαRCeRCKR

rC

[
1 + eRChRCKR

(
1− eRC

rReChC

)
+ eChCKC

] . (4.20)

Thus, if eRCKR

1+eRChRCKR

(
1− eRC

rReChC

)
+eChCKC

< 1
hRC

⇔ e2RChRCKR < rReChC(1 + eChCKC)

then (4.20) gives us a sharper bound on C
∗
. But, if rReChC(1+eChCKC) < e2RChRCKR

then (4.17) gives us a sharper bound on C
∗
. Note that rReChC(1 + eChCKC) <

e2RChRCKR ⇔ 1 + eChCKC < eRChRCKR.

4.2.3 Summary of Bounds on Boundary Equilibria

Combining inequalities (4.13) and (4.3), we have that in the (R,P )-plane

KR

2
<R

∗
< KR (4.21)

max

{
0,

1
2
αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

}
≤P

∗ ≤ KRαRP eRP

ePhPmP

. (4.22)
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If we combine inequalities (4.14) and (4.4), then in the (C, P )-plane we have

KC

2
<C

∗
< KC (4.23)

max

{
0,

1
2
αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

}
≤P

∗ ≤ KCαCP eCP

ePhPmP

. (4.24)

And in the (R,C)-plane, we have either

0 ≤R
∗ ≤ KR and KC ≤ C

∗ ≤ KC +
KCαRCeRCKR

rC(1 + eChCKC)
if eRChRCKR < 1 + eChCKC

(4.25)

0 ≤R
∗ ≤ KR and KC ≤ C

∗ ≤ KC +
KCαRC

rChRC

if 1 + eChCKC < eRChRCKR (4.26)

or

1

2
KR ≤R

∗ ≤ KR and KC ≤ C
∗ ≤ KC +

KCαRCeRCKR

rC
(
1 + 1

2
eRChRCKR + eChCKC

)
if
1

2
eRChRCKR < 1 + eChCKC (4.27)

1

2
KR ≤R

∗ ≤ KR and KC ≤ C
∗ ≤ KC +

KCαRC

rChRC

if 1 + eChCKC <
1

2
eRChRCKR. (4.28)

or

KR

(
1− eRC

rReChC

)
<R

∗ ≤ KR and

KC ≤C
∗ ≤ KC +

KCαRCeRCKR

rC

[
1 + eRChRCKR

(
1− eRC

rReChC

)
+ eChCKC

]
if e2RChRCKR < rReChC(1 + eChCKC) (4.29)

1

2
KR ≤R

∗ ≤ KR and KC ≤ C
∗ ≤ KC +

KCαRC

rChRC

if rReChC(1 + eChCKC) < e2RChRCKR (4.30)
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4.3 Invasibility & Exclusion when all Species Ab-

sent

J(0, 0, 0) =

⎡
⎢⎢⎢⎢⎣
1 0 0

0 r 0

0 0 −mP

⎤
⎥⎥⎥⎥⎦

(0, 0, 0) is a saddle where the (R,C)-plane is the unstable subspace and the P -axis is

the stable subspace. Even though the predator is not able to invade, the system could

still be permanent. Since the resource and consumer can invade, they can establish

themselves in the (R,C)-plane which the predator might then be able to invade.

4.4 Invasibility & Exclusion When the Consumers

and Predators are Absent

J(1, 0, 0) =

⎡
⎢⎢⎢⎢⎣
−1 − eRC

1+hRC
− eRP

1+hRP

0 r + αRC

1+hRC
0

0 0 αRP

1+hRP
−mP

⎤
⎥⎥⎥⎥⎦

So λ1 = −1, λ2 = r+rhRC+αRC

1+hRC
> 0, λ3 = αRP−mP−hRPmP

1+hRP
. Thus, (1, 0, 0) is always

a saddle which is stable along the R-axis and unstable along the C-axis. Thus, the

consumer will always be able to invade this system. If the predator is also to be

able to invade this system, we need (1, 0, 0) to be unstable along the P -axis so that

both of the missing species can invade. Thus, we need αRP > mP (1 + hRP ). In

dimensionalized terms, this becomes

αRP eRPKR > mP (1 + eRPhRPKR) . (4.31)

We could write this equivalently as αRP > mP

(
hRP + 1

eRPKR

)
. Notice that (4.31)
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is condition (3.7), which tells us the condition needed for the interior equilibrium(
R

∗
, P

∗)
to exist in the R−P subsystem. Thus, a necessary condition for the predator

to be able to invade in this case is αRP > mPhRP , or equivalently,
αRP

hRP
> mP . This

says that the rate at which the resource is converted into predators compared to the

time predators spend handling the resource must be greater than the mortality rate

of the predators. Thus, in order for both the consumer and predator to invade the

system when both are absent and the basal resource is at equilibrium, the predator

must gain sufficiently from consumed basal resource. Otherwise, the consumer will

exclude the predator from being able to invade the system. But even if the consumer

excludes the predator from the system, the consumer’s ability to invade means the

system could still be permanent. After the consumer establishes itself in the R − C

subsystem, the predator could then invade that system.

4.5 Invasibility & Exclusion When the Resource

and Predators are Absent

J(0, 1, 0) =

⎡
⎢⎢⎢⎢⎣
1− eRC

1+hC
0 0

αRC

1+hC
−r − eCP

1+hCP

0 0 αCP

1+hCP
−mP

⎤
⎥⎥⎥⎥⎦

So λ1 = 1 − eRC

1+hC
, λ2 = −r, λ3 = αCP−mP−hCPmP

1+hCP
. Thus, in order for both the

basal resource and the the top predator to be able to invade the system, we must

have λ1 > 0 and λ3 > 0, or eRC < hC + 1 and αCP > mP (1 + hCP ). The first of

these conditions is inequality (3.33) which was the condition necessary for the R−C

subsystem to be permanent. In dimensionalized parameters, these conditions become

eRC <
rR
KC

(1 + eChCKC) (4.32)
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and

αCP eCPKC > mP (1 + eCPhCPKC) . (4.33)

We can rewrite condition (4.33) equivalently as αCP > mP

(
hCP + 1

eCPKC

)
. We

recognize (4.33) as being inequality (3.3), which was the necessary condition for the

equilibrium
(
C

∗
, P

∗)
to exist in the C−P plane. This gives us the necessary condition

αCP > mPhCP , or equivalently
αCP

hCP
> mP , for the predator to be able to invade. This

says that the rate at which the consumers are converted into predators per unit of

time must be greater than the mortality rate of the predators. Thus, in order for both

the basal resource and top predator to invade the system when both are absent and

the consumer is at equilibrium, the consumer cannot encounter the basal resource

too frequently and the predator must gain sufficiently from consumed consumers. If

the consumers encounter the basal resource too often then the basal resource will

be excluded from the system, and if the predator does not gain sufficiently from

consuming the consumer then it will be excluded from the system.

4.6 Invasibility & Exclusion When the Resource is

Absent

Assume αCP eCPKC > (eCPhCPKC + 1)mP . Then
(
C

∗
, P

∗)
exists in the (C, P )-

plane and the consumer-predator subsystem is permanent. Assume further that

eCPhCPKC

(
1− C

∗)
< 1 so that

(
C

∗
, P

∗)
is globally asymptotically stable. If we

linearize the R equation about the equilibrium
(
0, C

∗
, P

∗)
, we get

dR

dt
=

(
1− eRCC

∗

1 + hPCPP
∗ + hCC

∗ − eRPP
∗

1 + hCPC
∗ + P ∗

)
R. (4.34)
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In order for the basal resource to invade this system, we need dR
dt

> 0, which gives us

(in dimensionalized terms)

rR >
eRCC

∗

1 + eCPhPCP
∗ + eChCC

∗ +
eRPP

∗

1 + eCPhCPC
∗ + ePhPP

∗ . (4.35)

If we have that

rR <
eRCC

∗

1 + eCPhPCP
∗ + eChCC

∗ +
eRPP

∗

1 + eCPhCPC
∗ + ePhPP

∗ (4.36)

then the resource will be excluded from the system. If we use the bounds on C
∗

and P
∗
given by inequalities (4.23) and (4.24), then we get two possibilities, depend-

ing on whether 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 or 1

2
αCP eCPKC − mP (1 +

eCPhCPKC) < 0. If 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 then invasibility condi-

tion (4.35) becomes

rR >
eRCKC

1 + eCPhPC

[
1
2
αCP eCPKC−mP (1+eCP hCPKC)

eP hPmP

]
+ 1

2
eChCKC

+

eRPKCαCP eCP

eP hPmP

1 + 1
2
eCPhCPKC +

[
1
2
αCP eCPKC−mP (1+eCP hCPKC)

mP

]

We can simplify the denominator of the second fraction to get

1 +
1

2
eCPhCPKC+

[ 1
2
αCP eCPKC −mP (1 + eCPhCPKC)

mP

]

= 1 +
1

2
eCPhCPKC +

αCP eCPKC

2mP

− 1− eCPhCPKC

=
αCP eCPKC

2mP

− 1

2
eCPhCPKC

=
1

2
eCPKC

(
αCP

mP

− hCP

)
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Thus, the second fraction becomes

eRPKCαCP eCP

eP hPmP

1 + 1
2
eCPhCPKC +

[
1
2
αCP eCPKC−mP (1+eCP hCPKC)

mP

] =

eRPKCαCP eCP

eP hPmP

1
2
eCPKC

(
αCP

mP
− hCP

)
=

2eRPαCP

ePhP (αCP − hCPmP )

So, if 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 then invasibility condition (4.35)

becomes

rR >
eRCKC

1 + eCPhPC

[
1
2
αCP eCPKC−mP (1+eCP hCPKC)

eP hPmP

]
+ 1

2
eChCKC

+
2eRPαCP

ePhP (αCP − hCPmP )

(4.37)

and exclusion condition (4.36) becomes

rR <
1
2
eRCKC

1 +
e2CP hPCKCαCP

eP hPmP
+ eChCKC

+
eRP

[
1
2
αCP eCPKC −mP (1 + eCPhCPKC)

]
ePhPmP (1 + eCPhCPKC) + ePhPKCαCP eCP

(4.38)

If 1
2
αCP eCPKC − mP (1 + eCPhCPKC) < 0 then invasibility condition (4.35) be-

comes

rR >
eRCKC

1 + 1
2
eChCKC

+

eRPKCαCP eCP

eP hPmP

1 + 1
2
eCPhCPKC

(4.39)

and exclusion condition (4.36) becomes

rR <
1
2
eRCKC

1 +
e2CP hPCKCαCP

eP hPmP
+ eChCKC

(4.40)

Note that whether the basal resource is able to invade or is excluded from the

system depends in part on parameters which are independent of resource itself.

Before stating the following theorem, we introduce some terminology.



74

Definition 4.1. 1. We say that increasing eChC makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is a

decreasing function of eChC; i.e., if increasing eChC reduces the minimum value

of rR necessary for the resource to invade. We say that increasing eChC makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of eChC; i.e., if increasing

eChC increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing eChC makes it easier for the resource to be excluded if

the right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of eChC; i.e., if increasing eChC increases the maximum value of rR,

below which the resource will be excluded. We say that increasing eChC makes

it harder for the resource to be excluded if the right hand side of either exclusion

condition (4.38) or (4.40) is a decreasing function of eChC; i.e., if increasing

eChC decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.3. Increasing eChC

1. makes it easier for the resource to invade.

2. makes it harder for the resource to be excluded.

Proof. In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) > 0, the second fraction

on the right hand side of invasibility condition (4.37) does not depend on eC or hC

so increasing these parameter values does not change the resource’s ability to invade.

But the first fraction is of the form

f(eChC) =
A

B + CeChC
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where

A = eRCKC

B = 1 + eCPhPC

[ 1
2
αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

]

C =
1

2
KC

We have that

f ′(eChC) = − AC

(B + CeChC)
2 < 0

since A,C > 0. Thus, increasing eChC in this case makes it easier for the the resource

to invade the system.

The second fraction on the right hand side of exclusion condition (4.38) does not

depend on eC or hC so increasing these parameter values does not change whether

or not the resource will be excluded from the system. But the first fraction is of the

form

f(eChC) =
A

B + CeChC

where

A =
1

2
eRC

B = 1 +
e2CPhPCKCαCP

ePhPmP

C = KC

Since A,C > 0, we have that f is decreasing in eChC . So, increasing eChC makes it

harder for the resource to be excluded from the system.

In the case where 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0, the second fraction on

the right hand side of invasibility condition (4.39) does not depend on eC or hC so

increasing the parameter values does not change the resource’s ability to invade. But
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the first fraction is of the form

f(eChC) =
A

B + CeChC

where

A = eRCKC

B = 1

C =
1

2
KC

Since A,C > 0, we have that f is decreasing in eChC . So, increasing eChC makes it

easier for the resource to invade the system.

The right hand side of exclusion condition (4.40) has the form

f(eChC) =
A

B + CeChC

where

A =
1

2
eRCKC

B = 1 +
e2CPhPCKCαCP

ePhPmP

C = KC

Since A,C > 0, we have that f is decreasing in eChC . Thus, increasing eChC makes

it harder for the resource to be excluded from the system.

Before stating the following theorem, we introduce some terminology.

Definition 4.2. 1. We say that increasing KC makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is
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a decreasing function of KC; i.e., if increasing KC reduces the minimum value

of rR necessary for the resource to invade. We say that increasing KC makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of KC; i.e., if increasing

KC increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing KC makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of KC; i.e., if increasing KC increases the maximum value of rR, below

which the resource will be excluded. We say that increasing KC makes it harder

for the resource to be excluded if the right hand side of either exclusion condition

(4.38) or (4.40) is a decreasing function of KC; i.e., if increasing KC decreases

the maximum value of rR, below which the resource is excluded.

Theorem 4.4. Increasing KC

1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0 and eCPhPC > ePhP .

2. makes it harder for the resource to invade if

(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eCPhPC < ePhP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

3. makes it easier for the resource to be excluded.

Proof. We are in the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0, provided

that

KC

⎧⎪⎪⎨
⎪⎪⎩
> mP

1
2
αCP eCP−mP eCP hCP

if 1
2
αCP eCP −mP eCPhCP > 0

< mP
1
2
αCP eCP−mP eCP hCP

if 1
2
αCP eCP −mP eCPhCP < 0

.
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Note that if 1
2
αCP eCP − mP eCPhCP < 0 and KC < mP

1
2
αCP eCP−mP eCP hCP

then we get

that KC < 0, which we cannot have. So this case is not possible. So, we will be in

this case if 1
2
αCP eCP −mP eCPhCP > 0 and KC > mP

1
2
αCP eCP−mP eCP hCP

.

The second fraction on the right hand side of invasibility condition (4.37) is inde-

pendent of KC . The first fraction is of the form

f(KC) =
AKC

B + CKC

where

A = eRC

B = 1− eCPhPC

ePhP

C = eCPhPC

[ 1
2
αCP eCP −mP eCPhCP

ePhPmP

]
+

1

2
eChCKC

Since we are in the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 and

KC

(
1
2
αCP eCP −mP eCPhCP

)
= 1

2
αCP eCPKC − mP eCPhCPKC > 1

2
αCP eCPKC −

mP (1 + eCPhCPKC), we have that C > 0. But, B could be positive or negative.

We have that

f ′(KC) =
AB

(B + CKC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if B > 0

< 0 if B < 0

.

So, f ′(KC) > 0 if eCPhPC < ePhP and f ′(KC) < 0 if eCPhCP > ePhP .

Thus, increasing KC causes the right hand side of invasibility condition (4.37) to

increase when eCPhPC < ePhP . In this case, invasion is harder. But, increasing KC

causes the right hand side of invasibility condition (4.37) to decrease when eCPhPC >

ePhP . In this case, invasion is easier.

The first fraction on the right hand side of exclusion condition (4.38) is of the
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form

f(KC) =
AKC

B + CKC

where

A =
1

2
eRC

B = 1

C =
e2CPhPCαCP

ePhPmP

+ eChC

We have that

f ′(KC) =
AB

(B + CKC)2
> 0.

So, increasingKC causes the first fraction on the right hand side of exclusion condition

(4.38) to increase.

The second fraction on the right hand side of exclusion condition (4.38) is of the

form

g(KC) =
−D + EKC

F +GKC

where

D = eRPmP

E = eRP

(
1

2
αCP eCP −mP eCPhCP

)

F = ePhPmP

G = ePhPmP eCPhCP + αCP eCP ePhP
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As noted above, 1
2
αCP eCP −mP eCPhCP > 0 in this case, so E > 0. We have that

g′(KC) =
EF +DG

(F +GKC)2
> 0.

So, increasing KC causes the second fraction on the right hand side of exclusion

condition (4.38) to increase.

Thus, increasing KC causes both the first and second fractions on the right hand

side of exclusion condition (4.38) to increase. When we add these fractions together,

we get that the right hand side of exclusion condition (4.38) is increasing. This makes

exclusion easier.

In the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) < 0, the first fraction on

the right hand side of invasibility condition (4.39) is of the form

f(KC) =
AKC

B + CKC

where

A = eRC

B = 1

C =
1

2
eChC

We have that f ′(KC) > 0. So, increasing KC increases the first fraction on the right

hand side of invasibility condition (4.39).

The second fraction on the right hand side of invasibility condition (4.39) is of the

form

g(KC) =
DKC

E + FKC
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where

D =
eRPαCP eCP

ePhPmP

E = 1

F =
1

2
eCPhCP

We have that g′(KC) > 0. So, increasing KC increases the second fraction on the

right hand side of invasibility condition (4.39).

Thus, increasing KC causes both the first fraction and second fraction on the right

hand side of invasibility condition (4.39) to increase. When we add these fractions

together, we get that the right hand side of invasibility condition (4.39) is increasing.

Therefore, increasing KC makes invasibility harder.

The right hand side of exclusion condition (4.40) is of the form

f(KC) =
AKC

B + CKC

where

A =
1

2
eRC

B = 1

C =
e2CPhPCαCP

ePhPmP

+ eChC

We have that f ′(KC) > 0. So, increasingKC increases the right hand side of exclusion

condition (4.40). This makes exclusion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.3. 1. We say that increasing mP makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is a
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decreasing function of mP ; i.e., if increasing mPC reduces the minimum value

of rR necessary for the resource to invade. We say that increasing mP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of mP ; i.e., if increasing

mP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing mP makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of mP ; i.e., if increasing mP increases the maximum value of rR, below

which the resource will be excluded. We say that increasing mP makes it harder

for the resource to be excluded if the right hand side of either exclusion condition

(4.38) or (4.40) is a decreasing function of mP ; i.e., if increasing mP decreases

the maximum value of rR, below which the resource is excluded.

Theorem 4.5. Increasing mP

1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) <

0.

2. makes it harder for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0.

3. makes it easier for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0 and eRC >> eRP .

4. makes it harder for the resource to be excluded if

(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eRC << eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

Proof. We are in the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0, provided

that mP <
1
2
αCP eCPKC

1+eCP hCPKC
. The first fraction on the right hand side of invasibility



83

condition (4.37) is of the form

f(mP ) =
AmP

B + CmP

where

A = eRCKC

B =
e2CPhPCαCPKC

2ePhP

C = 1 +
1

2
eChCKC − 1 + eCPhCPKC

ePhP

Here, C could be positive or negative. We have that

f ′(mP ) =
AB

(B + CmP )2
> 0

So, increasing mP causes the first fraction on the right hand side of invasibility con-

dition (4.37) to increase.

The second fraction on the right hand side of invasibility condition (4.37) is of the

form

g(mP ) =
E

F −GmP

where

E = 2eRPαCP

F = ePhPαCP

G = ePhPhCP

We have that

g′(mP ) =
EG

(F −GmP )2
> 0
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So, increasing mP causes the second fraction on the right hand side of invasibility

condition (4.37) to increase. Thus, increasing mP causes both the first fraction and

second fraction on the right hand side of invasibility condition (4.37) to increase.

When we add these fractions together, we get that the entire right hand side increases

as a result of increasing mP , making invasion by the resource harder.

The first fraction on the right hand side of exclusion condition (4.38) is of the

form

f(mP ) =
AmP

B + CmP

where

A =
1

2
eRCKC

B =
e2CPhPCKCαCP

ePhP

C = 1 + eChCKC

We have that f ′(mP ) > 0, so increasing mP causes the first fraction on the right hand

side of exclusion condition (4.38) to increase.

The second fraction on the right hand side of exclusion condition (4.38) is of the

form

g(mP ) =
D − EmP

F +GmP

where

D =
1

2
αCP eCP eRPKC

E = eRP (1 + eCPhCPKC)

F = KCαCP eCP ePhP

G = ePhP (1 + eCPhCPKC)
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We have that

g′(mP ) = − EF +GD

(F +GmP )2
< 0

So, increasing mP causes the second fraction on the right hand side of exclusion

condition (4.38) to decrease.

Thus, increasing mP causes the first fraction on the right hand side of exclusion

condition (4.38) to increase while causing the second fraction to decrease. When we

add these fractions together, we could have that the right hand side is increasing or

decreasing as a result of increasing mP . If eRC >> eRP , then the first fraction on the

right hand side dominates the second fraction, so increasing mP causes the right hand

side to increase. This makes exclusion easier. But if eRC << eRP , then the second

fraction on the right hand side dominates the first fraction, so increasing mP causes

the right hand side to decrease. This makes exclusion harder.

In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) < 0, the first fraction on the

right hand side of invasibility condition (4.39) does not depend on mP . The second

fraction has the form

f(mP ) =
A

mP

where

A =
eRPKCαCP eCP

ePhPmP

(
1 + 1

2
eCPhCPKC

)
We have that

f ′(mP ) = − A

m2
P

< 0

So, increasing mP causes the right hand side of invasibility condition (4.39) to de-

crease, which makes invasion easier.

The right hand side of exclusion condition (4.40) is of the form

f(mP ) =
AmP

B + CmP
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where

A =
1

2
eRCKC

B =
e2CPhPCKCαCP

ePhP

C = 1 + eChCKC

We have that f ′(mP ) > 0, so increasing mP causes the right hand side of exclusion

condition (4.40) to decrease. This makes exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.4. 1. We say that increasing ePhP makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is a

decreasing function of ePhP ; i.e., if increasing ePhP reduces the minimum value

of rR necessary for the resource to invade. We say that increasing ePhP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of ePhP ; i.e., if increasing

ePhP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing ePhP makes it easier for the resource to be excluded if

the right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of ePhP ; i.e., if increasing ePhP increases the maximum value of rR,

below which the resource will be excluded. We say that increasing ePhP makes

it harder for the resource to be excluded if the right hand side of either exclusion

condition (4.38) or (4.40) is a decreasing function of ePhP ; i.e., if increasing

ePhP decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.6. Increasing ePhP

1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0 and eRC << eRP .
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2. makes it harder for the resource to invade if

(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eRC >> eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

3. makes it easier for the resource to be excluded if

(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eRC >> eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

4. makes it harder for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0 and eRC << eRP .

Proof. In the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0, the first fraction

on the right hand side of invasibility condition (4.37) is of the form

f(ePhP ) =
AePhP

B + CePhP

where

A = eRCKC

B = eCPhPC

[ 1
2
αCP eCPKC −mP (1 + eCPhCPKC)

mP

]

C = 1 +
1

2
eChCKC

Here, B > 0 since we are in the case where 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0.

So, increasing ePhP causes the first fraction on the right hand side of invasibility

condition (4.37) to increase.

The second fraction on the right hand side of invasibility condition (4.37) is of the

form

g(ePhP ) =
D

ePhP
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where

D =
2eRPαCP

αCP − hCPmP

.

Here, D > 0 because of inequality (4.10). So, increasing ePhP causes the second

fraction on the right hand side of invasibility condition (4.37) to decrease.

Thus, increasing ePhP causes the first fraction on the right hand side of invasibility

condition (4.37) to increase while causing the second fraction to decrease. When we

add these fractions together, we could have that the right hand side is increasing or

decreasing as a result of increasing ePhP . If eRC >> eRP , then the first fraction on

the right hand side will dominate the second fraction, so increasing ePhP causes the

right hand side to increase. This makes invasion harder. But if eRC << eRP , then the

second fraction on the right hand side will dominate the first fraction, so increasing

ePhP causes the right hand side to decrease. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.38) is of the

form

f(ePhP ) =
AePhP

B + CePhP

where

A =
1

2
eRCKC

B =
e2CPhPCKCαCP

mP

C = 1 + eChCKC

We have that f ′(ePhP ) > 0, so increasing ePhP causes the first fraction on the right

hand side of exclusion condition (4.38) to increase.

The second fraction on the right hand side of exclusion condition (4.38) is of the

form

g(ePhP ) =
D

ePhP
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where

D =
eRP

[
1
2
αCP eCPKC −mP (1 + eCPhCPKC)

]
mP (1 + eCPhCPKC) +KCαCP eCP

We have that g′(ePhP ) < 0. So, increasing ePhP causes the second fraction on the

right hand side of exclusion condition (4.38) to decrease.

Therefore, increasing ePhP causes the first fraction on the right hand side of

exclusion condition (4.38) to increase, while causing the second fraction to decrease.

When we add these fractions together, we get that the right hand side could be

increasing or decreasing as a result of increasing ePhP . If eRC >> eRP , then the

first fraction on the right hand side will dominate the second fraction. So increasing

ePhP causes the right hand side of the exclusion condition to increase, which makes

exclusion easier. But if eRC << eRP , then the second fraction on the right hand side

will dominate the first fraction. So increasing ePhP causes the right hand side of the

exclusion condition to decrease, which makes exclusion harder.

In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) < 0, the first fraction on the

right hand side of invasibility condition (4.39) is independent of ePhP , so increasing

ePhP does not change the resource’s ability to invade. The second fraction on the

right hand side of invasibility condition (4.39) is of the form

f(ePhP ) =
A

ePhP

where

A =
eRPKCαCP eCP

mP

(
1 + 1

2
eCPhCPKC

)
We have that f ′(ePhP ) < 0. So, increasing ePhP causes the right hand side of the

invasibility condition to decrease, which makes invasion harder.

The right hand side of exclusion condition (4.40) is of the form

f(ePhP ) =
AePhP

B + CePhP
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where

A =
1

2
e+RCKC

B =
e2CPhPCKCαCP

mP

C = 1 + eChCKC

We have that f ′(ePhP ) > 0. So, increasing ePhP causes the right hand side of the

exclusion condition to increase, which makes exclusion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.5. 1. We say that increasing eCP makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is

a decreasing function of eCP ; i.e., if increasing eCP reduces the minimum value

of rR necessary for the resource to invade. We say that increasing eCP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of eCP ; i.e., if increasing

eCP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing eCP makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of eCP ; i.e., if increasing eCP increases the maximum value of rR,

below which the resource will be excluded. We say that increasing eCP makes it

harder for the resource to be excluded if the right hand side of either exclusion

condition (4.38) or (4.40) is a decreasing function of eCP ; i.e., if increasing eCP

decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.7. Increasing eCP
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1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0.

2. makes it harder for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) <

0.

3. makes it easier for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0 and eRC >> eRP .

4. makes it harder for the resource to be excluded if

(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eRC << eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

Proof. We are inthe case where 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 if and only

if

eCP

⎧⎪⎪⎨
⎪⎪⎩
> mP

1
2
αCPKC−mP hCPKC

if 1
2
αCPKC −mPhCPKC > 0

< mP
1
2
αCPKC−mP hCPKC

if 1
2
αCPKC −mPhCPKC < 0

.

Note that if 1
2
αCPKC−mPhCPKC < 0, then we would have eCP < 0, which we cannot

have. So, we must have eCP > mP
1
2
αCPKC−mP hCPKC

with 1
2
αCPKC −mPhCPKC > 0.

The second fraction on the right hand side of invasibility condition (4.37) does

not depend on eCP so increasing eCP does not change the resource’s ability to invade.

We can rewrite the denominator of the first fraction as

1 +
eCPhPC

ePhPmP

[
1

2
αCP eCPKC −mP −mP eCPhCPKC

]
+

1

2
eChCKC

= 1 +
eCPhPC

ePhPmP

[
eCPKC

(
1

2
αCP −mPhCP

)
−mP

]
+

1

2
eChCKC

So the first fraction on the right hand side of invasibility condition (4.37) is of the

form

f(eCP ) =
A

Be2CP − CeCP +D



92

where

A = eRCKC

B =
hPCKC

ePhPmP

(
1

2
αCP −mPhCP

)

C =
hPC

ePhP

D = 1 +
1

2
eChCKC

Here, B is positive. So we have that

f ′(eCP ) = − A(2BeCP − C)

(Be2CP − CeCP +D)
2

⎧⎪⎪⎨
⎪⎪⎩
< 0 if eCP > C

2B

> 0 if eCP < C
2B

Note that

C

2B
=

mP

2KC

(
1
2
αCP −mPhCP

)
so, in order for f ′(eCP ) > 0, we must have

eCP <
mP

2KC

(
1
2
αCP −mPhCP

) ⇔ 2eCPKC

(
1

2
αCP −mPhCP

)
−mP < 0

⇔ eCPKC

(
1

2
αCP −mPhCP

)
− 1

2
mP < 0

⇒ eCPKC

(
1

2
αCP −mPhCP

)
−mP < 0

which contradicts the assumption that we are in the case where

1

2
αCP eCPKC −mP (1 + eCPhCPKC) > 0.

So, we have that f ′(eCP ) < 0.

Thus, increasing eCP causes the right hand side of invasibility condition (4.37) to

decrease, which makes invasion easier.
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The first fraction on the right hand side of exclusion condition (4.38) is of the

form

f(eCP ) =
A

B + Ce2CP

where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
hPCKCαCP

ePhPmP

We have that

f ′(eCP ) = − 2ACeCP

(B + Ce2CP )
2 < 0

So, increasing eCP causes the first fraction on the right hand side of exclusion condition

(4.38) to decrease.

The second fraction on the right hand side of exclusion condition (4.38) is of the

form

g(eCP ) =
−D + EeCP

F +GeCP

where

D = eRPmP

E = eRPKC

(
1

2
αCP −mPhCP

)

F = ePhPmP

G = ePhP (mPhCP + αCP )KC

Since we are in the case where 1
2
eCPhCPKC − mP (1 + eCPhCPKC) > 0

and eCPKC

(
1
2
αCP −mPhCP

)
> 1

2
αCP eCPKC − mP (1 + eCPhCPKC), then we must
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have 1
2
αCP −mPhCP > 0. Thus, we have E > 0 in this case. We have that

g′(eCP ) =
EF +DG

(F +GeCP )2
> 0.

Thus, increasing eCP causes the second fraction on the right hand side of exclusion

condition (4.38) to increase.

Therefore, increasing eCP causes the first fraction on the right hand side of exclu-

sion condition (4.38) to decrease, while causing the second fraction to increase. When

we add these fractions together, we could have that the right hand side is increasing

or decreasing as a result of increasing eCP . If eRC >> eRP , then the first fraction on

the right hand side of exclusion condition (4.38) dominates the second fraction, so

increasing eCP causes the right hand side of the exclusion condition to decrease. This

makes exclusion easier. But, if eRC << eRP , then the second fraction on the right

hand side of exclusion condition (4.38) dominates the first fraction, so increasing eCP

causes the right hand side to increase. This makes exclusion harder.

In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) < 0, the first fraction on the

right hand side of invasibility condition (4.39) does not depend on eCP . So increasing

eCP does not change the resource’s ability to invade. The second fraction on the right

hand side of the invasibility condition is of the form

f(eCP ) =
AeCP

B + CeCP

where

A =
eRPKCαCP

ePhPmP

B = 1

C =
1

2
hCPKC
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We have that f ′(eCP ) > 0. So, increasing eCP causes the right hand side of the

invasibility condition to increase, which makes invasion harder.

The right hand side of exclusion condition (4.40) is of the form

f(eCP ) =
A

B + Ce2CP

where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
hPCKCαCP

ePhPmP

We have that f ′(eCP ) > 0. So, increasing eCP causes the right hand side of exclusion

condition (4.40) to decrease, which makes exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.6. 1. We say that increasing hCP makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is

a decreasing function of hCP ; i.e., if increasing hCP reduces the minimum value

of rR necessary for the resource to invade. We say that increasing hCP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of hCP ; i.e., if increasing

hCP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing hCP makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of hCP ; i.e., if increasing hCP increases the maximum value of rR,

below which the resource will be excluded. We say that increasing hCP makes it

harder for the resource to be excluded if the right hand side of either exclusion
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condition (4.38) or (4.40) is a decreasing function of hCP ; i.e., if increasing

hCP decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.8. Increasing hCP

1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) <

0.

2. makes it harder for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0.

3. makes it harder for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0.

4. has no effect on whether the resource is excluded if 1
2
αCP eCPKC − mP (1 +

eCPhCPKC) < 0.

Proof. In the case where 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0, which is the case if

hCP <
1
2
αCP eCPKC−mP

eCPKCmP
, the first fraction on the right hand side of invasibility condition

(4.37) is of the form

f(hCP ) =
A

B − ChCP

where

A = eRCKC

B = 1 +
1

2
eChCKC +

e2CPhPCαCPKC

2ePhPmP

− 1

ePhP

C =
e2CPhPCKC

ePhP

Here, B could be positive or negative. We have that

f ′(hCP ) =
AC

(B − ChCP )2
> 0.
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So, increasing hCP causes the first fraction on the right hand side of invasibility

condition (4.37) to increase.

The second fraction on the right hand side of invasibility condition (4.37) is of the

form

g(hCP ) =
D

E − FhCP

where

D = 2eRPαCP

E = ePhPαCP

F = ePhPmP

We have that g′(hCP ) > 0. So, increasing hCP causes the second fraction on the right

hand side of invasibility condition (4.37) to increase.

So, increasing hCP causes both the first and second fraction on the right hand side

of the invasibility condition to increase. When we add these fractions together, we

get that the right hand side of invasibility condition (4.37) is increasing as a result of

increasing hCP . This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.38) does not

depend on hCP , so increasing hCP does not change the possibility of the resource

being excluded from the system. The second fraction on the right hand side of

exclusion condition (4.38) is of the form

f(hCP ) =
A− BhCP

C +DhCP
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where

A = eRP

(
1

2
αCP eCPKC −mP

)

B = eRP eCPKCmP

C = ePhPmP +KCαCP eCP ePhP

D = ePhPmP eCPKC

Since we are in the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 and

1
2
αCP eCPKC − mP (1 + eCPhCPKC) < 1

2
αCP eCPKC − mP , then we must have

1
2
αCP eCPKC −mP > 0. Therefore, A > 0. We have that

f ′(hCP ) = − BC + AD

(C +DhCP )2
< 0.

So, increasing hCP causes the right hand side of exclusion condition (4.38) to decrease,

which makes exclusion harder.

In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) < 0, the first fraction on the

right hand side of invasibility condition (4.39) does not depend on hCP , so increasing

hCP does not change the resource’s ability to invade. The second fraction on the right

hand side of invasibility condition (4.39) is of the form

f(hCP ) =
A

B + ChCP

where

A =
eRPKCαCP eCP

ePhPmP

B = 1

C =
1

2
eCPKC
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We have that f ′(hCP ) > 0, so increasing hCP causes the right hand side of invasibility

condition (4.39) to decrease. This makes invasion easier.

The right hand side of exclusion condition (4.40) does not depend on hCP , so

increasing hCP does not change whether the resource will be excluded.

Before stating the following theorem, we introduce some terminology.

Definition 4.7. 1. We say that increasing hPC makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is

a decreasing function of hPC; i.e., if increasing hPC reduces the minimum value

of rR necessary for the resource to invade. We say that increasing hPC makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of hPC; i.e., if increasing

hPC increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing hPC makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of hPC; i.e., if increasing hPC increases the maximum value of rR,

below which the resource will be excluded. We say that increasing hPC makes it

harder for the resource to be excluded if the right hand side of either exclusion

condition (4.38) or (4.40) is a decreasing function of hPC; i.e., if increasing

hPC decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.9. Increasing hPC

1. makes it easier for the resource to invade if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0.

2. makes it harder for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0.
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3. makes it harder for the resource to be excluded if 1
2
αCP eCPKC − mP (1 +

eCPhCPKC) < 0.

4. has no effect on whether the resource can invade the system if 1
2
αCP eCPKC −

mP (1 + eCPhCPKC) < 0.

Proof. In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) > 0, the second fraction

on the right hand side of invasibility condition (4.37) does not depend on hPC . The

first fraction on the right hand side of the invasibility condition is of the form

f(hPC) =
A

B + ChPC

where

A = eRCKC

B = 1 +
1

2
eChCKC

C = eCP

[ 1
2
αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

]

We have that f ′(hPC) < 0, so increasing hPC causes the right hand side of invasibility

condition (4.37) to decrease. This makes invasion easier.

The second fraction on the right hand side of exclusion condition (4.38) does not

depend on hPC , so increasing hPC does not change whether or not the resource will

be excluded. The first fraction on the right hand side of exclusion condition (4.38) is

of the form

f(hPC) =
A

B + ChPC
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where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
e2CPKCαCP

ePhPmP

We have that f ′(hPC) < 0. So, increasing hPC causes the right hand side of exclusion

condition (4.38) to decrease, which makes exclusion harder.

In the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) < 0, the right hand side

of invasibility condition (4.39) does not depend on hPC , so increasing hPC does not

change the resource’s ability to invade the system.

The right hand side of exclusion condition (4.40) is of the form

f(hPC) =
A

B + ChPC

where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
e2CPKCαCP

ePhPmP

We have that f ′(hPC) > 0. So, increasing hPC causes the right hand side of exclusion

condition (4.40) to decrease, which makes exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.8. 1. We say that increasing αCP makes it easier for the resource to

invade if the right hand side of either invasibility condition (4.37) or (4.39) is a

decreasing function of αCP ; i.e., if increasing αCP reduces the minimum value
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of rR necessary for the resource to invade. We say that increasing αCP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (4.37) or (4.39) is an increasing function of αCP ; i.e., if increasing

αCP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing αCP makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (4.38) or (4.40) is an increasing

function of αCP ; i.e., if increasing αCP increases the maximum value of rR,

below which the resource will be excluded. We say that increasing αCP makes it

harder for the resource to be excluded if the right hand side of either exclusion

condition (4.38) or (4.40) is a decreasing function of αCP ; i.e., if increasing

αCP decreases the maximum value of rR, below which the resource is excluded.

Theorem 4.10. Increasing αCP

1. makes it easier for the resource to invade if

(a) 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 and 1 + 1

2
eChCKC >

eCP hPC(1+eCP hCPKC)
eP hP

.

(b) 1
2
αCP eCPKC−mP (1+eCPhCPKC) > 0, 1+1

2
eChCKC < eCP hPC(1+eCP hCPKC)

eP hP
,

and eRC << eRP .

2. makes it harder for the resource to invade if

(a) 1
2
αCP eCPKC−mP (1+eCPhCPKC) > 0, 1+1

2
eChCKC < eCP hPC(1+eCP hCPKC)

eP hP
,

and eRC >> eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

3. makes it easier for the resource to be excluded if 1
2
αCP eCPKC − mP (1+

eCPhCPKC) > 0 and eRC << eRP .

4. makes it harder for the resource to be excluded if
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(a) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) > 0 and eRC >> eRP .

(b) 1
2
αCP eCPKC −mP (1 + eCPhCPKC) < 0.

Proof. In the case where 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0, the first fraction

on the right hand side of invasibility condition (4.37) is of the form

f(αCP ) =
A

B + CαCP

where

A = eRCKC

B = 1 +
1

2
eChCKC − eCPhPC(1 + eCPhCPKC)

ePhP

C =
e2CPhPCKC

2ePhPmP

Here, B could be positive or negative. We have that

f ′(αCP ) = − AB

(B + CαCP )2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if B < 0

< 0 if B > 0

So, if 1 + 1
2
eChCKC < eCP hPC(1+eCP hCPKC)

eP hP
then increasing αCP causes the first

fraction on the right hand side of invasibility condition (4.37) to increase. But if

1 + 1
2
eChCKC > eCP hPC(1+eCP hCPKC)

eP hP
, then increasing αCP causes the first fraction on

the right hand side of invasibility condition (4.37) to decrease.

The second fraction on the right hand side of invasibility condition (4.37) is of the

form

g(αCP ) =
DαCP

EαCP − F
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where

D = 2eRP

E = ePhP

F = ePhPhCPmP

We have that

g′(αCP ) = − DF

(EαCP − F )2
< 0

So, increasing αCP causes the second fraction on the right hand side of invasibility

condition (4.37) to decrease.

Therefore, if 1 + 1
2
eChCKC < eCP hPC(1+eCP hCPKC)

eP hP
, then increasing αCP causes

the first fraction on the right hand side of invasibility condition (4.37) to increase

while causing the second fraction to decrease. When we add these fractions together,

we can have that the right hand side of invasibility condition (4.37) increases or

decreases as a result of increasing αCP . If eRC >> eRP , then the first fraction on

the right hand side dominates the second fraction, so increasing αCP causes the right

hand side to increase. This makes invasion harder. But if eRC << eRP then the

second fraction on the right hand side dominates the first fraction, so increasing

αCP causes the right hand side to decrease. This makes invasion easier. But if

1+ 1
2
eChCKC > eCP hPC(1+eCP hCPKC)

eP hP
then increasing αCP causes both the first fraction

and the second fraction on the right hand side of invasibility condition (4.37) to

decrease. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.38) is of the

form

f(αCP ) =
A

B + CαCP
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where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
e2CPhPCKC

ePhPmP

We have that f ′(αCP ) < 0. So, increasing αCP causes the first fraction on the right

hand side of exclusion condition (4.38) to decrease.

The second fraction on the right hand side of exclusion condition (4.38) is of the

form

g(αCP ) =
−D + EαCP

F +GαCP

where

D = eRPmP (1 + eCPhCPKC)

E =
1

2
eRP eCPKC

F = ePhPmP (1 + eCPhCPKC)

G = KCeCP ePhP

We have that

g′(αCP ) =
EF +DG

(F +GαCP )2
> 0.

So, increasing αCP causes the second fraction on the right hand side of exclusion

condition (4.38) to increase.

Thus, increasing αCP causes the first fraction on the right hand side of exclusion

condition (4.38) to decrease, while causing the second fraction to increase. When we

add these fractions together, it could be the case that the right hand side is increasing

or decreasing as a result of increasing αCP . If eRC >> eRP , then the first fraction on
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the right hand side dominates the second fraction, so increasing αCP causes the right

hand side of exclusion condition (4.38) to decrease. This makes exclusion harder.

But, if eRC << eRP , then the second fraction on the right hand side of the exclusion

condition dominates the first fraction, so increasing αCP causes the right hand side

of the exclusion condition to increase. This makes exclusion easier.

In the case where 1
2
αCP eCPKC−mP (1 + eCPhCPKC) < 0, the first fraction on the

right hand side of invasibility condition (4.39) does not depend on αCP , so increasing

αCP does not change the resource’s ability to invade. The second fraction on the right

hand side is of the form

f(αCP ) = AαCP

where

A =
eRPKCeCP

ePhPmP

(
1 + 1

2
eCPhCPKC

)
We have that f ′(αCP ) > 0, so increasing αCP causes the right hand side of invasibility

condition (4.39) to increase. This makes invasion harder.

The right hand side of exclusion condition (4.40) is of the form

f(αCP ) =
A

B + CαCP

where

A =
1

2
eRCKC

B = 1 + eChCKC

C =
e2CPhPCKC

ePhPmP

We have that f ′(αCP ) < 0. So, increasing αCP causes the right hand side of exclusion

condition (4.40) to decrease, which makes exclusion harder.
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Boundary Limit Cycle

Now suppose αCP eCPKC > mP (1 + eCPhCPKC), (eCPhCPKC − 1)(αCP −mPhCP )−

2mPhCP > 0, ePhP sufficiently small, and αCP eCPKC sufficiently large. Then ac-

cording to [14], we have the ω-periodic solution (0, φC , φP ), which is stable in the

(C, P )-plane. The Floquet multiplier in the R direction is given by

exp

[
1

ω

∫ ω

0

(
rR − eRCφC(t)

1 + hPCPφP (t) + hCφC(t)
− eRPφP (t)

1 + hCPφC(t) + φP (t)

)
dt

]
.

Thus, if (in dimensionalized terms)

rR >

∫ ω

0

(
eRCφC(t)

1 + eCPhPCφP (t) + eChCφC(t)
+

eRPφP (t)

1 + eCPhCPφC(t) + ePhPφP (t)

)
dt

(4.41)

then (0, φC , φP ) is unstable in the R direction.

4.7 Invasibility & Exclusion when Consumers Ab-

sent

Assume αRP eRPKR > (eRPhRPKR + 1)mP . Then
(
R

∗
, P

∗)
exists in the (R,P )-plane

and the resource-predator subsystem is permanent. Assume further that

eRPhRPKR

(
1−R

∗)
< 1 so that

(
R

∗
, P

∗)
is globally asymptotically stable. If we

linearize the C equation about the equilibrium
(
R

∗
, P

∗)
, we get

dC

dt
=

(
rC +

αRCR
∗

1 + hRCR
∗ + hCPPP

∗ − eCPP
∗

1 + hRPR
∗ + P ∗

)
C. (4.42)

In order for the basal resource to invade the system, we need dC
dt

> 0, which gives us

(in dimensionalized terms)

rC >
eCPP

∗

1 + eRPhRPR
∗ + ePhPP

∗ − αRCeRCR
∗

1 + eRChRCR
∗ + eCPhCPP

∗ . (4.43)
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If we have that

rC <
eCPP

∗

1 + eRPhRPR
∗ + ePhPP

∗ − αRCeRCR
∗

1 + eRChRCR
∗ + eCPhCPP

∗ (4.44)

then the consumer will be excluded from the system. If we use the bounds on R
∗

and P
∗
given by inequalities (4.21) and (4.22), then we get two possibilities depend-

ing on whether 1
2
αRP eRPKR − mP (1 + hRP eRPKR) > 0 or 1

2
αRP eRPKR − mP (1 +

hRP eRPKR) < 0. If 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0 then invasibility condi-

tion (4.43) becomes

rC >

eCPKRαRP eRP

eP hPmP

1 + 1
2
eRPhRPKR +

1
2
αRP eRPKR−mP (1+eRP hRPKR)

mP

−
1
2
αRCeRCKR

1 + eRChRCKR + eCP hCPKRαRP eRP

eP hPmP

. (4.45)

We can simplify the denominator of the first fraction to get

1 +
1

2
eRPhRPKR +

1
2
αRP eRPKR −mP (1 + eRPhRPKR)

mP

= 1 +
1

2
eRPhRPKR +

αRP eRPKR

2mP

− 1− eRPhRPKR

=
1

2
eRPKR

(
αRP

mP

− hRP

)

Thus, the first fraction becomes

eCPKRαRP eRP

eP hPmP

1 + 1
2
eRPhRPKR +

1
2
αRP eRPKR−mP (1+eRP hRPKR)

mP

=

eCPKRαRP eRP

eP hPmP

1
2
eRPKR

(
αRP

mP
− hRP

)
=

2eCPαRP

ePhP (αRP −mPhRP )

So, if 1
2
αRP eRPKR − mP (1 + hRP eRPKR) > 0 then invasibility condition (4.43)
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becomes

rC >
2eCPαRP

ePhP (αRP −mPhRP )
−

1
2
αRCeRCKR

1 + eRChRCKR + eCP hCPKRαRP eRP

eP hPmP

(4.46)

and exclusion condition (4.44) becomes

rC <

eCP [ 12αRP eRPKR−mP (1+eRP hRPKR)]
eP hPmP

1 + eRPhRPKR + KRαRP eRP

mP

− αRCeRCKR

1 + 1
2
eRChRCKR + eCPhCP

[
1
2
αRP eRPKR−mP (1+eRP hRPKR)

eP hPmP

] . (4.47)

Biological Remarks:

(i) If αRP

hRP
< mP , then the resource will always be able to invade. In this case,

the predator does not gain much by consuming the resource compared to the

amount of time it spends handling the resource, so if there is a sufficient amount

of resource or the predators naturally die at a sufficiently high rate, then their

inefficiency will keep their population density too low to be able to stop the

consumers from invading.

(ii) Even if αRP

hRP
> mP , it could still be the case that the consumer can invade if

1
2
αRCeRCKR

1 + eRChRCKR + eCP hCPKRαRP eRP

eP hPmP

>
2eCPαRP

ePhP (αRP −mPhRP )
.

One way in which this could happen is if αRCeRC is sufficiently large; i.e., if the

consumer gains sufficiently from consuming the resource. Another way in which

this could happen is if ePhP is sufficiently large; i.e., if the predators interfere

with each other sufficiently.
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(iii) If

αRCeRCKR

1 + 1
2
eRChRCKR + eCPhCP

[
1
2
αRP eRPKR−mP (1+eRP hRPKR)

eP hPmP

]

>

eCP [ 12αRP eRPKR−mP (1+eRP hRPKR)]
eP hPmP

1 + eRPhRPKR + KRαRP eRP

mP

then the consumers cannot be excluded from the system. One way in which

this could happen is if ePhP is sufficiently large; i.e., if the predators interfere

with each other sufficiently. Another way in which this could happen is if eCP is

sufficiently small; i.e., if the predators encounter the consumers at a sufficiently

low rate. A third way in which this could happen is if αRC is sufficiently large;

i.e., the consumers gain sufficiently from consuming the resource.

If 1
2
αRP eRPKR −mP (1 + hRP eRPKR) < 0 then the invasibility condition becomes

rC >

eCPKRαRP eRP

eP hPmP

1 + 1
2
eRPhRPKR

−
1
2
αRCeRCKR

1 + eRChRCKR + eCP hCPKRαRP eRP

eP hPmP

(4.48)

and the exclusion condition becomes

rC < − αRCeRCKR

1 + 1
2
eRChRCKR

. (4.49)

Biological Remarks:

(i) If
1
2
αRCeRC

1 + eRChRCKR + eCP hCPKRαRP eRP

eP hPmP

>

eCPαRP eRP

eP hPmP

1 + 1
2
eRPhRCKR

then the consumers will always be able to invade. One way in which this could

happen is if αRC >> αRP ; i.e., if the consumers gain much more from consuming

the resource than the predators do. Another way in which this could happen is

if ePhPmP is sufficiently large; i.e., if the predators interfere with each other a



111

sufficient amount or if the predators have a sufficiently high natural mortality

rate. A third way in which this could happen is if hRP is sufficiently large; i.e.,

if the predators spend a sufficiently large amount of time handling encountered

resource. Yet another way in which this could happen is if eCP is sufficiently

small; i.e., if the predators do not attack the consumers often.

(ii) In this case, the consumers cannot be excluded. This is to be expected though.

In order to be in this case, the predators have some combination of gaining suffi-

ciently little from consuming the resource, spending a sufficiently large amount

of time handling encountered resource, and/or a sufficiently high natural mor-

tality rate. The combination of these factors limits the predators’ growth rate,

which limits the predators’ ability to exclude the consumers.

Note that whether the consumer is able to invade or is excluded from the system

depends in part on parameters which are independent of the consumer itself.

Before stating the following theorem, we introduce some terminology.

Definition 4.9. 1. We say that increasing KR makes it easier for the consumers

to invade if the right hand side of either invasibility condition (4.46) or (4.48) is

a decreasing function of KR; i.e., if increasing KR reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing KR makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (4.46) or (4.48) is an increasing function of KR; i.e., if increasing

KR increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing KR makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increasing

function of KR; i.e., if increasing KR increases the maximum value of rC, below

which the consumers will be excluded. We say that increasing KR makes it

harder for the consumers to be excluded if the right hand side of either exclusion
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condition (4.47) or (4.49) is a decreasing function of KR; i.e., if increasing KR

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 4.11. Increasing KR

1. makes it easier for the consumer to invade if

(a) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

(b) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) < 0 and αRP eRP << αRCeRC.

2. makes it harder for the consumer to invade if 1
2
αRP eRPKR−mP (1+hRP eRPKR)

< 0 and αRP eRP >> αRCeRC.

3. makes it easier for the consumer to be excluded if

(a) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0 and eCPhCP > ePhP .

(b) 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0, eCPhCP < ePhP , and eCP >> eRC.

4. makes it harder for the consumer to be excluded if 1
2
αRP eRPKR − mP (1 +

hRP eRPKR) > 0, eCPhCP < ePhP , and eCP << eRC.

Proof. In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0, the first fraction on

the right hand side of invasibility condition (4.46) is independent of KR. The second

fraction on the right hand side of invasibility condition (4.46) is of the form

g(KR) =
DKR

E + FKR

where

D =
1

2
αRCeRC

E = 1

F = eRChRC +
eCPhCPαRP eRP

ePhPmP



113

We have that

g′(KR) =
DE

(E + FKR)2
> 0.

Thus, increasingKR increases the second fraction on the right hand side of invasibility

condition (4.46). But since we are subtracting this second fraction on the right hand

side of invasibility condition (4.46), we get that increasing KR causes the right hand

side of invasibility condition (4.46) to decrease. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.47) is of the

form

f(KR) =
−A+BKR

C +DKR

where

A =
eCP

ePhP

B =
eCP

(
1
2
αRP eRP −mP eRPhRP

)
ePhPmP

C = 1

D = eRPhRP +
αRP eRP

mP

Since we are in the case where 1
2
αRP eRP −mP (1 + hRP eRPKR) > 0 and 1

2
αRP eRP −

mP (1+hRP eRPKR) <
1
2
αRP eRPKR−mP eRPhRPKR = KR

(
1
2
αRP eRP −mP eRPhRP

)
,

then we have that B > 0. We also have that

f ′(KR) =
BC + AD

(C +DKR)2
> 0.

So, increasingKR causes the first fraction on the right hand side of exclusion condition

(4.47) to increase.

The second fraction on the right hand side of exclusion condition (4.47) is of the
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form

g(KR) =
EKR

F +GKR

where

E = αRCeRC

F = 1− eCPhCP

ePhP

G =
1

2
eRChRC + eCPhCP

( 1
2
αRP eRP −mP eRPhRP

ePhPmP

)

We have that

g′(KR) =
EF

(F +GKR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if F > 0

< 0 if F < 0

.

So, if eCPhCP < ePhP then increasing KR causes the second fraction on the

right hand side of exclusion condition (4.47) to increase. And if eCPhCP > ePhP then

increasing KR causes the second fraction on the right hand side of exclusion condition

(4.47) to decrease.

Thus, if eCPhCP < ePhP then increasing KR causes both the first and second

fractions on the right hand side of exclusion condition (4.47) to increase. But since

we are subtracting the second fraction, the right hand side of the exclusion condition

could be increasing or decreasing as a result of increasing KR. If eCP >> eRC then

the first fraction on the right hand side dominates the second fraction. In this case,

increasing KR causes the right hand side of exclusion condition (4.47) to increase.

This makes exclusion easier. And if eCP << eRC then the second fraction on the

right hand side dominates the first fraction. In this case, increasing KR cause the

right hand side of the exclusion condition to decrease. This makes exclusion harder.

But, if eCPhCP > ePhP then increasing KR causes the first fraction on the right

hand side of exclusion condition (4.47) to increase while causing the second fraction
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to decrease. But since we are subtracting the second fraction, then increasing KR

causes the right hand side of exclusion condition (4.46) to increase. This makes

exclusion easier.

In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) < 0, the first fraction on the

right hand side of invasibility condition (4.48) is of the form

f(KR) =
AKR

B + CKR

where

A =
eCPαRP eRP

ePhPmP

B = 1

C =
1

2
eRPhRP

We have that f ′(KR) > 0. Thus, increasing KR causes the first fraction on the right

hand side of invasibility condition (4.48) to increase.

The second fraction on the right hand side of invasibility condition (4.48) is of the

form

g(KR) =
DKR

E + FKR

where

D =
1

2
αRCeRC

E = 1

F = eRChRC +
eCPhCPαRP eRP

ePhPmP

We have that g′(KR) > 0. Thus, increasingKR causes the second fraction on the right

hand side of invasibility condition (4.48) to increase. But since we are subtracting



116

the second fraction, increasing the second fraction will cause the right hand side of

the invasibility condition to decrease.

So, increasing KR causes the first fraction on the right hand side of invasibility

condition (4.48) to increase, while causing the second fraction to make the right hand

side decrease. When we add these fractions together, it could be the case that the

right hand side of invasibility condition (4.48) is increasing or decreasing as a result of

increasing KR. If αRP eRP >> αRCeRC , then the first fraction on the right hand side

of invasibility condition (4.48) will dominate the second fraction. This means that

increasing KR will cause the right hand side to increase, which makes invasibility

harder. But, if αRP eRP << αRCeRC , then the second fraction on the right hand

side of invasibility condition (4.48) will dominate the first fraction. This means that

increasing KR will cause the right hand side to decrease, which makes invasibility

easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.10. 1. We say that increasing αRP makes it easier for the consumers

to invade if the right hand side of either invasibility condition (4.46) or (4.48) is

a decreasing function of αRP ; i.e., if increasing αRP reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing αRP makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (4.46) or (4.48) is an increasing function of αRP ; i.e., if increasing

αRP increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing αRP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increasing

function of αRP ; i.e., if increasing αRP increases the maximum value of rC,

below which the consumers will be excluded. We say that increasing αRP makes it

harder for the consumers to be excluded if the right hand side of either exclusion
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condition (4.47) or (4.49) is a decreasing function of αRP ; i.e., if increasing αRP

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 4.12. Increasing αRP

1. makes invasion easier if 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0 and 2eCPαRP >>

1
2
αRCeRC.

2. makes invasion harder if

(a) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0 and 2eCPαRP << 1

2
αRCeRC.

(b) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) < 0.

3. makes exclusion easier if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0, the first fraction on

the right hand side of invasibility condition (4.46) is of the form

f(αRP ) =
AαRP

BαRP − C

where

A = 2eCP

B = ePhP

C = ePhPmPhRP

We have that

f ′(αRP ) = − AC

(BαRP − C)2
< 0

So, increasing αRP causes the first fraction on the right hand side of invasibility

condition (4.46) to decrease.
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The second fraction on the right hand side of invasibility condition (4.46) is of the

form

g(αRP ) =
D

E + FαRP

where

D =
1

2
αRCeRCKR

E = 1 + eRChRCKR

F =
eCPhCPKReRP

ePhPmP

We have that

g′(αRP ) = − DE

(E + FαRP )2
< 0

So, increasing αRP causes the second fraction on the right hand side of invasibil-

ity condition (4.46) to increase. But since we are subtracting the second fraction,

decreasing the second fraction causes the right hand side to increase.

So, increasing αRP causes the first fraction on the right hand side of the invasibility

condition to decrease, while causing the second fraction to make the right hand side

increase. When we add these fractions together, we get that the right hand side of

the invasibility condition could be increasing or decreasing as a result of increasing

αRP . If 2eCPαRP >> 1
2
αRCeRC then the first fraction on the right hand side of

invasibility condition (4.46) dominates the second fraction. In this case, increasing

αRP causes the right hand side to decrease, which makes invasion easier. But, if

2eCPαRP << 1
2
αRCeRC then the second fraction on the right hand side of invasibility

condition (4.46) dominates the first fraction. In this case, increasing αRP causes the

right hand side to increase, which makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.47) is of the
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form

f(αRP ) =
−A+BαRP

C +DαRP

where

A =
eCPmP (1 + eRPhRPKR)

ePhPmP

B =
eCP eRPKR

2ePhPmP

C = 1 + eRPhRPKR

D =
KReRP

mP

We have that

f ′(αRP ) =
BC + AD

(C +DαRP )2
> 0

So, increasing αRP causes the first fraction on the right hand side of exclusion condi-

tion (4.47) to increase.

The second fraction on the right hand side of exclusion condition (4.47) is of the

form

g(αRP ) =
E

F +GαRP

where

E = αRCeRCKR

F = 1 +
1

2
eRChRCKR − eCPhCPmP (1 + eRPhRPKR)

ePhPmP

G =
eCPhCP eRPKR

2ePhPmP

Here, F could be positive or negative. We have that

f ′(αRP ) = − EG

(F +GαRP )2
< 0
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So, increasing αRP causes the second fraction on the right hand side of exclusion con-

dition (4.47) to decrease. But since we are subtracting the second fraction, decreasing

the second fraction causes the right hand side to increase.

Thus, increasing αRP means that both the first fraction and second fraction on

the right hand side of exclusion condition (4.47) cause the right hand side increase,

which makes exclusion easier.

In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) < 0, the first fraction on the

right hand side of invasibility condition (4.48) is of the form

f(αRP ) = AαRP

where

A =
eCPKRαRP

ePhPmP

(
1 + 1

2
eRPhRPKR

)
We have that f ′(αRP ) > 0, so increasing αRP causes the first fraction on the right

hand side of invasibility condition (4.48) to increase.

The second fraction on the right hand side of invasibility condition (4.48) is of the

form

g(αRP ) =
B

C +DαRP

where

B =
1

2
αRCeRCKR

C = 1 + eRChRCKR

D =
eCPhCPKReRP

ePhPmP

We have that g′(αPR) > 0. So, increasing αRP causes the second fraction on the right

hand side of invasibility condition (4.48) to decrease. But, since we are subtracting

the second fraction, decreasing the second fraction causes the right hand side of
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invasibility condition (4.48) to increase.

Thus, increasing αRP causes both the first fraction and second fraction on the

right hand side of invasibility condition (4.48) to make the right hand side increase.

This makes invasion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.11. 1. We say that increasing mP makes it easier for the consumers

to invade if the right hand side of either invasibility condition (4.46) or (4.48) is

a decreasing function of mP ; i.e., if increasing mP reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing mP makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (4.46) or (4.48) is an increasing function of mP ; i.e., if increasing

mP increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing mP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increasing

function of mP ; i.e., if increasing mP increases the maximum value of rC, below

which the consumers will be excluded. We say that increasing mP makes it

harder for the consumers to be excluded if the right hand side of either exclusion

condition (4.47) or (4.49) is a decreasing function of mP ; i.e., if increasing mP

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 4.13. Increasing mP

1. makes invasion easier if

(a) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0 and 2eCPαRP << 1

2
αRCeRC.

(b) 1
2
αRP eRPKR −mP (1 + hRP eRPKR) < 0.

2. makes invasion harder if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0 and 2eCPαRP

>> 1
2
αRCeRC.
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3. makes exclusion harder if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR −mP (1+ hRP eRPKR) > 0, which is equivalent

to mP <
1
2
αRP eRPKR

1+eRP hRPKR
, the first fraction on the right hand side of invasibility condition

(4.46) is of the form

f(mP ) =
A

B − CmP

where

A = 2eCPαRP

B = ePhPαRP

C = ePhPhRP

We have that

f ′(mP ) =
AC

(B − CmP )2
> 0

So, increasing mP causes the first fraction on the right hand side of invasibility con-

dition (4.46) to increase.

The second fraction on the right hand side of invasibility condition (4.46) is of the

form

g(mP ) =
DmP

E + FmP

where

D =
1

2
αRCeRCKRePhP

E = eCPhCPKRαRP eRP

F = ePhP (1 + eRChRCKR)

We have that

g′(mP ) =
DE

(E + FmP )2
> 0
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So, increasing mP causes the second fraction on the right hand side of invasibility

condition (4.46) to increase. But, since we are subtracting the second fraction on the

right hand side of invasibility condition (4.46), increasing the second fraction causes

the right hand side to decrease.

Therefore, increasing mP causes the first fraction on the right hand side of inva-

sibility condition (4.46) to increase, while causing the second fraction to make the

right hand side decrease. When we add these fractions together, we get that the

right hand side of the invasibility condition could be increasing or decreasing as a

result of increasing mP . If 2eCPαRP >> 1
2
αRCeRC then the first fraction on the right

hand side of invasibility condition (4.46) dominates the second fraction, so increas-

ing mP causes the right hand side to increase. This makes invasion harder. But, if

2eCPαRP << 1
2
αRCeRC then the second fraction on the right hand side of invasibility

condition (4.46) dominates the first fraction, so increasing mP causes the right hand

side to decrease. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.47) is of the

form

f(mP ) =
A− BmP

C +DmP

where

A =
eCPαRP eRPKR

2ePhP

B =
eCP (1 + eRPhRPKR)

ePhP

C = KRαRP eRP

D = 1 + eRPhRPKR

We have that

f ′(mP ) = − BC + AD

(C +DmP )2
< 0
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So, increasingmP causes the first fraction on the right hand side of exclusion condition

(4.47) to decrease.

The second fraction on the right hand side of exclusion condition (4.47) is of the

form

g(mP ) =
EmP

F +GmP

where

E = αRCeRCKR

F =
eCPhCPαRP eRPKR

2ePhP

G = 1 +
1

2
eRChRCKR − eCPhCP (1 + eRPhRPKR)

ePhP

Here, G could be positive or negative. We have that

g′(mP ) =
EF

(F +GmP )2
> 0

So, increasing mP causes the second fraction on the right hand side of exclusion

condition (4.47) to increase. But, since we are subtracting the second fraction on the

right hand side of the exclusion condition, increasing the second fraction causes the

right hand side to decrease.

So, increasing mP causes the first fraction and second fraction to make the right

hand side of exclusion condition (4.47) to decrease, which makes exclusion harder.

In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) < 0, the first fraction on the

right hand side of invasibility condition (4.48) is of the form

f(mP ) =
A

mP
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where

A =
eCPKRαRP eRP

ePhP

(
1 + 1

2
eRPhRPKR

)
So, increasing mP causes the first fraction on the right hand side of invasibility con-

dition (4.48) to decrease.

The second fraction on the right hand side of invasibility condition (4.48) is of the

form

g(mP ) =
CmP

D + EmP

where

C =
1

2
αRCeRCKR

D =
eCPhCPKRαRP eRP

ePhP

E = 1 + eRChRCKR

We have that g′(mP ) > 0. So, increasing mP causes the second fraction on the right

hand side of invasibility condition (4.48) to increase. But, since we are subtracting

the second fraction on the right hand side of the invasibility condition, increasing the

second fraction causes the right hand side to decrease.

So, increasing mP causes both the first fraction and second fraction on the right

hand side of invasibility condition (4.48) to result in the right hand side decreasing,

which makes invasion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.12. 1. We say that increasing ePhP makes it easier for the con-

sumers to invade if the right hand side of either invasibility condition (4.46)

or (4.48) is a decreasing function of ePhP ; i.e., if increasing ePhP reduces the

minimum value of rC necessary for the consumers to invade. We say that in-

creasing ePhP makes it harder for the consumers to invade if the right hand
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side of either invasibility condition (4.46) or (4.48) is an increasing function of

ePhP ; i.e., if increasing ePhP increases the minimum value of rC necessary for

the consumers to invade.

2. We say that increasing ePhP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increas-

ing function of ePhP ; i.e., if increasing ePhP increases the maximum value of

rC, below which the consumers will be excluded. We say that increasing ePhP

makes it harder for the consumers to be excluded if the right hand side of either

exclusion condition (4.47) or (4.49) is a decreasing function of ePhP ; i.e., if in-

creasing ePhP decreases the maximum value of rC, below which the consumers

is excluded.

Theorem 4.14. Increasing ePhP

1. makes invasion easier.

2. makes exclusion harder if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0, the first fraction on

the right hand side of invasibility condition (4.46) is of the form

f(ePhP ) =
A

ePhP

where

A =
2eCPαRP

αRP −mPhRP

Here, A must be positive because of inequality (4.9). We have

f ′(ePhP ) = − A

e2Ph
2
P

< 0
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Thus, increasing ePhP causes the first fraction on the right hand side of invasibility

condition (4.46) to decrease.

The second fraction on the right hand side of invasibility condition (4.46) is of the

form

g(ePhP ) =
BePhP

C +DePhP

where

B =
1

2
αRCeRCKR

C =
eCPhCPKRαRP eRP

mP

D = 1 + eRChRCKR

We have that g′(ePhP ) > 0. So, increasing ePhP causes the second fraction on

the right hand side of invasibility condition (4.46) to increase. But, since we are

subtracting the second fraction on the right hand side of invasibility condition (4.46),

increasing the second fraction causes the right hand side to decrease.

So, increasing ePhP causes both the first fraction and second fraction on the right

hand side of invasibility (4.46) to make the right hand side decrease. This makes

invasion easier.

The first fraction on the right hand side of exclusion condition (4.47) is of the

form

f(ePhP ) =
A

ePhP

where

A =
eCP

[
1
2
αRP eRPKR −mP (1 + eRPhRPKR)

]
mP (1 + eRPhRPKR) +KRαRP eRP

We have that f ′(ePhP ) < 0. Thus, increasing ePhP causes the first fraction on the

right hand side of exclusion condition (4.47) to decrease.

The second fraction on the right hand side of exclusion condition (4.47) is of the
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form

g(ePhP ) =
BePhP

C +DePhP

where

B = αRCeRCKR

C =
eCPhCP

[
1
2
αRP eRPKR −mP (1 + eRPhRPKR)

]
mP

D = 1 +
1

2
eRChRCKR

We have that g′(ePhP ) > 0. Thus, increasing ePhP causes the second fraction on the

right hand side of exclusion condition (4.47) to increase. But, since we are subtracting

the second fraction on the right hand side of exclusion condition (4.47), increasing

the second fraction causes the right hand side to decrease.

So, increasing ePhP causes both the first fraction and second fraction on the right

hand side of exclusion condition (4.47) to make the right hand side decrease. This

makes exclusion harder.

In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) < 0, the first fraction on the

right hand side of invasibility condition (4.48) is of the form

f(ePhP ) =
A

ePhP

where

A =
eCPKRαRP eRP

mP

(
1 + 1

2
eRPhRPKR

)
We have that f ′(ePhP ) < 0. Thus, increasing ePhP causes the first fraction on the

right hand side of invasibility condition (4.48) to decrease.

The second fraction on the right hand side of invasibility condition (4.48) is of the
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form

g(ePhP ) =
BePhP

C +DePhP

where

B =
1

2
αRCeRCKR

C =
eCPhCPKRαRP eRP

mP

D = 1 + eRChRCKR

We have that g′(ePhP ) > 0. Thus, increasing ePhP causes the second fraction on

the right hand side of invasibility condition (4.48) to increase. But, since we are

subtracting the second fraction on the right hand side of invasibility condition (4.48),

increasing the second fraction causes the right hand side to decrease.

So, increasing ePhP causes both the first fraction and second fraction on the right

hand side of invasibility condition (4.48) to make the right hand side decrease. This

makes invasion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.13. 1. We say that increasing hRP makes it easier for the consumers

to invade if the right hand side of either invasibility condition (4.46) or (4.48) is

a decreasing function of hRP ; i.e., if increasing hRP reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing hRP makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (4.46) or (4.48) is an increasing function of hRP ; i.e., if increasing

hRP increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing hRP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increasing

function of hRP ; i.e., if increasing hRP increases the maximum value of rC,
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below which the consumers will be excluded. We say that increasing hRP makes it

harder for the consumers to be excluded if the right hand side of either exclusion

condition (4.47) or (4.49) is a decreasing function of hRP ; i.e., if increasing hRP

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 4.15. Increasing hRP

1. makes invasion easier if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) < 0.

2. makes invasion harder if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

3. makes exclusion harder if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR −mP (1+ hRP eRPKR) > 0, the second fraction

on the right hand side of invasibility condition (4.46) does not depend on hRP , so

increasing hRP does not change the consumers’ ability to invade the system. The first

fraction on the right hand side of invasibility condition (4.46) is of the form

f(hRP ) =
A

B − ChRP

where

A = 2eCPαRP

B = ePhPαRP

C = ePhPmP

We have that

f ′(hRP ) =
AC

(B + ChRP )2
> 0

Thus, increasing hRP causes the right hand side of invasibility condition to (4.46)

increase, which makes invasion harder.
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The first fraction on the right hand side of exclusion condition (4.47) is of the

form

f(hRP ) =
A− BhRP

C +DhRP

where

A =
eCP eRPKR

2ePhPmP

B =
eCP (1 + eRPhRPKR)

ePhP

C = 1 + eRPhRPKR

D =
KReRP

mP

We have that

f ′(hRP ) = − BC + AD

(C +DhRP )2
< 0

Thus, increasing hRP causes the first fraction on the right hand side of exclusion

condition (4.47) to decrease.

The second fraction on the right hand side of exclusion condition (4.47) is of the

form

g(hRP ) =
E

F −GhRP

where

E = αRCeRCKR

F = 1 +
1

2
eRChRCKR +

eCPhCP

(
1
2
αRP eRPKR −mP

)
ePhPmP

G =
eCPhCP (1 + eRPhRPKR)

ePhP
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Here, F could be positive or negative. We have that

g′(hRP ) =
EG

(F −GhRP )2
> 0

Thus, increasing hRP causes the second fraction on the right hand side of exclusion

condition (4.47) to increase. But since we are subtracting the second fraction on the

right hand side of exclusion condition (4.47), increasing the second fraction causes

the right hand side to decrease.

So, increasing hRP causes both the first fraction and second fraction on the right

hand side of exclusion condition (4.47) to make the right hand side decrease. This

makes exclusion harder.

In the case where 1
2
αRP eRPKR − mP (1 + hRP eRPKR) < 0, the second fraction

on the right hand side of invasibility condition (4.48) does not depend on hRP , so

increasing hRP does not change the consumers’ ability to invade. The first fraction

on the right hand side of invasibility condition (4.48) is of the form

f(hRP ) =
A

B + ChRP

where

A =
eCPKRαRP eRP

ePhPmP

B = 1

C =
1

2
eRPKR

Thus, increasing hRP causes the right hand side of invasibility condition (4.48) to

decrease, which makes invasion easier.

Before stating the following theorem, we introduce some terminology.
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Definition 4.14. 1. We say that increasing eRP makes it easier for the consumers

to invade if the right hand side of either invasibility condition (4.46) or (4.48) is

a decreasing function of eRP ; i.e., if increasing eRP reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing eRP makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (4.46) or (4.48) is an increasing function of eRP ; i.e., if increasing

eRP increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing eRP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (4.47) or (4.49) is an increasing

function of eRP ; i.e., if increasing eRP increases the maximum value of rC, below

which the consumers will be excluded. We say that increasing eRP makes it

harder for the consumers to be excluded if the right hand side of either exclusion

condition (4.47) or (4.49) is a decreasing function of eRP ; i.e., if increasing eRP

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 4.16. Increasing eRP

1. makes invasion harder.

2. makes exclusion easier if 1
2
αRP eRPKR −mP (1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR − mP (1 + hRP eRPKR) > 0, the first fraction

on the right hand side of invasibility condition (4.46) does not depend on eRP , so

increasing eRP does not change the consumers’ ability to invade the system. The

second fraction on the right hand side of invasibility condition (4.46) is of the form

f(eRP ) =
A

B + CeRP
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where

A =
1

2
αRCeRCKR

B = 1 + eRChRCKR

C =
eCPhCPKRαRP

ePhPmP

We have that f ′(eRP ) < 0. Thus, increasing eRP cause the second fraction on the right

hand side of invasibility condition (4.46) to decrease. But, since we are subtracting

the second fraction on the right hand side of invasibility condition (4.46), decreasing

the second fraction causes the right hand side to increase.

So, increasing eRP causes the right hand side of invasibility condition (4.46) to

increase, which makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.47) is of the

form

f(eRP ) =
−A+BeRP

C +DeRP

where

A =
eCP

ePhP

B =
eCPKR

(
1
2
αRP −mPhRP

)
ePhPmP

C = 1

D = hRPKR +
KRαRP

mP

eCP

Here, B must be positive. To see this, first note that, by assumption, 1
2
αRP eRPKR −

mP (1+hRP eRPKR) > 0. But, 1
2
αRP eRPKR−mP (1+hRP eRPKR) > 0 ⇔ eRPKR

(
1
2
αRP

−mPhRP

)
− mP > 0. So we have that 0 < eRPKR

(
1
2
αRP − mPhRP

)
− mP <

eRPKR

(
1
2
αRP −mPhRP

)
. So, eRPKR

(
1
2
αRP −mPhRP

)
> 0 ⇒ 1

2
αRP −mPhRP > 0.
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We have that

f ′(eRP ) =
BC +DA

(C +DeRP )2
> 0

So, increasing eRP causes the first fraction on the right hand side of exclusion condition

(4.47) to increase.

The second fraction on the right hand side of exclusion condition (4.47) is of the

form

g(eRP ) =
E

F +GeRP

where

E = αRCeRCKR

F = 1 +
1

2
eRChRCKR − eCPhCP

ePhP

G =
eCPhCPKR

(
1
2
αRP −mPhRP

)
ePhPmP

We have that

g′(eRP ) = − EG

(F +GeRP )2
< 0

Thus, increasing eRP causes the second fraction on the right hand side of exclusion

condition (4.47) to decrease. But, since we are subtracting the second fraction on the

right hand side of exclusion condition (4.46), decreasing the second fraction causes

the right hand side to increase.

So, increasing eRP causes both the first fraction and second fraction to make the

right hand side increase, which makes exclusion easier.

In the case where 1
2
αRP eRPKR−mP (1+hRP eRPKR) < 0, the first fraction on the

right hand side of invasibility condition (4.48) is of the form

f(eRP ) =
AeRP

B + CeRP
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where

A =
eCPKRαRP

ePhPmP

B = 1

C =
1

2
hRPKR

Thus, increasing eRP causes the first fraction on the right hand side of invasibility

condition (4.48) to increase.

The second fraction on the right hand side of invasibility condition (4.48) is of the

form

g(eRP ) =
D

E + FeRP

where

D =
1

2
αRCeRCKR

E = 1 + eRChRCKR

F =
eCPhCPKRαRP

ePhPmP

Thus, increasing eRP causes the second fraction on the right hand side of invasibility

condition (4.48) to decrease. But, since we are subtracting the second fraction on the

right hand side of invasibility condition (4.48), decreasing the second fraction causes

the right hand side to increase.

So, increasing eRP causes both the first fraction and second fraction on the right

hand side of invasibility condition (4.48) to cause the right hand side to increase. This

makes invasion harder.
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Boundary Limit Cycle

Now suppose αRP eRPKR > mP (1 + eRPhRPKR), (eRPhRPKR − 1)(αRP −mPhRP )−

2mPhRP > 0, ePhP sufficiently small, and αRP eRPKR sufficiently large. Then ac-

cording to [14], we have the ω-periodic solution (ψR, 0, ψP ), which is stable in the

(R,P )-plane. The Floquet multiplier in the C direction is given by

exp

[
1

ω

∫ ω

0

(
rC +

αRCψR(t)

1 + hRCψR(t) + hCPPψP (t)
− eCPψP (t)

1 + hRPψR(t) + ψP (t)

)
dt

]
.

Thus, if (in dimensionalized terms)

rC >

∫ ω

0

(
eCPψP (t)

1 + eRPhRPψR(t) + ePhPψP (t)
− αRCeRCψR(t)

1 + eRChRCψR(t) + eCPhCPψP (t)

)
dt

(4.50)

then (ψR, 0, ψP ) is unstable in the C direction.

4.8 Invasibility & Exclusion when Predators Ab-

sent

Assume we have any of the conditions so that
(
R

∗
, C

∗)
exists and is stable in the

(R,C)-plane. If we linearize the P equation about the equilibrium
(
R

∗
, C

∗)
, we get

dP

dt
=

(
αRPR

∗

1 + hRPR
∗ + hPCC

∗ +
αCPC

∗

1 + hRPR
∗ + hCPC

∗ −mP

)
P. (4.51)

In order for the predator to invade the system, we need dP
dt

> 0, which gives us (in

dimensionalized terms)

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +
αCP eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗ . (4.52)
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If we have that

mP >
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +
αCP eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗ . (4.53)

then the predator will be excluded from the system.

There are several possible cases to consider with regards to bounds on R
∗
. We

could have 0 < R < KR

2
, as could happen in case (1)(a) when there is one interior

equilibrium. We could have case (1)(a) when there are three interior equilibria, or

case (1)(b) when there are two interior equilibria. We could have 0 < R
∗
< KR, which

happens in case (2)(a). We could have KR

2
< R

∗
< KR, which can happen in case

(1)(a) when there is one interior equilibrium, case (1)(a) when there are three interior

equilibria, or case (1)(b) when there are two interior equilibria. If eRC < rReChC ,

which happens in case (3), we can have KR

(
1− eRC

rReChC

)
< R

∗
< KR. Note that the

parameter dependence of the invasibility and exclusion conditions is the same in the

cases where 0 < R
∗
< KR

2
and 0 < R

∗
< KR, so we will only consider the case where

0 < R
∗
< KR. The bounds on C

∗
will depend on two factors: which case we are

in with respect to the bounds on R
∗
and whether the supersolution to the consumer

equation or the consumer isocline’s horizontal asymptote give a sharper bound on C
∗
.

4.8.1 0 < R
∗
< KR

If 0 < R
∗
< KR and eRChRCKR < 1 + eChCKC then we use the bounds from on C

∗

imposed by the supersolution to the consumer equation, given by inequalities (4.25).

In this case, invasibility condition (4.52) becomes

mP <
αCP eCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRCeRCKR

rC(1+eChCKC)

) (4.54)
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and exclusion condition (4.53) becomes

mP >
αRP eRPKR

1 + eCPhPCKC

+
αCP eCPKC

(
1 + αRCeRCKR

rC(1+eChCKC)

)
1 + eCPhCPKC

. (4.55)

If 0 < R
∗
< KR and 1 + eChCKC < eRChRCKR then we use the bounds on C

∗

imposed by the consumer isocline’s horizontal asymptote, given by inequalities (4.25)

and (4.26). In this case, invasibility condition (4.52) becomes

mP <
eCPαCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRC

rChRC

) (4.56)

and exclusion condition (4.53) becomes

mP >
αRP eRPKR

1 + eCPhPCKC

+
αCP eCPKC

(
1 + αRC

rChRC

)
1 + eCPhCPKC

. (4.57)

Note that whether the predator is able to invade or is excluded from the system

depends in part on parameters which are independent of the predator itself.

Before stating the following theorem, we introduce some terminology.

Definition 4.15. 1. We say that increasing KC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of KC; i.e., if increasing KC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing KC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of KC; i.e., if

increasing KC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing KC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing
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function of KC; i.e., if increasing KC decreases the minimum value of mP which

results in the predators being excluded. We say that increasing KC makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of KC; i.e., if increasing

KC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.17. Increasing KC

1. makes it easier for the predator to invade.

2. makes it easier for the predator to be excluded if

(a) eRChRCKR < 1 + eChCKC, eChC < eCP hCPαRCeRCKR

rC
, and KC > K

∗
C, where

KC is the positive solution to equation (4.60).

(b) eRChRCKR < 1 + eChCKC, eChC < eCP hCPαRCeRCKR

rC
, 0 < KC < K

∗
C, and

αRP eRP >> αCP eCP , where KC is a solution to equation (4.60).

(c) eRChRCKR < 1 + eChCKC, eChC > eCP hCPαRCeRCKR

rC
, and αRP eRP >>

αCP eCP .

(d) 1 + eChCKC < eRChRCKR and αRP eRP >> αCP eCP .

3. makes it harder for the predator to be excluded if

(a) eRChRCKR < 1 + eChCKC, eChC < eCP hCPαRCeRCKR

rC
, 0 < KC < K

∗
C, and

αRP eRP << αCP eCP , where KC is a solution to equation (4.60).

(b) eRChRCKR < 1 + eChCKC, eChC > eCP hCPαRCeRCKR

rC
, and αRP eRP <<

αCP eCP

(c) 1 + eChCKC < eRChRCKR and αRP eRP << αCP eCP .
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Proof. First note that in the case where eRChRCKR < 1 + eChCKC , we can rewrite

invasibility condition (4.54) as

mP <
(1 + eChCKC)αCP eCPKC

(1 + eChCKC)(1 + eRPhRPKR) + eCPhCPKC

(
1 + eChCKC + αRCeRCKR

rC

)
(4.58)

and exclusion condition (4.55) as

mP >
αRP eRPKR

1 + eCPhPCKC

+
αCP eCPKC

(
1 + eChCKC + αRCeRCKR

rC

)
(1 + eCPhCPKC)(1 + eChCKC)

. (4.59)

In this case, the right hand side of invasibility condition (4.58) is of the form

f(KC) =
AKC +BK2

C

C +DKC + EK2
C

where

A = αCP eCP

B = αCP eCP eChC

C = 1 + eRPhRPKR

D = eChC(1 + eRPhRPKR) + eCPhCP

(
1 +

αRCeRCKR

rC

)

E = eChCeCPhCP

We have that

f ′(KC) =
(BD − AE)K2

C + 2BCKC + AC

(C +DKC + EK2
C)

2
.

Here, f ′(KC) > 0 ⇔ (BD − AE)K2
C + 2BCKC + AC > 0 and f ′(KC) < 0 ⇔

(BD−AE)K2
C+2BCKC+AC < 0. Let q(KC) = (BD−AE)K2

C+2BCKC+AC. The

vertex of q is located at KC = − BC
BD−AE

and the y-intercept is located at q = AC > 0.

If BD − AE > 0, then the graph of q opens upward, the vertex is to the left of the
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q-axis, and the q-intercept is positive. In this case, f ′(KC) > 0 for all biologically

relevant values of KC . But, if BD − AE < 0, then the graph of q opens downward,

the vertex is to the right of the q-axis, and the q-intercept is positive. In this case,

f ′(KC) > 0 for 0 < KC < K
∗
C and f ′(KC) < 0 for KC > K

∗
C , where K

∗
C is the positive

solution to the equation (BD − AE)K2
C + 2BCKC + AC = 0. Note that

BD −AE > 0 ⇔ αCP eCP eChC

[
eChC(1 + eRPhRPKR) + eCPhCP

(
1 +

αRCeRCKR

rC

)]

− αCP eCP eChCeCPhCP

⇔ eChC(1 + eRPhRPKR) + eCPhCP

(
1 +

αRCeRCKR

rC

)
− eCPhCP

⇔ eChC(1 + eRPhRPKR) +
eCPhCPαRCeRCKR

rC
> 0

and

BD − AE < 0 ⇔ eChC(1 + eRPhRPKR) +
eCPhCPαRCeRCKR

rC
< 0.

So, for all biologically relevant values of the parameters, we must have f ′(KC) > 0.

Thus, increasing KC causes the right hand side of invasibility condition (4.58) to

increase. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.59) is of the

form

f(KC) =
A

B + CKC

where

A = αRP eRPKR

B = 1

C = eCPhPC
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We have that f ′(KC) < 0, so increasing KC causes the first fraction on the right hand

side of exclusion condition (4.59) to decrease.

The second fraction on the right hand side of exclusion condition (4.59) is of the

form

g(KC) =
DKC + EK2

C

F +GKC +HK2
C

where

D = αCP eCP

(
1 +

αRCeRCKR

rC

)

E = αCP eCP eChC

F = 1

G = eCPhCP + eChC

H = eCPhCP eChC

If EG − DH > 0 then g′(KC) > 0 for all biologically relevant values of KC . But if

EG −DH < 0 then we will have g′(KC) > 0 for 0 < KC < K
∗
C and g′(KC) < 0 for

KC > K
∗
C , where K

∗
C is the positive solution to the equation

(EG−DH)K2
C + 2EFKC +DF = 0. (4.60)

Note that

EG−DH > 0 ⇔ αCP eCP eChC(eCPhCP + eChC)

− αCP e
2
CPhCP eChC

(
1 +

αRCeRCKR

rC

)
> 0

⇔ (eCPhCP + eChC)− eCPhCP

(
1 +

αRCeRCKR

rC

)
> 0

⇔ eChC >
eCPhCPαRCeRCKR

rC
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and

EG−DH < 0 ⇔ eChC <
eCPhCPαRCeRCKR

rC
.

So, if eChC > eCP hCPαRCeRCKR

rC
then the right hand side of exclusion condition (4.59)

is increasing. But if eChC < eCP hCPαRCeRCKR

rC
then the right hand side of exclusion

condition (4.59) is increasing when 0 < KC < K
∗
C and decreasing when KC > K

∗
C .

Thus, when eChC < eCP hCPαRCeRCKR

rC
and KC > K

∗
C , increasing KC causes both

the first and second fractions on the right hand side of exclusion condition (4.59) to

decrease. When we add these fractions together, we have that the right hand side

of exclusion condition (4.59) is decreasing, which makes exclusion easier. But when

eChC < eCP hCPαRCeRCKR

rC
with 0 < KC < K

∗
C or when eChC > eCP hCPαRCeRCKR

rC
then

increasing KC causes the first fraction on the right hand side of exclusion condition

(4.59) to decrease while causing the second fraction to increase. When we add these

fractions together, we get that the right hand side of exclusion condition (4.59) could

be increasing or decreasing as a result of increasing KC . If αRP eRP >> αCP eCP then

the first fraction on the right hand side dominates the second fraction, so increasing

KC causes the right hand side to decrease. This makes exclusion easier. But if

αRP eRP << αCP eCP then the second fraction on the right hand side dominates the

first fraction, so increasing KC causes the right hand side to increase. This makes

exclusion harder.

In the case where 1 + eChCKC < eRChRCKR, the right hand side of invasibility

condition (4.56) is of the form

f(KC) =
AKC

B + CKC
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where

A = eCPαCP

B = 1 + eRPhRPKR

C = eCPhCP

(
1 +

αRC

rChRC

)

We have that f ′(KC) > 0 so increasing KC causes the right hand side of invasibility

condition (4.56) to increase. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.57) is of the

form

f(KC) =
A

B + CKC

where

A = αRP eRPKR

B = 1

C = eCPhPC

We have that f ′(KC) < 0, so increasing KC causes the first fraction on the right hand

side of exclusion condition (4.57) to decrease.

The second fraction on the right hand side of exclusion condition (4.57) is of the

form

g(KC) =
DKC

E + FKC
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where

D = αCP eCP

(
1 +

αRC

rChRC

)

E = 1

F = eCPhCP

We have that g′(KC) > 0, so increasing KC causes the second fraction on the right

hand side of exclusion condition (4.57) to increase.

Thus, increasing KC causes the first fraction on the right hand side of exclusion

condition (4.57) to decrease while causing the second fraction to increase. When we

add these fractions together, we get that the right hand side of exclusion condition

(4.57) could be increasing or decreasing as a result of increasing KC . If αRP eRP >>

αCP eCP then the first fraction on the right hand side will dominate the second fraction.

So, increasing KC will cause the right hand side of exclusion condition (4.57) to

decrease, which makes exclusion easier. But, if αRP eRP << αCP eCP then the second

fraction on the right hand side will dominate the first fraction. So, increasing KC

will cause the right hand side of exclusion condition (4.57) to increase, which makes

exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.16. 1. We say that increasing KR makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of KR; i.e., if increasing KR increases the maximum

value of mP , allowed for the predators to invade. We say that increasing KR

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of KR; i.e., if

increasing KR reduces the maximum value of mP allowed for the predators to

invade.
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2. We say that increasing KR makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of KR; i.e., if increasing KR decreases the minimum value of mP which

results in the predators being excluded. We say that increasing KR makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of KR; i.e., if increasing

KR increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.18. Increasing KR

1. makes it harder for the predator to invade.

2. makes it harder for the predator to be excluded.

Proof. In the case where eRChRCKR < 1+eChCKC , the right hand side of invasibility

condition (4.54) is of the form

f(KR) =
A

B + CKR

where

A = αCP eCPKC

B = 1 + eCPhCPKC

C = eRPhRP +
eCPhCPαRCeRC

rC(1 + eChCKC)

We have that f ′(KR) < 0 so increasing KR causes the right hand side of invasibility

condition (4.54) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.55) is of the

form

f(KR) = AKR
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where

A =
αRP eRP

1 + eCPhPCKC

We have that f ′(KR) > 0 so increasing KR causes the first fraction on the right hand

side of exclusion condition (4.55) to increase.

The second fraction on the right hand side of exclusion condition (4.55) is of the

form

g(KR) = B + CKR

where

B =
αCP eCPKC

1 + eCPhCPKC

C =
αCP eCPKCαRCeRC

rC(1 + eChCKC)(1 + eCPhCPKC)

We have that g′(KR) > 0 so increasing KR causes the second fraction on the right

hand side of exclusion condition (4.55) to increase.

Thus, increasing KR causes both the first and second fraction on the right hand

side of exclusion condition (4.55) to increase. This causes the right hand side of the

exclusion condition to increase, which makes exclusion harder.

In the case where 1 + eChCKC < eRChRCKR, the right hand side of invasibility

condition (4.56) is of the form

f(KR) =
A

B + CKR



149

where

A = eCPαCPKC

B = 1 + eCPhCPKC

(
1 +

αRC

rChRC

)

C = eRPhRP

We have that f ′(KR) < 0 so increasing KR causes the right hand side of invasibility

condition (4.56) to decrease, which makes invasion harder.

The second fraction on the right hand side of exclusion condition (4.57) is inde-

pendent of KR. The first fraction on the right hand side of exclusion condition (4.57)

is of the form

f(KR) = AKR

where

A =
αRP eRP

1 + eCPhPCKC

We have that f ′(KR) > 0 so increasing KR the right hand side of exclusion condition

(4.57) to increase. This makes exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.17. 1. We say that increasing αRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of αRC; i.e., if increasing αRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing αRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of αRC; i.e., if

increasing αRC reduces the maximum value of mP allowed for the predators to

invade.
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2. We say that increasing αRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of αRC; i.e., if increasing αRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing αRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of αRC; i.e., if increasing

αRC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.19. Increasing αRC

1. makes it harder for the predator to invade.

2. makes it easier for the predator to be excluded.

Proof. In the case where eRChRCKR < 1+eChCKC , the right hand side of invasibility

condition (4.54) is of the form

f(αRC) =
A

B + CαRC

where

A = αCP eCPKC

B = 1 + eRPhRPKR + eCPhCPKC

C =
αCP eCPKCeRCKR

rC(1 + eChCKC)

We have that f ′(αRC) < 0 so increasing αRC causes the right hand side of invasibility

condition (4.54) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.55) is indepen-

dent of αRC . The second fraction on the right hand side of exclusion condition (4.55)
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is of the form

f(αRC) = A+BαRC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCeRCKR

rC(1 + eChCKC)(1 + eCPhCPKC)

We have that f ′(αRC) > 0. So increasing αRC causes the right hand side of exclusion

condition (4.55) to increase, which makes exclusion easier.

In the case where 1 + eChCKC < eRChRCKR, the right hand side of invasibility

condition (4.56) is of the form

f(αRC) =
A

B + CαRC

where

A = eCPαCPKC

B = 1 + eRPhRPKR + eCPhCPKC

C =
eCPhCPKC

rChRC

We have that f ′(αRC) < 0 so increasing αRC causes the right hand side of invasibility

condition (4.56) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.57) is indepen-

dent of αRC . The second fraction on the right hand side of exclusion condition (4.57)

is of the form

f(αRC) = A+BαRC
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where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKC

rChRC(1 + eCPhCPKC)

We have that f ′(αRC) > 0 so increasing αRC causes the right hand side of exclusion

condition (4.57) to increase. This makes exclusion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.18. 1. We say that increasing eRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of eRC; i.e., if increasing eRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing eRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of eRC; i.e., if

increasing eRC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing eRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of eRC; i.e., if increasing eRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing eRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of eRC; i.e., if increasing

eRC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.20. Increasing eRC

1. makes it harder for the predator to invade.
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2. makes it harder for the predator to be excluded.

Proof. In the case where eRChRCKR < 1+eChCKC , the right hand side of invasibility

condition (4.54) is of the form

f(eRC) =
A

B + CeRC

where

A = αCP eCPKC

B = 1 + eRPhRPKR + eCPhCPKC

C =
eCPhCPKCαRCKR

rC(1 + eChCKC)

We have that f ′(eRC) < 0 so increasing eRC causes the right hand side of invasibility

condition (4.54) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.55) is indepen-

dent of eRC . The second fraction on the right hand side of exclusion condition (4.55)

is of the form

f(eRC) = A+BeRC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRCKC

rC(1 + eChCKC)(1 + eCPhCPKC)

We have that f ′(eRC) > 0 so increasing eRC causes the right hand side of exclusion

condition (4.55) to increase. This makes exclusion harder.

In the case where 1+eChCKC < eRChRCKR, the right hand side of both invasibility

condition (4.56) and exclusion condition (4.57) are independent of eRC .



154

Before stating the following theorem, we introduce some terminology.

Definition 4.19. 1. We say that increasing eChC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56) is

an increasing function of eChC; i.e., if increasing eChC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing eChC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of eChC; i.e., if

increasing eChC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing eChC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of eChC; i.e., if increasing eChC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing eChC

makes it harder for the predators to be excluded if the right hand side of either

exclusion condition (4.55) or (4.57) is an increasing function of eChC; i.e.,

if increasing eChC increases the minimum value of mP which results in the

predators being excluded.

Theorem 4.21. Increasing eChC

(a) makes it easier for the predator to invade if eRChRCKR < 1 + eChCKC.

(b) makes it easier for the predator to be excluded if eRChRCKR < 1 + eChCKC.

(c) has no effect on whether the predator can invade or is excluded, if 1+ eChCKC <

eRChRCKR.

Proof. First note that in the case where eRChRCKR < 1 + eChCKC , we can rewrite
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invasibility condition (4.54) as

mP <
rC(1 + eChCKC)αCP eCPKC

rC(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR

(4.61)

and exclusion condition (4.55) as

mP >
αRP eRPKR

1 + eCPhPCKC

+
αCP eCPKC (1 + eChCKC) +

αRCeRCKRαCP eCPKC

rC

(1 + eCPhCPKC)(1 + eChCKC)
. (4.62)

The right hand side of invasibility condition (4.61) is of the form

f(eChC) =
A+BeChC

C +DeChC

where

A = rCαCP eCPKC

B = rCαCP eCPK
2
C

C = rC(1 + ePRhRPKR + eCPhCPKC) + eCPhCPαRCeRCKR

D = rCKC(1 + eRPhRPKR + eCPhCPKC)

We have that

f ′(eChC) =
BC − AD

(C +DeChC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

.
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Note that

BC > AD ⇔ αCP eCPK
2
CrC [rC(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR]

> r2CαCP eCPK
2
C(1 + eRPhRPKR + eCPhCPKC)

⇔ rC(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR

> rC(1 + eRPhRPKR + eCPhCPKC)

⇔ eCPhCPKCαRCeRCKR > 0

and

BC < AD ⇔ eCPhCPKCαRCeRCKR < 0

So for all biologically relevant values of the parameters, we have that f ′(eChC) > 0.

Therefore, increasing eChC causes the right hand side of invasibility condition (4.61)

to increase, which makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.62) is indepen-

dent of eChC . The second fraction on the right hand side of exclusion condition (4.62)

is of the form

f(eChC) =
A+BeChC

C +DeChC

where

A = αCP eCPKC +
αCP eCPKCαRCeRCKR

rC

B = αCP eCPK
2
C

C = 1 + eCPhCPKC

D = KC(1 + eCPhCPKC)
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We have that f ′(eChC) > 0 if BC > AD and f ′(eChC) < 0 if BC < AD. Note that

BC > AD ⇔ αCP eCPK
2
C(1 + eCPhCPKC)

> KC(1 + eCPhCPKC)

(
αCP eCPKC +

αCP eCPKCαRCeRCKR

rC

)

⇔ αCP eCPKC > αCP eCPKC

(
1 +

αRCeRCKR

rC

)

⇔ 0 >
αRCeRCKR

rC

and

BC < AD ⇔ 0 <
αRCeRCKR

rC

So for all biologically relevant values of the parameters, we have that f ′(eChC) < 0.

Thus, increasing eChC causes the right hand side of exclusion condition (4.62) to

decrease, which exclusion easier.

In the case where 1+eChCKC < eRChRCKR, the right hand side of both invasibility

condition (4.56) and exclusion condition (4.57) are independent of eChC , so increasing

eChC does not change whether the predator can invade or is excluded.

Before stating the following theorem, we introduce some terminology.

Definition 4.20. 1. We say that increasing rC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56) is

an increasing function of rC; i.e., if increasing rC increases the maximum value

of mP , allowed for the predators to invade. We say that increasing rC makes

it harder for the predators to invade if the right hand side of either invasibility

condition (4.54) or (4.56) is a decreasing function of rC; i.e., if increasing rC

reduces the maximum value of mP allowed for the predators to invade.

2. We say that increasing rC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing
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function of rC; i.e., if increasing rC decreases the minimum value of mP which

results in the predators being excluded. We say that increasing rC makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of rC; i.e., if increasing

rC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.22. Increasing rC

(a) makes it easier for the predator to invade.

(b) makes it easier for the predator to be excluded.

Proof. In the case where eRChRCKR < 1 + eChCKC , we can rewrite invasibility con-

dition (4.54) as

mP <
αCP eCPKCrC

rC(1 + eRPhRPKR + eCPhCPKC) +
eCP hCPKCαRCeRCKR

1+eChCKC

. (4.63)

The right hand side of invasibility condition (4.63) is of the form

f(rC) =
ArC

B + CrC

where

A = αCP eCPKC

B =
eCPhCPKCαRCeRCKR

1 + eChCKC

C = 1 + eRPhRPKR + eCPhCPKC

We have that f ′(rC) > 0 so increasing rC causes the right hand side of invasibility

condition (4.63) to increase. This makes invasion easier.



159

The first fraction on the right hand side of exclusion condition (4.55) is indepen-

dent of rC . The second fraction on the right hand side of exclusion condition (4.55)

is of the form

f(rC) = A+
B

rC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRCeRCKR

(1 + eChCKC)(1 + eCPhCPKC)

We have that f ′(rC) < 0 so increasing rC causes the right hand side of exclusion

condition (4.55) to decrease. This makes exclusion easier.

In the case where 1+eChCKC < eRChRCKR, we can rewrite invasibility condition

(4.56) as

mP <
eCPαCPKCrC

rC(1 + eRPhRPKR + eCPhCPKC) +
eCP hCPKCαRC

hRC

. (4.64)

The right hand side of invasibility condition (4.64) is of the form

f(rC) =
ArC

B + CrC

where

A = eCPαCPKC

B =
eCPhCPKCαRC

hRC

C = 1 + eRPhRPKR + eCPhCPKC

We have that f ′(rC) > 0 so increasing rC causes the right hand side of invasibility

condition (4.64) to increase. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.57) is indepen-
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dent of rC . The second fraction on the right hand side of exclusion condition (4.57)

is of the form

f(rC) = A+
B

rC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRC

hRC(1 + eCPhCPKC)

We have that f ′(rC) < 0 so increasing rC causes the right hand side of exclusion

condition (4.57) to decrease. This makes exclusion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.21. 1. We say that increasing hRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of hRC; i.e., if increasing hRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing hRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of hRC; i.e., if

increasing hRC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing hRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of hRC; i.e., if increasing hRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing hRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of hRC; i.e., if increasing

hRC increases the minimum value of mP which results in the predators being
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excluded.

Theorem 4.23. Increasing hRC

(a) makes it easier for the predator to invade if 1 + eChCKC < eRChRCKR.

(b) makes it easier for the predator to be excluded if 1 + eChCKC < eRChRCKR.

(c) has no effect on whether the predator can invade or is excluded if eRChRCKR <

1 + eChCKC.

Proof. In the case where eRChRCKR < 1 + eChCKC , the right hand side of both

invasibility condition (4.54) and exclusion condition (4.55) are independent of hRC .

So increasing hRC does not change whether or not the predator can invade or is

excluded from the system.

In the case where 1 + eChCKC < eRChRCKR, the right hand side of invasibility

condition (4.56) is of the form

f(hRC) =
AhRC

B + ChRC

where

A = eCPαCPKC

B =
eCPαCPKCαRC

rC

C = 1 + eRPhRPKR + eCPhCPKC

We have that f ′(hRC) > 0 so increasing hRC causes the right hand side of invasibility

condition (4.56) to increase. This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.57) is indepen-

dent of hRC . The second fraction on the right hand side of exclusion condition (4.57)
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is of the form

f(hRC) = A+
B

hRC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRC

rC(1 + eCPhCPKC)

We have that f ′(hRC) < 0. So, increasing hRC causes the right hand side of exclusion

condition (4.57) to decrease, which makes exclusion easier.

4.8.2 KR

2 < R
∗
< KR

If KR

2
< R

∗
< KR and 1

2
eRChRCKR < 1 + eChCKC then we use the bounds on C

∗

imposed by the supersolution to the consumer equation, given by inequalities (4.27)

. In this case, invasibility condition (4.52) becomes

mP <
1
2
αRP eRPKR

1 + eRPhRPKR + eCPhPCKC

(
1 + αRCeRCKR

rC(1+ 1
2
eRChRCKR+eChCKC)

) (4.65)

+
αCP eCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRCeRCKR

rC(1+ 1
2
eRChRCKR+eChCKC)

) (4.66)

and exclusion condition (4.53) becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPCKC

+

αCP eCPKC

(
1 + αRCeRCKR

rC(1+ 1
2
eRChRCKR+eChCKC)

)
1 + 1

2
eRPhRPKR + eCPhCPKC

.

(4.67)
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We can rewrite invasibility condition (4.65) as

mP <
1
2αRP eRPKRrC

(
1 + 1

2eRChRCKR + eChCKC

)
rC
(
1 + 1

2eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhPCKC) + eCPhPCKCαRCeRCKR

+
αCP eCPKCrC

(
1 + 1

2eRChRCKR + eChCKC

)
rC
(
1 + 1

2eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR

(4.68)

and exclusion condition (4.67) as

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPCKC

+
αCP eCPKCrC

(
1 + 1

2
eRChRCKR + eChCKC

)
+ αCP eCPKCαRCeRCKR(

1 + 1
2
eRPhRPKR + eCPhCPKC

) (
1 + 1

2
eRChRCKR + eChCKC

) (4.69)

If KR

2
< R

∗
< KR and 1 + eChCKC < 1

2
eRChRCKR then we use the bounds on

C
∗
imposed by the consumer isocline’s horizontal asymptote, given by (4.28). In this

case, invasibility condition (4.52) becomes

mP <
1
2
αRP eRPKR

1 + eRPhRPKR + eCPhPCKC

(
1 + αRC

rChRC

)
+

αCP eCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRC

rChRC

) (4.70)

and exclusion condition (4.67) becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPCKC

+
αCP eCPKC

(
1 + αRC

rChRC

)
1 + eCPhCPKC

. (4.71)

We can rewrite invasibility condition (4.70) as

mP <
1
2
αRP eRPKRrChRC

rChRC(1 + eRPhRPKR + eCPhPCKC) + eCPhPCKCαRC

+
αCP eCPKCrChRC

rChRC(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRC

(4.72)
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and exclusion condition (4.71) as

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPCKC

+
rChRCαCP eCPKC + αCP eCPKCαRC

rChRC(1 + eCPhCPKC)
. (4.73)

Note that whether the predator is able to invade or is excluded from the system

depends in part on parameters which are independent of the predator itself.

Before stating the following theorem, we introduce some terminology.

Definition 4.22. 1. We say that increasing KC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of KC; i.e., if increasing KC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing KC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of KC; i.e., if

increasing KC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing KC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of KC; i.e., if increasing KC decreases the minimum value of mP which

results in the predators being excluded. We say that increasing KC makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of αRC; i.e., if increasing

KC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.24. If KR

2
< R

∗
< KR, then increasing KC

1. makes it easier for the predator to invade if αRP eRP << αCP eCP .

2. makes it harder for the predator to invade if αRP eRP >> αCP eCP .
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3. makes it easier for the predator to be excluded if αRP eRP >> αCP eCP .

4. makes it harder for the predator to be excluded if αRP eRP << αCP eCP .

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(KC) =
A+BKC

C +DKC + EK2
C

where

A =
1

2
αRP eRPKRrC

(
1 +

1

2
eRChRCKR

)

B =
1

2
αRP eRPKRrCeChC

C = rC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR)

D = rC

[
eCPhPC

(
1 +

1

2
eRChRCKR

)
+ eChC(1 + eRPhRPKR)

]
+ eCPhPCαRCeRCKR

E = eChCeCPhPC

We have that

f ′(KC) = −BEK2
C + 2AEKC + (DA− BC)

(C +DKC + EK2
C)

2⎧⎪⎪⎨
⎪⎪⎩
> 0 if − BEK2

C − 2AEKC + (BC − AD) > 0

< 0 if − BEK2
C − 2AEKC + (BC − AD) < 0

.

The vertex of the quadratic function q(KC) = −BEK2
C − 2AEKC + (BC − AD) is

KC = −A
B
< 0. The q-intercept is

q = BC −DA

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > DA

< 0 if BC < DA
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If BC < DA then the graph of q opens downward, the vertex is to the left of the

q-axis and the q-intercept is below the KC-axis, so we have f ′(KC) < 0. But, if

BC > DA then the graph of q opens downward, the vertex is to the left of the q-axis,

and the q-intercept is above the KC-axis, so we have f ′(KC) > 0 for 0 < KC <

K
∗
C and f ′(KC) < 0 for KC > K

∗
C , where K

∗
C is the positive root of the equation

−BEK2
C − 2AEKC + (BC − AD) = 0. Note that

BC > DA ⇔ 1

2
αRP eRPKRr

2
CeChC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR)

>
1

2
αRP eRPKRrC

(
1 +

1

2
eRChRCKR

)
[
rC

((
1 +

1

2
eRChRCKR

)
eCPhPC + eChC(1 + eRPhRPKR)

)
+ eCPhPCαRCeRCKR

]

⇔ rCeChC(1 + eRPhRPKR)

> rC

[(
1 +

1

2
eRChRCKR

)
eCPhPC + eChC(1 + eRPhRPKR)

]
+ eCPhPCαRCeRCKR

⇔ 0 > rC

(
1 +

1

2
eRChRCKR

)
+ eCPhPCαRCeRCKR

and

BC < DA ⇔ 0 < rC

(
1 +

1

2
eRChRCKR

)
+ eCPhPCαRCeRCKR.

So, for all biologically relevant values of the parameters, we must have f ′(KC) < 0.

Thus, increasing KC causes the first fraction on the right hand side of invasibility

condition (4.68) to decrease.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(KC) =
AKC +BK2

C

C +DKC + EK2
C
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where

A = αCP eCP rC

(
1 +

1

2
eRChRCKR

)

B = αCP eCP rCeChC

C = rC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR)

D = rC

[(
1 +

1

2
eRChRCKR

)
eCPhCP + (1 + eRPhRPKR)eChC

]
+ eCPhCPαRCeRCKR

E = rCeChCeCPhCP

We have that

g′(KC) =
(BD −AE)K2

C + 2BCKC +AC(
C +DKC + EK2

C

)2
⎧⎪⎪⎨
⎪⎪⎩
> 0 if (BD −AE)K2

C + 2BCKC +AC > 0

< 0 if (BD −AE)K2
C + 2BCKC +AC < 0

The q-intercept of the quadratic function q(KC) = (BD −AE)K2
C + 2BCKC +AC

is q = AC > 0. The vertex is at

KC = − BC

BD − AE

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BD < AE

< 0 if BD > AE

.

So, if BD > AE then q opens upward, the q-intercept is above the KC-axis, and the

vertex is to the right of the q-axis. In this case, g′(KC) > 0. But if BD < AE then q

opens downward, the q-intercept is above the KC-axis, and the vertex is to the right

of the q-axis. In this case, g′(KC) > 0 if 0 < KC < K
∗
C and g′(KC) < 0 if KC > K

∗
C ,

where K
∗
C is the positive root of the equation (BD − AE)K2

C + 2BCKC + AC = 0.
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Note that

BD > AE ⇔ αCP eCP rCeChC

(
rC

[(
1 +

1

2
eRChRCKR

)
eCPhCP + (1 + eRPhRPKR)eChC

])

+ αCP eCP rCeChCeCPhCPαRCeRCKR > r2CeChCeCPhCPαCP eCP

(
1 +

1

2
eRChRCKR

)

⇔ r2C

[(
1 +

1

2
eRChRCKR

)
eCPhCP + (1 + eRPhRPKR)eChC

]
+ rCeCPhCPαRCeRCKR

> r2ChCP eCP

(
1 +

1

2
eRChRCKR

)

⇔ r2CeChC(1 + eRPhRPKR) + rCeCPhCPαRCeRCKR > 0

and

BD < AE ⇔ r2CeChC(1 + eRPhRPKR) + rCeCPhCPαRCeRCKR < 0.

So for any biologically relevant values of the parameters, we must have g′(KC) > 0.

Thus, increasing KC causes the second fraction on the right hand side of invasibility

condition (4.68) to increase.

So, increasing KC causes the first fraction on the right hand side of invasibility

condition (4.68) to decrease, while causing the second fraction to increase. Thus,

when we add these fraction together, we get that the right hand side of invasibility

condition (4.68) could be increasing or decreasing as a result of increasing KC . If

αRP eRP >> αCP eCP then the first fraction on the right hand side of invasibility

condition (4.68) will dominate the second fraction. In this case, increasing KC causes

the right hand side of invasibility condition (4.68) to decrease, which makes invasion

harder. But if αRP eRP << αCP eCP then the second fraction on the right hand side of

invasibility condition (4.68) dominates the first fraction. In this case, increasing KC

causes the right hand side of invasibility condition (4.68) to increase, which makes

invasion easier.

The first fraction on the right hand side of (4.69) exclusion condition is of the
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form

f(KC) =
A

B + CKC

where

A = αRP eRPKR

B = 1 +
1

2
eRPhRPKR

C = eCPhPCKC

We have that f ′(KC) < 0 so increasing KC causes the first fraction on the right hand

side of exclusion condition (4.69) to decrease.

The second fraction on the right hand side of exclusion condition (4.69) is of the

form

g(KC) =
AKC +BK2

C

C +DKC + EK2
C

where

A = αCP eCP rC

(
1 +

1

2
eRChRCKR

)
+ αCP eCPαRCeRCKR

B = αCP eCP rCeChC

C =

(
1 +

1

2
eRPhRPKR

)(
1 +

1

2
eRChRCKR

)

D = eChC

(
1 +

1

2
eRPhRPKR

)
+ eCPhCP

(
1 +

1

2
eRChRCKR

)

E = eCPhCP eChC

We have that g′(KC) > 0 if (BD − AE)K2
C + 2BCKC + AC > 0 and g′(KC) < 0

if (BD − AE)K2
C + 2BCKC + AC < 0. The q-intercept of the quadratic function
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q(KC) = (BD − AE)K2
C + 2BCKC + AC is q = AC > 0. The vertex is located at

KC = − BC

BD − AE

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BD < AE

< 0 if BD > AE

.

If BD > AE then g′(KC) > 0. If BD < AE then g′(KC) > 0 for 0 < KC < K
∗
C and

g′(KC) < 0 for KC > K
∗
C , where K

∗
C is the positive root of q(KC) = 0. Note that

BD > AE ⇔ αCP eCP rCeChC

[
eChC

(
1 +

1

2
eRPhRPKR

)
+ eCPhCP

(
1 +

1

2
eRChRCKR

)]

> αCP eCP eCeCPhCP eChC

(
1 +

1

2
eRChRCKR

)

⇔ eChC

(
1 +

1

2
eRPhRPKR

)
+ eCPhCP

(
1 +

1

2
eRChRCKR

)

> eCPhCP

(
1 +

1

2
eRChRCKR

)

⇔ eChC

(
1 +

1

2
eRPhRPKR

)
< 0

and

BD < AE ⇔ eChC

(
1 +

1

2
eRPhRPKR

)
< 0.

So, for all biologically relevant values of the parameters, we have that g′(KC) > 0.

Thus, increasing KC causes the second fraction on the right hand side of exclusion

condition (4.69) to increase.

So, increasing KC causes the first fraction on the right hand side of exclusion

condition (4.69) to decrease, while causing the second fraction to increase. Thus,

when we add these fractions together, we have that the right hand side of the exclusion

condition could be increasing or decreasing as a result of increasingKC . If αRP eRP >>

αCP eCP then the first fraction on the right hand side of exclusion condition (4.69)

dominates the second fraction. In this case, increasing KC causes the right hand

side of exclusion condition (4.69) to decrease. This makes exclusion easier. But if

αRP eRP << αCP eCP then the second fraction on the right hand side of exclusion



171

condition (4.69) dominates the first fraction. In this case, increasing KC causes the

right hand side of exclusion condition (4.69) to increase. This makes exclusion harder.

In the case where 1+ eChCKC < 1
2
eRChRCKR, the first fraction on the right hand

side of invasibility condition (4.72) is of the form

f(KC) =
A

B + CKC

where

A =
1

2
αRP eRPKRrChRC

B = rChRC(1 + eRPhRPKR)

C = rChRCeCPhPC + eCPhPCαRC

We have that f ′(KC) < 0, so increasing KC causes the first fraction on the right hand

side of invasibility condition (4.72) to decrease.

The second fraction on the right hand side of invasibility condition (4.72) is of the

form

g(KC) =
DKC

E + FKC

where

D = αCP eCP rChRC

E = rChRC(1 + eRPhRPKR)

F = rChRCeCPhCP + eCPhCPαRC

We have that g′(KC) > 0, so increasing KC causes the second fraction on the right

hand side of invasibility condition (4.72) to increase.

So, increasing KC causes the first fraction on the right hand side of invasibility
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condition (4.72) to decrease, while causing the second fraction to increase. Thus,

when we add these fraction together, we get that the right hand side of the invasibility

condition could be increasing or decreasing as a result of increasingKC . If αRP eRP >>

αCP eCP then the first fraction on the right hand side of invasibility condition (4.72)

dominates the second fraction. In this case, increasing KC causes the right hand

side of invasibility condition (4.72) to decrease, which makes exclusion harder. But

if αRP eRP << αCP eCP then the second fraction on the right hand side of invasibility

condition (4.72) dominates the first fraction. In this case, increasing KC causes the

right hand side of invasibility condition (4.72) to increase, which makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.73) is of the

form

f(KC) =
A

B + CKC

where

A = αRP eRPKR

B = 1 +
1

2
eRPhRPKR

C = eCPhPC

We have that f ′(KC) < 0. So, increasing KC causes the first fraction on the right

hand side of exclusion condition (4.73) to decrease.

The second fraction on the right hand side of exclusion condition (4.73) is of the

form

g(KC) =
DKC

E + FKC
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where

D = rChRCαCP eCP + αCP eCPαRC

E = rChRC

F = rChRCeCPhCP

We have that g′(KC) > 0 so increasing KC causes the second fraction on the right

hand side of exclusion condition (4.73) to increase.

So, increasing KC causes the first fraction on the right hand side of exclusion

condition (4.73) to decrease, while causing the second fraction to increase. Thus, when

we add these fractions together, we get that the right hand side of exclusion condition

(4.73) could be increasing or decreasing as a result of increasing KC . If αRP eRP >>

αCP eCP then the first fraction on the right hand side of exclusion condition (4.73)

dominates the second fraction. In this case, increasing KC causes the right hand

side of exclusion condition (4.73) to decrease, which makes exclusion easier. But if

αRP eRP << αCP eCP then the second fraction on the right hand side of exclusion

condition (4.73) dominates the first fraction. In this case, increasing KC causes

the right hand side of exclusion condition (4.73) to increase, which makes exclusion

harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.23. 1. We say that increasing KR makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of KR; i.e., if increasing KR increases the maximum

value of mP , allowed for the predators to invade. We say that increasing KR

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of KR; i.e., if

increasing KR reduces the maximum value of mP allowed for the predators to
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invade.

2. We say that increasing KR makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of KR; i.e., if increasing KR decreases the minimum value of mP which

results in the predators being excluded. We say that increasing KR makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of KR; i.e., if increasing

KR increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.25. If KR

2
< R

∗
< KR then increasing KR

1. makes it easier for the predator to invade if αRP eRP >> αCP eCP .

2. makes it harder for the predator to invade if αRP eRP << αCP eCP .

3. makes it easier for the predator to be excluded if

(a) 1
2
eRChRCKR < 1 + eChCKC, αRCeRC(1 + eCPhCPKC) > 1

2
rCeRPhRP (1 +

eChCKC), KR > K
∗
R, and αRP eRP << αCP eCP , where K

∗
R is the positive

solution to equation (4.74).

(b) 1
2
eRChRCKR < 1 + eChCKC, αRCeRC(1 + eCPhCPKC) < 1

2
rCeRPhRP (1 +

eChCKC), and αRP eRP << αCP eCP .

4. makes it harder for the predator to be excluded if

(a) 1
2
eRChRCKR < 1 + eChCKC, αRCeRC(1 + eCPhCPKC) > 1

2
rCeRPhRP (1 +

eChCKC), and 0 < KR < K
∗
R, where K

∗
R is the positive solution to equation

(4.74).

(b) 1
2
eRChRCKR < 1 + eChCKC, αRCeRC(1 + eCPhCPKC) > 1

2
rCeRPhRP (1 +

eChCKC), KR > K
∗
R, and αRP eRP >> αCP eCP , where K

∗
R is the positive

solution to equation (4.74) .
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(c) 1
2
eRChRCKR < 1 + eChCKC, αRCeRC(1 + eCPhCPKC) < 1

2
rCeRPhRP (1 +

eChCKC), and αRP eRP >> αCP eCP .

(d) 1
2
eRChRCKR > 1 + eChCKC.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(KR) =
AKR +BK2

R

C +DKR + EK2
R

where

A =
1

2
αRP eRP rC(1 + eChCKC)

B =
1

4
αRP eRP rCeRChRC

C = rC(1 + eChCKC)(1 + eCPhPCKC)

D = rC

[
eRPhRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhPCKC)

]
+ eCPhPCKCαRCeRC

E =
1

2
rCeRChRCeRPhRP

We have that

f ′(KR) =
(BD − AE)K2

R + 2BCKR + AC

(C +DKR + EK2
R)

2 .

We will have f ′(KR) > 0 if the quadratic function q(KR) = (BD−AE)K2
R+2BCKR+

AC is positive. We will have f ′(KR) < 0 if q(KR) < 0. The q-intercept of q(KR) is

q = AC > 0. The vertex of q(KR) is located at

KR = − BC

BD − AE

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BD < AE

< 0 if BD > AE

.

If BD > AE then q(KR) opens upward, the q-intercept is above the KR-axis, and the



176

vertex is to the left of the q-axis. In this case, we have f ′(KR) > 0. But, if BD < AE

then q(KR) opens downward, the q-intercept is above the KR-axis, and the vertex is

to the right of the q-axis. In this case, we have f ′(KR) > 0 if 0 < KR < K
∗
R and

f ′(KR) < 0 if KR > K
∗
R, where K

∗
R is the positive root of q(KR) = 0. Note that

BD < AE ⇔ 1

4
αRP eRP r

2
CeRChRC

[
eRPhRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhPCKC)

]

+
1

4
αRP eRP rCeRChRCeCPhPCKCαRCeRC

>
1

4
r2CeRChRCeRPhRPαRP eRP (1 + eChCKC)

⇔ rC

[
eRPhRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhPCKC)

]

+ eCPhPCKCαRCeRC > rCeRPhRP (1 + eChCKC)

⇔ 1

2
rCeRChRC(1 + eCPhPCKC) + eCPhPCKCαRCeRC > 0

and

BD > AE ⇔ 1

2
rCeRChRC(1 + eCPhPCKC) + eCPhPCKCαRCeRC < 0.

So we must have f ′(KR) > 0. Thus, increasing KR causes the first fraction on the

right hand side of invasibility condition (4.68) to increase.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(KR) =
A+BKR

C +DKR + EK2
R



177

where

A = αCP eCPKCrC(1 + eChCKC)

B =
1

2
αCP eCPKCrCeRChRC

C = rC(1 + eChCKC)(1 + eCPhCPKC)

D = rC

[
eRPhRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhCPKC)

]
+ eCPhCPKCαRCeRC

E =
1

2
rCeRChRCeRPhRP

We have that

g′(KR) = −BEK2
R + 2AEKR + (DA− BC)

(C +DKR + EK2
R)

2 .

We will have g′(KR) > 0 if the quadratic function q(KR) = −BEK2
R − 2AEKR +

(BC − AD) is positive. We will have g′(KR) < 0 if q(KR) < 0. The vertex of q(KR)

is located at KR = −A
B
< 0. The q-intercept of q(KR) is

y = BC − AD

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

.

If BC < AD then q(KR) opens downward, the vertex is to the left of the q-axis,

and the q-intercept is below the KR-axis. In this case, we have g′(KR) < 0. But if

BC > AD then q(KR) opens downward, the vertex is to the left of the q-axis, and the

q-intercept is above the KR-axis. In this case, we have g′(KR) > 0 if 0 < KR < K
∗
R
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and g′(KR) < 0 if KR > K
∗
R, where K

∗
R is the positive root of q(KR) = 0. Note that

BC < AD ⇔ 1

2
αCP eCPKCr

2
CeRChRC(1 + eChCKC)(1 + eCPhCPKC)

< αCP eCPKCr
2
C(1 + eChCKC)

[
hRP eRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhCPKC)

]

+ αCP eCPKCrCeCPhCPKCαRCeRC(1 + eChCKC)

⇔ 1

2
rCeRChRC(1 + eChCKC)(1 + eCPhCPKC)

< rC(1 + eChCKC)

[
eRPhRP (1 + eChCKC) +

1

2
eRChRC(1 + eCPhCPKC)

]

+ eCPhCPKCαRCeRC(1 + eChCKC)

⇔ 0 < rC(1 + eChCKC)
2 + eCPhCPKCαRCeRC(1 + eChCKC)

and

BC > AD ⇔ 0 > rC(1 + eChCKC)
2 + eCPhCPKCαRCeRC(1 + eChCKC).

So we must have g′(KR) < 0. Thus, increasing KR causes the second fraction on the

right hand side of invasibility condition (4.68) to decrease.

So, increasing KR causes the first fraction on the right hand side of invasibility

condition (4.68) to increase while causing the second fraction to decrease. When we

add these fractions together, we get that the right hand side of invasibility condition

(4.68) could be increasing or decreasing as a result of increasing KR. If αRP eRP >>

αCP eCP then the first fraction on the right hand side of invasibility condition (4.68)

dominates the second fraction. In this case, increasing KR causes the right hand

side of invasibility condition (4.68) to increase, which makes invasion easier. But if

αRP eRP << αCP eCP then the second fraction on the right hand side of invasibility

condition (4.68) dominates the first fraction. In this case, increasing KR causes the

right hand side of invasibility condition (4.68) to decrease, which makes invasion

harder.

The first fraction on the right hand side of exclusion condition (4.69) is of the
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form

f(KR) =
AKR

B + CKR

where

A = αRP eRP

B = 1 + eCPhPCKC

C =
1

2
eRPhRP

We have that f ′(KR) > 0, so increasing KR causes the first fraction on the right hand

side of exclusion condition (4.69) to increase.

The second fraction on the right hand side of exclusion condition (4.69) is of the

form

g(KR) =
A+BKR

C +DKR + EK2
R

where

A = αCP eCPKCrC(1 + eChCKC)

B =
1

2
αCP eCPKCrCeRChRC + αCP eCPKCαRCeRC

C = (1 + eCPhCPKC)(1 + eChCKC)

D =
1

2
eRChRC(1 + eCPhCPKC) +

1

2
eRPhRP (1 + eChCKC)

E =
1

4
eRPhRP eRChRC

As in the previous case, we have that g′(KR) < 0 if either BC < AD or BC > AD

with KR > K
∗
R, and g′(KR) > 0 if BC > AD with 0 < KR < K

∗
R, where K

∗
R is the

positive root of

−BEK2
R − 2AEKR + (BC − AD) = 0. (4.74)



180

Note that

BC < AD ⇔ αCP eCPKCeRC

(
1

2
rChRC + αRC

)
(1 + eCPhCPKC)(1 + eChCKC)

<
1

2
αCP eCPKCrC(1 + eChCKC) [eRChRC(1 + eCPhCPKC) + eRPhRP (1 + eChCKC)]

⇔ eRC

(
1

2
rChRC + αRC

)
(1 + eCPhCPKC)

<
1

2
rC [eChRC(1 + eCPhCPKC) + eRPhRP (1 + eChCKC)]

⇔ 1

2
rCeRChRC(1 + eCPhCPKC) + αRCeRC(1 + eCPhCPKC)

<
1

2
rCeRChRC(1 + eCPhCPKC) +

1

2
rCeRPhRP (1 + eChCKC)

⇔ αRCeRC(1 + eCPhCPKC) <
1

2
rCeRPhRP (1 + eChCKC)

and

BC < AD ⇔ αRCeRC(1 + eCPhCPKC) >
1

2
rCeRPhRP (1 + eChCKC).

So, if αRCeRC(1 + eCPhCPKC) <
1
2
rCeRPhRP (1 + eChCKC with 0 < KR < K

∗
R then

increasing KR causes the second fraction on the right hand side of exclusion condition

(4.69) to increase. But if either αRCeRC(1+ eCPhCPKC) <
1
2
rCeRPhRP (1+ eChCKC)

withKR > K
∗
R or αRCeRC(1+eCPhCPKC) >

1
2
rCeRPhRP (1+eChCKC) then increasing

KR causes the second fraction on the right hand side of exclusion condition (4.69) to

decrease.

Therefore, if αRCeRC(1+eCPhCPKC) >
1
2
rCeRPhRP (1+eChCKC) with 0 < KR <

K
∗
R then increasing KR causes both the first and second fractions on the right hand

side of exclusion condition (4.69) to increase. So when we add these fractions together,

we get that the right hand side of the exclusion condition is increasing. This makes

exclusion harder. But if either αRCeRC(1+eCPhCPKC) <
1
2
rCeRPhRP (1+eChCKC) or

αRCeRC(1+ eCPhCPKC) <
1
2
rCeRPhRP (1+ eChCKC) with KR > K

∗
R, then increasing

KR causes the first fraction on the right hand side of exclusion condition (4.69)

to increase, while causing the second fraction to decrease. So when we add these
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fractions together, we get that the right hand side of the exclusion condition could be

increasing or decreasing as a result of increasing KR. If αRP eRP >> αCP eCP then the

first fraction on the right hand side of exclusion condition (4.69) dominates the second

fraction. In this case, increasing KR causes the right hand side of exclusion condition

(4.69) to increase. This makes invasion harder. But if αRP eRP << αCP eCP then

the second fraction on the right hand side of exclusion condition (4.69) dominates

the first fraction. In this case, increasing KR causes the right hand side of exclusion

condition (4.69) to decrease. This makes exclusion easier.

In the case where 1+ eChCKC < 1
2
eRChRCKR, the first fraction on the right hand

side of invasibility condition (4.72) is of the form

f(KR) =
AKR

B + CKR

where

A =
1

2
αRP eRP rChRC

B = rChRC(1 + eCPhPCKC) + eCPhPCKCαRC

C = rChRCeRPhRP

We have that f ′(KR) > 0, so increasing KR causes first fraction on the right hand

side of invasibility condition (4.72) to increase.

The second fraction on the right hand side of invasibility condition (4.72) is of the

form

g(KR) =
D

E + FKR
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where

D = αCP eCPKCrChRC

E = rC(1 + eCPhCPKC) + eCPhCPKCαRC

F = rChRCeRPhRP

We have that g′(KR) < 0, so increasing KR causes the second fraction on the right

hand side of invasibility condition (4.72) to decrease.

So, increasing KR causes the first fraction on the right hand side of invasibility

condition (4.72) to increase, while causing the second fraction to decrease. So when we

add these fractions together, we get that the right hand side of invasibility condition

(4.72) could be increasing or decreasing as a result of increasing KR. If αRP eRP >>

αCP eCP then the first fraction on the right hand side of invasibility condition (4.72)

dominates the second fraction. In this case, increasing KR causes the right hand

side of invasibility condition (4.72) to increase, which makes invasion easier. But if

αRP eRP << αCP eCP then the second fraction on the right hand side of invasibility

condition (4.72) dominates the first fraction. In this case, increasing KR causes the

right hand side of invasibility condition (4.72) to decrease. This makes invasion

harder.

The second fraction on the right hand side of exclusion condition (4.73) is inde-

pendent of KR. The first fraction on the right hand side of exclusion condition (4.73)

is of the form

f(KR) =
AKR

B + CKR
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where

A = αRP eRP

B = 1 + eCPhPCKC

C =
1

2
ePRhRP

We have that f ′(KR) > 0 so increasing KR causes the right hand side of exclusion

condition (4.73) to increase, which makes exclusion harder.

Before stating the following theorem, we introduce some terminology.

Definition 4.24. 1. We say that increasing αRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of αRC; i.e., if increasing αRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing αRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of αRC; i.e., if

increasing αRC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing αRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of αRC; i.e., if increasing αRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing αRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of αRC; i.e., if increasing

αRC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.26. If KR

2
< R

∗
< KR then increasing αRC
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1. makes it harder for the predator to invade.

2. makes it harder for the predator to be excluded.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(αRC) =
A

B + αRC

where

A =
1

2
αRP eRPKRrC

(
1 +

1

2
eRChRCKR + eChCKC

)

B = rC

(
1 +

1

2
eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhPCKC)

C = eCPhPCKCeRCKR

We have that f ′(αRC) < 0, so increasing αRC causes the first fraction on the right

hand side of invasibility condition (4.68) to decrease.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(αRC) =
D

E + FαRC

where

D = αCP eCPKCrC

(
1 +

1

2
eRChRCKR + eChCKC

)

E = rC

(
1 +

1

2
eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhCPKC)

F = eCPhCPKCeRCKR

We have that g′(αRC) < 0, so increasing αRC causes the second fraction on the right

hand side of invasibility condition (4.68) to decrease.
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So, increasing αRC causes both the first and second fractions on the right hand

side of invasibility condition (4.68) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.69) is indepen-

dent of αRC . The second fraction on the right hand side of exclusion condition (4.69)

is of the form

f(αRC) = A+BαRC

where

A =
αCP eCPKCrC

(
1 + 1

2
eRChRCKR + eChCKC

)(
1 + 1

2
eRPhRPKR + eCPhCPKC

) (
1 + 1

2
eRChRCKR + eChCKC

)
B =

αCP eCPKCeRCKR(
1 + 1

2
eRPhRPKR + eCPhCPKC

) (
1 + 1

2
eRChRCKR + eChCKC

)
We have that f ′(αRC) > 0, so increasing αRC causes the right hand side of exclusion

condition (4.69) to increase. This makes exclusion harder.

In the case where 1+ eChCKC < 1
2
eRChRCKR, the first fraction on the right hand

side of invasibility condition (4.72) is of the form

f(αRC) =
A

B + CαRC

where

A =
1

2
αRP eRPKRrChRC

B = rChRC(1 + eRPhRPKR + eCPhPCKC)

C = eCPhPCKC

We have that f ′(αRC) < 0, so increasing αRC causes the first fraction on the right

hand side of invasibility condition (4.72) to decrease.

The second fraction on the right hand side of invasibility condition (4.72) is of the
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form

g(αRC) =
D

E + FαRC

where

D = αCP eCPKCrChRC

E = rChRC(1 + eRPhRPKR + eCPhCPKC)

F = eCPhCPKC

We have that g′(αRC) < 0, so increasing αRC causes the second fraction on the right

hand side of invasibility condition (4.72) to decrease.

So, increasing αRC causes both the first and second fractions on the right hand side

of invasibility condition (4.72) to decrease. So when we add these fractions together,

we get that the right hand side of invasibility condition (4.72) is decreasing as a result

of increasing αRC . This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.73) is indepen-

dent of αRC . The second fraction on the right hand side of exclusion condition (4.73)

is of the form

f(αRC) = A+BαRC

where

A =
rChRCαCP eCPKC

rChRC(1 + eCPhCPKC)

B =
αCP eCPKC

rChRC(1 + eCPhCPKC)

We have that f ′(αRC) > 0 so increasing αRC causes the right hand side of exclusion

condition (4.73) to increase, which makes exclusion harder.

Before stating the following theorem, we introduce some terminology.



187

Definition 4.25. 1. We say that increasing eaRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)

is an increasing function of eRC; i.e., if increasing eRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing eRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of eRC; i.e., if

increasing eRC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing eRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of eRC; i.e., if increasing eRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing eRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of eRC; i.e., if increasing

eRC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.27. If KR

2
< R

∗
< KR then increasing eRC

1. makes it harder for the predator to invade if 1
2
eRChRCKR < 1 + eChCKC.

2. makes it harder for the predator to be excluded if 1
2
eRChRCKR < 1 + eChCKC.

3. has no effect on whether the predator can invade or is excluded from the system

if 1 + eChCKC < 1
2
eRChRCKR.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(eRC) =
A+BeRC

C +DeRC
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where

A =
1

2
αRP eRPKRrC(1 + eChCKC)

B =
1

4
αRP eRPK

2
RrChRC

C = rC(1 + eChCKC)(1 + eRPhRPKR + eCPhPCKC)

D =
1

2
rChRCKR(1 + eRPhRPKR + eCPhPCKC) + eCPhPCKCαRCKR

We have that

f ′(eRC) =
BC − AD

(C +DeRC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

Note that

BC > AD ⇔ 1

2
αRP eRPK

2
Rr

2
ChRC(1 + eChCKC)(1 + eRPhRPKR + eCPhPCKC)

>
1

2
αRP eRPK

2
Rr

2
ChRC(1 + eRPhRPKR + eCPhPCKC)(1 + eChCKC)

+
1

2
αRP eRPK

2
RrCeCPhPCKCαRC(1 + eChCKC)

⇔ 0 >
1

2
αRP eRPK

2
RrCeCPhPCKCαRC(1 + eChCKC)

and

BC < AD ⇔ 0 <
1

2
αRP eRPK

2
RrCeCPhPCKCαRC(1 + eChCKC).

So, f ′(eRC) < 0 for all biologically relevant values of the parameters. Thus, increasing

eRC causes the first fraction on the right hand side of invasibility condition (4.68) to

decrease.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(eRC) =
E + FeRC

G+HeRC
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where

E = αCP eCPKCrC(1 + eChCKC)

F =
1

2
αCP eCPKCrChRCKR

G = rC(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC)

H =
1

2
rChRCKR(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCKR

We have that g′(eRC) > 0 if FG > EH and g′(eRC) < 0 if FG < EH. Note that

FG > EH ⇔ 1

2
αCP eCPKCr

2
ChRCKR(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC)

>
1

2
αCP eCPKCr

2
ChRCKR(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC)

+ αCP e
2
CPK

2
CrChCPαRCKR(1 + eChCKC)

⇔ 0 > αCP e
2
CPK

2
CrChCPαRCKR(1 + eChCKC)

and

FG < EH ⇔ 0 < αCP e
2
CPK

2
CrChCPαRCKR(1 + eChCKC).

So we must have g′(eRC) < 0 for all biologically relevant values of the parameter.

Thus, increasing eRC causes the second fraction on the right hand side of invasibility

condition (4.68) to decrease.

Thus, increasing eRC causes both the first and second fractions on the right hand

side of invasibility condition (4.68) to decrease. So when we add these fractions

together, we get that increasing eRC causes the right hand side of invasibility condition

(4.68) to decrease. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (4.69) is indepen-

dent of eRC . The second fraction on the right hand side of exclusion condition (4.69)
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is of the form

f(eRC) =
A+BeRC

C +DeRC

where

A = αCP eCPKCrC(1 + eChCKC)

B =
1

2
αCP eCPKCrChRCKR + αCP eCPKCαRCKR

C =

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

D =
1

2
hRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

We have that f ′(eRC) > 0 if BC > AD and f ′(eRC) < 0 if BC < AD. Note that

BC > AD ⇔ αCP eCPKCKR

(
1

2
rChRC + αRC

)(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

>
1

2
αCP eCPKCrChRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

⇔ 1

2
rChRC + αRC >

1

2
rChRC

⇔ αRC > 0

and

BC < AD ⇔ αRC < 0.

So, we have that f ′(eRC) > 0 so increasing eRC causes the right hand side of exclusion

condition (4.69) to increase, which makes exclusion harder.

In the case where 1 + eChCKC < 1
2
eRChRCKC , none of the fractions on the right

hand side of either invasibility condition (4.72) or exclusion condition (4.73) depends

on eRC .

Before stating the following theorem, we introduce some terminology.

Definition 4.26. 1. We say that increasing hRC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56)
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is an increasing function of hRC; i.e., if increasing hRC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing hRC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of hRC; i.e., if

increasing hRC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing hRC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of hRC; i.e., if increasing hRC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing hRC makes

it harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of hRC; i.e., if increasing

hRC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.28. If KR

2
< R

∗
< KR then increasing hRC

1. makes it easier for the predator to invade.

2. makes it easier for the predator to be excluded.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(hRC) =
A+BhRC

C +DhRC
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where

A =
1

2
αRP eRPKRrC(1 + eChCKC)

B =
1

4
αRP eRPK

2
RrCeRC

C = rC(1 + eChCKC)(1 + eRPhRPKR + eCPhPCKC) + eCPhPCKCαRCeRCKR

D =
1

2
rCeRCKR(1 + eRPhRPKR + eCPhPCKC)

We have that

f ′(hRC)

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

.

Note that

BC > AD ⇔ 1

4
αRP eRPK

2
Rr

2
CeRC(1 + eChCKC)(1 + eRPhRPKR + eCPhPCKC)

+
1

4
αRP eRPK

3
RrCe

2
RCeCPhPCKCαRC

>
1

4
αRP eRPK

2
Rr

2
CeRC(1 + eChCKC)(1 + eRPhRPKR + eCPhPCKC)

⇔ 1

4
αRP eRPK

3
RrCe

2
RCeCPhPCKCαRC > 0

and

BC < AD ⇔ 1

4
αRP eRPK

3
RrCe

2
RCeCPhPCKCαRC .

So we have f ′(hRC) > 0. Therefore, increasing hRC causes the first fraction on the

right hand side of invasibility condition (4.68) to increase.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(hRC) =
E + FhRC

G+HhRC
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where

E = αCP eCPKCrC(1 + eChCKC)

F =
1

2
αCP eCPKCrCeRCKR

G = rC(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR

H =
1

2
rCeRCKR(1 + eRPhRPKR + eCPhCPKC)

We have that

g′(hRC)

⎧⎪⎪⎨
⎪⎪⎩
> 0 if FG > EH

< 0 if FG < EH

.

Note that

FG > EH ⇔ 1

2
αCP eCPKCr

2
CeRCKR(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC)

+
1

2
αCP e

2
CPK

2
CrCe

2
RCK

2
RhCPαRC

>
1

2
αCP eCPKCr

2
CeRCKR(1 + eChCKC)(1 + eRPhRPKR + eCPhCPKC)

⇔ 1

2
αCP e

2
CPK

2
CrCe

2
RCK

2
RhCPαRC > 0

and

FG < EH ⇔ 1

2
αCP e

2
CPK

2
CrCe

2
RCK

2
RhCPαRC < 0.

So we have that g′(hRC) > 0. Therefore, increasing hRC causes the second fraction

on the right hand side of invasibility condition (4.68) to increase.

Thus, increasing hRC causes both the first and second fractions on the right hand

side of invasibility condition (4.68) to increase. So when we add these fractions

together, we get that the right hand side of the invasibility condition is increasing as

a result of increasing hRC . This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.69) is indepen-
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dent of hRC . The second fraction on the right hand side of exclusion condition (4.69)

is of the form

f(hRC) =
A+BhRC

C +DhRC

where

A = αCP eCPKCrC(1 + eChCKC) + αCP eCPKCαRCeRCKR

B =
1

2
αCP eCPKCrCeRCKR

C =

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

D =
1

2
eRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

We have that

f ′(hRC)

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

.

Note that

BC > AD ⇔ 1

2
αCP eCPKCrCeRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

>
1

2
αCP eCPKCrCeRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
(1 + eChCKC)

+
1

2
αCP eCPKCαRCe

2
RCK

2
R

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

⇔ 0 >
1

2
αCP eCPKCαRCe

2
RCK

2
R

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

and

BC < AD ⇔ 0 <
1

2
αCP eCPKCαRCe

2
RCK

2
R

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
.

So we have that f ′(hRC) < 0. Thus, increasing hRC causes the right hand side of

exclusion condition (4.69) to decrease, which makes exclusion easier.
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In the case where 1+ eChCKC < 1
2
eRChRCKR, the first fraction on the right hand

side of invasibility condition (4.72) is of the form

f(hRC) =
AhRC

B + ChRC

where

A =
1

2
αRP eRPKRrC

B = rC(1 + eRPhRPKR + eCPhPCKC)

C = eCPhPCKCαRC

We have that f ′(hRC) > 0, so increasing hRC causes the first fraction on the right

hand side of invasibility condition (4.72) to increase.

The second fraction on the right hand side of invasibility condition (4.72) is of the

form

g(hRC) =
DhRC

E + FhRC

where

D =
1

2
αRP eRPKRrC

E = rC(1 + eRPhRPKR + eCPhCPKC)

F = eCPhCPKCαRC

We have that g′(hRC) > 0, so increasing hRC causes the second fraction on the right

hand side of invasibility condition (4.72) to increase.

Thus, increasing hRC causes both the first and second fractions on the right hand

side of invasibility condition (4.72) to increase. When we add these fractions together,

we get that the right hand side is increasing. This makes invasion easier.
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The first fraction on the right hand side of exclusion condition (4.73) is indepen-

dent of hRC . The second fraction on the right hand side of exclusion condition (4.72)

is of the form

f(hRC) = A+
B

hRC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRC

rC(1 + eCPhCPKC)

We have that f ′(hRC) < 0. So, increasing hRC causes the right hand side of exclusion

condition (4.73) to decrease, which makes exclusion easier.

Before stating the following theorem, we introduce some terminology.

Definition 4.27. 1. We say that increasing eChC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56) is

an increasing function of eChC; i.e., if increasing eChC increases the maximum

value of mP , allowed for the predators to invade. We say that increasing eChC

makes it harder for the predators to invade if the right hand side of either

invasibility condition (4.54) or (4.56) is a decreasing function of eChC; i.e., if

increasing eChC reduces the maximum value of mP allowed for the predators to

invade.

2. We say that increasing eChC makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of eChC; i.e., if increasing eChC decreases the minimum value of mP

which results in the predators being excluded. We say that increasing eChC

makes it harder for the predators to be excluded if the right hand side of either

exclusion condition (4.55) or (4.57) is an increasing function of eChC; i.e.,
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if increasing eChC increases the minimum value of mP which results in the

predators being excluded.

Theorem 4.29. If KR

2
< R

∗
< KR then increasing eChC

1. makes it easier for the predators to invade if 1
2
eRChRCKR < 1 + eChCKC.

2. makes it easier for the predators to be excluded if 1
2
eRChRCKR < 1 + eChCKC.

3. has no effect on whether the predators can invade or are excluded, if 1 +

eChCKC < 1
2
eRChRCKR.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(eChC) =
A+BeChC

C +DeCHC

where

A =
1

2
αRP eRPKRrC

(
1 +

1

2
eRChRCKR

)

B =
1

2
αRP eRPKRrCKC

C = rC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhPCKC) + eCPhPCKCαRCeRCKR

D = rCKC(1 + eRPhRPKR + eCPhPCKC)

We have that

f ′(eChC)

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > AD

< 0 if BC < AD

.
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Note that

BC > AD ⇔ 1

2
αRP eRPKRr

2
CKC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhPCKC)

+
1

2
αRP eRPK

2
RrCK

2
CeCPhPCαRCeRC

>
1

2
αRP eRPKRr

2
CKC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhPCKC)

⇔ 1

2
αRP eRPK

2
RrCK

2
CeCPhPCαRCeRC > 0

and

BC < AD ⇔ 1

2
αRP eRPK

2
RrCK

2
CeCPhPCαRCeRC < 0.

So we have that f ′(eChC) > 0. So, increasing eChC causes the first fraction on the

right hand side of invasibility condition (4.68) to increase.

The second fraction on the right hand side of invasibility condition (4.68) is of the

form

g(eChC) =
E + FeChC

G+HeChC

where

E = αCP eCPKCrC

(
1 +

1

2
eRChRCKR

)

F = αCP eCPK
2
CrC

G = rC

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhCPKC) + eCPhCPKCαRCeRCKR

H = rCKC(1 + eRPhRPKR + eCPhCPKC)

We have that

g′(eChC)

⎧⎪⎪⎨
⎪⎪⎩
> 0 if FG > EH

< 0 if FG < EH

.
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Note that

FG > EH ⇔ αCP eCPK
2
Cr

2
C

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhCPKC)

+ αCP e
2
CPK

3
CrChCPαRCeRCKR

> αCP eCPK
2
Cr

2
C

(
1 +

1

2
eRChRCKR

)
(1 + eRPhRPKR + eCPhCPKC)

⇔ αCP e
2
CPK

3
CrChCPαRCeRCKR > 0

and

FG < EH ⇔ αCP e
2
CPK

3
CrChCPαRCeRCKR < 0.

So we have that g′(eChC) > 0. So, increasing eChC causes the second fraction on the

right hand side of invasibility condition (4.68) to increase.

Thus, increasing eChC causes both the first and second fractions on the right

hand side of invasibility condition (4.68) to increase. So when we add these fractions

together, the right hand side of invasibility condition (4.68) is increasing as a result

of increasing eChC . This makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.69) is indepen-

dent of eChC . The second fraction on the right hand side of exclusion condition (4.69)

is of the form

f(eChC) =
A+BeChC

C +DeCHC

where

A = αCP eCPKCrC

(
1 +

1

2
eRChRCKR

)
+ αCP eCPKCαRCeRCKR

B = αCP eCPK
2
CrC

C =

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)(
1 +

1

2
eRChRCKR

)

D = KC

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
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We have that f ′(eChC) > 0 if BC > AD and f ′(eChC) < 0 if BC < AD. Note that

BC > AD ⇔ αCP eCPK
2
CrC

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)(
1 +

1

2
eRChRCKR

)

> αCP eCPK
2
CrC

(
1 +

1

2
eRChRCKR

)(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

+ αCP eCPK
2
CαRCeRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

⇔ 0 > αCP eCPK
2
CαRCeRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)

and

BC < AD ⇔ 0 < αCP eCPK
2
CαRCeRCKR

(
1 +

1

2
eRPhRPKR + eCPhCPKC

)
.

So we have that f ′(eChC) < 0. So, increasing eChC causes the right hand side of

exclusion condition (4.69) to decrease, which makes exclusion easier.

In the case where 1 + eChCKC < 1
2
eRChRCKR, none of the fractions on the right

hand side of either invasibility condition (4.72) or exclusion condition (4.73) depends

on eChC . So, increasing eChC has no effect on whether the predators are able to

invade or are excluded from the system.

Before stating the following theorem, we introduce some terminology.

Definition 4.28. 1. We say that increasing rC makes it easier for the predators

to invade if the right hand side of either invasibility condition (4.54) or (4.56) is

an increasing function of rC; i.e., if increasing rC increases the maximum value

of mP , allowed for the predators to invade. We say that increasing rC makes

it harder for the predators to invade if the right hand side of either invasibility

condition (4.54) or (4.56) is a decreasing function of rC; i.e., if increasing rC

reduces the maximum value of mP allowed for the predators to invade.

2. We say that increasing rC makes it easier for the predators to be excluded if
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the right hand side of either exclusion condition (4.55) or (4.57) is a decreasing

function of rC; i.e., if increasing rC decreases the minimum value of mP which

results in the predators being excluded. We say that increasing rC makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (4.55) or (4.57) is an increasing function of rC; i.e., if increasing

rC increases the minimum value of mP which results in the predators being

excluded.

Theorem 4.30. If KR

2
< R

∗
< KR then increasing rC

1. makes it easier for the predators to invade.

2. makes it easier for the predators to be excluded if 1 + eChCKC < 1
2
eRChRCKR.

3. makes it harder for the predators to be excluded if 1
2
eRChRCKR < 1 + eChCKC.

Proof. In the case where 1
2
eRChRCKR < 1 + eChCKC , the first fraction on the right

hand side of invasibility condition (4.68) is of the form

f(rC) =
ArC

B + CrC

where

A =
1

2
αRP eRPKR

(
1 +

1

2
eRChRCKR + eChCKC

)

B = eCPhPCKCαRCeRCKR

C =

(
1 +

1

2
eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhPCKC)

We have that f ′(rC) > 0, so increasing rC causes the first fraction on the right hand

side of invasibility condition (4.68) to increase.

The second fraction on the right hand side of invasibility condition (4.68) is of the
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form

g(rC) =
DrC

E + FrC

where

D = αCP eCPKC

(
1 +

1

2
eRChRCKR + eChCKC

)

E = eCPhCPKCαRCeRCKR

F =

(
1 +

1

2
eRChRCKR + eChCKC

)
(1 + eRPhRPKR + eCPhCPKC)

We have that g′(rC) > 0, so increasing rC causes the second fraction on the right

hand side of invasibility condition (4.68) to increase.

Thus, increasing rC causes both the first and second fractions on the right hand

side of invasibility condition (4.68) to increase. So, when we add these fractions

together, we get that the right hand side of invasibility condition (4.68) is increasing,

which makes invasion easier.

The first fraction on the right hand side of exclusion condition (4.69) is indepen-

dent of rC . The second fraction on the right hand side of exclusion condition (4.69)

is of the form

f(rC) = A+BrC

where

A =
αCP eCPKCαRCeRCKR(

1 + 1
2
eRPhRPKR + eCPhCPKC

) (
1 + 1

2
eRChRCKR + eChCKC

)
B =

αCP eCPKC

1 + 1
2
eRPhRPKR + eCPhCPKC

We have that f ′(rC) > 0, so increasing rC causes the right hand side of exclusion

condition (4.69) to increase. This makes invasion harder.

In the case where 1+ eChCKC < 1
2
eRChRCKR, the first fraction on the right hand
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side of invasibility condition (4.72) is of the form

f(rC) =
ArC

B + CrC

where

A =
1

2
αRP eRPKRhRC

B = eCPhPCKCαRC

C = hRC(1 + eRPhRPKR + eCPhPCKC)

We have that f ′(rC) > 0, so increasing rC causes the first fraction on the right hand

side of invasibility condition (4.72) to increase.

The second fraction on the right hand side of invasibility condition (4.72) is of the

form

f(rC) =
DrC

E + FrC

where

D = αCP eCPKChRC

E = eCPhCPKCαRC

F = hRC(1 + eRPhRPKR + eCPhCPKC)

We have that g′(rC) > 0, so increasing rC causes the second fraction on the right

hand side of invasibility condition (4.72) to increase.

Thus, increasing rC causes both the first and second fractions on the right hand

side of invasibility condition (4.72) to increase. When we add these fractions together,

we get that the right hand side of invasibility condition (4.72) is increasing, which

makes invasion easier.
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The first fraction on the right hand side of exclusion condition (4.73) is indepen-

dent of rC . The second fraction on the right hand side of exclusion condition (4.73)

is of the form

f(rC) = A+
B

rC

where

A =
αCP eCPKC

1 + eCPhCPKC

B =
αCP eCPKCαRC

hRC(1 + eCPhCPKC)

We have that f ′(rC) < 0, so increasing rC causes the right hand side of exclusion

condition (4.73) to decrease. This makes exclusion easier.

4.8.3 KR

(
1− eRC

rCeChC

)
< R

∗
< KR

If KR

(
1− eRC

rCeChC

)
< R

∗
< KR and e2RChRCKR < rReChC(1+ eChCKC) then we use

the bounds on C
∗
imposed by the supersolution to the consumer equation, given by

inequalities (4.29). In this case, invasibility condition (4.52) becomes

mP <
αRP eRPKR

(
1− eRC

rReChC

)
1 + eRPhRPKR + eCPhPCKC

(
1 + αRCeRCKR

rC

[
1+eRChRCKR

(
1− eRC

rReChC

)
+eChCKC

]
)

+
αCP eCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRCeRCKR

rC

[
1+eRChRCKR

(
1− eRC

rReChC

)
+eChCKC

]
)

(4.75)
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and exclusion condition (4.53) becomes

mP >
αRP eRPKR

1 + eRPhRPKR

(
1− eRC

rReChC

)
+ eCPhPCKC

+

αCP eCPKC

(
1 + αRCeRCKR

rC

[
1+eRChRCKR

(
1− eRC

rReChC

)
+eChCKC

]
)

1 + eRPhRPKR

(
1− eRC

rReChC

)
+ eCPhCPKC

(4.76)

If KR

(
1− eRC

rCeChC

)
< R

∗
< KR and rReChC(1 + eChCKC) < e2RChRCKR (which

implies that rReChC(1 + eChCKC) < eRChRCKRrReChC , which is equivalent to 1 +

eChCKC < eRChRCKR) then we use the bounds on C
∗
imposed by the consumer

isocline’s horizontal asymptote, given by inequalities (4.30). In this case, invasibility

condition (4.52) becomes

mP <
αRP eRPKR

(
1− eRC

rReChC

)
1 + eRPhRPKR + eCPhPCKC

(
1 + αRC

rChRC

)
+

αCP eCPKC

1 + eRPhRPKR + eCPhCPKC

(
1 + αRC

rChRC

) (4.77)

and exclusion condition (4.53) becomes

mP >
αRP eRPKR

1 + eRPhRPKR

(
1− eRC

rReChC

)
+ eCPhPCKC

+
αCP eCPKC

(
1 + αRC

rChRC

)
1 + eRPhRPKR

(
1− eRC

rReChC

)
+ eCPhCPKC

. (4.78)

Note that whether the predator is able to invade or is excluded from the system

depends in part on parameters which are independent of the predator itself. If chang-

ing these parameters causes the right hand side of the invasion condition to increase,

then invasion becomes easier, which decreasing the right hand side makes invasion

harder. On the other hand, if changes to these parameters cause the right hand side
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of the exclusion condition to increase, then that means it will be harder to exclude

the predator, while a decrease would mean that exclusion is easier.

While the dependence of the invasibility and exclusion conditions on the param-

eters in this case could prove interesting, the calculations and expressions become

prohibitively long and complicated, and drawing useful conclusions becomes difficult.

It would, however, be worth exploring further in the future.

Boundary Limit Cycle

Now suppose we have the ω-periodic solution (ΓR,ΓC , 0), which is unstable in the

(R,C)-plane. The Floquet multiplier in the P direction is given by

exp

[
1

ω

∫ ω

0

(
αRPΓR(t)

1 + hRPΓR(t) + hPCΓC(t)
+

αCPΓC(t)

1 + hRPΓR(t) + hCPΓC(t)
−mP

)
dt

]
.

Thus, if (in dimensionalized terms)

mP <

∫ ω

0

(
αRP eRPΓR(t)

1 + eRPhRPΓR(t) + eCPhPCΓC(t)
+

αCP eCPΓC(t)

1 + eRPhRPΓR(t) + eCPhCPΓC(t)

)
dt

(4.79)

then (ΓR,ΓC , 0) is unstable in the P direction.

4.9 Permanence

For permanence, the only thing that remains to show is acyclicity. We will now take

Y0 = R
3
+ so that (now using dimensionzalied parameters) ∂Y0 =

{
(R,C, 0) : R ≥ 0,

C ≥ 0
}
∪{(R, 0, P ) : R ≥ 0, P ≥ 0}∪{(0, C, P ) : C ≥ 0, P ≥ 0}. Then ω (∂Y0) always

includes the equilibria (0, 0, 0), (KR, 0, 0), and (0, KC , 0). Additionally, when they

exist, ω (∂Y0) includes the equilibria of the form
(
R

∗
, C

∗
, 0
)
, of which there can be

one, two, or three,
(
R

∗
, 0, P

∗)
, and

(
0, C

∗
, P

∗)
, or the periodic boundary solution

(γR, γC , 0) , (φR, 0, φP ), and (0, ψC , ψP ).
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We know from section 4.3 that (0, 0, 0) is a saddle, where the (R,C)-plane is the

unstable subspace and the P -axis is the stable subspace.

If (3.7) holds, then (KR, 0, 0), restricted to the (R,P )-plane, is a saddle with the

R-axis being the stable subspace and the P -axis being the unstable subspace. In this

case, the equilibrium
(
R

∗
, 0, P

∗)
exists and the system is permanent in the (R,P )-

plane. Thus, there will be no heteroclinic orbit starting at
(
R

∗
, 0, P

∗)
and connecting

to another equilibrium. So if there is a heteroclinic orbit in the (R,P )-plane from

(KR, 0, 0) to
(
R

∗
, 0, P

∗)
then it will not be able to connect to any other heteroclinic

orbit in ∂Y0. If (3.7) does not hold, then (KR, 0, 0), when restricted to the (R,P )-

plane, is a stable node so the equilibrium
(
R

∗
, 0, P

∗)
does not exist. In this case,

there could be a heteroclinic orbit starting at (0, 0, 0) and ending at (KR, 0, 0).

If (3.3) holds, then (0, KC , 0), restricted to the (C, P )-plane, is a saddle with the

C-axis being the stable subspace and the P -axis being the unstable subspace. In this

case, the equilibrium
(
0, C

∗
, P

∗)
exists and the system is permanent in the (C, P )-

plane. Thus, there will be no heteroclinic orbit starting at
(
0, C

∗
, P

∗)
and connecting

to another equilibrium. So if there is a heteroclinic orbit in the (C, P )-plane from

(0, KC , 0) to
(
0, C

∗
, P

∗)
then it will not be able to connect to any other heteroclinic

orbit in ∂Y0. If (3.3) does not hold, then (0, KC , 0) is a stable node in the (C, P )-

plane and the equilibrium
(
0, C

∗
, P

∗)
does not exist. In this case, there could be a

heteroclinic orbit starting at (0, 0, 0) and ending at (0, KC , 0).

Since the possible heteroclinic orbit in the (R,P )-plane and the possible hetero-

clinic orbit in the (C, P )-plane both need to start at (0, 0, 0), they cannot be both

be part of a heteroclinic orbit which forms a heteroclinic cycle in ∂Y0. In fact, the

only possible heteroclinic cycle either could be part of would be one that has part of

its trajectory in the (R,C)-plane and ends at (0, 0, 0). But since the (R,C)-plane is

the unstable subspace of (0, 0, 0), no heteroclinic orbit in the (R,C)-plane can end at

(0, 0, 0). Thus, no heteroclinic cycles are possible in ∂Y0 so the system is acyclic.



208

Thus, we have proved the following result.

Theorem 4.31. If the boundary equilibria exist, the system (4.1) is permanent pro-

vided that (4.35), (4.43), (4.52), and at least one of (4.32) or (4.33) holds.

Remarks:

1. The consumers can always invade the system at (KR, 0, 0). So inequality (4.31)

does not affect the permanence of the system.

2. If both (4.32) and (4.33) hold, in addition to the other conditions, then the

system is permanent. But if only (4.32) holds then the predator still has the

opportunity to invade the R − C subsystem if (4.52) holds. So the system can

still be permanent even if (4.33) does not hold. If only (4.33) holds then the

resource still has the opportunity to invade the C − P subsystem when (4.35)

holds. So the system can still be permanent even when (4.32) does not hold.



Chapter 5

Analysis of the Full Model with
Harvesting

We now consider the cases where we have harvesting in the system. Note that we can

rewrite the system as

dR

dt
= (rR −HR)R

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP

dC

dt
= (rC −HC)C

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP

(5.1)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

− (mP +HP )P

209
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5.1 Harvesting the C − P Subsystem

5.1.1 Harvesting only the Consumers

In this case, the form of the subsystem is

dC

dt
= (rC −HC)C

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠− eCPCP

1 + eCPhCPC + ePhPP
(5.2)

dP

dt
=

αCP eCPCP

1 + eCPhCPC + ePhPP
−mPP

There are three possibly biologically relevant equilibria for this subsystem: (0, 0),((
rC−HC

rC

)
KC , 0

)
, and

(
C

∗
, P

∗)
, where

C
∗
=

β +

√
β2 + 4αCP ePhPmP

(
(rC−HC)2

rC

)
KC

2(rC −HC)αCP ePhP

for

β =
(rC −HC)

2

rC
KCαCP ePhP+eCPhCPmP

(
rC −HC

rC

)
KC−αCP eCP

(
rC −HC

rC

)
KC

and

P
∗
=

αCP eCPC
∗ −mP

(
1 + eCPhCPC

∗)
ePhPmP

Note that in order for
((

rC−HC

rC

)
KC , 0

)
to be biologically relevant, we must have

HC < rC and in order for
(
C

∗
, P

∗)
to be biologically relevant, we must have

P
∗
> 0 ⇔ αCP eCPC

∗
> mP

(
1 + eCPhCPC

∗)

⇔ C
∗

⎧⎪⎪⎨
⎪⎪⎩
> mP

eCP (αCP−mP hCP )
if mP < αCP

hCP

< mP

eCP (αCP−mP hCP )
if mP > αCP

hCP
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But, the case where mP > αCP

hCP
gives us C

∗
< 0, which we cannot have. So, we must

restrict ourselves to the case where mP < αCP

hCP
. Therefore we have

C
∗
>

mP

eCP (αCP −mPhCP )
with mP <

αCP

hCP

(5.3)

Since the logistic equation is a supersolution to the consumer equation in subsys-

tem (5.2), we have that C
∗
<
(

rC−HC

rC

)
KC . Thus, inequality (5.3) implies that

KC >
mP

eCP (αCP −mPhCP )

(
rC

rC −HC

)
.

This condition requires KC to be larger than in the case where there is no harvesting,

in order to have coexistence.

The stability of the boundary equilibria, when they exist, and the permanence of

the system are given by the following theorem.

Theorem 5.1. If

(a) HC > rC then (0, 0) is a stable node.

(b) HC < rC then (0, 0) is a saddle and
((

rC−HC

rC

)
KC , 0

)
is a

(i) stable node if HC > rC

(
1− mP

KCeCP (αCP−hCPmP )

)
.

(ii) saddle if HC < rC

(
1− mP

KCeCP (αCP−hCPmP )

)
. In this case, the system is

permanent.

Proof. The eigenvalues of the linearized system at (0, 0) are λ1 = rC − HC and

λ2 = −mP . If HC > rC then λ1 < 0 and λ2 < 0 so (0, 0) is a stable node. If HC < rC

then λ1 > 0 and λ2 < 0 so (0, 0) is a saddle.
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The eigenvalues of the linearized system at
((

rC−HC

rC

)
KC , 0

)
are

λ1 = HC − rC

λ2 =
KCeCPhCPmPHC + αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC

rC + rCKCeCPhCP −HCKCeCPhCP
.

We must have HC < rC in order for
((

rC−HC

rC

)
KC , 0

)
to be biologically relevant.

We see that in this case, λ1 < 0. We have that λ2 > 0 if either

KCeCPhCPmPHC + αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC > 0

with

rC + rCKCeCPhCP −HCKCeCPhCP > 0

or

KCeCPhCPmPHC + αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC < 0

with

rC + rCKCeCPhCP −HCKCeCPhCP < 0.

We have that λ2 < 0 if either

KCeCPhCPmPHC + αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC > 0

with

rC + rCKCeCPhCP −HCKCeCPhCP < 0

or

KCeCPhCPmPHC + αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC < 0
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with

rC + rCKCeCPhCP −HCKCeCPhCP > 0.

Note that

rC + rCKCeCPhCP −HCKCeCPhCP > 0 ⇔ HC < rC +
rC

KCeCPhCP

and

rC + rCKCeCPhCP −HCKCeCPhCP < 0 ⇔ HC > rC +
rC

KCeCPhCP

.

Since we are in the case where HC < rC , we cannot have HC > rC + rC
KCeCP hCP

. So for

all biologically relevant situations, we must have rC+rCKCeCPhCP−HCKCeCPhCP >

0.

In order to have KCeCPhCPmPHC + αCP eCPKCrC − mP eCPhCPKCrC−

KCeCPαCPHC −mP rC > 0, we must either have

HC > rC

(
1 +

mP

KCeCP (hCPmP − αCP )

)
if hCPmP > αCP ⇔ mP >

αCP

hCP

HC < rC

(
1 +

mP

KCeCP (hCPmP − αCP )

)
if hCPmP < αCP ⇔ mP <

αCP

hCP

In order to have KCeCPhCPmPHC + αCP eCPKCrC − mP eCPhCPKCrC−

KCeCPαCPHC −mP rC < 0, we must either have

HC > rC

(
1 +

mP

KCeCP (hCPmP − αCP )

)
if hCPmP < αCP ⇔ mP <

αCP

hCP

HC < rC

(
1 +

mP

KCeCP (hCPmP − αCP )

)
if hCPmP > αCP ⇔ mP >

αCP

hCP

Since we cannot havemP > αCP

hCP
, then we have thatHC < rC

(
1 + mP

KCeCP (hCPmP−αCP )

)
⇒ KCeCPhCPmPHC +αCP eCPKCrC −mP eCPhCPKCrC −KCeCPαCPHC −mP rC >

0 and HC > rC

(
1 + mP

KCeCP (hCPmP−αCP )

)
⇒ KCeCPhCPmPHC + αCP eCPKCrC −

mP eCPhCPKCrC −KCeCPαCPHC −mP rC < 0.
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Thus, we have λ2 > 0 when HC < rC

(
1 + mP

KCeCP (hCPmP−αCP )

)
. In this case,((

rC−HC

rC

)
KC , 0

)
is a saddle. But when HC > rC

(
1 + mP

KCeCP (hCPmP−αCP )

)
then

λ2 < 0 so
((

rC−HC

rC

)
KC , 0

)
is a stable node.

Inequality (3.3) tells us that in order to have permanence in this case, we must

have

αCP eCP

(
rC−HC

rC

)
KC >

(
eCPhCP

(
rC−HC

rC

)
KC + 1

)
mP

⇔ HC < rC

(
1 + mP

KCeCP (hCPmP−αCP )

)

which is the same condition we have in order for
((

rC−HC

rC

)
KC , 0

)
to be a saddle.

Biological Remark: This situation presents an interesting result, which we will

discuss in section 7.9.

5.1.2 Harvesting only the Predators

In this case, the form of the subsystem is

dC

dt
= rCC

(
1− C

KC

)
− eCPCP

1 + eCPhCPC + ePhPP

dP

dt
=

αCP eCPCP

1 + eCPhCPC + ePhPP
− (mP +HP )P (5.4)

There are three possibly biologically relevant equilibria for this subsystem: (0, 0),

(KC , 0), and
(
C

∗
, P

∗)
, where

C
∗
=

rCKCαCP ePhP + (mP +HP )KCeCPhCP − αCP eCPKC

2rCαCP ePhP

+

√
[rCKCαCP ePhP + (mP +HP )KCeCPhCP − αCP eCPKC ]

2
+ 4rCKCαCP ePhP (mP +HP )

2rCαCP ePhP

and

P
∗
=

αCP eCPC
∗ − (mP +HP )

(
1 + eCPhCPC

∗)
ePhP (mP +HP )
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We always have C
∗
> 0, so for

(
C

∗
, P

∗)
to be biologically relevant, we must have

P
∗
> 0 ⇔ αCP eCPC

∗
> (mP +HP )

(
1 + eCPhCPC

∗)

⇔ C
∗

⎧⎪⎪⎨
⎪⎪⎩
> mP+HP

eCP [αCP−(mP+HP )hCP ]
if αCP − (mP +HP )hCP > 0

< mP+HP

eCP [αCP−(mP+HP )hCP ]
if αCP − (mP +HP )hCP < 0

Clearly we cannot have αCP−(mP+HP )hCP < 0 because then we would have C
∗
< 0.

Thus, we cannot have HP > αCP

hCP
− mP , so we must restrict ourselves to the cases

where HP < αCP

hCP
−mP . Therefore we have

C
∗
>

mP +HP

eCP [αCP − (mP +HP )hCP ]
(5.5)

Biological Remark: If mP > αCP

hCP
then we would have HP > αCP

hCP
− mP for any

biologically relevant value of HP . Thus, if the predators are not sufficiently efficient

at gaining from feeding upon the consumers in the absence of harvesting, then the

predators cannot survive with any level of harvesting. So we will restrict ourselves to

the case where mP < αCP

hCP
.

Since the logistic equation is a supersolution to the consumer equation, we have

that C
∗
< KC . Thus, inequality (5.5) implies that

KC >
mP +HP

eCP [αCP − (mP +HP )hCP ]

⇔ HP <
KCeCPαCP −KCeCPhCPmP −mP

KCeCPhCP + 1

⇔ HP <
αCP eCPKC

1 + eCPhCPKC

−mP (5.6)
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Note that

αCP eCPKC

1 + eCPhCPKC

−mP =
αCP

hCP

(
eCPKC

1
hCP

+ eCPKC

)
−mP

<
αCP

hCP

−mP

So, inequality (5.6) gives us a stricter condition on HP .

Since we must have HP > 0, we are required to have

KCeCPαCP −KCeCPhCPmP −mP > 0 ⇔ mP <
αCP eCPKC

1 + eCPhCPKC

.

The stability of the boundary equilibria, when they exist, and the permanence of

the system are given by the following theorem.

Theorem 5.2. The equilibrium point (0, 0) is a saddle. The equilibrium point (KC , 0)

is a

(a) stable node if the reverse of inequality (5.6) holds.

(b) saddle if inequality (5.6) holds. In this case, the system is permanent.

Proof. The eigenvalues of the linearized system at (0, 0) are λ1 = rC > 0 and λ2 =

−mP < 0. Thus, (0, 0) is a saddle.

The eigenvalues of the linearized system at (rC , 0) are λ1 = −rC < 0 and λ2 =

−eCP hCPKC(mP+HP )+αCP eCPKC−(mP+HP )
1+eCP hCPKC

. We have that

λ2 > 0 ⇔ −eCPhCPKC(mP +HP ) + αCP eCPKC − (mP +HP ) > 0

⇔ HP <
eCPKC(αCP −mPhCP )−mP

1 + eCPhCPKC

⇔ HP <
αCP eCPKC

1 + eCPhCPKC

−mP
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and

λ2 < 0 ⇔ −eCPhCPKC(mP +HP ) + αCP eCPKC − (mP +HP ) < 0

⇔ HP >
eCPKC(αCP −mPhCP )−mP

1 + eCPhCPKC

⇔ HP >
αCP eCPKC

1 + eCPhCPKC

−mP

Thus, (KC , 0) will be a saddle when HP < αCP eCPKC

1+eCP hCPKC
−mP and a stable node when

HP > αCP eCPKC

1+eCP hCPKC
−mP .

Inequality (3.3) tells us that in order to have permanence in this case, we must

have

αCP eCPKC > (eCPhCPKC + 1)(mP +HP ) ⇔ HP <
αCP eCPKC

1 + eCPhCPKC

−mP

which is exactly inequality (5.6).

Remarks:

(i) If mP > αCP eCPKC

1+eCP hCPKC
then we are guaranteed to have HP > αCP eCPKC

1+eCP hCPKC
− mP

since HP > 0. But mP > αCP eCPKC

1+eCP hCPKC
is the reverse of condition (3.7). Thus, if

the predators cannot survive in the system where there is no harvesting, then

they cannot survive with any level of harvesting.

(ii) We have that (KC , 0) is a saddle if HP < αCP eCPKC

1+eCP hCPKC
−mP ⇔ mP < αCP eCPKC

1+eCP hCPKC

−HP and a stable node if HP > αCP eCPKC

1+eCP hCPKC
−mP ⇔ mP > αCP eCPKC

1+eCP hCPKC
−HP .

Thus, it is harder for the consumer and predator to coexist in this case than

in the case where there is no harvesting. Similarly, it is easier for the predator

to be excluded from the system in this case than in the case where there is no

harvesting.
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5.1.3 Harvesting Both the Consumers and Predators

In this case, the form of the subsystem is

dC

dt
= (rC −HC)

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠− eCPCP

1 + eCPhCPC + ePhPP

dP

dt
=

αCP eCPCP

1 + eCPhCPC + ePhPP
− (mP +HP )P (5.7)

There are three possibly biologically relevant equilibria for this subsystem: (0, 0),((
rC−HC

rC

)
KC , 0

)
, and

(
C

∗
, P

∗)
, where

C
∗
=

(rC−HC)2

rC
KCαCP ePhP + eCPhCP (mP +HP )

(
rC−HC

rC

)
KC − αCP eCP

(
rC−HC

rC

)
KC

2(rC −HC)αCP ePhP

+
1

2(rC −HC)αCP ePhP

([
(rC −HC)

2

rC
KCαCP ePhP + eCPhCP (mP +HP )

(
rC −HC

rC

)
KC

− αCP eCP

(
rC −HC

rC

)
KC

]2
+ 4αCP ePhP (mP +HP )

(rC −HC)
2

rC
KC

)1/2

and

P
∗
=

αCP eCPC
∗ − (mP +HP )

(
1 + eCPhCPC

∗)
ePhP (mP +HP )

.

Note that in order for
((

rC−HC

rC

)
KC , 0

)
to be biologically relevant, we must have

HC < rC and in order for
(
C

∗
, P

∗)
to be biologically relevant, we must have

P
∗
> 0 ⇔ αCP eCPC

∗
> (mP +HP )

(
1 + eCPhCPC

∗)

⇔ C
∗

⎧⎪⎪⎨
⎪⎪⎩
> mP+HP

eCP [αCP−(mP+HP )hCP ]
if αCP − (mP +HP )hCP > 0

< mP+HP

eCP [αCP−(mP+HP )hCP ]
if αCP − (mP +HP )hCP < 0

Clearly we cannot have αCP−(mP+HP )hCP < 0 because then we would have C
∗
< 0.

Thus, we must have HP < αCP

hCP
−mP . Since HP must be positive, we are required to
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have mP < αCP

hCP
. Therefore, we have

C
∗
>

mP +HP

eCP [αCP − (mP +HP )hCP ]
(5.8)

Since the logistic equation is a supersolution to the consumer equation, we have

that C
∗
<
(

rC−HC

rC

)
KC . Thus, inequality (5.8) implies that

KC >
mP +HP

eCP [αCP − (mP +HP )hCP ]

(
rC

rC −HC

)

⇔ HC < rC

(
1− mP +HP

KCeCP [αCP − (mP +HP )hCP ]

)

⇔ HP <

(
rC−HC

rC

)
KCeCP(

rC−HC

rC

)
KCeCPhCP +mP

(
αCP

hCP

−mP

)

− mP(
rC−HC

rC

)
KCeCPhCP +mP

.

Remarks:

1. If HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
then HC < αCP

hCP
−mP . So, if

(
C

∗
, P

∗)
is biologically relevant, then

((
rC−HC

rC

)
KC , 0

)
will also be biologically relevant.

2. Since we must have HC > 0, it is necessary to have HP < KCeCP

KCeCP hCP+mP

(
αCP

hCP
−

mP

)
− mP

KCeCP hCP+mP
, which requires us to have mP < KCαCP eCP

1+KCeCP hCP
. Since we

must have HP > 0, it is necessary to have HC < rC

(
1− mP

KCeCP (αCP−hCPmP )

)
,

which also requires us to have mP < KCαCP eCP

1+KCeCP hCP
.

The stability of the boundary equilibria, when they exist, and permanence of the

system are given by the following theorem.

Theorem 5.3. If

(a) HC > rC then (0, 0) is a stable node.

(b) HC < rC then (0, 0) is a saddle and
((

rC−HC

rC

)
KC , 0

)
is a
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(i) stable node if HC > rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
.

(ii) saddle if HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
. In this case, the system

is permanent.

Proof. The eigenvalues of the linearized system at (0, 0) are λ1 = rC − HC and

λ2 = −(mP +HP ) < 0. If HC > rC then λ1 < 0 and λ2 < 0 so (0, 0) is a stable node.

IfHC < rC then λ1 > 0 and λ2 < 0 so (0, 0) is a saddle. In this case,
((

rC−HC

rC

)
KC , 0

)
is biologically relevant.

The eigenvalues of the linearized system at
((

rC−HC

rC

)
KC , 0

)
are

λ1 = HC − rC

λ2 = mP + hP +
αCP eCPKCrC −KCeCPαCPHC

rC + rCKCeCPhCP −HCKCeCPhCP

.

Since we are in the case where HC < rC , we have λ1 > 0. We also have that

rC + rCKCeCPhCP −HCKCeCPhCP > rC + rCKCeCPhCP − rCKCeCPhCP = rC > 0.

Thus, the sign of λ2 is determined by the sign of (mP + HP )(rC + rCKCeCPhCP −

HCKCeCPhCP )+αCP eCPKCrC−KCeCPαCPHC , which for the moment we will define

as β.

In order to have β > 0, we must either have

HC > rC

(
1− mP +HP

KCeCP [αCP − (mP +HP )hCP ]

)
if HP >

αCP

hCP

−mP

HC < rC

(
1− mP +HP

KCeCP [αCP − (mP +HP )hCP ]

)
if HP <

αCP

hCP

−mP

Since we are in the case where HP < αCP

hCP
−mP , then we we will have β > 0 if and

only if HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
. Similarly, in order to have β < 0, we

must have HC > rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
.

So, if HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
then λ2 > 0 so

((
rC−HC

rC

)
KC , 0

)
is

a saddle. And if HC > rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
then

((
rC−HC

rC

)
KC , 0

)
is a
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stable node.

Inequality (3.3) tells us that in order to have permanence in this case, we must

have

αCP eCP

(
rC−HC

rC

)
KC >

(
eCPhCP

(
rc−HC

rC

)
KC + 1

)
(mP +HP )

⇔ HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)

which is the same condition we have in order for
((

rC−HC

rC

)
KC , 0

)
to be a saddle.

Biological Remark: This situation presents an interesting result, which we will

discuss in section 7.9.

5.2 Harvesting the R− P Subsystem

5.2.1 Harvesting only the Resource

In this case, the form of the subsystem is

dR

dt
= (rR −HR)R

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRPRP

1 + eRPhRPR + ePhPP

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP (5.9)

Note that the form of subsystem (5.9) is the same as subsystem (5.2). So the

results from Section 5.1 hold equally well in this section, but with C now replaced

by R. In particular, there are three possibly biologically relevant equilibria for this

subsystem: (0, 0),
((

rR−HR

rR

)
KR, 0

)
, and

(
R

∗
, P

∗)
, where

R
∗
=

β +

√
β2 + 4αRP ePhPmP

(
(rR−HR)2

rR

)
KR

2(rR −HR)αRP ePhP
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for

β =
(rR −HR)

2

rR
KRαRP ePhP+eRPhRPmP

(
rR −HR

rR

)
KR−αRP eRP

(
rR −HR

rR

)
KR

and

P
∗
=

αRP eRPR
∗ −mP

(
1 + eRPhRPR

∗)
ePhPmP

In order for
((

rR−HR

rR

)
KR, 0

)
to be biologically relevant, we must have HR < rR and

in order for
(
R

∗
, P

∗)
to be biologically relevant, we must have

R
∗
>

mP

eRP (αRP −mPhRP )
with mP <

αRP

hRP

(5.10)

Since the logistic equation is a supersolution to the resource equation in (5.9), we

have that R
∗
<
(

rR−HR

rR

)
KR. Thus, inequality (5.10) implies that

KR >
mP

eRP (αRP −mPhRP )

(
rR −HR

rR

)
.

This conditions requires KR to be larger than in the case where there is no harvesting,

in order to have coexistence.

The stability of these equilibria, when they exist, and permanence of the system

are given by the following.

Theorem 5.4. If

(a) HR > rR then (0, 0) is a stable node.

(b) HR < rR then (0, 0) is a saddle and
((

rR−HR

rR

)
KR, 0

)
is a

(i) stable node if HR > rR

(
1 mP

KReRP (αRP−hRPmP )

)
.

(ii) saddle if HR < rR

(
1− mP

KReRP (αRP−hRPmP )

)
.

The proof is identical to the proof of Theorem 5.1.
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Biological Remark: If rR

(
1 mP

KReRP (αRP−hRPmP )

)
< HR < rR then the resource can

survive, while the predators go extinct. Thus, if the consumers are harvested at a

sufficiently high rate, there will be not be enough food to sustain the predators.

5.2.2 Harvesting only the Predators

In this case, the form of the subsystem is

dR

dt
= rRR

(
1− R

KR

)
− eRPRP

1 + eRPhRPR + ePhPP

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
− (mP +HP )P (5.11)

Note that the form of subsystem (5.11) is the same as subsystem (5.4). So the results

from Section 5.1 hold equally well in this section, but with C now replaced by R. In

particular, there are three possibly biologically relevant equilibria for this subsystem:

(0, 0), (KR, 0), and
(
R

∗
, P

∗)
, where

R
∗
=

rRKRαRP ePhP + (mP +HP )KReRPhRP − αRP eRPKR

2rRαRP ePhP

+

√
[rRKRαRP ePhP + (mP +HP )KReRP ePhP − αRP eRPKR]

2
+ 4rRKRαRP ePhP (mP +HP )

2rRαRP ePhP

and

P
∗
=

αRP eRPR
∗ − (mP +HP )

(
1 + eRPhRPR

∗)
ePhP (mP +HP )

We always have R
∗
> 0, so for

(
R

∗
, P

∗)
to be biologically relevant, we must have

R
∗
>

mP +HP

eRP [αRP (mP +HP )hRP ]
if αRP − (mP +HP )hRP > 0 (5.12)

Since the logistic equation is a supersolution to the resource equation, we have

that R
∗
< KR. Thus, inequality (5.12) implies that

HP <
αRP eRPKR

1 + eRPhRPKR

−mP . (5.13)
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So, inequality (5.13) gives us a stricter condition on HP than HP < αCP

hCP
−mP .

The stability of the boundary equilibria are given by the following theorem.

Theorem 5.5. The equilibrium point (0, 0) is a saddle. The equilibrium point (KR, 0)

is a

(a) saddle if HP < eRPKR(αRP−mP hRP )−mP

1+eRP hRPKR
.

(b) stable node if HP > eRPKR(αRP−mP hRP )−mP

1+eRP hRPKR
.

The proof of the theorem is identical to the proof of theorem 5.2.

Remarks:

(i) If mP > αRP eRPKR

1+eRP hRPKR
then we are guaranteed to have HP > αRP eRPKR

1+eRP hRPKR
− mP

since HP > 0. But mP > αRP eRPKR

1+eRP hRPKR
is the reverse of condition (3.3). Thus, if

the predators cannot survive in the system where there is no harvesting, then

they cannot survive with any level of harvesting.

(ii) We have that (KR, 0) is a saddle if HP < eRPKR(αRP−mP hRP )−mP

1+eRP hRPKR
⇔ mP <

αRP eRPKR

1+eRP hRPKR
− HP and a stable node if HP > eRPKR(αRP−mP hRP )−mP

1+eRP hRPKR
⇔ mP >

αRP eRPKR

1+eRP hRPKR
−HP . Thus, it is harder for the resource and predator to coexist in

this case than in the case where there is no harvesting. Similarly, it is easier for

the predator to be excluded from the system in this case than in the case where

there is no harvesting.

5.2.3 Harvesting Both the Resource and Predators

In this case, the form of the subsystem is

dR

dt
= (rR −HR)

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRPRP

1 + eRPhRPR + ePhPP

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
− (mP +HP )P (5.14)
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Note that the form of subsystem (5.14) is as subsystem (5.7). So the results from

Section 5.1.3 hold equally well in this section, but with C replaced by R. In particular,

there are three possibly biologically relevant equilibria for this subsystem: (0, 0),((
rR−HR

rR

)
KR, 0

)
, and

(
R

∗
, P

∗)
, where

R
∗
=

(rR−HR)2

rR
KRαRP ePhP + eRPhRP (mP +HP )

(
rR−HR

rR

)
KR − αRP eRP

(
rR−HR

rR

)
KR

2(rR −HR)αRP ePhP

+
1

2(rR −HR)αRP ePhP

([
(rR −HR)

2

rR
KRαRP ePhP + eRPhRP (mP +HP )

(
rR −HR

rR

)
KR

− αRP eRP

(
rR −HR

rR

)
KR

]2
+ 4αRP ePhP (mP +HP )

(rR −HR)
2

rR
KR

)1/2

and

P
∗
=

αRP eRPR
∗ − (mP +HP )

(
1 + eRPhRPR

∗)
ePhP (mP +HP )

.

In order for
((

rR−HR

rR

)
KR, 0

)
to be biologically relevant, we must have HR < rR and

in order for
(
R

∗
, P

∗)
to be biologically relevant, we must have

R
∗
>

mP +HP

eRP [αRP − (mP +HP )hRP ]
with αRP − (mP +HP )hRP > 0 (5.15)

Since we cannot have R
∗
< 0, we must have HP < αRP

hRP
− mP . Since HP must be

positive, we are required to have mP < αRP

hRP
.

Since the logistic equation is a supersolution to the resource equation, we have

that R
∗
<
(

rR−HR

rR

)
KR. Thus, inequality (5.15) implies that

KR >
mP +HP

eRP [αRP − (mP +HP )hRP ]

(
rR

rR −HR

)
.

This condition requires KR to be larger than in the case where only the predators are
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being harvested. This condition is equivalent to

HR < rR

(
1− mP +HP

KReRP [αRP − (mP +HP )hRP ]

)

or

HP <

(
rR−HR

rR

)
KReRP(

rR−HR

rR

)
KReRPhRP +mP

(
αRP

hRP

−mP

)
− mP(

rR−HR

rR

)
KReRPhRP +mP

.

Remarks:

1. If HR < rR

(
1− mP+HP

KReRP [αRP−(mP+HP )hRP ]

)
then HR < αRP

hRP
−mP . So, if

(
R

∗
, P

∗)
is biologically relevant, then

((
rR−HR

rR

)
KR, 0

)
will also be biologically relevant.

2. Since we must have HR > 0, it is necessary to have HP < KReRP

KReRP hRP+mP

(
αRP

hRP
−

mP

)
− mP

KReRP hRP+mP
, which requires us to have mP < KRαRP eRP

1+KReRP hRP
. Since we

must have HP > 0, it is necessary to have HR < rR

(
1− mP

KReRP (αRP−hRPmP )

)
,

which also requires us to have mP < KRαRP eRP

1+KReRP hRP
.

The stability of the boundary equilibria, when they exist, and the permanence of

the system are given by the following theorem.

Theorem 5.6. If

(a) HR > rR then (0, 0) is a stable node.

(b) HR < rR then (0, 0) is a saddle and
((

rR−HR

rR

)
KR, 0

)
is a

(i) stable node if HR > rR

(
1− mP+HP

KReRP [αRP−(mP+HP )hRP ]

)
.

(ii) saddle if HR < rR

(
1− mP+HP

KReRP [αRP−(mP+HP )hRP ]

)
. In this case, the system is

permanent.

The proof is identical to the proof of Theorem 5.3.
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Biological Remark: We have that

⎧⎪⎪⎨
⎪⎪⎩
HP < αRP

hRP
−mP

HR < rC

(
1− mP+HP

KReCP [αRP−(mP+HP )hRP ]

) ⇔

⎧⎪⎪⎨
⎪⎪⎩
HP < αRP

hRP

(
eRP

(
rR−HR

rR

)
KR

1
hRP

+eRP

(
rR−HR

rR

)
KR

)
−mP

HR < rR

But rR

(
1− mP+HP

KCeRP [αRP−(mP+HP )hRP ]

)
< rR and αRP

hRP

(
eRP

(
rR−HR

rR

)
KR

1
hRP

+eRP

(
rR−HR

rR

)
KR

)
− mP <

αRP

hRP
− mP . So there is a tradeoff in the amount of harvesting that can be done

on each species. If HR > rR

(
1− mP+HP

KReRP [αRP−(mP+HP )hRP ]

)
then the maximum value

of HP must be smaller than the case where HR < rR

(
1− mP+HP

KReRP [αRP−(mP+HP )hRP ]

)
.

Similarly, if HP > αRP

hRP

(
eRP

(
rR−HR

rR

)
KR

1
hRP

+eRP

(
rR−HR

rR

)
KR

)
−mP then the maximum value of HR

must be smaller than the case where HP < αRP

hRP

(
eRP

(
rR−HR

rR

)
KR

1
hRP

+eRP

(
rR−HR

rR

)
KR

)
− mP . Bio-

logically this is telling us that if we have a sufficiently large amount of harvesting on

the resource, then we must have less harvesting on the predators. Conversely, if we

have a sufficiently large amount of harvesting on the predators, then we must have

less harvesting on the resource. The reason for this is that harvesting the resource

reduces the amount of food available to the predators. If the predators’ food supply

is shrinking because the resource is being harvested more, then the predators cannot

withstand being harvested as much. Similarly, if the predators are being harvested

more, they need more food to help sustain themselves so the resource cannot be

harvested as much.



228

5.3 Harvesting the R− C Subsystem

5.3.1 Harvesting only the Resource

In this case, the form of the subsystem is

dR

dt
= (rR −HR)R

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCRC

1 + eRChRCR + eChCC

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC
(5.16)

The possibly biologically relevant equilibria for this subsystem are (0, 0),((
rR−HR

rR

)
KR, 0

)
, (0, KC), and

(
R

∗
, C

∗)
, where R

∗
and C

∗
are positive solutions

to the system

0 = (rR −HR)

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCC

1 + eRChRCR + eChCC

0 = rC

(
1− C

KC

)
+

αRCeRCR

1 + eRChRCR + eChCC

Note that in order for
((

rR−HR

rR

)
KR, 0

)
to be biologically relevant, we must have

HR < rR.

The invasibility and exclusion of the resource and consumer species, along with

the permanence of the system, are given by the following theorem.

Theorem 5.7. The consumers can always invade the system at (0, 0). The consumers

can always invade the system at
((

rR−HR

rR

)
KR, 0

)
, when it is biologically relevant.

(a) If HR > rR then the resource will be excluded from the system at (0, 0). If HR > rR

or rR < eRCKC

1+eChCKC
then the resource will be excluded from the system at (0, KC).

(b) HR < rR then the resource can invade the system at (0, 0). If we further have

that HR < rR − eRCKC

1+eChCKC
and rR > eRCKC

1+eChCKC
, then the resource can invade the
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system at (0, KC).

In the case where the resource can invade the system at (0, KC), the system is per-

manent.

Proof. The linearized resource equation at (0, 0) is

dR

dt
= (rR −HR)R.

If HR < rR then the resource’s intrinsic growth rate is positive, so the resource can

invade the system at (0, 0). But if HR < rR then the resource’s intrinsic growth rate

is negative, so the resource is excluded from the system at (0, 0).

The linearized consumer equation at (0, 0) is

dC

dt
= rCC.

Since the consumers’ intrinsic growth rate is positive, the consumer can invade the

system at (0, 0).

The linearized resource equation at (0, KC) is

dR

dt
=

(
rR −HR − eRCKC

1 + eChCKC

)
R.

If rR− eRCKC

1+eChCKC
< 0 then rR−HR− eRCKC

1+eChCKC
< 0. In this case, the resource’s intrinsic

growth rate is negative so the resource is excluded from the system at (0, KC). If

HR < rR − eRCKC

1 + eChCKC

(5.17)

and rR − eRCKC

1+eChCKC
> 0 then the resource’s intrinsic growth rate is positive, so the

resource can invade the system at (0, KC).



230

The linearized consumer equation at
((

rR−HR

rR

)
KR, 0

)
is

dC

dt
=

⎛
⎝rC +

αRCeRC

(
rR−HR

rR

)
KR

1 + eRChRC

(
rR−HR

rR

)
KR

⎞
⎠C.

Since we must have HR < rR in order for this equilibrium to be biologically relevant,

we have that the consumers’ intrinsic growth rate is positive so the consumers can

invade the system at
((

rR−HR

rR

)
KR, 0

)
.

In the case where there is no harvesting, permanence condition (3.33) is, in di-

mensionalized terms, eRCKC

rR
< 1 + eChCKC . In this case, it becomes eRCKC

rR−HR
<

1 + eChCKC ⇔ HR < rR − eRCKC

1+eChCKC
. But this is the same as the condition (5.17),

which was the condition needed for the resource to be able to invade the system at

(0, KC).

Remark: If rR < eRCKC

1+eChCKC
then we cannot have HR < rR − eRCKC

1+eChCKC
since we

must have HR > 0. So if the resource’s intrinsic growth rate is not sufficiently large

then no matter how little harvesting is done to the resource, the resource still will not

be able to invade the system at (0, KC) and the system still will not be permanent.

Thus, the condition for permanence in the system without harvesting of the resource is

a necessary but not sufficient condition for permanence in the case where the resource

is harvested.

5.3.2 Harvesting only the Consumers

In this case, the form of the subsystem is

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC

dC

dt
= (rC −HC)C

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCRC

1 + eRChRCR + eChCC
(5.18)
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The possibly biologically relevant equilibria for this subsystem are (0, 0), (KR, 0),(
0,
(

rC−HC

rC

)
KC

)
, and

(
R

∗
, C

∗)
, where R

∗
and C

∗
are positive solutions to the system

0 = rR

(
1− R

KR

)
− eRCC

1 + eRChRCR + eChCC

0 = (rC −HC)

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCR

1 + eRChRCR + eChCC

Note that in order for
(
0,
(

rC−HC

rC

)
KC

)
to be biologically relevant, we must have

HC < rC .

The invasibility and exclusion of the resource and consumer species, along with

the permanence of the system, are given by the following theorem.

Theorem 5.8. The resource can always invade the system at (0, 0). If

(a) HC < rC then the consumers can invade the system at (0, 0). Otherwise, the

consumers will be excluded from the system at (0, 0).

(b) HC < rC + αRCeRCKR

1+eRChRCKR
then the consumers can invade the system at (KR, 0).

Otherwise, the consumers will be excluded from the system at (KR, 0).

(c) either eRC < rReChC or eRC > rReChC with HC > rC

(
1 + rR

KC(rReChC−eRC)

)
then

the resource can invade the system at
(
0,
(

rC−HC

rC

)
KC

)
. If eRC > rReChC with

HC < rC

(
1 + rR

KC(rReChC−eRC)

)
then the resource is excluded from the system at(

0,
(

rC−HC

rC

)
KC

)
.

In the cases where the resource can invade the system at
(
0,
(

rC−HC

rC

)
KC

)
and the

consumers can invade the system at (KR, 0), the system is permanent.

Proof. The linearized resource equation at (0, 0) is

dR

dt
= rRR.
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Since the resource’s intrinsic growth rate is positive, the resource can invade the

system at (0, 0).

The linearized consumer equation at (0, 0) is

dC

dt
= (rC −HC)C.

If HC < rC then the consumers’ intrinsic growth rate is positive so the consumers

can invade the system at (0, 0). But if HC > rC then the consumers’ intrinsic growth

rate is negative so the consumers are excluded from the system at (0, 0).

The linearized consumer equation at (KR, 0) is

dC

dt
=

(
rC −HC +

αRCeRCKR

1 + eRChRCKR

)
C.

If HC < rC + αRCeRCKR

1+eRChRCKR
then the consumers’ intrinsic growth rate is positive so the

consumers can invade the system at (KR, 0). But if HC > rC + αRCeRCKR

1+eRChRCKR
then the

consumers’ intrinsic growth rate is negative so the consumers are excluded from the

system at (KR, 0).

The linearized resource equation at
(
0,
(

rC−HC

rC

)
KC

)
is

dR

dt
=

⎛
⎝rR −

eRC

(
rC−HC

rC

)
KC

1 + eChC

(
rC−HC

rC

)
KC

⎞
⎠R.

Suppose that eRC < rReChC . Then the resource’s intrinsic growth rate will be posi-

tive if HC < rC

(
1 + rR

KC(rReChC−eRC)

)
and negative if HC > rC

(
1 + rR

KC(rReChC−eRC)

)
.

But, in order for
(
0,
(

rC−HC

rC

)
KC

)
to be biologically relevant, we must haveHC < rC .

Thus, we cannot haveHC > rC

(
1 + rR

KC(rReChC−eRC)

)
since rC

(
1 + rR

KC(rReChC−eRC)

)
>

rC , which would give us HC > rC . Thus, if eRC < rReChC then the resource’s intrinsic

growth rate will always be positive so the resource will be able to invade the system
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at
(
0,
(

rC−HC

rC

))
.

Suppose now that eRC > rReChC . Then the resource’s intrinsic growth rate will

be positive if

HC > rC

(
1 +

rR
KC(rReChC − eRC)

)
. (5.19)

In this case, the resource will be able to invade the system at
(
0,
(

rC−HC

rC

)
KC

)
. And

the resource’s intrinsic growth rate will be negative if HC < rC

(
1 + rR

KC(rReChC−eRC)

)
.

In this case, the resource will be excluded from the system.

Taking the dimensionalized form of permanence condition (3.33), which is when

there is no harvesting, gives us the permanence condition in the case where the

consumers are being harvested. In particular, the permanence condition becomes

eRC

(
rC−HC

rC

)
KC

rR
< eChC

(
rC−HC

rC

)
KC + 1, which is equivalent to condition (5.19),

which is the condition needed for the resource’s intrinsic growth rate to be positive

at
(
0,
(

rC−HC

rC

)
KC

)
.

Note that in the case where there was no harvesting, the consumers were always

able to invade the system at (KR, 0). But now, we do not have the same guarantee if

HC is too big. Thus, if the consumers are able to invade at (KR, 0) then we will have

permanence.

Biological Remark: This situation presents an interesting result, which we will

discuss in section 7.9.
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5.3.3 Harvesting Both the Resource and Consumers

In this case, the form of the subsystem is

dR

dt
= (rR −HR)R

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCRC

1 + eRChRCR + eChCC

dC

dt
= (rC −HC)C

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCRC

1 + eRChRCR + eChCC
(5.20)

The possibly biologically relevant equilibria for this subsystem are (0, 0),((
rR−HR

rR

)
KR, 0

)
,
(
0,
(

rC−HC

rC

)
KC

)
, and

(
R

∗
, C

∗)
, where R

∗
and C

∗
are positive

solutions to the system

0 = (rR −HR)

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCC

1 + eRChRCR + eChCC

0 = (rC −HC)

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCR

1 + eRChRCR + eChCC

Note that in order for
(
0,
(

rR−HR

rR

)
KR

)
to be biologically relevant, we must have

HR < rR, and in order for
(
0,
(

rC−HC

rC

)
KC

)
to be biologically relevant, we must

have HC < rC .

The invasibility and exclusion of the resource and consumer species are given by

the following theorem.

Theorem 5.9. If

(a) HR < rR then the resource can invade the system at (0, 0), and
((

rR−HR

rR

)
KR, 0

)
is biologically relevant. If HR < rR with HC < rC + αRCeRC(rR−HR)KR

rR+eRChRC(rR−HR)KR
or if

HC < αRC

hRC
+ rC with HR < rR

(
1− HC−rC

eRCKR[αRC−(HC−rC)hRC ]

)
, then the consumers

can invade the system at
((

rR−HR

rR

)
KR, 0

)
. If HC < rC then the consumers can

invade the system for any level HR of harvesting on the resource.
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(b) HC < rC then the consumers can invade the system at (0, 0) and
(
0,
(

rC−HC

rC

)
KC

)
is biologically relevant. If eRC < rReChC and HR < rR − eRC

eChC
then the resource

can invade the system at
(
0,
(

rC−HC

rC
KC

))
for any level of consumers harvest-

ing, HC. If HC > rC

(
1 + rR−HR

KC [eChC(rR−HR)−eRC ]

)
with either eRC > rReChC and

HR < rR, or eRC < rReChC and rR − eRC

eChC
< HR < rR, then the resource can

invade the system at
(
0,
(

rC−HC

rC

)
KC

)
.

Proof. The linearized resource equation at (0, 0) is

dR

dt
= (rR −HR)R.

If HR < rR then the resource’s intrinsic growth rate is positive so the resource can

invade the system at (0, 0). If HR > rR then the resource’s intrinsic growth rate is

negative so the resource is excluded from the system at (0, 0).

The linearized consumer equation at (0, 0) is

dC

dt
= (rC −HC)C.

If HC < rC then the consumers’ intrinsic growth rate is positive so the consumers can

invade the system at (0, 0). If HC < rC then the consumers’ intrinsic growth rate is

negative so the consumers are excluded from the system at (0, 0).

If HR < rR, then the linearized consumer equation at
((

rR−HR

rR

)
KR, 0

)
is

dC

dt
=

⎛
⎝rC −HC +

αRCeRC

(
rR−HR

rR

)
KR

1 + eRChRC

(
rR−HR

rR

)
KR

⎞
⎠C.

The consumers’ intrinsic growth rate will be positive ifHC < rC+
αRCeRC(rR−HR)KR

rR+eRChRC(rR−HR)KR
.



236

This is equivalent to having

HR > rR

(
1 +

HC − rC
eRCKR[(HC − rC)hRC − αRC ]

)
if HC >

αRC

hRC

+ rC (5.21)

HR < rR

(
1 +

HC − rC
eRCKR[(HC − rC)hRC − αRC ]

)
if HC <

αRC

hRC

+ rC (5.22)

Inequality (5.21) would give us HR > rR. This contradicts the condition needed for

the equilibrium
((

rR−HR

rR

)
KR, 0

)
to be biologically relevant; namely that HR < rR.

So, we need HR < rR

(
1 + HC−rC

eRCKR[(HC−rC)hRC−αRC ]

)
if HC < αRC

hRC
+ rC in order to have

the consumers’ intrinsic growth rate be positive. Note that if HC < rC , then the

condition that HR < rR implies (5.22).

If HC < rC , then the linearized resource equation at
(
0,
(

rC−HC

rC

)
KC

)
is

dR

dt
=

⎛
⎝rR −HR −

eRC

(
rC−HC

rC

)
KC

1 + eChC

(
rC−HC

rC

)
KC

⎞
⎠R.

The resource’s intrinsic growth rate is positive if HR < rR − eRC

(
rC−HC

rC

)
KC

1+eChC

(
rC−HC

rC

)
KC

. Note

that in order to have HR > 0, we must have

HC < rC

(
1 +

rR
KC(rReChC − eRC)

)
if rReChC > eRC

HC > rC

(
1 +

rR
KC(rReChC − eRC)

)
if rReChC < eRC

Having HR < rR − eRC

(
rC−HC

rC

)
KC

1+eChC

(
rC−HC

rC

)
KC

is equivalent to

HC < rC

(
1 +

rR −HR

KC [(rR −HR)eChC − eRC ]

)
if HR < rR − eRC

eChC

(5.23)

HC > rC

(
1 +

rR −HR

KC [(rR −HR)eChC − eRC ]

)
if HR > rR − eRC

eChC

(5.24)

If HR < rR − eRC

eChC
then we have HR < rR. If we have HR > rR in (5.24), then



237

we have that HC > rC . This contradicts the condition needed for
(
0,
(

rC−HC

rC

)
KC

)
to be biologically relevant; namely that HC < rC . So, in order to have either of

inequalities (5.23) or (5.24), we must have HR < rR. Additionally, it is necessary to

have eRC < rReChC in order to have HR > 0 in inequality (5.23). But when this is

the case, the condition that HC < rC implies inequality (5.23).

Biological Remarks: This situation presents some interesting results, which we

will discuss in section 7.9.

5.4 Harvesting the Resource in the Full Model

If we harvest only the resource, the form of the full model is

dR

dt
= (rR −HR)R

⎛
⎝1− R(

rR−HR

rR

)
KR

⎞
⎠− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP
(5.25)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

−mPP
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5.4.1 Invasion and Exclusion When All Species are Absent

The eigenvalues of the Jacobian matrix at the equilibrium (0, 0, 0) are

λ1 = rR −HR

λ2 = rC > 0

λ3 = −mP < 0

In this case, the consumers will be able to invade the system at (0, 0, 0) and the

predators will be excluded at (0, 0, 0). If HR < rR then λ1 > 0 and the resource will

be able to invade the system at (0, 0, 0). If HR > rR then λ1 < 0 and the resource

will be excluded from the system. In either case, (0, 0, 0) is a saddle.

5.4.2 Invasion and Exclusion When the Consumers and

Predators are Absent

If HR < rR, then the equilibrium
((

rR−HR

rR

)
KR, 0, 0

)
is biologically relevant. In this

case, the eigenvalues of the Jacobian matrix are

λ1 = HR − rR < 0

λ2 = rC +
αRCeRC

(
rR−HR

rR

)
KR

1 + eRChRC

(
rR−HR

rR

)
KR

λ3 = −mP +
αRP eRP

(
rR−HR

rR

)
KR

1 + eRPhRP

(
rR−HR

rR

)
KR

If λ2 > 0 then the consumers will be able to invade the system at
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((
rR−HR

rR

)
KR, 0, 0

)
. But,

λ2 > 0 ⇔ rC >
αRCeRC(HR − rR)KR

rR + eRChRC(HR − rR)KR

(5.26)

⇔

⎧⎪⎪⎨
⎪⎪⎩
HR < rR

(
1 + rC

eRCKR(αRC−rChRC)

)
if rC > αRC

hRC

HR > rR

(
1 + rC

eRCKR(αRC−rChRC)

)
if rC < αRC

hRC

(5.27)

Notice that in the case where rC < αRC

hRC
, we get that HR > rR, since rR

(
1 +

rC
eRCKR(αRC−rChRC)

)
> rR. This contradicts the condition needed to have((

rR−HR

rR

)
KR, 0, 0

)
be biologically relevant; namely that HR < rR. Thus, in or-

der for the consumers to be able to invade the system at
((

rR−HR

rR

)
KR, 0, 0

)
, we

either need to have HR < rR with rC > αRCeRC(HR−rR)KR

rR+eRChRC(HR−rR)KR
or rC > αRC

hRC
with

HR < rR

(
1 + rC

eRCKR(αRC−rChRC)

)
.

Biological Remark: When we have HR < rR with rC > αRCeRC(HR−rR)KR

rR+eRChRC(HR−rR)KR
, there

can be more harvesting of the resource yet the consumers don’t need as large an

intrinsic growth rate in order to be able to invade. But when we have rC > αRC

hRC
with

HR < rR

(
1 + rC

eRCKR(αRC−rChRC)

)
, then there is less harvesting yet the consumers

need have a higher intrinsic growth rate in order to be able to invade. This seems

counterintuitive. It would seem that less harvesting would mean more food for the

consumers, and more food for the consumers seems like it would mean that the

consumers do not need to have as large of an intrinsic growth rate to still be able to

invade. But when rC > αRC

hRC
, the consumers are sufficiently inefficient at gaining for

consuming the resource. So, harvesting the resource more helps keep the consumers

from wasting time feeding upon the resource, which they gain sufficiently little from.

This benefit means the consumers do not need as large of an intrinsic growth rate in

order to invade.

The predators will be able to invade the system at
((

rR−HR

rR

)
KR, 0, 0

)
if λ3 > 0.
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But,

λ3 > 0 ⇔ mP <
αRP

hRP

(
eRP (rR −HR)KR

rR
hRP

+ eRP (rR −HR)KR

)
(5.28)

⇔

⎧⎪⎪⎨
⎪⎪⎩
HR > rR

(
1 + mP

eRPKR(mP hRP−αRP )

)
if mP > αRP

hRP

HR < rR

(
1 + mP

eRPKR(mP hRP−αRP )

)
if mP < αRP

hRP

(5.29)

Notice that if mP > αRP

hRP
, then we cannot have HR > rR

(
1 + mP

eRPKR(mP hRP−αRP )

)
be-

cause this would imply that HR > rR, which contradicts the condition needed in order

to have
((

rR−HR

rR

)
KR, 0, 0

)
be biologically relevant; namely that HR < rR. Thus,

in order for the predators to be able to invade the system at
((

rR−HR

rR

)
KR, 0, 0

)
,

we either need to have HR < rR with mP < αRP eRP (rR−HR)KR

rR+eRP hRP (rR−HR)KR
or mP < αRP

hRP
with

HR < rR

(
1 + mP

eRPKR(mP hRP−αRP )

)
.

Biological Remark: When mP < αRP

hRP
, there can be a higher natural mortality

rate for the predators than when mP < αRP

hRP

(
eRP (rR−HR)KR

rR
hRP

+eRP (rR−HR)KR

)
. But when mP <

αRP

hRP
, there cannot be as much harvesting of the resource as the case where mP <

αRP

hRP

(
eRP (rR−HR)KR

rR
hRP

+eRP (rR−HR)KR

)
. This makes sense as the resource is the only food source

for the predators. The higher the predators’ natural mortality rate, the less the

resource can be harvested in order for the predators to avoid being excluded from the

system because of a lack of food. Likewise, the lower the predators’ natural mortality

rate, the less food it needs in order to be able to invade. This means more harvesting

of the resource that can be done while not excluding the predators from the system.
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5.4.3 Invasion and Exclusion When the Resource and Preda-

tors are Absent

The eigenvalues of the Jacobian matrix at (0, KC , 0) are

λ1 = (rR −HR)

(
1− eRCKC

1 + eChCKC

)

λ2 = −rC < 0

λ3 = −mP +
αCP eCPKC

1 + eCPhCPKC

The resource will be able to invade the system at (0, KC , 0) when λ1 > 0 ⇔ HR < rR

and eRCKC < 1 + eChCKC .

The predators will be able to invade the system at (0, KC , 0) when λ3 > 0 ⇔

mP < αCP eCPKC

1+eCP hCPKC
.

5.4.4 Invasion and Exclusion When the Consumers are Ab-

sent

In the case where 1
2
αRP eRP

(
rR−HR

rR

)
KR −mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0, inva-

sibility condition (4.46) becomes

rC >
2eCPαRP

ePhP (αRP −mPhRP )
−

1
2
αRCeRC

(
rR−HR

rR

)
KR

1 +
(
eRChRC + eCP hCPαRP eRP

eP hPmP

)(
rR−HR

rR

)
KR

(5.30)
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and exclusion condition (4.47) becomes

rC <

eCP

[
1
2αRP eRP

(
rR−HR

rR

)
KR−mP

(
1+

(
rR−HR

rR

)
KReRPhRP

)]

ePhPmP

1 +
(
eRPhRP + αRP eRP

mP

)(
rR−HR

rR

)
KR

−
αRCeRC

(
rR−HR

rR

)
KR

1 + 1
2eRChRC

(
rR−HR

rR

)
KR + eCPhCP

[
1
2αRP eRP

(
rR−HR

rR

)
KR−mP

(
1+

(
rR−HR

rR

)
KReRPhRP

)

ePhPmP

]

(5.31)

In the case where 1
2
αRP eRP

(
rR−HR

rR

)
KR − mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
< 0, in-

vasibility condition (4.48) becomes

rC >

eCPαRP eRP

(
rR−HR

rR

)
KR

eP hPmP

1 + 1
2
eRPhRP

(
rR−HR

rR

)
KR

−
1
2
αRCeRC

(
rR−HR

rR

)
KR

1 + eRChRC

(
rR−HR

rR

)
KR +

eCP hCPαRP eRP

(
rR−HR

rR

)
KR

eP hPmP

(5.32)

and exclusion condition (4.49) becomes

rC < −
αRCeRC

(
rR−HR

rR

)
KR

1 + 1
2
eRChRC

(
rR−HR

rR

)
KR

. (5.33)

Before stating the following theorem, we introduce some terminology.

Definition 5.1. 1. We say that increasing HR makes it easier for the consumers

to invade if the right hand side of either invasibility condition (5.30) or (5.32) is

a decreasing function of HR; i.e., if increasing HR reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing HR makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (5.30) or (5.32) is an increasing function of HR; i.e., if increasing

HR increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing HR makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (5.31) or (5.33) is an increasing
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function of HR; i.e., if increasing HR increases the maximum value of rC, below

which the consumers will be excluded. We say that increasing HR makes it

harder for the consumers to be excluded if the right hand side of either exclusion

condition (5.31) or (5.33) is a decreasing function of HR; i.e., if increasing HR

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 5.10. Increasing HR

1. makes invasion easier if

(a) 1
2
αRP eRPKR − mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
< 0, mP < 1

2
αRP

hRP
, and

αRP eRP >> αRCeRC.

(b) mP > 1
2
αRP

hRP
and αRP eRP >> αRCeRC.

2. makes invasion harder if

(a) 1
2
αRP eRP

(
rR−HR

rR

)
KR − mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0 and mP <

1
2
αRP

hRP
.

(b) 1
2
αRP eRPKR − mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
< 0, mP < 1

2
αRP

hRP
, and

αRP eRP << αRCeRC.

(c) mP > 1
2
αRP

hRP
and αRP eRP << αRCeRC.

3. makes exclusion easier if

(a) 1
2
αRP eRPKR−mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0, mP < 1

2
αRP

hRP
, eCPhCP <

ePhP , and eCP << eRC.

(b) 1
2
αRP eRPKR −mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
< 0 and mP < 1

2
αRP

hRP
.

4. makes exclusion harder if

(a) 1
2
αRP eRP

(
rR−HR

rR

)
KR −mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0, mP < 1

2
αRP

hRP
,

and eCPhCP > ePhP .
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(b) 1
2
αRP eRPKR−mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0, mP < 1

2
αRP

hRP
, eCPhCP <

ePhP , and eCP >> eRC.

Proof. Having the condition 1
2
αRP eRP

(
rR−HR

rR

)
KR −mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
> 0 is equivalent to

HR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
> rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
if mP > 1

2
αRP

hRP

< rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
if mP < 1

2
αRP

hRP

Since we must have HR < rR in order for R
∗
to be biologically relevant, we cannot

have the case where mP > 1
2
αRP

hRP
because this would imply that HR > rR.

The first fraction on the right hand side of invasibility condition (5.30) is inde-

pendent of HR. The second fraction on the right hand side of invasibility condition

(5.30) is of the form

g(HR) =
E − FHR

G− IHR

where

E =
1

2
αRCeRCKR

F =
αRCeRCKR

2rR

G = 1 + eRChRC +
eCPhCPαRP eRP

ePhPmP

H =
1

rR

(
eRChRC +

eCPhCPαRP eRP

ePhPmP

)

We have that

g′(HR) =
EI − FG

(G− IHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if EI > FG

< 0 if EI < FG

.
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Note that

EI > FG ⇔ αRCeRCKR

2rR

(
eRChRC +

eCPhCPαRP eRP

ePhPmP

)

>
αRCeRCKR

2rR

(
1 + eRChRC +

eCPhCPαRP eRP

ePhPmP

)

⇔ 0 > 1

and

EI < FG ⇔ 0 < 1.

Thus, we must have that g′(HR) < 0. So, increasing HR causes the second fraction

right hand side of invasibility condition (5.30) to decrease. But since we are subtract-

ing this fraction, we get that increasing HR causes the right hand side of invasibility

condition (5.30) to increase. This makes invasion harder.

The first fraction on the right hand side of exclusion condition (5.31) is of the

form

f(HR) =
A+BHR

C −DHR

where

A = eCP

[ 1
2
αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

]

B = eCP

(
−αRP eRPKR

2rR
+ mP eRP hRPKR

rR

ePhPmP

)

C = 1 + eRPhRPKR +
αRP eRPKR

mP

D =
eRPhRPKR + αRP eRPKR

mP

rR
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Here, B could be positive or negative. We have that

f ′(HR) =
BC + AD

(C −DHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if B > −AD

C

< 0 if B < −AD
C

.

Note that

B > −AD

C
⇔ − eCP

rRePhPmP

(
1

2
αRP eRPKR −mP eRPhRPKR

)

> −
eCP

rRePhPmP

[
1
2αRP eRPKR −mP (1 + eRPhRPKR)

] (
eRPhRPKR + αRP eRPKR

mP

)
1 + eRPhRPKR + αRP eRPKR

mP

⇔ 1

2
αRP eRPKR −mP eRPhRPKR

<

[
1
2αRP eRPKR −mP (1 + eRPhRPKR)

] (
eRPhRPKR + αRP eRPKR

mP

)
1 + eRPhRPKR + αRP eRPKR

mP

But

1

2
αRP eRPKR −mP (1 + eRPhRPKR) <

1

2
αRP eRPKR −mP eRPhRPKR

and
eRPhRPKR + αRP eRPKR

mP

1 + eRPhRPKR + αRP eRPKR

mP

< 1

so

[
1
2
αRP eRPKR −mP (1 + eRPhRPKR)

] (
eRPhRPKR + αRP eRPKR

mP

)
1 + eRPhRPKR + αRP eRPKR

mP

<
1

2
αRP eRPKR −mP eRPhRPKR

Therefore, we have B < −AD
C

which tells us that we must have f ′(HR) < 0. Thus,

increasing HR causes the first fraction on the right hand side of exclusion condition

(5.31) to decrease.

The second fraction on the right hand side of exclusion condition (5.31) is of the
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form

g(HR) =
A− BHR

C +DHR

where

A = αRCeRCKR

B =
αRCeRCKR

rR

C = 1 +
1

2
eRChRCKR + eCPhCP

[ 1
2
αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

]

D = −eRChRCKR

2rR
+ eCPhCP

(
−αRP eRPKR

2rR
+ eRP hRPKRmP

rR

ePhPmP

)

Here, C and D could be positive or negative. We have that

g′(HR) = − BC + AD

(C +DHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC < −AD

< 0 if BC > −AD

.

Note that

BC < −AD ⇔ αRCeRCKR

rR

(
1 +

1

2
eRChRCKR + eCPhCP

[ 1
2αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

])

< −αRCeRCKR

[
−eRChRCKR

2rR
+ eCPhCP

(
−αRP eRPKR

2rR
+ eRPhRPKRmP

rR

ePhPmP

)]

⇔ 1

rR
+

eRChRCKR

2rR
+

eCPhCP

rR

[ 1
2αRP eRPKR −mP (1 + eRPhRPKR)

ePhPmP

]
− eCPhCP

rRePhP

<
eRChRCKR

2rR
+

eCPhCP

rR

( 1
2αRP eRPKR −mP eRPhRPKR

ePhPmP

)

⇔ 1

rR
− eCPhCP

rRePhP
< 0

⇔ eCPhCP > ePhP

and

BC > −AD ⇔ eCPhCP < ePhP .

So, if eCPhCP > ePhP , then increasingHR causes the second fraction on the right hand



248

side of exclusion condition (5.31) to increase. But if eCPhCP < ePhP , then increasing

HR causes the second fraction on the right hand side of exclusion condition (5.31) to

decrease.

So, if eCPhCP > ePhP , then when we subtract the second fraction from the first

fraction on the right hand side of exclusion condition (5.31), we get that the right

hand side is decreasing as a result of increasing HR. In this case, exclusion is harder.

If eCPhCP < ePhP , then when we subtract the second fraction from the first fraction

on the right hand side of exclusion condition (5.31), we get that the right hand side

could be increasing or decreasing as a result of increasing HR. If eCP >> eRC , then

the first fraction on the right hand side of exclusion condition (5.31) will dominate

the second fraction. In this case, this means the right hand side of exclusion condition

(5.31) will be decreasing as a result of increasing HR. This makes exclusion harder.

But in the case where eCP << eRC , then the second fraction on the right hand side of

exclusion condition (5.31) will dominate the first fraction. In this case, this means the

right hand side of exclusion condition (5.31) will be increasing as a result of increasing

HR. This makes exclusion easier.

The condition 1
2
αRP eRP

(
rR−HR

rR

)
KR − mP

(
1 +

(
rR−HR

rR

)
KReRPhRP

)
< 0 is

equivalent to

HR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
< rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
if mP > 1

2
αRP

hRP

> rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
if mP < 1

2
αRP

hRP
.

Since we must have HR < rR in order for R
∗
to be biologically relevant, if mP > 1

2
αRP

hRP
,

then we will always be in this case.

The first fraction on the right hand side of invasibility condition (5.32) is of the

form

f(HR) =
A− BHR

C −DHR
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where

A =
eCPαRP eRPKR

ePhPmP

B =
eCPαRP eRPKR

ePhPmP rR

C = 1 +
1

2
eRPhRPKR

D =
eRPhRPKR

2rR

We have that

f ′(HR) =
AD − BC

(C −DHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if AD > BC

< 0 if AD < BC

.

Note that

AD > BC ⇔ eCPαRP eRPK
2
ReRPhRP

2ePhPmP rR
>

eCPαRP eRPKR

(
1 + 1

2
eRPhRPKR

)
ePhPmP rR

⇔ 1

2
KReRPhRP > 1 +

1

2
eRPhRPKR

⇔ 0 > 1

and

AD < BC ⇔ 0 < 1.

Thus, we must have f ′(HR) < 0.

The second fraction on the right hand side of invasibility condition (5.32) is of the

form

g(HR) =
E − FHR

G− IHR



250

where

E =
1

2
αRCeRCKR

F =
αRCeRCKR

2rR

G = 1 + eRChRCKR +
eCPhCPαRP eRPKR

ePhPmP

H =
eRChRCKR

rR
+

eCPhCPαRP eRPKR

rRePhPmP

We have that g′(HR) > 0 if EI > FG and g′(HR) < 0 if EI < FG. Note that

EI > FG ⇔ αRCeRCKR

2rR

(
eRChRCKR +

eCPhCPαRP eRPKR

ePhPmP

)

>
αRCeRCKR

2rR

(
1 + eRChRCKR +

eCPhCPαRP eRPKR

ePhPmP

)

⇔ 0 > 1

and

EI < FG ⇔ 0 < 1.

Thus, we must have g′(HR) < 0.

So, increasing HR causes both the first and second fraction on the right hand

side of invasibility condition (5.32) to decrease. But when we subtract the second

fraction from the first fraction, we get that the right hand side could be increasing

or decreasing. If αRP eRP >> αRCeRC then the first fraction on the right hand side

of invasibility condition (5.32) dominates the second fraction. In this case, increasing

HR causes the right hand side of the invasibility condition to decrease, which makes

invasion easier. But if αRP eRP << αRCeRC then the second fraction on the right

hand side of invasibility condition (5.32) dominates the first fraction. In this case,

increasing HR causes the right hand side of the invasibility to increase, which makes

invasion harder.
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The right hand side of exclusion condition (5.33) is of the form

f(HR) =
−A+BHR

C −DHR

where

A = αRCeRCKR

B =
αRCeRCKR

rR

C = 1 +
1

2
eRChRCKR

D =
eRChRCKR

2rR

We have that

f ′(HR) =
BC − AD

(C −DHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if BC > DA

< 0 if BC < DA

.

Note that

BC > DA ⇔ αRCeRCKR

(
1 + 1

2
eRChRCKR

)
rR

>
αRCeRCKReRChRCKR

2rR

⇔ 1 +
1

2
eRChRCKR >

1

2
eRChRCKR

⇔ 1 > 0

and

BC < DA ⇔ 1 < 0.

So we must have f ′(HR) > 0. Thus, increasing HR causes the right hand side of

exclusion condition (5.33) to increase, which makes exclusion easier.
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5.4.5 Invasion and Exclusion when Predators are Absent

In the case where 0 < R
∗
<
(

rR−HR

rR

)
KR and eRChRC

(
rR−HR

rR

)
KR < 1 + eChCKC ,

invasibility condition (4.54) becomes

mP <
αCP eCPKC

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhCPKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC(1+eChCKC)

) (5.34)

and exclusion condition (4.55) becomes

mP >
αRP eRP

(
rR−HR

rR

)
KR

1 + eCPhPCKC

+

αCP eCPKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC(1+eChCKC)

)
1 + eCPhCPKC

. (5.35)

In the case where 0 < R
∗
<
(

rR−HR

rR

)
KR and 1+eChCKC < eRChRC

(
rR−HR

rR

)
KR,

invasibility condition (4.56) becomes

mP <
αCP eCPKC

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhCPKC

(
1 + αRC

rChRC

) (5.36)

and exclusion condition (4.57) becomes

mP >
αRP eRP

(
rR−HR

rR

)
KR

1 + eCPhPCKC

+
αCP eCPKC

(
1 + αRC

rChRC

)
1 + eCPhCPKC

. (5.37)

Before stating the following theorem, we introduce some terminology.

Definition 5.2. 1. We say that increasing HR makes it easier for the predators to

invade if the right hand side of either invasibility condition (5.34) or (5.36) is an

increasing function of HR; i.e., if increasing HR increases the maximum value

of mP , allowed for the predators to invade. We say that increasing HR makes

it harder for the predators to invade if the right hand side of either invasibility

condition (5.34) or (5.36) is a decreasing function of HR; i.e., if increasing HR
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reduces the maximum value of mP allowed for the predators to invade.

2. We say that increasing HR makes it easier for the predators to be excluded if

the right hand side of either exclusion condition (5.35) or (5.37) is a decreasing

function of HR; i.e., if increasing HR decreases the minimum value of mP which

results in the predators being excluded. We say that increasing HR makes it

harder for the predators to be excluded if the right hand side of either exclusion

condition (5.35) or (5.37) is an increasing function of HR; i.e., if increasing

HR increases the minimum value of mP which results in the predators being

excluded.

Theorem 5.11. Increasing HR

1. makes invasion easier.

2. makes exclusion easier.

Proof. We are first in the case where eRChRC

(
rR−HR

rR

)
KR < 1 + eChCKC ⇔ HR >

rR

(
1− 1+eChCKC

eRChRCKR

)
. Note that it is necessary to have HR < rR in order to have R

∗
> 0,

and the second condition will be trivially satisfied if 1 + eChCKC > eRChRCKR.

The right hand side of invasibility condition (5.34) is of the form

f(HR) =
A

B − CHR

where

A = αCP eCPKC

B = 1 + eRPhRPKR + eCPhCPKC

(
1 +

αRCeRCKR

rC(1 + eChCKC)

)

C =
eRPhRP

(
rR−HR

rR

)
KR

1 + eCPhPCKC

+

αCP eCPKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC(1+eChCKC)

)
1 + eCPhCPKC
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We have that f ′(HR) > 0. Thus, increasing HR causes the right hand side of invasi-

bility condition (5.34) to increase, which makes invasion easier.

The first fraction on the right hand side of exclusion condition (5.35) is of the

form

f(HR) = A− BHR

where

A =
αRP eRPKR

1 + eCPhPCKC

B =
αRP eRPKR

rR(1 + eCPhPCKC)

We have that f ′(HR) < 0, so increasing HR causes the first fraction on the right hand

side of exclusion condition (5.35) to decrease.

The second fraction on the right hand side of exclusion condition (5.35) is of the

form

g(HR) = C −DHR

where

C =
αCP eCPKC

(
1 + αRCeRCKR

rC(1+eChCKC)

)
1 + eCPhCPKC

D =

αCP eCPKCαRCeRCKR

rRrC(1+eChCKC)

1 + eCPhCPKC

We have that g′(HR) < 0, so increasing HR causes the second fraction on the right

hand side of exclusion condition (5.35) to decrease.

Thus, increasing HR causes both the first and second fractions on the right hand

side of exclusion condition (5.35) to decrease. When we add these two fractions

together, we get that the right hand side of exclusion condition (5.35) is decreasing.

This makes exclusion easier.
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We are next in the case where 1 + eChCKC < eRChRC

(
rR−HR

rR

)
KR ⇔ HR <

rR

(
1 − 1+eChCKC

eRChRCKR

)
. Note that we must have eRChRCKR > 1 + eChCKC because

otherwise, we will have HR < 0. Provided we have eRChRCKR > 1 + eChCKC , then

HR < rR

(
1− 1+eChCKC

eRChRCKR

)
⇒ HR < rR, so we will have R

∗
> 0.

The right hand side of invasibility condition (5.36) is of the form

f(HR) =
A

B − CHR

where

A = αCP eCPKC

B = 1 + eRPhRPKR + eCPhCPKC

(
1 +

αRC

rChRC

)

C =
eRPhRPKR

rR

We have that f ′(HR) > 0. Thus, increasing HR causes the right hand side of invasi-

bility condition (5.36) to increase, which makes invasion easier.

The second fraction on the right hand side of exclusion condition (5.37) is inde-

pendent of HR. The first fraction on the right hand side of exclusion condition (5.37)

is of the form

f(HR) = A− BHR

where

A =
αRP eRPKR

1 + eCPhPCKC

B =
αRP eRPKR

rR(1 + eCPhPCKC)

We have that f ′(HR) < 0. Thus, increasing HR causes the right hand side of exclusion

condition (5.37) to decrease, which makes exclusion easier. So in both cases, the



256

conclusions are the same.

In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR and 1

2
eRChRC

(
rR−HR

rR

)
KR

< 1 + eChCKC , invasibility condition (4.68) becomes

mP <

1
2αRP eRP

(
rR−HR

rR

)
KR

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhPCKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC

(
1+ 1

2
eRChRC

(
rR−HR

rR

)
KR+eChCKC

)
)

+
αCP eCPKC

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhCPKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC

(
1+ 1

2
eRChRC

(
rR−HR

rR

)
KR+eChCKC

)
)

(5.38)

and exclusion condition (4.69) becomes

mP >
αRP eRP

(
rR−HR

rR

)
KR

1 + 1
2
eRPhRP

(
rR−HR

rR

)
KR + eCPhPCKC

+

αCP eCPKC

(
1 +

αRCeRC

(
rR−HR

rR

)
KR

rC

(
1+ 1

2
eRChRC

(
rR−HR

rR

)
KR+eChCKC

)
)

1 + 1
2
eRPhRP

(
rR−HR

rR

)
KR + eCPhCPKC

(5.39)

Note that it is necessary to have HR < rR in order to have R
∗
> 0, and the second

condition will be trivially satisfied if 1 + eChCKC > 1
2
eRChRCKR. In this case, the

calculations and expressions become prohibitively long and complicated, and drawing

useful conclusions becomes difficult. However, we can obtain useful information is

some special cases. For instance, in the case where αRP eRPKR >> αCP eCPKC , the

first fraction in exclusion condition (5.39) dominates the second fraction, so effectively,

the exclusion condition becomes

mP >
αRP eRP

(
rR−HR

rR

)
KR

1 + 1
2
eRPhRP

(
rR−HR

rR

)
KR + eCPhPCKC

. (5.40)

Before stating the following theorem, we introduce some terminology.
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Definition 5.3. We say that increasing HR makes it easier for the predators to be

excluded if the right hand side of exclusion condition (5.40) is a decreasing function

of HR; i.e., if increasing HR decreases the minimum value of mP which results in the

predators being excluded.

Theorem 5.12. Increasing HR makes exclusion easier.

Proof. The right hand side of exclusion condition (5.40) is of the form

f(HR) =
A− BHR

C −DHR

where

A = αRP eRPKR

B =
αRP eRPKR

rR

C = 1 +
1

2
eRPhRPKR + eCPhPCKC

D =
eRPhRPKR

2rR

We have that

f ′(HR) =
AD − BC

(C −DHR)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if AD > BC

< 0 if AD < BC

Note that

AD > BC ⇔ eRPhRPK
2
RαRP eRP

2rR
>

αRP eRPKR

(
1 + 1

2
eRPhRPKR + eCPhPCKC

)
rR

⇔ 1

2
eRPhRPKR > 1 +

1

2
eRPhRPKR + eCPhPCKC

⇔ 0 > 1 + eCPhPCKC

and

AD < BC ⇔ 0 < 1 + eCPhPCKC .
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So, we must have f ′(HR) < 0. Thus, when αRP eRPKR >> αCP eCPKC , increasing

HR causes the right hand side of exclusion condition (5.40) to decrease, which makes

exclusion easier.

In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<

(
rR−HR

rR

)
KR and 1 + eChCKC <

1
2
eRChRC

(
rR−HR

rR

)
KR, invasibility condition (4.72) becomes

mP <

1
2
αRP eRP

(
rR−HR

rR

)
KR

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhPCKC

(
1 + αRC

rChRC

)
+

αCP eCPKC

1 + eRPhRP

(
rR−HR

rR

)
KR + eCPhCPKC

(
1 + αRC

rChRC

) (5.41)

and exclusion condition (4.73) becomes

mP >
αRP eRP

(
rR−HR

rR

)
KR

1 + 1
2
eRPhRP

(
rR−HR

rR

)
KR + eCPhPCKC

+
αCP eCPKC

(
1 + αRC

rChRC

)
1 + eCPhCPKC

. (5.42)

Note that we require HR < rR in order to guarantee that R
∗
> 0.

Before stating the following theorem, we introduce some terminology.

Definition 5.4. 1. We say that increasing HR makes it easier for the predators

to invade if the right hand side of either invasibility condition (5.41) is an

increasing function of HR; i.e., if increasing HR increases the maximum value

of mP , allowed for the predators to invade. We say that increasing HR makes

it harder for the predators to invade if the right hand side of either invasibility

condition (5.41) is a decreasing function of HR; i.e., if increasing HR reduces

the maximum value of mP allowed for the predators to invade.

2. We say that increasing HR makes it easier for the predators to be excluded if the

right hand side of either exclusion condition (5.42) is a decreasing function of

HR; i.e., if increasing HR decreases the minimum value of mP which results in
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the predators being excluded. We say that increasing HR makes it harder for the

predators to be excluded if the right hand side of either exclusion condition (5.42)

is an increasing function of HR; i.e., if increasing HR increases the minimum

value of mP which results in the predators being excluded.

Theorem 5.13. Increasing HR

1. makes invasion easier if αRP eRPKR << αCP eCPKC.

2. makes invasion harder if αRP eRPKR >> αCP eCPKC.

3. makes exclusion easier.

Proof. The first fraction on the right hand side of invasibility condition (5.41) is of

the form

f(HR) =
A− BHR

C −DHR

where

A =
1

2
αRP eRPKR

B =
αRP eRPKR

2rR

C = 1 + eRPhRPKR + eCPhPCKC

(
1 +

αRC

rChRC

)

D =
eRPhRPKR

rR

We have that f ′(HR) > 0 if AD > BC and f ′(HR) < 0 if AD < BC. Note that

AD > BC ⇔ αRP e
2
RPK

2
RhRP

2rR
>

αRP eRPKR

[
1 + eRPhRPKReCPhPCKC

(
1 + αRC

rChRC

)]
2rR

⇔ eRPhRPKR > 1 + eRPhRPKR + eCPhPCKC

(
1 +

αRC

rChRC

)

⇔ 0 > 1 + eCPhPCKC

(
1 +

αRC

rChRC

)
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and

AD < BC ⇔ 0 < 1 + eCPhPCKC

(
1 +

αRC

rChRC

)
.

So, we must have f ′(HR) < 0. So, increasing HR causes the first fraction on the right

hand side of invasibility condition (5.41) to decrease.

The second fraction on the right hand side of invasibility condition (5.41) is of the

form

g(HR) =
A

B − CHR

where

A = αCP eCPKC

B = 1 + eRPhRPKR + eCPhPCKC

(
1 +

αRC

rChRC

)

C =
eRPhRPKR

rR

We have that g′(HR) > 0, so increasing HR causes the second fraction on the right

hand side of invasibility condition (5.41) to increase.

Thus, increasing HR causes the first fraction on the right hand side of invasibility

condition (5.41) to decrease, while causing the second fraction to increase. When

we add these fractions together, the result could be increasing or decreasing. If

αRP eRPKR >> αCP eCPKC then the first fraction on the right hand side of invasibility

condition (5.41) will dominate the second fraction. In this case, increasing HR causes

the right hand side of invasibility condition (5.41) to decrease, which makes invasion

harder. But if αRP eRPKR << αCP eCPKC then the second fraction on the right

hand side of invasibility condition (5.41) dominates the first fraction. In this case,

increasing HR causes the right hand side of invasibility condition (5.41) to increase,

which makes invasion easier.

The second fraction on the right hand side of exclusion condition (5.42) is inde-
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pendent of HR. The first fraction on the right hand side of exclusion condition (5.42)

is of the form

f(HR) =
A− BHR

C −DHR

where

A = αRP eRPKR

B =
αRP eRPKR

rR

C = 1 +
1

2
eRPhRPKR + eCPhPCKC

D =
eRPhRPKR

2rR

We have that f ′(HR) > 0 if AD > BC and f ′(HR) < 0 if AD < BC. Note that

AD > BC ⇔ αRP e
2
RPK

2
RhRP

2rR
>

αRP eRPKR

(
1 + 1

2
eRPhRPKR + eCPhPCKC

)
rR

⇔ 1

2
eRPhRPKR > 1 +

1

2
eRPhRPKR + eCPhPCKC

⇔ 0 > 1 + eCPhPCKC

and

AD < BC ⇔ 0 < 1 + eCPhPCKC .

So, we have that f ′(HR) < 0. Thus, increasing HR causes the right hand side of

exclusion condition (5.42) to decrease, which makes exclusion easier.
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5.5 Harvesting the Consumers in the Full Model

If we harvest only the consumers, the form of the full model is

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP

dC

dt
= (rC −HC)C

⎛
⎝1− C(

rC−HC

rC

)
KC

⎞
⎠+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP

(5.43)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

−mPP

5.5.1 Invasion and Exclusion When All Species are Absent

The eigenvalues of the Jacobian matrix at the equilibrium (0, 0, 0) are

λ1 = rR > 0

λ2 = rC −HC

λ3 = −mP < 0

In this case, the resource will be able to invade the system at (0, 0, 0) and the predators

will be excluded from the system at (0, 0, 0). If HC < rC then λ2 > 0 and the

consumers will be able to invade the system at (0, 0, 0). If HC > rC then λ2 < 0 and

the consumers will be excluded from the system at (0, 0, 0). In either case, (0, 0, 0) is

a saddle.
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5.5.2 Invasion and Exclusion When the Consumers and

Predators are Absent

The eigenvalues of the Jacobian matrix at (KR, 0, 0) are

λ1 = −rR < 0

λ2 = rC −HC +
αRCeRCKR

1 + eRChRCKR

λ3 = −mP +
αRP eRPKR

1 + eRPhRPKR

If λ2 > 0 then the consumers will be able to invade the system at (KR, 0, 0). But,

λ2 > 0 ⇔ HC < rC +
αRCeRCKR

1 + eRChRCKR

.

Biological Remark: In the case where there is no harvesting, the consumers can

always invade at (KR, 0, 0). In this case, the consumers could be excluded if they

are harvested too heavily. But, the consumers can withstand a harvesting rate of

HC > rC in this case, while still being able to invade the system, provided the level of

harvesting does not exceed the combined benefit to the consumers from their intrinsic

growth rate plus what they gain from feeding on the resource.

The predators will be able to invade the system when λ3 > 0 ⇔ mP < αRP eRPKR

1+eRP hRPKR
.
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5.5.3 Invasion and Exclusion When the Resource and Preda-

tors are Absent

If HC < rC , then the equilibrium
(
0,
(

rC−HC

rC

)
KC , 0

)
is biologically relevant. In this

case, the eigenvalues of the Jacobian matrix are

λ1 = rR − eRC(rC −HC)KC

rC + eChC(rC −HC)KC

λ2 = HC − rC < 0

λ3 = −mP +
αCP eCP

(
rC−HC

rC

)
KC

1 + eCPhCP

(
rC−HC

rC

)
KC

If λ1 > 0 then the resource will be able to invade the system at
(
0,
(

rC−HC

rC

)
KC , 0

)
.

But,

λ1 > 0 ⇔ rR >
eRC(rC −HC)KC

rC + eChC(rC −HC)KC

⇔

⎧⎪⎪⎨
⎪⎪⎩
HC < rC

(
1 + rR

KC(rReChC−eRC)

)
if eRC < rReChC

HC > rC

(
1 + rR

KC(rReChC−eRC)

)
if eRC > rReChC

Notice that if eRC < rReChC then rC

(
1 + rR

KC(rReChC−eRC)

)
> rC . But since we must

have HC < rC in order for
(
0,
(

rC−HC

rC

)
KC , 0

)
to be biologically relevant, then we

will have λ1 > 0 when eRC < rReChC .

Biological Remark: If eRC < rReChC then the consumers attack the resource

a sufficiently small amount of time, the consumers experience a sufficiently large

amount of intraspecific interference, the resource has a sufficiently large intrinsic

growth rate, or some combination of these. In this case, the resource will always be

able to invade the system at
(
0,
(

rC−HC

rC

)
KC , 0

)
. But, if eRC > rReChC , then there

is some combination of sufficiently large attack rate on the resource by the consumers,
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sufficiently small intrinsic growth rate by the resource, or sufficiently small amount

of intraspecific interference by the consumers. In this case, the resource will be able

to invade the system at
(
0,
(

rC−HC

rC

)
KC , 0

)
if there is a sufficiently large amount of

harvesting on the consumers. If HC is too small, then the resource will be excluded

from the system.

The predators will be able to invade the system at
(
0,
(

rC−HC

rC

)
KC , 0

)
if λ3 > 0.

But,

λ3 > 0 ⇔ mP <
αCP eCP

(
rC−HC

rC

)
KC

1 + eCPhCP

(
rC−HC

rC

)
KC

⇔

⎧⎪⎪⎨
⎪⎪⎩
HC > rC

(
1 + mP

eCPKC(mP hCP−αCP )

)
if mP > αCP

hCP

HC < rC

(
1 + mP

eCPKC(mP hCP−αCP )

)
if mP < αCP

hCP

Notice that in the case where mP > αCP

hCP
, we get that HC > rC since

rC

(
1 + mP

eCPKC(mP hCP−αCP )

)
> rC . This contradicts the condition needed to have(

0,
(

rC−HC

rC

)
KC , 0

)
be biologically relevant; namely that HC < rC . Thus, in or-

der for the predators to be able to invade the system at
(
0,
(

rC−HC

rC

)
KC , 0

)
, we

either need to have HC < rC with mP <
αCP eCP

(
rC−HC

rC

)
KC

1+eCP hCP

(
rC−HC

rC

)
KC

or mP < αCP

hCP
with

HC < rC

(
1 + mP

eCPKC(mP hCP−αCP )

)
.

Biological Remark: If mP <
αCP eCP

(
rC−HC

rC

)
KC

1+eCP hCP

(
rC−HC

rC

)
KC

, the consumers can be harvested

at a rate HC < rC , which is higher than the rate at which consumers can be harvested

at in the case where mP < αCP

hCP
. Likewise, if mP < αCP

hCP
, the consumers can be

harvested at a rate HC < rC

(
1 + mP

eCPKC(mP hCP−αCP )

)
, which is lower than the rate

at which consumers can be harvested at in the case where mP <
αCP eCP

(
rC−HC

rC

)
KC

1+eCP hCP

(
rC−HC

rC

)
KC

.

When the predators’ natural mortality rate is not as large, which is the case when

mP <
αCP eCP

(
rC−HC

rC

)
KC

1+eCP hCP

(
rC−HC

rC

)
KC

, the predators do not need as much food to grow and

invade so there can be more harvesting of the consumers. But when the predators’
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natural mortality rate is larger, the predators need more food to be able to invade,

so there cannot be as much harvesting of the consumers.

5.5.4 Invasion and Exclusion When the Resource is Absent

In the case where 1
2
αCP eCP

(
rC−HC

rC

)
KC − mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
> 0, in-

vasibility condition (4.37) becomes

rR >
eRC

(
rC−HC

rC

)
KC

1 + eCPhPC

[
1
2
αCP eCP

(
rC−HC

rC

)
KC−mP

(
1+eCP hCP

(
rC−HC

rC

)
KC

)

eP hPmP

]
+ 1

2eChC

(
rC−HC

rC

)
KC

+
2eRPαCP

ePhP (αCP − hCPmP )
(5.44)

and exclusion condition (4.38) becomes

rR <

1
2
eRC

(
rC−HC

rC

)
KC

1 +
e2CP hPCαCP

eP hPmP

(
rC−HC

rC

)
KC + eChC

(
rC−HC

rC

)
KC

+
eRP

[
1
2
αCP eCP

(
rC−HC

rC

)
KC −mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)]
ePhPmP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
+ αCP eCP

(
rC−HC

rC

)
KC

. (5.45)

In the case where 1
2
αCP eCP

(
rC−HC

rC

)
KC − mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
< 0,

invasibility condition (4.39)

rR >
eRC

(
rC−HC

rC

)
KC

1 + 1
2
eChC

(
rC−HC

rC

)
KC

+

eRP

(
rC−HC

rC

)
KCαCP eCP

eP hPmP

1 + 1
2
eCPhCP

(
rC−HC

rC

)
KC

(5.46)

and exclusion condition (4.40) becomes

rR <

1
2
eRC

(
rC−HC

rC

)
KC

1 +
e2CP hPCαCP

eP hPmP

(
rC−HC

rC

)
KC + eChC

(
rC−HC

rC

)
KC

. (5.47)



267

Before stating the following theorem, we introduce some terminology.

Definition 5.5. 1. We say that increasing HC makes it easier for the resource to

invade if the right hand side of either invasibility condition (5.44) or (5.46) is

a decreasing function of HC; i.e., if increasing HC reduces the minimum value

of rR necessary for the resource to invade. We say that increasing HC makes

it harder for the resource to invade if the right hand side of either invasibility

condition (5.44) or (5.46) is an increasing function of HC; i.e., if increasing

HC increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing HC makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (5.45) or (5.47) is an increasing

function of HC; i.e., if increasing HC increases the maximum value of rR, below

which the resource will be excluded. We say that increasing HC makes it harder

for the resource to be excluded if the right hand side of either exclusion condition

(5.45) or (5.47) is a decreasing function of HC; i.e., if increasing HC decreases

the maximum value of rR, below which the resource is excluded.

Theorem 5.14. Increasing HC

1. makes invasion easier if

(a) 1
2
αCP eCPKC −mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
> 0 and eCPhPC < ePhP .

(b) 1
2
αCP eCPKC −mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
< 0.

2. makes invasion harder if 1
2
αCP eCPKC − mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
> 0

and eCPhPC > ePhP .

3. makes exclusion harder.

Proof. The condition 1
2
αCP eCP

(
rC−HC

rC

)
KC −mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
> 0 is
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equivalent to

HC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
< rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
if mP < αCP

2hCP

> rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
if mP > αCP

2hCP

Since we must haveHC < rC , then we must haveHC < rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
with mP < αCP

2hCP
. Note that in order to ensure HC > 0, we must have mP <

1
2
αCP eCPKC

1+eCP hCPKC
.

The second fraction on the right hand side of invasibility condition (5.44) is in-

dependent of HC . The first fraction on the right hand side of invasibility condition

(5.44) is of the form

f(HC) =
A− BHC

C +DHC

where

A = eRCKC

B =
eRCKC

rC

C = 1 + eCPhPC

[ 1
2
αCP eCPKC −mP (1 + eCPhCPKC)

ePhPmP

]
+

1

2
eChCKC

D = eCPhPC

(
eCPhCPKC

rCePhP

− αCP eCPKC

2rCePhPmP

)
− eChCKC

2rC

Here, both C and D could be either positive or negative. We have that

f ′(HC) = − BC + AD

(C +DHC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if D < −BC

A

< 0 if D > −BC
A

.
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Note that

D < −BC

A
⇔ eCPhPC

(
eCPhCPKC

rCePhP

− αCP eCPKC

2rCePhPmP

)
− eChCKC

2rC

< −
eRCKC

rC

(
1 + eCPhPC

[
1
2
αCP eCPKC−mP (1+eCP hCPKC)

eP hPmP

]
+ 1

2
eChCKC

)
eRCKC

⇔ e2CPhCPhPCKC

rCePhP

− αCP e
2
CPhPCKC

2rCePhPmP

< − 1

rC
− αCP e

2
CPhPCKC

2rCePhPmP

+
eCPhPC

rCePhP

+
e2CPhPChCPKC

rCePhP

0 < − 1

rC
+

eCPhPC

rCePhP

⇔ ePhP < eCPhPC

and

D > −BC

A
⇔ eCPhPC < ePhP .

So, if ePhP < eCPhPC then increasing HC causes the right hand side of invasibility

condition to (5.44) increase. This makes invasion harder. But, if eCPhPC < ePhP then

increasing HC causes the right hand side of invasibility condition (5.44) to decrease.

This makes invasion easier.

The first fraction on the right hand side of exclusion condition (5.45) is of the

form

f(HC) =
A− BHC

C −DHC

where

A =
1

2
eRChRCKC

B =
eRChRCKC

2rC

C = 1 +
e2CPhPCαCPKC

ePhPmP

+ eChCKC

D =
e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC
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We have that

f ′(HC) =
AD − BC

(C −DHC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if AD > BC

< 0 if AD < BC

.

Note that

AD > BC ⇔ 1

2
eRChRCKC

(
e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC

)

>
eRChRCKC

2rC

(
1 +

e2CPhPCαCPKC

ePhPmP

+ eChCKC

)

⇔ e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC
>

1

rC
+

e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC

⇔ 0 >
1

rC

and

AD < BC ⇔ 0 <
1

rC
.

So, we must have that f ′(HC) < 0. Thus, increasing HC causes the first fraction on

the right hand side of exclusion condition (5.45) to decrease.

The second fraction on the right hand side of exclusion condition (5.45) is of the

form

g(HC) =
A+BHC

C −DHC

where

A = eRP

[
1

2
αCP eCPKC −mP (1 + eCPhCPKC)

]

B = eRP

(
−αCP eCPKC

2rC
+

mP eCPhCPKC

rC

)

C = ePhPmP (1 + eCPhCPKC) + αCP eCPKC

D =
ePhPmP eCPhCPKC

rC
+

αCP eCPKC

rC
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Here, A and B could be positive or negative. We have that

g′(HC) =
AD +BC

(C −DHC)2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if AD > −BC

< 0 if AD < −BC

.

Note that

AD > −BC ⇔ eRP

[
1

2
αCP eCPKC −mP (1 + eCPhCPKC)

](
ePhPmP eCPhCPKC

rC

+
αCP eCPKC

rC

)

> −eRP

(
−αCP eCPKC

2rC
+

mP eCPhCPKC

rC

)
[ePhPmP (1 + eCPhCPKC)

+ αCP eCPKC ]

⇔
[
1

2
αCP eCPKC −mP (1 + eCPhCPKC)

](
ePhpmP eCPhCPKC

rC
+

αCP eCPKC

rC

)

>

(
αCP eCPKC

2rC
− mP eCPhCPKC

rC

)
(ePhPmP eCPhCPKC + αCP eCPKC)

+

(
αCP eCPKC

2rC
− mP eCPhCPKC

rC

)
ePhPmP

⇔ 0 > ePhpmP

(
αCP eCPKC

2rC
− mP eCPhCPKC

rC

)

⇔ 1

2
αCP < mPhCP

and

AD < −BC ⇔ 1

2
αCP > mPhCP .

Since it is necessary to have mP < 1
2
αCP

hCP
to be in this case, we have that increasing

HC causes the second fraction on the right hand side of exclusion condition (5.45) to

decrease.

Thus, increasing HC causes both the first and second fractions on the right hand

side of exclusion condition (5.45) to decrease. So when we add these fractions together,

we get that the right hand side of exclusion condition (5.45) is decreasing as a result

of increasing HC . This makes exclusion harder.

The condition 1
2
αCP eCP

(
rC−HC

rC

)
KC − mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
< 0 is
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equivalent to

HC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
> rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
if mP < αCP

2hCP

< rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
if mP > αCP

2hCP

Since we must have HC < rC , then in the case where mP > αCP

2hCP
, we always have

HC < rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
. But if mP < αCP

2hCP
then we need to have HC >

rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
in order to be in this case.

The first fraction on the right hand side of invasibility condition (5.46) is of the

form

f(HC) =
A− BHC

C −DHC

where

A = eRCKC

B =
eRCKC

rC

C = 1 +
1

2
eChCKC

D =
eChCKC

2rC

We have that f ′(HC) > 0 if AD > BC and f ′(HC) < 0 if AD < BC. Note that

AD > BC ⇔ eRCeChCK
2
C

2rC
>

eRCKC

(
1
2
eChCKC

)
rC

⇔ 1

2
eChCKC > 1 +

1

2
eChCKC

⇔ 0 > 1

and

AD < BC ⇔ 0 < 1.
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So we have that increasing HC causes the first fraction on the right hand side of

invasibility condition (5.46) to decrease.

The second fraction on the right hand side of invasibility condition (5.46) is of the

form

g(HC) =
E − FHC

G− IHC

where

E =
eRPKCαCP eCP

ePhPmP

F =
eRPKCαCP eCP

ePhPmP rC

G = 1 +
1

2
eCPhCPKC

I =
eCPhCPKC

2rC

We have that g′(HC) > 0 if EI > FG and g′(HC) < 0 if EI < FG. Note that

EI > FG ⇔ eRPK
2
CαCP e

2
CPhCP

2rCePhPmP

>
eRPKCαCP eCP

(
1 + 1

2
eCPhCPKC

)
ePhPmP rC

⇔ 1

2
KCeCPhCP > 1 +

1

2
eCPhCPKC

⇔ 0 > 1

and

EI < FG ⇔ 0 < 1.

So we have that increasing HC causes the second fraction on the right hand side of

invasibility condition (5.46) to decrease.

Thus, increasing HC causes both the first and second fractions on the right hand

side of invasibility condition (5.46) to decrease. When we add these fractions together,

we get that the right hand side of invasibility condition (5.46) is decreasing, which

makes invasion easier.
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The right hand side of exclusion condition (5.47) is of the form

f(HC) =
A− BHC

C −DHC

where

A =
1

2
eRCKC

B =
eRCKC

2rC

C = 1 +
e2CPhPCαCPKC

ePhPmP

+ eChCKC

D =
e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC

We have that f ′(HC) > 0 if AD > BC and f ′(HC) < 0 if AD < BC. Note that

AD > BC ⇔ 1

2
eRCKC

(
e2CPhPCαCPKC

ePhPmP rC
+

eChCKC

rC

)

>
eRCKC

2rC

(
1 +

e2CPhPCαCPKC

ePhPmP

+ eChCKC

)

⇔ 0 > 1

and

AD < BC ⇔ 0 < 1.

So we have that increasing HC causes the right hand side of exclusion condition (5.47)

to decrease, which makes exclusion harder.
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5.5.5 Invasion and Exclusion When the Predators are Absent

In the case where 0 < R
∗

< KR and eRChRCKR < 1 + eChC

(
rC−HC

rC

)
KC

⇔ HC < rC

(
1 + 1−eRChRCKR

eChCKC

)
, invasibility condition (4.54) becomes

mP <
αCP eCP

(
rC−HC

rC

)
KC

rC

(
1 + eChC

(
rC−HC

rC

)
KC

)(
1 + eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

)
+ β

(5.48)

where β = αRCeRCKReCPhCP

(
rC−HC

rC

)
KC , and exclusion condition (4.55) becomes

mP >
αRP eRPKR

1 + eCPhPC

(
rC−HC

rC

)
KC

+

αCP eCP

(
rC−HC

rC

)
KC

(
1 + αRCeRCKR

(rC−HC)
(
1+eChC

(
rC−HC

rC

)
KC

)
)

1 + eCPhCP

(
rC−HC

rC

)
KC

. (5.49)

Note that if 1 + eChCKC < eRChRCKR, then we would have HC < 0. So in order to

be in this case, we must have eRChRCKR < 1+eChCKC . In this case, the calculations

and expressions become prohibitively long and complicated, and drawing useful con-

clusions becomes difficult. However, we can obtain useful information in some special

cases. For instance, in the case where αRP eRPKR >> αCP eCPKC , the first fraction

on the right hand side of exclusion condition (5.49) dominates the second fraction so

effectively, the exclusion condition becomes

mP >
αRP eRPKR

1 + eCPhPC

(
rC−HC

rC

)
KC

. (5.50)

Before stating the following theorem, we introduce some terminology.

Definition 5.6. We say that increasing HC makes it harder for the predators to be

excluded if the right hand side of either exclusion condition (5.50) is an increasing

function of HC; i.e., if increasing HC increases the minimum value of mP which



276

results in the predators being excluded.

Theorem 5.15. Increasing HC makes exclusion harder.

Proof. In this case, the right hand side of exclusion condition (5.50) is of the form

f(HC) =
A

B − CHC

where

A = αRP eRPKR

B = 1 + eCPhPCKC

C =
eCPhPCKC

rC

We have that f ′(HC) > 0. So when αRP eRPKR >> αCP eCPKC , increasing HC causes

the right hand side of exclusion condition (5.50) to increase. This makes exclusion

harder.

In the case where 0 < R
∗
< KR and 1+eChC

(
rC−HC

rC

)
KC < eRChRCKR ⇔ HC >

rC

(
1 + 1−eRChRCKR

eChCKC

)
, invasibility condition (4.56) becomes

mP <
αCP eCP

(
rC−HC

rC

)
KC

1 + eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

(
1 + αRC

(rC−HC)hRC

) (5.51)

and exclusion condition (4.57) becomes

mP >
αRP eRPKR

1 + eCPhPC

(
rC−HC

rC

)
KC

+
αCP eCP

(
rC−HC

rC

)(
1 + αRC

(rC−HC)hRC

)
1 + eCPhCPKC

. (5.52)

Note that if 1+ eChCKC < eRChRCKR then 1+ eChC

(
rC−HC

rC

)
KC < eRChRCKR will

always be satisfied. In this case, the calculations and expressions become prohibitively
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long and complicated, and drawing useful conclusions becomes difficult. However, we

can obtain useful information in some special cases. For instance, in the case where

αRP eRPKR >> αCP eCPKC , the first fraction on the right hand side of exclusion

condition (5.52) dominates the second fraction so effectively, the exclusion condition

becomes

mP >
αRP eRPKR

1 + eCPhPC

(
rC−HC

rC

)
KC

.

which is the same as equation (5.50).

In the case where KR

2
< R

∗
< KR and 1

2
eRChRCKR < 1 + eChC

(
rC−HC

rC

)
KC ⇔

HC < rC

(
1 +

1− 1
2
eRChRCKR

eChCKC

)
, invasibility condition (4.68) becomes

mP <
1
2αRP eRPKR

1 + eRPhRPKR + eCPhPC

(
rC−HC

rC

)
KC

(
1 + αRCeRCKR

(rC−HC)
(
1+ 1

2 eRChRCKR+eChC

(
rC−HC

rC

)
KC

)
)

+
αCP eCPKC

1 + eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

(
1 + αRCeRCKR

(rC−HC)
(
1+ 1

2 eRChRCKR+eChC

(
rC−HC

rC

)
KC

)
)

(5.53)

and exclusion condition (4.69) becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPC

(
rC−HC

rC

)
KC

+

αCP eCP

(
rC−HC

rC

)
KC

(
1 + αRCeRCKR

rC

(
1+ 1

2
eRChRCKR+eChC

(
rC−HC

rC

)
KC

)
)

1 + 1
2
eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

(5.54)

Note that if 1 + eChCKC < 1
2
eRChRCKR then we would have HC < 0. So we must

have 1
2
eRChRCKR < 1 + eChCKC in order to be in this case. In this case, the

calculations and expressions become prohibitively long and complicated, and drawing

useful conclusions becomes difficult. However, we can obtain useful information in

some special cases. For instance, in the case where αRP eRPKR >> αCP eCPKC , the

first fraction on the right hand side of the exclusion condition dominates the second
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fraction so effectively, exclusion condition (5.54) becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPC

(
rC−HC

rC

)
KC

. (5.55)

Definition 5.7. We say that increasing HC makes it harder for the predators to be

excluded if the right hand side of exclusion condition (5.55) is an increasing function

of KC; i.e., if increasing HC increases the minimum value of mP which results in the

predators being excluded.

Theorem 5.16. Increasing HC makes exclusion harder.

Proof. The right hand side of exclusion condition (5.55) is of the form

f(HC) =
A

B − CHC

where

A = αRP eRPKR

B = 1 +
1

2
eRPhRPKR + eCPhPCKC

C =
eCPhPCKC

rC

We have that f ′(HC) > 0. So when αRP eRPKR >> αCP eCPKC , increasing HC causes

the right hand side of exclusion condition (5.55) to increase. This makes exclusion

harder.

In the case where KR

2
< R

∗
< KR and 1 + eChC

(
rC−HC

rC

)
KC < 1

2
eRChRCKR ⇔
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HC > rC

(
1 +

1− 1
2
eRChRCKR

eChCKC

)
, invasibility condition (4.72) becomes

mP <
1
2
αRP eRPKR

1 + eRPhRPKR + eCPhPC

(
rC−HC

rC

)
KC

(
1 + αRC

(rC−HC)hRC

)

+
αCP eCP

(
rC−HC

rC

)
KC

1 + eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

(
1 + αRC

(rC−HC)hRC

) (5.56)

and exclusion condition (4.73) becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhCP

(
rC−HC

rC

)
KC

+
αCP eCP

(
rC−HC

rC

)
KC

(
1 + αRC

(rC−HC)hRC

)
1 + eCPhCP

(
rC−HC

rC

)
KC

(5.57)

Note that if 1 + eChCKC > 1
2
eRChRCKR then we get HC > 0, which is always

true. In this case, the calculations and expressions become prohibitively long and

complicated, and drawing useful conclusions becomes difficult. However, we can

obtain useful information in some special cases. For instance, in the case where

αRP eRPKR >> αCP eCPKC , the first fraction on the right hand side of exclusion

condition (5.57) dominates the second fraction so effectively, the exclusion condition

becomes

mP >
αRP eRPKR

1 + 1
2
eRPhRPKR + eCPhPC

(
rC−HC

rC

)
KC

.

This is the same as equation (5.55). So, we know that increasing HC makes exclusion

harder.



280

5.6 Harvesting the Predators in the Full Model

If we harvest only the predators, the form of the full model is

dR

dt
= rRR

(
1− R

KR

)
− eRCRC

1 + eRChRCR + eChCC + eCPhPCP

− eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP

dC

dt
= rCC

(
1− C

KC

)
+

αRCeRCRC

1 + eRChRCR + eChCC + eCPhPCP
(5.58)

− eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP
dP

dt
=

αRP eRPRP

1 + eRPhRPR + eCPhCPC + ePhPP
+

αCP eCPCP

1 + eRPhRPR + eCPhCPC + ePhPP

− (mP +HP )P

5.6.1 Invasion and Exclusion When All Species are Absent

The eigenvalues of the Jacobian matrix at the equilibrium (0, 0, 0) are

λ1 = rR > 0

λ2 = rC > 0

λ3 = −(mP +HP ) < 0

In this case, (0, 0, 0) will be a saddle, with the resource and consumers able to invade

and the predators being excluded.
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5.6.2 Invasion and Exclusion When the Consumers and

Predators are Absent

The eigenvalues of the Jacobian matrix at (KR, 0, 0) are

λ1 = −rR < 0

λ2 = rC +
αRCeRCKR

1 + eRChRCKR

> 0

λ3 = −(mP +HP ) +
αRP eRPKR

1 + eRPhRPKR

In this case, the consumers will be able to invade the system at (KR, 0, 0). The

predators will be able to invade the system if λ3 > 0 ⇔ HP < −mP + αRP eRPKR

1+eRP hRPKR
.

Note that it is necessary to have mP < αRP eRPKR

1+eRP hRPKR
in order to have HP > 0.

5.6.3 Invasion and Exclusion When the Resource and Preda-

tors are Absent

The eigenvalues of the Jacobian matrix at (0, KC , 0) are

λ1 = rR

(
1− eRCKC

1 + eChCKC

)

λ2 = −rC < 0

λ3 = −(mP +HP ) +
αCP eCPKC

1 + eCPhCPKC

If λ1 > 0 then the resource can invade the system at (0, KC , 0). But λ1 > 0 ⇔

1 + eChCKC > eRCKC . If λ3 > 0 then the predators can invade the system at

(0, KC , 0). But λ3 > 0 ⇔ HP < −mP + αCP eCPKC

1+eCP hCPKC
. Note that in order to ensure

HP > 0, we must have mP < αCP eCPKC

1+eCP hCPKC
.
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5.6.4 Invasion and Exclusion When the Resource is Absent

In the case where 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0 ⇔ HP < −mP +

1
2
αCP eCPKC

1+eCP hCPKC
, invasibility condition (4.37) becomes

rR >
eRCKCePhP (mP +HP )

ePhP (mP +HP )
(
1 + 1

2eChCKC

)
+ eCPhPC

[
1
2αCP eCPKC − (mP +HP )(1 + eCPhCPKC)

]
+

2eRPαCP

ePhP (αCP − hCP (mP +HP ))
(5.59)

and exclusion condition (4.38) becomes

rR <
1
2
eRCKCePhP (mP +HP )

(mP +HP )(1 + eChCKC) + e2CPhPCKCαCP

+
eRP

[
1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC)

]
ePhP (mP +HP )(1 + eCPhCPKC) +KCαCP eCP

(5.60)

Note that it is necessary to have mP <
1
2
αCP eCPKC

1+eCP hCPKC
in order to have HP > 0.

In the case where 1
2
αCP eCPKC − (mP + HP )(1 + eCPhCPKC) < 0 ⇔ HP >

−mP +
1
2
αCP eCPKC

1+eCP hCPKC
, invasibility condition (4.39) becomes

rR >
eRCKC

1 + 1
2
eChCKC

+
eRPKCαCP eCP

ePhP (mP +HP )
(
1 + 1

2
eCPhCPKC

) (5.61)

and exclusion condition (4.40) becomes

rR <
1
2
eRCKCePhP (mP +HP )

ePhP (mP +HP )(1 + eChCKC) + e2CPhPCKCαCP

. (5.62)

Note that if mP >
1
2
αCP eCPKC

1+eCP hCPKC
, then we will be in the case where 1

2
αCP eCPKC −

(mP +HP )(1 + eCPhCPKC) < 0 for any level of harvesting of the predator.

Before stating the following theorem, we introduce some terminology.

Definition 5.8. 1. We say that increasing HP makes it easier for the resource to

invade if the right hand side of either invasibility condition (5.59) or (5.61) is

a decreasing function of HP ; i.e., if increasing HP reduces the minimum value
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of rR necessary for the resource to invade. We say that increasing HP makes

it harder for the resource to invade if the right hand side of either invasibility

condition (5.59) or (5.61) is an increasing function of HP ; i.e., if increasing

HP increases the minimum value of rR necessary for the resource to invade.

2. We say that increasing HP makes it easier for the resource to be excluded if the

right hand side of either exclusion condition (5.60) or (5.62) is an increasing

function of HP ; i.e., if increasing HP increases the maximum value of rR, below

which the resource will be excluded. We say that increasing HP makes it harder

for the resource to be excluded if the right hand side of either exclusion condition

(5.60) or (5.62) is a decreasing function of HP ; i.e., if increasing HP decreases

the maximum value of rR, below which the resource is excluded.

Theorem 5.17. Increasing HP

1. makes invasion easier if 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) < 0.

2. makes invasion harder if 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0.

3. makes exclusion easier if

(a) 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0 and eRC >> eRP .

(b) 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) < 0.

4. makes exclusion harder if 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0 and

eRC << eRP .

Proof. In the case where 1
2
αCP eCPKC − (mP + HP )(1 + eCPhCPKC) > 0, the first

fraction on the right hand side of invasibility condition (5.59) is of the form

f(HP ) =
A+BHP

C +DHP
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where

A = eRCKCePhPmP

B = eRCKCePhP

C = ePhPmP

(
1 +

1

2
eChCKC

)
+

1

2
αCP e

2
CPhPCKC − eCPhCPmP (1 + eCPhPCKC)

D = ePhP

(
1 +

1

2
eChCKC

)
− eCPhPC(1 + eCPhCPKC)

Here, D could be positive or negative, but C > 0. To see this, note that in order to be

in this case, we had the condition 1
2
αCP eCPKC−(mP+HP )(1+eCPhCPKC) > 0 which

implies that 1
2
αCP eCPKC −mP (1+ eCPhCPKC) > 0. But ePhPmP

(
1+ 1

2
eChCKC

)
+

1
2
αCP e

2
CPhPCKC − eCPhCPmP (1 + eCPhPCKC) >

1
2
αCP e

2
CPhPCKC − eCPhCPmP (1 +

eCPhPCKC) = eCPhCP

[
1
2
αCP eCPKC −mP (1 + eCPhPCKC)

]
> 0. We have that

f ′(HP ) =
BC − AD

(C +DHP )2

⎧⎪⎪⎨
⎪⎪⎩
> 0 if D < BC

A

< 0 if D > BC
A

.

Note that

D >
BC

A
⇔ ePhP

(
1 +

1

2
eChCKC

)
− eCPhPC(1 + eCPhCPKC)

<
eRCKCePhP

eRCKCePhPmP

[
ePhPmP

(
1 +

1

2
eChCKC

)
+

1

2
αCP e

2
CPhPCKC

− eCPhPCmP (1 + eCPhCPKC)

]

⇔ ePhP

(
1 +

1

2
eChCKC

)
− eCPhPC(1 + eCPhCPKC)

< ePhP

(
1 +

1

2
eChCKC

)
+

αCP e
2
CPhPCKC

2mP

− eCPhPC(1 + eCPhCPKC)

⇔ 0 <
αCP e

2
CPhPCKC

2mP



285

and

D <
BC

A
⇔ 0 >

αCP e
2
CPhPCKC

2mP

.

So, we have that f ′(HP ) > 0. Thus, increasing HP causes the first fraction on the

right hand side of invasibility condition (5.59) to increase.

The second fraction on the right hand side of invasibility condition (5.59) is of the

form

g(HP ) =
A

B − CHP

where

A = 2eRPαCP

B = ePhP (αCP − hCPKCmP )

C = ePhPhCP

We have that g′(HP ) > 0 so increasing HP causes the second fraction on the right

hand side of invasibility condition (5.59) to increase.

Thus, increasing HP causes both the first and second fractions on the right hand

side of invasibility condition (5.59) to increase. When we add these fractions together,

we get that the right hand side of invasibility condition (5.59) is increasing. So,

increasing HP makes invasion harder.

The first fraction on the right hand side of exclusion condition (5.60) is of the

form

f(HP ) =
A+BHP

C +DHP
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where

A =
1

2
eRCKCePhPmP

B =
1

2
eRCKCePhP

C = mP (1 + eChCKC) + e2CPhPCKCαCP

D = 1 + eChCKC

We have that f ′(HP ) > 0 if BC > AD and f ′(HP ) < 0 if BC < AD. Note that

BC > AD ⇔ 1

2
eRCKCePhP

[
mP (1 + eChCKC) + e2CPhPCKCαCP

]
>

1

2
eRCKCePhPmP (1 + eChCKC)

⇔ mP (1 + eChCKC + e2CPhPCKCαCP > mP (1 + eChCKC)

⇔ e2CPhPCKCαCP > 0

and

BC < AD ⇔ e2CPhPCKCαCP < 0.

Thus, we have that f ′(HP ) > 0. So, increasing HP causes the first fraction on the

right hand side of exclusion condition (5.60) to increase.

The second fraction on the right hand side of exclusion condition (5.60) is of the

form

g(HP ) =
A− BHP

C +DHP
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where

A = eRP

[
1

2
αCP eCPKC −mP (1 + eCPhCPKC)

]

B = eRP (1 + eCPhCPKC)

C = ePhPmP (1 + eCPhCPKC) +KCαCP eCP

D = ePhP (1 + eCPhCPKC)

As noted above, 1
2
αCP eCPKC − mP (1 + eCPhCPKC) > 0 so here, A > 0. We have

that

g′(HP ) = − BC + AD

(C +DHP )2
< 0.

So increasing HP causes the second fraction on the right hand side of exclusion con-

dition (5.60) to decrease.

Thus, increasing HP causes the first fraction on the right hand side of exclusion

condition (5.60) to increase, while causing the second fraction to decrease. When we

add these fractions together, we get that the right hand side of exclusion condition

(5.60) could be increasing or decreasing as a result of increasing HP . If eRC >> eRP

then the first fraction on the right hand side of exclusion condition (5.60) dominates

the second fraction. In this case, increasing HP causes the right hand side of exclusion

condition (5.60) to increase, which makes exclusion easier. But if eRC << eRP then

the second fraction on the right hand side of exclusion condition (5.60) dominates

the first fraction. In this case, increasing HP causes the right hand side of exclusion

condition (5.60) to decrease, which makes exclusion harder.

In the case where 1
2
αCP eCPKC−(mP +HP )(1+eCPhCPKC) < 0, the first fraction

on the right hand side of invasibility condition (5.61) is independent of HP . The

second fraction on the right hand side of the invasibility condition is of the form

f(HP ) =
A

B + CHP
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where

A = eRPKCαCP eCP

B = ePhPmP

(
1 +

1

2
eCPhCPKC

)

C = ePhP

(
1 +

1

2
eCPhCPKC

)

We have that f ′(HP ) < 0 so increasing HP causes the right hand side of invasibility

condition (5.61) to decrease. This makes invasion easier.

The right hand side of exclusion condition (5.62) is of the form

f(HP ) =
A+BHP

C +DHP

where

A =
1

2
eRCKCePhPmP

B =
1

2
eRCKCePhP

C = ePhPmP (1 + eChCKC) + e2CPhPCKCαCP

D = ePhP (1 + eChCKC)

We have that f ′(HP ) > 0 if BC > AD and f ′(HP ) < 0 if BC < AD. Note that

BC > AD ⇔ 1

2
eRCKCePhP

[
ePhPmP (1 + eChCKC) + e2CPhPCKCαCP

]
>

1

2
eRCKCe

2
Ph

2
PmP (1 + eChCKC)

⇔ ePhPmP (1 + eChCKC) + e2CPhPCKCαCP > ePhPmP (1 + eChCKC)

⇔ e2CPhPCKCαCP > 0



289

and

BC < AD ⇔ e2CPhPCKCαCP < 0.

Thus, f ′(HP ) > 0. So increasing HP causes the right hand side of exclusion condition

(5.61) to increase, which makes exclusion easier.

5.6.5 Invasion and Exclusion When the Consumers are Ab-

sent

In the case where 1
2
αRP eRPKR−(mP+HP )(1+hRP eRPKR) > 0 ⇔ HP <

1
2
αRP eRPKR

1+eRP hRPKR
−

mP , invasibility condition (4.46) becomes

rC >
2eCPαRP

ePhP (αRP − (mP +HP )hRP )

−
1
2
ePhPαRCeRCKR(mP +HP )

ePhP (mP +HP )(1 + eRChRCKR) + eCPhCPKRαRP eRP

(5.63)

and exclusion condition (4.47) becomes

rC <
eCP

[
1
2eRPαRPKR − (mP +HP )(1 + eRPhRPKR)

]
ePhP (mP +HP )eRPhRPKR + ePhPKRαRP eRP

− ePhPαRCeRCKR(mP +HP )

ePhP (mP +HP )
(
1 + 1

2eRChRCKR

)
+ eCPhCP

[
1
2αRP eRPKR − (mP +HP )(1 + eRPhRPKR)

]
(5.64)

Note that in this case, it is necessary to have mP <
1
2
αRP eRPKR

1+hRP eRPKR
in order to have

HP > 0.

In the case where 1
2
αRP eRPKR − (mP + HP )(1 + hRP eRPKR) < 0 ⇔ HP >

1
2
αRP eRPKR

1+eRP hRPKR
−mP , invasibility condition (4.48) becomes

rC >
eCPKRαRP eRP

ePhP (mP +HP )
(
1 + 1

2
eRChRCKR

)
−

1
2
ePhPαRCeRCKR(mP +HP )

ePhP (mP +HP )(1 + eRChRCKR) + eCPhCPKRαRP eRP

(5.65)
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and exclusion condition (4.49) becomes

rC < − αRCeRCKR

1 + 1
2
eRChRCKR

. (5.66)

Note that if mP >
1
2
αRP eRPKR

1+eRP hRPKR
then we will be in this case for any level of predator

harvesting, HP . Also note that in this case, the consumers cannot be excluded from

the system.

Before stating the following theorem, we introduce some terminology.

Definition 5.9. 1. We say that increasing HP makes it easier for the consumers

to invade if the right hand side of either invasibility condition (5.63) or (5.65) is

a decreasing function of HP ; i.e., if increasing HP reduces the minimum value

of rC necessary for the consumers to invade. We say that increasing HP makes

it harder for the consumers to invade if the right hand side of either invasibility

condition (5.63) or (5.65) is an increasing function of HP ; i.e., if increasing

HP increases the minimum value of rC necessary for the consumers to invade.

2. We say that increasing HP makes it easier for the consumers to be excluded if

the right hand side of either exclusion condition (5.64) or (5.66) is an increasing

function of HP ; i.e., if increasing HP increases the maximum value of rC, below

which the consumers will be excluded. We say that increasing HP makes it

harder for the consumers to be excluded if the right hand side of either exclusion

condition (5.64) or (5.66) is a decreasing function of HP ; i.e., if increasing HP

decreases the maximum value of rC, below which the consumers is excluded.

Theorem 5.18. Increasing HP

1. makes invasion easier if

(a) 1
2
αRP eRPKR − (mP +HP )(1 + hRP eRPKR) > 0 and eCPαRP << αRCeRC.

(b) 1
2
αRP eRPKR − (mP +HP )(1 + hRP eRPKR) < 0.
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2. makes invasion harder if 1
2
αRP eRPKR − (mP + HP )(1 + hRP eRPKR) > 0 and

eCPαRP >> αRCeRC.

3. makes exclusion harder if 1
2
αRP eRPKR − (mP +HP )(1 + hRP eRPKR) > 0.

Proof. In the case where 1
2
αRP eRPKR − (mP + HP )(1 + hRP eRPKR) > 0, the first

fraction on the right hand side of invasion condition (5.63) is of the form

f(HP ) =
A

B − CHP

where

A = 2eCPαRP

B = ePhP (αRP −mPhRPKR)

C = ePhPhRP

Here, B > 0. To see this, note that to be in this case, it was necessary that mP <
1
2
αRP eRPKR

1+eRP hRPKR
⇔ 1

2
αRP eRPKR > mP (1 + eRPhRPKR). But 1

2
αRP eRPKR > mP (1 +

eRPhRPKR) ⇒ 1
2
αRP eRPKR > mP eRPhRPKR ⇔ 1

2
αRP > mPhRPKR ⇒ αRP >

mPhRPKR. We have that f ′(HP ) > 0 so increasing HP causes the first fraction on

the right hand side of invasibility condition (5.63) to increase.

The second fraction on the right hand side of invasibility condition (5.63) is of the

form

g(HP ) =
A+BHP

C +DHP



292

where

A =
1

2
ePhPαRCeRCKRmP

B =
1

2
ePhPαRCeRCKR

C = ePhPmP (1 + eRChRCKR) + eCPhCPKRαRP eRP

D = ePhP (1 + eRChRCKR)

We have that g′(HP ) > 0 if BC > AD and g′(HP ) < 0 if BC < AD. Note that

BC > AD ⇔ 1

2
ePhPαRCeRCKR [ePhPmP (1 + eRChRCKR) + eCPhCPKRαRP eRP ]

>
1

2
e2Ph

2
PαRCeRCKRmP (1 + eRChRCKR)

⇔ ePhPmP (1 + eRChRCKR) + eCPhCPKRαRP eRP

> ePhpmP (1 + eRChRCKR)

⇔ eCPhCPKRαRP eRP > 0

and

BC < AD ⇔ eCPhCPKRαRP eRP < 0.

So we have that g′(HP ) > 0. Thus, increasing HP causes the second fraction on the

right hand side of invasibility condition (5.63) to increase.

So, increasing HP causes both the first and second fraction on the right hand

side of invasibility condition (5.63) to increase. But when we subtract the second

fraction from the first fraction, we get that the right hand side of invasibility condition

(5.63) could be increasing or decreasing as a result of increasing HP . If eCPαRP >>

αRCeRC then the first fraction on the right hand side of invasibility condition (5.63)

dominates the second fraction. In this case, increasing HP causes the right hand

side of invasibility condition (5.63) to increase, which makes invasion harder. But, if
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eCPαRP << αRCeRC then the second fraction on the right hand side of invasibility

condition (5.63) dominates the first fraction. In this case, increasing HP causes the

right hand side of invasibility condition (5.63) to decrease, which makes invasion

easier.

The first fraction on the right hand side of exclusion condition (5.64) is of the

form

f(HP ) =
A− BHP

C +DHP

where

A = eCP

[
1

2
αRP eRPKR −mP (1 + eRPhRPKR)

]

B = eCP (1 + eRPhRPKR)

C = ePhPmP eRPhRPKR + ePhPKRαRP eRP

D = ePhP eRPhRPKR

As noted above, it is necessary to have 1
2
αRP eRPKR > mP (1 + eRPhRPKR) in order

to be in this case. Thus, we must have A > 0. We have that

f ′(HP ) = − BC + AD

(C +DHP )2
< 0.

So, increasingHP causes the first fraction on the right hand side of exclusion condition

(5.64) to decrease.

The second fraction on the right hand side of exclusion condition (5.64) is of the

form

g(HP ) =
A+BHP

C +DHP
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where

A = ePhPαRCeRCKRmP

B = ePhPαRCeRCKR

C = ePhPmP

(
1 +

1

2
eRChRCKR

)
+ eCPhCP

[
1

2
αRP eRPKR −mP (1 + eRPhRPKR)

]

D = ePhP

(
1 +

1

2
eRChRCKR

)
− eCPhCP (1 + eRPhRPKR)

Since it is necessary to have 1
2
αRP eRPKR > mP (1 + eRPhRPKR) to be in this case,

we have that C > 0. But, D could be positive or negative. We have that g′(HP ) > 0

if D < BC
A

and g′(HP ) < 0 if D > BC
A
. Note that

D <
BC

A
⇔ ePhP

(
1 +

1

2
eRChRCKR

)
− eCPhCP (1 + eRPhRPKR)

<
ePhPαRCeRCKR

ePhPαRCeRCKRmP

(
ePhPmP

(
1 +

1

2
eRChRCKR

)

+ eCPhCP

[
1

2
αRP eRPKR −mP (1 + eRPhRPKR)

])

⇔ ePhP

(
1 +

1

2
eRChRCKR

)
− eCPhCP (1 + eRPhRPKR)

< ePhP

(
1 +

1

2
eRChRCKR

)
+

αRCeRP eCPhCPKR

2mP

− eCPhCP (1 + eRPhRPKR)

⇔ 0 <
αRCeRP eCPhCPKR

2mP

and

D >
BC

A
⇔ 0 >

αRCeRP eCPhCPKR

2mP

.

So we have that g′(HP ) > 0. Thus, increasing HP causes the second fraction on the

right hand side of exclusion condition (5.64) to increase.

So, increasing HP causes the first fraction on the right hand side of exclusion
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condition (5.64) to decrease, while causing the second fraction to increase. When we

subtract the second fraction from the first fraction, we get that the right hand side

of exclusion condition (5.64) is decreasing as a result of increasing HP . This makes

exclusion harder.

In the case where 1
2
αRP eRPKR−(mP +HP )(1+hRP eRPKR) < 0, the first fraction

on the right hand side of invasibility condition (5.65) is of the form

f(HP ) =
A

B + CHP

where

A = eCPKRαRP eRP

B = ePhPmP

(
1 +

1

2
eRChRCKR

)

C = ePhP

(
1 +

1

2
eRChRCKR

)

We have that f ′(HP ) < 0 so increasing HP causes the first fraction on the right hand

side of invasibility condition (5.65) to decrease.

The second fraction on the right hand side of invasibility condition (5.65) is of the

form

g(HP ) =
A+BHP

C +DHP

where

A =
1

2
ePhPαRCeRCKRmP

B =
1

2
ePhPαRCeRCKR

C = ePhPmP (1 + eRChRCKR) + eCPhCPKRαRP eRP

D = ePhP (1 + eRChRCKR)



296

We have that g′(HP ) > 0 if BC > AD and g′(HP ) < 0 if BC < AD. Note that

BC > AD ⇔ 1

2
ePhPαRCeRCKR [ePhPmP (1 + eRChRCKR) + eCPhCPKRαRP eRP ]

>
1

2
e2Ph

2
PαRCeRCKRmP (1 + eRChRCKR)

⇔ ePhPmP (1 + eRChRCKR) + eCPhCPKEαRP eRP

> ePhPmP (1 + eRChRCKR)

⇔ eCPhCPKRαRP eRP > 0

and

BC < AD ⇔ eCPhCPKRαRP eRP < 0.

So we have that g′(HP ) > 0. Thus, increasing HP causes the second fraction on the

right hand side of invasibility condition (5.65) to increase.

So, increasing HP causes the first fraction on the right hand side of the invasibility

condition to decrease, while causing the second fraction to increase. When we subtract

an increasing fraction from a decreasing fraction, we get that the right hand side of

the invasibility condition is decreasing. This makes invasion easier.



Chapter 6

Special Cases

6.1 Linear Food Chain without Harvesting

If eRP = 0 in (2.18), then the predators do not attack the resource. This gives us the

linear food chain (2.15).

The eigenvalues of the Jacobian matrix at (0, 0, 0) do not change.

At (KR, 0, 0), eigenvalues λ1 and λ2 do not change. But we end up with λ3 = −mP .

Biological Remark: In the case of intraguild predation, the predator could invade

at (KR, 0, 0) under certain conditions. But now, the predators do not consume the

resource, so the predators have no food source. So the predators are now excluded

from the system at (KR, 0, 0). Despite this, the system can still be permanent since

the consumers can still invade the system at (KR, 0, 0).

At (0, KC , 0), all the eigenvalues remain the same as the case of intraguild preda-

tion.

Biological Remark: Since the resource and predators are absent from the system

at (0, KC , 0), it does not matter whether or not the resource is part of the predators’

diet. The resource and predators will be able to invade or will be excluded from the

system the same as in intraguild predation.

297
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At
(
0, C

∗
, P

∗)
, the resource invasibility condition (4.35) becomes

rR >
eRCC

∗

1 + eCPhPCP
∗ + eChCC

∗

and the resource exclusion condition (4.36) becomes

rR <
eRCC

∗

1 + eCPhPCP
∗ + eChCC

∗ .

This condition is weaker than the case of intraguild predation, which means that it

is easier for the basal resource to invade and harder to be excluded.

Biological Remark: It makes sense that it would be easier for the resource to invade

and harder for the basal resource to be excluded from a linear food chain than a system

with intraguild predation. One reason this makes sense is that the basal resource has

one less species feeding upon it, which makes it easier for the basal resource to grow.

Another is that by not feeding upon the basal resource, the predators have more time

to allot to preying upon the consumers. This will depress the consumer population

further than if the predators fed upon both the basal resource and consumers. Fewer

consumers feeding upon the basal resource also makes it easier for the basal resource

to grow.

At
(
R

∗
, 0, P

∗)
, the consumer invasibility condition (4.43) becomes

rC >
eCPP

∗

1 + ePhPP
∗ − αRCeRCR

∗

1 + eRChRCR
∗ + eCPhCPP

∗ (6.1)

and the consumer exclusion condition (4.43) becomes

rC >
eCPP

∗

1 + ePhPP
∗ − αRCeRCR

∗

1 + eRChRCR
∗ + eCPhCPP

∗ . (6.2)

But in a linear food chain, if the consumer is absent, then P
∗
= 0, so invasibility
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condition (6.1) becomes

rC > − αRCeRCR
∗

1 + eRChRCR
∗

and exclusion condition (6.2) becomes

rC < − αRCeRCR
∗

1 + eRChRCR
∗ .

This shows that the consumer will always be able to invade and can never be excluded.

Biological Remark: Because P
∗
= 0 in a linear food chain when C

∗
= 0, the only

source of predation mortality for the consumer is absent. So the consumers are free

to grow and establish themselves.

At
(
R

∗
, C

∗
, 0
)
, the predator invasibility condition (4.52) becomes

mP <
αCP eCPC

∗

1 + eCPhCPC
∗

and the predator exclusion condition (4.53)

mP >
αCP eCPC

∗

1 + eCPhCPC
∗ .

These conditions cannot be compared directly to the case of intraguild predation,

without more information about the parameters. On the one hand, the predator has

one less food source, which should have a negative impact on the predators’ ability to

grow. But it also means the consumers have less competition for food so they can grow

more. This means more food for the predators from consuming the consumers. More

specifically, if the predator gains more from consuming the basal resource than the

consumers in the case of intraguild predation, then losing the basal resource as a food

source makes it harder for the predator to invade. Therefore, the invasibility condition

becomes stronger. On the other hand, if the predator gains more from consuming the

consumers, then losing the basal resource makes it easier for the predator to invade,
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so the invasibility condition becomes weaker.

To see this, let’s rewrite (4.52) as

mP < αRP

(
eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +

αCP

αRP
eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗

)
. (6.3)

We can see that if αRP >> αCP then the second term is small so (6.3) becomes

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ + ε (6.4)

for ε small. So now, if eRP = 0 because we have a linear food chain, then we get that

mP < ε.

So it is harder for the predator to invade because its mortality rate must be very

small. Similarly, we could rewrite (4.52) as

mP < αCP

(
αRP

αCP
eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +
eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗

)
. (6.5)

We can see that if αCP >> αRP then the first term is small so (6.5) becomes

mP <
αCP eCPC

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ + ε (6.6)

for ε small. So now, if eRP = 0 because we have a linear food chain, then we get that

mP <
αCP eCPC

∗

1 + eCPhCPC
∗ + ε.

In this case, mP can be larger than in the case of intraguild predation (since the

fraction on the righthand side has a smaller denominator) so the condition is weaker.

This makes it easier for the predator to invade in this case.
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We could rewrite (4.53) similarly to see that exclusion will be easier if αRP >> αCP

and harder if αRP << αCP .

6.2 Linear Food Chain with Harvesting

6.2.1 Harvesting the Resource

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the resource. In this case, we need HR < rR in order for the resource

to be able to invade.

We need HR < rR in order for
((

rR−HR

rR

)
KR, 0, 0

)
to be biologically relevant. If

this is the case, then λ3 remains the same as in the unharvested case, but λ1 and

λ2 change. We now end up with λ1 = HR − rR and λ2 = rC +
αRP eRP

(
rR−HR

rR

)
KR

1+eRChRC

(
rR−HR

rR

)
KR

.

Since HR < rR, we have λ1 < 0 and λ2 > 0. So the invasibility and exclusion of each

species at
((

rR−HR

rR

)
KR, 0, 0

)
does not change between the unharvested case and the

harvested case.

At (0, KC , 0), λ2 and λ3 remain the same as the unharvested case. But λ1 now

becomes λ1 = (rR −HR)
(
1− eRCKC

1+eChCKC

)
. This is the same as the case of intraguild

predation with harvesting.

The interior equilibrium
(
R

∗
, 0, P

∗)
does not exist in a linear food chain because

P
∗
= 0 if C

∗
= 0.

At
(
0, C

∗
, P

∗)
, harvesting the resource makes it harder for the resource to invade

and easier for the resource to be excluded.

At
(
R

∗
, C

∗
, 0
)
, in the case where 0 < R

∗
<
(

rR−HR

rR

)
KR, we see from inequalities

(5.34) - (5.37) and Theorem 5.11 that when eRChRC

(
rR−HR

rR

)
KR < 1 + eChCKC ,

harvesting the resource makes it easier for the predators to invade and easier for

them to be excluded. We also see that harvesting the resource has no effect on the

invasibility or exclusion of the predators when 1 + eChCKC < eRChRC

(
rR−HR

rR

)
KR.
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At
(
R

∗
, C

∗
, 0
)
, in the case where 1

2

(
rR−HR

rR

)
KR < R

∗
<

(
rR−HR

rR

)
KR and

1
2
eRChRC

(
rR−HR

rR

)
KR < 1 + eChCKC , we could not analyze the effects of harvesting

except in a special case. But since eRP = 0 in a linear food chain, we can see that

the right hand side of invasibility condition (5.38) is increasing in HR and the right

hand side of exclusion condition (5.39) is decreasing in HR. Therefore, increasing HR

makes it easier for the predators to invade and easier for the predators to be excluded

from the system in this case.

In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<

(
rR−HR

rR

)
KR and 1 + eChCKC <

1
2
eRChRC

(
rR−HR

rR

)
KR, setting eRP = 0 in invasibility condition (5.41) and exclusion

condition (5.42) results in the right hand side of each inequality being independent

of HR. So in this case, harvesting the resource has no effect on the invasibility or

exclusion of the predators.

6.2.2 Harvesting the Consumers

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the consumer. In this case, we need HC < rC in order for the

consumers to be able to invade.

At (KR, 0, 0), λ1 and λ3 remain the same as the unharvested case. But λ2 now

becomes λ2 = rC − HC + αRCeRCKR

1+eRChRCKR
. This is the same as the case of intraguild

predation with harvesting.

We need HC < rC in order for
(
0,
(

rC−HC

rC

)
KC , 0

)
to be biologically relevant. If

this is the case then invasibility and exclusion are the same as in the case of intraguild

predation.

We still cannot have the interior equilibrium
(
R

∗
, 0, P

∗)
since P

∗
= 0 when C

∗
= 0.

At
(
0, C

∗
, P

∗)
, if we set eRP = 0 in consumer invasibility and exclusion conditions

(5.44) - (5.47) and use Theorem 5.14, we see that increasing HC makes invasion easier

and exclusion harder.
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At
(
R

∗
, C

∗
, 0
)
in the case of intraguild predation, the best we could do was consider

a special case because the expressions and calculations are prohibitively complicated

otherwise. Unfortunately, having a linear food chain does not simplify the expressions

or calculations sufficiently enough to make more progress.

6.2.3 Harvesting the Predators

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the predator. In both cases, however, the predators will be excluded

from the system.

At (KR, 0, 0), λ1 and λ2 remain the same as in the unharvested case, but λ3

changes. We now end up with λ3 = −(mP + HP ) < 0. So the predator will still be

excluded from the system, just as in the unharvested case.

At (0, KC , 0), λ1 and λ2 remain the same as the unharvested case. But λ3 now

becomes λ3 = −(mP +HP ) +
αCP eCPKC

1+eCP hCPKC
. This is the same as the case of intraguild

predation.

We still cannot have the interior equilibrium
(
R

∗
, 0, P

∗)
because P

∗
= 0 if C

∗
= 0.

At
(
0, C

∗
, P

∗)
, in the case where 1

2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0,

we can see from invasibility condition (5.59), exclusion condition (5.60), and Theorem

5.17 that increasing HP makes invasion harder and exclusion easier. In the case where

1
2
αCP eCPKC − (mP +HP )(1+ eCPhCPKC) < 0, when we set eRP = 0, the right hand

side of invasibility condition (5.61) is independent of HP and the right hand side of

exclusion condition (5.62) is the same as in the case of intraguild predation.

At
(
R

∗
, C

∗
, 0
)
, harvesting the predators makes it harder for the predators to invade

and easier for the predators to be excluded.
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6.3 Apparent Competition Between the Resource

and Consumers without Harvesting

If eRC = 0 in (2.18) then the consumers do not attack the resource. This gives us the

apparent competition model (2.16).

The eigenvalues of the Jacobian matrix at (0, 0, 0) do not change.

At (KR, 0, 0), the eigenvalues of the Jacobian matrix all remain the same. In

particular, the consumers will always be able to invade and the predators will be able

to invade if inequality (4.31) holds.

Biological Remark: At (KR, 0, 0), there are no predators in the system so the

consumers do not have any predation mortality. And since the consumers grow lo-

gistically in the absence of any other species, the consumers do not need the resource

in order to grow. So in both intraguild predation and apparent competition, the

consumers have nothing to stop them from invading. Also in both cases, the only

food source available to the invading predators at (KR, 0, 0) is the resource. And the

predator-prey relationship between the predators and resource is the same in both

cases, so the invasibility condition for the predators is the same in both cases.

At (0, KC , 0), eigenvalues λ2 and λ3 remain the same. But λ1 changes and invasi-

bility condition (4.32) becomes

0 <
rR
KC

(1 + eChCKC) .

This condition shows that the resource will always be able to invade.

Biological Remark: In apparent competition, the only predation threat to the

resource comes from the predators. But at (0, KC , 0), the predators are absent so

there is nothing to stop the resource from invading.
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At
(
0, C

∗
, P

∗)
, the resource invasibility condition (4.35) becomes

rR >
eRPP

∗

1 + eCPhCPC
∗ + ePhPP

∗

and the resource exclusion condition (4.36) becomes

rR <
eRPP

∗

1 + eCPhCPC
∗ + ePhPP

∗ .

These conditions are weaker than in the case of intraguild predation, which makes it

easier for the resource to invade and harder for them to be excluded.

Biological Remark: It makes sense that it would be easier for the resource to invade

and harder for them to be excluded. One reason is that the basal resource has one

less species feeding upon it, which helps the resource to grow. Another reason is that

the consumers will not have the extra food source so the size of its population will be

depressed. A lower consumer population density means less food for the predators

who are the basal resource’s only enemy now. Thus, there will be fewer predators

to prey upon the basal resource, which also makes it easier for the basal resource to

grow.

At
(
R

∗
, 0, P

∗)
, the consumer invasibility condition (4.43) becomes

rC >
eCPP

∗

1 + eRPhRPR
∗ + ePhPP

∗

and the consumer exclusion condition (4.44) becomes

rC <
eCPP

∗

1 + eRPhRPR
∗ + ePhPP

∗ .

These conditions are stronger than in the case of intraguild predation, which makes

it harder for the consumer to invade and easier for them to be excluded.

Biological Remark: Since the consumers do not feed upon the resource in apparent
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competition, it makes sense that it would be harder for them to invade the system

and easier for them to be excluded from the system at
(
R

∗
, 0, P

∗)
. This is because

now, one of the consumer’s food sources is absent from its diet.

At
(
R

∗
, C

∗
, 0
)
, the predator invasibility condition (4.52) becomes

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +
αCP eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗

and the predator exclusion condition (4.53) becomes

mP >
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +
αCP eCPC

∗

1 + eRPhRPR
∗ + eCPhCPC

∗ .

These conditions are the same as in the case of intraguild predation. This makes sense

because in either case, the predator has both the basal resource and the predator to

feed upon as it tries to invade.

6.4 Apparent Competition Between the Resource

and Consumers with Harvesting

6.4.1 Harvesting the Resource

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the resource. In this case, we need HR < rR in order for the resource

to be able to invade.

We need HR < rR in order for
((

rR−HR

rR

)
KR, 0, 0

)
to be biologically relevant. If

this is the case, then λ2 remains the same as in the unharvested case, but λ1 and λ3

change. We now end up with λ1 = HR − rR and λ3 = −mP +
αRP eRP

(
rR−HR

rR

)
KR

1+eRP hRP

(
rR−HR

rR

)
KR

.

We have λ1 < 0 just as in the unharvested case. We also have that λ3 is the same in

intraguild predation.
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At (0, KC , 0), λ2 and λ3 are the same as the unharvested case. But λ1 now becomes

λ1 = rR − HR. If HR < rR then the resource will be able to invade the system. If

HR > rR then the resource will be excluded from the system.

At
(
R

∗
, 0, P

∗)
, we see from inequalities (5.30) - (5.33) and Theorem 5.10 that

harvesting the resource makes it harder for the consumers to invade. Also, in the

case where 1
2
αRP eRP

(
rR−HR

rR

)
KR − mP

(
1 + eRPhRP

(
rR−HR

rR

)
KR

)
> 0, harvesting

the resource makes it harder for the consumers to be excluded while in the case where

1
2
αRP eRP

(
rR−HR

rR

)
KR−mP

(
1 + eRPhRP

(
rR−HR

rR

)
KR

)
< 0, harvesting the resource

makes it easier for the consumers to be excluded from the system.

At
(
0, C

∗
, P

∗)
, harvesting the resource makes it harder for the resource to invade

and easier for the resource to be excluded.

At
(
R

∗
, C

∗
, 0
)
, when 0 < R

∗
<
(

rR−HR

rR

)
KR, we cannot be in the case where

1 + eChCKC < eRChRC

(
rR−HR

rR

)
KR since eRC = 0 in apparent competition and

this would give us 1 + eChCKC < 0. We can see from invasibility condition (5.34),

exclusion condition (5.35), and Theorem 5.11 that increasing HR makes it easier for

the predators to invade and makes it easier for the predators to be excluded from the

system.

In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR, we cannot have the case

where 1+eChCKC < 1
2
eRChRC

(
rR−HR

rR

)
KR because eRC = 0 in apparent competition

and this would give us 1 + eChCKC < 0. In the case where we had 1
2
eRChRCKR <

1 + eChCKC in the intraguild predation model, we could not analyze the effects of

harvesting except in a special case. But since eRC = 0 in apparent competition, we

can see that the first fraction on the right hand side of both invasibility condition

(5.38) and exclusion condition (5.39) is decreasing in HR while the second fractions

in both are increasing. Thus, when we add these fractions together, we get that the

right hand side of invasibility condition (5.38) and exclusion condition (5.39) could be

increasing or decreasing. If αRP eRP >> αCP eCP then the first fraction on the right
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hand side of invasibility condition (5.38) and exclusion condition (5.39) dominates

the second fraction. In this case, increasing HR causes the right hand side to decrease

which makes invasion harder and exclusion easier. But if αRP eRP << αCP eCP then

the second fraction on the right hand side of invasibility condition (5.38) and exclusion

condition (5.39) dominates the first fraction. In this case, increasing HR causes the

right hand side to increase which makes invasion easier and exclusion harder.

6.4.2 Harvesting the Consumers

At (0, 0, 0), the only species whose invasibility condition is different than in the unhar-

vested case is the consumer. In this case, we need HC < rC in order for the resource

to be able to invade.

At (KR, 0, 0), λ1 and λ3 remain the same as the unharvested case. But λ2 now

becomes rC −HC which is positive if HC < rC .

We need HC < rC in order for
(
0,
(

rC−HC

rC

)
KC , 0

)
to be biologically relevant.

If this is the case then λ2 and λ3 are the same as in intraguild predation. But now

λ1 = rR > 0.

At
(
0, C

∗
, P

∗)
, we can see that in the case where 1

2
αCP eCP

(
rC−HC

rC

)
KC−mP

(
1+

eRChRC

(
rC−HC

rC

)
KC

)
> 0, invasibility condition (5.44), exclusion condition (5.45),

and Theorem 5.14 give us that invasibility is independent of HC and exclusion is

harder as a result of increasing HC . In the case where 1
2
αCP eCP

(
rC−HC

rC

)
KC −

mP

(
1 + eRChRC

(
rC−HC

rC

)
KC

)
< 0, we can see from invasibility condition (5.46),

exclusion condition (5.47), and Theorem 5.14 that increasing HC makes invasion

easier and exclusion harder.

At
(
R

∗
, 0, P

∗)
, harvesting the consumers makes it harder for the consumers to

invade and easier for the consumers to be excluded.

In apparent competition,
(
R

∗
, C

∗
, 0
)
=
(
KR,

(
rC−HC

rC

)
KC , 0

)
. Thus, in order

for this equilibrium to be biologically relevant, we must have HC < rC . In the
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case where 0 < R
∗
< KR, we cannot have the case where we 1 + eChCKC <

eRChRC

(
rC−HC

rC

)
KC . Since eRC = 0 in apparent competition, this condition is

equivalent to HC > rC

(
1 + 1

eChCKC

)
> rC . So we must be in the case where

eRChRCKR < 1 + eChC

(
rC−HC

rC

)
KC . We were not able to analyze this case in the

intraguild predation model. But by setting eRC = 0, we can see that the right hand

side of invasibility condition (5.48) is decreasing in HC . This makes invasion harder.

Similarly, we can see that the first fraction on right hand side of exclusion condition

(5.49) is increasing in HC while the second fraction is decreasing. When we add these

fractions together, we get that the right hand side of exclusion condition (5.49) could

be increasing or decreasing as a result of increasing HC . If αRP eRP >> αCP eCP then

the first fraction on the right hand side of exclusion condition (5.49) is increasing as

a result of increasing HC . This makes exclusion harder. But if αRP eRP << αCP eCP

then the second fraction on the right hand side of exclusion condition (5.49) dom-

inates the first fraction. In this case, increasing HC causes the right hand side to

decrease. This makes exclusion easier.

6.4.3 Harvesting the Predators

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the predator. In both cases, however, the predators will be excluded

from the system.

At (KR, 0, 0), λ1 and λ2 remain the same as in the unharvested case. We now

end up with λ3 = −(mP +HP ) < 0. So the predator will still be excluded from the

system, just as in the unharvested case.

At (0, KC , 0), λ1 and λ2 remain the same as in the unharvested case. But λ3 now

becomes λ3 = −(mP +HP ) +
αCP eCPKC

1+eCP hCPKC
. This is the same as the case of intraguild

predation.

At
(
0, C

∗
, P

∗)
, in the case where 1

2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) > 0,
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invasibility condition (5.59), exclusion condition (5.60), and Theorem 5.17 give us

that increasing HP makes invasion harder and exclusion harder. In the case where

1
2
αCP eCPKC−(mP +HP )(1+eCPhCPKC) < 0, invasibility condition (5.61), exclusion

condition (5.62), and Theorem 5.17 give us that the resource cannot be excluded and

increasing HP makes invasion easier.

At
(
R

∗
, 0, P

∗)
, in the case where 1

2
αRP eRPKR − (mP +HP )(1 + eRPhRPKR) > 0,

invasibility condition (5.63), exclusion condition (5.64), and Theorem 5.18 give us

that increasing HP makes invasion harder and exclusion harder. In the case where

1
2
αRP eRPKR−(mP +HP )(1+eRPhRPKR) < 0, invasibility condition (5.65), exclusion

condition (5.66), and Theorem 5.18 give us that the predators cannot be excluded,

although the exclusion condition is independent of HP , and increasing HP makes

invasion easier.

At
(
R

∗
, C

∗
, 0
)
, increasing HP makes it harder for the predators to invade and

easier for them to be excluded.

6.5 Resource Competition without Harvesting

If eCP = 0 in (2.18), then the predators do not attack the consumers. This gives us

the resource competition model (2.17).

The eigenvalues of the Jacobian matrix at (0, 0, 0) do no change.

At (KR, 0, 0), the eigenvalues of the Jacobian matrix do not change. In particu-

lar, predator invasibility condition (4.31) remains the same as the case of intraguild

predation.

Biological Remark: Since the consumers and predators are absent from the system

at (KR, 0, 0), it does not matter whether or not the consumers are part of the preda-

tors’ diet. When the predators are absent, the consumers will be free of predation

in intraguild predation just the same as they are in the case of resource competition.

Similarly, when the consumers are absent, the predators will need to rely exclusively
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on consuming the resource to invade in intraguild predation just the same as if the

consumers were not part of their diet.

At (0, KC , 0), eigenvalues λ1 and λ2 remain the same, but λ3 changes. This means

that predator invasibility condition (4.32) becomes

0 > mP .

This condition shows that the predator cannot invade.

Biological Remark: In the case of intraguild predation, the predator could invade

(0, KC , 0) under certain conditions. But now, the predators do not consume the

consumers, so predators have no food source. So the predators are now excluded

from the system at (0, KC , 0).

At
(
0, C

∗
, P

∗)
, the resource invasibility condition (4.35) becomes

rR >
eRCC

∗

1 + eChCC
∗ +

eRPP
∗

1 + ePhPP
∗ (6.7)

and the resource exclusion condition (4.36) becomes

rR <
eRCC

∗

1 + eChCC
∗ +

eRPP
∗

1 + ePhPP
∗ . (6.8)

But in resource competition, if the resource is absent, then P
∗
= 0 and C

∗
= KC , so

the resource invasibility condition (6.7) becomes

rR >
eRCKC

1 + eChCKC

and the resource exclusion condition (6.8) becomes

rR <
eRCKC

1 + eChCKC

.
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These conditions cannot be compared directly to the case of intraguild predation

without more information about the parameters. On the one hand, the consumers

now have no predators so their population density will be higher. This means more

consumers to feed upon the basal resource. On the other hand, the predators have

one less food source so their population density will be lower. This means fewer

predators to feed upon the basal resource. More specifically, if the consumers attack

the basal resource more than the predators do in the case of intraguild predation,

then not having the predators feed upon the consumers means more consumers to

feed upon the basal resource, which would make it harder for the basal resource to

invade. Therefore, the invasibility condition becomes stronger. On the other hand, if

the predator attacks the basal resource more than the consumers do then not having

the predators feed upon the consumers means fewer predators to feed upon the basal

resource. This would make it easier for the basal resource to invade, so the invasibility

condition becomes weaker.

To see this, let’s rewrite (4.35) as

rR > eRC

(
C

∗

1 + eCPhPCP
∗ + eChCC

∗ +

eRP

eRC
P

∗

1 + eCPhCPC
∗ + ePhPP

∗

)
. (6.9)

We can see that if eRC >> eRP then the second term is small so (6.9) becomes

rR >
eRCC

∗

1 + eCPhPCP
∗ + eChCC

∗ + ε (6.10)

for ε small. So now, if eCP = 0 because we have resource competition, then we get

rR >
eRCC

∗

1 + eChCC
∗ + ε.

So it is harder for the basal resource to invade because its intrinsic growth rate must be

larger than in the case of intraguild predation (since the fraction on the righthand side
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has a smaller denominator). Thus, the invasibility condition is stronger. Similarly,

we could rewrite (4.35) as

rR > eRP

(
eRC

eRP
C

∗

1 + eCPhPCP
∗ + eChCC

∗ +
P

∗

1 + eCPhCPC
∗ + ePhPP

∗

)
. (6.11)

We can see that if eRP >> eRC then the first term is small so (6.11) becomes

rR > ε+
eRPP

∗

1 + eCPhCPC
∗ + ePhPP

∗ (6.12)

for ε small. So now, if eCP = 0 because we have resource competition, then we get

rR > ε.

In this case, rR doesn’t have to be as large as in the case of intraguild predation so

the invasibility condition is weaker. This makes it easier for the basal resource to

invade.

At
(
R

∗
, 0, P

∗)
, the consumer invasibility condition (4.43) becomes

rC > − αRCeRCR
∗

1 + eRChRCR
∗

and the consumer exclusion condition (4.44) becomes

rC < − αRCeRCR
∗

1 + eRChRCR
∗ .

This shows that the consumer will always be able to invade and will never be

excluded.

Biological Remark: It makes sense that at
(
R

∗
, 0, P

∗)
the consumers will always

be able to invade and will never be excluded. This is because the consumers have

no source of predation mortality in resource competition so there is nothing to stop
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them from growing.

At
(
R

∗
, C

∗
, 0
)
, the predator invasibility condition (4.52) becomes

mP <
αRP eRPR

∗

1 + eRPhRPR
∗

and the predator exclusion condition (4.53) becomes

mP >
αRP eRPR

∗

1 + eRPhRPR
∗ .

These conditions cannot be compared directly to the case of intraguild predation

without more information about the parameters. The possible negative impact on

the predator by not feeding upon the consumers is clearly that the predator has one

less food source to help its population grow as it tries to invade. But the possible

positive impact on the predator is not so obvious. To see how resource competition

might be more advantageous than intraguild predation for the invading predator, let

us rewrite (4.52) as

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ +

αCP

hCP
eCPC

∗

1
hCP

+ eRP hRP

hCP
R∗ + eCPC

∗ . (6.13)

If αCP

hCP
<< 1 then the second term is small so (6.13) becomes

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ + ε (6.14)

for ε small. So now, if eCP = 0 because we have resource competition, then we get

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + ε. (6.15)

The fraction on the righthand side is larger than in (6.14). This means mP can be

larger than before and the predator will still be able to invade. This makes it easier
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for the predator to invade. So if αCP

hCP
<< 1 then the consumer not being part of the

predator’s diet is more advantageous for the invading predator than if the consumer

were part of the predator’s diet.

Biological Remark: This says that if the predator does not gain sufficiently from

consuming the consumers compared to the time it spends handling consumers, then

the predators are better off leaving the consumers alone and not wasting their time

feeding upon them. Instead, they should feed solely on the basal resource.

6.6 Resource Competition with Harvesting

6.6.1 Harvesting the Resource

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the resource. In this case, we need HR < rR in order for the resource

to be able to invade.

At (
((

rR−HR

rR

)
KR, 0, 0

)
, the eigenvalues of the Jacobian matrix are the same as

in the case of intraguild predation with harvesting.

At (0, KC , 0), λ2 and λ3 remain the same as the unharvested case. But λ1 now

becomes λ1 = (rR −HR)
(
1− eRCKC

1+eChCKC

)
. This is the same as the case of intraguild

predation with harvesting.

The interior equilibrium
(
0, C

∗
, P

∗)
is not possible in resource competition because

P
∗
= 0 if R

∗
= 0.

At
(
R

∗
, 0, P

∗)
, we already have that the consumers can always invade and can

never be excluded. Harvesting the resource does not change this, as the consumers

do not need the resource to grow.

At
(
R

∗
, C

∗
, 0
)
, in the case where 0 < R

∗
<
(

rR−HR

rR

)
KR, inequalities (5.34) -

(5.37) along with Theorem 5.11 give us that the predators cannot invade the system

and increasing HR makes exclusion easier.
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In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR, inequalities (5.38) - (5.42)

along with Theorem 5.13 give us that increasing HR makes invasion harder and ex-

clusion easier.

6.6.2 Harvesting the Consumers

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the consumer. In this case, we need HC < rC in order for the

consumers to be able to invade.

At (KR, 0, 0), the eigenvalues of the Jacobian matrix are the same as in the case

of intraguild predation with harvesting.

At
(
0,
(

rC−HC

rC

)
KC , 0

)
, λ3 remains the same as the unharvested case, but λ1 and

λ2 change. We now have λ1 = rR − eRC(rC−HC)KC

rC+eChC(rC−HC)KC
and λ2 = HC − rC . These are

the same as in the case of intraguild predation.

The interior equilibrium
(
0, C

∗
, P

∗)
is still not possible since R

∗
= 0 implies that

P
∗
= 0.

At
(
R

∗
, 0, P

∗)
, the consumers cannot be excluded and can always invade. But

harvesting the consumers makes invasion harder and exclusion easier.

At
(
R

∗
, C

∗
, 0
)
, in the case where 0 < R

∗
< KR, inequalities (5.48) - (5.52) give us

that the predators cannot invade the system and exclusion condition is independent

of HC . In the case where 1
2
KR < R

∗
< KR, inequalities (5.53) - (5.57) give us that

the invasibility and exclusion conditions are independent of HC .

6.6.3 Harvesting the Predators

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the predator. In both cases, however, the predators will be excluded

from the system.
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At (KR, 0, 0), the eigenvalues of the Jacobian matrix are the same as in the case

of intraguild predation with harvesting.

At (0, KC , 0), λ1 and λ2 remain the same as in the unharvested case. But now

λ3 = −(mP +HP ). In this case, the predators will be excluded, just as they were in

the unharvested case.

The interior equilibrium
(
0, C

∗
, P

∗)
is still not possible since R

∗
= 0 implies that

P
∗
= 0.

At
(
R

∗
, 0, P

∗)
, we already have that the consumers can always invade and can

never be excluded. Harvesting the predators does not change this, as harvesting the

predators increases R
∗
and decreases P

∗
.

At
(
R

∗
, C

∗
, 0
)
, harvesting the predators makes invasion harder and exclusion eas-

ier.

6.7 Interspecific Killing without Harvesting

If αCP = 0 in (2.18), then the predators attack but do not feed upon the consumers.

This gives us interspecific killing. The eigenvalues of the Jacobian matrix at (0, 0, 0)

and (KR, 0, 0) do not change.

At (0, KC , 0), eigenvalues λ1 and λ2 do not change. But we end up with λ3 = −mP .

Biological Remark: In the case of intraguild predation, the predator could invade

(0, KC , 0) under certain conditions. But now, the predators do not consume the

consumers despite attacking them. So, the predators have no food source and are

therefore excluded from the system at (0, KC , 0).

The interior equilibrium
(
0, C

∗
, P

∗)
does not exist in this case because P

∗
= 0 if

R
∗
= 0.

At
(
R

∗
, 0, P

∗)
, the consumer invasibility condition (4.43)and the consumer exclu-

sion condition (4.44) remain the same.

Biological Remark: This makes sense because the attack rate on the consumers
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is remaining the same whether we have interspecific killing or intraguild predation.

So there is no difference to the consumers who are either invading or trying to avoid

exclusion.

At
(
R

∗
, C

∗
, 0
)
, the predator invasibility condition (4.52) becomes

mP <
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗

and the predator exclusion condition (4.53) becomes

mP >
αRP eRPR

∗

1 + eRPhRPR
∗ + eCPhPCC

∗ .

These conditions are stronger than in the case of intraguild predation, which means

that it is harder for the predators to invade and easier to be excluded.

Biological Remark: It makes sense that it would be harder for the predators to

invade and easier for them to be excluded because the predators now have one less

food source.

6.8 Interspecific Killing with Harvesting

6.8.1 Harvesting the Resource

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the resource. In this case, we need HR < rR in order for the resource

to be able to invade.

We need HR < rR in order for
((

rR−HR

rR

)
KR, 0, 0

)
to be biologically relevant. If

this is the case, then we end up with λ1 = HR−rR < 0, λ2 = rC+
αRCeRC

(
rR−HR

rR

)
KR

1+eRChRC

(
rR−HR

rR

)
KR

,

and λ3 = −mP +
αRP eRP

(
rR−HR

rR

)
KR

1+eRP hRP

(
rR−HR

rR

)
KR

. These are the same as the case of intraguild

predation with harvesting.
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At (0, KC , 0), λ2 and λ3 remain the same as in the unharvested case. But λ1 now

becomes λ1 = (rR −HR)
(
1− eRCKC

1+eChCKC

)
. This is the same as the case of intraguild

predation with harvesting.

The interior equilibrium
(
0, C

∗
, P

∗)
does not exist in interspecific killing because

P
∗
= 0 if R

∗
= 0.

At
(
R

∗
, 0, P

∗)
, inequalities (5.30) - (5.33) remain the same in the case of interspe-

cific killing as in intraguild predation.

At
(
R

∗
, C

∗
, 0
)
, in the case where 0 < R

∗
<
(

rR−HR

rR

)
KR, we see from inequalities

(5.34) - (5.37) and Theorem 5.11 that when αCP = 0, the predators cannot invade

the system and increasing HR makes it easier for the predators to be excluded.

6.8.2 Harvesting the Consumers

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the consumer. In this case, we need HC < rC in order for the

consumers to be able to invade.

At (KR, 0, 0), λ1 and λ3 remain the same as the unharvested case. But λ2 now

becomes λ2 = rC − HC + αRCeRCKR

1+eRChRCKR
. This is the same as the case of intraguild

predation with harvesting.

We need HC < rC in order for
(
0,
(

rC−HC

rC

)
KC , 0

)
to be biologically relevant. If

this is the case then λ3 remains the same as in the unharvested case while λ1 and λ2

are the same as the case of intraguild predation with harvesting.

The interior equilibrium
(
0, C

∗
, P

∗)
does not exist in interspecific killing because

P
∗
= 0 if R

∗
= 0.

At
(
R

∗
, 0, P

∗)
, harvesting the consumers makes it harder for the consumers to

invade and easier for the consumers to be excluded.

At
(
R

∗
, C

∗
, 0
)
, in the case where 0 < R

∗
< KR, inequalities (5.48) - (5.52) and

Theorem 5.15 give us that the predators cannot invade the system and increasing HC
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makes it harder for the predators to be excluded. In the case where 1
2
KR < R

∗
< KR,

inequalities (5.53) - (5.57) and Theorem 5.16 give us that the invasibility conditions

are still prohibitively complicated and increasingHC makes it harder for the predators

to be excluded.

6.8.3 Harvesting the Predators

At (0, 0, 0), the only species whose invasibility condition is different than in the un-

harvested case is the predator. In both cases, however, the predators will be excluded.

At (KR, 0, 0), the eigenvalues of the Jacobian matrix are the same as in the case

of intraguild predation with harvesting.

At (0, KC , 0), λ1 and λ2 remain the same as in the unharvested case. But now

λ3 = −(mP +HP ). In this case, the predators will be excluded, just as they were in

the unharvested case.

The interior equilibrium
(
0, C

∗
, P

∗)
does not exist in interspecific killing because

P
∗
= 0 when R

∗
= 0.

At
(
R

∗
, 0, P

∗)
, the invasibility and exclusion conditions remain the same as the

case of intraguild predation with harvesting.

At
(
R

∗
, C

∗
, 0
)
, harvesting the predators makes it harder for the predators to invade

and easier for them to be excluded.



Chapter 7

More Biological Remarks and
Discussion

7.1 Biological Remarks on Invasibility and Exclu-

sion when Resource Absent

7.1.1 Increasing eChC

According to Theorem 4.3, if

1

2
αCP eCPKC −mP (1 + eCPhCPKC) > 0

then increasing eChC makes it easier for the resource to invade and harder for them

to be excluded.

If

1

2
αCP eCPKC −mP (1 + eCPhCPKC) < 0

then increasing eChC makes it easier for the resource to invade and harder for them

to be excluded.

Biological Remark: Under any set of circumstances, the more the consumers in-

terfere with each other, the easier it is for the resource to invade the system when

they are absent. This is to be expected because the more the consumers interfere with
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each other, the less they are preying upon the invading resource. Likewise, under any

set of circumstances, the more the consumers interfere with each other, the harder it

is for the resource to be excluded from the system. This is to be expected. The more

the consumers interfere with each other, the less they are preying upon the resource.

This, in turn, reduces the consumers’ growth rate so there are less consumers to prey

upon the resource. Having fewer consumers also reduces the predator’s growth rate,

which means fewer predators feeding upon the resource.

7.1.2 Increasing KC

According to Theorem 4.4, if

mP <
1

2

αCP

hCP

, KC >
mP

1
2
αCP eCP −mP eCPhCP

, eCPhPC > ePhP

then increasing KC makes it easier for the resource to invade. If any of

mP > 1
2
αCP

hCP
, KC > 0

or

mP < 1
2
αCP

hCP
, KC < mP

1
2
αCP eCP−mP eCP hCP

or

mP < 1
2
αCP

hCP
, KC > mP

1
2
αCP eCP−mP eCP hCP

, eCPhPC < ePhP

hold, then increasing KC makes it harder for the resource to invade.

Biological Remark: For most parameter values, increasing KC makes invasion

harder. This is to be expected because increasing KC means more consumers to

feed upon the invading resource. It also means more food for the predators. This

leads to more predators to also feed upon the invading resource. But, when mP <

1
2
αCP

hCP
, KC > mP

1
2
αCP eCP−mP eCP hCP

, eCPhPC > ePhP , the predators are sufficiently

efficient in gaining from feeding upon the consumers compared to the time they spend
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handling encountered consumers. The predator mortality rate and their intraspecific

interference is also sufficiently low. Thus, there is not much to limit the predators’

growth rate. But, in this case, the consumers spend a sufficiently large amount

of time avoiding predators. Increasing KC increases the amount of food available

for predators, which increases the number of predators. This, in turn, means the

consumers will spend even more time avoiding predators. This leaves less time for

consuming the resource. Additionally, if the consumers spend a large amount of

time avoiding predators, the predators might need to spend more time searching for

consumers to feed upon, even if they do not spend too much time on the consumers

once they have been captured.

7.1.3 Increasing mP

According to Theorem 4.5, if

mP <
1
2
αCP eCPKC

1 + eCPhCPKC

, 1 +
1

2
eChCKC >

1 + eCPhCPKC

ePhP

then increasing mP makes it harder for the resource to invade.

Biological Remark: To be in this case, the predators must have a sufficiently small

natural mortality rate and must gain sufficiently from consuming the consumers. In

addition, they must spend a sufficiently small amount of time handling the consumers.

So, there is not much to limit the growth of the predators. Increasing mP means less

predators to feed upon the resource, which helps the resource. It also means fewer

predators to feed upon the consumers, but in order to be in this case, the consumers

must have a sufficiently large amount of intraspecific interference, so more consumers

means more intraspecific interference, which also helps the resource.
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If

mP <
1
2
αCP eCPKC

1 + eCPhCPKC

, 1 +
1

2
eChCKC <

1 + eCPhCPKC

ePhP

, eRC >> eRP

then increasing mP makes it harder for the resource to invade.

Biological Remark: In this case, the primary source of predation on the resource

comes from the consumers. Increasing mP means less predators to suppress the

consumers.

If

mP <
1
2
αCP eCPKC

1 + eCPhCPKC

, 1 +
1

2
eChCKC <

1 + eCPhCPKC

ePhP

, eRC << eRP

then increasing mP makes it easier for the resource to invade.

Biological Remark: In this case, the primary source of predation on the resource

comes from the predators. Increasing mP means less predators to consume the re-

source.

If

mP <
1
2
αCP eCPKC

1 + eCPhCPKC

, eRC >> eRP

then increasing mP makes it easier for the resource to be excluded.

Biological Remark: In this case, the primary source of predation on the resource

comes from the consumers. Increasing mP means less predators to suppress the

consumers.

If

mP <
1
2
αCP eCPKC

1 + eCPhCPKC

, eRC << eRP

then increasing mP makes it harder for the resource to be excluded.

Biological Remark: In this case, the primary source of predation on the resource

comes from the predators. Increasing mP means less predators to consume the re-
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source.

If

mP >
1
2
αCP eCPKC

1 + eCPhCPKC

then increasing mP makes it easier for the resource to invade and harder for them to

be excluded.

Biological Remark: Here, αCP eCP is small so the predators do not gain much from

consuming the consumers, so the predators need have greater need for the resource.

Increasing mP means there are fewer predators to consume the resource.

7.1.4 Increasing ePhP

According to Theorem 4.6, if

1

2
αCP eCP −mP (1 + eCPhCPKC) > 0, eRC >> eRP

then increasing ePhP makes invasion harder. If

1

2
αCP eCP −mP (1 + eCPhCPKC) > 0, eRC << eRP

then increasing ePhP makes invasion easier. If

1

2
αCP eCP −mP (1 + eCPhCPKC) > 0, eRC >> eRP

then increasing ePhP makes exclusion easier. If

1

2
αCP eCP −mP (1 + eCPhCPKC) > 0, eRC << eRP
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then increasing ePhP makes exclusion harder. If

1

2
αCP eCP −mP (1 + eCPhCPKC) < 0

then increasing ePhP makes it harder for the resource to invade and easier for them

to be excluded.

Biological Remark: In the case where the resource’s primary threat from predation

are the consumers, increasing ePhP means the predators spend more time interfering

with each other and less time hunting consumers, so there are more consumers to feed

upon the resource, which is worse for the resource. In the case where the resource’s

primary threat from predation are the predators, increasing ePhP means the predators

spend more time interfering with each other and less time feeding upon the resource,

which is good for the resource.

7.1.5 Increasing eCP

According to Theorem 4.7, if

eCP >
mP

1
2
αCPKC −mPhCPKC

, mP <
1

2

αCP

hCP

then increasing eCP makes it easier for the resource to invade.

Biological Remark: In this case, the predators are sufficiently efficient at gaining

from feeding upon consumers compared to the time they spend handling encountered

consumers. Thus, the predators gain more by increasing eCP than they lose by the

increased time they spend handling encountered consumers. In this case, eCP is

already sufficiently large so the consumer growth rate is already sufficiently low. By

increasing eCP even further, this pushes the consumer growth rate even lower, which

means even less food for the predators. This could then depress the predators’ growth

rate. So, there would be fewer consumers and fewer predators to attack the invading
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resource, which would make invasion easier.

If

eCP >
mP

1
2
αCPKC −mPhCPKC

, mP <
1

2

αCP

hCP

, eRC >> eRP

then increasing eCP makes it easier for the resource to be excluded, but if

eCP >
mP

1
2
αCPKC −mPhCPKC

, mP <
1

2

αCP

hCP

, eRC << eRP

then increasing eCP makes it harder for the resource to be excluded.

Biological Remark: In the case where eRC >> eRP , the result is somewhat unex-

pected. We discuss this result in more detail in section 7.9.

In the case where eRC << eRP , the predators attack the resource much more

than the consumers attack the resource. Increasing eCP means the predators will

spend more time searching for consumers. This leaves them less time to search for

the resource, which makes it harder for the resource to be excluded.

If

eCP <
mP

1
2
αCPKC −mPhCPKC

, mP <
1

2

αCP

hCP

or

mP >
1

2

αCP

hCP

, eCP > 0

then increasing eCP makes it harder for the resource to invade and harder for them

to be excluded.

Biological Remark: In the case where eCP < mP
1
2
αCPKC−mP hCPKC

, mP < 1
2
αCP

hCP
,

the predators are sufficiently efficient at gaining from consuming the consumers com-

pared to the amount of time they spend handling encountered consumers. But eCP

is sufficiently low so the predators do not attack the consumers too frequently. In-

creasing eCP , while keeping it sufficiently low, means the consumer growth rate will

be relatively high, but there will also be significantly more predators to feed upon
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the invading resource. This makes invasion harder. But if the resource is already

established, then eCP being sufficiently low means the consumers and predators have

significant time to search for the resource. Increasing eCP means the consumers and

predators spend more time interacting with each other. This leaves less time for them

to search for the resource, which makes it harder for the resource to be excluded.

In the case where mP > 1
2
αCP

hCP
, eCP > 0, the predators are sufficiently inefficient at

gaining from consuming the consumers compared to the amount of time they spend

handling encountered consumers. Since the resource is absent from the system and

trying to invade, the predators do not have another food source, so their growth rate

is low. Increasing eCP hurts the predators’ growth rate, but since it is already low,

it does not have a significant effect on the predators. But the decrease in predators

helps the consumers’ growth rate. This means there are more consumers to search for

the resource. This has a net negative effect on the resource’s chances of invading. But

when the resource is already established, the consumers have to spend more trying

to avoid predators. This takes away from time they could otherwise spend searching

for the resource. This makes exclusion harder.

7.1.6 Increasing hCP

According to Theorem 4.8, if

hCP <
1
2
αCP eCPKC +mP

eCPKCmP

then increasing hCP makes it harder for the resource to invade and harder for them

to be excluded.

Biological Remark: In this case, the predators spend a small amount of time

handling each captured consumer. Increasing hCP means the predators spend more

time on each consumer, which slows its growth rate. This helps the consumers,
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which then makes it harder for the resource to invade. But if the resource is already

established then the predators are already spending time feeding upon the resource, so

increasing hCP means the predators have to take some of the time they were spending

on handling the resource to handle the consumers, which helps the resource.

If

hCP >
1
2
αCP eCPKC +mP

eCPKCmP

then increasing hCP makes it easier for the resource to invade and keeps exclusion the

same.

Biological Remark: In this case, the predators spend a large amount of time

handling each captured consumer. Increasing hCP does not decrease the growth rate

of the predators much or increase the growth rate of the consumers much. But it

does reduce the amount of time the predators have to consume the resource, which

benefits the resource. But if the resource is already established, then the predator

does not have much time to attack the resource and increasing hCP does not change

this.

7.1.7 Increasing hPC

According to Theorem 4.9, if

1

2
αCP eCPKC −mP (1 + eCPhCPKC) > 0

then increasing hPC makes it easier for the resource to invade and harder for them to

be excluded.

Biological Remark: In this case, the predators’ mortality rate is sufficiently small

compared to how efficiently they gain from consuming the consumers. Increasing

hPC means the consumers spend more time avoiding predators. This leaves them

less time to search for the resource. In addition, the predators need to spend more
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time searching for the consumers, which also leaves them less time to search for the

resource.

If

1

2
αCP eCP −mP (1 + eCPhCPKC) < 0

then increasing hPC keeps invasion and exclusion the same.

Biological Remark: In this case, the predator mortality rate is sufficiently large

compared to how efficient they gain from consuming the consumers. Thus, the preda-

tors have a limited impact on the consumers. Increasing hPC does not significantly

change the dynamics of the consumer-predator interactions, so their respective growth

rates are not significantly changed. This means the number of consumers and preda-

tors searching for the resource is not significantly changed.

7.1.8 Increasing αCP

According to Theorem 4.10, if

αCP >
2mP (1 + eCPhCPKC)

eCPKC
, 1 +

1

2
eChCKC <

eCPhPC(1 + eCPhCPKC)

ePhP
, eRC >> eRP

then increasing αCP makes it harder for the resource to invade. If

αCP >
2mP (1 + eCPhCPKC)

eCPKC
, 1 +

1

2
eChCKC <

eCPhPC(1 + eCPhCPKC)

ePhP
, eRC << eRP

then increasing αCP makes it easier for the resource to invade.

Biological Remark: These cases present unexpected results, which we will discuss

in section 7.9.

If

αCP >
2mP (1 + eCPhCPKC)

eCPKC

, 1 +
1

2
eChCKC >

eCPhPC(1 + eCPhCPKC)

ePhP
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then increasing αCP makes it easier for the resource to invade.

Biological Remark: In this case, there is not as much intraspecific interference

among the consumers and predators as there is interspecific interference between

them. Increasing αCP increases the predators’ growth rate, which means there will

be more predators, which will increase the amount of interspecific interference between

the consumers and predators, which benefits the resource.

If

αCP >
2mP (1 + eCPhCPKC)

eCPKC

, eRC >> eRP

then increasing αCP makes it harder for the resource to be excluded.

Biological Remark: In this case, the primary source of predation on the resource

is from the consumers. Increasing αCP increases the predators’ growth rate which

hurts the consumers, which then helps the resource.

If

αCP >
2mP (1 + eCPhCPKC)

eCPKC

, eRC << eRP

then increasing αCP makes it easier for the resource to be excluded.

Biological Remark: In this case, the primary source of predation on the resource

is from the consumers. Increasing αCP increases the predator’s growth rate, which

hurts the resource.

If

αCP <
2mP (1 + eCPhCPKC)

eCPKC

then increasing αCP makes it harder for the resource to invade and harder for them

to be excluded.

Biological Remark: Since αCP is sufficiently small in this case, we can view this

situation as interspecific killing. We will discuss this situation in section 7.9.
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7.2 Biological Remarks on Invasibility and Exclu-

sion when Consumers Absent

7.2.1 Increasing KR

According to Theorem 4.11, if

KR >
mP

1
2
αRP eRP −mP eRPhRP

, mP <
1

2

αCP

hCP

then increasing KR makes it easier for the consumers to invade.

Biological Remark: Increasing KR provides more food for the predators, which

could make it harder for the consumers to invade. But the predators’ growth rate

eventually saturates, and in this case, KR is already sufficiently large. So, increasing

KR does not provide as much food for the predators as it does for the invading

consumers.

If either

KR < mP
1
2
αRP eRP−mP eRP hRP

, mP < 1
2
αCP

hCP
, αRP eRP << αRCeRC

or

mP > 1
2
αCP

hCP
, KR > 0, αRP eRP << αRCeRC

then increasing KR makes it easier for the consumers to invade. But if either

KR < mP
1
2
αRP eRP−mP eRP hRP

, mP < 1
2
αCP

hCP
, αRP eRP >> αRCeRC

or

mP > 1
2
αCP

hCP
, KR > 0, αRP eRP >> αRCeRC

then increasing KR makes it harder for the consumers to invade.

Biological Remark: IncreasingKR means more food for the predators and therefore

more predators to consume the consumers. But it also means more food for the
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consumers. In the case where αRP eRP << αRCeRC , the consumers gain much more

than the predators do from consuming the resource. In this case, the increase in

KR benefits the consumers more than the predators, which makes it easier for the

consumers to invade. But in the case where αRP eRP >> αRCeRC , the predators

gain much more than the consumers do from consuming the resource. In this case,

increasing KR benefits the predators more than the consumers, which means more

predation on the consumers. This makes it harder for the consumer to invade.

If

KR >
mP

1
2
αRP eRP −mP eRPhRP

, mP <
1

2

αCP

hCP

, eCPhCP > ePhP

then increasing KR makes it easier for the consumers to be excluded.

Biological Remark: In this case, the predators spend sufficiently little time in-

terfering with each other and they are sufficiently efficient in how much they gain

by consuming the consumers compared to the time they spend interacting with en-

countered consumers. By increasing KR, there is more food for the predators, which

leads to more predators to consume the consumers. Since there is a sufficiently small

amount of intraspecific interference among the predators and the predators’ mortality

rate is sufficiently low, this makes it easier for the consumers to be excluded.

If

KR >
mP

1
2
αRP eRP −mP eRPhRP

, mP <
1

2

αCP

hCP

, eCPhCP < ePhP , eCP >> eRC

then increasing KR makes it easier for the consumers to be excluded. But, if

KR >
mP

1
2
αRP eRP −mP eRPhRP

, mP <
1

2

αCP

hCP

, eCPhCP ><P hP , eCP << eRC

then increasing KR makes it harder for the consumers to be excluded.

Biological Remark: Increasing KR means there will be more predators to attack
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the consumers but also more resource for the consumers to attack and feed upon. In

the case where eCP >> eRC , the predators attack the consumers much more than

the consumers attack the resource. In this case, increasing KR increases the attack

rate on the consumers by the predators more than it increases the attack rate by the

consumers on the resource. This makes it easier for the consumers to be excluded.

But in the case where eCP << eRC , the consumers attack the resource much more

than the predators attack the consumers. In this case, increasing KR increases the

attack rate by the consumers on the resource more than it increases the attack rate

on the consumers by the predators. This makes it harder for the consumers to be

excluded.

7.2.2 Increasing αRP

According to Theorem 4.12, if

αRP >
2mP (1 + hRP eRPKR)

eRPKR

, αRP >>
αRCeRC

2eCP

then increasing αRP makes it easier for the consumers to invade. But, if

αRP >
2mP (1 + hRP eRPKR)

eRPKR

, αRP <<
αRCeRC

2eCP

then increasing αRP makes it harder for the consumers to invade.

Biological Remark: If αRP >> αRCeRC

2eCP
then the predator attack rate on the con-

sumers is sufficiently high compared to what the consumers gain from consuming

the resource. Increasing αRP increases the predators’ growth rate, which should hurt

the consumers. This should make invasion harder rather than easier. One possible

explanation for why this does not happen is that perhaps, in this case, the predators

grow so fast that they overconsume the resource. This does not hurt the consumers

too much since they were not gaining much from the resource in the first place, but
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it causes the predators’ growth rate to decrease. This helps the consumers invade.

If αRP << αRCeRC

2eCP
then the predator attack rate on the consumers is sufficiently

low compared to what the consumers gain from consuming the resource. Increasing

αRP increases the predator’s growth rate, which means there are more predators to

compete with for the resource. This hurts the consumers. Also, since the predator

attack rate on the consumers is sufficiently low, having more predators means the

consumers have to spend more time avoiding predators in order to enjoy the same

survival comfort that comes with a low attack rate.

If

αRP >
2mP (1 + hRP eRPKR)

eRPKR

then increasing αRP makes it easier for the consumers to be excluded.

Biological Remark: If the consumers are already established, then increasing αRP

will increase the predators’ growth rate, which will lead to more predators to feed

upon the consumers.

If

αRP <
2mP (1 + hRP eRPKR)

eRPKR

then increasing αRP makes it harder for the consumers to invade.

Biological Remark: Increasing αRP will increase the predators’ growth rate, which

will lead to more predators to feed upon the consumers.

7.2.3 Increasing mP

According to Theorem 4.13, if

mP <
αRP eRPKR

2(1 + hRP eRPKR)
, 2eCPαRP <<

1

2
αRCeRC

then increasing mP makes it easier for the consumers to invade.
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Biological Remark: In this case, the predators gain sufficiently little from consum-

ing the resource and the consumers’ growth rate due to consuming the resource is

much greater than the rate at which consumers are attacked by predators. So, increas-

ing mP means less predators to consume the consumers, which helps the consumers

invade.

If

mP <
αRP eRPKR

2(1 + hRP eRPKR)
, 2eCPαRP >>

1

2
αRCeRC

then increasing mP makes it harder for the consumers to invade.

Biological Remark: This situation presents an unexpected result, which we will

discuss in more detail in section 7.9.

If

mP <
αRP eRPKR

2(1 + hRP eRPKR)

then increasing mP makes it harder for the consumers to be excluded.

Biological Remark: Increasing mP means there are fewer predators to feed upon

the consumers.

If

mP >
αRP eRPKR

2(1 + hRP eRPKR)

then increasing mP makes it easier for the consumers to invade.

Biological Remark: Increasing mP means there are fewer predators to feed upon

the consumers.

7.2.4 Increasing ePhP

According to Theorem 4.14, increasing ePhP makes it easier for the consumers to

invade, and if

1

2
αRP eRPKR −mP (1 + hRP eRPKR) > 0
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then increasing ePhP makes it harder for the consumers to be excluded.

Biological Remark: Increasing ePhP means the predators interfere with each other

more, which means they spend less time hunting consumers.

7.2.5 Increasing hRP

According to Theorem 4.15, if

hRP <
1
2
αRP eRPKR −mP

mP eRPKR

⇒ 1

2
αRP eRPKR > mP

then increasing hRP makes it harder for the consumers to invade and harder for the

consumers to be excluded.

Biological Remark: In this case, the predators spend a sufficiently small amount

of time handling the resource compared to what they gain from consuming the re-

source. Increasing hRP means the predators take more time to handle encountered

resource, which increases the amount of resource. But, if hRP remains sufficiently

small compared to what the predators gain from consuming the resource, then the

increase in resource is more beneficial to the predators than the increase in hRP is

detrimental, so increasing hRP increases the predator population, which hurts the

invading consumers. But, if the consumers are already established then the increase

in resource is enough to overcome the increase in predators, so increasing hRP helps

already present consumers.

If

hRP >
1
2
αRP eRPKR −mP

mP eRPKR

⇐ 1

2
αRP eRPKR < mP

then increasing hRP makes it easier for the consumers to invade.

Biological Remark: Increasing hRP means the predators spend more time han-

dling the resource, which means they have less time available to spend attacking the

consumers.
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7.2.6 Increasing eRP

According to Theorem 4.16, increasing eRP makes it harder for the consumers to

invade, and if

eRP >
mP

1
2
αRP −mPhRPKR

, mP <
1

2

αRP

hRP

then increasing eRP makes it easier for the consumers to be excluded.

Biological Remark: Increasing eRP increases the predators’ growth rate and de-

creases the amount of resource available to the consumers to feed on. Both of these

hurt the consumers.

7.3 Biological Remarks on Invasibility and Exclu-

sion when Predators Absent and 0 < R
∗
< KR

7.3.1 Increasing KC

According to Theorem (4.17), if 0 < R
∗
< KR then increasing KC always makes it

easier for the predator to invade.

Biological Remark: Increasing KC increases the amount of food available for the

predators to consume, which makes is easier for the predators to invade.

If 0 < R
∗
< KR, eRChRCKR < 1 + eChCKC ⇔ KC > eRChRCKR−1

eChC
, eChC <

eCP hCPαRCeRCKR

rC
, and KC > K

∗
C , where K

∗
C is a solution to equation (4.60), then

increasing KC makes it easier for the predators to invade.

Biological Remark: One way to have eChC < eCP hCPαRCeRCKR

rC
is if eCPhCP is

sufficiently large. But this would mean that the predators spend a sufficiently large

amount of time handling the consumers. If KC > K
∗
C then increasing KC means

there are more consumers for the predators to attack and handle, which reduces the

predators’ growth rate. Additionally, more consumers reduces the resource’s growth

rate which leads to a further reduction in the predators’ growth rate.
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If 0 < R
∗
< KR, eRChRCKR < 1 + eChCKC ⇔ KC > eRChRCKR−1

eChC
, and 0 <

KC < K
∗
C then increasing KC makes it easier for the predators to be excluded when

αRP eRP >> αCP eCP and harder when αRP eRP << αCP eCP .

Biological Remark: Increasing KC means there are more consumers for the preda-

tors to feed upon, and more consumers to feed upon the resource. If αRP eRP >>

αCP eCP then the predators gain more from consuming the resource than the con-

sumers. In this case, the increase in the number of consumers hurts the predators,

which makes exclusion easier. But if αRP eRP << αCP eCP then the predators gain

more from consuming the consumers than the resource. In this case, the increase in

the number of consumers helps the predators, which makes exclusion harder.

If 0 < R
∗
< KR, 1+eChCKC < eRChRCKR ⇔ KC < eRChRCKR−1

eChC
, and αRP eRP >>

αCP eCP then increasing KC makes it easier for the predators to be excluded. But

if 1 + eChCKC < eRChRCKR and αRP eRP << αCP eCP then increasing KC makes it

harder for the predators to be excluded.

Biological Remark: Increasing KC means there are more consumers to consume

the resource. Since both species are food sources for the predators, the effect could

potentially help or hurt the predators. In the case where αRP eRP >> αCP eCP , the

the predators gain more from consuming the resource than consuming the consumers.

In this case, the decrease in the resource hurts the predators more than the increase

in consumers. But in the case where αRP eRP << αCP eCP , the predators gain more

from consuming the resource than consuming the consumers. In this case, the increase

in consumers helps the predators more than the decrease in the resource hurts the

predators.

7.3.2 Increasing KR

According to Theorem 4.18, if 0 < R
∗
< KR then increasing KR makes it harder for

the predators to invade and harder for them to be excluded.
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Biological Remark: This situation presents an unexpected result, which we will

discuss in section 7.9.

7.3.3 Increasing αRC

According to Theorem 4.19, if 0 < R
∗
< KR then increasing αRC makes it harder for

the predators to invade and easier for the predators to be excluded.

Biological Remark: Increasing αRC means the consumers are more efficient in

gaining from consuming the resource. This allows the consumers to grow faster,

which can reduce the resource population. This in turn can reduce the consumer

population. Both of these mean the predators end up with less food.

7.3.4 Increasing eRC

According to Theorem 4.20, if 0 < R
∗
< KR then increasing eRC makes it harder for

the predators to invade and harder for the predators to be excluded.

Biological Remark: Increasing eRC means the consumers encounter the resource

more frequently. This increases the consumers’ growth rate but also increases the

amount of time they spend handling the resource. When the predators are invading,

their population density is low so consumers can afford the extra handling time re-

quired to reduce the resource population. But the reduction in resource population

reduces the predator population so there is less food for the invading predators.

But when the predators are established, the consumers need to worry about avoid-

ing predation so they cannot spend all of their time encountering and handling the

resource. So the limited amount of extra consumption on the resource has a net pos-

itive effect on the consumers’ growth rate. This means more food for the predators.



341

7.3.5 Increasing eChC

According to Theorem 4.21, if 0 < R
∗
< KR and eRChRCKR < 1 + eChCKC ⇔

eChC > eRChRCKR−1
KC

then increasing eChC makes it easier for the predators to invade

and easier for the predators to be excluded.

Biological Remark: Increasing eChC means the consumers spend more time inter-

fering with each other. If the predators are trying to invade, then this means there

will be less competition for the resource, which helps the predators. But if the preda-

tors are established, they need a sufficient amount of food to avoid being excluded

from the system and more intraspecific interference among the consumers inhibits the

growth rate of the consumers, which reduces the amount of food they provide to the

predators.

If 0 < R
∗
< KR and 1 + eChCKC < eRChRCKR ⇔ eChC < eRChRCKR−1

KC
then

increasing eChC has no effect on whether the predators can invade or are excluded

from the system.

Biological Remark: In this case, eChC is sufficiently small, so as long as eChC

remains sufficiently small after it increased, there is no significant reduction in the

consumers’ growth rate and no significant increase in the resource’s growth rate as a

result of this increased intraspecific interference.

7.3.6 Increasing rC

According to Theorem 4.22, if 0 < R
∗
< KR then increasing rC makes it easier for

the predators to invade and easier for them to be excluded from the system.

Biological Remark: Increasing rC increases the growth rate of the consumers,

which means more food for the invading predators. But if the predators are estab-

lished in the system, then increasing rC and increasing the growth rate on the con-

sumers means more consumers to consume the resource, which reduces the amount of

resource available to both the consumers and predators, and reduced resource for the
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consumers reduces the amount of consumers available for the predators to consume.

7.3.7 Increasing hRC

According to Theorem 4.23, if 0 < R
∗
< KR and eRChRCKR < 1+eChCKC ⇔ hRC <

1+eChCKC

eRCKR
then increasing hRC makes it easier for the predators to invade and easier

for the predators to be excluded.

Biological Remark: Increasing hRC increases the amount of time consumers spend

handling encountered resource. When the predators are trying to invade, the extra

time consumers spend handling encountered resource reduces the amount of compe-

tition, which helps the predators invade. But when the consumers are established,

the increased handling time consumers spend handling encountered resource reduces

the consumers’ growth rate, which means less food for the predators.

If 0 < R
∗
< KR and 1 + eChCKC < eRChRCKR ⇔ hRC > 1+eChCKC

eRCKR
then

increasing hRC has no effect on whether the predators can invade or are excluded

from the system.

Biological Remark: In this case, the consumers already spend a sufficiently large

amount of time handling the encountered resource that the consumer growth rate is

sufficient low that more time spent handling encountered resource will not effect its

growth rate enough to change whether the predators can invade or are excluded.

7.4 Biological Remarks on Invasibility and Exclu-

sion when Predators Absent and KR
2 < R

∗
< KR

7.4.1 Increasing KC

According to Theorem 4.24, if KR

2
< R

∗
< KR and αRP eRP << αCP eCP then increas-

ing KC makes it easier for the predators to invade and harder for the predators to be
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excluded.

Biological Remark: In this case, the predators gain more from consuming the

consumers than consuming the resource so increasing KC means more consumers for

the predators to consume, which benefits the predators.

If KR

2
< R

∗
< KR and αRP eRPKR >> αCP eCPKC then increasing KC makes it

harder for the predators to invade and easier for the predators to be excluded.

Biological Remark: In this case, the predators gain more from consuming the

resource than consuming the consumers. Increasing KC means there are more con-

sumers to feed upon the resource. The negative effect of less resource outweighs the

positive effect of more consumers to feed upon, so increasing KC has a net negative

effect on the predators.

7.4.2 Increasing KR

According to Theorem 4.25, if αRP eRP << αCP eCP then increasing KR makes it

harder for the predators to invade. But if αRP eRP >> αCP eCP then increasing KR

makes it easier for the predators to invade.

Biological Remark: If αRP eRP >> αCP eCP then the predators gain more from

consuming the resource than consuming the predators. Increasing KR means more

resource for the predators to consume, which helps them to invade. If αRP eRP <<

αCP eCP then the predators gain more from consuming the consumers than consuming

the resource. Increasing KR means more resource for the consumers to consume,

which should increase the consumers’ growth rate. This, in turn, should mean more

consumers for the predators to feed upon, which should be beneficial for the predators.

However, this does not appear to be the case. One possible explanation for why

increasing KR might be more harmful than helpful to the predators in this case is

that the increase in the consumer population might not lead to a significant increase

in the predator population. However, increasing KR means more resource for the
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predators to encounter. The more time the predators spend attacking the resource,

the less time they have for attacking the consumers. And since the predators gain

more from consuming the consumers than the resource in this case, the decrease in

attacks on the consumers harms the predators’ ability to invade.

If KR

2
< R

∗
< KR,

1
2
eRChRCKR < 1 + eChCKC ⇔ KR < 1+eChCKC

1
2
eRChRC

, αRCeRC(1 +

eCPhCPKC) >
1
2
rCeRPhRP (1+eChCKC) and 0 < KR < K

∗
R, where K

∗
R is the positive

root of equation (4.74) then increasing KR makes it harder for the predators to be

excluded. If KR

2
< R

∗
< KR and 1

2
eRChRCKR > 1+eChCKC ⇔ KR > 1+eChCKC

1
2
eRChRC

then

increasing KR also makes it harder for the predaators to be excluded. In all other

cases, if αRP eRP << αCP eCP then increasing KR makes it easier for the predators to

be excluded. But if αRP eRP >> αCP eCP then increasing KR makes it harder for the

predators to be excluded.

Biological Remark: In the cases where αRP eRP << αCP eCP or αRP eRP >>

αCP eCP , the reasoning follows the same as above for invasion. When KR < 1+eChCKC
1
2
eRChRC

,

αRCeRC(1 + eCPhCPKC) > 1
2
rCeRPhRP (1 + eChCKC) and 0 < KR < K

∗
R then the

resource population is sufficiently small, but the consumers gain sufficiently from con-

suming the resource, the predators spend a sufficiently small amount of time handling

the resource, and/or lots of time handling consumers. Increasing KR means there is

more resource which increases the number of consumers. This, in turn, increases the

amount of time the predators spend handling consumers. This hurts the predators

and makes exclusion easier. And when KR > 1+eChCKC
1
2
eRChRC

, there is a sufficiently large

amount of resource already available to the predators. But the consumers spend a

sufficiently large amount of time handling the resource. So increasing KR means more

resource for the consumers to handle, which hurts their growth rate. A reduction in

the growth rate of the consumers hurts the predators, which makes exclusion easier.
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7.4.3 Increasing αRC

According to Theorem 4.26, if KR

2
< R

∗
< KR then increasing αRC makes it harder

for the predators to invade and harder for the predators to be excluded.

Biological Remark: Increasing αRC means the consumers gain more from consum-

ing the resource, which increases the consumers’ growth rate. When the predators are

absent from the system and trying to invade, the increase in the consumers’ growth

rate reduces the amount of the resource, which in turn can reduce the amount of

consumers, which would have a negative effect on the predators. But if the predators

are established in the system, the increase in the consumer growth rate means more

food for the predators. The increase in the predator population helps control the

consumer population so the consumers cannot reduce the resource population too

significantly.

7.4.4 Increasing eRC

According to Theorem 4.27, if KR

2
< R

∗
< KR and 1

2
eRChRCKR < 1 + eChCKC ⇔

eRC < 1+eChCKC
1
2
hRCKR

then increasing eRC makes it harder for the predators to invade and

harder for the predators to be excluded.

Biological Remark: Increasing eRC means the consumers encounter the resource

more often. To be in this case, the encounter must be sufficiently small and the

intraspecific interference must be sufficiently high. When the predators are absent,

this increased encounter rate leads to less resource for the predators to feed upon.

Also, more encounters should increase the consumer growth rate, but more consumers

leads to more intraspecific interference, which limits the consumer growth rate. On

the other hand, when the predators are already present in the system, their presence

keeps the consumer population from growing too much as a result of the increased

encounter rate that they severely deplete the amount of resource or see their own

population grow enough that intraspecific interference becomes a more significant
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factor.

If KR

2
< R

∗
< KR and 1 + eChCKC < 1

2
eRChRCKR ⇔ eRC > 1+eChCKC

1
2
hRCKR

then

increasing eRC has no effect on whether the predators can invade or are excluded

from the system.

Biological Remark: To be in this case, eRC must be sufficiently large and KC must

be sufficiently small. Since KC is sufficiently small, the consumers can only deplete

the resource so much and since eRC is already sufficiently large, the consumers are

already encountering the resource almost as much as possible. So increasing eRC

does not significantly change the consumers’ growth rate, which in turn does not

significantly change the resource’s population density.

7.4.5 Increasing hRC

According to Theorem 4.28, if KR

2
< R

∗
< KR then increasing hRC makes it easier

for the predators to invade and easier for the predators to be excluded.

Biological Remark: Increasing hRC increases the amount of time consumers spend

handling encountered resource. When the predators are absent, increasing the han-

dling time decreases the consumer growth rate, which in turn increases the resource

population, meaning more food for both the predators and consumers. But more food

for the consumers increases the consumer population, which means more food for the

predators. But when the predators are present, increasing the handling time decreases

the consumer population’s growth rate. This means less food for the predators.

7.4.6 Increasing eChC

According to Theorem 4.29, if KR

2
< R

∗
< KR and 1

2
eRChRCKR < 1 + eChCKC ⇔

eChC >
1
2
eRChRCKR−1

KC
then increasing eChC makes it easier for the predators to invade

and easier for the predators to be excluded.

Biological Remark: To be in this case, eChC must already be sufficiently large.
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Increasing eChC increases the amount of intraspecific interference among the con-

sumers, which reduces the consumers’ growth rate, although not significantly since

eChC was already sufficiently large. But the reduction in the consumers’ growth rate

leads to an increase in the amount of resource, which leads to more food for both

the consumers are resource. The increase in food for the consumers leads to more

consumers, which also means more food for the predators.

If KR

2
< R

∗
< KR and 1 + eChCKC < 1

2
eRChRCKR ⇔ eChC <

1
2
eRChRCKR−1

KC
then

increasing eChC does not effect whether the predators can invade or are excluded

from the system.

Biological Remark: To be in this case, eChC must be sufficiently small. We also

must have KC sufficiently small. Increasing eChC decreases the consumers’ growth

rate, but since KC is sufficiently small, there are sufficiently few consumers to feed

upon the resource so decreasing the consumers’ growth rate does not significantly

increase the amount of resource. Also, since KC is sufficiently small, there are suf-

ficiently few consumers for the predators to feed upon so decreasing the consumers’

growth rate does not significantly decrease the amount of food available to the preda-

tors.

7.4.7 Increasing rC

According to Theorem 4.30, if KR

2
< R

∗
< KR then increasing rC makes it easier for

the predators to invade.

Biological Remark: Increasing rC increases the natural growth rate of the con-

sumers, which increases the amount of food available to the predators.

If KR

2
< R

∗
< KR and 1

2
eRChRCKR < 1 + eChCKC then increasing rC makes it

harder for the predators to be excluded.

Biological Remark: To be in this case, the consumers’ intraspecific interference

must be sufficiently large. Increasing rC increases the consumers’ growth rate, which
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means more consumers for the predators to eat. Because the intraspecific interfer-

ence is sufficiently large, the increased amount of consumers does not result in a

proportional amount of additional consumption of the resource by the consumers, so

the reduction in the resource’s growth rate as a result of more consumers is not as

significant to the predators’ food supply as the increase in the consumer population.

If KR

2
< R

∗
< KR and 1 + eChCKC < 1

2
eRChRCKR then increasing rC makes it

easier for the predators to be excluded.

Biological Remark: To be in this case, the consumers’ intraspecific interference

must be sufficiently low. Increasing rC increases the consumers’ growth rate. Since

there is a sufficiently small amount of intraspecific interference among the consumers,

the increase in the consumer population leads to increased predation on the resource,

which means less resource for both the consumers and predators to feed upon. The

reduced amount of resource for the consumers to feed upon reduces the consumers’

growth rate, which means less consumers for the predators to feed upon.

7.5 Harvesting

7.5.1 Harvesting only the Consumers in the C − P Plane

In the unharvested case, (0, 0) is a saddle. The equilibrium point (KC , 0) is an

unstable node provided that eCPKCαCP > mP (eRCKChCP + 1) and is a stable node

if eCPKCαCP < mP (eRCKChCP + 1). In the case where (KC , 0) is an unstable node,

the interior equilibrium point
(
C

∗
, P

∗)
exists and the system is permanent. But in

the harvested case, (0, 0) is a saddle provided that HC < rC but is a stable node if

HC > rC . When HC > rC , the equilibrium point
((

rC−HC

rC

)
KC , 0

)
is not biologically

relevant.

Biological Remark: If HC is sufficiently large, then both species will be driven to

extinction. In order for the consumers to survive, we must have HC < rC .
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7.5.2 Harvesting the Resource in the Full Model

According to Theorem 5.10, if mP > 1
2
αRP

hRP
then increasing HR makes it easier for

the consumers to be excluded if αRP eRP << αRCeRC and harder to be excluded if

αRP eRP >> αRCeRC .

Biological Remark: In this case, the predators’ mortality rate is large relative to

the efficiency with which they are able to convert the resource into new predators.

So, the predators do not gain much compared to the time they spend handling the

resource. If αRP eRP << αRCeRC , the consumers gain much more from feeding upon

the resource than the predators do. Because the predators do not gain much from

consuming the resource, they need a large quantity of resource to sustain themselves.

Harvesting the resource will therefore have a more significant affect on the predator

population than on the consumer population. This will reduce the predator popu-

lation which, in turn, puts less predation pressure on the consumers. This makes it

easier for the consumers to invade. If αRP eRP >> αRCeRC , then the consumers gain

much less from feeding upon the resource than the predators do. Because of this, the

predators do not feel the loss of the resource as much as the consumers do. Addition-

ally, because predators are not efficient at handling the resource, a reduction in the

amount of resource can benefit the predator population. This puts more predation

pressure on the consumers, which makes invasion harder.

If mP < 1
2
αRP

hRP
and HR > rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
then increasing HR makes

it easier for the consumers to invade if αRP eRP << αRCeRC and harder for the

consumers to invade if αRP eRP >> αRCeRC . If mP < 1
2
αRP

hRP
and HR < rR

[
1 −

mP

eRPKR( 1
2
αRP−mP hRP )

]
then increasing HR makes it harder for the consumers to invade.

Biological Remark: In this case, the predators gain sufficiently from consuming

the resource compared to the time they spend handling encountered resource. When

there is a sufficiently large amount of harvesting on the resource and αRP eRP <<

αRCeRC then the consumers gain much more from feeding upon the resource than
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the predators do. Because the predators do not gain much from consuming the

resource, they need a large quantity of resource to sustain themselves. Harvesting

the resource will therefore have a more significant affect on the predator population

than on the consumer population. This will reduce the predator population which,

in turn, puts less predation pressure on the consumers. This makes it easier for the

consumers to invade. If there is a sufficiently large amount of harvesting on the

resource and αRP eRP >> αRCeRC then the consumers gain much less from feeding

upon the resource than the predators do. Because of this, the predators do not feel the

loss of the resource as much as the consumers do. This puts more predation pressure

on the consumers, which makes invasion harder. When there is a sufficiently small

amount of harvesting on the resource, then the predators population is relatively close

to its equilibrium value in the non-harvested case. But, there is less resource for the

consumers to feed upon when trying to invade. So harvesting has a greater effect on

the consumer population in this case, which makes invasion harder.

IfmP > 1
2
αRP

hRP
then increasingHR makes it easier for the consumers to be excluded.

If mP < 1
2
αRP

hRP
and HR > rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
then increasing HR makes

exclusion easier.

Biological Remark: When mP > 1
2
αRP

hRP
, the predators do not gain sufficiently from

consuming the resource compared to the time it takes them to handle encountered

resource. Increasing HR reduces the amount of resource, which reduces the amount

of time the predators spend attacking the resource and increases the amount of time

they can spend attacking the consumers. In the case where mP < 1
2
αRP

hRP
but HR >

rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
, the predators are sufficiently efficient at gaining from

consuming the resource but there is already a sufficiently large amount of harvesting

on the resource. Because of the large amount of harvesting already in the system, the

predator population relies significantly on consuming the consumers so increasing HR

will increase the predators’ dependence on the consumers. This will make it easier
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for the consumers to be excluded.

If mP < 1
2
αRP

hRP
, HR < rR

[
1− mP

eRPKR( 1
2
αRP−mP hRP )

]
, and eCPhCP > ePhP then in-

creasing HR makes exclusion harder. If mP < 1
2
αRP

hRP
, HR < rR

[
1 −

mP

eRPKR( 1
2
αRP−mP hRP )

]
, and eCPhCP < ePhP then increasing HR makes exclusion easier

if eCP << eRC and harder if eCP >> eRC .

Biological Remark: In this case, the predators are sufficiently efficient at gaining

from consuming the resource compared to the time they spend handling the resource.

Additionally, there is a sufficiently low amount of harvesting in the system. When

eCPhCP > ePhP , the predators spend a sufficiently small amount of time interfering

with each other. So in this case, the main factor which limits the predator population

is the time they spend handling consumers. Increasing HR reduces the amount of

resource for the predators to feed upon, making the predators more dependent on

the consumers. But this means the predators will waste more time which will reduce

their growth rate. This makes it harder for the consumers to be excluded. When

eCPhCP < ePhP , the predators spend a sufficiently large amount of time interfering

with each other. If eCP << eRC then the consumers attack the resource much more

than the predators attack the consumers. Increasing HR reduces the amount of

resource the consumers can attack. This makes it easier for the consumers to be

excluded. If eCP >> eRC then the predators attack the consumers much more than

the consumers attack the resource. Increasing HR reduces the amount of resource for

the predators to feed upon. This reduces the amount of predators who can attack

the consumers, which makes it harder for the consumers to be excluded.

According to Theorem 5.11, if 0 < R
∗
<
(

rR−HR

rR

)
KR, then increasing HR makes

it easier for the predators to invade and easier for the predators to be excluded.

Biological Remark: In this case, increasing HR can drive the resource population

closer to extinction. This means less food for the predators and consumers. Addition-

ally, less food for the consumers reduces the consumer population, which reduces the



352

amount of food the consumers are able to provide for the predators. This seems that

it should make invasion harder and exclusion easier. It is unclear what the mechanism

is in this case which makes invasion easier.

According to Theorem 5.12, if 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR ⇔ HR <

rR

(
1 − 2(1+eChCKC)

eRChRCKR

)
⇒ 1 + eChCKC < 1

2
eRChRCKR and 1

2
eRChRC

(
rR−HR

rR

)
KR <

1 + eChCKC , and αRP eRPKR >> αCP eCPKC then increase HR makes exclusion

easier.

Biological Remark: In this case, the predators gain much more from consuming

the resource than from consuming the consumers. Increasing HR reduces the amount

of resource available to the predators, which makes exclusion easier.

According to Theorem 5.13, if 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR and 1 +

eChCKC < 1
2
eRChRC

(
rR−HR

rR

)
KR ⇔ HR > rR

(
1 − 2(1+eChCKC)

eRChRCKR

)
⇐ 1 + eChCKC >

1
2
eRChRCKR and αRP eRPKR << αCP eCPKC then increasing HR makes invasion eas-

ier. If 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR and 1+eChCKC < 1

2
eRChRC

(
rR−HR

rR

)
KR

and αRP eRPKR >> αCP eCPKC then increasing HR makes invasion harder. If

1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR and 1 + eChCKC < 1

2
eRChRC

(
rR−HR

rR

)
KR then

increasing HR makes exclusion easier.

Biological Remark: If αRP eRPKR << αCP eCPKC then the predators gain much

more from consuming the consumers than from consuming the resource. It is unclear

why increasing HR makes it easier for the predators to invade, as this reduces the

amount of food available for the consumers which then reduces the amount of food

available for the predators. If αRP eRPKR >> αCP eCPKC then the predators gain

much more from consuming the resource than from consuming the consumers. In-

creasing HR reduces the amount of resource available for the predators to consume,

which makes it harder for the predators to invade. In either case, if the predators

are established in the system, increasing HR reduces the amount of food available to

both the predators and to the consumers. The reduction in the consumer population
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leads to a further reduction in the amount of food available to predators. This makes

it easier for the predators to be excluded.

7.5.3 Harvesting the Consumers in the Full Model

According to Theorem 5.14, if HC < rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
and mP < 1

2
αCP

hCP

then increasing HC makes it easier for the resource to invade if eCPhPC < ePhP and

harder to invade if eCPhCP > ePhP . If mP > 1
2
αCP

hCP
or if mP < 1

2
αCP

hCP
and HC >

rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
then increasing HC makes it easier for the resource to

invade. In all cases, increasing HC makes exclusion harder.

Biological Remark: This situation presents an unexpected result, which we will

discuss in section 7.9.

According to Theorems 5.15 and 5.16, along with the comments following each of

these theorems, if 1
2
KR < R

∗
< KR and αRP eRPKR >> αCP eCPKC then increasing

HC makes it harder for the predators to be excluded from the system.

Biological Remark: In this case, the predators gain much more from consuming

the resource than consuming the consumers. Increasing HC reduces the number

of consumers who can feed upon the resource. This leaves more resource for the

predators to feed upon, which makes it harder for the predators to be excluded.

7.5.4 Harvesting the Predators in the Full Model

According to Theorem 5.17, if 1
2
αCP eCPKC−(mP+HP )(1+eCPhCPKC) < 0 ⇔ HP >

1
2
αCP eCPKC

1+eCP hCPKC
⇐ mP >

1
2
αCP eCPKC

1+eCP hCPKC
then increasing HP makes it easier for the resource

to invade. If 1
2
αCP eCPKC − (mP +HP )(1+ eCPhCPKC) > 0 ⇔ HP <

1
2
αCP eCPKC

1+eCP hCPKC
⇒

mP <
1
2
αCP eCPKC

1+eCP hCPKC
then increasing HP makes it harder for the resource to invade.

Biological Remark: Increasing HP reduces the number of predators who can feed

upon the resource and on the consumers. This allows the consumer population to

grow more. On the one hand, there are fewer predators to consumer the resource. But



354

on the other hand, there are more consumers to consume the resource. It is unclear

why increasing HP benefits the resource when HP is sufficiently large but hurts the

resource when HP is sufficiently small.

If 1
2
αCP eCPKC − (mP + HP )(1 + eCPhCPKC) > 0 then increasing HP makes it

easier for the resource to be excluded if eRC >> eRP and harder for the resource to

be excluded if eRC << eRP . If 1
2
αCP eCPKC − (mP +HP )(1 + eCPhCPKC) < 0 then

increasing HP makes it easier for the resource to be excluded.

Biological Remark: If HP is sufficiently small and eRC >> eRP then the consumers

attack the resource much more than the predators do. Increasing HP reduces the

number of predators who can feed upon the consumers. This allows the consumer

population to increase and attack the resource more. This makes exclusion easier.

If HP is sufficiently small and eRC << eRP then the predators attack the resource

much more than the consumers do. Increasing HP reduces the number of predators

who can attack the resource. This makes exclusion harder. If HP is sufficiently large

then there are sufficiently few predators so the predators cannot attack the resource

as frequently as the consumers do. Increasing HP reduces the number of predators

who can feed upon the consumer population, which allows the consumer population

to increase. This makes it easier for the resource to be excluded.

According to Theorem 5.18, if 1
2
αRP eRPKR − (mP +HP )(1 + eRPhRPKR) > 0 ⇔

HP <
1
2
αRP e−RPKR

1+eRP hRPKR
−mP ⇒ mP <

1
2
αCP eCPKC

1+eCP hCPKC
and eCPαRP << αRCeRC then increas-

ing HP makes it easier for the consumers to invade. If 1
2
αRP eRPKR − (mP +HP )(1+

eRPhRPKR) > 0 and eCPαRP >> αRCeRC then increasing HP makes it harder for

the consumers to invade. If 1
2
αRP eRPKR − (mP +HP )(1 + eRPhRPKR) < 0 ⇔ HP >

1
2
αRP e−RPKR

1+eRP hRPKR
− mP ⇐ mP >

1
2
αCP eCPKC

1+eCP hCPKC
then increasing HP makes it easier for the

consumers to invade. If 1
2
αRP eRPKR − (mP +HP )(1 + eRPhRPKR) > 0 then increas-

ing HP makes it harder for the consumers to be excluded. If 1
2
αRP eRPKR − (mP +

HP )(1 + eRPhRPKR) < 0 then the consumers cannot be excluded.
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Biological Remark: Increasing HP reduces the number of predators who can con-

sume the consumers. It seems that this should make it easier for the consumers to

invade and harder for them to be excluded. This is the situation in all cases, except

when HP is sufficiently small and eCPαRP >> αRCeRC . This situation presents an

unexpected result, which we will discuss in section 7.9.

7.6 Harvesting in a Linear Food Web

When harvesting the resource, the important case to consider here is when we are

near
(
R

∗
, C

∗
, 0
)
. In particular, if eRChRC

(
rR−HR

rR

)
KR < 1 + eChCKC ⇔ HR >

rR

(
1− 1+eChCKC

eRChRCKR

)
⇐ 1+ eChCKC > eRChRCKR then harvesting the resource makes

it easier for the predators to invade and easier for them to be excluded.

Biological Remark: Increasing HR reduces the consumers’ growth rate. This re-

sults in less food available to the predators. This makes it easier for the predators to

be excluded, but it is unclear why this makes it easier for the predators to invade.

When harvesting the consumers, increasing HC makes it easier for the resource to

invade when it is the only species absent. In this case, increasing HC makes invasion

easier and exclusion harder.

Biological Remark: Because the only source of predation on the resource is from

the consumers, increasing HC reduces the amount of consumers who can feed upon

the resource. This makes it easier for the resource to invade and harder for them to

be excluded.

When harvesting the predators, the important case to consider is when are are

near
(
0, C

∗
, P

∗)
. In the case where 1

2
αCP eCPKC − (mP +HP )(1+eCPhCPKC) > 0 ⇔

HP <
1
2
αCP eCPKC

1+eCP hCPKC
−mP ⇒ mP <

1
2
αCP eCPKC

1+eCP hCPKC
, increasing HP makes it easier for the

resource to invade and easier for them to be excluded.

Biological Remark: Increasing HP reduces the number of predators who can feed

upon the consumers. This increases the number of consumers who can feed upon the
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resource, which makes it harder for the resource to invade and easier for them to be

excluded.

7.7 Harvesting in Apparent Competition

When the resource is harvested near
(
R

∗
, 0, P

∗)
, it is harder for the consumers to in-

vade the system. In the case where 1
2
αRP eRP

(
rR−HR

rR

)
KR − mP

(
1 +

eRPhRP

(
rR−HR

rR

)
KR

)
> 0 ⇔ HR > rR

(
1 −

1
2
αRP eRPKR

mP eRP hRPKR

)
⇐ mP <

1
2
αRP eRPKR

1+eRP hRPKR
,

harvesting the resource makes it harder for the consumers to be excluded while in

the case where 1
2
αRP eRP

(
rR−HR

rR

)
KR −mP

(
1 + eRPhRP

(
rR−HR

rR

)
KR

)
< 0 ⇔ HR <

rR

(
1 −

1
2
αRP eRPKR

mP eRP hRPKR

)
⇒ mP <

1
2
αRP eRPKR

1+eRP hRPKR
, harvesting the resource makes it easier

for the consumers to be excluded from the system.

Biological Remark: By harvesting the resource, the predator must rely more heav-

ily on the consumers to sustain themselves. Thus, increasing HR makes it harder for

the consumers to invade. When HR is sufficiently large, the predators already rely

heavily on the consumers to sustain themselves. By increasing HR, the is less food

for the predators, but there is not too much more that the predators can rely on

the consumers. So the predator population decreases, which makes it harder for the

consumers to be excluded. But when HR is sufficiently small, the predators will turn

to the consumers more when HR is increased. This makes it easier for the consumers

to be excluded.

When 0 < R
∗
,
(

rR−HR

rR

)
KR, increasing HR makes it easier for the predators to

invade and easier for them to be excluded.

Biological Remark: Since the predators feed upon the resource, increasing HR

means there is less resource for the predators to consume. This makes it easier for

the predators to be excluded, but it is not clear why this makes it easier for the

predators to invade.
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When 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR and αRP eRP >> αCP eCP then in-

creasing HR makes it harder for the predators to invade and easier for them to be

excluded. When αRP eRP << αCP eCP then increasing HR makes it easier for the

predators to invade and harder for them to be excluded.

Biological Remark: When αRP eRP >> αCP eCP , the predators gain much more

from consuming the resource than from consuming the consumers. Increasing HR

means there is less of the resource for the predators to consume, which hurts the

predator population. This makes it harder for the predators to invade and easier for

them to be excluded. When αRP eRP << αCP eCP , the predators gain much more from

consuming the consumers than from consuming the resource. Increasing HR reduces

the number of resource available to the predators, which allows them to focus more

on the consumers who they gain more from. This helps the predator population and

makes it easier for them to invade while making it harder for them to be excluded.

Near
(
0, C

∗
, P

∗)
, increasingHC in the case where 1

2
αCP eCP

(
rC−HC

rC

)
KC−mP

(
1+

eRChRC

(
rC−HC

rC

)
KC

)
< 0 makes it easier for the resource to invade and harder for

them to be excluded.

Biological Remark: Increasing HC decreases the amount of food available to the

predators. This reduces the predators’ growth rate, which means there are fewer

predators to feed upon the resource. This makes it easier for the resource to invade

and harder for the resource to be excluded.

Near
(
R

∗
, C

∗
, 0
)
, increasing HC makes it harder for the predators to invade. If

αRP eRP >> αCP eCP then increasing HC makes it harder for the predators to be

excluded, but if αRP eRP << αCP eCP then increasing HC makes it easier for the

predators to be excluded.

Biological Remark: Increasing HC means there are fewer consumers for the preda-

tors to feed upon, which makes it harder for the predators to invade. When αRP eRP >>

αCP eCP , the predators gain much more from consuming the resource than from con-
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suming the consumers. Since the predators do not gain much from consuming the

consumers, increasing HC allows the predators to focus more on attacking the re-

source. This helps the predators and makes it harder for the predators to be excluded.

When αRP eRP << αCP eCP , the predators gain much more from consuming the con-

sumers than from feeding upon the resource. Increasing HC , reduces the number of

consumers the predators can feed upon, which makes it easier for the predators to be

excluded.

7.8 Harvesting in Resource Competition

When harvesting the resource, the important case to consider is the case when we

are near
(
R

∗
, C

∗
, 0
)
. In the case where 0 < R

∗
<
(

rR−HR

rR

)
KR, the predators cannot

invade the system and increasing HR makes it easier for the predators to be excluded

from the system. In the case where 1
2

(
rR−HR

rR

)
KR < R

∗
<
(

rR−HR

rR

)
KR, increasing

HR makes it harder for the predators to invade the system and easier for them to be

excluded from the system.

Biological Remark: Since the only food source for the predators in resource com-

petition is the resource, increasing HR reduces the amount of food available to the

predators. This hurts the predators and makes it harder for them to invade while

making it easier for them to be excluded.

When harvesting the consumers, we get that the invasibility and exclusion condi-

tions near
(
R

∗
, C

∗
, 0
)
are independent of HC .

Biological Remark: Though the consumers and predators do not interact, the

presence of the consumers affects the resource population level and so it seems that

harvesting should have an indirect effect on the predator population’s ability to invade

or avoid exclusion. It is unclear why this indirect effect is not present.
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7.9 Some Interesting Cases: A Closer Look

7.9.1 The Effect of Increasing eCP on the Resource

According to Theorem 4.7, if

eCP >
mP

1
2
αCPKC −mPhCPKC

, mP <
1

2

αCP

hCP

, eRC >> eRP

then increasing eCP makes it easier for the resource to be excluded.

Biological Remark: When eRC >> eRP , the consumers attack the resource much

more than the predators attack the resource. Increasing eCP increases the number

of predators and decreases the number of consumers. At first glance, it seems that

this should benefit the resource; making it harder for the resource to be excluded.

Since eCP is already sufficiently large, the consumer growth rate is already suffi-

ciently depressed by the predators. Because the predators gain a sufficiently large

amount from consuming the consumers compared to the amount of time they spend

handling encountered consumers in this case, a further increase in eCP significantly

helps the predators. But this increase in predator growth rate results in a decrease

in the consumer growth rate, which in turn decreases the predators’ growth rate. If

this decrease in the predators’ growth rate is sufficiently large, the net effect on the

consumers could be positive, which would make exclusion easier.

7.9.2 The Effect of Increasing αCP on the Resource

According to Theorem 4.10, if

αCP >
2mP (1 + eCPhCPKC)

eCPKC
, 1 +

1

2
eChCKC <

eCPhPC(1 + eCPhCPKC)

ePhP
, eRC >> eRP

then increasing αCP makes it harder for the resource to invade.

Biological Remark: In this case, the resource’s main threat from predation is from
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consumers. Increasing αCP means the predators gain more from eating the consumers,

which increases the predators’ growth rate. This means there are more predators to

feed upon the consumers, which reduces the number of consumers who can feed upon

the resource. This seems like it should make invasion by the resource easier. One

possible explanation why this does not happen is that perhaps, increased predation on

the consumers due to a higher predator growth rate leads to a temporary reduction

in the consumer population. This, in turn, leads to a reduction in the predator

population, which ultimately allows for more consumers.

If

αCP >
2mP (1 + eCPhCPKC)

eCPKC
, 1 +

1

2
eChCKC <

eCPhPC(1 + eCPhCPKC)

ePhP
, eRC << eRP

then increasing αCP makes it easier for the resource to invade.

Biological Remark: In this case, the resource’s main threat from predation is from

predators. Increasing αCP means the predators gain more from eating the consumers,

which increases the predators’ growth rate. This means there are more predators

to feed upon the resource. This seems like it should make invasion by the resource

harder. One possible explanation why this does not happen is that perhaps, increased

predation on the consumers due to a higher predator growth rate leads to a reduction

in the consumer population. This ultimately leads to a reduction in the predator

population.

If

αCP <
2mP (1 + eCPhCPKC)

eCPKC

then increasing αCP makes it harder for the resource to invade and harder for them

to be excluded.

Biological Remark: Since αCP is sufficiently small in this case, we can view this as

being a situation as interspecific killing. In order for the predators to survive when
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the resource is rare, mP necessarily much be sufficiently small. Otherwise, the lack of

resource combined with the predators’ high mortality rate would lead to extinction of

the predator. So, in this case, the predators need the resource. By increasing αCP the

predators’s growth rate increases, but in order to remain in this case, αCP cannot get

too big, so the predators still cannot gain too much from feeding upon the consumers.

Thus, the predators still need the resource. But, the increased predator growth rate

leads to more predators to consume the resource which is bad for the resource. But

if the resource is already established then the predators are already feeding upon the

resource, so increasing αCP increases the predators’ growth rate which means they do

not have as great a need for the resource.

7.9.3 The Effect of Increasing mP on the Consumers

According to Theorem 4.13, if

mP <
αRP eRPKR

2(1 + hRP eRPKR)
, 2eCPαRP >>

1

2
αRCeRC

then increasing mP makes it harder for the consumers to invade.

Biological Remark: In this case, the predators attack the consumers at a suffi-

ciently high rate, and the consumers do not gain much from consuming the resource

compared to what the predators gain from consuming the resource. By increasing

mP , there should be fewer predators to consume the consumers, which should make

invasion easier for the consumers. To see why this is not the case, let us consider the

case with Holling II functional response. The system we have is

dR

dt
= rRR

(
1− R

KR

)
− eRPRP

1 + eRPhRPR

dP

dt
=

αRP eRPRP

1 + eRPhRPR
−mPP
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Figure 7.1: Resource and predator isoclines in a predator-prey system with Holling II
functional response.

The predator isocline is the line R
∗
= mP

eRP (αRP−mP hRP )
. Thus, the resource and

predator isoclines are as shown in Figure (7.1).

Notes:

1. R
∗ ≥ 0 ⇔ mP < αRP

hRP

2. There is some critical value of R
∗
below which P

∗
is increasing and above which

P
∗
is decreasing. But, R

∗
= mP

eRP (αRP−mP hRP )
is an increasing function of mP .

Therefore, there is a critical value of mP below which P
∗
is increasing and above

which P
∗
is increasing.

3. The predation rate per predator, eRP

1+eRP hRPR
∗ is a decreasing function of R

∗
.

So, increasing mP increases R
∗
, which decreases the predation rate per predator.

But this means that a fixed prey population can then support more predators, which

increases the predator population provided mP remains sufficiently small. Thus,

when mP is sufficiently small, increasing mP has a greater positive effect on predator

growth than negative effect from natural mortality. This benefit to the predator

population hurts the consumer population so that increasing mP makes it harder for

the consumers to invade.
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Figure 7.2: Resource and predator isoclines in a predator-prey system with Beddington-
DeAngelis functional response.

In the case with Beddington-DeAngelis functional response, the system we have

is

dR

dt
= rRR

(
1− R

KR

)
− eRPRP

1 + eRPhRPR + ePhPP

dP

dt
=

αRP eRPRP

1 + eRPhRPR + ePhPP
−mPP

The predator isocline in this case is the line P
∗
= eRP (αRP−mP hRP )

eP hP
R

∗− mP

eP hP
. Thus,

the resource and predator isoclines are as shown in Figure(7.2).

Just as in the case of Holling II functional response, there is some critical value

of R
∗
below which P

∗
is increasing and above which P

∗
is decreasing. Note that the

slope of the predator isocline is decreasing in ePhP and the P -intercept of the predator

isocline is increasing in ePhP . Thus, in order to be in the case where increasing R
∗

increases P
∗
, it is necessary to have ePhP small. But if ePhP is small, then the

dynamics are approximately the same as in the Holling II case, which we discussed

above. We can see that the slope of the predator isocline is decreasing in mP , so

assuming that ePhP is small, then mP sufficiently small and increasing implies that

P
∗
is increasing.
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Note: We know from [14] that R
∗
= KR is stable if eRPhRP

(
1− R

∗

KR

)
< 1. So if

ePhP is not small, then P
∗
is near 0, so R

∗
is near KR and so will not be in the case

where increasing mP increases P
∗
, even if mP is small.

7.9.4 The Effect of Increasing KR on the Predators

According to Theorem 4.18, if 0 < R
∗
< KR then increasing KR makes it harder for

the predators to invade and harder for them to be excluded.

Biological Remark: Increasing KR means there is more food for the consumers,

which helps the consumer population to grow. When the predators are invading, the

predator population is too low to significantly inhibit the growth of the consumers,

so increasing the consumer population means more predation on the resource, which

ends up decreasing both the resource and consumer population. This means there is

less food for the invading predators. But, when the predator population is higher,

the predator population can limit the growth of the consumer population, so that the

consumers cannot depress the resource population too much. Thus, increasing KR

means both the resource and consumers will increase, which means more food for the

predators, which helps keep it from being excluded.

7.9.5 The Effect of Harvesting the Consumer-Predator Sub-

system

According to Theorem 5.1, if HC < rC

(
1− mP

KCeCP (αCP−hCPmP )

)
then((

rC−HC

rC

)
KC , 0

)
is a saddle. But if HC > rC

(
1− mP

KCeCP (αCP−hCPmP )

)
then((

rC−HC

rC

)
KC , 0

)
is a stable node.

Biological Remark: If rC

(
1− mP

KCeCP (αCP−hCPmP )

)
< HC < rC then the consumers

can survive, while the predators go extinct. Thus, if the consumers are harvested at a

sufficiently high rate, there will not be enough food to sustain the predator population.
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7.9.6 The Effect of Harvesting Both Species in the Consumer-

Predator Subsystem

According to Theorem 5.3, we will have coexistence in the consumer-predator sub-

system with both species being harvested if we have that

⎧⎪⎪⎨
⎪⎪⎩
HP < αCP

hCP
−mP

HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

) ⇔

⎧⎪⎪⎨
⎪⎪⎩
HP < αCP

hCP

(
eCP

(
rC−HC

rC

)
KC

1
hCP

+eCP

(
rC−HC

rC

)
KC

)
−mP

HC < rC

But rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
< rC and αCP

hCP

(
eCP

(
rC−HC

rC

)
KC

1
hCP

+eCP

(
rC−HC

rC

)
KC

)
−mP <

αCP

hCP
−mP . So there is a tradeoff in the amount of harvesting that can be done on each

species. If HC > rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
then the maximum value of HP

must be smaller than the case where HC < rC

(
1− mP+HP

KCeCP [αCP−(mP+HP )hCP ]

)
. Simi-

larly, if HP > αCP

hCP

(
eCP

(
rC−HC

rC

)
KC

1
hCP

+eCP

(
rC−HC

rC

)
KC

)
−mP then the maximum value of HC must

be smaller than the case where HP < αCP

hCP

(
eCP

(
rC−HC

rC

)
KC

1
hCP

+eCP

(
rC−HC

rC

)
KC

)
−mP . Biologically

this is telling us that if we have a sufficiently large amount of harvesting on the con-

sumers, then we must have less harvesting on the predators. Conversely, if we have

a sufficiently large amount of harvesting on the predators, then we must have less

harvesting on the consumers. The reason for this is that harvesting the consumers

reduces the amount of food available to the predators. If the predators’ food supply is

shrinking because the consumers are being harvested more, then the predators cannot

withstand being harvested as much. Similarly, if the predators are being harvested

more, they need more food to help sustain themselves so the consumers cannot be

harvested as much.
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7.9.7 The Effect of Harvesting the Consumer in the Resource-

Consumer Subsystem

According to Theorem 5.8, if eRC < rReChC then the resource can always invade the

system because the consumers either interfere with each other too much or do not en-

counter the resource enough to overcome the resource’s intrinsic growth rate. When

eRC > rReChC , the resource can invade provided that HC is sufficiently large. Thus,

harvesting the consumers can help facilitate invasion by the resource if harvesting

has enough of an effect on the consumers to compensate for the the lack of intraspe-

cific interference among the consumers and the large rate at which the consumers

encounter the resource.

7.9.8 The Effect of Harvesting Both Species in the Resource-

Consumer Subsystem

According to Theorem 5.9,

1. In the case where the consumers are trying to invade the system at((
rR−HR

rR

)
KR, 0

)
:

(a) if HC < rC then the consumers can invade for any level HR of harvesting

of the resource. The reason for this is that the rate of harvesting on

the consumers is less than the consumers’ intrinsic growth rate, so the

consumers do not need to feed upon the resource in order to grow.
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(b) we have that

⎧⎪⎪⎨
⎪⎪⎩
HR < rR

HC < rC + αRC

hRC

(
eRC(rR−HR)KR

rR
hRC

+eRC(rR−HR)KR

)

⇔

⎧⎪⎪⎨
⎪⎪⎩
HR < rR

(
1− HC−rC

eRCKR[αRC−(HC−rC)hRC ]

)
HC < rC + αRC

hRC

But rC + αRC

hRC

(
eRC(rR−HR)KR

rR
hRC

+eRC(rR−HR)KR

)
< rC + αRC

hRC
and rR

(
1 −

HC−rC
eRCKR[αRC−(HC−rC)hRC ]

)
< rR. So there is a tradeoff in the amount of har-

vesting that can be done on each species. If HC > rC +

αRC

hRC

(
eRC(rR−HR)KR

rR
hRC

+eRC(rR−HR)KR

)
then the maximum value of HR must be smaller

than the case where HC < rC + αRC

hRC

(
eRC(rR−HR)KR

rR
hRC

+eRC(rR−HR)KR

)
. Similarly, if

HR > rR

(
1− HC−rC

eRCKR[αRC−(HC−rC)hRC ]

)
then the maximum value of HC must

be smaller than in the case where HR < rR

(
1 −

HC−rC
eRCKR[αRC−(HC−rC)hRC ]

)
. Biologically this tells us that if we have a suf-

ficiently large amount of harvesting on the consumers, then we must have

less harvesting on the resource. Conversely, if we have a sufficiently large

amount of harvesting on the resource, then we must have less harvesting on

the consumers. The reason for this is that harvesting the resource reduces

the amount of food available to the consumers. If the consumers’ food

supply is shrinking because the resource is being harvested more, then the

consumers cannot withstand being harvested as much. Similarly, if the

consumers are being harvested more, they need more food to help sustain

themselves so the resource cannot be harvested as much.

2. In the case where the resource is trying to invade the system at
(
0,
(

rC−HC

rC

)
KC

)

(a) if eRC < rReChC and HR < rR− eRC

eChC
then the resource can invade for any
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level HC of harvesting on the consumers. In this case, the consumers do

not attack the resource at a high rate compared to the resource’s intrinsic

growth rate and the rate at which consumers exhibit intraspecific interfer-

ence. The resource also is not harvested at a very high level. So harvesting

the consumers is not needed in order to facilitate invasion by the resource.

If eRC < rReChC and rR − eRC

eChC
< HR < rR then the consumers do no at-

tack the resource often but there is a sufficiently large amount of harvesting

on the resource. In this case, we need HC > rC

(
1 + rR−HR

KC [eChC(rR−HR)−eRC ]

)
in order to reduce the amount of predation on the resource by the con-

sumers by enough to allow the resource to invade the system.

(b) if HC > rC

(
1 + rR−HR

KC [eChC(rR−HR)−eRC ]

)
, eRC > rReChC , and HR < rR the

the resource is not harvested very much, although the consumers attack

the resource at a high rate compared to the resource’s intrinsic growth

rate and the level of intraspecific interference the consumers exhibit. But,

there is a sufficiently large amount of harvesting on the consumers, which

suppresses their population level sufficiently to allow the resource to invade

the system.

7.9.9 The Effect of Harvesting the Consumers in the Full

Model

According to Theorem 5.14, if HC < rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
and mP < 1

2
αCP

hCP

then increasing HC makes it easier for the resource to invade if eCPhPC < ePhP and

harder to invade if eCPhCP > ePhP . If mP > 1
2
αCP

hCP
or if mP < 1

2
αCP

hCP
and HC >

rC

(
1− mP

eCPKC( 1
2
αCP−hCPmP )

)
then increasing HC makes it easier for the resource to

invade. In all cases, increasing HC makes exclusion harder.

Biological Remark: It seems that increasing HC should reduce the number con-

sumers who can feed upon the resource and should reduce the number of consumers
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who the predators can feed upon. This decrease in both the consumer and resource

population should both make it easier for the resource to invade and harder for

the resource to be excluded. This is the situation in most cases. However, when

eCPhPC > ePhP , the consumers spend a sufficient amount of time avoiding the preda-

tors. Increasing HC reduces the amount of consumers, which increases the predators’

dependence on the resource for survival. This makes it harder for the resource to

invade.

7.9.10 The Effect of Harvesting the Predators in the Full

Model

According to Theorem 5.18, if 1
2
αRP eRPKR − (mP + HP )(1 + eRPhRPKR) > 0 and

eCPαRP >> αRCeRC then increasing HP makes it harder for the consumers to invade.

Biological Remark: Increasing HP reduces the number of predators who can con-

sume the consumers. It seems that this should make it easier for the consumers to

invade and harder for them to be excluded. This is the situation in all cases, except

when HP is sufficiently small and eCPαRP >> αRCeRC . In this case, the mechanism

is the same as the case when increasing mP makes it harder for the consumers to

invade the unharvested system. What is particularly interesting about the present

case is that, as we can see from the analysis of the case of increasing mP in the unhar-

vested system, harvesting the predator population can actually increase the predator

population for sufficiently small amounts of harvesting.



Chapter 8

Conclusions

In this paper, we used a model for intraguild predation to study the effects of har-

vesting on ecological communities. The model was derived in Chapter 2 using a time

budget analysis similar to Holling [32] and Beddington [8]. We derived Beddington-

DeAngelis-type functional responses for all the interactions, which include interference

competition in additional to the usual Beddington-DeAngelis terms. In our model,

we assumed the consumer species has an alternative food source which is not shared

by the predator species, which we modeled by assuming the consumer species grows

logistically in absence of the resource and predator species.

In Chapter 3, we looked at the 2-dimensional subsystems. In particular, we studied

the R−C subsystem, which was a predator-prey system with Beddington-DeAngelis

functional response and both species growing logistically in the absence of the other

species. By looking at the isoclines, we found conditions under which there are zero,

one, two, or three interior equilibria. We used geometric and analytical techniques

to find the local stability type of the equilibria and found a case in which there is

an Allee Effect. We also found that if eRCKC

rR
< 1 + eChCKC (in dimensionalized

parameters), where eRC is the rate at which the consumers attack the resource, KC is

the consumers’ environmental carrying capacity, rR is the resource’s intrinsic growth

rate, eC is the rate at which consumers interfere with each other, and hC is the

370
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time consumers spend interacting with each other, then the R − C subsystem is

permanent and determined a sufficient condition for the interior equilibrium
(
R

∗
, C

∗)
to be globally asymptotically stable. We saw that the R−C subsystem under goes a

saddle-node bifurcation for the nondimensionalized parameter eRC and a subcritical

Hopf bifurcation as the nondimensionalized parameter hC changes.

In Chapter 4, we looked at the full system. Though we did not determine the

interior equilibria or the local or global dynamics due to the prohibitively complicated

expressions involved in such analysis, we did find conditions under which the system is

permanent. A sample of the kinds of dynamics possible when the system is permanent

is shown in Figure 8.1. Here, we borrow parameter values from [61]. Through it is a

little difficult to see in Figure 8.1a, we can see from Figure 8.1b that we have periodic

behavior in this case.

We used sub- and supersolutions to get bounds on the size of the equilibria and

used these bounds to determine sufficient conditions under which each species could

either invade or be excluded from the system. Using these conditions, we were able

to determine how invasibility and exclusion are affected by certain parameters.

The results of our parameter dependence analysis show that many different possi-

bilities exist and that in many cases, changing the parameters sometimes makes inva-

sion or exclusion easier and in other cases it makes invasion or exclusion harder. Typi-

cally, the affect of changing the parameters depends on other parameter combinations.

Our anlaysis also yielded some unexpected results. We found that increasing eCP

makes it easier for the resource to be excluded if 1
2
αCP eCPKC−mP (1+eCPhCPKC) >

0 and eRC >> eRP , where αCP is the conversion efficiency from consumers to preda-

tors, eCP is the rate at which the predators attack the consumers, mP is the predators’

natural mortality rate, hCP is the time the predators spend handling attacked con-

sumers, and eRP is the rate at which the predators attack the resource. Because the

consumers attack the resource more than the predators attack the resource, it seems
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(a) Simulation of system (2.18) with rR = 1.36, rC = 1.36, KR = 1×1011, KC = 1×106, eRC = 0.20,
eCP = 0.30, eRP = 0.45, eC = 0.05, eP = 0.05, hRC = 80, hCP = 22, hPC = 60, hRP = 25, hC = 30,
hP = 10, αRC = 0.2, αCP = 0.15, αRP = 0.2, mP = 0.0065, HR = HC = HP = 0, 100 ≤ t ≤ 4500

(b) Same parameter values as Figure 8.1a, except with 1000 ≤ t ≤ 1100

Figure 8.1: Sample dynamics possible when the system is permanent.
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that the more the predators attack the consumers, the harder it should be for the

resource to be excluded. We also found parameter combinations under which hav-

ing eRC << eRP makes it easier for the resource to invade and eRC >> eRP makes it

harder for the resource to invade. In the case where the consumers are trying to invade

the system, we found a situation in which increasing mP made invasion harder. When

the predators are trying to invade the system, we found discovered that under certain

conditions, enriching the environment for the resource makes invasion harder. We

also found that under most conditions, enriching the environment for the consumers

makes it easier for the predators to be excluded provided that αRP eRP >> αCP eCP

and harder for the predators to be excluded if this condition was reversed. But we

also found a case where increasing the environmental productivity for the consumers

makes it easier for the predators to be excluded without this condition.

In Chapter 5, we look at how harvesting affects the system. Because of our choice

of constant effort harvesting, there are no new dynamics as a result of harvesting.

Instead, harvesting can move us in parameter space and therefore, can put in a

different dynamic regime. We begin by looking at harvesting each or both species in

each of the subsystems. We found that if we harvest only the consumers in the C−P

subsystem, it is necessary for KC to be larger than in the non-harvested case. We also

found that for intermediate values of HC , the predators can be driven to extinction

while the consumers remain viable. In the C − P subsystem when we harvest both

species, we discovered that there is a tradeoff in the amount of harvesting that can

be done on each species in order to have coexistence. If we are allowed to harvest

the predators at a sufficiently high rate then we must harvest the consumers at a

sufficiently low rate. The opposite is also true. In the R − C subsystem, we found

that a sufficiently large amount of harvesting of the consumers can lead to coexistence

and a sufficiently small amount of harvesting of the consumer can lead to resource

extinction. In the case where both species are being harvested, there is a tradeoff in
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the amount of harvesting that can be done on each species while having coexistence.

In studying the effects of harvesting on the full model, we found that under some

conditions, harvesting the resource makes it easier for the consumer to invade and

under other conditions, harvesting the resource makes it harder for the consumers

to invade. Similarly, sometimes harvesting the resource makes it is easier for the

consumers to be excluded from the system and other times it makes it harder for

the consumers to be excluded from the system. We found that when R
∗
is bounded

below by 0, increasing HR makes it easier for the predators to invade the system

and easier for them to be excluded from the system. By harvesting the consumers

in the full system, we found that typically makes it easier for the resource to invade

the system and makes it harder for them to be excluded. But we also found that if

1
2
αCP eCPKC−mP

(
1 + eCPhCP

(
rC−HC

rC

)
KC

)
> 0 and eCPhPC > ePhP then harvest-

ing the consumers makes it harder for the resource to invade. When we harvested the

predators in the full system, we found that can help or hurt the resource, depending

on certain combinations of parameters. We also found that harvesting the predators

helps the consumer species in most cases, although there is a case in which harvesting

the predators makes it harder for the consumers to invade. In this case, we found

that harvesting the predators can actually increase the predator population, at least

if the predators have a sufficiently low natural mortality rate and the harvesting rate

remains sufficiently small.

In Chapter 6, we explored a linear food chain, resource competition, apparent

competition, and interspecific killing as special cases of intraguild predation where

certain attack rates are set to zero. We studied how the invasibility and exclusion

conditions of each species in each ecological community are different from intraguild

predation. In some cases, we found invasibility and/or exclusion to be easier than in

intraguild predation and in other cases, we found it to be harder. We also looked at

harvesting in each type of community. Sometimes harvesting had the same effect on
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the ecological community and other times it did not.

In Chapter 7, we looked more closely at the mechanisms behind some of the

parameter dependencies we saw in the previous chapters. We highlighted some of

the most interesting cases in the last section of the chapter. In some instances we

were able to explain the underlying mechanism. In other cases we were able to take

reasonable stab at the mechanism, though there could be some other mechanism at

work than the one proposed. And in still other cases, the mechanism driving the

observed parameter dependency could not be explained. We believe these cases are

the most interesting cases and hope they lead to further investigation.

Other avenues for further investigation include relaxing some of the simplifying

assumption made for analytical tractability such as having constant effort harvesting.

It would also be interesting to associate empirical data with the model in order to

be able to explore certain situations in more detail. This could permit us to find

more numerical results. Even without data, further exploration of cases on the edge

between two results, perhaps through computer simulations, could be enlightening.

It has been shown that space can play a role in intraguild predation and can be an

important consideration. The effects of spatial heterogeneity on intraguild predation

have been looked at in [4, 5], the role of consumer and predator dispersal in [7], and

cross-diffusion where consumers disperse conditionally to avoid areas of high predation

in [57]. Additionally, there are other biological and bioeconomic factors, such as size

structure, mutual predation, and the costs associated with harvesting, which remain

to be studied.
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