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Multiple myeloma is a malignant bone marrow plasma cell tumor which is 

responsible for approximately 12,000 deaths per year in the United States and two 

percent of all cancer deaths. It is recognized clinically by the presence of more than ten 

percent bone marrow plasma cells, the detection of a monoclonal protein (M-protein), 

anemia, hypercalcemia, renal insufficiency, and lytic bone lesions. The disease is usually 

preceded by a premalignant tumor called monoclonal gammopathy of undetermined 

significance (MGUS), which is present in one percent of adults over the age of fifty, three 

percent over the age of seventy and ten percent of those in the tenth decade. MGUS is 

also recognized by the detection of M-protein, but with less than ten percent bone 

marrow plasma cells and without the other features exhibited by myeloma. The majority 

of MGUS patients remain stable for long periods without ever developing myeloma. 

Only a small percentage of patients with MGUS eventually develop multiple myeloma. 

However, the reason for this is not yet known. Once the myeloma stage is reached, a 

sequence of well-understood mutational evets eventually lead to the escape of the tumor 

from the control of the immune system. 

We propose a mathematical model of tumor-immune system interactions at the onset 

of the disease in an effort to better understand the early events that take place and their 



influence on the outcome of the disease. The model is calibrated with parameter values 

obtained from available data and we study the resulting dynamics. Next, we study how 

the behavior of the system is affected as parameters are varied. Finally, we interpret the 

results and draw some conclusions. 

 

 
 



 iii 

ACKNOWLEDGMENTS 
 

I would like to express my deepest gratitude to my advisor, Dr. Chris Cosner, for 

giving me the opportunity to pursue my interest in cancer modeling and for his constant 

guidance throughout the process. I would also like to thank Dr. Kocak and Dr. Ruan for 

their many helpful suggestions and Dr. Boise for his help with the medical literature. 

Also, I would like to thank my wife Esther for all her encouragement and patience and 

my parents for teaching me the value of an education. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

 
TABLE OF CONTENTS 

 
 

Page 
 

LIST OF FIGURES .....................................................................................................   v 
 
LIST OF TABLES .......................................................................................................  vi 
 
Chapter 
 
 1 INTRODUCTION   .........................................................................................   1 
  1.1  General Overview of the Immune System ................................................    1 
  1.2  The Immune System, Cancer and Immunoediting ...................................       3 
  1.3  Monoclonal Gammopathy of Undetermined Significance and Multiple   
                   Myeloma ...................................................................................................       4 
  
 2 CONSTRUCTION OF THE MODEL  ...........................................................     10 
  2.1  The Model Equations ................................................................................     12 
  2.2  Estimation of Parameters ..........................................................................     20 
            2.3  Nondimensionalization of the System ......................................................     44 
 
 3 ANALYSIS OF THE MODEL ........................................................................     62 
  3.1  Initial Conditions ......................................................................................     62 
  3.2  Preliminary Numerical Results .................................................................     66 
  3.3  Reduction of the Original System .............................................................     70 
            3.4  Nondimensionalization of the Reduced System .......................................     80 
  3.5  Equilibria...................................................................................................     91 
  3.6  Stability Analysis ......................................................................................   101 
            3.7  The Effects of Varying Parameters ...........................................................   109 
            3.8  Bifurcation Analysis .................................................................................   123 
  3.9  Conclusions and Medical Implications .....................................................   158 
  3.10 Future Work .............................................................................................   164 
 
Appendix 
 
      A   ROUTH-HURWITZ CRITERION ..................................................................   166 
  
 B HOPF BIFURCATION THEOREM ...............................................................   170 
   
BIBLIOGRAPHY ........................................................................................................   173 
 
 
 
 



 v 

 
LIST OF FIGURES 

 
 

Page 
 
1.1  Interactions between the immune system and MGUS ..........................................       8 
1.2  Mutational events that take place during disease progression ..............................       9 
3.1  Plot of T versus t for various values of gT using system (2.1) .............................     68 
3.2  Plots of T, N, K, E, P, G, I and F versus t using system (2.1) ..............................     70 
3.3  Plots of T*, K* and E* versus t* using system (3.13) ..........................................     91 
3.4  Plots of T, K and E null-surfaces of system (3.13) ...............................................   101 
3.5  Plots of resulting curves from intersections of pairs of null-surfaces ...................   102 
3.6  Plots of several trajectories of system (3.13) ........................................................   109 
3.7  Plots of T versus t resulting from setting P≡0 and G≡0 in system (2.1) ...............   111 
3.8  Plots of T* versus t* resulting from varying rK in system (3.13) .........................   113 
3.9  Plots of T* versus t* resulting from varying dT in system (3.13) ........................   115 
3.10 Plots of T* versus t* resulting from varying kT and KT in system (3.13) ...........   117 
3.11 Plots of T* versus t* resulting from varying kKE in system (3.13) ......................   119 
3.12 Plots of T* versus t* resulting from varying lI in system (3.13) .........................   120 
3.13 Plots of trajectories of system (3.13) as gT is decreased......................................   133 
3.14 Stable focus obtained by setting dT=2 and then dT=4 in system (3.13) ..............   141 
3.15 Stable focus obtained by setting kT=.1 in system (3.13) and a plot of E* 
        versus t*…………………..…………… .............................................................   144 
3.16 Stable focus obtained by setting kKE=1x108 in system (3.13) and a plot of E* 
        versus t*…………………..…………… .............................................................   145 
3.17 Stable focus obtained by setting lI=.5 and then lI=.3 in system (3.13)................   147 
3.18 Plot of the stable limit cycle resulting from the Hopf bifurcation .......................   157 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

LIST OF TABLES 
 
 

Page 
 
2.1  Variables… ...........................................................................................................     18 
2.2  Parameters .............................................................................................................     19 
2.3  Initial Conditions ..................................................................................................     20 
2.4  Age-Dependent Cell Densities ..............................................................................     28 
2.5  Values of ti and N(ti) ............................................................................................     29 
2.6  Nondimensional Variables ....................................................................................     60 
3.1  New Initial Conditions ..........................................................................................     64 
3.2  Nondimensional Version of Initial Conditions .....................................................     65 
3.3  Substitutions ..........................................................................................................     89 
 



Chapter 1

Introduction

1.1 General Overview of the Immune System

The immune system is the body’s natural defense against foreign substances or al-

tered self substances. It is a two-tier line of defense consisting of innate immunity and

adaptive immunity. Innate immunity refers to the non-specific first line of defense

against the foreign substance. It consists of cells which can attack a wide variety of

invading substances, even if the host has never been exposed to them before. Adaptive

immunity refers to a specific immune response mounted against a previously encoun-

tered foreign substance called an antigen. With each successive encounter of the same

antigen, the adaptive immune response improves. This behavior is called the immune

memory.

The cells of the immune system arise from pluripotent hematopoeietic (generate

cellular elements of blood) stem cells residing in the bone marrow. These stem cells

produce either common lymphoid progenitor cells, which give rise to T-lymphocytes

1
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(T-cells) and B-lymphocytes (B-cells) involved in adaptive immunity, or common

myeloid progenitor cells which give rise to other types of cells including dendritic

cells and macrophages involved in innate immunity.

Innate immunity begins with antigen-presenting cells (APC), such as macrophages

(MAC) and dendritic cells (DC), and natural killer (NK) cells, which are circulating

throughout the body looking for foreign substances. MAC are primarily phagocytic

cells that engulf and destroy pathogens. They also secrete cytokines (proteins that af-

fect the behavior of other cells), and induce inflamatory response and fever. NK cells,

although not lymphocytes, are large granular lymphocyte-like cells that can detect

and attack certain infected cells. Primarily, they attack tumor cells and help protect

against a variety of viruses. They also secrete lymphokines (cytokines secreted by T-

cells), such as interferon-gamma (IFN − γ). These chemical signals stimulate other

components of the immune system to enter into action. DC are phagocytic when they

are immature and take up pathogens. After maturing, they act as APC to T-cells,

initiating adaptive immune responses. In order for this to occur, ingested antigens

are fragmented into small particles called peptides. Part of these peptides bind to

molecules called the major histocompatibility complex (MHC) which are in turn

presented in the APC cell surface as an MHC/peptide complex. The T-cells carry

surface receptors that allow them to recognize different MHC/peptide complexes.

Once the T-cells are activated by the MHC/peptide recognition, they divide and

secrete lymphokines. T-cells mature in the thymus. The two subgroups of T-cells are

helper T-cells (CD4+T ) that help B-cells produce antibodies in response to antigens

and induce the development of CD8+T cells, which later become cytotoxic T-cells

(CTL). In contrast, the B-cells have receptors with the ability to recognize parts of
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the antigens free in solution without the assistance of MHC molecules. These surface

receptors on these B-cells respond to a specific antigen. When a signal is received by

these B-cell receptors, the B-cells are activated and will proliferate and differentiate

into plasma cells that secrete antibody molecules in high volumes. Plasma cells are

terminally differentiated B-cells that provide protective immunity through the con-

tinuous production of antibodies. These released antibodies (which are soluble forms

of the B-cell receptors) are used to neutralize the invading pathogen, leading to their

destruction. There is a population of short-lived plasma cells which resides primarily

in the nonlymphoid area of the spleen or lymph nodes. However, many migrate to

the bone marrow where the majority enter a long-lived population of plasma cells.

Some of the activated B- and T-cells will differentiate into memory cells. These will

remain circulating through the organism for long periods of time, thus guaranteeing

future protection against the same (or a similar) antigen that elicited the immune

response. For a more detailed explanation, refer to [48].

1.2 The Immune System, Cancer and Immunoedit-

ing

Normally, during the first stages of a tumor, the immune system responds as follows.

First, the antigenicity (how different it is from self) of tumor cells causes the recruit-

ment of NK cells, NKT cells, and DC of the innate immune system to the tumor

site. The NK cells attack the tumor and both NK and NKT cells start producing

IFN − γ, which induces the production of chemokines. These are chemoattractant

proteins that stimulate the migration and activation of cells. Chemokines recruit
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more NK and DC, MAC, and other immune effector cells to the tumor site and

activates MAC and NK cells to attack the tumor. Dead tumor cell debris is in-

gested by DC and carried to the lymph nodes where tumor-specific CD4+T cells

develop and induce the development of tumor-specific CD8+T cells, which later be-

come CTL. These cells of the adaptive immune system migrate to the tumor site

where they produce IFN − γ and attack the tumor. This first stage was originally

referred to as Immunosurveillance. Now, it is seen as part of a larger picture, Immu-

noediting, where the selective pressure of the immune system on the mutating cancer

cells is considered. In the Immunoediting hypothesis, this first stage is referred to

as Elimination, since the cancer cells have been recognized and are being destroyed

by the immune system. The cancer cells continue to mutate and the immune system

attempts to destroy them once they are recognized. The second stage is Equilibrium,

where an equilibrium is reached in the number of cancer cells. Eventually, an escape

mutant is selected for, leading to the escape of the cancer cells from immune control.

This final stage is therefore referred to as Escape. For a more detailed explanation,

refer to [22, 23, 91].

1.3 Monoclonal Gammopathy of Undetermined Sig-

nificance and Multiple Myeoloma

Multiple myeloma (MM) is a malignant plasma cell tumor recognized clinically by the

proliferation of malignant plasma cells in the bone marrow, the detection of a serum

or urine monoclonal (produced by a single clone) protein, anemia, hypercalcemia,

renal insufficiency, and lytic bone lesions (see [67]). It accounts for approximately
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12,000 deaths per year in the United States alone and approximately 2% of all cancer

deaths (see [62]). The disease is usually preceded by a premalignant tumor called

monoclonal gammopathy of undetermined significance (MGUS), which is present in

1% of adults over the age of 50, 3% over the age of 70, and 10% in the tenth decade

(see [67, 62]). MGUS is characterized by a monoclonal protein (M-protein) in the

serum or urine without other clinical features of MM (see [67]).

Genetically, there is not much difference between MGUS cells and MM cells . The

majority of MGUS patients remain stable for long periods without ever developing

MM (see [19]). It is believed that the progression of the disease from MGUS to

MM, which constitutes the first stage of the disease, is mostly due to a failure of

the immune system rather than the usual immunoediting. Refer to Figure 1.1 for

a graphic representation of the events that occur at this stage. However, once the

MM stage is reached, a sequence of mutational events ultimately lead to the escape

of the cancer from immune control. This constitutes the second stage of the disease.

Figure 1.2 depicts disease progression from normal plasma cell to MM escape mutant.

MGUS cells undergo chromosomal instability (CIN) mutations (IgH transloca-

tions). This process is ongoing throughout the disease. Since normal plasma cells are

genetically unstable during the production of antibodies, they are therefore somewhat

more tolerant to DNA damage than other cells. Primary Ig translocations (cyclinD1

or D3, FGFR3 and MMSET , cMAF ), which are oncogene mutations requiring one

mutational hit, provide immortalizing events in 50% of the tumors. CyclinD1 or

D3 mutations allow cells to grow in response to interleukin − 6 (IL − 6) by mak-

ing them more susceptible to proliferative stimuli. MGUS cells grow in response to



6

IL−6, while normal plasma cells produce antibodies but do not proliferate (see [67]).

IL− 6 is produced by bone marrow stromal cells and its production rate is increased

by the presence of tumor cells (see [58, 59, 77]). Also, MGUS cells are continually

producing M-protein (monoclonal antibody). T-cells tolerate M-protein produced by

the MGUS cells, since it is normally produced by plasma cells. This monoclonal im-

munoglobulin (Ig) that can serve as a patient-specific tumor antigen, secreted largely

as a soluble antigen, can lead to deletion of Ig-reactive CD4+T cells by the same

mechanism which is responsible for the prevention of autoimmunity (see [19]). This

might explain the reduction in the number of CD4+T cells found in patients with

MM and the reduction in the number of CD4+T and CD8+T cells in patients with

either MGUS or MM (although in later stages of MM, CD4+T cell numbers con-

tinue to decline and CD8+T cell numbers increase slightly) (see [13]). M-protein is

a marker which is used during diagnosis. The increase in the amount of M-protein

as the disease progresses is caused by an increase in the number of MGUS and/or

MM cells. The bone marrows of patients with MGUS contain less than 10% plasma

cells while those of patients with MM contain greater than 10% plasma cells (see

[67]). When glycolipid is normally presented by DC, it stimulates the production of

IFN − γ and interleukin − 4 (IL − 4) and regulates autoimmunity and resistance

to infections and tumors. However, when glycolipid is presented by non-dendritic

cells, such as MGUS cells, it causes the loss of ligand-dependent IFN − γ produc-

tion by NKT cells. However, this NKT cell disfunction is thought to be medically

reversible by stimulating the cells with α − galactosylcerabide (α −GalCer) pulsed

DC (see [18]). IFN − γ production also contributes to growth control of myeloma

by initially inducing the production of chemokines that recruit more immune cells to

the tumor site, and later by mediating angiostasis (the body’s normal regulation over
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the creation of new blood vessels), controlling tumor growth via decreased IL− 6 or

STAT − 3-mediated transcription, and inhibiting osteoclastogenesis (bone destruc-

tion). So its decrease also has an effect on later stages of cancer progression. For

a graphic representation of the cell processes described above, refer to Figure 1.1.

Karyotypic instability is maintained througout the progression of the disease. Acti-

vating oncogene mutations (NRAS, KRAS, FGFR3), requiring one mutational hit,

occur mostly in MM. The Ras mutation causes abnormal signaling inside the MM

cell, taking the place of IL−6, and results in enhancing the growth of the cancer cells

and decreasing the amount of IL − 6 that is required for their survival and growth.

However, this does not necessarily result in IL− 6 independence. Angiogenesis (the

process involving the formation of new blood vessels) begins at this stage in order to

provide nutrients to the cancer cells. Secondary Ig translocations occur. These in-

clude two TSP (tumor-suppressor gene) mutations, deletion of p−53 and inactivation

of Rb, each requiring two mutational hits. These accomplish two things. First, they

prevent normal TSP function, which would cause the destruction of the cell if DNA

mutations are occurring. Second, they knock out the ability of the TSP to inhibit

IL− 6 expression, thus leading to the autocrine (affects the function of the same cell

type) production of IL−6, in which the cells stimulate their own growth. For a more

detailed explanation on the sequence of mutational events and their affect, refer to

[40, 62].
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Figure 1.1: This flowchart shows the interactions between stromal cells (S), tu-
mor cells (T ), macrophages (MAC), natural killer cells (NK), natural killer T-
cells (NKT ), cytotoxic T-cells (CTL), helper T-cells (CD4+T ), interferon-gamma
(IFN −γ), glycolipids, and M-protein, during the MGUS phase of the disease, which
eventually lead to MM.
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Figure 1.2: This flowchart shows the sequence of mutational events that are necessary
for the disease to progress from normal to MGUS, from MGUS to MM, and finally
to escape from the control of the immune system.



Chapter 2

Construction of the Model

The model (see Figure 1.1) deals with the transition from normal to MGUS and

possibly MM. This is thought to be mostly due to a failure of the immune system.

The interaction between the cancer cells, the normal plasma cells, the stromal cells,

and the immune system is captured by a system of differential equations. As seen in

Figure 1.1, certain cell populations were grouped together either as cells of the innate

immune system or cells of the adaptive immune system in order to reduce the number

of equations in the model. However, not all cells of the same group have the same

function. For instance, some cells in one group produce IFN − γ while other cells

in the same group do not. Also, the functions of cells in different groups sometimes

overlap. For example, certain cells in both groups produce IFN − γ. This issue will

be addressed at a later time. Also, grouping cells into the two groups mentioned

above results in a built-in time delay in the model. The model attempts to capture

the dynamics of interacting processes in an effort to understand how they influence

the outcome of the disease.

10
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This is a first attempt at a crude model using the data that is available at the

moment. As more is known about the disease, the model can be refined.

The motivation for such a model is that it might lead to a better understanding

of disease progression. This, in turn, can lead to better treatment protocols. As

mentioned in Section 1.3, the majority of MGUS patients remain stable for long pe-

riods without ever developing MM. Only a small percentage of patients with MGUS

develops MM (see [67]). If the reason for this is known, it can lead to more effective

treatments that, although might not lead to a cure, might keep an MGUS patient

from eventually developing MM, or push a patient with MM back to the MGUS stage.

We would like the model to answer several questions. For one thing, how much of

an influence does the production of M-protein and glycolipids by the cancer cells have

on the development of the disease? This is clinically significant, since the disfunction

in the ability of NKT cells to produce IFN − γ (which attracts immune cells to

the tumor site) is medically reversible, as mentioned earlier. What else, if anything,

influences the progression or outcome of the disease? Since this disease usually occurs

late in life, prolonging the increase in tumor cells to the levels seen in MGUS or MM

long enough might be as good as a cure.

Figure 1.2 shows the the sequence of mutational events that are necessary for the

progression from MGUS to MM and which ultimately results in the escape of the

cancer from the control of the immune system. The process is fairly well understood

and to capture this behavior, stochastic models such as the ones used in [46] and

[47], which use a branching process, or in [73], can be utilized.
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The model that we are proposing, however, is not concerned with the later stages

of the disease. Instead, we are attempting to model the early occurrences that take

place from the start, beginning with one MGUS cell.

2.1 The Model Equations

The variables listed below represent densities as either cells per milliliter (in the first

four cases) or picograms per milliliter (in the last four cases) as a function of time t

in days.

Variables:

T (t) = MGUS tumor cells

N(t) = Normal bone marrow plasma cells

K(t) = Cells of the innate immune system

E(t) = Cells of the adaptive immune system

P (t) = M-protein produced by tumor cells

G(t) = glycolipids produced by tumor cells

I(t) = IL− 6 produced by stromal cells

F (t) = IFN − γ produced by immune system cells

The behavior of the biological system is described by the following system of differ-

ential equations:
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

dT

dt
=

kT I

eT + I

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

dN

dt
= lN

(
1− N

KN

− T

KT

)

dK

dt
= rK

(
1− K

KK

)
K +

kKEF

eKE + F

dE

dt
=

kKEF

(eKE + F )(1 + βP )
− dEE

dP

dt
= lPT − dPP

dG

dt
= lGT − dGG

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αG
K + E

)
T − dFF

(2.1)

In the first and third equations, logistic growth is assumed. In general, if A is

the population density, then assuming that the per capita birth rate decreases with

density and the per capita death rate increases with density, we obtain the following

differential equation for the population growth rate:
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dA

dt
= [(b− b1A)− (d+ d1A)]A , for some parameters b, b1, d, d1 > 0

= (b− d)

[
1− A

b−d
b1+d1

]
A

= r

[
1− A

K

]
A , where r = b− d is the net proliferation rate and

K = b−d
b1+d1

= r
b1+d1

is the carrying capacity

Therefore r and K are directly proportional and are related as explained above.

This must be kept in mind if either one is varied in the model.

In the first equation of system (2.1), the first factor in the first term represents

the growth of tumor cells in response to IL− 6. It is of Michaelis-Menten type to in-

dicate the limited response of tumor cells to the growth-stimulatory effects of IL− 6.

The second factor in the first term represents the competition for resources between

tumor and normal plasma cells within the bone marrow, where KT is the carrying

capacity of tumor cells. The second term represents the destruction of tumor cells

by cells of both the innate immune system and the adaptive immune system. It is

modelled by Michaelis-Menten to indicate the limited immune response to the tumor.

dT represents the maximum rate of destruction of tumor cells by the immune system

and gT is a half-saturation constant. That is, gT is the tumor density at which the

destruction rate of tumor cells is equal to one half the maximum destruction rate.
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This equation and the next do not include an intrinsic death rate of the cells, since

MGUS cells, and plasma cells in general, are long-lived, usually accumulating over a

patient’s lifetime (see [109, 110]), their role being to secrete antibodies.

In the second equation, the first factor, lN , represents the influx of normal plasma

cells during a patient’s lifetime. B cells, activated by antigen exposure, either dif-

ferentiate into long-lived, antigen-secreting plasma cells, which reside mainly in the

bone marrow, or into short-lived plasma cells, which reside mainly in the spleen or

lymph nodes. The second factor represents the competition for resources between

normal and tumor cells within the bone marrow, where KN and KT are the carrying

capacities of normal bone marrow plasma cells and MGUS cells, respectively. This

form was used instead of 1 − (N + T )/KN to prevent the density of normal plasma

cells from becoming negative over time (if N = 0 and T > KN).

In the third equation, the first term represents the background density of innate

immune system cells (the K cell population consisting of NKT and NK cells, and

MAC) that are ready to attack invading pathogens. Although these cells mature

outside the bone marrow, they then circulate throughout the body and a number of

them are found in a normal bone marrow (see [20, 32, 79], resp.), forming the first

line of defense against the tumor. Logistic growth is assumed with net proliferation

rate (birth rate minus death rate) rK and the carrying capacity KK of the K cell

population the same as the initial value K(0), calculated later, since K(0) is the

value for a healthy individual before the tumor. These cells also secrete IFN − γ,

which induces the production of chemokines, which in turn attract more immune cells.
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The second term represents the recruitment of innate immune system cells to the

tumor site in response to the presence of IFN − γ. A Michaelis-Menten form was

used to indicate the saturation effect of IFN − γ.

The fourth equations models the adaptive immune response. Since this is an

antigen-specific immune response, any adaptive immune cells that were present be-

fore the tumor was encountered do not recognize the tumor and we can assume that

there is no background density of these cells initially. Once exposed to the tumor, a

tumor-specific immune response is mounted. The first term in the equation represents

the recruitment of adaptive immune system cells (CD4+T (Th1), CD8+T (CTL)) to

the tumor site in response to the presence of IFN − γ. Again, a Michaelis-Menten

form was used to indicate the saturation effect of IFN−γ. The β in the denominator

is an inhibition parameter which indicates the reduction in the number of CD4+T

cells that react to the tumor due to the presence of M-protein, as explained earlier.

When no longer exposed to the same antigen, adaptive immunity slowly decreases

over time. Therefore, in the case that the tumor is eradicated, the second term rep-

resents the rate of decrease of these cells.

In the fifth equation, the first term represents the soluble M-protein produced by

tumor cells and the second term represents the degradation of the M-protein.

In the sixth equation, the first term represents the glycolipids produced by tumor

cells and the second term represents the degradation of the glycolipids.
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In the seventh equation, the first term represents the production of IL−6 by bone

marrow stromal cells and the increased production rate in response to the presence

of tumor cells. A factor of 7 is used to indicate that as more tumor cells come into

contact with bone marrow stromal cells, the IL− 6 production rate by stromal cells

will increase up to eight times the original amount. This eightfold increase in IL− 6

secretion by bone marrow stromal cells caused by the adherence of myeloma cells to

the stromal cells was stated in [103]. It is modelled by Michaelis-Menten to account

for the self-limiting production of IL − 6 by stromal cells stimulated by their inter-

action with tumor cells. The stromal cell population is assumed to be constant. The

second term represents the degradation of IL− 6.

In the eighth equation, the first term represents the production of IFN−γ by cells

of both the innate and adaptive immune system. The second factor of the first term

consists of 1
3
K for the NK cell contribution, 1

3
1

1+αG
K for the NKT cell contribution,

and E for the CTL and CD4+T cell contributions to the production of IFN−γ. The

α in the denominator is an inhibition parameter which indicates that the presence

of tumor-derived glycolipids causes a disfunction in IFN − γ production by NKT

cells, which are a subset of the cells of the innate immune system. Michaelis-Menten

kinetics was used to account for the self-limiting production of IFN − γ by immune

cells stimulated by their interaction with tumor cells. The second term represents the

degradation of IFN −γ. The details leading to the current form of this equation will

be given later during the estimation of parameters.
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Tables 2.1 and 2.2 give the units, dimensions, and a short description of the vari-

ables and parameters appearing in the model and Table 2.3 gives the initial conditions

at the onset of the disease.

As explained in Section 3.2, the accuracy of parameter gT is questionable and is

suspected of possibly being incorrect. The value of gT = 1 × 105 cells
ml

given in Table

2.2 did not allow for tumor development. Instead, a value of gT = 5 × 109 cells
ml

was

used initially and later the parameter was varied to study its effect on the behavior

of the system. gT turned out to be an important bifurcation parameter.

Table 2.1: Variables

Variable Units Dimensions Description

T cells
ml

c
v

MGUS tumor cell density

N cells
ml

c
v

normal plasma cell density

K cells
ml

c
v

innate immune system cell density

E cells
ml

c
v

adaptive immune system cell density
P pg

ml
m
v

density of M-protein produced by tumor cells
G pg

ml
m
v

density of glycolipids produced by tumor cells
I pg

ml
m
v

density of IL− 6 produced by stromal cells
F pg

ml
m
v

density of IFN − γ produced by immune system cells

where c=cells, m=mass, v=volume, t=time
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Table 2.2: Parameters

Parameter Units Dim Description
kT

.44
day

1
t

net proliferation rate of tumor cells

eT
2×104pg
ml

m
v

half-saturation of IL− 6

KT
7.7×107cells

ml
c
v

carrying capacity of tumor cells
dT

1
day

1
t

destruction of tumor cells

gT
1×105cells

ml
c
v

half-saturation constant

lN
983.77cells
ml×day

c
vt

influx of plasma cells

KN
1.23×107cells

ml
c
v

carrying capacity of plasma cells

kN = lN
KN

8.00×10−5

day
1
t

influx of plasma cells

kK
.1245
day

1
t

proliferation rate of innate immune cells

dK
.03
day

1
t

death rate of innate immune cells

rK = kK − dK .09
day

1
t

net proliferation rate of innate immune cells

KK
2.30×107cells

ml
c
v

carrying capacity of innate immune cells

kKE
8.64×106cells
ml×day

c
vt

recruitment rate of immune cells

eKE
70pg
ml

m
v

half-saturation of IFN − γ
β 1.05×10−10ml

pg
v
m

inhibitory parameter

dE
.03
day

1
t

decrease rate of adaptive immune cells

lP
14.5pg

cells×day
m
ct

M-protein production rate by tumor cells

dP
.1172
day

1
t

M-protein degradation rate

lG
8.92×10−2pg
cells×day

m
ct

glycolipid production rate by tumor cells

dG
.283
day

1
t

glycolipid degradation rate

lI
1.0pg

cells×day
m
ct

rate of IL− 6 production by stromal cells

eI
1×103cells

ml
c
v

half-saturation constant

s 7.7×104cells
ml

c
v

constant stromal cell density
dI

10
day

1
t

rate of IL− 6 degradation

lF
50pg

cells×day
m
ct

rate of IFN − γ production by immune cells

eF
1×103cells

ml
c
v

half-saturation constant

α 1.33×10−6ml
pg

v
m

inhibitory parameter

dF
2.16
day

1
t

rate of IFN − γ degradation
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Table 2.3: Initial Conditions

Variable Initial Value

T (0) 9.60×10−4cells
ml

N(0) 1.14×107cells
ml

K(0) 2.30×107cells
ml

E(0) 0cells
ml

P (0) 0pg
ml

G(0) 0pg
ml

I(0) 7.70×103pg
ml

F (0) 0pg
ml

In Section 3.1, we stated that we wanted the starting values to correspond to a

stable, healthy, tumor-free individual before being afflicted with the disease. There-

fore, the tumor-free equilibrium of the system was calculated and used as the initial

conditions. All values agreed with those in Table 2.3 except for N(0), which was

1.23× 107 cells
ml

at equilibrium. This is the value that was actually used in the model.

2.2 Estimation of Parameters

Due to the lack of available data, certain parameter estimates had to be made.

MGUS begins with a single clone. Since the volume of the active bone marrow of

a healthy 35 year old adult male is approximately 1042ml (see [35]), then the initial

cell density of tumor cells is

T (0) = 1cell
1042ml

= 9.60× 10−4 cells
ml
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The total marrow cellularity of a healthy adult consists of approximately .7− .9×

1012 cells (see [39]), so .8 × 1012 cells will be used for this estimate. An average

of 1.3% of these cells are plasma cells (see [45]). Therefore, an adult bone marrow

consists of approximately

(.013)(.8× 1012) = 1.04× 1010 plasma cells

This value will be used later to calculate the carrying capacity KN of bone marrow

plasma cells and the initial plasma cell density at the onset of the disease N(0).

We will assume that E(0) = 0, since initially, no adaptive immune response has

been triggered by the tumor. Adaptive immune system cells that existed prior to the

tumor will not detect and hence will not attack the newly formed tumor.

K(0) was obtained as follows:

The K cell population consists of NKT cells, NK cells, and macrophages. According

to [20], HNK1+ (human natural killer) cells generally make up less that 1% and

never greater that 2% of all nucleated bone marrow cells. Therefore, 1% was used

as the percent of NKT cells in the bone marrow. 1% was used as the percent of

NK cells in the bone marrow, since according to [32], NK precursor cells make up

approximately 1% of all bone marrow progenitor cells. According to [79], 0− 2% of

all nucleated bone marrow cells are macrophages, so we used 1% for our estimate.
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Using a bone marrow cellularity of .8× 1012 cells, we get

number of NKT cells = (.01)(.8× 1012) = .8× 1010 cells

number of NK cells = (.01)(.8× 1012) = .8× 1010 cells

number of macrophages = (.01)(.8× 1012) = .8× 1010 cells

Since, the K cell population consists of NKT cells, NK cells, and macrophages,

then by adding the above, we get 2.4 × 1010 cells in the K cell population initially.

Expressed as a cell density, we get

K(0) = 2.4×1010cells
1042ml

= 2.30× 107 cells
ml

This value will also be used as the carrying capacity KK of the K cell population (in

the absence of IFN − γ).

We will assume that P (0) = 0, G(0) = 0, and F (0) = 0. I(0) was obtained as

follows:

The seventh equation of the system is

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII,

where s is assumed to be constant.
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For a healthy individual (T = 0), this equation becomes

dI

dt
= lIs− dII

Finding the equilibrium gives the steady-state background density of IL − 6 at the

onset of the disease. We will use this as the value of I(0).

lIs− dII(0) = 0

=⇒ lIs = dII(0)

=⇒ I(0) =
lIs

dI

Substituting lI = 1.0pg
cells×day , dI = 10

day
, and s = 7.7×104cells

ml
(obtained later in the discus-

sion of the seventh equation), gives

I(0) =
(1.0)(7.7× 104)

(10)
= 7.70× 103 pg

ml

In the first equation, the birth rate of tumor cells in response to IL − 6 is given

by kT . The value of this parameter was calculated from the growth rate of MGUS

cells given in [97], since this growth rate can be attributed mainly to the influence of

IL−6. It was obtained by taking the reciprocal of the mean myeloma cell generation

time (1 cell generated in 2.29 days =⇒ birth rate= 1
2.29day

= .44
day

). For the value of

the half-saturation of IL−6 (which was not available) given by eT , the half-saturation

of IL− 2 during effector cell proliferation given in [3] was used.
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Next, the the carrying capacity KT of tumor cells needed to be calculated. Patients

with MGUS maintain an elevated plasma cell count (sometimes for years), but are

not classified as having MM until a certain threshold is reached. This value is 10%

plasma cells in the bone marrow (see [67]). The corresponding cell number is

(.10)(.8× 1012) = 8.0× 1010 cells

which corresponds to a plasma cell density of

8.0×1010cells
1042ml

= 7.7× 107 cells
ml

We have been using a bone marrow cellularity of .8 × 1012 cells, which corresponds

to a bone marrow cell density of

.8×1012
1042

= 7.68× 108 cells
ml

This will be used as the bone marrow carrying capacity.

In the MM case, besides having greater than 10% plasma cells, the patients also

exhibit osteolytic bone lesions (which make room for more tumor cells) and other

complications (see [67]). The patient is classified as having smoldering MM if he

has a greater that 10% plasma cell content, but none of the other complications (see

[67], [62]).
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Therefore, assuming that osteolytic bone lesions have not occurred yet, the carrying

capacity of tumor cells cannot exceed the bone marrow carrying capacity and there-

fore should lie somewhere between 7.7 × 107 and 7.68 × 108 cells
ml

. This agrees with

the fact that clinical presentation of MM usually occurs from 1011 to 1012 cells (see

[97]), which is equivalent to a cell density between 9.60× 107 and 9.60× 108 cells
ml

. For

now, the lower value will be used. This is approximately equal to the 10% total bone

marrow plasma cell content which is the threshold value that distinguishes MGUS

from MM. At a later time in the analysis of the model, the value can be increased

numerically to see if the outcome is altered.

Therefore, let the carrying capacity of tumor cells be set to

KT = 7.7× 107 cells
ml

The parameter value of dT , corresponding to the destruction rate of tumor cells by

cells of the innate (K) and adaptive (E) immune system, and the half-saturation con-

stan gT , were obtained from [3].

In the second equation, in order to estimate the values of the influx of normal

bone marrow plasma cells lN as the patient ages and the carrying capacity KN , sev-

eral observations had to be made. As mentioned earlier, antibody-secreting plasma

cells are produced in response to an invading pathogen. Therefore, rather than a

constant influx into the bone marrow, each time a person is exposed to an infection

(or cancer in our case), new plasma cells are produced to combat it.
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However, the best that can be done in this model is to determine an average influx

rate lN of bone marrow plasma cells throughout the person’s lifetime.

According to [99], the number of Ig-G containing cells increases rapidly until the

third decade of an individual’s life and gradually until the ninth decade. The number

of Ig-A containing cells increases rapidly during the first decade, moderately until the

sixth decade, and levels off after the seventh decade. The number of Ig-M containing

cells increases slightly until the third decade and levels off thereafter. This behavior

is captured qualitatively by the second equation. In our model, the time t = 0 repre-

sents the time at the onset of the disease, when the first MGUS cell appears, where

time is measured in days. Since the bone marrow volume of a 35 year old adult male

was used to calculate densities and, as noted above, the increase of the number of

bone marrow plasma cells slows down after the third decade, we will assume an adult

age of 35 years.

In [99], human bone marrow specimens were obtained from different groups, ob-

served under a microscope, and the number of immunoglobulin containing cells were

counted. The values of lN and KN will be obtained from the graph in Figure 1, on

page 246 of this paper, as follows:

In the second equation

dN

dt
= lN

(
1− N

KN

− T

KT

)
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Let T = 0 for a healthy individual and solve the differential equation to get

dN

dt
= lN −

lN
KN

N

=⇒ dN

dt
+

lN
KN

N = lN

=⇒ e
lN
KN

tdN

dt
+

lN
KN

e
lN
KN

t
N = lNe

lN
KN

t

=⇒ d

dt

(
e
lN
KN

t
N

)
= lNe

lN
KN

t

=⇒ e
lN
KN

t
N = KNe

lN
KN

t
+ C, where C is a constant

=⇒

N = KN + Ce
− lN
KN

t
(2.2)

To obtain the values of KN , C, and lN from the graph mentioned above, the plot of

age versus plasma cell count corresponding to Ig-G containing plasma cells will be

used, since many multiple myelomas are of the type that contain Ig-G. In the graph,

the x-axis contains age intervals. For our estimates, the greatest integer less than

or equal to the midpoint of each interval was used. For the interval ≥ 80, 84 was

used. Estimates for the points were obtained by overlaying a transparent grid over a

blown-up copy of the graph and rounding to the nearest integer. Table 2.4 contains

this information.
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Table 2.4: Age-Dependent Cell Densities

age interval age used cells
unitfield

cells in BM cell density ( cells
ml

)

0-1 .5 5 4.00× 109 3.84× 106

2-4 3 7 5.60× 109 5.37× 106

5-9 7 9 7.20× 109 6.91× 106

10-19 14 12 9.60× 109 9.21× 106

20-29 24 14 1.12× 1010 1.07× 107

30-39 34 13 1.04× 1010 9.98× 106

40-49 44 15 1.20× 1010 1.15× 107

50-59 54 14 1.12× 1010 1.07× 107

60-69 64 14 1.12× 1010 1.07× 107

70-79 74 15 1.20× 1010 1.15× 107

80- 84 16 1.28× 1010 1.23× 107

The numbers in the third column of Table 2.4 represent the number of plasma cells

counted per unit field under a microscope. We need the density of plasma cells in

the bone marrow. However, we can assume that the numbers given in the table

are representative of the entire population. As stated earlier, we will use an adult

(assumed to be 35 years old) plasma cell count of 1.04 × 1010 cells. If we equate

this with 13 plasma cells per unit field obtained from the table (corresponding to an

age of 35), we get the following ratio of cells in the bone marrow per cells per unit field

1.04×1010
13

= 8.00× 108 cells in BM
cells per unit field

Using this conversion factor gives the entries in the fourth column. The densities in

the last column were obtained by dividing each entry in the fourth column by 1042

ml (the volume of the active bone marrow for a 35 year old healthy adult male) as

done before on several occasions.
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For the carrying capacity of normal bone marrow plasma cells, we will use the last

entry in the table corresponding to ≥ 80 years of age. So we have

KN = 1.23× 107 cells
ml

Our goal is to approximate these experimentally obtained points by equation (2.2).

In the following derivation, we have to keep in mind that N(ti) denotes the normal

plasma cell density at ti years of age. In this case N(0) denotes the cell density at

birth, in contrast to the model, where N(0) denotes the cell density at the onset of

the disease.

To estimate the influx lN of normal bone marrow plasma cells, we will use the first,

second, fourth, sixth, eighth, and tenth points from Table 2.4, since these give a

smoother curve. These values are given in Table 2.5.

Table 2.5: Values of ti and N(ti) Used

ti N(ti)
.5 3.84× 106

3 5.37× 106

14 9.21× 106

34 9.98× 106

54 1.07× 107

74 1.15× 107
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Returning to equation (2.2)

N(ti) = KN + Ce
− lN
KN

ti , where the value of KN and points (ti, N(ti)) for

i = 1, . . . , 6 are known

=⇒ KN −N(ti) = −Ce−
lN
KN

ti , where KN −N(ti) > 0∀i

=⇒ ln(KN −N(ti)) = ln(−C)− lN
KN

ti

=⇒ f(ti) = Γ− lN
KN

ti, where f(ti) = ln(KN −N(ti)) and Γ = ln(−C)

A least squares approximation is used to determine the values of Γ (and hence C)

and lN that best fit the experimental data.

Let

F (Γ, lN) =
6∑
i=1

[
Γ− lN

KN

ti − f(ti)

]2
The values of Γ and lN that minimize F will satisfy

∂F

∂Γ
=

6∑
i=1

[
Γ− lN

KN

ti − f(ti)

]
= 0

=⇒ 6Γ− 1

KN

(
6∑
i=1

ti

)
lN −

6∑
i=1

f(ti) = 0

and
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∂F

∂lN
=

6∑
i=1

[
Γ− lN

KN

ti − f(ti)

]
ti
KN

= 0

=⇒ 1

KN

(
6∑
i=1

ti

)
Γ− 1

K2
N

(
6∑
i=1

t2i

)
lN −

1

KN

6∑
i=1

tif(ti) = 0

=⇒

(
6∑
i=1

ti

)
Γ− 1

KN

(
6∑
i=1

t2i

)
lN −

6∑
i=1

tif(ti) = 0

Therefore, the following system needs to be solved for Γ and lN


6Γ− 1

KN

(
6∑
i=1

ti

)
lN −

6∑
i=1

f(ti) = 0(
6∑
i=1

ti

)
Γ− 1

KN

(
6∑
i=1

t2i

)
lN −

6∑
i=1

tif(ti) = 0

(2.3)

Substituting the values of ti and f(ti) = ln(KN − N(ti)) for i = 1, . . . , 6 (obtained

from Table 2.5) and KN = 1.23× 107 gives

∑6
i=1 ti = 179.5

∑6
i=1 t

2
i = 9753.25

∑6
i=1 f(ti) = 89.180871



32

∑6
i=1 tif(ti) = 2540.0347

Using these values in system (2.3) and solving the system gives

lN = 359075.87 cells
ml×year

and

Γ = 15.736841

=⇒ ln(−C) = 15.736841

=⇒ C = −e15.736841

=⇒ C = −6830039.4

Therefore, the experimental data can be approximated by the function

N = KN + Ce
− lN
KN

t
, where KN = 1.23× 107 cells

ml
, C = −6830039.4,

and lN = 359075.87 cells
ml×year
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That is

N = 1.23× 107 − 6830039.4e−.0291931t

In our model, as noted earlier, N(0) denotes the normal plasma cell density at the

onset of the disease. MGUS occurs in 1% of the population over age 50, 3% over age

70 (see [67]), and in 10% of the population in their tenth decade (see [62]). There-

fore, since MGUS usually occurs later in the life of an individual, we will assume in

our model that the onset of the disease occurs at 70 years of age. At t = 70 years of

age, the above equation gives

N(70) = 1.14× 107 cells
ml

So in our model, the normal plasma cell density at the onset of the disease (at t = 0

days) is given by

N(0) = 1.14× 107 cell
ml

We determined that lN = 359075.87 cells
ml×year . However, in our model, t=days from

onset of disease. Therefore, we need lN to be in units cells
ml×day . Ignoring leap years and

assuming 365 days per year, we can rewrite lN in the desired units by multiplying it

by 1year
365days

. This gives

lN = 983.77cells
ml×day
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In the third equation, the net proliferation rate of innate immune system cells is

given by rK = kK − dK , where kK is the maximum proliferation rate and dK is the

death rate. The values of these parameters where obtained from effector cell prolifer-

ation and death rates given in [3]. The carrying capacity KK of the innate immune

system cell population K (in the absence of IFN − γ) was set equal to the initial

value K(0), as mentioned earlier. Note that we are allowing this tumor-free carrying

capacity to be exceeded if more K cells are recruited (due to the presence of IFN−γ)

to fight the tumor. The second term contains parameters kKE and eKE, which are

also found in the fourth equation. For recruitment parameter kKE, the value given

in [105] as the maximum recruitment rate (100cells
ml×sec = 8.64×106cells

ml×day ) was used. The

half-saturation of IFN − γ, given by eKE was obtained from the half-saturation of

IFN − γ during the activation of resting macrophages given in [96].

In the fourth equation, parameters kKE and eKE are as in the third equation

above. The inhibitory parameter β represents the decrease in the number of reactive

adaptive immune system cells (specifically CD4+T cells) due to the presence of solu-

ble M-protein produced by tumor cells, as discussed earlier. β was obtained as follows:

Tmax occurs when T = KT . Let T = KT and solve the fifth equation for P to obtain

Pmax.

dP

dt
= lPT − dPP

=⇒ dP

dt
= lPKT − dPP
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=⇒ dP

dt
+ dPP = lPKT

=⇒ edP t
dP

dt
+ dP e

dP tP = lPKT e
dP t

=⇒ d

dt

(
edP tP

)
= lPKT e

dP t

=⇒ edP tP =
lPKT

dP
edP t + C, where C is a constant

=⇒ P =
lPKT

dP
+ Ce−dP t

P (0) = 0 =⇒ C = − lPKT

dP

Therefore,

P =
lPKT

dP
− lPKT

dP
e−dP t

=⇒ P =
lPKT

dP

(
1− e−dP t

)

Substituting lP = 14.5pg
cells×day , KT = 7.7×107cells

ml
, and dP = .1172

day
(where parameters lP

and dP will be explained later in the discussion of the fifth equation) gives

P = (14.5)(7.7×107)
.1172

(1− e−.1172t)

=⇒ P = 9.53× 109 (1− e−.1172t) pg
ml



36

As t→∞, P → 9.53× 109. So Pmax = 9.53× 109 pg
ml

The E cell population consists of CTL and CD4+T cells, where CTL cells make

up approximately .037 of the total bone marrow cellularity and CD4+T cells make

up approximately .038 of the total bone marrow cellularity (see [20]). Since they

occur in roughly the same amount, we can say that approximately one half of the

E cell population consists of CD4+T cells. We assume that at P = Pmax, all the

reactive CD4+T cells are deleted (as discussed earlier). Therefore, we assume that

at P = Pmax, the E cell population decreases to .5E, leaving only CTL cells. So to

find β, we solve

1

1 + βPmax
= .5

=⇒ β =
1
.5
− 1

Pmax

=⇒ β =
1

Pmax

Substituting Pmax = 9.53× 109 pg
ml

, gives

β = 1
9.53×109

=⇒ β = 1.05× 10−10ml
pg
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The value of parameter dE, which represents the rate of decrease of adaptive immune

system cells, was obtained from the effector cell death rate given in [3]. This pa-

rameter is used to represent the fact that, as mentioned earlier, adaptive immunity

decreases over time if no longer exposed to the tumor.

In the fifth equation, lP and dP represent the rate of M-protein production by

tumor cells and degradation, respectively. The values of these parameters were ob-

tained from [97]. For lP , the mean synthetic rate was used, and for dP , the mean of

the fractional catabolic rates given in Table I in the cited paper was used.

In the sixth equation, lG and dG represent the rate of glycolipid production by

tumor cells and degradation, respectively. Neither of these rates were available. To

estimate the rate of glycolipid production by tumor cells, the amount of glycolipid

(LacCer) produced by leukocytes when stimulated with HDL3 was used. This was

calculated from the data given in [63] as follows:

LacCer has a molecular weight of 880. In the above experiment, 40 flasks, each with

a volume of 2.5 milliliters were used, and .2 milligrams of HDL3 per milliliter was

used. Before incubation,

1.2µmol LacCer
1g HDL3

was present. So the initial density of LacCer is given by

1.2µmol LacCer
1g HDL3

× 1g HDL3

1×103mg HDL3
× .2mg HDL3

1ml
= .24µmol LacCer

1×103ml
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In picograms per milliliter, this becomes

.24µmol LacCer
1×103ml × 1×10−6mol LacCer

1µmol LacCer
× 880g LacCer

1mol LacCer
× 1×1012pg LacCer

1g LacCer

= 2.11× 105 pg LacCer
ml

Incubation with leukocytes (107 cells/ml in 40 flasks of volume 2.5 ml each) for 18

hours (.75 days) at 37◦ C, resulted in

5.0µmol LacCer
1g HDL3

So the final density of LacCer after .75 days is given by

5.0µmol LacCer
1g HDL3

× 1g HDL3

1×103mg HDL3
× .2mg HDL3

1ml
= 1µmol LacCer

1×103ml

In picograms per milliliter, this becomes

1µmol LacCer
1×103ml × 1×10−6mol LacCer

1µmol LacCer
× 880g LacCer

1mol LacCer
× 1×1012pg LacCer

1g LacCer

= 8.80× 105 pg LacCer
ml

Therefore, the increase in LacCer content in .75 days is

8.80× 105 − 2.11× 105 = 6.69×105pg LacCer
ml
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The leukocyte density is 107cells/ml, so the LacCer production per cell is given by

6.69×105pg LacCer
ml

× 1ml
1×107cells = 6.69×10−2pg LacCer

cells

Therefore, the rate of LacCer production by leukocytes stimulated by HDL3 is given

by

6.69×10−2pg
.75cells×da = 8.92× 10−2 pg

cells×da

This is the value used for parameter lG in the model.

For the glycolipid degradation rate, dG, the average turnover rate (percent degrada-

tion) of blood group glycolipid A-6-2 given in [4] was used. This value is .283
day

.

In the seventh equation, lI represents the rate of IL− 6 production by bone mar-

row stromal cells. This was calculated from the data given in Table 2 in [103]. First,

for six patients, the average IL− 6 production by bone marrow stromal cells per day

was calculated to be

avg = 17+264+360+410+152+44
6

= 207.8 ng
ml×day = 207.8× 103 pg

ml×day

The bone marrow stromal cell density used in the above experiment ( [103]) was

2×104cells
100µl

= 2×105cells
ml
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Therefore, the rate of IL− 6 production is given by

lI = 207.8×103pg
ml×day × 1ml

2×105cells = 1.0 pg
cells×day

For eI (which was not available), the half-saturation constant for self-limiting IL− 2

production under similar circumstances given in [3] was used.

A constant stromal cell density s is assumed. The frequency of fibroblast colony-

forming cells in the bone marrow is approximately 10−4 (see [92]). So the number of

bone marrow stromal cells is approximately

(10−4)(.8× 1012) = 8.0× 107 cells

This gives a constant stromal cell density of

s = 8.0×107cells
1042ml

= 7.7× 104 cells
ml

For the rate of IL−6 degradation dI (which was not available), the value correspond-

ing to IL− 2 degradation obtained from [3] was used.

In the eighth equation, parameter lF represents the rate of IFN − γ production

by cells of the innate and adaptive immune system in response to the presence of

the tumor and dF represents the degradation of IFN − γ. The values of lF and dF

were obtained from [96]. Parameter eF (which was not available) is a half-saturation
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constant due to the fact that the process is self-limiting. For this parameter, the half-

saturation constant for self-limiting IL − 2 production under similar circumstances

given in [3] was used. Parameter α represents the inhibition of IFN − γ production

by cells of the innate immune system (specifically NKT cells) due to the presence

of tumor-derived glycolipids (as discussed earlier). This parameter was obtained as

follows:

Tmax occurs when T = KT , so let T = KT in the sixth equation and solve it for G to

obtain Gmax.

dG

dt
= lGT − dGG

=⇒ dG

dt
= lGKT − dGG

=⇒ dG

dt
+ dGG = lGKT

=⇒ edGt
dG

dt
+ dGe

dGtG = lGKT e
dGt

=⇒ d

dt
(edGtG) = lGKT e

dGt

=⇒ edGtG =
lGKT

dG
edGt + C, where C is a constant

=⇒ G =
lGKT

dG
+ Ce−dGt
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G(0) = 0 =⇒ C = − lGKT

dG

Therefore,

G =
lGKT

dG
− lGKT

dG
e−dGt

=⇒ G =
lGKT

dG
(1− e−dGt)

Substituting lG = 8.92×10−2pg
cells×day , KT = 7.7×107cells

ml
, and dG = .283

day
gives

G = (8.92×10−2)(7.7×107)
(.283)

(1− e−.283t)

=⇒ G = 2.43× 107(1− e−.283t) pg
ml

As t→∞, G→ 2.43× 107. So Gmax = 2.43× 107 pg
ml

.

The K cell population consists of MAC, NKT cells, and NK cells, and each of

these make up .01 of the total bone marrow cellularity (see [79, 20, 32], resp.). If K

denotes the density of the K cell population, then this population consists of roughly

1
3
K MAC, 1

3
K NKT , and 1

3
K NK cells. NK and NKT cells, which account for 2

3

of the K cell population, produce IFN − γ. Therefore, if there are no tumor-derived

glycolipids in the system (G = 0), 2
3
K cells contribute to IFN − γ production. As

mentioned earlier, tumor-derived glycolipids cause a disfunction in the ability of NKT

cells to produce IFN − γ. The cells are not destroyed, many simply lose their ability
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to produce IFN − γ. According to [18], the number of glycolipid reactive IFN − γ-

producing cells drops from a mean of 65 per 106 peripheral blood mononuclear cells

in healthy controls to a mean of 1.8 per 106 in patients with progressive myeloma.

Therefore, we assume that at G = Gmax, the number of IFN − γ-producing NKT

cells is

1.8
65
× (number of NKT cells)

= .03× (number of NKT cells)

Since the density of NKT cells is 1
3
K, then we assume that at G = Gmax, the

IFN − γ-producing NKT cell subpopulation decreases from 1
3
K to (.03)(1

3
K).

So to find α, we solve

1

1 + αGmax

= .03

=⇒ α =
1
.03
− 1

Gmax

=
32.33

Gmax

Substituting Gmax = 2.43× 107 pg
ml

, gives

α = 32.33
2.43×107

=⇒ α = 1.33× 10−6
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2.3 Nondimensionalization of the System

The first equation of system (2.1):

dT

dt
=

kT I

eT + I

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

Let I∗ =
I

KI

, where KI =
lIs

dI
. Then, I∗ is nondimensional. The reason for this choice

will become apparent during the nondimensionalization of the seventh equation.

The first term becomes

kT I

eT + I

(
1− T +N

KT

)
T =

kT
I

KI

eT
KI

+
I

KI

(
1− T +N

KT

)
T =

kT I
∗

eT
KI

+ I∗

(
1− T +N

KT

)
T

So the above equation becomes

dT

dt
=

kT I
∗

eT
KI

+ I∗

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

=
kT I

∗

eT
KI

+ I∗

(
1− T

KT

− N

KT

)
T − dT (K + E)T

gT + T

Let T ∗ =
T

KT

=⇒ dT ∗

dt
=

1

KT

dT

dt
and N∗ =

N

KT

, both nondimensional.
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Dividing by KT gives

1

KT

dT

dt
=

kT I
∗

eT
KI

+ I∗

(
1− T

KT

− N

KT

)
T

KT

− dT (K + E)

KT

T

KT

gT
KT

+
T

KT

=⇒ dT ∗

dt
=

kT I
∗

eT
KI

+ I∗
(1− T ∗ −N∗)T ∗ − dT

(
K

KT

+
E

KT

)
T ∗

gT
KT

+ T ∗

Let K∗ =
K

KT

and E∗ =
E

KT

, which are both nondimensional.

Then, we get

dT ∗

dt
=

kT I
∗

eT
KI

+ I∗
(1− T ∗ −N∗)T ∗ − dT (K∗ + E∗)

T ∗

gT
KT

+ T ∗

=
kT I

∗

eT

(
lI s

dI
)

+ I∗
(1− T ∗ −N∗)T ∗ − dT (K∗ + E∗)

T ∗

gT
KT

+ T ∗

=
kT I

∗

dIeT
lIs

+ I∗
(1− T ∗ −N∗)T ∗ − dT (K∗ + E∗)

T ∗

gT
KT

+ T ∗

Dividing by kT gives

1

kT

dT ∗

dt
=

I∗

dIeT
lIs

+ I∗
(1− T ∗ −N∗)T ∗ − dT

kT
(K∗ + E∗)

T ∗

gT
KT

+ T ∗
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We want
1

kT

d

dt
=

d

dt∗
. In order to obtain this, let t =

1

kT
t∗. Then, by the

Chain Rule,
d

dt∗
=

d

dt

dt

dt∗
=

1

kT

d

dt
.

Therefore, the nondimensional version of the first equation of system (2.1) is given

by

dT ∗

dt∗
=

I∗

dIeT
lIs

+ I∗
(1− T ∗ −N∗)T ∗ − dT

kT
(K∗ + E∗)

T ∗

gT
KT

+ T ∗
(2.4)

The second equation of system (2.1):

dN

dt
= lN

(
1− N

KN

− T

KT

)

Recall that N∗ =
N

KT

=⇒ dN∗

dt
=

1

KT

dN

dt
and T ∗ =

T

KT

. So this equation becomes

dN

dt
= lN

1−

(
N

KT

)
(
KN

KT

) − T

KT


= lN

[
1− KT

KN

N∗ − T ∗
]
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Dividing by KT gives

1

KT

dN

dt
=

lN
KT

[
1− KT

KN

N∗ − T ∗
]

=⇒ dN∗

dt
=

lN
KT

[
1− KT

KN

N∗ − T ∗
]

Dividing by kT gives

1

kT

dN∗

dt
=

lN
kTKT

[
1− KT

KN

N∗ − T ∗
]

=⇒ dN∗

dt∗
=

lN
kTKT

[
1− KT

KN

N∗ − T ∗
]

It would be desirable to express lN in terms of a new variable kN of dimension

1
t
. This will simplify the analysis of time scales later on. To achieve this end, let

kN = lN
KN

. Then, lN = kNKN , so the equation becomes

dN∗

dt∗
=
kNKN

kTKT

[
1− KT

KN

N∗ − T ∗
]

Therefore, the nondimensional version of the second equation of system (2.1) is given

by

dN∗

dt∗
=
kN
kT

(
KN

KT

−N∗ − KN

KT

T ∗
)

(2.5)
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The third equation of system (2.1):

dK

dt
= rK

(
1− K

KK

)
K +

kKEF

eKE + F

Let F ∗ =
F

KF

, where KF =
lFKT

dF
. Then, F ∗ is nondimensional. The reason for this

choice of F ∗ will become apparent during the nondimensionalization of the eighth

equation.

The second term becomes

kKEF

eKE + F
=

kKE
F

KF

eKE
KF

+
F

KF

=
kKEF

∗

eKE
KF

+ F ∗

So the above equation becomes

dK

dt
= rK

(
1− K

KK

)
K +

kKEF
∗

eKE
KF

+ F ∗

Recall that K∗ =
K

KT

=⇒ dK∗

dt
=

1

KT

dK

dt
and K = K∗KT . So dividing by KT gives

1

KT

dK

dt
= rK

(
1− K

KK

)
K

KT

+
kKEF

∗

KT ( eKE
KF

+ F ∗)
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=⇒ dK∗

dt
= rK

(
1− K

KK

)
K∗ +

kKE
KT

F ∗

eKE
KF

+ F ∗

= rK

(
1− KTK

∗

KK

)
K∗ +

kKE
KT

F ∗

eKE
KF

+ F ∗

Dividing by kT gives

1

kT

dK∗

dt
=
rK
kT

(
1− KTK

∗

KK

)
K∗ +

kKE
kTKT

F ∗

eKE
KF

+ F ∗

=⇒ dK∗

dt∗
=

rK
kT

(
1− KT

KK

K∗
)
K∗ +

kKE
kTKT

F ∗

eKE
KF

+ F ∗

=
rK
kT

(
1− KT

KK

K∗
)
K∗ +

kKE
kTKT

F ∗

eKE

(
lF KT
dF

)
+ F ∗

Therefore, the nondimensional version of the third equation of system (2.1) is given by

dK∗

dt∗
=
rK
kT

(
1− KT

KK

K∗
)
K∗ +

kKE
kTKT

F ∗

dF eKE
lFKT

+ F ∗
(2.6)
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The fourth equation of system (2.1):

dE

dt
=

kKEF

(eKE + F )(1 + βP )
− dEE

Recall that F ∗ =
F

KF

, where KF =
lFKT

dF
.

The first term becomes

kKEF

(eKE + F )(1 + βP )
=

kKE
F

KF(
eKE
KF

+
F

KF

)
(1 + βP )

=
kKEF

∗

( eKE
KF

+ F ∗)(1 + βP )

So the above equation becomes

dE

dt
=

kKEF
∗

( eKE
KF

+ F ∗)(1 + βP )
− dEE

Recall that E∗ =
E

KT

=⇒ dE∗

dt
=

1

KT

dE

dt
.

Dividing by KT gives

1

KT

dE

dt
=

kKEF
∗

KT ( eKE
KF

+ F ∗)(1 + βP )
− dE

E

KT
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=⇒ dE∗

dt
=

kKEF
∗

KT ( eKE
KF

+ F ∗)(1 + βP )
− dEE∗

Dividing by kT gives

1

kT

dE∗

dt
=

kKE
kTKT

F ∗

( eKE
KF

+ F ∗)(1 + βP )
− dE
kT
E∗

=⇒ dE∗

dt∗
=

kKE
kTKT

F ∗

( eKE
KF

+ F ∗)(1 + βP )
− dE
kT
E∗

Let P ∗ =
P

KP

, where KP =
lPKT

dP
. Then, P ∗ is nondimensional. The reason for this

choice of P ∗ will become apparent during the nondimensionalization of the fifth equa-

tion. Also, recall that KF =
lFKT

dF
. Then, the equation becomes

dE∗

dt∗
=

kKE
kTKT

F ∗

( eKE
KF

+ F ∗)(1 + βKPP ∗)
− dE
kT
E∗

=
kKE
kTKT

F ∗(
eKE

(
lF KT
dF

)
+ F ∗

)(
1 + β( lPKT

dP
)P ∗
) − dE

kT
E∗
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Therefore, the nondimensional version of the fourth equation of system (2.1) is given

by

dE∗

dt∗
=

kKE
kTKT

F ∗

(dF eKE
lFKT

+ F ∗)(1 + β lPKT
dP

P ∗)
− dE
kT
E∗ (2.7)

The fifth equation of system (2.1):

dP
dt

= lPT − dPP

Recall that T ∗ =
T

KT

.

At equilibrium, we get

lPT − dPP = 0 =⇒ P =
lP
dP
T

=
lPKT

dP
T ∗

Let KP =
lPKT

dP
, which has dimension m

v
, and P ∗ =

P

KP

, which is nondimensional.

Then,
dP ∗

dt
=

1

KP

dP

dt
. So if T ∗ is an equilibrium value, then P ∗ = T ∗ are terms of

the same order.
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Going back to the original equation, we have

dP

dt
= lPT − dPP

= lPKTT
∗ − dPP

Dividing by KP gives

1

KP

dP

dt
=
lPKT

KP

T ∗ − dP
P

KP

=⇒ dP ∗

dt
=

lPKT

KP

T ∗ − dPP ∗

=
lPKT

( lPKT
dP

)
T ∗ − dPP ∗

= dPT
∗ − dPP ∗

= dP (T ∗ − P ∗)

Dividing by kt gives

1

kT

dP ∗

dt
=
dP
kT

(T ∗ − P ∗)

Therefore, the nondimensional version of the fifth equation of system (2.1) is given by

dP ∗

dt∗
=
dP
kT

(T ∗ − P ∗) (2.8)
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The sixth equation of system (2.1):

dG

dt
= lGT − dGG

Recall that T ∗ =
T

KT

.

At equilibrium, we get

lGT − dGG = 0 =⇒ G =
lG
dG
T

=
lGKT

dG
T ∗

Let KG =
lGKT

dG
, which has dimension m

v
, and G∗ =

G

KG

, which is

nondimensional. Then,
dG∗

dt
=

1

KG

dG

dt
.

Going back to the original equation, we have

dG

dt
= lGT − dGG

= lGKTT
∗ − dGG
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Dividing by KG gives

1

KG

dG

dt
=
lGKT

KG

T ∗ − dG
G

KG

=⇒ dG∗

dt
=

lGKT

KG

T ∗ − dGG∗

=
lGKT

( lGKT
dG

)
T ∗ − dGG∗

= dGT
∗ − dGG∗

= dG(T ∗ −G∗)

Dividing by kt gives

1

kT

dG∗

dt
=
dG
kT

(T ∗ −G∗)

Therefore, the nondimensional version of the sixth equation of system (2.1) is given by

dG∗

dt∗
=
dG
kT

(T ∗ −G∗) (2.9)

The seventh equation of system (2.1):

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII

Recall that T ∗ =
T

KT

.
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At equilibrium, we get

lI

(
1 +

7T

eI + T

)
s− dII = 0 =⇒ I =

lIs

dI

(
1 +

7T

eI + T

)

=
lIs

dI

1 +
7
T

KT

eI
KT

+
T

KT


=

lIs

dI

(
1 +

7T ∗

eI
KT

+ T ∗

)

Let KI =
lIs

dI
, which has dimension m

v
, and I∗ =

I

KI

, which is nondimensional. Then,

dI∗

dt
=

1

KI

dI

dt
.

Going back to the original equation, we have

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII

= lI

(
1 +

7T ∗

eI
KT

+ T ∗

)
s− dII
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Dividing by KI gives

1

KI

dI

dt
=
lIs

KI

(
1 +

7T ∗

eI
KT

+ T ∗

)
− dI

I

KI

=⇒ dI∗

dt
=

lIs

KI

(
1 +

7T ∗

eI
KT

+ T ∗

)
− dII∗

=
lIs

( lIs
dI

)

(
1 +

7T ∗

eI
KT

+ T ∗

)
− dII∗

= dI

(
1 +

7T ∗

eI
KT

+ T ∗

)
− dII∗

= dI

(
1 +

7T ∗

eI
KT

+ T ∗
− I∗

)

Dividing by kT gives

1

kT

dI∗

dt
=
dI
kT

(
1 +

7T ∗

eI
KT

+ T ∗
− I∗

)

Therefore, the nondimensional version of the seventh equation of system (2.1) is given

by

dI∗

dt∗
=
dI
kT

(
1 +

7T ∗

eI
KT

+ T ∗
− I∗

)
(2.10)
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The eighth and last equation of system (2.1):

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αG
K + E

)
T − dFF

Recall that T ∗ =
T

KT

, K∗ =
K

KT

, E∗ =
E

KT

, and G∗ =
G

KG

, where KG =
lGKT

dG
.

At equilibrium, we get

lF
eF + T

(
1

3
K +

1

3

1

1 + αG
K + E

)
T − dFF = 0

=⇒ F =
lFT

dF (eF + T )

(
1

3
K +

1

3

1

1 + αG
K + E

)

=
lF
dF

T

KT

eF
KT

+
T

KT

(
1

3
K +

1

3

1

1 + αG
K + E

)

=
lF
dF

T ∗

eF
KT

+ T ∗

(
1

3
K +

1

3

1

1 + αG
K + E

)
=

lF
dF

(
1

3
KTK

∗ +
1

3

KTK
∗

1 + αKGG∗
+KTE

∗
)

T ∗

eF
KT

+ T ∗

=
lFKT

dF

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗

Let KF =
lFKT

dF
, which has dimension m

v
, and F ∗ =

F

KF

, which is nondimensional.

Then,
dF ∗

dt
=

1

KF

dF

dt
.
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Going back to the original equation, we have

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αG
K + E

)
T − dFF

= lF

(
1

3
K +

1

3

1

1 + αG
K + E

)
T ∗

eF
KT

+ T ∗
− dFF

= lF

(
1

3
KTK

∗ +
1

3

KTK
∗

1 + αKGG∗
+KTE

∗
)

T ∗

eF
KT

+ T ∗
− dFF

= lFKT

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dFF

Dividing by KF gives

1

KF

dF

dt
=
lFKT

KF

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF

F

KF

=⇒ dF ∗

dt
=

lFKT

KF

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dFF ∗

=
lFKT

( lFKT
dF

)

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dFF ∗

= dF

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dFF ∗
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Dividing by kT gives

1

kT

dF ∗

dt
=
dF
kT

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF
kT
F ∗

=⇒ dF ∗

dt∗
=

dF
kT

(
1

3
K∗ +

1

3

K∗

1 + αKGG∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF
kT
F ∗

=
dF
kT

(
1

3
K∗ +

1

3

K∗

1 + α( lGKT
dG

)G∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF
kT
F ∗

Therefore, the nondimensional version of the eighth equation of system (2.1) is given

by

dF ∗

dt∗
=
dF
kT

(
1

3
K∗ +

1

3

K∗

1 + α lGKT
dG

G∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF
kT
F ∗ (2.11)

In summary, using the nondimensionalization in Table 2.6 gives rise to the nondi-

mensional system of differential equations (2.12).

Table 2.6: Nondimensional Variables

T ∗ =
T

KT

N∗ =
N

KT

K∗ =
K

KT

E∗ =
E

KT

P ∗ =
P

KP

G∗ =
G

KG

I∗ =
I

KI

F ∗ =
F

KF

t∗ = kT t
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where KP = lPKT
dP

, KG = lGKT
dG

, KI = lIs
dI

, and KF = lFKT
dF

,



dT ∗

dt∗
=

I∗

dIeT
lIs

+ I∗
(1− T ∗ −N∗)T ∗ − dT

kT
(K∗ + E∗)

T ∗

gT
KT

+ T ∗

dN∗

dt∗
=
kN
kT

(
KN

KT

−N∗ − KN

KT

T ∗
)

dK∗

dt∗
=
rK
kT

(
1− KT

KK

K∗
)
K∗ +

kKE
kTKT

F ∗

dF eKE
lFKT

+ F ∗

dE∗

dt∗
=

kKE
kTKT

F ∗

(dF eKE
lFKT

+ F ∗)(1 + β lPKT
dP

P ∗)
− dE
kT
E∗

dP ∗

dt∗
=
dP
kT

(T ∗ − P ∗)

dG∗

dt∗
=
dG
kT

(T ∗ −G∗)

dI∗

dt∗
=
dI
kT

(
1 +

7T ∗

eI
KT

+ T ∗
− I∗

)

dF ∗

dt∗
=
dF
kT

(
1

3
K∗ +

1

3

K∗

1 + α lGKT
dG

G∗
+ E∗

)
T ∗

eF
KT

+ T ∗
− dF
kT
F ∗

(2.12)



Chapter 3

Analysis of the Model

The behavior of the system will be analyzed numerically with the aid of several soft-

ware packages, including XPPAUT, Matlab and Maple. Also, the system will be

studied analytically to see what results can be obtained. However, before this can be

done, the number of equations must be reduced in order to make it more manageable.

Numerical tests were performed on the original system (2.1), whenever possible,

and repeated on the reduced and/or nondimensionalized systems to verify their ac-

curacy at capturing the dynamics.

3.1 Initial Conditions

Consider the tumor-free state of the original system (2.1) obtained by setting T = 0

and finding the equilibria of the resulting system.

62



63

dN

dt
= lN

(
1− N

KN

)
= 0 =⇒ N = KN = 1.23× 107

dK

dt
= rK

(
1− K

KK

)
K +

kKEF

eKE + F
= 0

=⇒ rK

(
1− K

KK

)
K = 0 ,

since F (0) = 0 and T ≡ 0 =⇒ dF

dt
= 0 , so F ≡ 0

=⇒ K = 0 or K = KK = 2.30× 107

K = 0 represents immune system failure, since it indicates that the individual has no

innate immunity, and K = 2.30× 107 cells
ml

corresponds to a healthy individual with a

normal immune system and therefore, this was the value that was used for K(0).

dE

dt
=

kKEF

(eKE + F )(1 + βP )
− dEE = 0 =⇒ E = 0 , since F ≡ 0

dP

dt
= −dPP = 0 =⇒ P = 0

dG

dt
= −dGG = 0 =⇒ G = 0

dI

dt
= lIs− dII = 0 =⇒ I =

lIs

dI
=

(1.0)(7.7× 104)

10
= 7.7× 103

dF

dt
= −dFF = 0 =⇒ F = 0
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These values correspond to a stable, healthy, tumor-free individual before being

afflicted with the disease and are good starting values for the model.

By comparing the equilibrium values just obtained with the initial conditions in

Table 2.3, we can see that they pretty much agree. For the remainder of the analysis,

the newly obtained equilibrium values above, along with T (0) = 9.60×10−4 (as given

in Table 2.3), will be used as the initial conditions of the system. These values are

summarized in Table 3.1.

Table 3.1: New Initial Conditions

Variable Initial Value

T (0) 9.60×10−4cells
ml

N(0) 1.23×107cells
ml

K(0) 2.30×107cells
ml

E(0) 0cells
ml

P (0) 0pg
ml

G(0) 0pg
ml

I(0) 7.70×103pg
ml

F (0) 0pg
ml

The corresponding nondimensional version of the initial conditions can be ob-

tained from Table 3.1 by using the nondimensionalization in Table 2.6 as follows:

T ∗(0) =
T (0)

KT

=
9.60× 10−4

7.7× 107
= 1.25× 10−11

N∗(0) =
N(0)

KT

=
1.23× 107

7.7× 107
= .16
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K∗(0) =
K(0)

KT

=
2.30× 107

7.7× 107
= .30

E∗(0) =
E(0)

KT

= 0

P ∗(0) =
P (0)

KP

= 0

G∗(0) =
G(0)

KG

= 0

I∗(0) =
I(0)

KI

=
I(0)
lIs
dI

=
I(0)dI
lIs

=
(7.7× 103)(10)

(1)(7.7× 104)
= 1

F ∗(0) =
F (0)

KF

= 0

These are summarized in Table 3.2.

Table 3.2: Nondimensional Version of Initial Conditions

Variable Initial Value
T ∗(0) 1.25× 10−11

N∗(0) .16
K∗(0) .30
E∗(0) 0
P ∗(0) 0
G∗(0) 0
I∗(0) 1
F ∗(0) 0
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3.2 Preliminary Numerical Results

The system appears to be stiff. Stiffness is a phenomenon sometimes exhibited by a

system when some of its components are changing much more rapidly than others.

In order to accurately solve the equations of such a system using classical numerical

methods, it is necessary to take an extremely small integration step size, slowing down

the calculations tremendously. In these cases, an adaptive step size integrator should

be used. A numerical integration method of this type varies the step size as necessary.

For instance, a small step size is used during periods of rapid change and a larger

step size is used during periods of slower change. Due to the apparent stiffness of the

system, it became necessary to use the adaptive stepsize integrator Gear, available in

XPPAUT.

Numerical results based on the original system (2.1) revealed that either of sev-

eral parameters had to be varied (sometimes several orders of magnitude) to obtain

sustained tumor growth. One such parameter in question, half-saturation constant

gT (refer to Figure 3.1), is suspected of possibly being wrong for two reasons. First,

it was estimated from a generic model [3] and not calculated for this model specifi-

cally. Second, the law of mass action does not apply initially, since the model begins

with only one tumor cell (9.60×10
−4cells

ml
) in the entire BM and many immune cells

distributed over the entire BM. So the tumor and immune cells are not uniformly

distributed throughout the BM . Therefore, the last term

dT (K + E)T

gT + T
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in the first equation in system (2.1) was modified. Suppose the units of K, E and T

are cells rather than cell densities. Then, a way in which to obtain a more realistic

result will be as follows. Since immune cells are restricted by the speed at which they

can move, not all cells in the BM attack the tumor simultaneously. Only cells within

a small volume surrounding the tumor cell can attack it in one day. According to

[53], page 496, leukocytes move 2− 20 µm
min

. If we let

r =
2× 10−6m

min
= .29

cm

day

and

V =
4

3
π(.29)3 = .10cm3

then only immune cells within this volume surrounding the tumor cell can attack the

cell in one day. So the fraction of BM cells that can attack each tumor cell in one

day is

V

VBM
=

.10ml

1042ml
= 9.6× 10−5

So initially, we want to replace K + E by 9.6 × 10−5(K + E) to reduce the number

of immune cells that attack the tumor cell. Replacing gT in the denominator by

1

9.6× 10−5
gT = (1.04× 104)(1× 105 cells

ml
) = 1.04× 109 cells

ml

has the desired effect, and when T is large, this change is negligible.

This value is of the same order of magnitude as a value such as 3.5 × 109 or

5× 109 which gives sustained tumor growth according to the numerical experiments



68

that were performed, as indicated in Figure 3.1. Since there is no way to medically

determine the time it takes for the sharp increase in T starting from the time that the

first tumor cell appears, we cannot determine which value gives a more biologically

realistic result. When gT = 3.4 × 109, the figure seems to indicate that there is no

tumor growth. However, calculating the equilibria using Maple (done in greater detail

later) yields a positive tumor equilibrium of T = 5.924491790 × 107. So decreasing

gT delays the increase of T . However, gT has a threshold effect on T . Performing the

same equilibria calculation using gT = 1×105 results in no positive tumor equilibrium

and hence no tumor growth. From this point on, we chose to use

gT = 5× 109 cells

ml

Figure 3.1: Plot of T versus time t for various values of gT , using system (2.1).

Other numerical tests showed the expected behavior of the system. For instance,

Figure 3.2 shows an initial increase in the number or E cells as the immune system

tries to fight the tumor, followed by a decrease in the number of E cells due to an

increase in M-protein. Also shown is a decrease in IFN − γ (F ) as the immune

system tries to fight the tumor, followed by a decrease in IFN − γ due to the effects
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of tumor-derived glycolipids (G) and M-protein (P ). Interestingly, the reduction in

IFN − γ production due to the tumor-derived glycolipids (which cause a disfunction

in the ability of NKT cells to produce IFN − γ) is not as significant as expected.

This is probably due to the fact that other immune cells also produce IFN − γ.

However, the reduction in the number of E cells due to the increase in M-protein

causes a more significant drop in the production of IFN − γ.

Repeating the same numerical tests on the nondimensional system (2.12) revealed

no change in the qualitative behavior of the system.
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Figure 3.2: Plots of T , N , K, E, P , G, I, and F versus time t, using system (2.1).

3.3 Reduction of the Original System

In order to work with the system analytically, the number of equations must first be

reduced. We will begin by working with the original system (2.1). Note that the
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fifth and sixth equations are simple compared to the rest. Assuming that they are at

equilibrium should not affect the outcome much, other than perhaps causing the loss

of the built-in time delay, so events might occur at an earlier time, but the behavior

should remain qualitatively the same. We will assume that both equations are at

equilibrium and perform numerical tests to see if these assumptions are valid. This

gives

dP

dt
= lPT − dPP = 0 =⇒ P =

lP
dP
T (3.1)

and

dG

dt
= lGT − dGG = 0 =⇒ G =

lG
dG
T (3.2)

This will eliminate the fifth and sixth equations of the system.

Substituting (3.1) and (3.2) into the fourth and eighth equations of system (2.1) gives

dE

dt
=

kKEF

(eKE + F )(1 + βlP
dP
T )
− dEE (3.3)

and

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αlG
dG
T
K + E

)
T − dFF (3.4)
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Making these changes in system (2.1) gives rise to the following simpler system:



dT

dt
=

kT I

eT + I

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

dN

dt
= lN

(
1− N

KN

− T

KT

)

dK

dt
= rK

(
1− K

KK

)
K +

kKEF

eKE + F

dE

dt
=

kKEF

(eKE + F )(1 + βlP
dP
T )
− dEE

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αlG
dG
T
K + E

)
T − dFF

(3.5)

Numerical tests revealed no change in the qualitative behavior of the above re-

duced system.
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Next, we will compare time scales using nondimensional system (2.12) to see if a

time scale argument can be used to justify applying a pseudo-equilibrium hypothesis

(assuming that some processes reach equilibrium much sooner that others) in order

to reduce the system further. After substituting parameter values into the nondimen-

sional system (2.12) using Maple, we obtain the following:
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

dT ∗

dt∗
=
I∗(1− T ∗ −N∗)T ∗

2.597402597 + I∗
− 2.272727273(K∗ + E∗)T ∗

64.93506494 + T ∗

dN∗

dt∗
= .00002904368358− .0001818181818N∗ − .00002904368358T ∗

dK∗

dt∗
= .2045454545(1− 3.347826087K∗)K∗ +

.2550177096F ∗

3.927272727× 10−8 + F ∗

dE∗

dt∗
=

.2550177096F ∗

(3.927272727× 10−8 + F ∗)(1 + 1.000277304P ∗)
− .06818181818E∗

dP ∗

dt∗
= .2663636364T ∗ − .2663636364P ∗

dG∗

dt∗
= .6431818182T ∗ − .6431818182G∗

dI∗

dt∗
= 22.72727273 +

159.0909091T ∗

.00001298701299 + T ∗
− 22.72727273I∗

dF ∗

dt∗
=

4.909090909T ∗
(
K∗

3
+

K∗

3 + 96.83715900G∗
+ E∗

)
.00001298701299 + T ∗

− 4.909090909F ∗

(3.6)

From these results, it seems that some processes are occurring at a faster rate than

others. This is partly responsible for the stiffness observed in the system. Therefore,

we can apply a pseudo-equilibrium hypothesis by assuming that the faster processes
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are at equilibrium, since they reach equilibrium at an earlier time than the slower

processes. However, since we want to study the interaction between the cancer cells

and the immune system, we want to keep the equations for tumor cells T and for

immune cells K and E in our system. Therefore, we will only eliminate the I and F

equations by assuming that the last two equations of the original system (2.1) are at

equilibrium. As before, once these changes are applied, numerical tests are performed

on the resulting system to make sure that it still behaves the same qualitatively.

Finding the equilibrium values of these equations gives

dI

dt
= lI

(
1 +

7T

eI + T

)
s− dII = 0 =⇒ I =

lI
dI

(
1 +

7T

eI + T

)
s (3.7)

dF

dt
=

lF
eF + T

(
1

3
K +

1

3

1

1 + αG
K + E

)
T − dFF = 0

=⇒ F =
lF

dF (eF + T )

(
1

3
K +

1

3

1

1 + αG
K + E

)
T (3.8)
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Next, these results are substituted into the first, third and fourth equations of

system (2.1). Substituting (3.7) into the first equation gives

dT

dt
=

kT
lI
dI

(
1 +

7T

eI + T

)
s

eT +
lI
dI

(
1 +

7T

eI + T

)
s

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

=

kT
lI
dI

(
eI + 8T

eI + T

)
s

eT +
lI
dI

(
eI + 8T

eI + T

)
s

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

=

kT
lI
dI

(
eI + 8T

eI + T

)
s

lI
dI

(
eI + 8T

eI + T

)[
eTdI
slI

(
eI + T

eI + 8T

)
+ 1

]
s

(
1− T +N

KT

)
T − dT (K + E)T

gT + T

=
kT

eTdI
slI

(
eI + T

eI + 8T

)
+ 1

(
1− T +N

KT

)
T − dT (K + E)T

gT + T
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Substituting (3.8) into the third equation gives

dK

dt
= rK

(
1− K

KK

)
K +

kKElF
dF (eF + T )

(
1

3
K +

1

3

1

1 + αG
K + E

)
T

eKE +
lF

dF (eF + T )

(
1

3
K +

1

3

1

1 + αG
K + E

)
T

= rK

(
1− K

KK

)
K +

kKElF
dF (eF + T )

(
2K + αGK + 3E + 3αGE

3(1 + αG)

)
T

eKE +
lF

dF (eF + T )

(
2K + αGK + 3E + 3αGE

3(1 + αG)

)
T

= rK

(
1− K

KK

)
K +

kKElF
dF (eF + T )

(
2K + αGK + 3E + 3αGE

3(1 + αG)

)
T

lF
dF (eF + T )

(
2K + αGK + 3E + 3αGE

3(1 + αG)

)[
3eKEdF (eF + T )(1 + αG)

lF (2K + αGK + 3E + 3αGE)
+ T

]

= rK

(
1− K

KK

)
K +

kKET

3eKEdF (eF + T )(1 + αG)

lF (2K + αGK + 3E + 3αGE)
+ T

= rK

(
1− K

KK

)
K +

kKET

3eKEdF (eF + T )
(

1 + αlG
dG
T
)

lF

(
2K + αlG

dG
TK + 3E + 3αlG

dG
TE
) + T

by substituting (3.2) for G as in system (3.5)
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Substituting (3.8) into the fourth equation, proceeding as we did above, and then

substituting (3.1) for P as in system (3.5) gives

dE

dt
=

kKET(
1 + βlP

dP
T
) 3eKEdF (eF + T )

(
1 + αlG

dG
T
)

lF

(
2K + αlG

dG
TK + 3E + 3αlG

dG
TE
) + T


− dEE

As mentioned earlier, as a person ages, the number of plasma cells increases slower

and levels off later in life. Since the model assumes that the onset of the disease oc-

curs at 70 years of age, the carrying capacity is reached at 84 years of age, and the

plasma cell density increases slowly and levels off at these ages, we can assume that

the plasma cell density is at equilibrium. Therefore, the number of equations can be

reduced further by assuming that the second equation of system (3.5) is at equilib-

rium. This gives

dN

dt
= lN

(
1− N

KN

− T

KT

)
= 0 =⇒ N = KN −

KN

KT

T (3.9)
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Substituting (3.9) into the first equation gives

dT

dt
=

kT
eTdI
slI

(
eI + T

eI + 8T

)
+ 1

(
1−

T + (KN − KN
KT
T )

KT

)
T − dT (K + E)T

gT + T

=
kT

eTdI
slI

(
eI + T

eI + 8T

)
+ 1

(
1− T

KT

− KN

KT

+
KN

K2
T

T

)
T − dT (K + E)T

gT + T

Having eliminated the I, F and N from the already reduce system (3.5) yields

the following reduced system of four equations:



dT

dt
=

kT
eTdI
slI

(
eI + T

eI + 8T

)
+ 1

(
1− T

KT

− KN

KT

+
KN

K2
T

T

)
T − dT (K + E)T

gT + T

dK

dt
= rK

(
1− K

KK

)
K +

kKET

3eKEdF (eF + T )
(

1 + αlG
dG
T
)

lF

(
2K + αlG

dG
TK + 3E + 3αlG

dG
TE
) + T

dE

dt
=

kKET(
1 + βlP

dP
T
) 3eKEdF (eF + T )

(
1 + αlG

dG
T
)

lF

(
2K + αlG

dG
TK + 3E + 3αlG

dG
TE
) + T


− dEE

(3.10)
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Again, numerical tests revealed no change in the qualitative behavior of the above

reduced system.

3.4 Nondimensionalization of the Reduced System

Using the nondimensionalization in Table 2.6, we get the following:

t∗ = kT t =⇒ t =
1

kT
t∗ =⇒ d

dt∗
=

d

dt

dt

dt∗
=

1

kT

d

dt
=⇒ d

dt
= kT

d

dt∗

T ∗ =
T

KT

=⇒ T = KTT
∗ =⇒ dT

dt
= KT

dT ∗

dt
= kTKT

dT ∗

dt∗

K∗ =
K

KT

=⇒ K = KTK
∗ =⇒ dK

dT
= KT

dK∗

dt
= kTKT

dK∗

dt∗

E∗ =
E

KT

=⇒ E = KTE
∗ =⇒ dE

dt
= KT

dE∗

dt
= kTKT

dE∗

dt∗

Substituting these values into the first equation of the reduced system (3.10) gives

kTKT
dT ∗

dt∗
=

kT
eTdI
slI

(
eI +KTT

∗

eI + 8KTT ∗

)
+ 1

(
1− T ∗ − KN

KT

+
KN

KT

T ∗
)
KTT

∗

−dTK
2
T (K∗ + E∗)T ∗

gT +KTT ∗
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=⇒ dT ∗

dt∗
=

1

eTdI
slI

(
eI +KTT

∗

eI + 8KTT ∗

)
+ 1

(
(1− KN

KT

)− (1− KN

KT

)T ∗
)
T ∗

−dTKT (K∗ + E∗)T ∗

kT (gT +KTT ∗)

The third equation of system (3.10) becomes

kTKT
dK∗

dt∗
= rK

(
1− KTK

∗

KK

)
KTK

∗+

kKEKTT
∗

3eKEdF (eF +KTT
∗)
(

1 + αlG
dG
KTT

∗
)

lFKT

(
2K∗ + αlG

dG
KTT ∗K∗ + 3E∗ + 3αlG

dG
KTT ∗E∗

) +KTT
∗

=⇒ dK∗

dt∗
=
rK
kT

(
1− KT

KK

K∗
)
K∗+

kKET
∗

3kT eKEdF (eF +KTT
∗)
(

1 + αlGKT
dG

T ∗
)

lFKT

(
2K∗ + αlGKT

dG
T ∗K∗ + 3E∗ + 3αlGKT

dG
T ∗E∗

) + kTKTT
∗
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The fourth equation of system (3.10) becomes

kTKT
dE∗

dt∗
=

kKEKTT
∗

(
1 + βlP

dP
KTT ∗

) 3eKEdF (eF +KTT
∗)
(

1 + αlG
dG
KTT

∗
)

lFKT

(
2K∗ + αlG

dG
KTT ∗K∗ + 3E∗ + 3αlG

dG
KTT ∗E∗

) +KTT
∗



−dEKTE
∗

=⇒ dE∗

dt∗
=

kKET
∗

(
1 + βlPKT

dP
T ∗
) 3kT eKEdF (eF +KTT

∗)
(

1 + αlGKT
dG

T ∗
)

lFKT

(
2K∗ + αlGKT

dG
T ∗K∗ + 3E∗ + 3αlGKT

dG
T ∗E∗

) + kTKTT
∗



−dE
kT
E∗
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The resulting equations give the following nondimensional reduced system:



dT ∗

dt∗
=

(
(1− KN

KT
)− (1− KN

KT
)T ∗
)
T ∗

eT dI
slI

(
eI +KTT

∗

eI + 8KTT ∗

)
+ 1

− dTKT (K∗ + E∗)T ∗

kT (gT +KTT ∗)

dK∗

dt∗
=
rK
kT

(
1− KT

KK

K∗
)
K∗+

kKET
∗

3kT eKEdF (eF +KTT
∗)
(

1 + αlGKT
dG

T ∗
)

lFKT

(
2K∗ + αlGKT

dG
K∗T ∗ + 3E∗ + 3αlGKT

dG
E∗T ∗

) + kTKTT
∗

dE∗

dt∗
=

kKET
∗

(
1 + βlPKT

dP
T ∗
) 3kT eKEdF (eF +KTT

∗)
(

1 + αlGKT
dG

T ∗
)

lFKT

(
2K∗ + αlGKT

dG
K∗T ∗ + 3E∗ + 3αlGKT

dG
E∗T ∗

) + kTKTT
∗



−dE
kT
E∗

(3.11)
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Once again, numerical tests revealed no change in the qualitative behavior of the

above reduced system.

The complex fractions in system (3.11) will be simplified to make the equations

easier to handle analytically.

dT ∗

dt∗
=

(
(1− KN

KT
)− (1− KN

KT
)T ∗
)
T ∗

eTdI(eI +KTT
∗) + slI(eI + 8KTT

∗)

slI(eI + 8KTT ∗)

− dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

=
slI(eI + 8KTT

∗)
(

(1− KN
KT

)− (1− KN
KT

)T ∗
)
T ∗

eTdI(eI +KTT ∗) + slI(eI + 8KTT ∗)

−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

=
(slIeIT

∗ + 8slIKTT
∗2)
(

(1− KN
KT

)− (1− KN
KT

)T ∗
)

eTdIeI + eTdIKTT ∗ + slIeI + 8slIKTT ∗

−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

=
slIeI(1− KN

KT
)T ∗ − slIeI(1− KN

KT
)T ∗2 + 8slIKT (1− KN

KT
)T ∗2 − 8slIKT (1− KN

KT
)T ∗3

eI(eTdI + slI) + (eTdI + 8slI)KTT ∗
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−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

=


slIeIT

∗ − slIeIKN
KT

T ∗ − slIeIT ∗2 + slIeIKN
KT

T ∗2 + 8slIKTT
∗2 − 8slIKNT

∗2

−8slIKTT
∗3 + 8slIKNT

∗3


eI(eTdI + slI) + (eTdI + 8slI)KTT

∗

−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

=
slIeI(1− KN

KT
)T ∗ + slI(

eIKN
KT
− eI + 8KT − 8KN)T ∗2 + 8slI(KN −KT )T ∗3

eI(eTdI + slI) + (eTdI + 8slI)KTT ∗

−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗
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dK∗

dt∗
=

rK
kT
K∗ − rKKT

kTKK

K∗2 +

kKET
∗


3kT eKEdF (eF +KTT

∗)
(

1 + αlGKT
dG

T ∗
)

+

lFkTK
2
T

(
2K∗ + αlGKT

dG
K∗T ∗ + 3E∗ + 3αlGKT

dG
E∗T ∗

)
T ∗


lFKT

(
2K∗ +

αlGKT

dG
K∗T ∗ + 3E∗ +

3αlGKT

dG
E∗T ∗

)


=
rK
kT
K∗ − rKKT

kTKK

K∗2 +

kKElFKT

(
2K∗ + αlGKT

dG
K∗T ∗ + 3E∗ + 3αlGKT

dG
E∗T ∗

)
T ∗ 3kT eKEdF

(
eF + αeF lGKT

dG
T ∗ +KTT

∗ +
αlGK

2
T

dG
T ∗2
)

+ 2lFkTK
2
TK

∗T ∗

+
αlF kT lGK

3
T

dG
K∗T ∗2 + 3lFkTK

2
TE
∗T ∗ +

3αlF kT lGK
3
T

dG
E∗T ∗2



=
rK
kT
K∗ − rKKT

kTKK

K∗2+

2kKElFKTK
∗T ∗ +

αkKElF lGK
2
T

dG
K∗T ∗2 + 3kKElFKTE

∗T ∗ +
3αkKElF lGK

2
T

dG
E∗T ∗2

3kT eKEdF eF + 3kT eKEdFKT (αeF lG+dG)
dG

T ∗ +
3αkT eKEdF lGK

2
T

dG
T ∗2 + 2lFkTK

2
TK

∗T ∗

+
αlF kT lGK

3
T

dG
K∗T ∗2 + 3lFkTK

2
TE
∗T ∗ +

3αlF kT lGK
3
T

dG
E∗T ∗2


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Similarly,

dE∗

dt∗
=

2kKElFKTK
∗T ∗ +

αkKElF lGK
2
T

dG
K∗T ∗2 + 3kKElFKTE

∗T ∗ +
3αkKElF lGK

2
T

dG
E∗T ∗2

(
1 +

βlPKT

dP
T ∗
)

3kT eKEdF eF + 3kT eKEdFKT (αeF lG+dG)
dG

T ∗ +
3αkT eKEdF lGK

2
T

dG
T ∗2

+2lFkTK
2
TK

∗T ∗ +
αlF kT lGK

3
T

dG
K∗T ∗2 + 3lFkTK

2
TE
∗T ∗

+
3αlF kT lGK

3
T

dG
E∗T ∗2



−dE
kT
E∗

The nondimensional reduced system can now be written as follows:
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

dT ∗

dt∗
=
slIeI(1− KN

KT
)T ∗ + slI(

eIKN
KT
− eI + 8KT − 8KN)T ∗2 + 8slI(KN −KT )T ∗3

eI(eTdI + slI) + (eTdI + 8slI)KTT ∗

−dTKTK
∗T ∗ + dTKTE

∗T ∗

kTgT + kTKTT ∗

dK∗

dt∗
=
rK
kT
K∗ − rKKT

kTKK

K∗2+

2kKElFKTK
∗T ∗ +

αkKElF lGK
2
T

dG
K∗T ∗2 + 3kKElFKTE

∗T ∗ +
3αkKElF lGK

2
T

dG
E∗T ∗2

3kT eKEdF eF + 3kT eKEdFKT (αeF lG+dG)
dG

T ∗ +
3αkT eKEdF lGK

2
T

dG
T ∗2

+2lFkTK
2
TK

∗T ∗ +
αlF kT lGK

3
T

dG
K∗T ∗2 + 3lFkTK

2
TE
∗T ∗

+
3αlF kT lGK

3
T

dG
E∗T ∗2



dE∗

dt∗
=

2kKElFKTK
∗T ∗ +

αkKElF lGK
2
T

dG
K∗T ∗2 + 3kKElFKTE

∗T ∗ +
3αkKElF lGK

2
T

dG
E∗T ∗2

(
1+

βlPKT
dP

T ∗
)


3kT eKEdF eF + 3kT eKEdFKT (αeF lG+dG)
dG

T ∗ +
3αkT eKEdF lGK

2
T

dG
T ∗2

+2lFkTK
2
TK

∗T ∗ +
αlF kT lGK

3
T

dG
K∗T ∗2 + 3lFkTK

2
TE
∗T ∗

+
3αlF kT lGK

3
T

dG
E∗T ∗2



−dE
kT
E∗

(3.12)
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Group constants together by making the substitutions indicated in Table 3.3.

Table 3.3: Substitutions

u1 = slIeI(1− KN
KT

) u2 = slI(
eIKN
KT
− eI + 8KT − 8KN)

u3 = 8slI(KN −KT ) u4 = eI(eTdI + slI)
u5 = (eTdI + 8slI)KT u6 = dTKT

u7 = kTgT u8 = kTKT

v1 = rK
kT

v2 = rKKT
kTKK

v3 = kKElFKT v4 =
αkKE lF lGK

2
T

dG

v5 = 3kT eKEdF eF v6 = 3kT eKEdFKT (αeF lG+dG)
dG

v7 =
3αkT eKEdF lGK

2
T

dG
v8 = lFkTK

2
T

v9 =
αlF kT lGK

3
T

dG
v10 = βlPKT

dP

v11 = dE
kT

This gives the following simpler-looking system:
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

dT ∗

dt∗
=
u1T

∗ + u2T
∗2 + u3T

∗3

u4 + u5T ∗
− u6K

∗T ∗ + u6E
∗T ∗

u7 + u8T ∗

dK∗

dt∗
= v1K

∗ − v2K∗2+
2v3K

∗T ∗ + v4K
∗T ∗2 + 3v3E

∗T ∗ + 3v4E
∗T ∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2

dE∗

dt∗
=

2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2

(1 + v10T ∗)(v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2)

−v11E∗

(3.13)

Numerical tests revealed no change in the qualitative behavior of the system (see

Figure 3.3).
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Figure 3.3: Plots of T ∗, K∗, and E∗ versus time t∗, using system (3.13). Note that
the quantities have been scaled due to the nondimensionalization

3.5 Equilibria

When solving for equilibria, we must keep in mind that only the equilibria that lie

in a valid region (all variables T,N,K,E, P,G, I, F non-negative, since they repre-

sent densities) are biologically valid. Therefore, when solving the system numerically,

equilibria in which at least one variable is negative will be ignored. Similarly, complex

equilibria will be ignored. Another thing to keep in mind is that due to unavoidable

computational errors, such as roundoff error (error introduced by approximating a

given number by a computer number [111]) and truncation error (error introduced

by approximating a mathematical operation by computations directed by a program

[111]), results obtained using a computer lose accuracy.
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Using Maple to solve system (2.1) in Claim 3.1 which follows, resulted in a total

of nineteen equilibria, only four of which were non-negative real numbers and thus lie

in the valid region. Of these four, one of them was given by Maple as

T̃ = 6.524858265× 107, Ñ = −.0009483347431, K̃ = 0, Ẽ = 0

P̃ = 9.526450510× 109, G̃ = 2.426996466× 107, Ĩ = 61599.30001, F̃ = 0

However, the actual values of T̃ and Ñ should actually be

T̃ = KT = 7.7× 107 and Ñ = 0

Note that substituting these values of T̃ and Ñ , along with the above values of

K̃, Ẽ, P̃ , G̃, Ĩ, F̃ , into system (2.1) results in all derivatives being zero, and is there-

fore a valid equilibrium point. This result agrees with the corresponding equilibrium

T̃ ∗ = 1, K̃∗ = 0, Ẽ∗ = 0 of the nondimensional system (2.12) found in Claim 3.2,

since T ∗ =
T

KT

, so T = KT =⇒ T ∗ = 1.

In the first claim which follows, we will find the equilibria of the original system

(2.1) in case information is lost during the simplification process. Then, this result can

be used to verify how accurately the nondimensional and/or reduced systems preserve

the qualities of the original system. Only equilibria where T̃ , Ñ , K̃, Ẽ, P̃ , G̃, Ĩ, F̃ ≥ 0

need to be considered.
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Claim 3.1 System (2.1), with parameter values from Table 2.2 (with gT = 5× 109),

contains the following four valid equilibria:

1. T̃ = 0, Ñ = 1.23× 107, K̃ = 2.3× 107,

Ẽ = 0, P̃ = 0, G̃ = 0, Ĩ = 7700, F̃ = 0

2. T̃ = 7.7× 107, Ñ = 0, K̃ = 0, Ẽ = 0,

P̃ = 9.526450510× 109, G̃ = 2.426996466× 107,

Ĩ = 61599.30001, F̃ = 0 (see above explanation)

3. T̃ = 0, Ñ = 1.23× 107, K̃ = 0,

Ẽ = 0, P̃ = 0, G̃ = 0, Ĩ = 7700, F̃ = 0

4. T̃ = 6.524858265× 107, Ñ = 1.877174457× 106,

K̃ = 5.987613009× 107, Ẽ = 1.558762754× 108,

P̃ = 8.072563553× 109, G̃ = 2.056598435× 107,

Ĩ = 6.159917394× 104, F̃ = 2.292678211
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Proof: Substitute parameter values into system (2.1) and set the equations equal

to zero.



.44I(1− 1.298701299× 10−8T − 1.298701299× 10−8N)T

2× 104 + I
− (K + E)T

5× 109 + T
= 0

983.77− 7.998130081× 10−5N − 1.277623377× 10−5T = 0

.09(1− 4.347826087× 10−8K)K +
8.64× 106F

70 + F
= 0

8.64× 106F

(70 + F )(1 + 1.05× 10−10P )
− .03E = 0

14.5T − .1172P = 0

.0892T − .283G = 0

7.7× 104 +
5.39× 105T

1000 + T
− 10I = 0

50

(
K

3
+

K

3 + 3.99× 10−6G
+ E

)
T

1000 + T
− 2.16F = 0

(3.14)

Solving 1 the above system of equations results in the four valid equilibria stated in

the claim. �
1Maple was used to aid in some of the calculations.
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The first equilibrium is a tumor-free steady state of the system and is a good

starting point for the model. It can be interpreted medically as the initial state of a

healthy patient before the disease. It shows that the number of adaptive immune cells

E is 0 because those adaptive immune cells that are circulating in the body at the

onset of the disease do not recognize the cancer cells and can be disregarded. Only the

new E cells are specifically created to target the cancer cells. The K̃ corrresponding

to this equilibrium is the value used for K(0).

The fourth equilibrium is tumor-positive. This equilibrium agrees with the plots

in Figure 3.2.

As mentioned in Section 1.3, MGUS is characterized by an increase in M-protein

due to an increase in plasma cells. As mentioned in Chapter 2, not all patients with

MGUS develop MM (only a small fraction do). However, a person with more than

10% plasma cells is characterized as having MM. This is equivalent to a plasma cell

density of 7.7 × 107, as calculated in Section 2.2. The above tumor-positive equilib-

rium gives a total plasma cell density (T and N cells) of approximately 6.7 × 107,

which is less than this amount. Therefore, the above tumor-positive equilibrium can

be interpreted as the person having MGUS.

The original system (2.1) contains eight equations and is too complicated to make

studying the above equilibria possible. Therefore, to analyze the stability of the equi-

libria, it will be necessary to work with a simpler system.
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Next, we find the equilibria of the full nondimensional system (2.12).

Claim 3.2 System (2.12), with parameter values from Table 2.2 (with gT = 5×109),

contains the following four valid equilibria:

1. T̃ ∗ = 0, Ñ∗ = .1597402597, K̃∗ = .2987012987,

Ẽ∗ = 0, P̃ ∗ = 0, G̃∗ = 0, Ĩ∗ = 1, F̃ ∗ = 0

2. T̃ ∗ = 1, Ñ∗ = 0, K̃∗ = 0, Ẽ∗ = 0, P̃ ∗ = 1,

G̃∗ = 1, Ĩ∗ = 7.999909092, F̃ ∗ = 0

3. T̃ ∗ = 0, Ñ∗ = .1597402597, K̃∗ = 0,

Ẽ∗ = 0, P̃ ∗ = 0, G̃∗ = 0, Ĩ∗ = 1, F̃ ∗ = 0

4. T̃ ∗ = .8473841904, Ñ∗ = .02437888906,

K̃∗ = .7776120792, Ẽ∗ = 2.024367213,

P̃ ∗ = .8473841904, G̃∗ = .8473841904,

Ĩ∗ = 7.999892719, F̃ ∗ = 2.292678211



97

Proof: Substitute parameter values into system (2.12) and set the equations equal

to zero.



I∗(1− T ∗ −N∗)T ∗

2.597402597 + I∗
− 2.272727273(K∗ + E∗)T ∗

64.93506494 + T ∗
= 0

2.904368358× 10−5 − 1.818181818× 10−4N∗ − 2.904368358× 10−5T ∗ = 0

.2045454545(1− 3.347826087K∗)K∗ +
.2550177096F ∗

3.927272727× 10−8 + F ∗
= 0

.2550177096F ∗

(3.927272727× 10−8 + F ∗)(1 + 1.000277304P ∗)
− .06818181818E∗ = 0

.2663636364T ∗ − .2663636364P ∗ = 0

.6431818182T ∗ − .6431818182G∗ = 0

22.72727273 +
159.0909091T ∗

1.298701299× 10−5 + T ∗
− 22.72727273I∗ = 0

4.909090909T ∗
(
K∗

3
+

K∗

3 + 96.83715900G∗
+ E∗

)
1.298701299× 10−5 + T ∗

− 4.909090909F ∗ = 0

(3.15)

Solving 2 the above system of equations results in the four valid equilibria stated in

the claim. �
2Maple was used to aid in some of the calculations.
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The accuracy of these results were verified several ways. First, the nondimension-

alization in Table 2.6 that was used before was applied to the equilibria found for the

original system in Claim 3.1 and values very close to these were obtained. Then, these

equilibrium values were substituted into the equations of system (2.12) and results

very close to zero were obtained, indicating that they are indeed equilibria (taking

into account the fact that some computational error will always exist, as mentioned

earlier).

Next, we find the equilibria of the nondimensional reduced system (3.13).

Claim 3.3 System (3.13), with parameter values from Table 2.2 (with gT = 5×109),

contains the following four valid equilibria:

1. T̃ ∗ = 0, K̃∗ = .2987012986, Ẽ∗ = 0

2. T̃ ∗ = 1, K̃∗ = 0, Ẽ∗ = 0

3. T̃ ∗ = 0, K̃∗ = 0, Ẽ∗ = 0

4. T̃ ∗ = .8473841905, K̃∗ = .7776120789, Ẽ∗ = 2.024367212

Proof: Substitute parameter values into system (3.13) and set the equations equal

to zero.
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

6.47× 107T ∗ + 3.985513530× 1013T ∗2 − 3.98552× 1013T ∗3

2.77× 108 + 6.2832× 1013T ∗
−

7.7× 107K∗T ∗ + 7.7× 107E∗T ∗

2.2× 109 + 3.388× 107T ∗
= 0

.2045454545K∗ − .6847826087K∗2+


6.6528× 1016K∗T ∗ + 1.073730419× 1018K∗T ∗2

+9.9792× 1016E∗T ∗ + 3.221191257× 1018E∗T ∗2




1.99584× 105 + 1.537441038× 1010T ∗

+4.960634538× 1011T ∗2 + 2.60876× 1017K∗T ∗

+4.210415117× 1018K∗T ∗2 + 3.91314× 1017E∗T ∗

+1.263124535× 1019E∗T ∗2



= 0


6.6528× 1016K∗T ∗ + 1.073730419× 1018K∗T ∗2

+9.9792× 1016E∗T ∗ + 3.221191257× 1018E∗T ∗2



(1 + 1.000277304T ∗)



1.99584× 105 + 1.537441038× 1010T ∗

+4.960634538× 1011T ∗2 + 2.60876× 1017K∗T ∗

+4.210415117× 1018K∗T ∗2 + 3.91314× 1017E∗T ∗

+1.263124535× 1019E∗T ∗2



−.06818181818E∗ = 0

(3.16)
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Solving 3 the above system of equations results in the four valid equilibria stated in

the claim. �

The accuracy of these results were verified several ways. First, the above equilib-

ria was compared with the equilibria found in Claim 3.2 for the full nondimensional

system (2.12) and the values were very close. Then, these equilibrium values were

substituted into the equations of system (3.13) and results very close to zero were

obtained. Also, note that these equilibria agree with the plots in Figure 3.3.

Therefore, the nondimensional reduced system (3.13) together with its equilibria

just found above in Claim 3.3 will be used in the sability analysis which follows.

Another advantage to working with the reduced system, besides making it eas-

ier to handle analytically, is that being three-dimensional makes it possible to plot

null-surfaces. By the T , K and E null-surface (asterisks omitted to simplify the

notation), we mean the surface generated by plotting the values of T ∗, K∗ and E∗,

where
dT ∗

dt∗
= 0,

dK∗

dt∗
= 0 and

dE∗

dt∗
= 0, respectively. The intersection of all three

null-surfaces indicates where equilibria exist (see Figure 3.4). The plot of the inter-

section of all three null-surfaces in still somewhat difficult to interpret. To simplify

this, we can consider the intersection of two null-surfaces at a time. There are three

possible pairs. Each intersection of two null-surfaces results in one or more curves in

three-dimensional space.

3Maple was used to aid in some of the calculations.
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Therefore, the points where these resulting three sets of curves intersect correspond

to equilibrium points (see Figure 3.5). Figures 3.4 and 3.5 agree with the equilibria

obtained in Claim 3.3.

Figure 3.4: Plots of T , K and E null-surfaces of system (3.13) and the intersection
of all three, which indicates where equilibria exist, generated using Maple. Some
points which lie on an axis, such as (T ∗, K∗, E∗) = (T ∗, 0, 0) and (0, 0, E∗) on the K
null-surface and (T ∗, K∗, E∗) = (T ∗, 0, 0) and (0, K∗, 0) on the E null-surface, do not
clearly appear on the graphs.

3.6 Stability Analysis

Consider the following notation:

~X = (T ∗, K∗, E∗)T
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Figure 3.5: Plots of resulting curves from intersections of pairs of null surfaces from
Figure 3.4, generated using Maple. The intersection of all three graphs indicates
where equilibria exist. Point (T ∗, K∗, E∗) = (1, 0, 0) does not clearly appear on the
graphs.

~f( ~X) = (f1( ~X), f2( ~X), f3( ~X))T

where the T superscript indicates transpose and

f1 =
u1T

∗ + u2T
∗2 + u3T

∗3

u4 + u5T ∗
− u6K

∗T ∗ + u6E
∗T ∗

u7 + u8T ∗
,

f2 = v1K
∗ − v2K∗2+

2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2
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and

f3 =
2v3K

∗T ∗ + v4K
∗T ∗2 + 3v3E

∗T ∗ + 3v4E
∗T ∗2

(1 + v10T ∗)(v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2)

−v11E∗

Using the above notation, system (3.13) can be written

~̇X = ~f( ~X), (3.17)

where the dot denotes differentiation.

In order to determine the local stability of the nonlinear system (3.17) (and hence

system (3.13)) at each equilibrium point, the system must first be linearized by cal-

culating the Jacobian matrix J = (aij), where aij =
∂fi
∂Xj

and i, j ∈ {1, 2, 3}, and

evaluating it at each equilibrium value.

By Hartman’s Theorem (see [81]), in a small neighborhood about a hyperbolic

(eigenvalues of J |(T̃ ∗,K̃∗,Ẽ∗) have nonzero real parts) equilibrium point (T̃ ∗, K̃∗, Ẽ∗),

the phase portraits of the nonlinear system (3.17) and the linearized system

~̇X = A ~X ,

where
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A = J |(T̃ ∗,K̃∗,Ẽ∗) ,

are qualitatively equivalent.

Therefore, the local stability of system (3.13) can be determined by looking at the

eigenvalues λ of A. The eigenvalues are found by solving the characteristic equation

det(A − λI) = ~0 for λ. By substituting each eigenvalue λ into (A − λI)~v = ~0, the

corresponding eigenvector ~v can be obtained.

For each eigenvalue, the corresponding eigenvector gives information on the direc-

tion of the stable (if λ < 0) or unstable (if λ > 0) subspace of the linearized system. In

a small neighborhood about each equilibrium point, the stable and unstable manifolds

of the nonlinear system are tangent to the stable and unstable subspaces, respectively.

Proposition 3.1 The local stability of the equilibria (T̃ ∗, K̃∗, Ẽ∗) given in Claim 3.3

and pertaining to system (3.13) is as follows:

1. (0,.2987012986,0) is a saddle point.

2. (1,0,0) is a saddle point.

3. (0,0,0) is a saddle point.

4. (.8473841905,.7776120789,2.024367212) is a stable node.

Proof: Solve for and evaluate 4 the Jacobian at each equilibrium point and find the

corresponding eigenvalues to determine the stability of each equilibrium.

4Matlab was used to aid in some of the calculations.
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1. J |(0,.2987012986,0)=


.2231194617692166 0 0

9.956709953333331× 1010 −.2045454544067193 0

9.956709953333331× 1010 0 −.06818181818181818


The matrix is triangular, so the eigenvalues are the diagonal entries. The eigen-

values and corresponding eigenvectors of the linearized system are

λ1 = −.06818181818181818 < 0, ~v1 = (0, 0, 1)T

λ2 = −.2045454544067193 < 0, ~v2 = (0, 1, 0)T

λ3 = .2231194617692166 > 0,

~v3 = (2.418034022990183× 10−12, .5629562424592380, .8264867022984553)T

The eigenvalues λ1, λ2 < 0 and λ3 > 0, so the equilibrium is a saddle point.

2. J |(1,0,0)=


−.6343119588042305 −.03446917470947410 −.03446917470947410

0 2.229514392625560× 106 6.493422163348529× 106

0 1.114602552303918× 106 3.246260913313697× 106


The eigenvalues and corresponding eigenvectors are
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λ1 = −.6343119588042305 < 0, ~v1 = (1, 0, 0)T

λ2 = .0935019357129931 > 0,

~v2 = (.02940069473617550,−.9453940772606504, .3246007360273754)T

λ3 = 5.475775212437321× 106 > 0,

~v3 = (8.445268167641915×10−9,−.8944519985834053,−.4471639768923160)T

The eigenvalues λ1 < 0 and λ2, λ3 > 0, so the equilibrium is a saddle point.

3.

J |(0,0,0)=


.2335740072202166 0 0

0 .2045454545454546 0

0 0 −.06818181818181818


The eigenvalues and corresponding eigenvectors are

λ1 = −.06818181818181818 < 0, ~v1 = (0, 0, 1)T

λ2 = .2045454545454546 > 0, ~v2 = (0, 1, 0)T
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λ3 = .2335740072202166 > 0, ~v3 = (1, 0, 0)T

The eigenvalues λ1 < 0 and λ2, λ3 > 0, so the origin is a saddle point.

4. J |(.8473841905,.7776120789,2.024367212)=


a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = −.5362583205138792

a12 = −.02927639797282682

a13 = −.02927639797282682

a21 = −1.975175578650124× 10−11

a22 = −.8604450006818201

a23 = 1.905322649653485× 10−9

a31 = −.07472498343299178

a32 = 3.558675680526147× 10−10

a33 = −.06818181715058691
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The eigenvalues and corresponding eigenvectors are

λ1 = −.5408863245448642 < 0,

~v1 = (.9877348054682283, 8.699157782163793× 10−10, .1561408148647922)T

λ2 = −.06355381313417109 < 0,

~v2 = (.06181538238174657,−2.387904275840206×10−9,−.9980876006147950)T

λ3 = −.8604450006672509 < 0,

~v3 = (−.09070422940445617,−.9958411286164547,−.008555075923067444)T

The eigenvalues λ1, λ2, λ3 < 0, so the equilibrium is a stable node.

�

Refer to Figure 3.6, where several trajectories corresponding to system (3.13),

have been plotted.
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Figure 3.6: Plot of several trajectories of system (3.13) generated using XPPAUT.
The arrows indicate the direction of the flow. The initial values off the coordinate axes
are (T ∗, K∗, E∗)=(0,.9,2.7), (0,.75,1), (0,.1,1), (0,.1,3.9), (.9,.1,3), (.9,.1,.5), (.2,.01,1),
(.1,.5,.1), (.1,.9,1.5), (.1,.9,3.9), and (.9,.9,3.9).

3.7 The Effects of Varying Parameters

To facilitate calculating equilibria and their stability, the nondimensional reduced

system (3.13) will be used from now on. In this system, parameters were grouped

together to simplify the notation. the u′s and v′s have the original parameters em-

bedded in them. When parameters are varied in the discussion which follows, we

refer to the original parameters and let the computer do the necessary substitutions

into the u′s and v′s of the system.

Certain parameters that are thought to play an important role in the development

of the disease were varied numerically in order to observe how strong of an influence

they have on the dynamics of the system. However, if most parameters are varied

by a large enough amount, something is bound to happen. So the difficulty lies in

determining what is a reasonable amount of variation for each parameter. Assuming
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that the original parameter values used are relatively accurate, we did not want to

vary them so much that they would become medically unrealistic. The following ap-

proach was taken. Unless there was a reason to believe that the original parameter

value was unreliable, such as the case with gT , parameters were only varied a rela-

tively small amount. In the next section, when we search for bifurcations, parameter

values will similarly be restricted to a certain range to make sure they remain realistic.

Each parameter in question was varied and plots of T ∗ vs t∗ were generated, and

when necessary, equilibria were calculated. The results fall into one of three groups.

The first group includes those parameters which have either no perceivable or very

little effect on the system. The following fall into this group:

lF - rate of IFN − γ production by immune cells

lP - M-protein production rate

dP - M-protein degradation rate

lG - tumor-derived glycolipid production rate

dG - tumor-derived glycolipid degradation rate

IFN − γ attracts immune cells to the tumor site. Therefore, when lF was in-

creased, a significant decrease in tumor density was expected. However, this did not
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happen. Even when lF was increased from the default value of 50 to 250, no perceiv-

able change was observed in the plot.

M-protein causes a deletion of certain CD4+T cells and hence is a mechanism

which supports tumor progression. Therefore, we expected that varying lP and dP ,

which control P , would alter the outcome noticeably. Varying these parameters would

require varying β as well, since they are related, as explained later. However, instead

of varying the parameters which control P , we decided to let P be identically zero

(P ≡ 0) in the original system (2.1). This produced very little change (see Figure 3.7).

Figure 3.7: Plots of T vs t resulting from setting P ≡ 0 and G ≡ 0, respectively, in
system (2.1).

Tumor-derived glycolipids cause a disruption in IFN − γ production by NKT

cells. Therefore, we expected that varying lG and dG, which control G, would alter

the outcome noticeably. Varying these parameters would require varying α as well,

since they are related, as explained later. However, as in the case above, we decided

to instead let G be identically zero (G ≡ 0) in the original system (2.1). In this case

also, very little change was observed (see Figure 3.7).
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Surprisingly, it can be concluded from the above numerical experiments that the

production of IFN − γ, M-protein and tumor-derived glycolipids do not play as im-

portant a role in the development of MGUS/MM as expected.

The second group includes those parameters which seem to simply delay or speed

up the time at which the rapid increase in tumor cells occurs. This is important,

since the disease occurs late in life, so a long enough delay in the increase in tumor

cells can be almost as good as a cure. The following parameter falls into this group:

rK - proliferation rate of innate immune system cells

Parameter rK is related to KK as explained in Section 2.1 and this dependency

must be observed if either is varied.

KK = rK
c

, where c > 0

Using the default values KK = 2.30× 107 and rK = .09 gives c = 3.91× 10−9. There-

fore, we get

KK = rK
3.91×10−9 , or equivalently, rK = 3.91× 10−9KK

Increasing rK from its default value of .09 to .45, and hence increasing KK from

2.30× 107 to 1.15× 108, delays the time at which the increase in tumor cells occurs

and the density of tumor cells levels off at a lower number (see Figure 3.8).
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Figure 3.8: Plots of T ∗ vs t∗ resulting from varying parameter rK in system (3.13).

The third group includes those parameters which affect the dynamics significantly

by, for instance, seemingly eliminating or creating an equilibrium in the (non-negative)

valid region. The following parameters fall into this group:

gT - half-saturation constant

dT - rate of destruction of tumor cells by the immune system

kT and KT - proliferation rate and carrying capacity of tumor cells

kKE - recruitment rate of immune cells

lI - rate of IL− 6 production by stromal cells
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The effect that varying gT has on the system was briefly addressed in Section 3.2.

In that section we discussed why the original value used, 1 × 105, was suspected of

being inaccurate and gave reasons why 5 × 109 might be more realistic. Since we

have no medical evidence to support either choice, we will explore the entire range of

possibilities between these two values. A plot of T vs t as gT is varied in the original

system (2.1) is given in Figure 3.1. As gT was decreased from 5×109 to 3.5×109, the

increase in T occurred at a later time. When it was decreased further to 3.4×109, the

tumor growth seemed to be almost 0. And the same occurred when it was decreased

to 1 × 105. However, calculating the equilibria revealed that gT = 3.4 × 109 and

gT = 1× 105 produced different results.

gT = 3.4× 109 gave the following tumor-positive equilibrium:

T̃ = 5.924491790× 107, Ñ = 2.836201424× 106,

K̃ = 5.987613010× 107, Ẽ = 1.627460770× 108,

P̃ = 7.329789331× 109, G̃ = 1.867366317× 107,

Ĩ = 61599.09023, F̃ = 4.247088114× 109

This equilibrium is similar to the one obtained with the default parameter values,

except with this new value of gT , the time at which the rapid increase in tumor cells

occurs is delayed and the density of tumor cells levels off at a lower number.

However, when gT = 1×105, no tumor positive equilibrium exits. So gT has a thresh-

old effect on the density of tumor cells, as suspected.



115

In the next section, when we look for possible bifurcations, this parameter will be

studied in greater detail using the nondimensional reduced system (3.13).

As dT was increased from 1 to 1.4, the increase in T ∗ occurred at a later time.

And when dT was increased to 1.5 or 2, the tumor growth seemed to be almost 0 (see

Figure 3.9).

Figure 3.9: Plots of T ∗ vs t∗ resulting from varying parameter dT in system (3.13).

However, it was not clear if extending the graph far enough would result in T ∗ decreas-

ing to zero eventually or increasing rapidly at some point. Therefore, the equilibria

of the system was calculated as in Claim 3.1 and it was determined that the tumor-

positive equilibrium in question still existed but had a lower tumor density and the

following two new tumor-positive equilibria were obtained:

Equilibria at dT = 1.5:

1. T̃ ∗ = 7.01659550110× 10−12,

K̃∗ = .7725393882,
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Ẽ∗ = 3.676501469

2. T̃ ∗ = 4.01156838110× 10−8,

K̃∗ = .7776111965,

Ẽ∗ = 3.740248389

Similarly, dT = 2 gave the following equilibria:

1. T̃ ∗ = 3.999713833× 10−13,

K̃∗ = .6844998498,

Ẽ∗ = 2.652272201

2. T̃ ∗ = .1145964401× 10−5,

K̃∗ = .7776120504,

Ẽ∗ = 3.740255028

Parameter kT is related to KT as explained in Section 2.1 and this dependency

must be observed if either is varied.

KT = kT
c

, where c > 0

Using the default values KT = 7.7× 107 and kT = .44 gives c = 5.71× 10−9. There-

fore, we get

KT = kT
5.71×10−9 , or equivalently, kT = 5.71× 10−9KT

Also, α and β depend on KT as follows (see Section 2.2):
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α = 32.33dG
lGKT

and

β = dP
lPKT

We have an estimate of how high KT can go. In Section 2.2, we stated that KT can

go as high as 7.68× 108, the bone marrow carrying capacity.

Therefore, increasing KT from a default value of 7.7 × 107 to 7.68 × 108 and hence

kT from .44 to 4.39, α from 1.33 × 10−6 to 1.34 × 10−7 and β from 1.05 × 10−10 to

1.05× 10−11, makes the increase in tumor cells occur earlier and the density of tumor

cells levels off at a higher number (see Figure 3.10). This results in a total bone

marrow plasma cell content of approximately 10%, the threshold that distinguishes

MGUS from MM. So only increasing parameter KT will not result in MM.

Figure 3.10: Plots of T ∗ vs t∗ resulting from varying parameters kT and KT in system
(3.13).
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Next, kT was decreased from .44 to .33 (and the corresponding changes in KT , α and

β were made). This resulted in the increase in T ∗ occurring at a later time. And

when kT was decreased to .3 or .1, the tumor growth seemed to be almost 0 (see

Figure 3.10) . However, it was not clear if extending the graph far enough would

result in T ∗ decreasing to zero eventually or increasing rapidly at some. Therefore,

the equilibria of the system was calculated and it was determined that, when kT = .3,

the tumor-positive equilibrium in question still existed but had a lower tumor density

and, when kT = .1, it disappeared. Also, the tumor-free equilibrium that was origi-

nally at (0, .2987012986, 0) shifted to a higher K∗ density. For both of these values

of kT , the following new tumor-positive equilibria were obtained:

Equilibria at kT = .3 :

1. T̃ ∗ = 1.898034954× 10−12,

K̃∗ = 1.099664608,

Ẽ∗ = 4.981823757

2. T̃ ∗ = 3.561606134× 10−7,

K̃∗ = 1.140497505,

Ẽ∗ = 5.485709575

Letting kT = .1 gave only one new equilibrium:

T̃ ∗ = 2.787639164× 10−13,

K̃∗ = 1.545264235,

Ẽ∗ = .8147151941
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As kKE was increased from 8.64× 106 to 1.3× 107, the increase in T ∗ occurred at

a later time. And when kKE was increased to 1.4× 107 or 1× 108, the tumor growth

seemed to be almost 0 (see Figure 3.11).

Figure 3.11: Plots of T ∗ vs t∗ resulting from varying parameter kKE in system (3.13).

However, it was not clear if extending the graph far enough would result in T ∗ decreas-

ing to zero eventually or increasing rapidly at some point. Therefore, the equilibria

of the system was calculated and it was determined that, when kKE = 1.4× 107, the

tumor-positive equilibrium in question still existed but had a lower tumor density

and, when kKE = 1× 108, it disappeared. For both of these values of kKE the follow-

ing new tumor-positive equilibria were obtained:

Equilibria at kKE = 1.4× 107 :

1. T̃ ∗ = 1.49711272110× 10−12,

K̃∗ = .9207731158,

Ẽ∗ = 5.752773836
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2. T̃ ∗ = 1.29792448210× 10−7,

K̃∗ = .9403893496,

Ẽ∗ = 6.060601677

Letting kKE = 1× 108 gave only one new equilibrium:

T̃ ∗ = 1.227738279× 10−14,

K̃∗ = .9207728820,

Ẽ∗ = 5.752770213

Parameter lI was first increased from its default value of 1 to 5. This resulted in

the increase in tumor cells occurring earlier and the density of tumor cells to level off

at a higher number (see Figure 3.12).

Figure 3.12: Plots of T ∗ vs t∗ resulting from varying parameter lI in system (3.13).
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Next, as lI was decreased from 1 to .62, the increase in T ∗ occurred at a later time.

And when lI was decreased to .6 or .5, the tumor growth seemed to be almost 0 (see

Figure 3.12).

However, it was not clear if extending the graph far enough would result in T ∗ decreas-

ing to zero eventually or increasing rapidly at some point. Therefore, the equilibria of

the system was calculated and it was determined that the tumor-positive equilibrium

in question still existed but had a lower tumor density and the following two new

tumor-positive equilibria were obtained:

Equilibria at lI = .6:

1. T̃ ∗ = 3.791368189× 10−11,

K̃∗ = .7766753865,

Ẽ∗ = 3.728447560

2. T̃ ∗ = 6.470583845× 10−9,

K̃∗ = .7776065957,

Ẽ∗ = 3.740190453

Similarly, lI = .5 gave the following equilibria:

1. T̃ ∗ = 7.444163268× 10−13,

K̃∗ = .7286753968,

Ẽ∗ = 3.146737707

2. T̃ ∗ = 3.902477620× 10−7,

K̃∗ = .7776119904,
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Ẽ∗ = 3.740257098

Therefore, the the parameters, gT , dT , kT (and KT ), kKE and lI need to be ana-

lyzed in greater detail, as they might possibly be bifurcation parameters.

As mentioned earlier, the system has a total of nineteen equilibria. However,

many are not biologically valid because either they lie in a region where at least one

of the variables, T ∗, K∗, or E∗, which represent cell densities, is negative, or the

equilibrium is complex. When certain parameters were varied and two new equilibria

seemed to appear, the total number of equilibria remained at nineteen. The reason is

that by varying the parameters, the two new equilibria which appeared were actually

equilibria which originally resided outside the valid region (with at least one coordi-

nate negative), but as the parameter was varied, the equilibria were translated to the

valid region. Similarly, equilibria which existed with the original parameter values

and seemed to disappear when parameters were varied, actually had shifted outside

the valid region.

In the case of gT , the tumor-positive equilibrium is translated in the direction of

negative T and two new equilibria appear. By varying gT in small decrements, the

movement of the equilibria can be tracked. Also, the stability of the equilibria that

lie in the valid region can be calculated for each value of gT . We will proceed this way

in the next section in an attempt to understand the effect that varying the parameter

has on the system. In doing so, bifurcations can be revealed. The nondimensional re-

duced system (3.13) will continue to be used in the bifurcation analysis which follows.
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3.8 Bifurcation Analysis

We are only concerned with the stability of those equilibria which lie in the valid

region (T ∗, K∗, E∗ ≥ 0).

In Claim 3.3 and Proposition 3.1, it was shown that system (3.13) had four

equilibria lying in the valid region, one of which was a stable node and the other

three were saddle points. By decreasing gT in small decrements from 5 × 109 to

1 × 105 and calculating equilibria (as in the claim) and their stability (as in the

proposition) along the way, we were able to determine the behavior of the system.

Smaller steps were taken whenever necessary. The actual values of gT used were:

5 × 109, 4.5 × 109, 4 × 109, 3.5 × 109, 3.4 × 109, 3.35 × 109, 3.3 × 109, 3.25 × 109, 3 ×

109, 2.5×109, 2×109, 1.9×109, 1.8×109, 1.7×109, 1.6×109, 1.5×109, 1.4×109, 1.3×

109, 1.25×109, 1.2×109, 1.1×109, 1×109, 9×108, 8×108, 7×108, 6×108, 5×108, 4×

108, 3 × 108, 2.75 × 108, 2.5 × 108, 2.25 × 108, 2.24 × 108, 2.23 × 108, 2.2 × 108, 2.1 ×

108, 2× 108, 1.5× 108, 1× 108, 9× 107, 1× 106, 1× 105. However, only trajectories at

certain key values of gT were plotted to illustrate the behavior. Refer to Figure 3.13

for XPPAUT plots of the resulting trajectories as gT is decreased.

As gT is decreased, the original three saddle points

SP1 = (T̃ ∗, K̃∗, Ẽ∗) = (0, .2987012986, 0),

SP2 = (1, 0, 0),
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SP3 = (0, 0, 0),

remain in their exact positions throughout.

However, the stable node

SN1 = (.8473841905, .7776120789, 2.024367212)

when gT = 5× 109 begins to move in the negative T direction as gT is decreased. By

the time that gT = 3.35× 109, the stable node SN1 has shifted to

(.7656478746, .7776120791, 2.118095020)

and two new equilibria come into the valid region from the T < 0 side. These are a

stable node

SN2 = (1.037180156× 10−11, .7741834150, 3.697108485)

and a saddle point

SP4 = (2.693235387× 10−8, .7776107634, 3.740242973).

As gT is decreased to 1.25× 109, the original stable node SN1 has shifted to

(.02083465058, .7776120812, 3.663902409),
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the new saddle point SP4 is at

(.001010620993, .7776120813, 3.736482490)

and the new stable node SN2 has now become a stable focus at

SF = (1.512899111× 10−13, .5191263311, 1.149259533).

Decreasing gT further to 1.2× 109 causes the original stable node SN1 and the new

saddle point SP4 to leave the valid region by moving into the T < 0 side. The stable

focus SF is now at

(1.466586133× 10−13, .5111315475, 1.090518879).

As gT is decreased to 2.24× 108, the stable focus becomes a stable node SN2 again

and shifts to

(1.402695789× 10−16, .2987696446, .2050846976× 10−3).

As gT is decreased still further, the stable node SN2 eventually collides with the orig-

inal saddle point SP1 and a transcritical bifurcation occurs. When gT = 2.23× 108,

the saddle point SP1 has already switched stability and become a stable node and

a saddle point has left the valid region from the same point into the region with

T,E < 0.
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Tracking the stability of the new stable node SN2 from the time that it emerged

in the valid region until it collided with the saddle point (0, .2987012986, 0) and the

transcritical bifurcation occurred, gave the following results (only those values that

correspond to plots in Figure 3.13 are given).

Eigenvalues and corresponding eigenvectors:

gT = 3.35× 109:

λ1 = −.002518579426264989,

~v1 =


2.309116696011637× 10−10

.07673148004192766

.9970517940260553



λ2 = −.06514900290243296,

~v2 =


−8.348202852800676× 10−12

−.003836063906462556

−.9999926422797847


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λ3 = −.8551120968377294,

~v3 =


−6.330995533655018× 10−13

−.9999996722463767

.0008096339540205655



The eigenvalues are negative real numbers, so the equilibrium is a stable node.

gT = 1.25× 109:

λ1 = −.02168746879033548 + .09384029714753124i,

λ2 = −.02168746879033548− .09384029714753124i,

λ3 = −.4707381223633896,

and the eigenvectors are complex in this case.

The eigenvalues are complex with negative real parts, so the equilibrium is a stable

focus.

gT = 1.2× 109:
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λ1 = −.02156946069297827 + .09468000949812898i,

λ2 = −.02156946069297827− .09468000949812898i,

λ3 = −.4591874188732668,

and the eigenvectors are complex in this case.

The eigenvalues are complex with negative real parts, so the equilibrium is a stable

focus.

gT = 2.24× 108:

λ1 = −.0002144254855092620,

~v1 =


6.462052110395747× 10−13

.3155001124308840

.9489255392580070



λ2 = −.06795058119214648,
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~v2 =


−1.615451058598153× 10−15

−.001691705570095869

−.9999985690651082



λ3 = −.2045389917358546,

~v3 =


−5.353754689744907× 10−16

−.9999997307253982

.0007338590677618802



The eigenvalues are negative real numbers, so the equilibrium is a stable node.

gT = 2.23× 108:

By the time that this value of gT has been reached, the stable node that we have

been tracking has collided with the saddle point (0, .2987012986, 0) and emerged on

the other side (T,E < 0) as a saddle point. This point

(−5.474959999× 10−16, .2984358021,−.0007957815632)

no longer lies in the valid region.
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λ1 = .0008209482276856916,

~v1 =


6.629681784585971× 10−13

.3190079214135551

.9477520488373544



λ2 = −.2045739812348497,

~v2 =


2.106244548693402× 10−15

−.9999958669152501

−.002875091723287432



λ3 = −.06906706566695404× 10−2,

~v3 =


−6.179865583689437× 10−15

−.006551677951559302

.9999785375276907


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The eigenvalues consist of one positive and two negative real numbers, so the equilib-

rium is a saddle point. The flow along ~v1 has reversed directions and is now outgoing

as indicated by the sign of λ1.

Next, we will show that the equilibrium (0, .2987012986, 0) has now become a sta-

ble node by computing the eigenvalues and corresponding eigenvectors as follow:

λ1 = −.06818181818181818,

~v1 =


0

0

1



λ2 = −.2045454544067193,

~v2 =


0

1

0



λ3 = −.0008328414569134246,
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~v3 =


6.422296374582806× 10−13

.3138978058851025

.9494567749300220



The flow along ~v3 is now into the equilibrium as indicated by the sign of λ3. Note

that ~v3 for this equilibrium corresponds to ~v1 for the equilibrium that we have been

tracking.

Therefore, a transcritical bifurcation has occurred at the bifurcation point 2.23×108 ≤

gT ≤ 2.24× 108. This result will be verified analytically in the following proposition

and corollary by applying the Routh-Hurwitz Criterion (Theorem A.1 in Appendis

A), and in the process, a better estimate of the bifurcation point will be obtained.

To make system (3.13) easier to handle, rewrite it in the following form:



dT ∗

dt∗
=
u1T

∗ + u2T
∗2 + u3T

∗3

u4 + u5T ∗
− u6K

∗T ∗ + u6E
∗T ∗

u7 + u8T ∗

dK∗

dt∗
= v1K

∗ − v2K∗2 + A

dE∗

dt∗
=

A

1 + v10T ∗
− v11E∗

(3.18)
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Figure 3.13: Plots of trajectories of system (3.13) as gT is decreased.

where

A =
2v3K

∗T ∗ + v4K
∗T ∗2 + 3v3E

∗T ∗ + 3v4E
∗T ∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2
(3.19)
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Proposition 3.2 The equilibrium point (T̃ ∗, K̃∗, Ẽ∗) = (0, .2987012986, 0) of system

(3.18) and hence of system (3.13) is stable if the parameters satisfy the following in-

equalities 5:

a1 > 0 , a3 > 0 and a1a2 > a3

where

a1 = −u1
u4

+
.2987012986u6

u7
− v1 + .5974025972v2 + v11

a2 =
u1v1
u4
− .5974025972u1v2

u4
+
.1784449316u6v2

u7
− .2987012986u6v1

u7
− u1v11

u4

+
.2987012986u6v11

u7
− v1v11 + .5974025972v2v11

a3 =
u1v1v11
u4

− .5974025972u1v2v11
u4

+
.1784449316u6v2v11

u7
− .2987012986u6v1v11

u7

Proof: Using system (3.18), let

f1 =
dT ∗

dt∗
, f2 =

dK∗

dt∗
, f3 =

dE∗

dt∗

5Note that these values are numerical approximations obtained with Maple and/or Matlab.
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Furthermore, let

a11 =
∂f1
∂T ∗

=
u1 + 2u2T

∗ + 3u3T
∗2

u4 + u5T ∗
− (u1T

∗ + u2T
∗2 + u3T

∗3)u5
(u4 + u5T ∗)2

− u6K
∗ + u6E

∗

u7 + u8T ∗

+
(u6K

∗T ∗ + u6E
∗T ∗)u8

(u7 + u8T ∗)2

a12 =
∂f1
∂K∗

= − u6T
∗

u7 + u8T ∗

a13 =
∂f1
∂E∗

= − u6T
∗

u7 + u8T ∗

a21 =
∂f2
∂T ∗

=
∂A

∂T ∗

a22 =
∂f2
∂K∗

= v1 − 2v2K
∗ +

∂A

∂K∗

a23 =
∂f2
∂E∗

=
∂A

∂E∗

a31 =
∂f3
∂T ∗

=

∂A

∂T ∗

1 + v10T ∗
− Av10

(1 + v10T ∗)2

a32 =
∂f3
∂K∗

=

∂A

∂K∗

1 + v10T ∗

a33 =
∂f3
∂E∗

=

∂A

∂E∗

1 + v10T ∗
− v11
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where

∂A

∂T ∗
=

2v3K
∗ + 2v4K

∗T ∗ + 3v3E
∗ + 6v4E

∗T ∗

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2

−


2v3K

∗T ∗ + v4K
∗T ∗2+

3v3E
∗T ∗ + 3v4E

∗T ∗2



v6 + 2v7T

∗ + 2v8K
∗ + 2v9K

∗T ∗

+3v8E
∗ + 6v9E

∗T ∗


(v5 + v6T

∗ + v7T
∗2 + 2v8K

∗T ∗ + v9K
∗T ∗2 + 3v8E

∗T ∗ + 3v9E
∗T ∗2)2

∂A

∂K∗
=

2v3T
∗ + v4T

∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2

− (2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2)(2v8T
∗ + v9T

∗2)

(v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2)2

∂A

∂E∗
=

3v3T
∗ + 3v4T

∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2

− (2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2)(3v8T
∗ + 3v9T

∗2)

(v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2)2
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Evaluating 6 the Jacobian matrix J at equilibrium

(T̃ ∗, K̃∗, Ẽ∗) = (0, .2987012986, 0)

gives

J |(0,.2987012986,0)=



u1
u4
− .2987012986u6

u7
0 0

.5974025972v3
v5

v1 − .5974025972v2 0

.5974025972v3
v5

0 −v11



The corresponding characteristic equation is given by

λ3 + a1λ
2 + a2λ+ a3 = 0 (3.20)

where

a1 = −u1
u4

+
.2987012986u6

u7
− v1 + .5974025972v2 + v11

a2 =
u1v1
u4
− .5974025972u1v2

u4
+
.1784449316u6v2

u7
− .2987012986u6v1

u7
− u1v11

u4

+
.2987012986u6v11

u7
− v1v11 + .5974025972v2v11

6Matlab and Maple were used to aid in some of the calculations
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a3 =
u1v1v11
u4

− .5974025972u1v2v11
u4

+
.1784449316u6v2v11

u7
− .2987012986u6v1v11

u7

By Corollary A.1 in Appendix A, all eigenvalues λ have negative real parts if

a1 > 0 , a3 > 0 and a1a2 > a3

�

Corollary 3.1 Using parameter values 7 from Table 2.2 (with the exception of gT ),

the equilibrium point (T̃ ∗, K̃∗, Ẽ∗) = (0, .2987012986, 0) of system (3.18) and hence

of system (3.13) is stable if parameter gT satisfies the following inequality 8:

0 < gT < 2.237951382× 108

Proof: By Proposition 3.2, the equilibrium is stable if

a1 > 0 , a3 > 0 and a1a2 > a3

where, after substituting parameter values,

a1 = .03915326548 +
5.227272726× 107

gT

a2 = −.04975572098 +
1.425619834× 107

gT

7Parameter values from the table are substituted into the u’s and v’s of the equations.
8Note that these limits are numerical approximations obtained with Maple and/or Matlab.
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a3 = −.003257488735 +
7.290101417× 105

gT

a1 > 0 =⇒ gT ∈ (−∞,−1.335079632× 109) ∪ (0,∞)

a3 > 0 =⇒ gT ∈ (0, 2.237951382× 108)

a1a2 > a3 =⇒

gT ∈ (−∞, 0) ∪ (0, 3.160531797× 108) ∪ (1.800734879× 109,∞)

Therefore, all three inequalities are satisfied if

gT ∈ (0, 2.237951382× 108)

�

By the above corollary, the equilibrium point (T̃ ∗, K̃∗, Ẽ∗) = (0, .2987012986, 0)

undergoes the transcritical bifurcation at the bifurcation point gT = 2.237951382×108.

Next, we will look at the remaining parameters of interest.

As dT is increased, first to 1.5 and then to 2, the original three saddle points,

(0, .2987012986, 0), (1, 0, 0), and (0, 0, 0), remain in their exact positions and the orig-

inal stable node,
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(.8473841905, .7776120789, 2.024367212),

moves in the negative T ∗ direction, first to

(.7628378710, .7776120791, 2.121471842)

when dT = 1.5, and then to

(.6705327373, .7776120793, 2.238713033)

when dT = 2.

We saw in Section 3.7 that when dT = 1.5, two new tumor-positive equilibria ap-

peared in the valid region. Calculating their stability, it turns out that the first one,

(7.01659550110× 10−12, .7725393882, 3.676501469),

is a stable node and the second one,

(4.01156838110× 10−8, .7776111965, 3.740248389),

is a saddle point.
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When dT = 2, the two new equilibria have shifted and one has changed from a stable

node to a stable focus. The first equilibria, now located at

(3.999713833× 10−13, .6844998498, 2.652272201)

has become a stable focus (see Figure 3.14) and the second one, now at

(.1145964401× 10−5, .7776120504, 3.740255028)

remains a saddle point.

This is similar to what happened when gT was varied, except in this case, the stable

focus moves very slowly as dT is varied.

Figure 3.14: Stable focus obtained by setting parameter dT = 2 and then dT = 4 in
system (3.13).
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As kT (and hence KT ) is decreased, first to .3 and then to .1, one of the original

saddle points, (0, .2987012986, 0), first moves to (0, .4380952381, 0) when kT = .3, and

then to (0, 1.31428574, 0) when kT = .1. The other two saddle points, (1, 0, 0) and

(0, 0, 0) remain in their exact positions. The original stable node,

(.8473841905, .7776120789, 2.024367212),

first moves to

(.7423334914, 1.140497716, 3.148114973)

when kT = .3, and then leaves the valid region when kT = .1.

We saw in Section 3.7 that when kT = .3, two new tumor-positive equilibria appeared

in the valid region. It turns out that the first one,

(1.898034954× 10−12, 1.099664608, 4.981823757)

is a stable node and the second one,

(3.561606134× 10−7, 1.140497505, 5.485709575)

is a saddle point.
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When kT = .1, the new stable node has become a stable focus (see Figure 3.15) at

(2.787639164× 10−13, 1.545264235, .814715194)

and the new saddle point has left the valid region.

The trajectory initially moves in the direction of an equilibrium outside of the valid

region (T ∗ < 0) and then goes to the stable focus. However, the initial increase in

E∗ can almost reach a value of 12 (see Figure 3.15). Converting the nondimensional

variable E∗ back into the dimensional variable E gives

E = KTE
∗ = (7.7× 107)(12) = 9.24× 108 cells

ml

This is a value greater than the bone marrow cell density 7.68 × 108 cells
ml

, which was

previously calculated. Therefore, for the model to be realistic, the minimum value

that kT can be must be greater than .1.

As kKE is increased, first to 1.4×107 and then to 1×108, the original three saddle

points, (0, .2987012986, 0), (1, 0, 0), and (0, 0, 0), remain in their exact positions and

the original stable node,

(.8473841905, .7776120789, 2.024367212),

first moves to
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Figure 3.15: Stable focus obtained by setting parameter kT = .1 in system (3.13) and
a plot of E∗ vs t∗.

(.7610401310, .9403895720, 3.441079897)

when kKE = 1.4× 107 and then leaves the valid region when kKE = 1× 108.

We saw in Section 3.7 that when kKE = 1.4× 107, two new tumor-positive equilibria

appeared in the valid region. It turns out that the first one,

(1.49711272110× 10−12, .9207731158, 5.752773836)

is a stable node and the second one,

(1.29792448210× 10−7, .9403893496, 6.060601677)

is a saddle point.
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When kKE = 1×108, the new stable node has become a stable focus (see Figure 3.16)

at

(1.227338279× 10−14, .9207728820, 5.752770213)

and the new saddle point has left the valid region.

However, the oscillations of the stable focus reach a value of E∗ > 12 (see Figure

3.16), which is greater than the bone marrow cell density. Therefore, for the model

to be realistic, the minimum value that kKE can be must be greater than 1× 108.

These large oscillations indicate the possible existence of a Hopf bifurcation and will

be explored later.

Figure 3.16: Stable focus obtained by setting parameter kKE = 1 × 108 in system
(3.13) and a plot of E∗ vs t∗ showing the corresponding oscillations.
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As lI is decreased, first to .6 and then to .5, the original three saddle points,

(0, .2987012986, 0), (1, 0, 0), and (0, 0, 0), remain in their exact positions and the orig-

inal stable node,

(.8473841905, .7776120789, 2.024367212),

first moves to

(.8204769741, .7776120790, 2.054292547)

when lI = .6, and then to

(.8067722842, .7776120790, 2.069877114)

when lI = .5.

We saw in Section 3.7 that when lI = .6, two new tumor-positive equilibria appeared

in the valid region. It turns out that the first one,

(3.791368189× 10−11, .7766753865, 3.728447560)

is a stable node, and the second one,

(6.470583845× 10−9, .7776065957, 3.740190453)
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is a saddle point.

When lI = .5, the new stable node has become a stable focus (see Figure 3.17) at

(7.444163268× 10−13, .7286753968, 3.146737707)

and the new saddle point has moved to

(3.902477620× 10−7, .7776119904, 3.740257098).

Figure 3.17: Stable focus obtained by setting parameter lI = .5 and then lI = .3 in
system (3.13).

We now return to the possible existence of a Hopf bifurcation when large oscilla-

tions arise. First, parameters such as kKE, gT , dT , kT and lI , which lead to oscillatory

behavior, were varied one at a time experimentally to see how the oscillations are af-

fected. Plots of T ∗, K∗, and E∗ versus t∗ and plots of trajectories (starting close to

and far from the equilibrium in question) were generated and analyzed. This proce-
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dure was repeated, only this time several parameters were systematically varied. The

results seem to indicate that no Hopf bifurcation exists in the valid region (T ∗, K∗,

E∗ > 0).

Next, the AUTO9 feature of XPPAUT was also employed in the search for a Hopf

bifurcation and none was found in this region.

The following result, which is a consequence of the Hopf Bifurcation Theorem,

Theorem B.1 in Appendix B, was used in order to find a Hopf bifurcation analytically.

Proposition 3.3 System (3.13) undergoes a Hopf bifurcation with respect to a bi-

furcation parameter p at an equilibrium point (T̃ ∗, K̃∗, Ẽ∗) if the following conditions

are satisfied:

1. AB − C = 0

2. −2A′B2 + 2BC ′ − 2ABB′ 6= 0

where

A = −a11 − a22 − a33,

B = a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31,

9AUTO refers to a library of routines used to generate bifurcation diagrams by applying a process,
known as continuation, in which a particular solution is followed as parameters vary.
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C = −a11a22a33 + a11a23a32 + a12a21a33 − a12a23a31 − a13a21a32 + a13a31a22,

are evaluated at the equilibrium point, aij (i, j ∈ {1, 2, 3}) are defined as in the proof

of Proposition 3.2 and the prime (’) denotes differentiation with respect to the bifur-

cation parameter p.

Proof: Suppose that the Jacobian matrix J , evaluated at an equilibrium point (T̃ ∗, K̃∗, Ẽ∗),

is given by

J = J |(T̃ ∗,K̃∗,Ẽ∗)=


a11 a12 a13

a21 a22 a23

a31 a32 a33



Then,

det(J − λI) = 0

=⇒ (a11 − λ)[(a22 − λ)(a33 − λ)− a23a32]− a12[a21(a33 − λ)− a23a31]

+a13[a21a32 − a31(a22 − λ)] = 0

resulting in the characteristic equation

λ3 + (−a11 − a22 − a33)λ2 + (a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31)λ

+(−a11a22a33 + a11a23a32 + a12a21a33 − a12a23a31 − a13a21a32 + a13a31a22)=0
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Substituting A, B and C as indicated in the statement of the proposition gives

λ3 + Aλ2 +Bλ+ C = 0 (3.21)

The first necessary condition for the existence of a Hopf bifurcation is the existence

of two purely imaginary eigenvalues. This implies that a limit cycle (periodic orbit)

exists.

Equation 3.21 has two purely imaginary roots if and only if

AB = C

or equivalently

AB − C = 0 (3.22)

In this case, the equation becomes

λ3 + Aλ2 +Bλ+ AB = 0

=⇒ (λ2 +B)(λ+ A) = 0

=⇒ λ1,2 = ±i
√
B and λ3 = −A (3.23)

In general, the above roots can be written
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λ1 = u(p) + iv(p) (3.24)

λ2 = u(p)− iv(p)

λ3 = w(p)

where in our case

u(p) = 0

v(p) =
√
B

w(p) = −A

The second necessary condition for the existence of a Hopf bifurcation is that the

following transversality condition hold:

du

dp
|p = p∗ 6= 0,

where p∗ is the value of p at which the bifurcation occurs.

Substituting λ = λ1 from (3.24) into (3.21) gives

(u+ iv)3 + A(u+ iv)2 +B(u+ iv) + C = 0

=⇒ u3 + 3iu2v − 3uv2 − iv3 + Au2 + 2iAuv − Av2 +Bu+ iBv + C = 0
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Differentiating with respect to p gives

3u2u′ + 6iuu′v + 3iu2v′ − 3u′v2 − 6uvv′ − 3iv2v′ + A′u2 + 2Auu′ + 2iA′uv+

2iAu′v + 2iAuv′ − A′v2 − 2Avv′ +B′u+Bu′ + iB′v + iBv′ + C ′ = 0

Setting u = 0 (since we want λ to be purely imaginary) gives

−3u′v2 − 3iv2v′ + 2iAu′v − A′v2 − 2Avv′ +Bu′ + iB′v + iBv′ + C ′ = 0

=⇒ [−3u′v2 − 2Avv′ +Bu′] + i[−3v2v′ + 2Au′v +Bv′]

= [A′v2 − C ′] + i[−B′v]

=⇒ [u′(−3v2 +B) + v′(−2Av)] + i[u′(2Av) + v′(−3v2 +B)]

= [A′v2 − C ′] + i[−B′v]

Equating real and imaginary parts gives the following system of equations



(−3v2 +B)u′ + (−2Av)v′ = A′v2 − C ′

(2Av)u′ + (−3v2 +B)v′ = −B′v
(3.25)
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By applying Cramer’s Rule to find u′ and v′, we get

u′ =

det

 A′v2 − C ′ −2Av

−B′v −3v2 +B


det

 −3v2 +B −2Av

2Av −3v2 +B



=
−3A′v4 + A′Bv2 + 3C ′v2 −BC ′ − 2AB′v2

9v4 − 6Bv2 +B2 + 4A2v2

and similarly,

v′ =

det

 −3v2 +B A′v2 − C ′

2Av −B′v


9v4 − 6Bv2 +B2 + 4A2v2

=
3B′v3 −BB′v − 2AA′v3 + 2AC ′v

9v4 − 6Bv2 +B2 + 4A2v2

The transversality condition,
du

dp
|p = p∗ 6= 0, is satisfied when

−3A′v4 + A′Bv2 + 3C ′v2 −BC ′ − 2AB′v2 6= 0
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In our case, v =
√
B, so we get

−2A′B2 + 2BC ′ − 2ABB′ 6= 0

If this is satisfied, then the transversality condition is satisfied.

�

To see if a Hopf bifurcation occurs when a single parameter is varied, Proposition

3.3 can be used. Out of several parameters that were tested (one at a time), gT was

the only one that resulted in a Hopf bifurcation, although it occurs outside of the

valid region that we have been considering.

Using the numeric and symbolic capabilities of Maple, we were able to solve the fol-

lowing system of four equations consisting of the first condition of Proposition 3.3

together with the three equations that need to be satisfied for an equilibrium of sys-

tem (3.13) to exist:
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

AB − C = 0

u1T
∗ + u2T

∗2 + u3T
∗3

u4 + u5T ∗
− u6K

∗T ∗ + u6E
∗T ∗

u7 + u8T ∗
= 0

v1K
∗ − v2K∗2+

2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2

v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2
= 0

2v3K
∗T ∗ + v4K

∗T ∗2 + 3v3E
∗T ∗ + 3v4E

∗T ∗2

(1 + v10T ∗)(v5 + v6T ∗ + v7T ∗2 + 2v8K∗T ∗ + v9K∗T ∗2 + 3v8E∗T ∗ + 3v9E∗T ∗2)

−v11E∗ = 0

(3.26)

Only one solution was found. The approximate solution of the above system is

gT = 1.247074306× 109

T ∗ = −.1155278794

K∗ = .7776120813

E∗ = 4.228957701
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Substituting these values back into the left-hand-side of system (3.26) resulted in

values close to zero, indicating that this is a good approximation to the solution of

the system.

This point lies outside of the realm of what is biologically feasible, since T ∗ represents

cell density per time and thus cannot be negative. However, for the sake of comple-

tion, this result was explored further, although it has no biological relevance.

The stability of equilibrium point

(T̃ ∗, K̃∗, Ẽ∗) = (−.1155278794, .7776120813, 4.228957701)

when

gT = 1.247074306× 109

was computed using Matlab and it was determined that the above point is a stable

focus. Using this as a starting point, the AUTO feature of XPPAUT was employed

to find the Hopf bifurcation. This resulted in a Hopf bifurcation occurring at approx-

imately

gT = 1.247087900895566× 109

T ∗ = −.1155278803476433



157

K∗ = .7776120814774132

E∗ = 4.228957707020461

where a stable limit cycle (periodic orbit) surrounds an unstable focus. Matlab was

used to confirm the existence of the above unstable focus by computing the stability

of the above equilibrium at the given value of gT . The second (transversality) condi-

tion of the proposition was also satisfied. Therefore, the bifurcation is a supercritical

Hopf bifurcation. XPPAUT was used to plot the stable limit cycle (see Figure 3.18).

Figure 3.18: Plot of the stable limit cycle resulting from the Hopf bifurcation. The
limit cycle was traced out by a trajectory starting close to it.

By varying gT in small steps while computing equilibria, it was possible to track the

movement of the above equilibrium. It was determined that this equilibrium came
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from saddle point SP4 (see Figure 3.13), which changes stability when it crosses

the T ∗ = 0 plane. At gT = 1.2 × 109 it is a stable node in the region where

T ∗ < 0 and K∗, E∗ > 0. At gT = 1.247074306 × 109, it is a stable focus and, at

gT = 1.247087900895566 × 109, it is an unstable focus due to the Hopf bifurcation

that occurs.

3.9 Conclusions and Medical Implications

Using the default parameter values from Table 2.2 (with gT = 5× 109) gives only one

stable equilibrium point (see Sections 3.5 and 3.6), a stable node with a tumor cell den-

sity of 6.524858265×107 cells
ml

and a normal plasma cell density of 1.877174457×106 cells
ml

.

This gives a combined plasma cell density of 6.712575711×107 cells
ml

, which is less than

7.7× 107 cells
ml

, the threshold at which the patient is characterized as having MM (see

Section 2.2). Even when the carrying capacity KT of tumor cells was increased to

the value of the bone marrow carrying capacity, this only resulted in an increase in

the total bone marrow plasma cell content to approximately the 10% threshold value

that distinguishes MGUS from MM. Therefore, the model predicts that the patient

will eventually develop MGUS, but not MM.

At the beginning of Chapter 2, we stated that we would like the model to deter-

mine how much of an influence the production of M-protein and glycolipids by tumor

cells has on the development of the disease. As mentioned in Section 1.3, M-protein

causes a deletion of certain CD4+T cells by the same mechanism which is responsible

for the prevention of autoimmunity and tumor-derived glycolipids cause a (medically
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reversible) disruption in the ability of NKT cells to produce IFN−γ (which attracts

immune cells to the tumor site). Therefore, the production of M-protein and glycol-

ipids supports tumor progression. However, numerical experiments (see Section 3.7)

showed that setting the production of either to zero produced very little change in

the progression or outcome of the disease. Also, IFN−γ production was increased in

numerical experiments. We expected this to cause a decrease in tumor density. How-

ever, no perceivable change in the progression or outcome of the disease was observed.

Therefore, it can be concluded that the production of M-protein, tumor-derived gly-

colipids and IFN−γ do not play as significant a role in tumor progression as expected.

In Chapter 2, we stated that since MGUS/MM is a disease which usually occurs

late in life, a long enough delay in the increase in tumor cell density to the MGUS or

MM level might be as good as a cure. We saw in Section 3.7 that an increase in the

proliferation rate (and carrying capacity, since both parameters are interdependent)

of innate immune system cells causes such a delay. Increasing the proliferation rate

rK from .09 to .45 (and hence the carrying capacity KK from 2.30×107 to 1.15×108)

delayed the increase in tumor cells by approximately 75. Since t∗ is nondimensional

and t = t∗

kt
, then this is equilvalent to a delay of 75

.44
≈ 170 days. Also, the number of

tumor cells levels off at a lower number. However, this delay in not significant enough

to be considered important.

We also saw in Section 3.7 that certain parameters, especially half-saturation con-

stant gT , play an important role in both the progression and the outcome of the

disease. These parameters are dT (the rate of destruction of tumor cells by the im-

mune system), the interdependent parameters kT and KT (the proliferation rate and
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carrying capacity of tumor cells, respectively), kKE (the recruitment rate of immune

cells due to the presence of IFN−γ), and lI (the rate of IL−6 production by stromal

cells). Varying any of these parameters slightly causes a delay in the increase in the

density of tumor cells and the density of tumor cells levels off at a lower number.

However, varying the parameters further produces more significant results.

Decreasing parameter kT from .44 to .33 (and henceKT from 7.7×107 to 5.78×107)

causes a delay in the increase in tumor cell density by approximately 750. This is

equivalent to (using the new kT value) t∗

kT
= 750

.33
≈ 2273 days. However, we saw in

Section 3.8 that kT (and hence KT ) could not be decreased too much, say to .1, or

an unrealistically large value of adaptive immune system cell density would occur.

Therefore, it is important to obtain accurate estimates for the proliferation rate and

carrying capacity of tumor cells.

Increasing kKE from 8.64×106 to 1.3×107 causes a delay in the increase in tumor

cells by approximately 1000. this is equivalent to t∗

kT
= 1000

.44
≈ 2273 days. However,

increasing kKE too much, say to 1 × 108, results in unrealistically large oscillations

in adaptive immune system cell density. So it is also necessary to obtain an accurate

estimate of the recruitment rate of immune cells due to the presence of IFN − γ.

The remaining parameters of interest, gT , dT and lI , did not produce unrealisti-

cally large values when varied a reasonable amount.

Half-saturation constant gT turned out to be an important bifurcation parameter.

When gT = 5× 109, there is only one stable equilibrium point, a stable node with a
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nondimensional tumor density of T ∗ = .8473841905 or, equivalently,

T = 6.524858265× 107 cells
ml

.

As mentioned earlier, a patient with this cell density is considered to have MGUS.

Decreasing gT to 3.5× 109 causes a delay in the increase in tumor cell density by

approximately 1500 days and the density levels off at a lower value (see Section 3.2).

If gT is decreased enough, say to 3.35×109, the above stable node shifts to a lower

tumor density and another stable node emerges with a nondimensional tumor density

of T ∗ = 1.037180156× 10−11. This is equivalent to

T = KTT
∗ = (7.7× 107)(1.037180156× 10−11) = 7.986287201× 10−4 cells

ml

or, equivalently (using a bone marrow volume of 1042 ml),

(7.986287201× 10−4)(1042) = .8321711263 cells.

Although in theory this is a positive tumor density with a fraction of one cell, this is

impossible in reality and the number of tumor cells at this equilibrium will be zero.

In this case, the tumor will be eradicated. Therefore, if the tumor density can be

lowered to almost zero, it will settle at the lower stable equilibrium and the patient

will remain tumor-free. However, if the tumor density is not decreased sufficiently, it

will settle at the higher stable equilibrium with a positive tumor density.
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If gT is decreased still further, say to 1.25 × 109, the original stable node shifts

to a lower tumor density and the new stable node becomes a stable focus. As gT is

decreased even more, say to 1.2 × 109, the original stable node disappears and the

tumor density, regardless of its value, will be attracted to the only stable equilibrium

remaining, the stable focus. The patient will then remain tumor-free. Decreasing

gT further causes the stable focus to become a stable node again and, eventually,

at gT ≈ 2.237951382 × 108, a transcritical bifurcation occurs and the saddle point

(0,.2987012986,0) becomes a stable node. In this case, this tumor-free equilibrium is

the only stable equilibrium and, once again, the patient will remain tumor-free.

In summary, decreasing gT can lead to a lower tumor density or, if decreased

enough, can lead to a cure. However, the reliability of this parameter is uncertain, so

a better estimate, or at least range of possible values, must be obtained.

Another important parameter is dT , the rate of destruction of tumor cells by im-

mune cells. When dT = 1, there is only one stable equilibrium point, a stable node

with a positive tumor density. Increasing dT to 1.4 causes a delay in the increase in

tumor density by approximately 500 or, equivalently, 500
.44
≈ 1136 days and the density

levels off at a lower value. However, as dT continues to increase, say to 1.5, the tumor

density of the stable node decreases and a new stable node with a tumor density of

7.01659550110×10−12 emerges. This new stable node becomes a stable focus as dT is

increased further, say to 2. This is similar to what occurred when gT was decreased.

This makes sense, since dT is in the numerator and gT is in the denominator of the

same term in the first equation of system (2.1). However, the difference is that, in
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the case of dT , the stable focus moves very slowly as dT is increased further. As in

the gT case, lowering the tumor density enough can cause it to settle at the lower

equilibrium and the patient will remain tumor-free.

The rate of IL − 6 production lI has similar results when varied. When lI = 1,

there is only one stable equilibrium point, a stable node with a positive tumor density.

Decreasing lI to .62 causes a delay in the increase in tumor cell density by approx-

imately 1500 or, equivalently, 1500
.44
≈ 3409 days and the density levels off at a lower

value. Decreasing lI further, say to .6, causes the tumor density of the stable node to

decrease and a new stable node with a tumor density of 3.791368189×10−11 emerges.

When lI is decreased to .5, the new stable node becomes a stable focus. As in the dT

and gT cases, lowering the tumor density enough can cause it to settle at the lower

equilibrium and the patient will remain tumor-free.

Based on the parameter values used, the numerical experiments performed and

the analysis, we can arrive at the following conclusions:

1. The model predicts that the patient will eventually develop MGUS.

2. The rate of production of M-protein, tumor-derived glycolipids and IFN − γ

do not play a significant role in the progression or outcome of the disease.

3. Decreasing the proliferation rate of tumor cells or increasing the recruitment rate

of immune cells (due to the presence of IFN − γ) by a small amount causes a

delay in the increase in tumor cell density to the MGUS level by approximately

six years.
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4. Decreasing either the half-saturation constant gT or the rate of IL−6 production

by stromal cells, or increasing the rate of destruction of tumor cells by the

immune system causes a delay in the increase in tumor cell density to the

MGUS level by three to four years if varied by a small amount or can lead to

eradication of the tumor if varied by a greater amount.

However, whether or not these parameter values can be altered through medical

intervention and, if so, by how much, remains uncertain.

3.10 Future Work

The complexity of system (3.18) has prevented us from doing more work analytically

than has already been done. In order to proceed further, the system would have to be

simplified even more. One thing that can be done is reduce the number of parameters.

For instance, we can eliminate u4 from the first equation in system (3.18), by multi-

plying the first term by
1
u4
1
u4

and renaming the resulting parameter fractions. u7 can be

eliminated from the second term similarly. However, this alone will not simplify the

system sufficiently. One major simplification that can make the system much more

manageable analytically is replacing the A expression, which appears in the second

and third equations of system (3.18), by a simpler expression. The difficulty in doing

this lies in finding an expression which is simple enough to allow more work to be

done analytically while, at the same time, preserving the dynamics of the system.

Simplifying system (3.18) has several advantages. For one thing, it might make it

possible to work with several parameters at a time and, for instance, obtain a result
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similar to Corollary 3.1, but with gT in terms of, say dT and lI . This will help us

determine if, instead of having to decrease gT by a large amount in order to eradicate

the tumor, it is possible to vary gT , dT and lI by smaller amounts to achieve the same

result.

Another benefit of working with a simpler system is that it might allow us to ex-

pand the model without it becoming overly complicated. For instance, a new tumor

cell population can be introduced to include one of several possible mutations in an

already existing cancer cell. By including some form of mutation-selection equation,

we can study the role that a certain mutation plays in tumor development.

Another possibility is including some type of medical intervention by a treatment

such as chemotherapy. In this case, it might be possible to apply optimal control

theory to determine the best course of treatment.

However, before any of this can be achieved, we must first find a way to simplify

the model.



Appendix A

Routh-Hurwitz Criterion

The Routh-Hurwitz Criterion is used to determine if all the roots of a polynomial

have negative real parts. It can be stated as follows (refer to [61]):

Theorem A.1 (Routh-Hurwitz Criterion)

Given the equation

xn + a1x
n−1 + · · ·+ an = 0 (A.1)

with real coefficients, construct Hurwitz matrices Hj, where j = 1, . . . , n, by letting

entry (l,m) in matrix Hj be defined by
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alm =



a2l−m , for 0 < 2l −m ≤ n

1 , for 2l −m = 0

0 , for 2l −m < 0 or 2l −m > n

(A.2)

That is

H1 = (a1)

H2 =

 a1 1

a3 a2



H3 =


a1 1 0

a3 a2 a1

a5 a4 a3



...
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Hj =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0

...
...

...
...

...
...

a2j−1 a2j−2 a2j−3 a2j−4 · · · aj



...

Hn =



a1 1 0 . . . 0

a3 a2 a1 . . . 0

...
...

...
...

...

0 · · · · · · · · · an



A necessary and sufficient condition for the equation (A.1) to have only roots with neg-

ative real parts is that the determinants of the Hurwitz matrices Hj, for j = 1, . . . , n,

all be positive.

In the special case of n = 3, we get the following corollary:
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Corollary A.1 Equation

x3 + a1x
2 + a2x+ a3 = 0 (A.3)

has only roots with negative real parts if the determinants of the Hurwitz matrices,

H1, H2 and H3, are all positive. That is,

a1 > 0 , a3 > 0 and a1a2 > a3



Appendix B

Hopf Bifurcation Theorem

A Hopf bifurcation occurs when a limit cycle (periodic orbit) emerges as a focus

switches stability. The Hopf Bifurcation Theorem gives the conditions that are nec-

essary and sufficient for this type of bifurcation to occur. It can be stated as follows

(refer to [81]):

Theorem B.1 (Hopf Bifurcation Theorem)

Suppose that the C4-system

~̇x = ~f(~x, µ) (B.1)

with ~x ∈ Rn and µ ∈ R has a critical point ~x0 for µ = µ0 and that D~f(~x0, µ0) has

a simple pair of pure imaginary eigenvalues and no other eigenvalues with zero real

part. Then there is a smooth curve of equilibrium points ~x(µ) with ~x(µ0) = ~x0 and

the eigenvalues, λ(µ) and λ̄(µ) of D~f(~x(µ), µ), which are pure imaginary at µ = µ0,

vary smoothly with µ. Furthermore, if
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d

dµ
[Reλ(µ)]µ=µ0 6= 0, (B.2)

then there is a unique two-dimensional center manifold passing through the point

(~x0, µ0) and a smooth transformation of coordinates such that (B.1) on the center

manifold is transformed into the normal form

ẋ = −y + ax(x2 + y2)− by(x2 + y2) +O(| ~x |4)

ẏ = x+ bx(x2 + y2) + ay(x2 + y2) +O(| ~x |4)

in a neighborhood of the origin which, for a 6= 0, has a weak focus of multiplicity one

at the origin and

ẋ = µx− y + ax(x2 + y2)− by(x2 + y2)

ẏ = x+ µy + bx(x2 + y2) + ay(x2 + y2)

is a universal unfolding of this normal form in a neighborhood of the origin on the

center manifold.

For more details on the Hopf Bifurcation Theorem and its variations, along with

proofs, the reader can refer to [106] or [71].

By the above theorem, besides the necessary differentiability (on some sufficiently

large open set containing the fixed point of interest), the system needs to satisfy two

conditions in order for a Hopf bifurcation to occur. First, at the parameter value

where the bifurcation occurs, the Jacobian, evaluated at the equilibrium point, must
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have two purely imaginary eigenvalues. This guarantees the existence of a limit cycle.

Second, the derivative of the real part of the eigenvalue with respect to the bifurcation

parameter cannot be zero. In other words, the eigenvalue must cross the imaginary

axis with non-zero speed. This condition is referred to as the transversality condition.



Bibliography

[1] Adam, J.A., Bellomo, N. (1997) A Survey of Models for Tumor-Immune System
Dynamics. Birkhäuser.

[2] Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts,
K., Walter, P. (2004) Essential Cell Biology. Garland Science.

[3] Arciero, J.C., Jackson, T.L., Kirschner, D.E. (2004) A Mathematical Model
of Tumor-Immune Evasion and siRNA Treatment. Discrete and Continuous
Dynamical Systems-Series B. vol. 4, no. 1. pp. 39-58.
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