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Dynamics with choice is a generalization of discrete-time dynamics where instead

of the same evolution operator at every time step there is a choice of operators to

transform the current state of the system. Many real life processes studied in chemical

physics, engineering, biology and medicine, from autocatalytic reaction systems to

switched systems to cellular biochemical processes to malaria transmission in urban

environments, exhibit the properties described by dynamics with choice. We study

the long-term behavior in dynamics with choice. We prove very general results on

the existence and properties of global compact attractors in dynamics with choice. In

addition, we study the dynamics with restricted choice when the allowed sequences

of operators correspond to subshifts of the full shift. One of practical consequences

of our results is that when the parameters of a discrete-time system are not known

exactly and/or are subject to change due to internal instability, or a strategy, or

Nature’s intervention, the long term behavior of the system may not be correctly

described by a system with “averaged” values for the parameters. There may be a

Gestalt effect.
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Chapter 1

INTRODUCTION

The mathematical setting for discrete dynamics is a space X and a map S : X → X.

The space X is the state space, the space of all possible states of the system. The

map S, the evolution operator, defines the change of states over one time step: x ∈ X

at time t = 0 evolves into S(x) at t = 1, S(S(x)) at t = 2, . . . , Sn(x) at t = n, etc. If

instead of one operator, S, we have a choice of evolution operators, {Sj}j∈J , and at

every time step we choose one of them, then we have a dynamics with choice. One

way to visualize the multitude of choice through time is to generate the infinite tree

of choices. Suppose we have N operators, S0, S1, . . . , SN−1, then the root of an

infinite rooted tree has N children, every child has N children, and so on. The root

corresponds to t = 0, its children correspond to t = 1, the children of the children

correspond to t = 2, etc. At every step, the children of each node are labeled 0

through N − 1. Beginning at the root, infinite branches (paths, strategies) represent

the possible choices: for example, in Figure 1.1 we choose the path w that starts with

011... (bold edges). For this choice, the first few points in the trajectory of a point

x0 ∈ X are x1 = S0(x0), x2 = S1(x1) = S1(S0(x0)), x3 = S1(x2) = S1(S1(S0(x0))),

1
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etc. It is natural to encode the infinite paths (beginning at the root) by one-sided

infinite words (strings, sequences) onN symbols. If w is such sequence, it is convenient

to align it with the set of non-negative integers Z≥0 and denote by w(k) the (k+1)-st

letter of w, i.e., w = w(0)w(1)w(2) . . .. Thus, w(0) = 0, w(1) = 1, w(2) = 1, are the

first three symbols of the path w = 011 . . ..

Figure 1.1: The tree of choices in the case of two operators

We study dynamics with choice, i.e., the dynamics of points and subsets of X along

all possible paths simultaneously. We will explain what this means momentarily.

Here we would like to emphasize that, from the point of view of long-term behavior,

dynamics with choice, in general, is not the same as the union of trajectories along

different infinite paths. We will return to this point later when we talk about the

Gestalt effect.

Denote by Σ the space of all one-sided infinite strings (words) of symbols from

the alphabet J . We call the elements of Σ strategies or plans, because the symbols

and their order in a word w ∈ Σ will tell us which maps Sj and in what order are

applied. We identify the strings from Σ with maps from the (semigroup of) non-
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negative integers, Z≥0, into J ; thus, for w : Z≥0 → J in Σ, we write it as an infinite

word w = w(0)w(1)w(2) . . . . The shift operator σ : Σ→ Σ maps w to σ(w) so that

σ(w)(n) = w(n + 1); in other words, σ(w) = w(1)w(2) . . . . Given the state space X

and the family of maps Sj, j ∈ J , we define the corresponding dynamics with choice

as the dynamics on the product X = X × Σ generated by the iterations of the map

S : (x,w) 7→ (Sw(0)(x), σ(w)) . (1.1)

In other words, we view the dynamics xn+1 = Sw(n)(xn) as a non-autonomous system

and use the skew-product (semi)flow approach (see [34]) to describe it.

Dynamics with choice is a language to describe processes where different strategies

could be applied or happen. Most of mathematical models in natural sciences and

engineering are expressed in terms of differential equations. Those equations are

often continuous limits of discrete equations. Continuous case is easier for qualitative

analysis. However, there are situations where discrete equations describe the processes

better. Every realistic model comes with parameters. We are interested in situations

where parameters may change due to, e.g., internal instability or outside intervention.

In an illustrative example in section 6.1, the coefficients a and b are proportional to the

biting rate of mosquitoes which depends, for example, on temperature and humidity

which may change from day to day and during the day.

We study long-term regimes in dynamics with choice. More specifically, we define

and study global compact attractors in dynamics with choice. By a global compact

attractor we mean the minimal compact set that attracts all bounded sets,

see section 2.1 for definitions and references. Thinking in terms of a model with pa-

rameters, assume we know that for each admissible fixed (in time) set of parameters
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the system possesses a global compact attractor. What happens when the parame-

ters switch between admissible values? Is there an attractor? How is it related to

attractors corresponding to fixed parameters? Is there a Gestalt effect? These are

the questions we address here.

There are many real life and engineered systems that switch between different

modes of operation (the so-called hybrid systems). When the behavior in each mode

is modeled using continuous dynamics and the transitions are viewed as discrete-time

events, such systems are called switching or switched. Analysis and especially control

of switching systems is an area of intensive research, see, e.g., Liberzon’s book [28] and

the survey by Margaliot [30]. There is a natural affinity between switching systems

and dynamics with choice (see, e.g., [23]).

Readers familiar with iterated function systems, [17, 8], may wonder if there is

a connection between iterated function systems and dynamics with choice. Indeed

there is, but we have to establish it. For the connection between the attractor in

dynamics with choice and the attractor of the corresponding IFS (fractal) see section

3.2.1.

Our interest in dynamics with choice has not been motivated by fractals. We

would like to understand the long-term behavior in dynamics with choice. We assume

that X is a complete metric space (with metric d), the operators Sj, for j ∈ J are

continuous, and each of the (semi)dynamical systems (X, d, Sj) possesses a global

compact attractor. Consider the corresponding dynamics with choice as the dynamics

on the product metric space 1 X = X×Σ generated by the operator S acting according

to the rule (1.1). From general theory (see section 2.1) we know that a system ought

1Σ can be equipped with a metric making it a compact metric space, see Section 3.1 for a specific
choice. We denote here by dist the corresponding product-metric on X × Σ.
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to enjoy certain compactness and dissipativity properties in order for it to possess

the global compact attractor.

In general, even when the individual systems (X, d, Sj) do have attractors, the

system (X, dist,S) will not have a global compact attractor. There are several reasons

why. One counter-example we borrow from [3] (where it is used in the context of IFS).

Take X = R with standard metric d and define two maps, S0 and S1, as follows:

S0(x) =

 0, if x ≤ 0,

−2x, if x > 0
S1(x) =

 −2x, if x ≤ 0,

0, if x > 0

Each of the systems (X, d, Sj) has the global compact attractor, a singleton {0}. At

the same time, the trajectory xn = Sw(n−1) ◦Sw(n−2) ◦ · · · ◦Sw(0)(x0) corresponding to

the periodic string w = 010101 . . . is unbounded for any initial point x0 > 0. Hence,

there is no compact attractor attracting (x0, w).

The second example is infinite-dimensional. Let B0 = B0(p0) and B1 = B1(p1) be

two disjoint closed unit balls centered at p0 and p1 in an infinite-dimensional Banach

space. Let X = B0 ∪B1. Define the maps S0 and S1 as follows: on B0 the map S0 is

a contraction and it maps B1 to B0; the map S1 is a contraction on B1 and maps B0

to B1:

S0(x) =

 p0 + 1
2

(x− p0), if x ∈ B0,

p0 + (x− p1), if x ∈ B1

S1(x) =

 p1 + 1
2

(x− p1), if x ∈ B1,

p1 + (x− p0), if x ∈ B0

The system (X, d, S0) does have the global compact attractor, {p0}, and (X, d, S1)

does have the global compact attractor, {p1}. The corresponding dynamics with
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choice, (X, dist,S), does have the global closed attractor, namely, X, but does not

have the global compact attractor.

In the first example, the maps are compact (which is good), but they do not have

a joint bounded absorbing set (lack of dissipativity in (X, dist,S)). In the second

example, there is a joint bounded absorbing set, B0 ∪ B1, but there is not enough

compactness (the maps Sj are not compact, not contracting, and, more generally, not

condensing).

These examples show what kind of situations do not allow global compact attrac-

tors in the dynamics with choice. Thus, we make additional assumptions. First, we

assume that there exists a bounded absorbing set that absorbs every bounded set

regardless of the strategy. In applications, an absorbing set is usually a ball of the

radius that depends on the parameters of the model. Our “dissipativity” assump-

tion means that there is a common estimate on the radius for different values of the

parameters.

Our second, “compactness” assumption is that each of the operators Sj is con-

densing with respect to a common measure of noncompactness. This assumption

covers practically all situations encountered in applications: contractions, compact

operators, and compact plus contractions. As their name suggests, measures of non-

compactness measure how far a set is from being compact. There are several different

measures of noncompactness in use, [1]. For example, the Hausdorff measure of non-

compactness of a set A is the infimum of ε > 0 such that A has a finite ε-net. In what

follows we use only very general properties shared by all popular measures of noncom-

pactness, see Definition 4 in section 2.2 below. Let ψ be a measure of noncompactness

(as in Definition 4). An operator S : X → X is condensing with respect
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to ψ iff ψ(S(A)) < ψ(A) for any non-compact set A, and ψ(S(A)) = ψ(A) = 0 if A

is compact.

These two assumptions are enough if J is a finite set. In general, if J is an

infinite set, possibly uncountable, we need an additional assumption concerning their

dependence on the parameter j. We assume that there exists a finite partition of

the set J such that on each of the partition sets the operators depend uniformly

continuously on the parameter j.

Our assumptions on the state space and the operators guarantee that, for every

fixed j ∈ J , the discrete dynamics generated on X by Sj does possess a global

compact attractor (in X). More generally, as we show in sections 3.3 and 3.3.1, it

makes sense to define individual attractors, Aw, corresponding to every string (infinite

path in the tree of choices) w ∈ Σ. The attractors generated by each Sj correspond

to “constant” strings, w = jjj . . . . It is not hard to see that such attractors do not

exhaust the projection onto X of the attractor in dynamics with choice (we call the

projection K). There are situations when the union of all Aw is K (this happens, in

particular, when Sj’s are strict contractions). However, in general, the union
⋃
w∈Σ

Aw

is strictly smaller than K. We give an example of this in section 3.3.1. In the cases

when
⋃
w∈Σ

Aw is strictly smaller than K we say that there is a Gestalt effect, i.e.,

“the whole is greater than the sum of its parts.” This is a new phenomenon. It has

not been observed in the framework of Iterated Function Systems because, as we show

in Lemma 24, the Gestalt effect cannot occur when operators Sj are contractions.

An important generalization of dynamics with choice is dynamics with re-

stricted choice. The name should indicate that not all strategies (sequences w =

w(0)w(1) · · · ∈ Σ) are allowed. In particular, we consider the sets in Σ that are closed
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and shift invariant, i.e., subshifts, see [29, 20]. Given a subshift Λ ⊂ Σ, we consider

the dynamics on the product-space XΛ = X ×Λ generated by the map S as in (3.5).

Restricted dynamics of a sort has been considered previously, see [32, 31]. For

example, the graph directed Markov systems of [31] describe iterations of uniformly

contracting maps indexed by the edges of a directed (possibly infinite) graph. In this

case there is a correspondence between the points of the limit set and the infinite

walks through the graph (the coding space). Similarly, the directed IFSs discussed in

[9] are defined with the help of the aforementioned correspondence, and the fractal

(or attractor) KΛ (the projection onto X of the attractor in dynamics with restricted

choice) is understood in terms of the map from the code space to K as the image of

Λ, [9, Theorem 4.16.3]. The correspondence between the points of the code space,

Σ, and the points of K is possible because the maps are contractions (right away, or

eventually). Our approach gives a new and more general view on restricted dynamics.

We justify the name – attractor – and unveil attractors’ more subtle structure. This

new approach allows us to work in a much more general setting and with transfor-

mations that are not contractions. We do not have and do not use a map from the

code space into the attractor.

We should mention the paper of Andres and Fǐser, [2]. They use their result

of [3] on the existence of the fractal (the set K in our notation) for an IFS with

compact operators Sj to conclude that fixed time solution operators of systems of

ordinary differential equations could play the role of maps generating the IFSs. As an

illustration they use five two-dimensional systems of ODEs to produce five operators

(incidentally, contractions, as noted in [2]) and plot the corresponding dragon-tail-like

fractal set. Although their message is that IFSs and fractals can be generated
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by solution operators of ODEs, their examples can serve as an illustration for our

dynamics with choice attractors.

Our definitions of dynamics with choice and dynamics with restricted choice as

skew-product semi-flows fit in with the theory of non-autonomous semi-dynamical

systems, see [34, 14, 21, 22] and references therein. In chapter 5 we explain how

our attractors are related to the forward and pullback attractors in that theory. We

should mention the paper of Cheban and Mammana, [13], on discrete inclusions

ui+1 ∈ F (ui) where F (u) =
⋃
j fj(u) and {fj} is a collection of maps. In [13], the

authors view such an inclusion as a non-autonomous system and arrive at essentially

the same skew-product flow as our dynamics with choice. Motivated by iterated

function systems, they consider only contracting (exponentially, after a finite number

of iterations) maps fj, prove the existence of a global attractor, and discuss some of

its properties.

Numerics for dynamics with choice is a very interesting but difficult subject. In

chapter 6 section 6.1, we apply the theory to a specific example of a discrete Ross-

Macdonald type model of malaria transmission. The model can be viewed as a time

discretization of the ODE model, or as a pre-ODE form of the model. The reason we

have chosen this model is because it is simple and we can visualize all the attractors.

More general compact and condensing operators will be needed in the study of

dynamics with choice related to nonlinear dissipative partial differential equations,

which I plan to address at a later time.

Structure of the thesis. In the following chapter, we give a brief introduction

on notions of a global compact attractor, an iterated function system, and a pullback

and a forward attractors in nonautonomous systems. The mathematical setting for

the dynamics with choice is explained in chapter 3. We prove the existence of the
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global compact attractor in dynamics with choice and obtain its properties by looking

at the connection with IFS. Dynamics with restricted choice is explained in chapter 4

and in chapter 5 we show that under additional assumption the attractor of the IFS is

the pullback and forward attractor of the corresponding nonautonomous system. In

chapter 6, we give an illustration for the theory of dynamics with choice, and explain

in details how numerical computations were performed. In what follows, we use � to

denote the end of the proof.



Chapter 2

THEORY

2.1 Attractors

In applications, dynamical systems aspire to describe the real life systems. Continuous

dynamical systems are usually represented by differential equations while difference

equations represent discrete dynamical systems. Here we deal with discrete dynamics.

Let Y be a complete metric space with distance dY , and let Φ : Y → Y be a

continuous, bounded map (’bounded’ means the image of a bounded set is bounded).

Iterations of Φ, Φn, generate dynamics on (Y, dY ). We will denote the corresponding

discrete semidynamical system by (Y, dY ,Φ), or simply (Y,Φ). It is useful to consider

not only the dynamics of individual points under the action of Φ, but, more generally,

the dynamics of bounded sets. The collection of all bounded subsets of Y are denote

by B(Y ). We say that the set A ∈ B(Y ) attracts the set B ∈ B(Y ) if

~dist (Φn(B), A) →
n→∞

0 ,

11
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where the one-sided distance between two sets is understood as follows:

~dist (C, A) = sup
y∈C

dY (y, A).

Definition 1. We call a set M ⊂ Y the global compact attractor of the system

(Y, dY ,Φ) if

• M is compact,

• M attracts every bounded subset of Y ,

• M is the minimal set with these two properties.

There are several books devoted to the subject of global attractors. Our pre-

sentation given here is closer to [25]. We give results on the existence of global

compact attractors and certain properties that they exhibit. We refer the reader to

[5, 16, 25, 26, 35] for the proofs of the results presented here.

For a system to possess a global compact attractor, it should enjoy certain prop-

erties, namely, some form of compactness and some dissipativity. Here is the basic

existence (and uniqueness) result:

Theorem 2. The semidynamical system (Y, dist,Φ) has a global compact attractor if

and only if it enjoys the following two properties:

1. (“compactness”) For every bounded sequence (yk) in Y and every increasing

sequence of integers nk → +∞, the sequence Φnk(yk) has a convergent subse-

quence.

2. (“dissipativity”) There exists a bounded set B ⊂ Y which absorbs every bounded

set in the sense that for every A ∈ B(Y ) there exists m(A) > 0 such that
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Φn(A) ⊂ B for all n ≥ m(A).

Some of the basic properties of a global compact attractor are collected in the following

theorem:

Theorem 3. Assume that M is the global compact attractor of the semidynamical

system (Y, dist,Φ). Then

1. M is the union of all possible limits of sequences of the form Φnk(yk), where yk

is a bounded sequence in Y and nk →∞.

2. M is (strictly) invariant: Φ(M) = M.

3. M is the union of all closed bounded sets A with the property A ⊂ Φ(A).

4. M is the maximal closed set with the property A ⊂ Φ(A); in particular, M is

the maximal (strictly) invariant closed set.

5. Through every point y ∈ M passes a complete trajectory, i.e., there exists a

two-sided sequence . . . , y−2, y−1, y0, y1, . . . of points in M such that y0 = y and

ym+1 = Φ(ym) for all integers m.

6. M is the union of all complete, bounded trajectories in Y .

In applications, people do not verify the “compactness” property of Theorem 2 di-

rectly. Instead, they use one of the known sufficient conditions that imply it. Three

of the most useful sufficient conditions are:

• Φ is a compact map: Φ : Y → Y is continuous and maps bounded sets into

relatively compact sets;
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• S is a contraction: dX(S(x), S(y)) < γdX(x, y) for some positive γ < 1 and for

all x, y ∈ X;

• in the case Y is a Banach space, Φ is a sum of a compact operator and a strict

contraction.

Compact Φ arise, e.g., in the finite-dimensional dynamics described by differential

or difference equations, or, in the infinite dimensional case, in dynamics described

by parabolic equations. The “compact + contraction” Φ appear, e.g., in hyperbolic

problems with damping. Each of the three sufficient conditions implies that Φ is

condensing with respect to some measure(s) of noncompactness. Below we give a

brief account of the facts we need and refer to [1] for more details on the measures of

noncompactness.

2.2 Measures of noncompactness

Measures of noncompactness assign real non-negative numbers to bounded sets with

value 0 assigned exclusively to relatively compact sets. The basic examples are the

Kuratowski measure of noncompactness α and the Hausdorff measure of noncompact-

ness χ. By definition, α(A) is the infimum of numbers ε > 0 such that A admits a

finite cover by sets of diameter less than ε. The number χ(A) is the infimum of those

ε > 0 for which A possesses a finite ε-net in Y . In this paper we adopt the following

definition of a general measure of noncompactness (our definition differs from that in

[1]).

Definition 4. A function ψ assigning non-negative real numbers to bounded subsets

of (a complete metric) space Y will be called a measure of noncompactness iff it has
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the following properties:

(i) ψ(A) = 0 if and only if A is relatively compact;

(ii) If A1 ⊂ A2, then ψ(A1) ≤ ψ(A2) ;

(iii) ψ(A1 ∪ A2) = max {ψ(A1), ψ(A2)} ;

(iv) There exists a constant c(ψ) ≥ 0 such that

|ψ(A1)− ψ(A2)| ≤ c(ψ) dH(A1, A2), where dH is the Hausdorff distance,

dH(A1, A2) = max { ~dist (A1, A2), ~dist (A2, A1)}.

Note that property (iv) implies that the measures of noncompactness of a bounded set

and its closure are equal:

(v) ψ(A) = ψ(A) .

Both α and χ enjoy all these properties. An example of a set which has a non-zero,

finite Kuratowski and Hausdorff measures of noncompactness is a unit ball (B) in

an infinite dimensional Banach space. In this case, α(B) = 2 and χ(B) = 1, see

[1, Theorem 1.1.6]. For applications of measures of noncompactness in spaces of

continuous functions, differentiable functions, integrable functions, etc., see [6] and

references therein.

Definition 5. A continuous bounded map Φ : Y → Y is called condensing with

respect to the measure of noncompactness ψ (we also say Φ is ψ-condensing) iff

ψ(Φ(A)) ≤ ψ(A) for any bounded A, and ψ(Φ(A)) < ψ(A) if ψ(A) > 0 (i.e., if

A is not compact).

Theorem 6. Consider the system (Y, dY , Φ). Assume that Φ is condensing with

respect to some measure of noncompactness ψ and that there exists a bounded set B
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which absorbs every bounded set (this means the set B will eventually contain the

image of any bounded set). Then (Y, dY , Φ) possesses a global compact attractor.

This is a corollary of the general Theorem 2, because a ψ-condensing map possesses

the “compactness” property of Theorem 2. In the case ψ is the Kuratowski measure

of noncompactness, the theorem above is proved in [33, Theorem 32].

Proof. Since B is an absorbing set, it is left to show “compactness” property of

theorem 2. To do this, we have to show that every sequence Φnk(xk), for (xk) bounded

and nk → ∞, has a convergent subsequence. Let C be the set of all sequences

{Φnk(xk)}, with nk → ∞, and let s = sup{ψ(p) | p ∈ C}. The claim is that there

exists an element, p∗ ∈ C, such that ψ(p∗) = s. To show this, pick a sequence (pj) ∈ C

such that ψ(pj)↗ s. We can write pj =
⋃∞
k=1 Φnjk(xjk). Now, let p̃j =

⋃∞
k=j+1 Φnjk(xjk)

and notice that

ψ(pj) = ψ
(⋃∞

k=1 Φnjk(xjk)
)

= max
{
ψ
(⋃∞

k=j+1 Φnjk(xjk)
)
, ψ
(⋃j

k=1 Φnjk(xjk)
)}

= ψ
(⋃∞

k=j+1 Φnjk(xjk)
)

= ψ(p̃j)

(2.1)

Let p∗ =
⋃∞
j=1 p̃j. Then,

p∗ =
∞⋃
j=1

∞⋃
k=j+1

Φnjk(xjk) =
∞⋃
k=2

k−1⋃
j=1

Φnjk(xjk).

The second union in the last term is finite, and therefore p∗ ∈ C and ψ(p∗) ≤ s.

Since,

ψ(p∗) = max

{
ψ(p1), . . . , ψ(pm), ψ

(
∞⋃

j=m+1

p̃j

)}
,
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it follows that ψ(p∗) ≥ ψ(pj), for every j. Therefore, ψ(p∗) = s. This proves the claim.

Now, let p̃∗ = {Φnk(xk) |Φnk+1(xk) ∈ p∗}. We have that p̃∗ ∈ C and ψ(p̃∗) ≤ s. Also,

we have Φ(p̃∗) = p∗ and s = ψ(p∗) = ψ
(
Φ(p̃∗)

)
≥ ψ(p̃∗). Since Φ is condensing map,

it follows that ψ(p̃∗) = 0, i.e., s = 0. Thus, the theorem is proved. �

If Y is a product of two complete metric spaces, (Y1, d1) and (Y2, d2), then we

choose

dY ((y′1, y
′
2), (y′′1 , y

′′
2)) = d1((y′1, y

′′
1)) + d2((y′2, y

′′
2))

as a metric on Y . If ψ1 and ψ2 are the measures of noncompactness on Y1 and Y2

respectively, then we define

ψ(A) = max {ψ1(pr1A), ψ2(pr2A)},

to be the measure of noncompactness on the product space, where prk is a projection

on Yk, defines a measure of noncompactness on Y = Y1 × Y2. To see that ψ is well-

defined, we will show that all four properties in definition 4 are satisfied. Let A be

a subset of Y . If A is relatively compact, then both projections, pr1A and pr2A,

are relatively compact and we have ψ(A) = max {ψ1(pr1A), ψ2(pr2A)} = 0. On the

other hand, if ψ(A) = 0, then both, ψ1(pr1A) = 0 and ψ2(pr2A)=0, which implies

that pr1A and pr2A are relatively compact, and therefore A is relatively compact. To

prove property (ii), let A1 and A2, be such that A1 ⊂ A2. Obviously, priA1 ⊂ priA2,

and therefore ψi(priA1) ≤ ψi(priA2) for i = 1, 2. Since

ψ(Ai) = max {ψ1(pr1Ai), ψ2(pr2Ai)},
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then if, for example, ψ(A1) = ψ2(pr2A1) and ψ(A2) = ψ1(pr1A2), we know that

ψ(A1) ≤ ψ(A2) because we have ψ2(pr2A1) ≤ ψ2(pr2A2) ≤ ψ1(pr1A2). All other

possibilities are either obvious or similar to this one. This proves property (ii) of

definition 4. For the remaining of the proof, A1 and A2 are arbitrary subsets of Y .

Property (iii) is very easy to show

ψ(A1 ∪ A2) = ψ((pr1A1 ∪ pr1A2)× (pr2A1 ∪ pr2A2)) =

max{max{ψ1(pr1A1), ψ1(pr1A2)}, max{ψ2(pr2A1), ψ2(pr2A2)}} =

max{max{ψ1(pr1A1), ψ2(pr2A1)}, max{ψ1(pr1A2), ψ2(pr2A2)}} =

max{ψ(A1), ψ(A2)}.

(2.2)

Property (iv) follows immediately if ψ(A1) = ψ1(pr1A1) and ψ(A2) = ψ1(pr1A2), or

ψ(A1) = ψ2(pr2A1) and ψ(A2) = ψ2(pr2A2). It takes an extra step to prove property

(iv) in the case ψ(A1) = ψ1(pr1A1) and ψ(A2) = ψ2(pr2A2) (or A1 and A2 changing

places). Assume, wlog, ψ1(pr1A1) ≥ ψ2(pr2A2). Then we have:

ψ1(pr1A1)− ψ2(pr2A2) ≤ ψ1(pr1A1)− ψ1(pr1A2) + ψ1(pr1A2)− ψ2(pr2A2)

≤ c(ψ1) dH(pr1A1, pr1A2) + ψ1(pr1A2)− ψ2(pr2A2)

≤ c(ψ) dH(A1, A2),

(2.3)

where c(ψ) = max{c(ψ1), c(ψ2)}. The last inequality follows since ψ1(pr1A2) −

ψ2(pr2A2) ≤ 0 (assumed above). �
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2.3 Iterated Function Systems

Traditionally, an Iterated Function System (IFS)2 is associated with a space X (usu-

ally X = Rn), and a finite number of maps S0, S1, . . . , SN−1 : X → X (usually Sj’s

are linear contractions, see [8]). The IFS (X;S0, S1, . . . , SN−1) can be viewed as a

discrete dynamics on the space 2X (of subsets of X). The evolution is generated by

means of the Hutchinson-Barnsley operator:

F̄ : A 7→ F̄ (A) := S0(A) ∪ S1(A) ∪ · · · ∪ SN−1(A) . (2.4)

Following a long-standing tradition, people studying dynamics are first of all in-

terested in fixed points. In the case of an IFS, those are the fixed points of the

Hutchinson-Barnsley operator. As has been well illustrated by Barnsley, for many

simple IFSs on the plane one can use a computer to plot their compact fixed points

(sets) and obtain fascinating fractals. An example of a fractal is given in figure 2.1

which is generated by the map F̄ starting from a point (0, 0)

S0(x, y) = (0, 0.16y)

S1(x, y) = (0.2x− 0.26y, 0.23x+ 0.22y + 1.6)

S2(x, y) = (−0.15x+ 0.28y, 0.26x+ 0.24y + 0.44)

S3(x, y) = (0.85x+ 0.04y,−0.04x+ 0.85y + 1.6)

(2.5)

For more examples on fractals, see [8, 9]. Generating fractals is one of the main

motivations in the study of IFSs. In some papers a fractal is defined as the compact

invariant set of an IFS, see [9] and references therein.

2We use the abbreviation IFS for single and IFSs for plural forms.
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Figure 2.1: Fractal Fern

To prove that an IFS does have a fixed point, the general definition should be

made more specific. One needs to specify the properties of the space X; the space 2X

should be narrowed to an appropriate class of subsets; assumptions should be made

on the operators S0, S1, . . . , SN−1. As an example we state the original result of

Hutchinson, [17, Section 3].

Theorem (Hutchinson). Let X be a complete metric space (with metric d). Denote

by B̄(X) the space of all non-empty closed bounded subsets of X. Assume that each

operator S0, S1, . . . , SN−1 is a strict contraction (i.e., there is a number γ ∈ (0, 1)

such that d(Sj(x), Sj(y)) ≤ γ d(x, y) for every pair x, y ∈ X and for all j). Define

the evolution operator F̄ : B̄(X)→ B̄(X) by the formula

F̄ : A 7→ F̄ (A) = S0(A) ∪ S1(A) ∪ · · · ∪ SN−1(A) . (2.6)

Then there exists a unique fixed point K ∈ B̄(X) of F̄ . Viewed as a subset of X,

the set K is compact. Also, K attracts every closed bounded subset of X in the sense
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that, for any C ∈ B̄(X),

dH(F̄ n(C), K)→ 0 as n→∞ ,

where dH is the Hausdorff distance.

The IFS with contractive operators Sj are called hyperbolic. Over the years this

result has been generalized in many different directions (different assumptions on X

and/or Sj), see [4] for references. When the system has infinitely many operators

{Sj}j∈I , it is called an infinite iterated function system. In this case, the Hutchinson-

Barnsley operator is defined as a closure of an infinite union:

F̄ (A) =
⋃
j∈I

Sj(A).

For an example of an IFS with infinitely many contractions Sj, see [27].

2.4 Nonautonomous Systems

It has been known for a long time that non-autonomous dynamical systems can be

viewed as autonomous dynamical systems in a larger (state) space, and there are

many ways of achieving this. However, for the purposes of the analysis of the long-

term behavior of solutions, the most beneficial approach was suggested by G. Sell,

[34]. The modern abstract definition of a discrete non-autonomous semi-dynamical

system consists of a state space, X, a base (or parameter) space, P , a map θ : P → P

that defines a dynamics on P , and a cocycle map ϕ : Z≥0×X×P → X. The cocycle

map ϕ has the properties:
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1. ϕ(0, x, p) = x

2. ϕ(n+ 1, x, p) = ϕ(n, ϕ(1, x, p), θ(p)).

The skew-product dynamics is then understood as an autonomous dynamics on the

product X × P generated by the map

π(x, p) = (ϕ(1, x, p), θ(p)) .

In what follows, X and P are assumed to be complete metric spaces, and the maps

θ and ϕ(1, ·, ·) are assumed to be continuous and bounded. Also, we assume that P

is compact and θ(P ) = P .

There is a considerable literature devoted to attractors of non-autonomous sys-

tems, see [14, 11, 21, 22, 12] and references therein. Several authors (e.g., [12]) view

the product X × P as a fiber bundle over the base P . Thus, it makes sense to define

the attractors fibered over P . The following definitions are compiled from [12, 22].

Let M̂ be a collection of compact subsets M(p) ⊂ X parametrized by the points

of P .

Definition 7. M̂ = {M(p)}p∈P is a uniform forward attractor of the non-autonomous

system 〈X,ϕ, (P,Z≥0, θ)〉 iff

1)
⋃
q: θ(q)=p ϕ(1,M(q), q) = M(p);

2) The set
⋃
p∈P M(p) is compact;

3) lim
n→+∞

supp∈P distX (ϕ(n,B, p),M(θn(p)) = 0, for every bounded B ⊂ X and

p ∈ P .

The following result follows from [22, Sec. 5]
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Lemma 8. Assume that the skew-product semi-dynamical system (X × P, π) corre-

sponding to the non-autonomous system 〈X,ϕ, (P,Z≥0, θ)〉 possesses a global compact

attractor M . Then the slices M(p) = {x ∈ X : (x, p) ∈ M} form the forward

attractor.

In the theory of non-autonomous systems, serious attention is paid to the notion

of a pullback attractor because of its role in random dynamical systems, [15]. Usually

this notion is introduced under the assumption that the map θ is a homeomorphism

on P . If θ is not invertible, the usual definition is not applicable. However, the

definition can be extended to the case of non-invertible θ, as shown in [22].

Definition 9. M̂ = {M(p)}p∈P is a uniform pullback attractor of the non-

autonomous system 〈X,ϕ, (P,Z≥0, θ)〉 iff

1)
⋃
q: θ(q)=p ϕ(1,M(q), q) = M(p);

2) The set
⋃
p∈P M(p) is compact;

3) lim
n→+∞

supp∈P distX (ϕ(n,B, θ−n(p)),M(p)) = 0, for every bounded B ⊂ X and

p ∈ P .

In this definition, θ−n(p) is the set of all q ∈ P such that θn(q) = p.

Lemma 10. Assume that the skew-product semi-dynamical system (X ×P, π) corre-

sponding to the non-autonomous system 〈X,ϕ, (P,Z≥0, θ)〉 possesses a global compact

attractor M . Then the slices M(p) = {x ∈ X : (x, p) ∈ M} form the pullback

attractor.

The lemma and its proof can be found in [22].



Chapter 3

DYNAMICS WITH CHOICE

In this chapter we define dynamics with choice and give very general sufficient con-

ditions for the existence of global compact attractor in dynamics with choice. Also,

we give an example of a gestalt effect by showing that, in our example, the union of

all individual attractors does not fill up the whole attractor in dynamics with choice.

3.1 Mathematical setting

Given a complete metric space (X, d) and a set of continuous and bounded operators,

{Sj}j∈J , we can define dynamics with choice. We assume that j is an element of a

compact metric space, (J , dJ ), which we call the alphabet. We define ΣJ to be the

set of all one-sided infinite sequences whose elements are symbols in the alphabet J .

Every w ∈ ΣJ can be viewed as a map w : Z≥0 → J . Denote w = w(0)w(1)w(2)...,

where w(i − 1) is the ith symbol in the sequence w. On the space of one-sided

infinite sequences ΣJ , we act with the shift operator σ, which maps w to σ(w) =

w(1)w(2)w(3)... (erasing the first symbol in the sequence).

24
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We consider strings (words) of finite length and one-sided strings of infinite length.

Denote by Σ∗ the set of all finite length strings (words), and denote by ΣJ the set

of all (one-sided) infinite strings. The word of length 0 is the empty word. Given a

string w ∈ Σ∗ ∪ ΣJ , w(0) is the first letter of w, and w(k) is the (k + 1)-st letter

of w. The length of w is denoted by |w|. If w is a finite string and u ∈ Σ∗ ∪ ΣJ ,

their concatenation is denoted by w.u; if |w| = m, then (w.u)(m + k) = u(k) for

k = 0, 1, . . . . For a w ∈ Σ∗ and s ∈ Σ∗ ∪ ΣJ , we write w @ s if w is the beginning of

the string s, i.e., if there exists u ∈ Σ∗ ∪ΣJ such that s = w.u. For an infinite string

s, its first n letters form a word denoted by s[n], i.e., s[n] = s(0)s(1) . . . s(n−1). The

set of all words of length m will be denoted by Σ∗m.

Define a metric dΣJ on ΣJ as follows. If w, s ∈ ΣJ then

dΣJ (w, s) =
∞∑
j=0

2−j dJ (s(j), w(j)) . (3.1)

Lemma 11. dΣJ is a metric on ΣJ . Moreover, (ΣJ , dΣJ ) is a compact space.

Proof. Two sequences s, w ∈ ΣJ are the same if s(j) = w(j) for all j, which then

implies that dΣJ (s, w) = 0. Similarly, if dΣJ (s, w) = 0 then dJ (s(j), w(j))=0 for all

j, and s = w. Also, it is obvious that dΣJ (s, w) = dΣJ (w, s) and dΣJ (s, w) ≥ 0. It is

left to show the triangle inequality. Let s, u, w ∈ ΣJ , then for every j ∈ N≥0 we have

dJ (s(j), w(j)) ≤ dJ (s(j), u(j)) + dJ (u(j), w(j)).

If we multiply the inequality above by 2−j and add over all j, we get
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∞∑
j=0

2−j dJ (s(j), w(j)) ≤
∞∑
j=0

2−j dJ (s(j), u(j)) +
∞∑
j=0

2−j dJ (u(j), w(j)), (3.2)

i.e., the triangle inequality

dΣJ (s, w) ≤ dΣJ (s, u) + dΣJ (u,w).

To show that (ΣJ , dΣJ ) is a compact space, pick a sequence {wn} ⊂ ΣJ . Notice

that for each j, wn(j) is a sequence of points in the compact set J , and therefore,

has a convergent subsequence. Thus, {wn(0)} has a subsequence converging to some

point, say w(0). Denote by {wn1
k
} the subsequence of {wn} such that wn1

k
(0) →

w(0). Restricted to this subsequence, there exists a subsequence {wn2
k
} such that

{wn2
k
(1)} converges to some point in J , call it w(1). Notice that wn2

k
(0) → w(0),

since {wn2
k
(0)} is a subsequence of the convergent sequence {wn1

k
(0)}. Proceeding

like this, we construct sequences {wn1
k
} ⊃ {wn2

k
} ⊃ {wn3

k
}... with the property that

wnlk(i)→ w(i) for all i = 0, ..., l−1. The claim is that the subsequence {wnll} converges

to w = w(0)w(1)w(2)... in the given metric. For every ε > 0 there exists an L such

that
∑∞

j=L 2−j < ε
2M

where M = supx,y∈J dJ (x, y), and there exists an N ≥ L such

that ∀l ≥ N , we have
∑L−1

j=0 2−j dJ (wnll(j), w(j)) < ε
2
. Then, we have

dΣJ (wnll , w) =
∑∞

j=0 2−j dJ (wnll(j), w(j))

=
∑L−1

j=0 2−j dJ (wnll(j), w(j)) +
∑∞

j=L 2−j dJ (wnll(j), w(j))

≤ ε
2

+ M ∗
∑∞

j=L 2−j ≤ ε
2

+M ∗ ε
2M
≤ ε.

(3.3)
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The claim and the lemma are proved. �

We can extend the metric dΣJ to the space ΣJ ∪ Σ∗ as follows. First, add an

auxiliary point, say Q, to the set J and extend the metric dJ to J̃ = J × {Q} by

postulating dJ (j,Q) = diam J , ∀j ∈ J . Next, embed ΣJ ∪ Σ∗ into ΣJ̃ by leaving

the strings from Σ as they are and attaching an infinite string of Q′s to the finite

words from Σ∗:

u→ u if u ∈ Σ

u→ u.QQQQ... if u ∈ Σ∗
(3.4)

Define a metric on ΣJ̃ as in 3.1.

Lemma 12. ΣJ ∪ Σ∗ is a compact subset of ΣJ̃ .

Proof. Since ΣJ̃ is compact by Lemma 11, it remains to show that the set ΣJ ∪Σ∗

is closed. Let wn be a sequence in ΣJ ∪Σ∗ which converges to some point w. If wn is

a sequence of infinite strings then w is an infinite string, and by Lemma 11, w ∈ ΣJ .

If wn has a subsequence of finite strings then, there are two possible cases. w is a

finite string or w is an infinite string. If w is a finite string, then there must exist a

subsequence wnk whose lengths are |w|. Hence, the corresponding strings w̃nk ∈ ΣJ̃

have the form wnk .QQQ̄. Since wnk → w,

w̃nk → w̃ = w.QQQ̄.

w̃ ∈ ΣJ̃ because ΣJ̃ is compact, and therefore w ∈ Σ∗. On the other hand, if w is an

infinite string, w ∈ ΣJ if only if w(i) 6= Q for all integers i ≥ 0. Suppose there exists

an N such that w(N) = Q. Then, there exists an infinite subsequence w̃nk → w such

that either wnk(N) = Q or wnk(N) → Q with wnk(N) 6= Q for all k. In the first
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case, we get that wnk are strings whose lengths are at most N . This is impossible

because the lengths must increase to infinity. The second case is impossible because

dJ (j,Q) = diam J for all j ∈ J . A contradiction. Hence, w ∈ ΣJ . �

When J has finitely many elements, the metric dΣJ on ΣJ can be reduced to a

metric dΣ�J
(w, s) =

∞∑
j=0

2−j dJ (s(j), w(j)), with dJ (s(j), w(j)) = 1 if s(j) = w(j),

and dJ (s(j), w(j)) = 0 if s(j) 6= w(j). This metric is equivalent to the metric used in

[18], where the distance between two sequences is 2−N , if N is the smallest integer j

such that s(j) 6= w(j). The shift operator, σ : ΣJ → ΣJ , acts on w ∈ ΣJ by deleting

its first symbol. It is easy to show that this action is continuous. Actually, we have

dΣJ (σ(s), σ(w)) ≤ 2 dΣJ (s, w).

In the following chapters, we denote the space ΣJ by Σ and the metric on it by

dΣ.

3.2 Attractors for Dynamics with Choice

Definition 13. Dynamics with choice3 is a discrete-time dynamics on the product

space X = X × Σ generated by the evolution operator S : X→ X:

S(x,w) = (Sw(0), σ(w)). (3.5)

This map is obviously continuous and bounded. Because we will consider itera-

tions of S,

3Originally, we distinguished the cases when there are finitely many operators (which we called
dynamics with choice [18]), and infinitely many operators (which we called dynamics with a range
of choice [19]). We do not distinguish the two cases unless otherwise specified and we refer to it as
dynamics with choice.
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Sn (x, u) = (Su(n−1) ◦ · · · ◦ Su(1) ◦ Su(0) (x), σn(u)) ,

we introduce the notation

Sw = Sw(n−1) ◦ · · · ◦ Sw(1) ◦ Sw(0) ,

if w is a word of length n. Thus, we can write Sn (x, u) = (Su[n] (x), σn(u)).

We have the following additional assumptions on the operators Sj.

Assumption 1. Assume there is a closed, bounded set B ⊂ X such that for every

bounded A ⊂ X there exists m(A) > 0 such that Sw (A) ⊂ B for every word w of

length n ≥ m(A).

[In applications B is usually a closed ball of radius that depends on the parameters

of the model. Showing that for different values of the parameters there is a common

estimate on the radius is enough to verify Assumption 1.]

Let ψ be a measure of noncompactness as in Definition 4.

Assumption 2. Assume that each operator Sj is ψ-condensing.

Note, that Assumptions 1 and 2 are enough to prove the existence of a global

compact attractor in dynamics with choice when J is finite. Since, in general, we

allow an infinite number of maps Sj, we need an additional assumption concerning

their dependence on the parameter j.

Assumption 3. There exists a finite partition {Jp}Mp=1 of the set J , with Jp compact,

such that for any closed, bounded A ⊂ X, the maps Sj, restricted to A, depend

uniformly continuously on j when j changes within each of the sets Jp. More precisely,
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given a closed, bounded A, for every p and every ε > 0 there is a δ > 0 such that

sup
x∈A

dX(Si(x), Sj(x)) ≤ ε provided i, j ∈ Jp and dJ (i, j) ≤ δ.

We are going to apply Theorem 2 to prove the existence of the attractor in the

dynamics with choice (X,S). Our Assumption 1 gives the absorbing set B = B× J

in X. It remains to show that the map S is condensing with respect to some measure

of noncompactness ψX. Because the parameter space J is compact, there is a natural

choice for ψX, namely,

ψX(C) = ψX(prX(C)) ,

where prX(C) = {x ∈ X : (x, u) ∈ C, for some u ∈ ΣJ }. We showed in 2.2 that ψX

enjoys the properties (i), (ii), (iii), and (iv) of the measures of noncompactness. With

this choice of ψX we prove the following fact.

Lemma 14. The map S is ψX-condensing.

Proof. Let C be a closed, bounded subset of X. Its projection on X, C = prX(C), is

closed and bounded in X. Pick an ε > 0. By Assumption 3, there is δ > 0 such that

sup
x∈C

dX(Si(x), Sj(x)) ≤ ε, and hence dH(Si(C), Sj(C)) ≤ ε, provided dJ (i, j) ≤ δ and

i and j lie within the same set Jp. Let Iδ = {i1, . . . , iR} be a finite δ-net in J . We

have

ψX (S(C)) ≤ ψX

(⋃
i∈J

Si(C)

)
= max

1≤p≤M
ψX

⋃
i∈Jp

Si(C)

 = ψX

 ⋃
i∈Jp0

Si(C)

 ,

for some p0. Now, since

∣∣∣∣ψX
 ⋃
i∈Jp0

Si(C)

−ψX
 ⋃
j∈Jp0∩Iδ

Sj(C)

∣∣∣∣ ≤ c(ψX) dH

 ⋃
i∈Jp0

Si(C),
⋃

j∈Jp0∩Iδ

Sj(C)
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and dH

 ⋃
i∈Jp0

Si(C),
⋃

j∈Jp0∩Iδ

Sj(C)

 ≤ ε, we obtain

ψX (S(C)) ≤ ψX

 ⋃
j∈Jp0∩Iδ

Sj(C)

+ c(ψX) ε = ψX(Si(C)) + c(ψX) ε ,

for some i ∈ Jp0 ∩ Iδ. Hence,

ψX (S(C)) ≤ ψX(C) + c(ψX) ε ,

and the inequality is strict if C is not relatively compact. Since ψX(C) = ψX(C) and

ε was arbitrary, lemma is proved. �

Corollary 15. For every bounded set A ⊂ X, there exists a j0 ∈ J such that

ψX(
⋃
j∈J Sj(A)) ≤ ψX(Sj0(A)), and ψX(

⋃
j∈J Sj(A)) < ψX(Sj0(A)) iff ψX(Sj0(A)) >

0.

Applying Theorem 2 we immediately obtain the following result.

Theorem 16. Let X be a complete metric space and let Sj, for j ∈ J be a compact

metric set, be continuous, bounded (i.e., take bounded sets to bounded sets) maps

X → X. In addition, let assumptions 1, 2, and 3 be satisfied. Then the system

(X, dist, S) has a global compact attractor, M.

The attractor M has the following properties.

(1) M is (strictly) invariant: S(M) = M.

(2) M is the union of all closed bounded sets A ⊂ X with the property A ⊂ S(A).
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(3) M is the maximal closed set with the property A ⊂ S(A); in particular, M is

the maximal (strictly) invariant closed set.

(4) Through every point (x,w) ∈ M passes a complete trajectory. This means

there exists a two-sided sequence . . . , x−2, x−1, x0, x1, x2, . . . of points in X and

a two-sided infinite string . . . s(−2)s(−1)s(0)s(1)s(2) . . . such that x(0) = x and

s(0)s(1)s(2) · · · = w(0)w(1)w(2) . . . and such that Ss(n)(xn) = xn+1 for every

integer n.

(5) M is the union of all complete, bounded trajectories in X.

3.2.1 Connection with IFS

Given the state space X and operators Sj, there are two ways of describing dynamics

generated by the corresponding IFS. First, one can follow the trajectories of bounded

subsets ofX under the iterations of the Hutchinson-Barnsley map F̄ ( here we consider

the map for the infinite union, i.e.,

F̄ (A) =
⋃
j∈J

Sj(A)).

We denote such system by (X, d, F̄ ). The notion of the global compact attractor as

the minimal compact set that attracts all bounded sets, is well-defined for (X, d, F̄ ).

The second possibility is to choose the space of closed bounded sets, B̄(X), as the

state space of the system and study the dynamics of its points under the iterations

of F̄ . As a rule, B̄(X) is equipped with the Hausdorff distance dH . Thus we obtain

the second system, (B̄(X), dH , F̄ ). It turns out that from the point of view of global

compact attractors the dynamical system (B̄(X), dH , F̄ ) is not very interesting (be-
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cause convergence in the Hausdorff metric is too strong). It possesses an attractor

(in the sense we use here) essentially only if the maps Sj are contractions, so then

the attractor is just one point in B̄(X). For more general Sj, it makes more sense to

study the fixed points of F̄ .

Theorem 17. Make the same assumptions on the space X and operators Sj as in

Theorem 16. Then

(1) The IFS (X, d, F̄ ) does have a global compact attractor, K.

(2) The set K is the largest compact set in X which is invariant under the

Hutchinson-Barnsley map F̄ , K = F̄ (K).

(3) The attractor M of the dynamics with choice has the following product structure:

M = K × Σ .

In the extensive literature on IFSs the main question is the existence of “the frac-

tal,” i.e., the maximal compact set invariant under the Hutchinson-Barnsley operator

F̄ . This corresponds to the second assertion of our Theorem 17. We believe that

viewing “the fractal” of an IFS as the attractor of the dynamical system (X, d, F̄ ) is

beneficial to the theory of IFSs. This approach, in particular, points to the “right”

assumptions on the space X and the operators Sj.

The following lemma is needed for the proof of the theorem. A version of its proof

can be found in the proof of [16, Lemma 2.3.5].

Lemma 18. For any bounded sequence xn, and any sequence wn of finite lengths

increasing to infinity, under assumptions 1, 2, and 3, the sequence Swn(xn) has a

convergent subsequence.
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Proof. Let {xn} be any bounded sequence in X and {wn} ⊂ Σ∗ be a sequence of

finite strings whose lengths are increasing to infinity. There exists a subsequence of wn

which converges to w ∈ Σ. Wlog denote this subsequence by wn. Then by assumption

1 there exists m({xn}) such that Swn(xn) ⊂ B for all n with |wn| > m({xn}). Now,

find m(B) and define

B̃ =
⋃

v∈Σ∗
m(B)

Sv(B)

Clearly, any positive trajectory of the set B̃ is in B, i.e., for a word v of any length we

have Sv(B̃) ⊂ B. Let m = m({xn}) +m(B), and let sn be such that wn = wn[m].sn.

If we let yn = Swn[m](xn), then yn ⊂ B̃. It is left to prove that the sequence Ssn(yn)

is precompact.

Consider the union of positive trajectories of B̃ for all possible choices of w ∈ Σ∗n:

C0 = B̃ ∪
⋃
n≥1

⋃
v∈Σ∗n

Sv(B̃) .

Define inductively

Cn+1 =
⋃
j∈J

Sj (Cn) .

We have C0 ⊃ C1 ⊃ C2 ⊃ . . . .

Let H denote a collection of all sets A ⊂ B that can be written in the following way

A =
⋃
n≥0

An where An is a finite (or empty) subset of Cn .

Next we will show that every A ∈ H is relatively compact. Since the sequence Ssn(yn)

is in H then our lemma will be proved.
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Let A∗ ∈ H be such that ψX(A∗) = sup
A∈H

ψX(A). This set exists, see the proof of

theorem 6 (also, see lemma 1.6.10 [1]). Denote A∗ =
∞⋃
n=0

A∗n such that each A∗n ⊂ Cn.

Then for every p ∈ A∗n, there exist a q ∈ Cn−1 and a j ∈ J such that p = Sj(q).

Denote by An−1 the resulting subset of Cn−1 and by A =
∞⋃
n=0

An. Obviously, A ∈ H

and therefore we have ψX(A) ≤ ψX(A∗). Consider the set F̄ (A) =
⋃
j∈J

Sj(A). This set

is in H and it contains
∞⋃
n=1

A∗n. Since it follows from Corollary 15 that ψX(
⋃
j∈J

Sj(A)) ≤

ψX(Sj0(A)), for some j0 ∈ J , then we have

ψX(A∗) = ψX(
∞⋃
n=1

A∗n) ≤ ψX(F̄ (A)) ≤ ψX(Sj0(A)) ≤ ψX(A)

Above we used properties (i) and (iii) of ψX to show first equality, property (ii) for first

inequality, and last inequality follows since each operator Sj is ψX-condensing. If A is

not relatively compact, then ψX(Sj0(A)) < ψX(A), which implies ψX(A∗) < ψX(A).

This is a contradiction to ψX(A∗) ≥ ψX(A). Therefore, we must have ψX(A∗) =

ψX(A) = 0. This concludes the proof of the lemma. �

Proof of Theorem 17. Consider the IFS dynamics (X, d, F̄ ). This means that we

follow the dynamics of bounded sets under the iterations of F̄ . Since the map F̄ is

inherently multi-valued, we cannot apply theorem 2 to show the existence of a global

compact attractor. In order to do that, we need to define the ω-limit set of a bounded

set (B ⊂ X), and prove that it is a nonempty, invariant, compact set which attracts

B. Notice that

F̄ n(x) =
⋃

w∗∈Σ∗n

Sw∗(x)

Therefore, we define ω-limit set to be
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ω(B) =
{
y ∈ X | y = limSwnk (xk), for (xk) ⊂ B, and (wnk) ⊂ Σ∗

}
Lemma 19. For any bounded set B ⊂ X,

(i) ω(B) is nonempty,

(ii) if A ⊂ B, then ω(A) ⊂ ω(B),

(iii) ω(B) is compact,

(iv) ω(B) is invariant in the sense that ω(B) = F̄ (ω(B)),

(v) ω(ω(B)) = ω(B)

(vi) ω(B) attracts B.

Proof. For any bounded B ⊂ X, ω(B) is a nonempty set by Lemma 18. Let

y ∈ ω(A), where A ⊂ B, then y = limSwnk (xk), for (xk) ∈ A and any sequence

of finite strings wnk , whose lengths are increasing to infinity. Since, A ⊂ B, then

(xk) ∈ B, and therefore y ∈ ω(B). This proves property (ii).

Note that ω(B) can be characterized as follows. ω(B) is the set of all y ∈ X such

that for every ε > 0 and every integer k ≥ 0 there exist an x ∈ B, an n > k, and

a w∗ ∈ Σ∗n so that Sw∗(x) ∈ Oε(y) (where Oε(y) is the ε-neighborhood of y). Yet

another way to describe ω(B) is to consider the trajectory of B and its tails:

D0 = B ∪
(
∪w∈Σ∗1

Sw(B)
)
∪
(
∪w∈Σ∗2

Sw(B)
)
∪ . . . , Dn =

⋃
m≥n

(
∪w∈Σ∗mSw(B)

)
.
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Clearly, D0 ⊃ D1 ⊃ D2 ⊃ . . . . It turns out that

ω(B) =
⋂
n≥0

Dn . (3.6)

Indeed, inclusion ⊂ is obvious. To prove the “⊃” part, pick a y in the intersection

of the tails and set εn = 2−n. In D1 there is a point y1 = Swm1
(x1), x1 ∈ B, and

wm1 ∈ Σ∗m1
such that d (y1, y) ≤ ε1. In Dm1+1 there is a point y2 = Swm2

(x2),

m2 > m1, such that d (y2, y) ≤ ε2, and so on. The limit of yn belongs to ω(B), i.e.,

y ∈ ω(B). Therefore, ω(B) is closed.

ω(B) is invariant in the sense that ω(B) = F̄ (ω(B)) =
⋃
j∈J Sj(ω(B)). To show

this, pick an x ∈ ω(B). Then, there exist a sequence (xk) ∈ B, and a sequence wk ∈ Σ∗

with lengths nk increasing to infinity such that x = limSwk(xk). The last symbol in

the words (wk) give a sequence wk(nk − 1) ⊂ J . Infinitely many elements of this

sequence belong to some Jp. This sequence has a convergent subsequence with limit,

say, j0 ∈ Jp. Wlog, denote the sequence again by (wk(nk−1)) and the corresponding

sequence of words again by (wk). By Lemma 18, there is a subsequence of Swk[nk−1](xk)

which converges to some y. In fact, y ∈ ω(B). Now, for every ε > 0 there exists k

(large) such that d (x, Swk(xk)) ≤ ε
3
, d
(
Swk(nk−1)

(
Swk[nk−1](xk)

)
, Swk(nk−1)(y)

)
≤ ε

3
.

and d
(
Swk(nk−1)(y), Sj0(y)

)
≤ ε

3
(follows form assumption 3). Then, we have

d(x, Sj(y)) ≤ d (x, Swk(xk)) + d
(
Swk(nk−1)

(
Swk[nk−1](xk)

)
, Swk(nk−1)(y)

)
+d
(
Swk(nk−1)(y), Sj0(y)

)
< ε

(3.7)
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Since for every x ∈ ω(B) and every ε > 0 there exists j ∈ J such that

d(x,
⋃
j∈J Sj(ω(B))) < ε, it follows that x ∈

⋃
j∈J Sj(ω(B)). To show the other

side of the inclusion, pick x ∈
⋃
j∈J Sj(ω(B)), then

x = Sj(limSwnk (xk)) = limSj
(
Swnk (xk)

)
= limSwnk .j(xk) ∈ ω(B)

Since, ω(B) is closed and
⋃
j∈J Sj(ω(B)) ⊂ ω(B) it follows that

⋃
j∈J Sj(ω(B)) ⊂

ω(B). This proves property (iv).

To show compactness, note that

ψX(ω(B)) = ψX

(⋃
j∈J

Sj(ω(B))

)
≤ ψX (Sj0(ω(B))) ≤ ψX(ω(B)).

The first equality follows from the invariance of ω(B) and Property (v) of Definition

4. The first inequality follows from Corollary 15, and the second inequality follows

since maps Sj are condensing. The second inequality is strict only if ω(B) is not

relatively compact, which would lead to a contradiction. Since ω(B) is closed, it is

compact. This proves property (iii).

Let y ∈ ω(ω(B)), then there exists a sequence (xk) ∈ ω(B) and a sequence of

finite strings wnk of lengths increasing to infinity such that y = limSwnk (xk). Note

that for every k, Swnk (xk) ∈ F̄ nk(ω(B)) = ω(B). The equality follows from property

(iv). Now, for every ε > 0, there exists k, such that d(y, Swnk (xk)) ≤ ε. Since, ω(B)

is compact, it follows that y ∈ ω(B). Therefore, we have ω(ω(B)) ⊂ ω(B). Now,

pick y ∈ ω(B). Then, y ∈ F̄ nk(ω(B)) for every nk ≥ 0. Therefore, we can find a

sequence (xk) ∈ ω(B), and wnk with lengths |wnk | = nk such that for every k we

have y = Swnk (xk). Hence, y = limSwnk (xk). This proves that y ∈ ω(ω(B)) and the

property (v) is proven.
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To show that for every ε > 0 there exists an m such that Swn(B) ⊂ Oε (ω(B))

for all n ≥ m, we argue by contradiction. Assume there exists an ε0 > 0 such that

Swn(B) does not lie inside Oε0 (ω(B)) for infinitely many n. This means that there

is a sequence (xk) in B and a sequence nk ↗ +∞ such that Swnk (xk) /∈ Oε0 (ω(B)).

But we already know that Swnk (xk) must have a convergent subsequence whose limit

must be in ω(B). A contradiction. Therefore, ω(B) attracts B. We showed property

(vi) which concludes the proof of the lemma. �

Now we return to the proof of theorem 17.

Claim: K = ω(B) is the global compact attractor.

Let P be any compact subset of X. For every x ∈ P , there exist an open ball

Orx(x) ⊂ P , and a positive number n, such that, for every w ∈ Σ, Sw[n](Orx(x)) ⊂

B. From property (ii) of Lemma 19, it follows that ω(Orx(x)) ⊂ ω(B). Now, let

{Orx(x)}x∈P be an open cover of P . Then, since P is compact, there exists a finite

subcover. Now, P ⊂
⋃N
j=1Orj(xj) gives us

ω(P ) ⊂ ω

(
N⋃
j=1

Orj(xj)

)
⊂

N⋃
j=1

ω
(
Orj(xj)

)
⊂ ω(B)

Since ω(P ) attracts P , a bigger set, K, attracts P . For any bounded set B, ω(B)

is compact, and ω(ω(B)) = ω(B) (follows from property (v) in the above lemma).

Also, ω(B) ⊂ K. Hence, K attracts all bounded sets. K is the maximal compact set

invariant under F̄ . Suppose this is not true. Then, there exists a set A ( K which

attracts all bounded sets and is invariant under F̄ . Both A and K are compact,

therefore we can find ε > 0 such that A \ Oε(K) 6= ∅. Since A is invariant, and K

attracts all bounded sets we have
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A = F̄ n(A) ⊂ Oε(K).

A contradiction. Therefore, K is the global compact attractor of the system (X, d, F̄ )

which comes with all the properties listed in Theorem 3.

To prove that M = K × Σ we start by showing that the slices of the attractor

corresponding to different strings are all the same, i.e., the set {x ∈ X : (x, s) ∈M}

does not depend on s.

All slices are equal. Recall that every point (x, s) in M is a limit of some sequence

Snk(xk, sk) with bounded (xk) ⊂ X and σnk(sk) converging to s. As we argued above,

we can write

Snk(xk, sk) = (Swk(xk), σ
nk(sk)) ,

where wk is a prefix of length |wk| = nk of the string sk, i.e., sk = wk.σ
nk(sk). The

sequence Swk(xk) converges to x and σnk(sk) converges to s. The limit of the pair

will not change if we replace sk by wk.s. Clearly, for any string u ∈ Σ, we have

lim (Swk(xk), σ
nk(wk.u)) = (x, u) .

This proves that M = A× Σ. The set A ⊂ X is compact because M is compact.

Since Σ =
⋃
j∈J j.Σ and since S(M) = M, we get S(A×Σ) = (

⋃
j∈J Sj(A))×Σ =

A × Σ. In other words, A =
⋃
j∈J Sj(A). Because K is the maximal compact in X

with this property, we have A ⊂ K. On the other hand, S(K × Σ) = K × Σ. Since

A× Σ is the maximal compact in X with this property, we have K ⊂ A, and hence,

A = K. This completes the proof of Theorem 17. �
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3.3 Individual Attractors

Every fixed strategy also generates a dynamics on X: if w ∈ Σ is the (fixed)

strategy, then an x ∈ X moves to Sw(0)(x), then to Sw(1)

(
Sw(0)(x)

)
, then to

Sw(2)

(
Sw(1)

(
Sw(0)(x)

))
, etc. Denote this dynamics by (X, d, w). This is not a

(semi)dynamical system, but we should not worry about names. Certain impor-

tant notions related to the long-term behavior with natural adjustments still make

sense. For example, the individual, i.e., corresponding to an individual strategy w,

trajectory of a set B is the union

B ∪ Sw[1](B) ∪ Sw[2](B) ∪ . . . .

We define the individual ω-limit set of a bounded set B as

ω(B, w) = {y ∈ X : y = limSw[nk](yk) for some sequence (yk) in B} .

By analogy with Definition 1, we say that a set A is the global compact attractor

of system (X, d, w) if it is the minimal set with the following two properties: A is

compact and A attracts every bounded set under the strategy w, i.e., for any bounded

B, we have limn→∞ ~dist (Sw[n](B), A) = 0.

Next theorem establishes the existence of individual compact attractors, Aw, of

systems (X, d, w). Along the way we establish various properties of the ω-limiting

sets ω(B, w).

Theorem 20. Under the Assumptions 1, 2, and 3, every system (X, d, w) has the

global compact attractor, which we denote by Aw. This attractor is the intersection
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of the closures of the tails of the trajectory of the absorbing set B,

Aw =
⋂
n≥1

⋃
k≥n

Sw[k](B) .

The attractor, Aw, is the union of all ω(B,w) with bounded B.

Proof. We use some notation and keep in mind the argument from the proof of

Lemma 18. Due to Assumption 1, every bounded set eventually finds itself in the set

B̃ and after that stays there.

Step 1. The ω-limit sets of bounded sets are not empty.

Pick a point x0 ∈ X and follow its trajectory, xn = Sw[n](x0). There will be a time

n such that xn ∈ B̃ ⊂ C0, and then inevitably xn+1 ∈ C1, xn+2 ∈ C2, and so on. By

Lemma 18, the sequence (xn) is relatively compact. Thus, ω({x0}, w) 6= ∅. Because

ω({x0}, w) ⊂ ω(B,w) if x0 ∈ B, we have ω(B,w) 6= ∅.

Step 2. ω(B,w) is the intersection of the closures of the tails of its trajec-

tory, hence ω(B,w) is closed.

Note that ω(B,w) can be characterized as follows. ω(B, w) is the set of all y ∈ X

such that for every ε > 0 and every integer k ≥ 0 there exist and x ∈ B and n > k so

that Sw[n](x) ∈ Oε(y) (where Oε(y) is the ε-neighborhood of y). Yet another way to

describe ω(B, w) is to consider the trajectory of B and its tails:

D0 = B ∪ Sw[1](B) ∪ Sw[2](B) ∪ . . . , Dn =
⋃
m≥n

Sw[m](B) .

Clearly, D0 ⊃ D1 ⊃ D2 ⊃ . . . . It turns out that

ω(B, w) =
⋂
n≥0

Dn . (3.8)
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Indeed, inclusion ⊂ is obvious. To prove the “⊃” part, pick a y in the intersection

of the tails and set εn = 2−n. In D1 there is a point y1 = Sw[m1](x1), x1 ∈ B, such

that d (y1, y) ≤ ε1. In Dm1+1 there is a point y2 = Sw[m2](x2), m2 > m1, such that

d (y2, y) ≤ ε2, and so on. The limit of yn belongs to ω(B, w), i.e., y ∈ ω(B, w).

Step 3. ω(B,w) is compact.

Compactness of ω(B, w) will follow from the fact that the intersection of the closures

of the sets Cn in the proof of Lemma 18 is compact, because, thanks to Assumption 1,⋂
n≥0

Dn ⊂
⋂
n≥0

Cn. Denote C∗ =
⋂
n≥0

Cn. Since ω(B, w) is not empty, C∗ is not empty

as well. And it is closed. If the set C∗ is not compact, then there exist ε0 > 0 and

an infinite sequence (yn) ⊂ C∗ such that d (yn, ym) ≥ ε0 for all n and m 6= n. Since

yn ∈ Cn (in fact, the whole sequence lies in every set Cn), there exists a sequence

ynk ∈ Cn that converges to yn as k → ∞. For every ε > 0 there are numbers kn

such that d (ynkn , yn) ≤ ε for all n. When ε < ε0/2, the Hausdorff distance between

the sets {ynkn} and {yn} is not greater than ε. Using property (iv) of the measure of

noncompactness ψ, we obtain |ψ ({yn})− ψ ({ynkn}) | ≤ c(ψ) ε. Now, ψ ({ynkn}) = 0

by Lemma 18. Then ψ ({yn}) ≤ c(ψ) ε. Since this is true for any ε, we obtain

ψ ({yn}) = 0, a contradiction. This proves that C∗ is compact.

Step 4. ω(B, w) attracts B.

To show that for every ε > 0 there exists an m such that Sw[n](B) ⊂ Oε (ω(B, w))

for all n ≥ m, we argue by contradiction. Assume there exists an ε0 > 0 such that

Sw[n](B) does not lie insideOε0 (ω(B, w)) for infinitely many n. This means that there

is a sequence xk in B and a sequence nk → +∞ such that Sw[nk](xk) /∈ Oε0 (ω(B, w)).

But we already know that Sw[nk](xk) must have a convergent subsequence whose limit

must be in ω(B, w). A contradiction.

Step 5. Aw = ω(B̃, w).
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Because every bounded set is eventually absorbed by the set B̃, we have ω(B, w) ⊂

ω(B̃, w). We claim that A = ω(B̃, w) is the global compact attractor.

It is clear that such A attracts every bounded set. As an ω-limit set A is compact.

It only remains to show that A is the minimal compact set that attracts every bounded

set. Assume it is not and there is another compact set, P , that attracts every bounded

set. Then there exists ε > 0 such that A \ Oε(P ) 6= ∅. Let x ∈ A \ Oε(P ), then there

exists (xk) ∈ B̃, and sequence (nk) of integers increasing to infinity such that x =

limSw[nk](xk). This implies that P does not attract bounded set (xk). A contradiction.

In other words, A = Aw.

Step 6. It is not hard to see that Aw =
⋃

bounded B

ω(B, w). The theorem is proved.

�

3.3.1 Interplay between individual attractors

Recall, that (with Assumptions 1, 2, and 3) the global attractor M of (X, dist,Σ) is

a product M = K × Σ.

We start with a few simple observations.

Lemma 21. Aw ⊂ F̄ (Aw) ⊂ K, where F̄ is the Hutchinson-Barnsley operator.

Proof. Pick a point, x, in Aw. Then x = limSw[nk](xk) for some bounded sequence

(xk) in X and nk →∞. The last symbol in the words w[nk] give a sequence w(nk) ⊂

J . Infinitely many elements of this sequence belong to some Jp. This sequence

has a convergent subsequence with limit, say, j0 ∈ Jp. Wlog, denote the sequence

again by (w(nk)) and the corresponding sequence of words by (w[nk]). Now, out of the

sequence (w[nk]) pick a subsequence (call it again (w[nk])) such that Sw[nk−1](xk)→ y,
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for some y ∈ Aw (convergence on a subsequence is ensured by Lemma 18). Now, for

every ε > 0 there exists k (large) such that for z = Sj0(y) we have

d(x, z) ≤ d
(
x, Sw(nk)Sw[nk−1](xk)

)
+

d
(
Sw(nk)Sw[nk−1](xk), Sw(nk)(y)

)
+ d

(
Sw(nk)(y), Sj0(y)

)
< ε

(3.9)

Obviously, first two distances can be made smaller then ε
3

for large k. The third

distance can be made smaller then ε
3

because of assumption 3. Since for every x ∈ Aw

and every ε > 0 we can find z ∈
⋃
j∈J Sj(Aw) such that dist(x, z) < ε, it follows that

x ∈
⋃
j∈J Sj(Aw) = F̄ (Aw). The lemma is proved. �

Lemma 22. Aw ⊂ Aσ(w).

Proof. Again, if x ∈ Aw, then x = limSw[nk](xk). Clearly,

Sw[nk](xk) = Sσ(w)[nk−1]

(
Sw(0)(xk)

)
.

The sequence (Sw(0)(xk)) is bounded and σ(w)[nk − 1]→ σ(w). Lemma is proved. �

Corollary 23. If the string w is periodic, then Aw = Aσ(w).

The union of individual attractors Aw lies inside of K,

⋃
w∈Σ

Aw ⊆ K . (3.10)

There are many important cases when this union equals K.

Lemma 24. We have
⋃
w∈Σ

Aw = K in each of the following cases:

a) The operators {Sj} are strict contractions with the contraction factors 0 < γj ≤

γ < 1.
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b) The operators {Sj} are eventually strict contractions, i.e., there exist a 0 < γ <

1 and an integer M ≥ 1 such that for any finite word w∗ of length ≥ M the

operator Sw∗ is a contraction with the factor γ.

c) S−1
j (K) ⊇ K for j ∈ J .

d) Each operator Sj is invertible on K.

Proof. The inclusion (3.10) is obvious. To prove the equality in the special cases

a), b), and c) pick an x ∈ K. There exists a sequence of points {xk} ⊂ K, and a

sequence wnk of lengths nk increasing to infinity such that x = lim
k→∞

Swnk (xk). We

claim that x ∈ Au, where u = wn1 .wn2 . . . wnk . . .. Denote u[mk] = wn1 .wn2 . . . wnk .

The lengths of the words u[mk] go to infinity.

In the cases a) and b), for every k and any y ∈ K we have

d(Swnk (xk), Su[mk](y)) = d(Swnk (xk), SwnkSu[mk−1](y))

= d(Swnk (xk), Swnk (zk))

where zk = Su[mk−1](y). Then, in the case a), d(Swnk (xk), Swnk (zk)) ≤ γnkd(xk, zk) ≤

γnk diam(K), and in the case b), d(Swnk (xk), Swnk (zk)) ≤ γlk d(xk, zk) ≤ γlk diam(K),

where lk is the round down of nk/M . Therefore, d(Swnk (xk), Su[mk](y)) → 0, as

k →∞. Since, lim
k→∞

Su[mk](y) ∈ Au, and lim
k→∞

Su[mk](y) = lim
k→∞

Swnk (xk) = x, it follows

that x ∈ Au and the inclusion K ⊂
⋃
w∈Σ

Aw is proved.

In the third case, since S−1
j (K) ⊇ K, for every y ∈ K there exist zj ∈ K with y =

Sj(zj), j ∈ J . Therefore, for every k, we can find yk ∈ K such that Su[mk−1](yk) = xk.

Then, Su[mk](yk) = SwnkSu[mk−1](yk) = Swnk (xk). It follows that x ∈ Au.

Finally, d) is a special case of c). This concludes the proof. �
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Remark 25. The case d) may seem too restrictive. However, there are many situa-

tions where the operators Sj are not invertible on X but are invertible on the attractor

K. This was first observed by Ladyzhenskaya in the case of Navier-Stokes equations,

[24]. The fact is due to the invariance of K and, what is called, backward uniqueness

property of certain parabolic-like equations.

Although K equals the union of individual attractors in many cases, there are

situations when K is strictly larger than that union. This is what we call a Gestalt

effect. This is a new phenomenon. As we have shown in Lemma 24, the Gestalt effect

cannot occur when operators Sj are contractions.

Example of a Gestalt effect.

In this example the state space X will be the space Σ2 of one-sided infinite strings

of 0’s and 1’s. There will be two operators, S0 and S1, defined as follows:

S0(v) = v(2).v , S1(v) = v(1).v

for all v = v(0)v(1)v(2)v(3) · · · ∈ X. The conditions of Theorem 16 are satisfied, so

let M = K×Σ2 be the global compact attractor of the corresponding dynamics with

choice. [Note that the global compact attractor of the system generated by S0 is the

set of all strings with period 3, and the attractor of the system generated by S1 is the

set of all strings with period 2.]

We claim that the sequence u = 000100 is in K but not in Aw for any w ∈ Σ2.

Let v = 001.σ3(v), i.e., the first three symbols of v are 001, and let wk = 000...0001

with 3k zeros before 1. Then, for every k, Swk(v) = 0.001001...001 with 001 repeating

k times. Therefore, Swk(v) → u as k → ∞, i.e., u ∈ K. To show that u does
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not belong to the union
⋃
w∈Σ

Aw, we argue by contradiction. If u ∈ As, then there

exists a sequence vk ∈ Σ2 such that lim
k→∞

Ss[nk](vk) = u, where nk ↗ ∞. Therefore,

we can find l, such that Ss[nl](vl), Ss[nl+1](vl+1), . . . , Ss[nl+8](vl+8), all begin with

000100100.... Since Ss[nl+1](vl+1) = Ss(nl+1)...Ss[nl](vl+1) = 0001001001..., and the

action of operators S0 and S1 depends only on the first three symbols in the strings,

it follows that vl[3] 6= vl+1[3], because if vl[3] = vl+1[3], then Ss[nl+1](vl+1) starts with

at least 4 zeros, i.e., 0000100100..., which is impossible. Similarly, vl+k[3] 6= vl+j[3]

for j, k = 0, . . . , 8, j 6= k. But there can be only 8 different three-letter words in 2

symbols. A contradiction. Hence, u does not belong to the
⋃
w∈Σ

Aw. �



Chapter 4

DYNAMICS WITH
RESTRICTED CHOICE

An interesting class of systems arises when the choice of the parameters j ∈ J at

every time step is not arbitrary but is restricted by some rules. For example, consider

an oriented, finite or infinite, connected graph such that each vertex has an outgoing

edge. Label every edge by a symbol from J and consider all infinite paths in the

graph. The infinite strings of symbols corresponding to the infinite paths form a

shift invariant subset of ΣJ – the set of allowed (admissible) plans. The operators

Sj acting on the states in the order allowed by those plans generate a graph directed

dynamics on X, see, e.g., [31] for examples of such systems. More generally, let Λ be

a closed, shift invariant subset of ΣJ . We associate with Λ a discrete time dynamics

on the space XΛ = X × Λ generated by the iterations of the map S defined in (3.5).

This is what we mean by dynamics with restricted choice.

Theorem 26. With Assumptions 1,2, and 3, the discrete semidynamical system

(XΛ,S) possesses a global compact attractor MΛ.

(1) The attractor MΛ is the maximal invariant compact subset of XΛ such that

S(MΛ) = MΛ. Clearly, MΛ is a subset of the global compact attractor M of

49
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the full system (X,S).

(2) Through every point (x(0), w) passes a complete trajectory, i.e., there ex-

ists a two-sided infinite sequence of points ..., x(−1), x(0), x(1), ... and a two-

sided infinite sequence ..., w(−1), w(0), w(1), ... (extending w in Λ) such that

Sw(n)(x(n)) = x(n+ 1) for all integers n.

(3) Let KΛ denote the projection of the attractor MΛ onto the X component. The

set KΛ is a compact subset of the set K of Theorem 2.3. There exist compact

sets Aj, j ∈ J , such that KΛ =
⋃
j∈J

Aj and KΛ =
⋃
j∈J

Aj =
⋃
j∈J

Sj(Aj).

(4) If Λ = ΣJ ′, where J ′ is a closed subset of J , then MΛ = KΛ × Λ. In general,

MΛ is not a product, the slices of MΛ corresponding to different w ∈ Λ may be

different.

Proof. The existence of the global compact attractor, MΛ, follows from the abstract

result, Theorem 2. The assertions 1 and 2 of Theorem 26 are among the general

properties of global compact attractors, see Theorem 3. Denote by KΛ the projection

of MΛ onto the X component. Clearly, KΛ is compact. Also, KΛ is a subset of the

slice K corresponding to the full shift Σ, as in Theorem 17. Because of the invariance

property of MΛ, for every point y ∈ KΛ there is a j, one of the symbols of J , and a

point x ∈ KΛ such that y = Sj(x). Define the sets Aj = {x ∈ KΛ : Sj(x) ∈ KΛ}. It

is easy to see that each Aj is compact and KΛ =
⋃
j∈J Aj. By construction, we have⋃

j∈J Aj =
⋃
j∈J Sj(Aj). This proves assertion 3. When J ′ ⊂ J and Λ = ΣJ ′ , then

dynamics with restricted choice is actually full dynamics with choice, and therefore

MΛ is a product set. Below we give a couple of different scenarios when MΛ is not a

product set. �
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To analyze the slices KΛ(s) = {x ∈ X : (x, s) ∈MΛ}, we follow the argument of

the corresponding part of section 3.2.1.

Every point (x, s) ∈MΛ is the limit of the form

(x, s) = lim
nk→∞

(Swk(xnk), σ
nk(snk)) ,

where (xn) is a bounded sequence in X, (sn) is a bounded sequence in Λ, and wk is the

prefix of snk , snk = wk.σ
nk(snk). Because MΛ is invariant under S and we know that

the unrestricted dynamics has the global compact attractor M = K×Σ, the sequence

(xn) can be taken from the compact K, and we may assume that xnk → x∗ ∈ K.

Also, we may assume that the words wk converge (to some infinite string w∗ ∈ Λ).

The strings σnk(snk) converge to s. Consider all strings u ∈ Λ such that wk.u is a

string in Λ for infinitely many k. For every such u we will have x ∈MΛ(u).

We see that the number of different slices of the attractor MΛ that may depend on

the sequence xnk , but more importantly, it depends on what strings can be attached

to convergent sequences of finite words in Λ.

With every sequence (wk) of finite words in Λ we associate the set s((wk)) of one-

sided infinite strings u ∈ Λ such that wk` .u ∈ Λ for some subsequence wk` . In order

to show that MΛ is not necessarily a product set, we will first show that, if Λ is a

sofic shift, the number of different sets among all s((wk)) is finite. The argument will

be similar to the proof of Theorem 3.2.10 in [29].

Recall that Λ is a sofic shift if it has a presentation by a finite labeled graph, see

[29]. This means that there is a directed graph, G = (V,E), with a finite number of

vertices, V , and edges, E; the edges are labeled by the symbols 0, 1, . . . , N − 1; from

every vertex begins at least one infinite directed path; the labels of the edges in the
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infinite directed paths form infinite one-sided strings that exhaust exactly all strings

in Λ.

Lemma 27. If Λ is a one-sided sofic subshift of Σ, then the number of different sets

among all s((wk)) is finite.

Proof. Let G = (V,E) be a labeled graph presenting Λ. Let (wk) be a sequence

of finite words allowed in Λ. For each word wk pick a finite directed path in G

presenting it. We can find a subsequence, (wk`), such that all the words wk` have the

same terminal vertex in their presentation. If T is such vertex, then wk` .u ∈ Λ for all

infinite paths u starting at T . Because the number of vertices is finite, we are done.

�

Lemma 28. If Λ is a one-sided sofic subshift of Σ, then the number of different

slices is finite, and it is at most the number of vertices in a finite labeled graph that

represents the sofic shift.

Proof. Claim: If u, v ∈ Λ and u(0) = v(0), i.e., they have the same starting vertex,

then KΛ(u) = KΛ(v). Since both u and v are arbitrary chosen with u(0) = v(0), it is

enough to show inclusion in one direction only, e.g., KΛ(u) ⊂ KΛ(v). Pick x ∈ KΛ(u),

then there exists a bounded sequence {xk, uk}, and a sequence nk ↗ ∞ such that

Suk[nk](xk) → x and σnk(uk) → u as k →∞. Pick a subsequence (calling it again

σnk(uk)), such that σnk(uk) start with u(0) for all k. Denote by vk = uk[nk].v ∈ Λ,

then

x = lim
k→∞

Suk [nk](xk) and σnk(vk)→ v
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Figure 4.1: The golden+even shift and its animation

and therefore x ∈ KΛ(v). Since u and v were arbitrary, it follows that we can only get

different slices from paths that start from different vertices. This proves the lemma.

�

Remark 29. Even if the number of different sets among all s((wk)) is > 1, the

attractor MΛ may be a product, MΛ = KΛ × Λ, with the same slice for every string

in Λ.

Indeed, let N = 2 and let Λ consist of the periodic string u = 100100 . . . and

its shifts σ(u) = 00100 . . . and σ2(u) = 0100 . . . . If (wk) consists of words ending in

00, then the only string that can be attached to wk is u. If (wk) consists of words

ending in 1, then the only string is σ(u), and for words ending in 10 the only string is

σ2(u). Thus, we have three different sets of the form s((wk)). At the same time, the

individual attractors Au, Aσ(u), and Aσ2(u), are all equal, as we argue in Corollary 23.

One may ask whether MΛ is always a product. The answer is no, as the following

example shows. Let Λ be the intersection of the one-sided golden mean shift with the

even shift. In other words, Λ consists of all sequences of 0s and 1s such that between

any two 1s there are two or a larger even number of 0s. A graph presenting Λ is given

on Figure 4.1. We will animate this graph to define the dynamics. First, identify the

nodes with three distinct points A, B, and C in R2, see Figure 4.1 left, and define
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X = {A,B,C}. Second, define the maps S0 and S1 acting on points as shown by

the directed edges labeled correspondingly; for example, S0(A) = B, S1(A) = A, and

S0(C) = B.

Now consider the set Λ+ of non-empty finite words (blocks) of Λ. We divide Λ+ in

three classes and correspondingly divide the strings in Λ into three classes. The first

class of words in Λ+ consists of the words ending in 1. Such words can serve as prefixes

of strings starting with an even (or infinite) number of 0s. Denote these classes by Λ+
A

and AΛ. The second class of finite words consists of the words ending in odd number

of 0s. The strings for which such words can serve as prefixes are the strings starting

with an odd number of 0s. These classes are denoted by Λ+
B and BΛ. The last class

in Λ+ consists of words ending in even number of 0s. The corresponding strings are

those starting with 1 or with an even number of 0s. These are denoted by Λ+
C and CΛ.

By looking at the picture of the animated shift, it is easy to identify the possible limits

of sequences Swk(xk) when wk belong to a particular class, while xk ∈ {A,B,C}. We

see that if wk ∈ Λ+
A, then the limit set is {A,B}. If wk ∈ Λ+

B, then the limit set is

{B,C}. Finally, if wk ∈ Λ+
C , then the limit set is again {B,C}. Thus, there are two

different slices in the attractor MΛ. One slice is {A,B}, and the other is {B,C}. We

have KΛ(u) = {A,B} if u ∈ AΛ, and KΛ(u) = {B,C} if u ∈ BΛ ∪ CΛ. The global

attractor MΛ is a union of the sets {A,B} ×A Λ, {B,C} ×B Λ, and {B,C} ×C Λ.

The above example shows that the number of slices can be strictly less then the

number of vertices in the finite graph. Now, we will give an example when this two

numbers are equal.

Again, let X = {A,B,C}, and let Λ be given by the finite graph in figure 4.2

(left). As in the example above, let Λ+ be the set of non-empty finite words (blocks)

of Λ. There are three classes of words which end in 1, 10 and 100. The words ending
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Figure 4.2: The graph representing Λ(left) and X with action of operators S0 and S1

(right)

in 1 are the prefixes to words starting with 01 or 001. The words ending in 10 serve

as prefixes to words starting with 1 or 01, and the words ending in 100 are prefixes

to words starting with 1. From figure 4.2 (right), it is not hard to see that if the

sequence of words ends in 1, the limits of sequences Swnk (xk) converge to A, for all

bounded subsets {xk} ⊂ X. Now, if the sequence of words ends in 10, then the limits

of Swnk (xk) will end up in B. Finally, if the sequence of words ends in 100, the limits

of Swnk (xk) will end up in C. Denote by AΛ the words starting with 001, BΛ the

words starting with 01, CΛ the words starting with 1. Then we have three different

slices in the attractor MΛ, which are

{A} ×A Λ

{A,B} ×B Λ

{B,C} ×C Λ.

(4.1)

Another example of different slices appears in numerical results reported in the

next chapter.

The subshifts over a finite alphabet have been studied extensively, see [29, 20]

and references therein. The subshifts over an infinite, possibly uncountable, alphabet

have been studied much, much less.



Chapter 5

PULLBACK AND FORWARD
ATTRACTORS

In this chapter we consider dynamics with choice as a nonautonomous semi-dynamical

system in the setting of section 2.4. Let X and Σ be as before. The space Σ with

the shift σ will be the parameter space. Now, define φ : Z≥0 × X × Σ → X to be

the map φ(n, x, w) = Sw[n](x) and φ(0, x, w) = x. It is clear that φ is a cocycle.

In the following theorem we prove lemmas 8 and 10 for dynamics with choice, i.e.,

for the nonautonomous system (X,φ, (Σ,Z≥0, σ)). In fact, we prove a more general

result by allowing any closed, shift invariant subset as the parameter space. This

setup corresponds to dynamics with restricted choice presented in the previous chap-

ter. Let Λ ⊆ Σ be a subshift. Consider the nonautonomous semi-dynamical system

(X,φ, (Λ,Z≥0, σ)). Under the assumptions of theorem 26 the restricted dynamics

with choice has a global compact attractor, MΛ ⊂ X × Λ. As we know, in general,

MΛ is not a product set. For every w ∈ Λ denote by KΛ(w) the set

KΛ(w) = {x ∈ X | (x,w) ∈MΛ}.

Since MΛ is compact, each KΛ(w) ⊂ X is compact as well.

56
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Theorem 30.
⋃
w∈ΛKΛ(w) is the uniform pullback and the uniform forward attrac-

tor of the nonautonomous dynamical system (X,φ, (Λ,Z≥0, σ)) with respect to B̄(X)

(closed and bounded subsets of X).

Proof. First, let us prove the property 1) in definitions 7 and 9, i.e.,

⋃
u:σ(u)=w

Su(0)(KΛ(u)) = KΛ(w). (5.1)

Here, u(0) represents the symbols which are extensions to the left of w, i.e., u =

u(0).w ∈ Λ. Notice that only when Λ = Σ the union of these symbols is the whole

alphabet J .

Let y ∈ Su(0)(KΛ(u)). There exists a bounded sequence {xk} ∈ X, and a sequence

{sk} ∈ Λ, together with a sequence nk ↗ ∞, such that y = Su(0)(limk→∞ Sunk (xk)),

where sk = unk .σ
nk(sk), and σnk(sk)→ u. Since, σnk+1(sk)→ σ(u) = w and

y = Su(0)( lim
k→∞

Sunk (xk)) = lim
k→∞

Su(0)Sunk (xk)

we get that y ∈ KΛ(w). Therefore, we have that
⋃
u:σ(u)=w Su(0)(KΛ(u)) ⊂ KΛ(w).

Since KΛ(w) is compact, we have
⋃
u:σ(u)=w Su(0)(KΛ(u)) ⊂ KΛ(w). Now, pick y ∈

KΛ(w). There exists a bounded sequence {xk}, and a sequence {sk}, such that

y = limk→∞ Ssk[nk](xk), and σnk(sk) → w. The last symbols of the words sk[nk], the

symbols jk = sk(nk− 1), have a subsequence jkl , which lies in some Jp and converges

to some element of Jp, say j0. Then, for every ε > 0, there exist l (large) such that

if x = limSsk[nk−1](xk) and z = Sj0(x), we have
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d(z, y) ≤ d(Sj0(x), Sj0(Sskl [nkl−1](xkl)))+

d(Sj0(Sskl [nkl−1](xkl)), Sjkl (Sskl [nkl−1](xkl))) + d(Sjkl (Sskl [nkl−1](xkl)), y)) < ε
(5.2)

It is easy to see that we can pick l large enough to ensure that all three distances

above are less then ε
3
. Making the second distance less then ε

3
is possible because

of the assumption 3. Note that x ∈ KΛ(j0.w) and z ∈ Sj0(KΛ(j0.w)) by con-

struction. Since for every ε > 0, d(y,
⋃
u:σ(u)=w Su(0)(KΛ(u))) < ε, it follows that

y ∈
⋃
u:σ(u)=w Su(0)(KΛ(u)). The proof of (5.1) is complete.

In order to show that
⋃
w∈ΛKΛ(w) is a uniform pullback attractor we need to

show that

lim
n→∞

sup
w∈Λ

~dist(
⋃

u:σn(u)=w

φ(n,B, u), KΛ(w)) = 0.

for any B ⊂ B̄(X). Let (B×{u}) ⊂ X × Λ, and consider the iterations Sn(B×{u}).

For every n, we have

Sn(B × {u}) = (Su[n](B), σn(u)) = (φ(n,B, u), w).

Because MΛ attracts all bounded sets, ~dist(Sn(B × {u}),MΛ) → 0. On the other

hand, since σn(u) = w for all n, we obtain

~dist(φ(n,B, u), KΛ(w))→ 0.

Similarly, we have
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Sn(B × w) = (Sw[n](B), σn(w)) = (φ(n,B,w), σn(w))

and ~dist(Sn(B × w),MΛ)→ 0. Therefore,

lim
n→∞

sup
w∈Λ

~dist(φ(n,B,w), KΛ(σn(w))) = 0.

This shows that
⋃
w∈ΛKΛ(w) is also a uniform forward attractor. The theorem is

proved. �



Chapter 6

NUMERICS IN DYNAMICS
WITH CHOICE

Finding attractors numerically is a difficult task. We will consider only the case when

X is a bounded region in R2. The assumption of boundedness is natural because the

attractor lies inside the bounded absorbing set. Moreover, we will assume that X is

a rectangle and the maps Sj map X into itself. In the case of a hyperbolic IFS, to

find its attractor, it is sufficient to look at tails of the trajectory of any one point.

This makes it easy to plot the fractals. In dynamics with choice when the maps Sj

are not contractions, this approach does not work, even for IFSs. In what follows, we

describe a special algorithm designed to plot the attractor in dynamics with choice.

The idea is to divide X into small squares and replace the action of the maps Sj on

X by their action on the squares. There are many ways of defining this new discrete

action. We choose the following. Assign a number to each square for example as

shown on figure 6.1. Denote by �a the square number a and denote by ca its center.

Let the number of squares be M . For a map S : X → X, we define its discrete

version S̃ as a map from the ordered set [1, 2, ...,M ] into itself as follows: S̃(a) = b if

S(ca) ∈ �b.
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Figure 6.1: Numbering X

Suppose we have N maps S0, ..., SN−1. We discretize each map and define an

M×M matrix A as follows: A(i, j) = 1 if S̃k(i) = j for at least one k ∈ {0, 1, ..., N−1},

and A(i, j) = 0 otherwise. The matrix A contains all the information about the

discretized IFS. To find the attractor of this IFS, consider the iterations of An acting

on the column M-vector v = [1, 1, ..., 1]T . After a finite number of iterations the zero

components of the vector Anv will stabilize. The nonzero components will give the

location of the squares that make up the attractor.

�a S̃0(�a) S̃1(�a)

1 1 1
2 3 6
3 7 7
4 8 8
5 6 5
6 7 5
7 7 6
8 7 7
9 10 5
10 6 9
11 7 10
12 11 8

Table 6.1: Action of the operators S0 and S1

For example, let X and its division be as in figure 6.1. Let S0 and S1 be two

operators acting from X to itself. Denote by S̃0 and S̃1 the discretizations of S0
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0
0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

Table 6.2: Matrix A

and S1, and let their action be as in table 6.1. Then, the matrix A is given in table

6.2. After only three iterations, the zero components of the vector Anv stabilize and

A3v = [1, 0, 0, 0, 20, 22, 22, 0, 2, 2, 0, 0]T . The attractor in dynamics with choice for

this system is given in figure 6.2.

This is just one step of the procedure. In order to get a better approximation

to the real attractor we have to refine the partition and repeat the procedure. We

stop when we see that the pictures of the attractor stop changing. The final size of

the squares in the partition of X is dictated by the convergence considerations. In

applications, the numbers of squares was of the order 106. In the case when we have

finitely many maps, preferably not too many maps, the matrix A is sparse, and in

Figure 6.2: Attractor in dynamics with Choice
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most cases, we are able to work with it. However, when there are large number of

maps, possibly infinite, the number of nonzero components in the matrix A increases

significantly. The memory required for the matrix is huge, and most likely will cause

”out of the memory” error.

Here, I am not giving justification why the picture is close to the real attractor

because this is beyond the scope of this work and I plan to address it later.

6.1 Example

The simplest mathematical model of malaria transmission goes back to Ross and

Macdonald. The state of the human-mosquito interaction system is described by the

portion of infected humans, x, and the portion of infected mosquitoes, y. The change

in time is described by the following simple system of ordinary differential equations:

ẋ = a y (1− x)− r x

ẏ = b x (1− y)−my
(6.1)

The nature of the positive coefficients a, b, r, and m is discussed in [36]. In particular,

the coefficients a and b are proportional to the biting rate and the transmission

efficiencies (infected human to mosquito and infected mosquito to human), r is the

recovery rate (in humans), and 1/m is the average mosquito life-span. In practice, it

is hard to measure these parameters. Also, there are many factors that affect their

values, see [36], page 8, and the values may change in time.

The state space for the model (6.1) is the closed square X = {(x, y) : 0 ≤

x ≤ 1, 0 ≤ y ≤ 1}. For initial conditions in X the solution stays in X for all

t. If the quantity R0 = ab
rm

is < 1, all trajectories starting in X converge to the
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origin, and the global compact attractor consists of a single point, P1 = (0, 0). If

R0 > 1, the equilibrium P1 becomes unstable and there emerges the second fixed

point, P2 = (x∗, y∗), inside the square X,

x∗ =
ab− rm
b (a+ r)

, y∗ =
ab− rm
a (b+m)

. (6.2)

This second equilibrium is stable, and the global compact attractor of the system con-

sists of the two equilibria, P1 and P2, and of the heteroclinic trajectory connecting

them (and staying entirely inside X). The number R0, known as the basic repro-

ductive number, detects the emergence of epidemics: when R0 > 1 there is a stable

portion of infected population.

We consider a discrete version of equations (6.1):

x(t+ ∆t) = x(t) + ∆t (a y(t) (1− x(t))− r x(t))

y(t+ ∆t) = y(t) + ∆t (b x(t) (1− y(t))−my(t)) .
(6.3)

The time step map (x(t), y(t)) 7→ (x(t+ ∆t), y(t+ ∆t)) maps X into itself provided

∆t < min { 1

a+ r
,

1

b+m
} . (6.4)

The fixed points for (6.3) are the same as for (6.1). As in the continuous case, if

ab > rm and the time step satisfies (6.4), the global attractor for (6.3) consists of the

two fixed points, P1 and P2, and the heteroclinic trajectory connecting them.

We choose two sets of parameters, pset0 = {a = 4, b = 6, r = 1, m = 2} and

pset1 = {a = 2, b = 10, r = 3, m = 2}, and denote the corresponding time step

maps by S0 and S1. These sets of parameters are not related to any real-life situation



65

Figure 6.3: Attractors for (X, d, S0) (right) and (X, d, S1) (left).

but rather chosen to better visualize the attractors. The fixed point P2 for pset0 is

(11/15, 11/16) and for pset1 it is (7/25, 7/12). Figures 6.3 through 6.11 show the

results of numerical computation. The results depend on the size of the time step ∆t.

On figures 6.3, 6.4, and 6.5, the left line (the heteroclinic trajectory) is the (global

compact) attractor for the discrete system (X,S1), and the right line is the attractor

of (X,S0). On figures 6.4 and 6.5, the two lines between the attractors of the discrete

systems (X,S0) and (X,S1) form the individual attractor Aw corresponding to the

periodic string w = 1010... (on figure 6.5 the two lines are very close). For our example

of dynamics with choice, Σ is the space of one-sided infinite strings of symbols 0 and
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1. According to Theorem 17, the global compact attractor for (X,Σ) has one slice,

i.e., M = K × Σ. The set K for ∆t = .05 and for ∆t = .005 are depicted on figures

6.6 and 6.7, respectively.

One may wonder if there is a Gestalt effect in this example. The answer is no.

The reason for this is that the maps S0 and S1 are invertible on X and therefore on

the attractor slice K (see Lemma 24 (iii)). In fact, for any set of positive parameters

psetj = {a, b, r, m} satisfying the inequalities ab > rm and (6.4), the correspond-

ing operator Sj is invertible on X. To prove this, we need to show that the map

(x(t), y(t))→ (x(t+∆t), y(t+∆t)) defined by the formulas (6.3) is injective. Assume

it is not and (x, y) 6= (x1, y1) are two points in X such that

x1 + ∆t (a y1 (1− x1)− r x1) = x+ ∆t (a y (1− x)− r x)

y1 + ∆t (b x1 (1− y1)−my1) = y + ∆t (b x (1− y)−my) .
(6.5)

This can be rewritten in a slightly different form:

(1−∆t r −∆t a) (x1 − x) + ∆t a (1− y1) (x1 − x) + ∆t a (1− x)(y1 − y) = 0 (6.6)

(1−∆tm−∆t b) (y1 − y) + ∆t b (1− x) (y1 − y) + ∆t b (x1 − x)(1− y1) = 0. (6.7)

We multiply the first equation by b, the second equation by a and subtract them to

get

b (1−∆t r −∆t a) (x1 − x) = a (1−∆tm−∆t b) (y1 − y).
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This implies that x1−x and y1− y have the same sign. Hence, all terms in equations

(6.6) and (6.7) are either positive or negative simultaneously. A contradiction. �

Figure 6.4: Three individual attractors Aw for ∆t = 0.05: left: w = 111...; middle
two: w = 1010...; right: w = 000....

We computed the attractor slice K by implementing the method explained in the

beginning of this chapter in MATLAB. The invariant region for the system is the unit

square, which made computations easier. The first step was to divide the unit square

into smaller squares. When ∆t = .05 figure (6.6), we subdivided the unit square into

103 × 103 squares. We labeled each square by a number between 1 and 106 (in the

order described in the previous section), and computed the discretized maps S̃j and

the corresponding 106×106 matrix A. After sufficiently many iterations of the matrix
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Figure 6.5: Three individual attractors Aw for ∆t = 0.005: left: w = 111...; middle
two (very close together): w = 1010...; right: w = 000....
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A, we computed the vector Anv (v as in previous section) whose nonzero components

reveled the locations of the points of the attractor K.

Figure 6.6: The attractor slice K; ∆t = 0.05.

For the case when ∆t = .005, we subdivided the unit square into 2 ∗ 103 × 2 ∗ 103

smaller squares. The matrix needed in this case was of the size 4∗106×4∗106. Even

with such fine subdivision of the unit square, we were not able to get an accurate

picture of the attractor K (as it was shown on the figure 6.7). In order to obtain the

attractor in figure 6.7, we had to divide the unite square into several regions (squares)

first, and then subdivide each of the regions into a large number of small squares.

We computed the pieces of the attractor for each separate region in the same way as
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Figure 6.7: The attractor slice K; ∆t = 0.005.

explained above.

In addition, we tried to compute the attractor (for this model) when we had in-

finitely many operators allowing the parameters to take on the values of the intervals.

If we allow all four parameters to be intervals (e.g., each operator corresponds to a

point between pset0 and pset1 - coordinate-wise), then, regardless of the subdivision,

the matrix had a lot of nonzero components which made iterations of A impossible

(using MATLAB). However, we were able to compute the attractor if three of the

parameters were fixed and only one of them was an interval. We fixed the values for

the parameters b = 6, r = 3, m = 2, and we let a = [2, 7]. In this case, Σ is the space

of one-sided infinite sequences whose symbols are in J = [0, 1]. The correspondence
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Figure 6.8: The attractor slice K. Infinitely many operators.

between an operator and a point in J can be seen as Sj ↔ {7 ∗ j + 2 ∗ (1− j)}. The

attractor slice K is given in figure 6.8. Despite the fact that we had infinitely many

operators, we were able to compute the attractor of the system because the system

is monotone and linear with respect to the chosen parameter a.

We have also looked at the dynamical systems corresponding to convex combina-

tions of the parameter sets pset0 and pset1 and plotted their global attractors. The

result is different from K, see figure 6.11 where the “convex combination” is super-

imposed onto the set K. We distinguish three parts of the boundary of the “convex

combination.” The left and right sides are the two attractors of the discrete dynamical
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Figure 6.9: “Convex combination” superimposed over K; ∆t = 0.005.

systems with parameter sets pset0 and pset1. The third upper part, refers to the fixed

points of the systems corresponding to the convex combination of the parameter sets

pset0 and pset1, and is given by the parametric equation

x∗ =
−4j2 + 8j + 7

5 (5− 2j)
, y∗ =

−4j2 + 8j + 7

4(3− j)(j + 1)
,

for j ∈ J = [0, 1].

For the attractor slice K, we cannot represent “the top of the boundary” by

an equation. We only notice that when ∆t → 0, “the top of the boundary” of K

becomes smooth. Note that the limit set is not an attractor of any system (6.3) with a
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a

 0

b1  
0  

Figure 6.10: The golden mean shift.

Figure 6.11: Golden mean, full; ∆t = 0.05.



74

Figure 6.12: The red slice; ∆t = 0.05.

fixed, averaged set of parameters a, b, r and m. It would be interesting to understand

whether the limit set can be obtained as a union of the attractors of the systems

(X,St), where the operator St corresponds to a certain parameter set psett for some

curve connecting pset0 with pset1 in the space of parameters.

Next, we consider restricted dynamics associated with the golden mean subshift

Λ (made of one-sided strings of 0s and 1s such that each 1 is necessarily followed by

0). The graph representing the golden mean shift is shown on figure 6.10.

Our analysis in chapter 4 shows that the global attractor of the restricted dynam-

ics, (X,Λ) may have at most two different slices: one corresponding to sequences of
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Figure 6.13: The blue slice; ∆t = 0.05.

words ending in 1 (the red slice), and the other one corresponding to sequences of

words ending in 0 (the blue slice). We computed the red slice by the same method as

we computed the attractor slice K (explained above), except that the operators we

took for the dynamics with choice were S0 and the composition operator S0 ◦S1. The

operators for the blue slice were S0 and S1 ◦ S0. In both cases, time step is ∆t = .05,

and the unit square was divided into 103 × 103 squares. The computations of the

slices shows that the attractor of the restricted dynamics (X,Λ) indeed has two slices.

The slices are shown on figures 6.12 and 6.13. As point sets on the plane, the slices

overlap. Their union is plotted on figure 6.11.



Appendix I

0001 %dynamics with choice for ross mcdonald malaria equation

0002 %t denotes discrete step, p is the length of a square in a partition of X

0003 %example: attractorDWC(0.05,.001)

0004 function attractorDWC(t,p)

0005 n=1/p+1; %the number of squares in one row

0006 z=n*n; %total number of squares

0007 %two sets of parameters (pset 0 and pset 1)

0008 a=[4 2];

0009 b=[6 10];

0010 r=[1 3];

0011 m=[2 2];

0012 %preallocation

0013 s=ones(1,2*z);

0014 ai=zeros(2*n,n);

0015 %partition of the unit square;

0016 %X and Y contain the centers of 1001 x 1001 squares

0017 [X,Y]=meshgrid(0:p:1,0:p:1);

0018 %calculating one-step time iteration by both maps

0019 for k=1:2

0020 nx = X + t*(a(k)*Y.*(1-X)-r(k)*X);

0021 ny = Y + t*(b(k)*X.*(1-Y)-m(k)*Y);

0022 re = round(nx*(n-1))+1;

0023 q = round(ny*(n-1));

76
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0024 ai((k-1)*n+1:k*n,1:n)=n*q+re;

0025 end

0026 %i is a row vector containing all one-step time iterations

0027 i=(ai’);

0028 i=i(:);

0029 j=repmat(1:z,1,2);

0030 %the matrix A contains all one-step time iterations, i.e.,

0031 %A(i(k),j(k))=s(k)=1 for all k=1..z

0032 A=sparse(i,j,s,z,z);

0033 clear i j s ai q re

0034 %calculating the vector A^n * B

0035 B=ones(z,1);

0036 for k=1:2000

0037 B1=A*B;

0038 S=find(B);

0039 S1=find(B1);

0040 if size(S)==size(S1)

0041 if S==S1

0042 break;

0043 end

0044 else

0045 B=B1;

0046 end

0047 end

0048 figure(3),set(gcf,’doublebuffer’,’on’),hold on
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0049 axis([0 1 0 1])

0050 o=size(S);

0051 Z=zeros(2,o(1));

0052 %retrieving the centers of the squares that belong to the attractor

0053 for k=1:o(1)

0054 w=S(k)/n;

0055 re=floor(w);

0056 if re~=w

0057 re=re+1;

0058 end

0059 q=mod(S(k),n);

0060 if q==0

0061 q=n;

0062 end

0063 x(1)=X(re,q);

0064 x(2)=Y(re,q);

0065 Z(:,k)=x;

0066 end

0067 %plotting the attractor

0068 figure(3),plot(Z(1,:),Z(2,:),’b.’,’markersize’,1)

0069 hold off
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