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Nosocomial infections caused by antibiotic resistant bacteria are a major threat

to global public health today. In order to understand the diverse factors contributing

to hospital acquired antibiotic resistant infections, we develop some mathematical

models and address the theoretical, numerical and stochastic aspects of such models.

In Chapter 2, both deterministic and stochastic mathematical models are devel-

oped to explore the roles that antibiotic exposure and environmental contamination

play in the transmission dynamics of nosocomial infections in hospitals. Uncolonized

patients without or with antibiotic exposure, colonized patients without or with an-

tibiotic exposure, uncontaminated and contaminated health-care workers, and free-

living Methicillin-resistant Staphylococcus aureus (MRSA) are included in the models.

Under the assumption that there is no admission of the colonized patients, the basic

reproduction number R0 is calculated. We prove that when R0 < 1, the infection-free

equilibrium is globally asymptotically stable; when R0 > 1, the infection is uni-

formly persistent. Numerical simulations show that environmental cleaning is the

most important intervention. Increasing the stay of colonized patients with antibiotic

exposure in hospitals will increase the prevalence of MRSA, which implies to treat

patients with antibiotic exposure as efficiently and quickly as possible. Screening

and isolating colonized patients at admission, and improving compliance with hand



hygiene are also important control strategies.

In Chapter 3, we extend the deterministic model developed in chapter 2. The

extended model with periodic antibiotic prescribing rate is constructed to study the

seasonality of Methicillin-resistant Staphylococcus aureus (MRSA) infections taking

antibiotic exposure and environmental contamination into consideration. The basic

reproduction number R0 for the periodic model is also calculated under the assump-

tion that there are only uncolonized patients with antibiotic exposure at admission.

Sensitivity analysis of R0 with respect to some essential parameters is performed.

It is also shown that the infection would go to extinction if the basic reproduction

number is less than unity and would persist if it is greater than unity. Numerical

simulations indicate that environmental cleaning is the most important intervention

to control the infection, which emphasizes the effect of environmental contamination

in MRSA infections. It is also important to highlight the importance of effective

antimicrobial stewardship programs, to increase active screening at admission and

subsequent isolation of positive cases, and to treat patients quickly and efficiently.

In Chapter 4, based on the results obtained from previous chapters, we apply the

optimal control theory to the seven-compartment system of ordinary differential equa-

tions to minimize the numbers of colonized patients and bacteria in the environment

while minimizing the cost associated with environmental cleaning rate and antibiotic

use in a particular time period. Characterizations of optimal control strategies are

formulated, and how hospitals should adjust their strategies when different hospital

scenarios happen is discussed. Numerical simulations strongly suggest that environ-

mental cleaning rate is key in the control of MRSA infections and hospital should

use antibiotics as properly and little as possible. Meanwhile, how to treat colonized

patients especially with antibiotic exposure as quickly and efficiently as possible is a



big challenge in controlling MRSA infections. Screening and subsequent isolation can

be an effective intervention supplement.

In the last chapter, we summarized the results of the thesis and discuss some

future studies.
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Chapter 1

Introduction

Nosocomial infections caused by antibiotic-resistant bacteria are a major threat to

global public health today. According to the Centers for Disease Control and Pre-

vention(CDC) [6]: ”Each year in the United States, at least 2 million people become

infected with bacteria that are resistant to antibiotics and at least 23,000 people die

each year as a direct result of these infections.” Besides, CDC identifies infections

caused by Methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bac-

terium, as one of the most common causes of hospital-acquired infections such as seri-

ous skin infections, brain abscess (central nervous system infection), endophthalmitis,

pneumonia (lung infection), and bloodstream infections, especially in intensive-care

units. An observation that patients with MRSA are about 64% more likely to die

than patients with a non-resistent form of the infection in hospitals was revealed by

a World Health Organization (WHO) report in April 2014 [44]. In fact, MRSA in-

fections result in increased risk of mortality, lengthier stays of patients in hospitals,

extra costs of treatment and increased intensive health care [43], [30].

Staph bacteria are usually treated with antibiotics, however, as antibiotics are

abused to be prescribed to inhibit these kinds of bacterial infections, so far MRSA has

been resistant to many common antibiotics such as methicillin, oxacillin, penicillin,

and amoxicillin. Based on a Centers for Disease Control and Prevention (CDC)

1
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report [6], 30-50% of antibiotics patients accepted in hospitals are unnecessary or

inappropriate. Even though some antibiotics still work, MRSA is constantly adapting,

which makes it difficult for researchers to keep developing new antibiotics. Hence

whether a patient has antibiotic exposure or not is kind of important for his or

her treatment. There is no wonder that overprescribing and misprescribing lead

to the increasing challenges caused by antibiotic-resistant bacteria. In fact, some

studies have observed a clear association between antibiotic exposure and MRSA

isolation [10], [36], [35]. They prove that patients with history of antibiotic exposure

are vulnerable to skin infection and are more likely to be colonized by MRSA, which

results in a lengthier duration in hospitals, a higher chance of failed treatment, a

larger shedding rate of bacteria to the environment, and even a higher mortality rate.

Hence it is necessary to consider antibiotic exposure and use of antibiotics in hospitals

as influential factors in the transmission of MRSA.

In order to understand the diverse factors contributing to hospital-acquired an-

tibiotic resistant infections, various models have been proposed [7], [17], [2], [4], [8],

[9], [11], [38], [42], [39]. Many of these models show that the direct transmission via

the hands of health-care workers (HCWs) is a crucial factor in the transmission of

MRSA. In addition, because under certain circumstances MRSA pathogens are ca-

pable of surviving for days, weeks or even months on environmental surfaces such as

door handles in the unit, healthcare facilities, health-care worker gowns and gloves,

environmental contamination is also a necessarily essential factor when we study the

transmission of MRSA. Especially, Browne and Webb [5], Wang and Ruan [39] and

Wang et al. [42] developed mathematical models to study the effect of environmental

contamination on the spread of antibiotic-resistant bacteria in hospitals. Chamchod

and Ruan [7] proposed models to investigate the effect of antibiotic exposure on the



3

transmission of MRSA in hospitals. However, the combined effects of antibiotic ex-

posure and environmental contamination have not been studied. This is one of the

motivations of the current study.

The other motivation is that, by analyzing a comprehensive transmission dynamic

model of MRSA infections in hospitals both theoretically and numerically, we want to

develop optimal cost-effective strategies to help control MRSA infections in hospitals.



Chapter 2

Modeling the effect of antibi-
otic exposure on the transmission
of Methicillin-resistant Staphylococ-
cus aureus in hospitals with environ-
mental contamination

2.1 Model Descriptions and Assumptions

The patients, health-care workers (HCWs), and free-living bacteria in the environ-

ment in the hospital are divided into the following seven compartments (see Fig. 2.1):

Pu(t)=Number of uncolonized patients without antibiotic exposure at time t;

PuA(t)=Number of uncolonized patients with antibiotic exposure at time t;

Pc(t)=Number of colonized patients without antibiotic exposure at time t;

PcA(t)=Number of colonized patients with antibiotic exposure at time t;

Hu(t)=Number of uncontaminated Health Care Workers at time t;

Hc(t)=Number of contaminated Health Care Workers at time t;

Be(t)=Density of the free-living bacteria in the environment at time t.

(1) We assume that a patient would have antibiotic exposure if he or she has received

4
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Figure 2.1: Flowchart of the model consisted of uncolonized patients without antibiotic exposure (Pu(t)), uncolonized
patients with antibiotic exposure (PuA(t)), colonized patients without antibiotic exposure (Pc(t)), colonized patients
with antibiotic exposure (PcA(t)), uncontaminated healthcare workers (Hu(t)), contaminated healthcare workers
(Hc(t)), and free-living bacteria in the environment (Be(t)).
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antibiotics within the month on admission or is currently receiving antibiotic

treatment in the hosptial.

(2) Uncolonized (colonized) patients without antibiotic exposure would move to

the uncolonized (colonized) patients with antibiotic exposure at an antibiotic

prescribing rate of ε per day [15].

(3) The free-living bacteria are uniformly distributed in the environment.

(4) The total number of patients in a unit is a constant Np. That is equivalent to say

that patients are admitted at a total rate Ω(t) = γuPu+γcPc+γuAPuA+γcAPcA,

where γu, γuA, γc, and γcA are the corresponding discharge rates of patients from

these four compartments. We also denote θu, θuA, θc, θcA as the corresponding

proportion of patients Pu, PuA, Pc, PcA on admission. It was estimated that the

fraction of patients with antibiotic exposure of new admissions to be 0.38, i.e.,

θuA + θcA=0.38 [19] [7].

(5) The total number of health-care workers is a constant Nh.

(6) We assume that the bacterial reproduction cannot occur due to lack of proper

conditions in the hospital, even though the free-living bacteria are able to survive

in the environment for a long time. As a result, shedding from colonized patients

is one of the key transmission of bacteria to contaminate environment υpPc +

υpAPcA. υp, and υpA are the shedding rate of bacteria from patients without

or with antibiotic exposure, respectively. In addition, when the contaminated

HCWs touch the environmental surfaces such as door handles, health facilities,

bedding, they leave bacteria there υhHc, which is another way to contaminate
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the environment. Of course, hospitals always have a standard cleaning rate or

disinfection rate γb.

(7) We assume that there is no contact between patients, which means that if

an uncolonized patient without antibiotic exposure becomes colonized without

antibiotic exposure, he/she either contacts contaminated HCWs at rate αpβp(1−

η)PuHc or touches the contaminated environment at rate κpPuBe. A similar

process happens when an uncolonized patient with antibiotic exposure becomes

colonized with antibiotic exposure at rate αpβpA(1−η)PuAHc+κpAPuABe. αp is

the contact rate per day, βp and βpA are the chances of colonization per contact

for uncolonized patients without or with antibiotic exposure, respectively, η is

the hand hygiene compliance, κp and κpA are the chance of colonization by

touching contaminated environment for uncolonized patients without or with

antibiotic exposure, respectively.

(8) An uncontaminated HCW becomes contaminated when he/she contacts colo-

nized patients or touches contaminated environmental surfaces at rate αpβh(1−

η)PcHu + αpβhA(1 − η)PcAHu, where βh, βhA are chance of contamination per

contact with Pc or PcA, respectively. HCWs have a decontaminated rate µc to

move from contaminated state to uncontaminated state.

(9) Since antibiotic exposure always results in a higher chance of failure treatment,

a lengthier duration of hospital care, a higher probability of colonization and so

on, it is reasonable to assume that γ−1
cA ≥ γ−1

c ≥ γ−1
uA ≥ γ−1

u , υpA ≥ υp, βpA ≥ βp,

and βhA ≥ βh. In addition, by previous studies [15] [7], we estimate that

uncolonized patients with antibiotic exposure PuA is 1.67 times more vulnerable

than uncolonized patients without antibiotic exposure Pu, i.e., βpA = 1.6× βp.
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Detailed parameter values are listed in Table 2.1. On the basis of the flowchart

shown in Fig.2.1 we formulate the system of ordinary differential equations that de-

scribes the transition between compartments as follows:

Table 2.1: Parameters and descriptions.

Parameter Description Parameter Estimate Reference
θu proportion of Pu on admission 0.617 [7] [15]
θuA proportion of PuAon admission 0.349 [7] [19]
θc proportion of Pc on admission 0.003 [7] [15]
θcA proportion of PcAon admission 0.031 [7] [19]
γu discharge rate of Pu 0.2 [7]
γuA discharge rate of PuA 0.2 [7]
γc discharge rate of Pc 0.06 [15]
γcA discharge rate of PcA 0.055 [7] [15]
γb disinfection rate of environment 0.7 [39]
Np total number of patients 23 [39]
Nh total number of HCWs 23 [39]
αp Contact rate 0.0435 [39]
βp probability of colonization for Pu after a contact with Hc 0.42 [39]
βpA probability of colonization for PuA after a contact with Hc 0.42*1.67 [15] [7]
βh probability of contamination for HCW after a contact with Pc 0.2 [39] [7]
βhA probability of contamination for HCW after a contact with PcA 0.25 [7]
η hand hygiene compliance with HCWs 0.4 [39]
µc decontaminated rate of HCWs 24 [39]
υp contamination(shedding) rate to environment from Pc 235 [39]
υpA contamination(shedding) rate to environment from PcA 470 [42] [15]
υh contamination rate to environment by contaminated HCWs 235 [39]
ε antibiotic prescribing rate 0.12 [15] [27]
κp colonization rate from environment for Pu 0.000004 [39]
κpA colonization rate from environment for PuA 0.000005 [7] [39]
κh colonization rate from environment for uncontaminated HCWs 0.00001 [39]

dPu
dt

= θuΩ(t)− αpβp(1− η)PuHc − κpPuBe − γuPu − εPu,

dPc
dt

= θcΩ(t) + αpβp(1− η)PuHc + κpPuBe − γcPc − εPc,

dPuA
dt

= θuAΩ(t)− αpβpA(1− η)PuAHc − κpAPuABe − γuAPuA + εPu,

dPcA
dt

= θcAΩ(t) + αpβpA(1− η)PuAHc + κpAPuABe − γcAPcA + εPc,

dHu

dt
= −αpβh(1− η)PcHu − αpβhA(1− η)PcAHu − κhHuBe + µcHc,

dHc

dt
= αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc,

dBe

dt
= υpPc + υpAPcA + υhHc − γbBe

(2.1.1)

where Ω(t) = γuPu + γcPc + γuAPuA + γcAPcA, with initial conditions Pu(0) = P 0
u ,
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PuA(0) = P 0
uA, Pc(0) = P 0

c , PcA(0) = P 0
cA, Hu(0) = H0

u, Hc(0) = H0
c , Be(0) = B0

e

specified at time 0.

2.2 Mathematical Analysis

In this subsection, we provide detailed mathematical analysis of the model (2.1.1).

Positivity and Invariance of Solutions

Based on the biological background of model (2.1.1), we only consider solutions of

model (2.1.1) starting at t = 0 with initial values:

P 0
u ≥ 0, P 0

uA ≥ 0, P 0
c ≥ 0, P 0

cA ≥ 0, H0
u ≥ 0, H0

c ≥ 0, B0
e ≥ 0.

Lemma 2.1. If P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ≥ 0, then

(Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t), Be(t)) the solutions of model

( 2.1.1) are nonnegative for all t ≥ 0 and ultimately bounded. In

particular, if P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e > 0, then the solutions

(Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t), Be(t)) are also positive for all t ≥ 0.

Proof. Firstly, by the continuous dependence of solutions with respect to ini-

tial values, we only need to prove that when P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e > 0,

(Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t), Be(t)) the solutions are also positive for all

t ≥ 0. That is, the solutions remain in the positive cone if the initial conditions are

in the positive cone of R7. Set

m(t) = min{Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t), Be(t)},∀t > 0.
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Clearly, m(0) > 0. Assuming that there exists a t1 > 0 such that m(t1) = 0 and

m(t) > 0 for all t ∈ [ 0, t1).

If m(t1) = Pu(t1), from the first equation of model (2.1.1) it follows that dPu
dt
≥

−(αpβp(1−η)Hc(t)+κpBe(t)+γu+ε)Pu for all t ∈ [ 0, t1). Since Hc(t) > 0, Be(t) > 0

for all t ∈ [ 0, t1), we have

0 = Pu(t1) ≥ P 0
u exp(−

∫ t1

0

(αpβp(1− η)Hc(s) + κpBe(s) + γu + ε)ds) > 0,

which leads to a contradiction. Similar contradictions can be deduced in the cases

of m(t1) = PuA(t1),m(t1) = Pc(t1),m(t1) = PcA(t1),m(t1) = Hu(t1),m(t1) =

Hc(t1),m(t1) = Be(t1). Hence, the solutions remain in the positive cone if the initial

conditions are in the positive cone R7.

Secondly, let T (t) = Pu(t) +PuA(t) +Pc(t) +PcA(t) +Hu(t) +Hc(t) +Be(t). Then

dT (t)

dt
=

dBe(t)

dt
= υpPc + υpAPcA + υhHc − γbBe

≤ υpNp + υpANp + υhNh − γbBe(t),

where Np = Pu(t) + PuA(t) + Pc(t) + PcA(t) and Nh = Hu(t) + Hc(t), which implies

that

Be(t) ≤
(υpNp + υpANp + υhNh)

γb
(1− e−γbt) +B0

ee
−γbt.

So Be(t) is bounded by a fixed number

M =
(υpNp + υpANp + υhNh)

γb
+B0

e .
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Let N = Np +Nh +M , we have

T (t) = Pu(t) + PuA(t) + Pc(t) + PcA(t) +Hu(t) +Hc(t) +Be(t) ≤ N.

Thus, the solutions remain bounded in a positive cone of R7, and the system induces

a global semiflow in the positively invariant set of R7. This completes the proof.

Remark 2.2. Denote set G as follows

G := {(Pu, PuA, Pc, PcA, Hu, Hc, Be) ∈ R7
+ : Pu+PuA+Pc+PcA+Hu+Hc+Be ≤ N)}.

Then Lemma 2.1 implies that G is a positively invariant set with respect to model

(2.1.1).

Basic Reproduction Number

When θc=0, θcA=0, that is, there are no colonized patients admitted into hospital,

model (2.1.1) has a unique infection-free equilibrium (IFE) which is defined by

E0 = (Pu, Pc, PuA, PcA, Hu, Hc, Be) = (N∗, 0, Np −N∗, 0, Nh, 0, 0);

N∗ =
θuγuANp

θuAγu + θuγuA + ε
.

We derive the basic reproduction number R0 for the model (1) by using the techniques

in Diekmann et al. [13] and van den Driessche and Watmough [37], which involves

linearizing the original nonlinear ordinary differential equations at the infection-free
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equilibrium. Re-order the components of E0 as

E0 = (Pc, PcA, Hc, Be, Pu, PuA, Hu) = (0, 0, 0, 0, N∗, Np −N∗, Nh)

and set

F =



αpβp(1− η)PuHc + κpPuBe

αpβpA(1− η)PuAHc + κpAPuABe

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe

0

0

0

0



,

V =



γcPc + εPc − θcΩ

γcAPcA − [εPc + θcAΩ]

µcHc

γbBe − (υpPc + υpAPcA + υhHc)

αpβp(1− η)PuHc + κpPuBe + γuPu + εPu − θuΩ

αpβpA(1− η)PuAHc + κpAPuABe + γuAPuA − [εPu + θuAΩ]

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc



,
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where Ω = (γuPu + γcPc + γuAPuA + γcAPcA),

V− =



γcPc + εPc

γcAPcA

µcHc

γbBe

αpβp(1− η)PuHc + κpPuBe+ γuPu + εPu

αpβpA(1− η)PuAHc + κpAPuABe+ γuAPuA

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe



,

V+ =



θcΩ

εPc + θcAΩ

0

υpPc + υpAPcA + υhHc

θuΩ

εPu + θuAΩ

µcHc



.

Since θc=0, θcA=0, then we can derive that

F =



0 0 αpβp(1− η)N∗ κpN
∗

0 0 αpβpA(1− η)(Np −N∗) κpA(Np −N∗)

αpβh(1− η)Nh αpβhA(1− η)Nh 0 κhNh

0 0 0 0


,
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V =



γc + ε 0 0 0

−ε γcA 0 0

0 0 µc 0

−υp −υpA −υh γb


.

The basic reproductive number is defined as the spectral radius of FV −1:

R0 = sp(FV −1) =
α3

α1

+ α1 + α2 (2.2.1)

where

α1 = (

√
(

α3
6

27µ3cγ
3
cA

+ α5 + α4)2 − α3
3 +

α3
6

27µ3cγ
3
cA

+ α5 + α4)
1
3 ,

α2 = α6
3µcγcA

, α3 = α7
3µcγcA

+
α2
6

9µ2cγ
2
cA
, α4 = α6α7

6µ2cγ
2
cA
,

α5 =
(βpκpA−βpAκp)N∗(Np−N∗)Nhα2

p(1−η)2[ ω1βhA(γc+ε)−ω2(βhγcA+βhAε)]

2µcγcA(γc+ε)
,

α6 = µcγcA(ω1κpN
∗ + ω2κpA(Np −N∗) + ω3κhNh),

α7 = Nhα
2
p(1− η)2[βhAβpA(Np −N∗) + βhγcA+βhAε

γc+ε
βpN

∗]

+(Np −N∗)Nhαp(1− η)[ω2κhβpAγcA + ω3κpAβhAµc]

+N∗Nhαp(1− η)[ω1βpκhγcA + ω3κpµc
βhγcA+βhAε

γc+ε
].

By Theorem 2 in van den Driessche and Watmough [37], we have the follow-

ing theorem:

Theorem 2.3. If R0 < 1, then the infection-free equilibrium E0 is locally asymptoti-
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cally stable; If R0 > 1, then E0 is unstable.

Moreover, from the proof of Theorem 2 in van den Driesshce and Watmough [37]

or from the proof of Lemma 2.1 in Wang and Zhao [40] , we have the following

observation: let

J1 =



−γc − ε 0 αpβp(1− η)N∗ κpN∗

ε −γcA αpβpA(1− η)(Np −N∗) κpA(Np −N∗)

αpβh(1− η)Nh αpβhA(1− η)Nh −µc κhNh

υp υpA υh −γb


.

Let s(J1) be the maximum real part of the eigenvalues of J1. Since J1 is irreducible

and has non-negative off-diagonal elements, s(J1) is a simple eigenvalue of J1 with a

positive eigenvector. Then we have the following corollary:

Corollary 2.4. There hold two equivalences:

R0 < 1 ⇐⇒ s(J1) < 0; R0 > 1 ⇐⇒ s(J1) > 0.

Extinction of Disease.

Theorem 2.5. If R0 < 1, then the infection-free equilibrium E0 is globally asymptot-

ically stable.

Proof. From Theorem 2.3 we know that E0 is locally asymptotically stable. Now we

prove the global attractivity of the infection-free equilibrium E0.

By the first equation of the model (2.1.1), non-negativity of the solutions and
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previous assumptions, we get

dPu
dt
≤ θu[γuPu + γuA(Np − Pu)]− γuPu − εPu.

Since γuA = max{γuA, γc, γcA}, it implies that

dPu
dt
≤ θuγuANp − (−θuγu + θuγuA + γu + ε)Pu = θuγuANp − (θuAγu + θuγuA + ε)Pu.

So ∀δ > 0, there exists t1 > 0, such that Pu ≤ N∗ + δ, for all t ≥ t1.

Similarly, by the third equation of the model (2.1.1), non-negativity of the solu-

tions and previous assumptions, we get

dPuA
dt
≤ (1− θu)[γu(Np − PuA) + γuAPuA]− γuAPuA + ε(Np − PuA),

that is,

dPuA
dt
≤ (θuAγu + ε)Np − (θuAγu + θuγuA + ε)PuA.

Then ∀δ > 0, there exists t2 > 0, such that PuA ≤ Np −N∗ + δ, for all t ≥ t2.

Let T = max{t1, t2}, If t > T , since θc = θcA = 0, then



P
′
c(t) ≤ αpβp(1− η)(N∗ + δ)Hc + κp(N

∗ + δ)Be − γcPc − εPc,

P
′
cA(t) ≤ αpβpA(Np −N∗ + δ)Hc + κpA(Np −N∗ + δ)Be − γcAPcA + εPc,

H
′
c(t) ≤ αpβh(1− η)NhPc + αpβhA(1− η)NhPcA + κhNhBe − µcHc,

B
′
e(t) ≤ υpPc + υpAPcA + υhHc − γbBe.

(2.2.2)
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Considering the following auxiliary system:



P̃ ′c(t) = αpβp(1− η)(N∗ + δ)H̃c + κp(N
∗ + δ)B̃e − γcP̃c − εP̃c,

P̃ ′cA(t) = αpβpA(Np −N∗ + δ)H̃c + κpA(Np −N∗ + δ)B̃e − γcAP̃cA + εP̃c,

H̃ ′c(t) = αpβh(1− η)NhP̃c + αpβhA(1− η)NhP̃cA + κhNhB̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e.

(2.2.3)

Define

J1(δ) =


−γc − ε 0 αpβp(1− η)(N∗ + δ) κp(N ∗+δ)

ε −γcA αpβpA(1− η)(Np −N∗ + δ) κpA(Np −N∗ + δ)

αpβh(1− η)Nh αpβhA(1− η)Nh −µc κhNh

υp υpA υh −γb

 .

It follows from corollary 2.4 that if R0 < 1, then s(J1(0)) < 0. Since s(J1(δ)) is

continuous for small δ, so there exists δ small enough such that s(J1(δ)) < 0. Thus

there is a negative eigenvalue of s(J1(δ)) with a positive eigenvector. Obviously if

t→∞, then P̃c, P̃cA, H̃c, B̃e → 0. Then by the comparison principle we get

lim
t→∞

Pc = 0, lim
t→∞

PcA = 0, lim
t→∞

Hc = 0, lim
t→∞

Be = 0.

Therefore, E0 is globally attractive when R0 < 1. This completes the proof.

Uniform Persistence

Let f : X → X be a continuous map and X0 ⊂ X an open set. Define ∂X0 := X\X0

and M∂ := {x ∈ ∂X0 : fn(x) ∈ ∂X0, n ≥ 0}.
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Theorem 2.6 (STRONG REPELLERS, Zhao, 2003 [46]). Assume that

1. f(X0) ⊂ X0 and f has a global attractor A;

2. There exists a finite sequence M = {M1, ...,Mk} of disjoint, compact, and

isolated invariant sets in ∂X0 such that:

(a) ∪ϕ0∈M∂
ω(ϕ0) ⊂ ∪ki=1Mi;

(b) no subset of M forms a cycle in ∂X0

(c) Mi is isolated in X;

(d) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L

with L 6⊂Mi for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ.

According to the previous theorem 2.6, we have the following:

Theorem 2.7. If R0 > 1, the model ( 2.1.1) is uniformly persistent.

Proof. We first define

X = {(Pu, Pc, PuA, PcA, Hu, Hc, Be) : Pu ≥ 0, Pc ≥ 0, PuA ≥ 0, PcA ≥ 0, Hu ≥ 0, Hc ≥

0, Be ≥ 0},

X0 = {(Pu, Pc, PuA, PcA, Hu, Hc, Be) ∈ X : Pc > 0, PcA > 0, Hc > 0, Be > 0},

∂X0 = X\X0.

It can be seen that both X and X0 are positively invariant with respect to model

(2.1.1). Clearly, ∂X0 is relatively closed in X. Lemma 2.1 implies that the model

(2.1.1) is point dissipative, which implies that the solutions of the model (2.1.1) admit
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a global attractor. Then we define

M∂ = {(Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)) :

(Pu(t), Pc(t), PuA(t), PcA(t), Hu(t), Hc(t), Be(t)) ∈ ∂X0,∀t ≥ 0}.

Now we prove that

M∂ = {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}.

For any point ϕ0 = (Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)) in M∂, we

suppose that one of Pc(0), PcA(0), Hc(0), Be(0) is not zero, that is to say, ϕ0 /∈

{(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}. Without loss of generality,

we suppose that Pc(0) = 0, PcA(0) = 0, Hc(0) = 0, Be(0) > 0. By the second, fourth,

and sixth equations, we have

dPc(0)

dt
≥ κpPu(0)Be(0) > 0;

dPcA(0)

dt
≥ κpAPuA(0)Be(0) > 0;

dHc(0)

dt
≥ κhHu(0)Be(0) > 0.

Thus, there exists δ0 > 0, if 0 < t < δ0 then Pc(t) > 0, PcA(t) > 0, Hc(t) >

0, Be(t) > 0, which imply that ϕ0 /∈ ∂X0. we will get the similar result for other

cases (Pc(0) > 0, or PcA(0) > 0, or Hc(0) > 0). Thus ϕ0 /∈ M∂. This gives us a

contradiction. Hence ϕ0 ∈ {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}.

So M∂ ⊆ {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}. Obviously we

have {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh} ⊆ M∂, therefore,

M∂ = {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}. Let ϕ0 be an initial

value. Clearly there is only one equilibrium E0 = (N∗, 0, Np −N∗, 0, Nh, 0, 0) in M∂,
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so ∪ϕ0∈M∂
ω(ϕ0) = E0. Therefore, {E0} is a compact and isolated invariant set in

∂X0.

Next we claim that there exists a positive constant ` such that for any solution of

model (2.1.1), Ψt(ϕ0), ϕ0 ∈ X0, we have

lim sup
t→∞

d(Ψt(ϕ0), E0) ≥ `,

where d is a distant function in X0. We construct by contradiction so that

we suppose the claim is not true. Then lim supt→∞ d(Ψt(ϕ0), E0) ≤ `,

for any ` > 0, namely, there exists a positive constant T , such that

N∗ − ` ≤ Pu(t) ≤ N∗ + `, Pc(t) ≤ `, Np −N∗ − ` ≤ PuA(t) ≤ Np −N∗ + `, PcA(t) ≤

`, Nh − ` ≤ Hu(t) ≤ Nh + `, Hc(t) ≤ `, Be(t) ≤ `, for any t > T . While t > T , we

have,



P
′
c(t) ≥ αpβp(1− η)(N∗ − `)Hc + κp(N

∗ − `)Be − γcPc − εPc,

P
′
cA(t) ≥ αpβpA(Np −N∗ − `)Hc + κpA(Np −N∗ − `)Be − γcAPcA + εPc,

H
′
c(t) ≥ αpβh(1− η)(Nh − `)Pc + αpβhA(1− η)(Nh − `)PcA + κh(Nh − `)Be − µcHc,

B
′
e(t) ≥ υpPc + υpAPcA + υhHc − γbBe.

(2.2.4)
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Consider the following auxiliary system:



P̃ ′c(t) = αpβp(1− η)(N∗ − `)H̃c + κp(N
∗ − `)B̃e − γcP̃c − εP̃c,

P̃ ′cA(t) = αpβpA(Np −N∗ − `)H̃c + κpA(Np −N∗ − `)B̃e − γcAP̃cA + εP̃c,

H̃ ′c(t) = αpβh(1− η)(Nh − `)P̃c + αpβhA(1− η)(Nh − `)P̃cA + κh(Nh − `)B̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e.

(2.2.5)
we define

J1(`) =


−γc − ε 0 αpβp(1− η)(N∗ − `) κp(N ∗ −`)

ε −γcA αpβpA(1− η)(Np −N∗ − `) κpA(Np −N∗ − `)

αpβh(1− η)(Nh − `) αpβhA(1− η)(Nh − `) −µc κh(Nh − `)

υp υpA υh −γb

 .

For R0 > 1, by corollary 2.4, we have s(J1(0)) > 0. Since s(J1(`)) is continuous for

small `, so there exists a positive constant ` small enough such that s(J1(`)) > 0.

Thus, there is a positive eigenvalue of s(J1(δ)) with a positive eigenvector. It is easy

to see if t→∞, then P̃c, P̃cA, H̃c, B̃e →∞. Then by the comparison principle we get

lim
t→∞

Pc =∞, lim
t→∞

PcA =∞, lim
t→∞

Hc =∞, lim
t→∞

Be =∞.

This contradicts our assumption and completes the proof of the claim.

The claim implies that {E0} is an isolated invariant set in X and W s(E0)∩X0 = ∅.

Therefore, system (2.1.1) is uniformly persistent if R0 > 1 by Theorem 2.6. This

completes the proof.
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2.3 Numerical Simulations

Our deterministic model is simulated for 365 days. With the initial values

(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and parameter values shown

in Table 2.1, we estimate the following outcomes : numerical solutions of the deter-

ministic model (2.1.1), prevalences of colonized patients without or with antibiotic

exposure, and the basic reproduction number R0. Simulations are also performed to

evaluate the effect of various interventions in changing the prevalence of colonized

patients and R0.

Behavior of the Model
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Figure 2.2: Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA(t)) and colo-
nized patients without or with antibiotic exposure (Pc(t), PcA(t)) of deterministic model (2.1.1) with initial values
(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and θu = 0.617, θuA = 0.349, θc = 0.003, θcA = 0.031 on

admission. All parameter values are given in Table 2.1.

Using the baseline parameters in Table 2.1, Figs.2.2,2.3 give the behaviors of so-

lutions to model (2.1.1), which imply that 36% of patients are colonized with MRSA
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Figure 2.3: (a) Prevalence of colonized patients with or without antibiotic exposure; (b) The proportions of colonized
patients with and without antibiotic exposure ; (c) The bacterial load in the environment of deterministic model
(2.1.1) with initial values (P 0

u , P
0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and θu = 0.617, θuA = 0.349, θc =

0.003, θcA = 0.031 on admission.
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with antibiotic exposure, and 4% are colonized without antibiotic exposure. While

with no admission of MRSA-positive patients (θc = θcA = 0), Fig.2.4 gives the be-

haviors of solutions to model (2.1.1), which shows that 21% of patients are colo-

nized with MRSA with antibiotic exposure, and 3% are colonized without antibiotic

exposure; While with no admission of patients with history of antibiotic exposure

(θuA = θcA = 0), Fig.2.5 indicates that 27% of patients are colonized with MRSA

with antibiotic exposure, and 7.5% are colonized without antibiotic exposure; While

with no admission of patients with history of antibiotic exposure and MRSA-positive

(θuA = θc = θcA = 0), Fig.2.6 says that 14% of patients are colonized with MRSA

with antibiotic exposure, and 3.5% are colonized without antibiotic exposure. Hence,

to control the hospital infection we may need to reduce the proportion of colonized

patients (γc, γcA) at admission by increasing the detection and isolation of the ad-

mitted MRSA patients and also reduce the proportion of uncolonized patients with

antibiotic exposure (γuA) by strengthening the public education about how to use

antibiotics properly at community.
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Figure 2.4: (a) Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA(t)) and colo-
nized patients without or with antibiotic exposure (Pc(t), PcA(t)) of deterministic model (2.1.1) with initial values
(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and θu = 0.62, θuA = 0.38, θc = 0, θcA = 0 on admission; (b)

Prevalence of colonized patients with or without antibiotic exposure; (c) The bacterial load in the environment.



26

(a) (b)

0 50 100 150 200 250 300 350 400

time

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 
P

a
ti
e
n
ts

deterministic model

P
u

P
c

P
uA

P
cA

0 50 100 150 200 250 300 350 400

time

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p
re

v
a
le

n
c
e

deterministic model

P
c

P
cA

(c)

0 50 100 150 200 250 300 350 400

time

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r 

o
f 
B

a
c
te

ri
a

deterministic model

Figure 2.5: (a) Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA(t)) and colo-
nized patients without or with antibiotic exposure (Pc(t), PcA(t)) of deterministic model (2.1.1) with initial values
(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and θu = 0.966, θuA = 0, θc = 0.034, θcA = 0 on admission;

(b) Prevalence of colonozied patients with or without antibiotic exposure; (c) The bacterial load in the environment.



27

(a) (b)

0 50 100 150 200 250 300 350 400

time

0

2

4

6

8

10

12

14

N
u
m

b
e
r 

o
f 
P

a
ti
e
n
ts

deterministic model

P
u

P
c

P
uA

P
cA

0 50 100 150 200 250 300 350 400

time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p
re

v
a
le

n
c
e

deterministic model

P
c

P
cA

(c)

0 50 100 150 200 250 300 350 400

time

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

N
u
m

b
e
r 

o
f 
B

a
c
te

ri
a

deterministic model

Figure 2.6: (a) Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA(t)) and colo-
nized patients without or with antibiotic exposure (Pc(t), PcA(t)) of deterministic model (2.1.1) with initial values
(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and θu = 1, θuA = 0, θc = 0, θcA = 0 on admission; (b)

Prevalence of colonozied patients with or without antibiotic exposure; (c) The bacterial load in the environment.

The Basic Reproduction Number

In the case where colonized patients are admitted into hospital, the infections will

always persist. When θc = 0, θcA = 0, that is no colonized patients are ad-

mitted into hospital, the infection-free equilibrium (IFE) is defined to be E0 =

(Pu, Pc, PuA, PcA, Hu, Hc, Be) = (N∗, 0, Np −N∗, 0, Nh, 0, 0) where N∗= θuγuANp
θuAγu+θuγuA+ε

.

On the basis of parameters listed in Table 2.1, the basic reproduction number is es-

timated to be 1.2860, which means that the infections are persistent. We want to
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reduce R0 to below unity by some interventions. Here we perform some simulations

to evaluate the effect of the following interventions in reducing the prevalence of col-

onized patients with or without antibiotic exposure, and R0: (1) Prescription rate of

antibiotics (ε); (2) Hand hygiene compliance of HCWS (η); (3) The discharge rate for

colonized patients with or without antibiotic exposure (γc, γcA), (i.e., length of stay of

colonized patients with or without antibiotic exposure (γ−1
c , γ−1

cA ); (4) Environmental

cleaning rate (γb); and (5) Decontamination rate of HCWs (µc).

The predicted effects of individual interventions on reducing the prevalence of

MRSA and the reproduction number R0 are shown in Fig.2.7. Fig.2.7A shows that

increasing the compliance rate of hand hygiene for HCWs (η) from 0.4 (baseline) to

1, just reduces R0 from 1.2860 to 1.2197, and reduces the prevalence of colonized pa-

tients with and without antibiotic exposure by 4.51% (from 20.56% to 16.04%) and

0.54% (from 2.45% to 1.91%). When antibiotic prescribing rate is reduced from 0.12

(baseline) to 0 (no antibiotic use), we get a result in around 19% reduction in the

prevalence of colonized patients with antibiotic exposure, while a little increase and

then decrease in the prevalence of colonized patients without antibiotic exposure, and

a change from 1.2860 to 0.9251 in R0 (Fig.2.7B). We investigate the discharge rate

(i.e., the reciprocal of the length of stay) of colonized patient without antibiotic expo-

sure (γc ) and with antibiotic exposure (γcA), respectively in Fig.2.7C and Fig.2.7D.

When the discharge rate of Pc is increased from the baseline 0.06 to 0.2 (i.e., the

length of stay of Pc is decreased from 16.6days to 5 days), R0 reduces to 1.1308, and

the prevalence of PcA and Pc reduces by 9.58% (from 21.08% to 11.50%) and 1.72%

(from 2.57% to 0.85%). Especially, we notice that if we decrease the discharge rate

of PcA a little bit from baseline 0.055, there are dramatic increases in both R0 and

the prevalence of PcA. However, many studies show that colonized patients with an-
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tibiotic exposure (PcA) usually lead to a lengthier stay [7], which in turns makes the

situation worse. We find out that improving environmental cleaning rate (γb) is the

most effective intervention from Fig.2.7E. When we increase environmental cleaning

rate from 0.7 (baseline) to 1, we are able to decrease the prevalence of PcA and Pc

from 20.56% to 1.99% and from 2.45% to 0.21% respectively, and successfully reduce

R0 to below unity. Fig.2.7F shows that decontamination rate of HCWs has little

effect.

Observing that individual intervention is hard to reduce R0 to below unity, we

examine the effects of combined interventions (Fig.2.8). When we decrease antibiotic

use and in the meantime increase the discharge rate of PcA, we reduce R0 to below

unity efficiently (Fig.2.8b). A similar result happens when combining the increased

environmental cleaning rate and decreased discharge rate of PcA (Fig.2.8f).

Sensitivity Analysis

Latin hypercube sampling (LHS) method is used to engage a sensitivity analy-

sis [24] [31]. Partial rank correlation coefficients (PRCCs) are calculated for the

following nine parameters against prevalence of colonized patients and R0 over time:

discharge rate for colonized patients with antibiotic exposure (γcA), environmen-

tal cleaning rate (γb), probability of colonization for PuA after a contact with a

contaminated HCW (βpA), probability of contamination for HCW after a contact

with a colonized patient with antibiotic exposure (βhA), hand hygiene compliance

rate (η), decontaminated rate of HCWs (µc), contamination rate to environment

by colonized patients with antibiotic exposure (υpA), antibiotic prescribing rate

(ε), contamination rate from environment for uncolonized patient with antibiotic
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Figure 2.7: Effects of individual interventions on the prevalence of colonized patient with antibiotic exposure (dashed
lines), colonized patients without antibiotic exposure (dashed-dot lines) and the basic reproduction number R0 (solid
lines). The following interventions are investigated: compliance with hand hygiene (A), antibiotic prescribing rate
(B), discharge rate of colonized patients without antibiotic exposure Pc (C), discharge rate of colonized patients with
antibiotic exposure PcA (D), environmental cleaning rate (E), and decontamination rate of HCWs (F).
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Figure 2.8: Effects of two interventions on the basic reproduction number R0
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exposure (κpA). We also test for significant PRCCs for the above parameters to

evaluate which parameters are essential to our model. Since we find that the PRCC

values vary little after about 100 days, it is reasonable and efficient for us to just

study the PRCC values on this specific day 100 (Fig.2.9). Fig.2.9(e) implies that

the first four parameters have the most impact on the outcome of R0, which are

the environmental cleaning rate γb, contamination rate to environment by colonized

patient with antibiotic exposure υpA, contamination rate from environment for

uncolonized patient with antibiotic exposure κpA and antibiotic prescribing rate

ε. From Figs.2.9(a)-2.9(d), we illustrate the PRCC values of the nine examined

parameters and corresponding p-values for the different outcome parameter Pc, PcA,

Hc, and Be. All analysis is done by MATLAB and input parameters are assumed

to be normal distributions, due to the lack of present data concerning distribution

functions, as shown in Table 2.2.

Table 2.2: Variables evaluated in the sensitivity analysis

Symbol Distribution reference
γcA N(0.055, 0.005) estimated by [42]
γb N(0.7, 0.2) estimated by [42]
βpA N(0.43, 0.1) estimated by [42]
βhA N(0.2, 0.05) estimated by [42]
η N(0.4, 0.1) estimated by [42]
µc N(24, 5) estimated by [42]
υpA N(470, 150) estimated by [42]
ε N(0.12, 0.02) estimated by [42]
κpA N(0.000005, 0.0000006) estimated by [42]
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Figure 2.9: (a)-(c) PRCC of the nine parameters for Pc, PcA, Be whee t=100 day; (e) PRCC for R0 when θc =
θcA = 0. All the parameters come from Latin Hypercube sampling.
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2.4 The Stochastic Model

We know that one disadvantage of deterministic models is that they cannot directly

reflect randomness in epidemic events. However, for nosocomial models in hospital

subunits, where randomness may matter, there is a need to formulate randomness

more precisely. Here we use the techniques introduced in Linda J.S. Allen’s book [1]

to formulate stochastic epidemic models that relate directly to their deterministic

counterparts. According to the underlying assumptions regarding the time and the

state variables, stochastic processes usually are described as: 1) discrete time Markov

chain (the time and the state variables are discrete), 2) continuous time Markov

chain (time is continuous but the state variable is discrete), 3) stochastic differential

equation (both the time and the state variables are continuous). Here a continuous-

time Markov chain model (CTMC) and a stochastic differential equation model (SDE)

are developed ( [1], [39]).

2.4.1 Formulation of a CTMC Epidemic model

By the assumption Pu+PuA+Pc+PcA = Np, Hu+Hc = Nh,∀t ≥ 0, we have the process

(Pc, PuA, PcA, Hc, Be) in R5 with Pu(t) = Np − PuA − Pc − PcA and Hu(t) = Nh −Hc.

These five variables have a joint probability denoted by

p(s,j,k,m,n)(t) = Pr(Pc(t) = s, PuA(t) = j, PcA(t) = k,Hc(t) = m,Be(t) = n)

with s ≥ 0, j ≥ 0, k ≥ 0, 0 ≤ s + j + k ≤ Np, 0 ≤ m ≤ Nh and n ≥ 0. Assume that
4t > 0 is sufficiently small, the transition probabilities associated with the stochastic
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process are defined for a small period of time 4t > 0 as follows:

p(s+i1,j+i2,k+i3,m+i4,n+i5);(s,j,k,m,n)(4t)

= Pr[(Pc(t +4t), PuA(t +4t), PcA(t +4t), Hc(t +4t), Be(t +4t)) = (s + i1, j + i2, k + i3,m + i4, n + i5)

|(Pc(t), PuA(t), PcA(t), Hc(t), Be(t)) = (s, j, k,m, n)],

where i1, i2, i3, i4, i5 ∈ {−1, 0, 1}, Hence the transition probability is as follow,
p(s+i1,j+i2,k+i3,m+i4,n+i5);(s,j,k,m,n)(4t)

=



{θc(γu(Np − s− j − k) + γcs + γuAj + γcAk)

+αpβp(1− η)(Np − s− j − k)m + κp(Np − s− j − k)n}4t (i1, i2, i3, i4, i5) = (1, 0, 0, 0, 0)

γcs4t (i1, i2, i3, i4, i5) = (−1, 0, 0, 0, 0)

εs4t (i1, i2, i3, i4, i5) = (−1, 0, 1, 0, 0)

{θuA(γu(Np − s− j − k) + γcs + γuAj + γcAk) + ε(Np − s− j − k)}4t (i1, i2, i3, i4, i5) = (0, 1, 0, 0, 0)

(κpAjn + γuAj)4t (i1, i2, i3, i4, i5) = (0,−1, 0, 0, 0)

αpβpA(1− η)jm4t (i1, i2, i3, i4, i5) = (0,−1, 1, 0, 0)

{θcA(γu(Np − s− j − k) + γcs + γuAj + γcAk) + κpjn}4t (i1, i2, i3, i4, i5) = (0, 0, 1, 0, 0)

γcAk4t (i1, i2, i3, i4, i5) = (0, 0,−1, 0, 0)

{αpβh(1− η)s(Nh −m) + αpβhA(1− η)k(Nh −m) + κh(Nh −m)n}4t (i1, i2, i3, i4, i5) = (0, 0, 0, 1, 0)

µcm4t (i1, i2, i3, i4, i5) = (0, 0, 0,−1, 0)

(υps + υpAk + υhm)4t (i1, i2, i3, i4, i5) = (0, 0, 0, 0, 1)

γbn4t (i1, i2, i3, i4, i5) = (0, 0, 0, 0,−1)

0 otherwise.

(2.4.1)

We must choose the time step 4t sufficiently small. In our case it is too com-
plicated to express the transition matrix. Instead, we still are able to express the
probabilities p(s,j,k,m,n)(t+4t) by using the Markov property:

p(s,j,k,m,n)(t + 4t)

= p(s−1,j,k,m,n)(t)[θc(γu(Np − s + 1− j − k) + γcs + γuAj + γcAk) + αpβp(1− η)(Np − s + 1− j − k)m

+ κp(Np − s + 1− j − k)n]4t + p(s+1,j,k,m,n)(t)γc(s + 1)4t + p(s+1,j,k−1,m,n)(t)ε(s + 1)4t

+ p(s,j−1,k,m,n)(t)[θuA(γu(Np − s− j + 1− k) + γcs + γuAj + γcAk) + ε(Np − s− j + 1− k))]4t

+ p(s,j+1,k,m,n)(t)[κpA(j + 1)n + γuA(j + 1)]4t + p(s,j+1,k−1,m,n)(t)αpβpA(1− η)(j + 1)m

+ p(s,j,k−1,m,n)(t)[θc(γu(Np − s− j − k + 1) + γcs + γuAj + γcA(k + 1)) + κpjn]4t + p(s,j,k+1,m,n)(t)γcA(k + 1)4t

+ p(s,j,k,m−1,n)(t)[αpβh(1− η)s(Nh −m + 1) + αpβhA(1− η)k(Nh −m + 1) + κh(Nh −m + 1)n]4t

+ p(s,j,k,m+1,n)(t)µc(m + 1) + p(s,j,k,m,n−1)(t)(υps + υpAk + υhm)4t + p(s,j,k,m,n+1)(t)γb(n + 1)4t + ◦(4t).
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Naturally, a system of forward Kolmogorov differential equations can be derived:

ps,j,k,m,n

dt
= p(s−1,j,k,m,n)[θc(γu(Np − s + 1− j − k) + γcs + γuAj + γcAk) + αpβp(1− η)(Np − s + 1− j − k)m

+ κp(Np − s + 1− j − k)n] + p(s+1,j,k,m,n)(t)γc(s + 1) + p(s+1,j,k−1,m,n)(t)ε(s + 1)

+ p(s,j−1,k,m,n)(t)[θuA(γu(Np − s− j + 1− k) + γcs + γuAj + γcAk) + ε(Np − s− j + 1− k))]

+ p(s,j+1,k,m,n)(t)[κpA(j + 1)n + γuA(j + 1)]4t + p(s,j+1,k−1,m,n)(t)αpβpA(1− η)(j + 1)m

+ p(s,j,k−1,m,n)(t)[θc(γu(Np − s− j − k + 1) + γcs + γuAj + γcA(k + 1)) + κpjn]

+ p(s,j,k+1,m,n)(t)γcA(k + 1) + p(s,j,k,m−1,n)(t)[αpβh(1− η)s(Nh −m + 1) + αpβhA(1− η)k(Nh −m + 1)

+ κh(Nh −m + 1)n]

+ p(s,j,k,m+1,n)(t)µc(m + 1) + p(s,j,k,m,n−1)(t)(υps + υpAk + υhm) + p(s,j,k,m,n+1)(t)γb(n + 1).

2.4.2 Formulation of a SDE Epidemic Model

We now try to develop a SDE model from the deterministic epidemic model (2.1.1).

The system has five variables with a joint probability defined by:

p(s,j,k,m,n)(t) = Pr{Pc(t) = s, PuA(t) = j, PcA(t) = k,Hc(t) = m,Be(t) = n}

with s, j, k = 0, ..., Np,m = 0...Nh, and n ≥ 0, with transition probabilities given in

(2.4.1). Let X(t) = (Pc(t), PuA(t), PcA(t), Hc(t), Be(t))
T with infinitesimal

4X(t) = (4Pc(t),4PuA(t),4PcA(t),4Hc(t),4Be(t))
T ,

where 4X(t) = X(t+4t)−X(t). In addition, we assue that 4X(t) has an approx-

imate normal distribution for small 4t. Hence the random vector X(t+4t) can be
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approximated as follows:

X(t+4t) = X(t) +4X(t) ≈ X(t) + E(4X(t)) +
√
V (4X(t)),

where the covariance matrix of 4X(t) is

V (4X(t)) = E((4X(t))(4X(t))T )−E(4X(t))E(4X(t))T ≈ E((4X(t))(4X(t))T )

because the elements in the second term are o([4t]2). So we express the infinitesimal

mean matrix f(X(t), t) to order 4t as follows:

E(4X(t)|X(t)) =



ec

euA

ecA

eh

eb


4t = f(X(t), t)4t,

where

ec = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) +αpβp(1− η)(Nh − Pc − PuA − PcA)Hc + κpPuBe − γcPc − εPc,

euA = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) − αpβpA(1 − η)PuAHc − κpAPuABe − γuAPuA + ε(Nh −

Pc − PuA − PcA),

ecA = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1− η)PuAHc + κpAPuABe− γcAPcA + εPc,

eh = αpβh(1− η)Pc(Nh −Hc) + αpβhA(1− η)PcA(Nh −Hc) + κh(Nh −Hc)Be − µcHc,

eb = υpPc + υpAPcA + υhHc − γbBe.

and also the infinitesimal variance matrix Σ(X(t)t) to order 4t:
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E(4X(t)(4X(t))T |X(t))

=



δc 0 −εPc 0 0

0 δuA −αpβpA(1− η)PuAHc 0 0

−εPc −αpβpA(1− η)PuAHc δcA 0 0

0 0 0 δh 0

0 0 0 0 δb


4t

= Σ(X(t), t)4t,

where

δc = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβp(1− η)(Nh − Pc − PuA − PcA)Hc + κpPuBe + γcPc + εPc,

δuA = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA + ε(Nh −

Pc − PuA − PcA),

δcA = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1− η)PuAHc + κpAPuABe + γcAPcA + εPc,

δh = αpβh(1− η)Pc(Nh −Hc) + αpβhA(1− η)PcA(Nh −Hc) + κh(Nh −Hc)Be + µcHc,

δb = υpPc + υpAPcA + υhHc + γbBe.

It is easy to check that δc, δuA, δcA, δh, δb are all nonnegative. Hence we have a

matrix G satisfying GGT = Σ, where G is a 5×12 matrix to order 4t,

G =



√
a1 −√a2 −√a3 0 0 0 0 0 0 0 0 0

0 0 0
√
a4 −√a5 −√a6 0 0 0 0 0 0

0 0
√
a3 0 0

√
a6

√
a7 −√a8 0 0 0 0

0 0 0 0 0 0 0 0
√
a9 −√a10 0 0

0 0 0 0 0 0 0 0 0 0
√
a11 −√a12


,
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where

a1 = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβp(1 − η)(Nh − Pc −

PuA − PcA)Hc + κpPuBe,

a2 = γcPc,

a3 = εPc,

a4 = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA) + ε(Nh − Pc − PuA − PcA),

a5 = κpAPuABe+ γcAPcA,

a6 = αpβpA(1− η)PuAHc,

a7 = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + κpAPuABe,

a8 = γcAPcA,

a9 = αpβh(1− η)Pc(Nh −Hc) + αpβhA(1− η)PcA(Nh −Hc) + κh(Nh −Hc)Be,

a10 = µcHc,

a11 = υpPc + υpAPcA + υhHc,

a12 = γbBe.

Then the stochastic differential equations have the following form:

dX(t) = f(X(t), t)dt+G(X(t), t)dW (t).

More precisely,
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

dPc(t) = ecdt+
√
a1dW1 −

√
a2dW2 −

√
a3dW3,

dPuA(t) = euAdt+
√
a4dW4 −

√
a5dW5 −

√
a6dW6,

dPcA(t) = ecAdt+
√
a3dW3 +

√
a6dW6 +

√
a7dW7 −

√
a8dW8,

dHct = ehdt+
√
a9dW9 −

√
a10dW10,

dBe(t) = ebdt+
√
a11dW11 −

√
a12dW12.

(2.4.2)

where W1, · · · ,W12 are twelve independent Wiener processes. Briefly speaking, the

Wiener process depends continuously on t, and has stationary independent incre-

ments, i.e., the increments 4W depend only on 4t with

4W = W (t+4t)−W (t) ∼ N(0,4t).

Hence we are able to run stochastic simulations by Matlab [2]. For example, consider

Pc(j + 1) = Pc(j) + ec · dt+
√
a1 ·
√
dt · n1 −

√
a2 ·
√
dt · n2 −

√
a3 ·
√
dt · n3

where dt = 0.0001 is the time step and ni, i = 1, 2, 3 are independent standard normal

random variables.

2.4.3 Stochastic Simulations

Using the baseline parameters in Table 2.1, Fig.2.10 gives the behaviors of the model

(2.4.2). With no admission of MRSA-positive patients (θc = θcA = 0), Fig.2.11

shows the behaviors of the model (2.4.2). The simulations are given in Fig.2.12 when

there is no admission of patients with history of antibiotic exposure and MRSA-
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positive (θuA = θc = θcA = 0). We can see that the stochastic results are roughly

consistent with the deterministic results (Figs.2.2-2.6). In Figs.2.13-2.15, we use

stochastic models to see the effect of antibiotic prescribing rate ε, the discharge rate

of colonized patients with antibiotic exposure γcA, and environmental cleaning rate

γb on the number of colonized patients, respectively.

Figure 2.10: Behavior of the SDE model with all the parameter values shown in Table 2.1, especially θc =
0.003, θcA = 0.031 on admission.

2.5 Discussion

For the deterministic model, numerical simulations were performed to demonstrate

the behavior of the solutions and the dependence and sensitivity of the basic reproduc-
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Figure 2.11: Behavior of the SDE model with the parameters shown in Table 2.1 and θc = θcA = 0 on admission,
i.e., there is no admission of MRSA colonized patients.
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Figure 2.12: When θuA = θc = θcA = 0 on admission, i.e., there is no admission of MRSA colonized patients and
no admission of patients with antibiotic exposure, behavior of the SDE model with other parameters shown in Table
2.1.
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Figure 2.13: (a) When antibiotic prescribing rate ε=0.3, the number of colonized patients in stochastic simulations;
(b) When antibiotic prescribing rate ε=0, the number of colonized patients in stochastic simulations.
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Figure 2.14: (a) When discharge rate of colonized patients with antibiotic exposure γcA=0.02 (i.e., length of stay
in hospital is 50 days for PcA), the number of colonized patients in stochastic simulations; (b) When discharge rate
of colonized patients with antibiotic exposure γcA=0.2 (i.e., length of stay in hospital is 5 days for PcA), the number
of colonized patients in stochastic simulations.
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Figure 2.15: (a) When environmental cleaning rate γb=2, the number of colonized patients in stochastic simulations;
(b) When environmental cleaning rate γb=0.4, the number of colonized patients in stochastic simulations.
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tion number of various parameters. For the stochastic model, numerical simulations

were also carried out to study the effect of antibiotic prescribing rate ε, the discharge

rate of colonized patients with antibiotic exposure γcA, and environmental cleaning

rate γb on the number of colonized patients, respectively.

The simulation results showed that higher discharge rate is associated with lower

prevalence of MRSA, which implies that treating patients with antibiotic exposure as

quickly and effectively as possible may be an effective strategy. However, on the other

hand, patients with antibiotic exposure are more challenging to be treated efficiently

and quickly. Hence, this emphasizes the importance of effective antimicrobial stew-

ardship programs in reducing antibiotic usage both in hospital and community. We

also found that environmental cleaning is the most efficient intervention. Hospitals

should try to use more effective cleaning products, train and monitor the efficacy of

cleaning with feedback to cleaning teams. Hand hygiene is also an effective interven-

tion. Finally, screening to reduce admission of colonized patients into the hospital is

crucial for the spread and control of MRSA (Figs. 2.4-2.6, 2.10-2.12). Actually, our

results suggest that when colonized patients are admitted, MRSA infections always

persist in the hospital. Hence, we suggest that active screening at admission and

subsequent isolation of positive cases are important to control the infection.



Chapter 3

The extended model of Methicillin-
resistant Staphylococcus aureus infec-
tions in hospitals with environmen-
tal contamination

3.1 Background

In recent decades seasonal variation of MRSA infections in the hospital settings has

been widely observed, especially in surgical wounds, skin and soft tissue, urine, and

respiratory tract in young children [18], [22], [25], [12], [28], [34]. Reasons for this sea-

sonal variation of MRSA infections in hospital are very complicated and still contro-

versial. Previous studies believe that the seasonality involves temperature variation,

insect bites, seasonal influenza, community-associated MRSA (CA-MRSA) infection,

school season, seasonal community antibiotic use, which may result in a seasonal pat-

tern of antibiotic prescriptions in hospitals. In particular, in the work of Sun et al [34],

seasonality in the prescription data was found (see Fig.3.1). Moreover, they per-

formed a seasonal decomposition analysis for the MRSA isolates and found out that

both fluoroquinolone prescriptions and the percentage of MRSA isolates that were

48
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resistant to ciprofloxacin peaked in the winter. A similar result was found for both

the percentage of MRSA isolates resistant to clindamycin and macrolide/lincosamide

prescriptions (see Fig.3.2). Though this does not totally reflect the antibiotic usage

in hospitals, it seems likely that the usage of antibiotics in hospitals also fluctuates

seasonally [34] [28]. Inspired by their work, we model the antibiotic prescribing rate

as a periodic function depending on time t in the transmission of MRSA, which has

a period of 365 days and represents that antibiotic prescribing rate increases starting

at the beginning of August, reaches a peak in winter and then decreases starting at

the beginning of February according to the data shown in Fig.3.2.

Figure 3.1: Number of prescriptions for antibiotic drug classes, by month. Source: IMS Health, Xponent, 1999-2007.
Abbreviation: TMP/Sulfra, trimethoprim/sulfamethoxazole [34].
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(a) (b)

Figure 3.2: (a) Seasonal pattern of fluoroquinolone prescriptions and MRSA isolates resistant to ciprofloxacin;
Mean monthly seasonal variation for fluoroquinolone prescriptions and MRSA isolates resistant to clindamycin for
inpatient, outpatient and combined isolates as calculated by STL method. Prescription data source: IMS Health,
Xponent, 1999-2007; Resistance data source: The Surveillance Network (TSN) Database-USA (Focus Diagnostics,
Herndon, VA, USA); (b) Seasonal pattern of macrolide and lincosamide prescriptions and MRSA isolates resistant
to ciprofloxacin; Mean monthly seasonal variation for macrolide and lincosamide prescriptions and MRSA isolates
resistant to clindamycin for inpatient, outpatient and combined isolates as calculated by STL method. Prescription
data source: IMS Health, Xponent, 1999-2007; Resistance data source: The Surveillance Network (TSN) Database-
USA (Focus Diagnostics, Herndon, VA, USA) [34].

To the best of our knowledge, no model has been developed to address the season-

ality in the transmission of MRSA. However, discussing seasonal variable of MRSA

may be helpful in developing effeicient control programs, lowering the long-term health

risks, and distributing public resources.

In this chapter, we extend the deterministic model developed in previous chapter

to be a periodic mathematical model to describe a comprehensive transmission of

MRSA. Boundedness and positivity of solutions, the basic reproduction number, the

extinction and uniform persistence of infections are analyzed. Simulations and discus-

sion of the extended model behaviors and sensitive analysis of the basic reproduction

number are given.
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3.2 The Periodic Deterministic Model

We first denote the patients, health-care workers (HCWS) and free-living bacteria in

the environment as the following seven compartments:

Pu(t)=number of uncolonized patients without antibiotic exposure at time t.

PuA(t)=number of uncolonized patients with antibiotic exposure at time t.

Pc(t)=number of colonized patients without antibiotic exposure at time t.

PcA(t)=number of colonized patients with antibiotic exposure at time t.

Hu(t)=number of uncontaminated health care workers at time t.

Hc(t)=number of contaminated health care workers at time t.

Be(t)=number of the free-living bacteria in the environment at time t.

The flowchart describing the transmission dynamics of MRSA in hospitals among

these seven compartments is given in Fig.2.1.

Based on the seasonal pattern of antibiotic usage found in Sun et al [34], we

use a periodic function ε(t) = ε0(1 + ε1 sin( 2π
365

(t − 240))) to describe the antibiotic

prescription rate in the hospital. ε(t) has a period of 365 days, and represents that

antibiotic prescription rate increases starting at the beginning of August, gains a peak

in winter and then decreases starting at the beginning of February according to the

data shown in Figs.3.1-3.2. ε0 is the baseline antibiotic prescription rate and ε1 is the

magnitude of change.

Detailed parameter values are given in Table 2.1. We hence formulate the periodic

mathematical model as follows:
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dPu
dt

= θuΩ(t)− αpβp(1− η)PuHc − κpPuBe − γuPu − ε(t)Pu,

dPc
dt

= θcΩ(t) + αpβp(1− η)PuHc + κpPuBe − γcPc − ε(t)Pc,

dPuA
dt

= θuAΩ(t)− αpβpA(1− η)PuAHc − κpAPuABe − γuAPuA + ε(t)Pu,

dPcA
dt

= θcAΩ(t) + αpβpA(1− η)PuAHc + κpAPuABe − γcAPcA + ε(t)Pc,

dHu

dt
= −αpβh(1− η)PcHu − αpβhA(1− η)PcAHu − κhHuBe + µcHc,

dHc

dt
= αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc,

dBe

dt
= υpPc + υpAPcA + υhHc − γbBe,

(3.2.1)

where Ω(t) = γuPu+γcPc+γuAPuA+γcAPcA, and we denote ε(t) = ε0(1+ε1 sin( 2π
365

(t−

240))),

with initial conditions Pu(0) = P 0
u , PuA(0) = P 0

uA, Pc(0) = P 0
c , PcA(0) = P 0

cA, Hu(0) =

H0
u, Hc(0) = H0

c , Be(0) = B0
e at time 0.
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3.3 Mathematical Analysis

3.3.1 Basic Reproduction Number

The basic reproduction number R0 for the periodic deterministic model (3.2.1) is

constructed according to the definition in Bacaër and Guenaoui [3] and follows the

general calculation procedure in Wang and Zhao [41]. When θu=0, θc=0, and θcA=0,

that is only uncolonized patients with antibiotic exposure are admitted into hospital,

the infection-free infection (IFE) is defined as

E0 = (Pu, Pc, PuA, PcA, Hu, Hc, Be) = (0, 0, Np, 0, Nh, 0, 0),

We can rewrite the variables of periodic ODE system (3.2.1) as a vector E0 =

(Pc, PcA, Hc, Be, Pu, PuA, Hu) = (0, 0, 0, 0, 0, Np, Nh). Following the general calcula-

tion procedure in Wang and Zhao [41], we have

F =



αpβp(1− η)PuHc + κpPuBe

αpβpA(1− η)PuAHc + κpAPuABe

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe

0

0

0

0



,
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V =



γcPc + ε(t)Pc − θcΩ

γcAPcA − [ε(t)Pc + θcAΩ]

µcHc

γbBe − (υpPc + υpAPcA + υhHc)

αpβp(1− η)PuHc + κpPuBe + γuPu + ε(t)Pu − θuΩ

αpβpA(1− η)PuAHc + κpAPuABe + γuAPuA − [ε(t)Pu + θuAΩ]

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc



,

where ε(t) = ε0(1 + ε1 sin( 2π
365

(t− 240))) and Ω(t) = (γuPu + γcPc + γuAPuA + γcAPcA).

We also have

V− =



γcPc + ε(t)Pc

γcAPcA

µcHc

γbBe

αpβp(1− η)PuHc + κpPuBe + γuPu + ε(t)Pu

αpβpA(1− η)PuAHc + κpAPuABe + γuAPuA

αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe



,

V+ =



θcΩ

ε(t)Pc + θcAΩ

0

υpPc + υpAPcA + υhHc

θuΩ

ε(t)Pu + θuAΩ

µcHc



.
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So we derive that

F (t) =



0 0 0 0

0 0 αpβpA(1− η)Np κpANp

αpβh(1− η)Nh αpβhA(1− η)Nh 0 κhNh

0 0 0 0


,

V (t) =



γc + ε(t) 0 0 0

−ε(t) γcA 0 0

0 0 µc 0

−υp −υpA −υh γb


,

and

M(t) =


−γu − ε(t) 0 0

γu + ε(t) 0 0

0 0 0

 .

Let Y (t, s), t ≥ s be the evolution operator of the system

dy

dt
= −V (t)y. (3.3.1)

That is, for each s ∈ R, the 4× 4 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s),∀t ≥ s, Y (s, s) = I,
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where I is the 4 × 4 identity matrix. In order to characterize R0, we consider the

following linear ω-periodic system

dw

dt
= [−V (t) +

F (t)

λ
] ω, t ∈ R+ (3.3.2)

with parameter λ ∈ (0,∞). Let W (t, s, λ), t ≥ s, be the evolution operator of the

system (3.3.2) on R4. Clearly, ΦF−V = W (t, 0, 1),∀t ≥ 0.

According to the method in Wang and Zhao [41], we let φ be ω-periodic in s

and the initial distribution of infectious individuals. So F (s)φ(s) is the rate of new

infections produced by the infected individuals who were introduced at time s. When

t ≥ s, Y (t, s)F (s)φ(s) gives the distribution of those infected individuals who were

newly infected by φ(s) and remain in the infected compartments at time t. Naturally,

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da

is the distribution of accumulative new infections at time t produced by all those

infected individuals φ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R4,

which is equipped with the maximum norm ‖ · ‖ and the positive cone C+
ω := {φ ∈

Cω : φ(t) ≥ 0,∀t ∈ R+}. Then we can define a linear operator L : Cω → Cω by

(Lφ)(t)

∫ ∞
0

Y (t, t− a)F (t, t− a)φ(t− a)da,∀t ∈ R+, φ ∈ Cω,

L is called the next infection operator and the spectral radius of L is defined as the

basic reproduction number

R0 := ρ(L)
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for the periodic epidemic model. In order to determine the threshold dynamics, we

use Theorems 2.1 and 2.2 in Wang and Zhao [41]. First of all, we need to verify the

seven assuptions in the theorems.

(A1)-(A5) The first five conditions can be easily verified by observing F , V+ and

V−.

(A6) ρ(ΦM(ω)) < 1, where ρ(ΦM(ω)) is the spectral radius of ΦM(ω). ΦM(t) is

the monodromy matrix of the linear ω-periodic system dq
dt

= M(t)q with

M =


−γu − ε(t) 0 0

γu + ε(t) 0 0

0 0 0

 .

Hence, we have,

ΦM(t) =


0 0 e−

∫
γu+ε(t)dt

1
2

1
2
−e−

∫
γu+ε(t)dt

0 1
2

0

 .

It is obvious that ρ(ΦM(t)) < 1, since e−
∫
γu+ε(t)dt < 1 based on γu + ε(t) > 0 in our

parameter setting.

(A7) ρ(Φ−V (ω)) < 1, where Φ−V (t) is the monodromy matrix of the linear ω-

periodic sysstem dy
dt

= −V (t)y with

−V =



−γc − ε(t) 0 0 0

ε(t) −γcA 0 0

0 0 −µc 0

υp υpA υh −γb


.
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Hence, we have,

Φ−V (t) =



e−
∫
γu+ε(t)dt 0 0 0

c1 e−γcAt 0 0

c2 0 e−µct 0

c3
υpA

γb−γcA
e−γcAt υh

γb−µc
e−µct e−γbt


,

where c1, c2 and c3 do not need to be calculated, even though they can be calculated,

since it is a lower triangular matrix with all elements in diagonal being less than one,

ρ(Φ−V (ω)) < 1.

Hence, all assumptions (A1)-(A7) hold, So by (ii) in Theorem 2.1 and Theorem

2.2 in Wang and Zhao [41], we have the following results.

Lemma 3.1. R0 = λ is the unique solution of ρ(W (ω, 0, λ)) = 1, where W (t, s, λ), t ≥

s, is the evolution operator of system ( 3.3.2).

Theorem 3.2. If R0 < 1, then the infection-free equilibrium E0 is locally asymptoti-

cally stable; If R0 > 1, then E0 is unstable.

Lemma 3.3. For the basic reproduction number R0, we have

(i)R0 = 1 if and only of ρ(ΦF−V (ω)) = 1.

(ii)R0 > 1 if and only of ρ(ΦF−V (ω)) > 1.

(iii)R0 < 1 if and only of ρ(ΦF−V (ω)) < 1.

Remark 3.4. If ρ(ΦF−V (ω)) < 1, then the disease-free equilibrium E0 is locally

asymptotically stable; If ρ(ΦF−V (ω)) > 1, then E0 is unstable.
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In order to characterize R0, we consider

F (t)

λ
− V (t) =



−(γc + ε(t)) 0 0 0

ε(t) −γcA αpβpA(1−η)Np
λ

κpANp
λ

αpβh(1−η)Nh
λ

αpβhA(1−η)Nh
λ

−µc κhNh
λ

υp υpA υh −γb


,

where ε(t) = ε0(1+ ε1 sin( 2π
365

(t−240))). We want to calculate the monodromy matrix

of the system

dx

dt
=

(
F (t)

λ
− V (t)

)
x. (3.3.3)

By observing the matrix F (t)
λ
− V (t), we can see that x1(t) can be solved directly.

When x1(t) = 0, we have


ẋ2(t)

ẋ3(t)

ẋ4(t)

 = A


x2(t)

x3(t)

x4(t)

 ,

where

A =


−γcA αpβpA(1−η)Np

λ

κpANp
λ

αpβhA(1−η)Nh
λ

−µc κhNh
λ

υpA υh −γb


is a constant matrix.
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When x1(t) = −e−
∫
γu+ε(t), we have


ẋ2(t)

ẋ3(t)

ẋ4(t)

 = A


x2(t)

x3(t)

x4(t)

+ f(t),

where

f(t) =


−ε(t)e−

∫
γu+ε(t)

−αpβh(1−η)Nh
λ

e−
∫
γu+ε(t)

−υpe−
∫
γu+ε(t)

 .

According to the results in Chapter 1 of Perko [26], we are able to find the monodromy

matrix of the system (3.3.3). However, the high-dimension of the matrix F
λ
−V makes

the analytical solution for R0 complicated. Hence, we derive R0 numerically in next

section.

3.3.2 Extinction of Infection

Based on the biological background of the model (3.2.1), we consider solutions of

model (3.2.1) with nonnegative initial values:

P 0
u ≥ 0, P 0

uA ≥ 0, P 0
c ≥ 0, P 0

cA ≥ 0, H0
u ≥ 0, H0

c ≥ 0, B0
e ≥ 0.

Lemma 3.5. If P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ≥ 0, i.e., the initial values are nonneg-

ative, then the solution of model ( 3.2.1) is nonnegative for all t ≥ 0 and ultimately

bounded. In particular, if P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e > 0, i.e, the initial values are

positive, then the solutions of model ( 3.2.1) is also positive for all t ≥ 0.
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Proof. According to the continuous dependence of solutions with respect to ini-

tial values, we only need to prove that when the initial values are positive, i.e.,

P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e > 0, the solution of model (3.2.1) is also positive for all

t ≥ 0. Let

m(t) = min{Pu(t), PuA(t), Pc(t), PcA(t), Hu(t), Hc(t), Be(t)},∀t > 0.

By the assumption that the initial values are positive, we clearly have, m(0) > 0.

So we assume that there exists a t1 > 0 such that m(t1) = 0 and m(t) > 0 for all

t ∈ [ 0, t1).

If m(t1) = Pu(t1), from the first equation of model (3.2.1), it follows that dPu
dt
≥

−(αpβp(1 − η)Hc(t) + κpBe(t) + γu + ε(t))Pu for all t ∈ [ 0, t1). Since Hc(t), Be(t) >

0, ε(t) = ε0(1 + ε1 sin( 2π
365

(t− 240))) > 0 for all t ∈ [ 0, t1), we have

0 = Pu(t1) ≥ P 0
uexp(−

∫ t1

0

(αpβp(1− η)Hc(s) + κpBe(s) + γu + ε(s))ds) > 0,

which leads to a contradiction. We can get similar contradictions in the other cases.

Hence, the solutions remain in the positive cone if the initial conditions are in the

positive cone R7.

Next, denote M(t) = Pu(t)+PuA(t)+Pc(t)+PcA(t)+Hu(t)+Hc(t)+Be(t). Then

dM(t)

dt
=

dBe(t)

dt
= υpPc + υpAPcA + υhHc − γbBe

≤ υpNp + υpANp + υhNh − γbBe(t),

where Np = Pu(t) + PuA(t) + Pc(t) + PcA(t) and Nh = Hu(t) + Hc(t), which implies
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that

Be(t) ≤
(υpNp + υpANp + υhNh)

γb
(1− e−γbt) +B0

ee
−γbt.

So Be(t) is bounded by a fixed number

K =
(υpNp + υpANp + υhNh)

γb
+B0

e .

Let N = Np +Nh +K, we have

Pu(t) + PuA(t) + Pc(t) + PcA(t) +Hu(t) +Hc(t) +Be(t) ≤ N.

Thus, the solution is ultimately bounded. This completes the proof.

Remark 3.6. Denote

G := {(Pu, PuA, Pc, PcA, Hu, Hc, Be) ∈ R7
+ : Pu+PuA+Pc+PcA+Hu+Hc+Be ≤ N)},

Lemma (3.5) implies that G is positively invariant set with respect to solutions of

model (3.2.1).

Theorem 3.7. If R0 < 1, then the infection-free equilibrium E0 =

(0, 0, Np, 0, Nh, 0, 0) is globally asymptotically stable.

Proof. According to Theorem 3.2, E0 is locally asymptotically stable when R0 < 1.

According to Lemma 3.3, we know that R0 < 1 is equivalent to ρ(ΦF−V (ω)) < 1,
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where F − V is the defined as

F (t)− V (t) =



−γc − ε(t) 0 0 0

ε(t) −γcA αpβpA(1− η)Np κpANp

αpβh(1− η)Nh αpβhA(1− η)Nh −µc κhNh

υp υpA υh −γb


.

By the continuity, we can always find a small enough positive constant δ such that

ρ(ΦF−V+δN(ω)) < 1,

where

N(t) =



0 0 αpβp(1− η) κp

0 0 αpβpA(1− η) κpA

0 0 0 0

0 0 0 0


.

Now we try to prove the global attractivity of the disease-free equilibrium E0. By the

non-negativity of solutions and the assumption that θu = θc = θcA = 0, θuA = 1, we

have the following result from the first equation of the model (3.2.1):

dPu
dt
≤ −γuPu − ε(t)Pu.

Note that ε(t) = ε0(1 + ε1 sin( 2π
365

(t − 240))) > 0,∀t. That is, ∀δ > 0, there exists

t1 > 0, such that

Pu(t) ≤ δ, ∀t ≥ t1.

Similarly, by the third equation of the model (3.2.1) and the fact that γu =
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max{γu, γc, γcA}, we get

dPuA
dt
≤ γu(Np − PuA) + γuAPuA − γuAPuA + ε(t)(Np − PuA),

that is,

dPuA
dt
≤ (γu + ε(t))Np − (γu + ε(t))PuA.

Then ∀δ > 0, there exists t2 > 0, such that

PuA(t) ≤ Np + δ, ∀t ≥ t2.

Let T = max{t1, t2}, If t > T , since θu = θc = θcA = 0, θuA = 1, then



P
′
c(t) ≤ αpβp(1− η)δHc + κpδBe − γcPc − ε(t)Pc,

P
′
cA(t) ≤ αpβpA(1− η)(Np + δ)Hc + κpA(Np + δ)Be − γcAPcA + ε(t)Pc,

H
′
c(t) ≤ αpβh(1− η)NhPc + αpβhA(1− η)NhPcA + κhNhBe − µcHc,

B
′
e(t) ≤ υpPc + υpAPcA + υhHc − γbBe.

(3.3.4)

Considering the following auxiliary system:



P̃ ′c(t) = αpβp(1− η)δH̃c + κpδB̃e − γcP̃c − ε(t)P̃c,

P̃ ′cA(t) = αpβpA(1− η)(Np + δ)H̃c + κpA(Np + δ)B̃e − γcAP̃cA + ε(t)P̃c,

H̃ ′c(t) = αpβh(1− η)NhP̃c + αpβhA(1− η)NhP̃cA + κhNhB̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e,

(3.3.5)

which can be written as,
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dx(t)

dt
= (F (t)− V (t) + δN(t))x(t), x(t) = (P̃c(t), P̃cA(t), H̃c(t), B̃e(t))

T . (3.3.6)

Hence, there exists a positive ω-periodic function f(t) = (f1(t), f2(t), f3(t), f4(t))T

such that x(t) = eµtf(t) is a solution of system (3.3.6) where µ = 1
ω

ln ρ(ΦF−V+δN(ω)),

according to the Lemma 2.1 in Zhang and Zhao [45]. Note that ρ(ΦF−V+δN(ω)) < 1,

which implies that ln ρ(ΦF−V+δN(ω)) < 0, that is to say, µ < 0. Then limt→∞ x(t) =

0. Let S(t) = (Pc(t), PcA(t), Hc(t), Be(t))
T , by comparison principle, we have

limt→∞ S(t) = 0, which is equivalent to say that

lim
t→∞

Pc = 0, lim
t→∞

PcA = 0, lim
t→∞

Hc = 0, lim
t→∞

Be = 0.

Therefore, E0 is globally attractive when R0 < 1. This completes the proof.

3.3.3 Persistence of Infection

Finally, we prove that the model is uniformly persistent, which implies the the per-

sistence of MRSA infections.

Theorem 3.8. If R0 > 1, then model ( 3.2.1) is uniformly persistent.

Proof. We follow the persistence theory of nonautonomous models given in Zhao [46]

to discuss the uniform persistence of model (3.2.1). We first define

X = {(Pu, Pc, PuA, PcA, Hu, Hc, Be) : Pu ≥ 0, Pc ≥ 0, PuA ≥ 0, PcA ≥ 0, Hu ≥ 0, Hc ≥

0, Be ≥ 0},

X0 = {(Pu, Pc, PuA, PcA, Hu, Hc, Be) ∈ X : Pc > 0, PcA > 0, Hc > 0, Be > 0},

∂X0 = X\X0.
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Note that both X and X0 are positively invariant with respect to system (3.2.1), and

∂X0 is relatively closed in X. Since our model (3.2.1) is ω-periodic (ω = 365 days),

the Poincaré map associated with our model (3.2.1) P : X → X is defined by

P (x0) = φ(ω, x0), ∀x0 ∈ X,

where x0 = (Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)) and φ(t, x0) is the

unique solution of model (3.2.1) with initial values φ(0, x0) = x0. Note that a con-

tinuous mapping f : X → X is said to be compact if f maps any bounded set to

a precompact set in X [46]. According to Lemma 2.1, the Poincaré map P is com-

pact and point dissipative on X, which implies that there exists a global attractor by

Theorem 1.1.3 in [46].

Define

M∂ = {x0 ∈ ∂X0 : P n(x0) ∈ ∂X0, n = 1, 2, · · ·},

where x0 = (Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)). We want to verify that

M∂ = {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}.

We first verify that M∂ ⊆ {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu =

Nh}, which is equivalent to verify that if x0 /∈ {(Pu, 0, PuA, 0, Hu, 0, 0) :

Pu ≥ 0, PuA ≥ 0, Hu = Np}, then x0 /∈ M∂. For any point

x0 = (Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)), we suppose that x0 /∈

{(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Np}, that is to say one of

Pc(0), PcA(0), Hc(0), Be(0) is not zero. Without loss of generality, we suppose that

Pc(0) > 0, PcA(0) = 0, Hc(0) = 0, Be(0) = 0. By the fourth, sixth and seventh
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equations of model (3.2.1), note that ε(t) > 0 ∀t, we have

dPcA(0)

dt
≥ ε(0)Pc(0) > 0;

dHc(0)

dt
≥ αpβhNpPc(0) > 0;

dBe(0)

dt
≥ κpPc(0) > 0.

Thus, there exists δ0 > 0, if 0 < t < δ0, then Pc(t) > 0, PcA(t) > 0, Hc(t) >

0, Be(t) > 0, which implies that x0 /∈ ∂X0. Other cases (Pc(0) > 0, or PcA(0) > 0,

or Hc(0) > 0) can be proved in the similar way. Thus x0 /∈ M∂. That is to say,

for any x0 /∈ {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}, x0 /∈ M∂. So

M∂ ⊆ {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu = Nh}.

Obviously we have {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0, Hu =

Nh} ⊆ M∂, since if x0 = (Pu(0), 0, PuA(0), 0, Np, 0, 0), then the solutions

(Pu(t), Pc(t), PuA(t), PcA(t), Hu(t), Hc(t), Be(t)) ≡ (Pu(t), 0, PuA(t), 0, Nh, 0, 0) where

Pu(t) > 0, PuA > 0. Therefore M∂ = {(Pu, 0, PuA, 0, Hu, 0, 0) : Pu ≥ 0, PuA ≥

0, Hu = Nh}. There is only one equilibrium E0 = (0, 0, Np, 0, Nh, 0, 0) in M∂, so

∪x0∈M∂
ω(x0) = E0. Therefore E0 is a compact and isolated invariant sets in ∂X0.

Let x0 = (Pu(0), Pc(0), PuA(0), PcA(0), Hu(0), Hc(0), Be(0)) ∈ X0 be any initial

value. Next we claim that there exist a positive constant δ such that

lim sup
n→∞

‖P n(x0)− E0‖ ≥ δ. (3.3.7)

Suppose that claim (3.3.7) is not true, i.e., for any δ > 0, lim supn→∞ ‖P n(x0)−E0‖ ≤

δ for some x0 ∈ X0. That is to say, there exists a big enough n1 > 0, for all n > n1,

‖P n(x0)− E0‖ ≤ δ. By the continuity of solution φ(t, x0) with respect to the initial

values, we know ∀` > 0, there exists a δ > 0 such that if ‖x0 − E0‖ ≤ δ, then

‖φ(t, x0) − φ(t, E0)‖ < `, ∀t ∈ [0, ω]. Hence we obtain ‖φ(t, P n(x0)) − φ(t, E0)‖ < `
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for all n > n1 and t ∈ [0, ω].

Now for any big enough t ≥ 0, we can rewrite t = nω + t̂, where n = [ t
ω

] is the

greatest integer less than or equal to t
ω

and t̂ ∈ [0, ω]. We can always choose t big

enough to make sure that n > n1. Hence for big enough t , we have ‖φ(t, x0) −

φ(t, E0)‖ = ‖φ(t̂, P n(x0)) − φ(t̂, E0)‖ < `. It follows that 0 ≤ Pu(t) ≤ `, Pc(t) ≤

`, Np − ` ≤ PuA(t) ≤ Np + `, PcA(t) ≤ `, Nh − ` ≤ Hu(t) ≤ Nh + `, Hc(t) ≤

`, Be(t) ≤ `, for any t big enough. Thus for t big enough, we have



P
′
c(t) ≥ −γcPc − ε(t)Pc,

P
′
cA(t) ≥ αpβpA(1− η)(Np − `)Hc + κpA(Np − `)Be − γcAPcA + ε(t)Pc,

H
′
c(t) ≥ αpβh(1− η)(Nh − `)Pc + αpβhA(1− η)(Nh − `)PcA + κh(Nh − `)Be − µcHc,

B
′
e(t) ≥ υpPc + υpAPcA + υhHc − γbBe.

(3.3.8)

Consider the following auxiliary system:



P̃ ′c(t) = −γcP̃c − ε(t)P̃c,

P̃ ′cA(t) = αpβpA(1− η)(Np − `)H̃c + κpA(Np − `)B̃e − γcAP̃cA + ε(t)P̃c,

H̃ ′c(t) = αpβh(1− η)(Nh − `)P̃c + αpβhA(1− η)(Nh − `)P̃cA + κh(Nh − `)B̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e,

(3.3.9)

which can be written as,

dx(t)

dt
= (F (t)− V (t)− `N(t))x(t), x(t) = (P̃c(t), P̃cA(t), H̃c(t), B̃e(t))

T , (3.3.10)

where
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F (t)− V (t) =



−γc − ε(t) 0 0 0

ε(t) −γcA αpβpA(1− η)Np κpANp

αpβh(1− η)Nh αpβhA(1− η)Nh −µc κhNh

υp υpA υh −γb


,

N(t) =



0 0 0 0

0 0 αpβpA(1− η) κpA

αpβh(1− η) αpβhA(1− η) 0 κh

0 0 0 0


.

Hence there exists a positive ω-periodic function g(t) = (g1(t), g2(t), g3(t), g4(t))T

such that x(t) = eµtg(t) is a solution of system (3.3.10) where µ =

1
ω

ln ρ(ΦF−V−`N(ω)), according to the Lemma 2.1 in Zhang and Zhao [45]. Note that

ρ(ΦF−V−`N(ω)) > 1, which implies that ln ρ(ΦF−V−`N(ω)) > 0, that is to say, µ > 0.

Then limt→∞ x(t) = ∞. Let J(t) = (Pc(t), PcA(t), Hc(t), Be(t))
T , by comparison

principle, we have limt→∞ J(t) =∞, which is equivalent to say that

lim
t→∞

Pc =∞, lim
t→∞

PcA =∞, lim
t→∞

Hc =∞, lim
t→∞

Be =∞.

The claim implies that E0 is an isolated invariant set in X and W s(E0)∩X0 = ∅.

Therefore the Poincaré map P is uniformly persistent with respect to (X0, ∂X0) if

R0 > 1 by Theorems 1.3.1 and 3.1.1 in [46]. This completes the proof.



70

3.4 Numerical Simulations

The deterministic model with periodic transmission rate is simulated for 1000 days

with initial values (P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000) and detailed

parameter values in Table 2.1. The simulated solutions of the model are periodic as

shown in Fig.3.3. Based on the seasonal pattern of antibiotic usage observed in Sun

et al [34], we assume that antibiotic prescription rate in hospital increases starting at

the beginning of August, gains a peak in winter and then decreases starting at the

beginning of February according to the data shown in Figs.3.1-3.2, which results in

similar pattern of colonized patients with antibiotic exposure in Figs.3.3 and 3.4(a),

but with a lag about 15-days. We suggest that there may be a temporal correlation

between antibiotic use and resistance. Figs.3.3-3.4 tell us that the prevalence of

colonized patients with antibiotic exposure has periodicity between about 34% and

39% and the prevalence of colonized patients without antibiotic exposure is between

4% and 6%, while, when there is no admission of colonized patients, i.e., θc = θcA = 0,

Fig.3.5 implies that the prevalence of colonized patients with antibiotic exposure

reduces to between 20% and 23% and the prevalence of colonized patients without

antibiotic exposure is between 3% and 5%. This means that detection and isolation

of MRSA colonized patients on admission may be a useful intervention to control the

hospital infection, while when only uncolonized patients without antibiotic exposure

are admitted to hospital, Fig.3.6 indicates that the prevalence of colonized patients

with antibiotic exposure is between 12% and 15% and the prevalence of colonized

patients without antibiotic exposure is between 3% and 4%. We suggest that in order

to control the infection in hospital, it is important to increase the public education

about how to use antibiotics properly in community.
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Figure 3.3: Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA) and col-
onized patients without or with antibiotic exposure (Pc(t), PcA) of the model (3.2.1) with initial values
(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000). Parameters are given in Table 2.1.
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Figure 3.4: (a) Prevalence of colonized patients with or without antibiotic exposure of model (3.2.1) with initial
values (P 0

u , P
0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000). Parameters are given in Table 2.1. Compared with

antibiotic prescribing rate; (b) The free-living bacterial load in the environment.
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Figure 3.5: (a) Prevalence of colonized patients with or without antibiotic exposure of the model (3.2.1) with initial
values (P 0

u , P
0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000), θu = 0.62, θuA = 0.38, θc = 0, θcA = 0 and other

parameter values given in Table 2.1; (b) The free-living bacterial load in the environment.
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Figure 3.6: (a) Prevalence of colonozied patients with or without antibiotic exposure of modified model (3.2.1) with
initial values (P 0

u , P
0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000), θu = 1, θuA = 0, θc = 0, θcA = 0 and other

parameter values given in Table 2.1; (b) The free-living bacterial load in the environment.
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Based on the calculation procedure about the basic reproduction number discussed

above, we calculate the basic reproduction number R0 to be 1.476 with the parame-

ter values in Table 2.1. By Theorem 3.8, we conclude that the infection will persist

with the baseline parameter values. In Fig.3.7, we perform some sensitivity analysis

to explore the effect of the following parameters on changing the basic reproduction

number R0: (a) The cleaning/disinfection rate of environment γb; (b) Shedding rate

of bacteria from colonized patients with antibiotic exposure to environment υpA; (c)

The discharge rate of colonized patients with antibiotic exposure γcA; (d) The hand

hygiene compliance with HCWs η; (e) The contact rate between patients and HCWs

αp; (f) The decontaminated rate of HCWs µc. Fig. 3.7(a) shows that increasing the

environmental cleaning/disinfection rate γb from 0.6 to 1 can reduce the basic repro-

duction number from 1.705 to 1.065, which is the most efficient intervention. Since

we assume that the free-living bacteria do not have proper condition to reproduce

themselves, shedding bacteria from colonized patients is a crucial factor in environ-

mental contamination, which is verified in Fig. 3.7(b), where, if the shedding rate of

colonized patients with antibiotic exposure υpA is below 300, the basic reproduction

number can be below 1. This again emphasizes the importance of environmental

cleaning. Fig.3.7(c) indicates that the discharge rate (the inverse of stay in hospital)

of colonized patients with antibiotic exposure γcA greatly increase the basic reproduc-

tion number especially when they have a lengthier stay than 18 days (baseline value

i.e., 0.055−1 ). However, it is hard to treat colonized patients with antibiotic exposure

efficiently and quickly since they have resistance to many common antibiotics, which

usually leads to a lengthier stay to make the situation worse. Hence how to make an

efficient and right treatment plan for colonized patients with antibiotic exposure is a

challenge and also a key to control the infection. In Fig. 3.7(d), it seems that the
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hand hygiene compliance of HCWs (from the baseline value 0.4 to 1) make little dif-

ference in changing the basic reproduction number, which is a little surprising, since

the hand hygiene is always thought to be an important intervention. We think that

this is because the direct transmission through HCWs is well-known, so hospitals have

paid enough attention to the hand hygiene of HCWs, while the indirect transmission

through contaminated environment lacks our surveillance and is more important than

we thought. That is why the environmental cleaning γb and the shedding rate γcA

affect greatly the basic reproduction number in our sensitivity analysis Figs.8(a),(b).

Hence, we believe that it is necessary to strengthen the surveillance of environmen-

tal cleaning with feedback to cleaning team, and try to use more efficient cleaning

products. Figs. 3.7(e)-(f) imply how the contact rate αp and decontaminated rate of

HCWs µc affect the basic reproduction number.

3.5 Discussion

We presented a comprehensive mathematical model with periodic transmission rate

to study MRSA infections in hospitals, including key factors such as environmental

contamination and antibiotic exposure. Both the direct transmission via HCWs and

the indirect transmission via free-living bacteria in the environment were taken into

account. Inspired by the work of Sun et al [34], we modeled the antibiotic prescribing

rate as a periodic function depending on time t in the transmission of MRSA, i.e.,

ε(t) = ε0(1 + ε1 sin( 2π
365

(t − 240))), which has a period of one year (365 days) and

implies that antibiotic prescribing rate increases starting at the beginning of August,

reaches a peak in winter and then decreases starting at the beginning of February
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Figure 3.7: Effects of parameters on the basic reproduction number R0: (a) γb, (b) υpA, (c) γcA, (d) η, (e) αp, (f)
µc. Other parameters values are given in Tabel 2.1.
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according to the data shown in Figs.3.1-3.2. Based on the definition in Bacaër and

Guenaoui [3] and the calculation procedure in Wang and Zhao [41], we deduced the ba-

sic reproduction number R0 for the periodic deterministic model and carried out some

mathematical analysis to prove that the infection would go to extinction if the basic

reproduction number is less than unity and would persist if it is greater than unity.

On the basis of parameter values given in Table 2.1, the basic reproduction number is

estimated to be 1.476, which implies that MRSA infections persist in hospitals. Our

simulations suggest that the prevalence of colonized patients with antibiotic exposure

has periodicity between about 34% and 39% and the prevalence of colonized patients

without antibiotic exposure is between 4% and 6% in Figs.3.3-3.4. In addition, since

we observe a lag about 15 days between the pattern of colonized patients with an-

tibiotic exposure and antibiotic prescription rate in Fig. 2.5, we suggest that there

may be a temporal correlation between antibiotic use and resistance. By controlling

the proportion of patients from four compartments on admission, Figs. 3.5-3.6 imply

that the prevalence of colonized patients with or without antibiotic exposure would

reduce greatly if only uncolonized patients without antibiotic exposure are admitted.

This means that detection and isolation of MRSA colonized patients on admission

may be a useful intervention to control the hospital infection, and also strengthens the

importance of increasing the public education about how to use antibiotics properly

at community.

It follows from the sensitivity analysis that the basic reproduction number is sen-

sitive to the cleaning/disinfection rate of environment γb, shedding rate of bacteria

from colonized patients with antibiotic exposure to environment υpA, and the dis-

charge rate of colonized patients with antibiotic exposure γcA. In particular, environ-

mental cleaning is the most important intervention to control the infection according
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to our sensitivity analysis. Fig.3.7(a) shows that increasing the environmental clean-

ing/disinfection rate γb from 0.6 to 1 reduces the basic reproduction number from

1.705 to 1.065. Besides, if the shedding rate of colonized patients with antibiotic ex-

posure υpA is below 300, the basic reproduction number can be below 1 (Fig.3.7(b)).

Because the free-living bacteria do not have proper conditions to reproduce them-

selves in hospitals, shedding bacteria from colonized patients becomes a key factor in

transmission of MRSA. This also indirectly shows the impact of environmental clean-

ing. We also found that if colonized patients with antibiotic exposure stay in hospitals

more than 18 days on average, the basic reproduction number increases dramatically.

However, colonized patients with antibiotic exposure usually have resistance to many

common antibiotics, which makes it harder and takes longer to treat them. So how

to make an efficient and right treatment plan for colonized patients with antibiotic

exposure is a challenge to control the infection. We also observed that the hand

hygiene compliance of HCWs change little on the basic reproduction number. We

guess the reason is that hospitals have paid enough attention to the hand hygiene

of HCWs, while still lacking attention on the indirect transmission via contaminated

environment that maybe is much more important than we thought. This again ex-

plains why the environmental cleaning γb and the shedding rate γcA affect greatly the

basic reproduction number in our sensitivity analysis.

Hence, in order to control the infection, we believe it is necessary to strengthen

the surveillance of environmental cleaning with feedback to cleaning team, try to

use more efficient cleaning products, highlight the necessary of effective antimicro-

bial stewardship programs, increase active screening on admission and subsequent

isolation of positive cases, and treat patients quickly and efficiently.



Chapter 4

Optimal control of environmental
cleaning rate and antibiotic pre-
scription rate in an epidemiolog-
ical model of Methicillin-resistant
Staphylococcus aureus infections in
hospitals

4.1 Background

In previous chapters, we found that environmental cleaning rate may be the most

important intervention to control the MRSA infections, which makes us believe that

hospitals still lack attention on the indirect transmission via contaminated environ-

ment and also gives us a direction to control the MRSA infections. Hospitals should

use more effective products, enhance the monitoring of cleaning by ongoing assess-

ments and feedbacks, and even use technology (cleaning robots) to supplement the

manual cleaning [16].

In this chapter, we aim to develop optimal cost-effective strategies of environ-

mental cleaning and antibiotic use, and also to better understand how environmental

78
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cleaning and antibiotic use affect the transmission and control of MRSA infections in

hospitals. We modify the previous seven-compartment system with two control vari-

ables incorporated. Our optimal control problem focuses on minimizing the numbers

of colonized patients and bacteria in the environment while minimizing the cost asso-

ciated with environmental cleaning and antibiotic use for a particular time period. By

using techniques of optimal control on ordinary differential equations [14] [23] [33] [29],

the adjoint equations and the characterizations of optimal control strategies are for-

mulated.

4.2 The State Model

The model in previous chapters was developed to describe the transmission of MRSA

in the following seven compartments (see Fig.2.1):

Pu(t)=number of uncolonized patients without antibiotic exposure at time t.

PuA(t)=number of uncolonized patients with antibiotic exposure at time t.

Pc(t)=number of colonized patients without antibiotic exposure at time t.

PcA(t)=number of colonized patients with antibiotic exposure at time t.

Hu(t)=number of uncontaminated health care workers at time t.

Hc(t)=number of contaminated health care workers at time t.

Be(t)=number of the free-living bacteria in the environment at time t.

Our goal here is to find optimal cost-effective strategies of environmental cleaning

and antibiotic use. Let ε0, γb be functions of time, then ε0(t), γb(t) are our control



80

variables, we hence formulate the model as follows:

dPu
dt

= θuΩ(t)− αpβp(1− η)PuHc − κpPuBe − γuPu − ε0(t)φ(t)Pu,

dPc
dt

= θcΩ(t) + αpβp(1− η)PuHc + κpPuBe − γcPc − ε0(t)φ(t)Pc,

dPuA
dt

= θuAΩ(t)− αpβpA(1− η)PuAHc − κpAPuABe − γuAPuA + ε0(t)φ(t)Pu,

dPcA
dt

= θcAΩ(t) + αpβpA(1− η)PuAHc + κpAPuABe − γcAPcA + ε0(t)φ(t)Pc,

dHu

dt
= −αpβh(1− η)PcHu − αpβhA(1− η)PcAHu − κhHuBe + µcHc,

dHc

dt
= αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc,

dBe

dt
= υpPc + υpAPcA + υhHc − γb(t)Be,

(4.2.1)

subject to initial conditons

Pu(0) = P 0
u , PuA(0) = P 0

uA, Pc(0) = P 0
c , PcA(0) = P 0

cA, Hu(0) = H0
u, Hc(0) = H0

c , Be(0) = B0
e ,

where Ω(t) = γuPu(t) + γcPc(t) + γuAPuA(t) + γcAPcA(t), and we denote

φ(t) = 1 + ε1 sin( 2π
365

(t− 240)).
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The control set is

U := {u = (ε0(t), γb(t)) |m1 ≤ ε0(t) ≤M1, m2 ≤ γb(t) ≤M2, Lebesgue measurable},

where the constants M1, M2 (m1, m2) are the maximum (mimimum) control efforts

for antibiotic prescription rate and disinfection/cleaning rate of environment, respec-

tively.

Our goal is to minimize the objective functional:

J (u) =

∫ T

0

[a1Pc(t) + a2PcA(t) + a3Be + b1(ε0(t)φ(t))2

+ b2ε0(t)φ(t)Pu(t) + b3ε0(t)φ(t)Pc(t) + c1(γb(t))
2 + c2γb(t)Be(t)]dt.

(4.2.2)

The term a1Pc(t) + a2PcA(t) counts the number of colonized patients without or

with antibiotic exposure and a3Be counts the number of bacteria in the environ-

ment. b1(ε0(t)φ(t))2 means the nonlinear cost associated with antibiotic use, while

b2ε0(t)φ(t)Pu(t)+ b3ε0(t)φ(t)Pc(t) represents the linear cost associated with antibiotic

use. Similarly, c1(γb(t))
2 and c2γb(t)Be(t) represent the nonlinear and linear cost of

environmental cleaning, respectively. All the coefficients ai, bi, and cj, i = 1, ..., 3,

j = 1, 2, are nonnegative, representing weights on the different terms of objective

functional. We aim at minimizing the number of colonized patients and bacteria in

the environment while minimizing the cost associated with environmental cleaning

rate and antibiotic use in a particular time period.
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4.3 Optimal Control

In order to use the Pontryagin’s Maximum Principle [29], we must first verify the

existence of an optimal control [33] [21].

Theorem 4.1. There exists an optimal control vector u∗ = (ε∗0, γ
∗
b ) ∈ U with the

corresponding state solutions x∗ = (P ∗u , P
∗
uA, P

∗
c , P

∗
cA, H

∗
u, H

∗
c , B

∗
e ) that minimizes the

objective functional J (u) in ( 4.2.2).

Proof. Firstly we can prove that the solutions of system (3.2.1) are nonnegative and

uniformly bounded if the initial values are nonnegative [20] [?]. It is easily seen

that the objective functional values are nonnegative, i.e., the objective funcional is

bounded below. So there exists a minimizing sequence of controls uk = (εk0, γ
k
b ) ∈ U

such that

lim
k→∞
J (uk) = inf

u∈U
J (u).

The controls in U are uniform boundedness in L∞, which implies uniformly bounded

in L2([0, T ]). Since the space L2([0, T ]) is reflexive [32], there exists u∗ = (ε∗0, γ
∗
b ) ∈ U

such that on a subsequence,

εk0 ⇀ ε∗0, γ
k
b ⇀ γ∗b weakly in L2([0, T ]) as k →∞.

Next, it is obvious that the state sequence xk = (P k
u , P

k
uA, P

k
c , P

k
cA, H

k
u , H

k
c , B

k
e )

corresponding to the minimizing sequence of controls uk is also uniformly bounded.

Moreover, the right-hand sides of system (3.2.1) are uniformly bounded, which gives

us uniformaly bounded derivatives for xk. Hence the corresponding state sequence

xk is equicontinuous. According to the Arzelà-Ascoli Theorem, there exists x∗ =
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(P ∗u , P
∗
uA, P

∗
c , P

∗
cA, H

∗
u, H

∗
c , B

∗
e ) such that on a subsequence,

xk → x∗ uniformly on [0, T ].

Finally, by choosing the proper subsequence and passing the limit to the system

(3.2.1), we are able to obtain that x∗ is the state solution corresponding to the control

u∗. Based on the lower semi-continuity of the L2 − norm with respect to L2 weak

convergence, we have

inf
u∈U
J (u) = lim

k→∞
J (uk) ≥ J (u∗).

Hence, u∗ is an optimal control.

Theorem 4.2. Given an optimal control vector u∗ = (ε∗0, γ
∗
b ) ∈ U and the correspond-

ing state solutions x∗ = (P ∗u , P
∗
uA, P

∗
c , P

∗
cA, H

∗
u, H

∗
c , B

∗
e ) in system ( 3.2.1), there exist
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adjoint variables λi(t), i = 1, ..., 7, satisfying

λ′1 =− b2ε0(t)φ(t)− λ1[θuγu − αpβp(1− η)Hc − κpBe − γu − ε0(t)φ(t)] (4.3.1)

− λ2[θcγu + αpβp(1− η)Hc + κpBe]− λ3[θuAγu + ε0(t)φ(t)]− λ4θcAγu,

λ′2 =− a1 − b3ε0(t)φ(t)− λ1θuγc − λ2[θcγc − γc − ε0(t)φ(t)]− λ3θuAγc (4.3.2)

− λ4[θcAγc + ε0(t)φ(t)] + λ5αpβh(1− η)Hu − λ6αpβh(1− η)Hu − λ7υp,

λ′3 =− λ1θuγuA − λ2θcγuA − λ3[θuAγuA − αpβpA(1− η)Hc − κpABe − γuA] (4.3.3)

− λ4[θcAγuA + αpβpA(1− η)Hc + κpABe],

λ′4 =− a2 − λ1θuγcA − λ2θcγcA − λ3θuAγcA − λ4[θcAγcA − γcA] (4.3.4)

+ λ5αpβhA(1− η)Hu − λ6αpβhA(1− η)Hu − λ7υpA,

λ′5 =λ5[αpβh(1− η)Pc + αpβhA(1− η)PcA + κhBe] (4.3.5)

− λ6[αpβh(1− η)Pc + αpβhA(1− η)PcA + κhBe],

λ′6 =λ1αpβp(1− η)Pu − λ2αpβp(1− η)Pu + λ3αpβpA(1− η)PuA (4.3.6)

− λ4αpβpA(1− η)PuA − λ5µc + λ6µc − λ7υh,

λ′7 =− a3 − c2γb(t) + λ1κpPu − λ2κpPu + λ3κpAPuA − λ4κpAPuA (4.3.7)

+ λ5κhHu − λ6κhHu + λ7γb(t),

with the transversality conditions:

λi(T ) = 0, i = 1, ..., 7. (4.3.8)

Furthermore, the optimal control vector is given by u∗ = (ε0(t)∗, γb(t)
∗), where

ε0(t)∗ = min{max{m1,
(λ1 − λ3 − b2)Pu(t) + (λ2 − λ4 − b3)Pc(t)

2b1φ(t)
},M1}, (4.3.9)
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γb(t)
∗ = min{max{m2,

(λ7 − c2)Be(t)

2c1

},M2}. (4.3.10)

Proof. By Pontryagin’s Maximum principle, we get the Hamiltonian as follows:

H =a1Pc + a2PcA + a3Be + b1(ε0(t)φ(t))2 + b2ε0(t)φ(t)Pu

+ b3ε0(t)φ(t)Pc + c1(γb(t))
2 + c2γb(t)Be(t)

+ λ1[θuΩ(t)− αpβp(1− η)PuHc − κpPuBe − γuPu − ε0(t)φ(t)Pu, ]

+ λ2[θcΩ(t) + αpβp(1− η)PuHc + κpPuBe − γcPc − ε0(t)φ(t)Pc]

+ λ3[θuAΩ(t)− αpβpA(1− η)PuAHc − κpAPuABe − γuAPuA + ε0(t)φ(t)Pu]

+ λ4[θcAΩ(t) + αpβpA(1− η)PuAHc + κpAPuABe − γcAPcA + ε0(t)φ(t)Pc]

+ λ5[−αpβh(1− η)PcHu − αpβhA(1− η)PcAHu − κhHuBe + µcHc]

+ λ6[αpβh(1− η)PcHu + αpβhA(1− η)PcAHu + κhHuBe − µcHc]

+ λ7[υpPc + υpAPcA + υhHc − γb(t)Be],

(4.3.11)

where φ(t) = 1 + ε1 sin( 2π
365

(t − 240)) and Ω(t) = γuPu(t) + γcPc(t) + γuAPuA(t) +

γcAPcA(t).

We define adjoint variables λi(t), i = 1, ..., 7 by:

λ′1 = − ∂H
∂Pu

, λ′2 = − ∂H
∂Pc

, λ′3 = − ∂H
∂PuA

, λ′4 = − ∂H
∂PcA

,

λ′5 = − ∂H
∂Hu

, λ′6 = − ∂H
∂Hc

, λ′7 = − ∂H
∂Be

with the transversality conditions λi(T ) = 0, i = 1, ..., 7. We obtain the characteri-
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zation of optimal controls by letting:

∂H
∂ε0(t)

= 0,
∂H
∂γb(t)

= 0.

From ∂H/∂ε0(t) = 0, we have

2b1(φ(t))2ε0(t)+ b2φ(t)Pu+ b3φ(t)Pc−λ1φ(t)Pu−λ2φ(t)Pc+λ3φ(t)Pu+λ4φ(t)Pc = 0,

which implies that

ε0(t) =
(λ1 − λ3 − b2)Pu(t) + (λ2 − λ4 − b3)Pc(t)

2b1φ(t)
,

where φ(t) = 1 + ε1 sin( 2π
365

(t− 240)) would never be 0 for all t. From ∂H/∂γb(t) = 0,

we have

2c1γb(t) + c2Be − λ7Be = 0,

which implies that

γb(t) =
(λ7 − c2)Be(t)

2c1

.

By taking the upper and lower bounds for ε0(t), γb(t) into account, we have the

following characterization of the optimal controls:

ε0(t)∗ = min{max{m1,
(λ1 − λ3 − b2)Pu(t) + (λ2 − λ4 − b3)Pc(t)

2b1φ(t)
},M1},

γb(t)
∗ = min{max{m2,

(λ7 − c2)Be(t)

2c1

},M2}.
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4.4 Numerical Results

Without any control strategies for 1000 days, Fig.4.1 represents the proportion

of uncolonized patients without or with antibiotic exposure, colonized patients

without or with antibiotic exposure and number of bacteria in the environment,

respectively, based on the parameter values in Table 2.1 and initial condition

(P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000).
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Figure 4.1: Without any control stragies for T = 1000 and (P 0
u , P

0
uA, P

0
c , P

0
cA, H

0
u, H

0
c , B

0
e ) = (4, 6, 7, 6, 17, 6, 1000):

(a) Proportion of patients, (b) Number of Bacteria in the environment. Parameters values are given in Tabel 2.1.

Next, we introduce optimal control strategies into our system. According to

Lenhart and Workman 2007 [23], a Forward-Backward Sweep method is used to solv-

ing such optimal control problems numerically. Roughly speaking, we firstly divide

the time interval [0, T ] into equal parts and make an initial guess for control values.

By using a Runge-Kutta 4 (RK4) routine, we are able to solve the state system in

(4.2.1) forward in time with the given initial condition. After that, based on the ini-

tial guess of control values, the values of state system solutions we obtained and the

transversality conditions of adjoint variables, we can solve the adjoint system (4.3.1-
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4.3.7) backward in time by RK4. Then, we update our control value by entering the

new state and adjoint values into the characterization of the control in (4.3.9-4.3.10).

Finally, a convergence test is conducted, and the recurrent process will not stop until

values converge sufficiently.

By choosing a1 = a2 = 1, a3 = 0.15, b1 = c1 = 5, b2 = b3 = 1, c2 = 0.1, m1 = 0.05,

M1 = 0, 12, m2 = 0.5, M2 = 10 in the objective functional, Fig.4.2 gives us the optimal

2-control strategies and how the optimal 2-control strategies change the proportion of

Pu, PuA, Pc, PcA and the number of bacteria Be. In particular, the percentage of col-

onized patients with antibiotic exposure PcA reduces dramatically to between 12.5%

and 13.5% and the number of bacteria in the environment also decreases dramatically,

with our control strategies. Moreover, according to our observation, the optimal en-

vironmental cleaning rate γb(t) has a similar seasonal pattern as PcA and Be, which

implies that hospitals should be aware of intensifying their cleansing efforts during the

peak period. Besides, we find that the optimal antibiotic prescription rate is always

equal to the minimum we give, i.e., ε0(t) = m1 = 0.05. We have an intuitive explana-

tion from the construction of our system (4.2.1) and objective functional (4.2.2): when

reducing the antibiotic use ε0(t), Pu, Pc increase, PuA, PcA decrease, but Pc(t)+PcA(t)

remain the same, b1(ε0(t)φ(t)) decreases, b2ε0(t)φ(t)Pu(t) + b3ε0(t)φ(t)Pc(t) depend,

and Be decreases which leads to the decreasing of c1γb(t) + c2γbBe(t). For reasonable

weights chosen in objective functional, the smaller the ε0(t) is, the smaller the values

of objective functional are. Hence, there is no wonder in our simulation results the

optimal antibiotic prescription rate is always equal to the minimum we give. There-

fore, in order to control the MRSA infection in hospitals, we should use antibiotic as

proper and little as possible and highlight the importance of effective antimicrobial

stewardship programs.
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Figure 4.2: Applying optimal 2-control strategies with c1 = 5: (a) Proportion of patients, (b) Number of bacteria
in the environment, (c) Optimal environmental cleaning γb(t), (d) Optimal prescription rate ε0(t).
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When the cost of environmental cleaning is more expensive, i.e., we increase

c1 = 15 in Fig.4.3, the corresponding optimal environmental cleaning effort is de-

creased, but the optimal antibiotic use is still the minimum setting ε0(t) = m1 = 0.05.

Meanwhile, the percentage of PcA increases, as well as the number of bacteria in

the environment. When the cost of environmental cleaning is cheaper, i.e., we de-

crease c1 = 1 in Fig.4.4, the corresponding optimal environmental cleaning effort

is increased to around 5.6, and the optimal antibiotic use is the minimum setting

ε0(t) = m1 = 0.05. We observe that the percentage of PcA decreases a little bit

compared with Fig.4.2(a).
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Figure 4.3: Applying optimal 2-control strategies with c1 = 15: (a) Proportion of patients, (b) Number of bacteria
in the environment, (c) Optimal environmental cleaning γb(t), (d) Optimal prescription rate ε0(t).



92

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000

time t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

p
o
rt

io
n
 o

f 
P

a
ti
e
n
ts

P
u

P
c

P
uA

P
cA

0 200 400 600 800 1000

time t

130

135

140

145

150

155

160

165

170

N
u
m

b
e
r
 o

f 
B

a
c
te

r
ia

(c) (d)

0 200 400 600 800 1000

time t

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

O
p

ti
m

a
l 
E

n
v
ir
o

n
m

e
n

ta
l 
C

le
a

n
in

g
 γ

b

0 200 400 600 800 1000

time t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

O
p
ti
m

a
l 
A

n
ti
b
io

ti
c
 P

re
s
c
ri
p
ti
o
n
 R

a
te

 
ǫ

0

Figure 4.4: Applying optimal 2-control strategies with c1 = 1: (a) Proportion of patients, (b) Number of bacteria
in the environment, (c) Optimal environmental cleaning γb(t), (d) Optimal prescription rate ε0(t).
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Based on the above intuitive explanation about the reason why the optimal an-

tibiotic prescription rate is always equal to the minimum m1 we set, in the following

subsections we focus on exploring how hospitals should adjust their environmental

cleaning strategy when different hospital scenarios happen.

4.4.1 Proportion of Patients on Admission

In this subsection, we consider two different cases.

Firstly, we consider the proportion of patients on admission as θu = 0.617, θuA =

0.28, θc = 0.03, θcA = 0.1, where θuA + θcA is still equal to 0.38, i.e., the fraction of

patients with antibiotic exposure of new admission to be 0.38 [19] [7]. Compared with

the original proportion of patients on admission as θu = 0.617, θuA = 0.349, θc =

0.03, θcA = 0.031, θcA is increased since more patients are colonized at community. By

choosing the same weight as in Fig.4.2 a1 = a2 = 1, a3 = 0.15, b1 = c1 = 5, b2 = b3 =

1, c2 = 0.1, m1 = 0.05, M1 = 0, 12, m2 = 0.5, M2 = 10 in the objective functional,

Fig.4.5(c) suggests that the optimal environmental cleaning rate increases to around

4.2 in compare with around 3.4 in Fig.4.2(c). However, even though hospitals pay

more attention to environmental cleaning, in Fig.4.5 the proportion of PcA increases

to around 32% from around 13.5% and the number of bacteria in the environment

increases as well, compared with Fig.4.2. Hence, it is important to highlight the public

education about how to prevend MRSA at community, such as maintaining good hand

and body hygiene especially after exercise, avoiding sharing personal items such as

towels and razors, keeping scrapes and wounds clean and covered until healed [6].

Secondly, we change the proportion of patients on admission to be θu =

0.617, θuA = 0.369, θc = 0.03, θcA = 0.011, where hospitals increase active screening
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on admission and subsequent isolation of positive cases so that θcA reduces to 0.011.

Fig.4.6 implies that in this case we only need environmental cleaning effort to be

around 2.8 to reduce PcA to be around 6% from around 13.5% in Fig.4.2. Hence,

in order to control MRSA infections, active screening on admission and subsequent

isolation are important interventions.
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Figure 4.5: Applying optimal 2-control strategies with θu = 0.617, θuA = 0.28, θc = 0.03, θcA = 0.1: (a) Proportion
of patients, (b) Number of bacteria in the environment, (c) Optimal environmental cleaning γb(t).
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Figure 4.6: Applying optimal 2-control strategies with θu = 0.617, θuA = 0.369, θc = 0.03, θcA = 0.011: (a)
Proportion of patients, (b) Number of bacteria in the environment, (c) Optimal environmental cleaning γb(t).
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4.4.2 Length of Stay of Colonized Patients with Antibiotic
Exposure PcA

As discussed above, many studies observe that colonized patients with antibiotic

exposure tend to have a lengthier duration in hospitals. Our baseline value γcA =

0.055 implies that PcA stay in hospitals for about 18 days (γ−1
cA = 18.18). In this

subsection, we explore what can happen if PcA have a lengthier stay in hospitals due

to lack of efficient treatment, say 28 days (γcA = 0.035), Other parameter values are

shown in Table 1. Still, by choosing the same weight as in Fig.4.2 a1 = a2 = 1,

a3 = 0.15, b1 = c1 = 5, b2 = b3 = 1, c2 = 0.1, m1 = 0.05, M1 = 0, 12, m2 = 0.5,

M2 = 10 in the objective functional, to compare between Fig.4.2, Fig.4.7 shows that

hospital should increase the environmental cleaning effort to around 4.1; however,

an increase of percentage of PcA and number of bacteria still occurs. Hence, how to

treat colonized patients, especially with antibiotic exposure as quickly and efficiently

as possible is a big challenge in controlling MRSA infections.

4.5 Discussion

As one of the most common causes of hospital-acquired infections, especially in inten-

sive care units, MRSA, which is resistant to multiple commonly used antibiotics, calls

for attention to find effective strategies for prevention. In our previous work [20] [?],

numerical simulations strongly suggest that environmental cleaning is the most im-

portant intervention to control the MRSA infections, which gives us another way

to control the MRSA infections. Hospitals should use more effective products, en-

hance the monitoring of cleaning by ongoing assessments and feedbacks, and even
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Figure 4.7: Applying optimal 2-control strategies with γcA = 0.035: (a) Proportion of patients, (b) Number of
bacteria in the environment, (c) Optimal environmental cleaning γb(t).
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use technology (cleaning robots) to supplement the manual cleaning [16]. In order

to better understand how environmental cleaning and antibiotic use affect the trans-

mission and control of MRSA infections in hospitals, we applied the optimal control

theory to a seven-compartment system of ordinary differential equations. Our goal

was to minimize the numbers of colonized patients and bacteria in the environment,

while minimizing the cost associated with environmental cleaning rate and antibiotic

use in a particular time period. Characterizations of optimal control strategies were

formulated.

Our simulations considered 1000-days time periods since we wanted to observe

the seasonality of MRSA infections. Simulation results strongly show that with our

control strategies the percentage of colonized patients with antibiotic exposure PcA

reduced dramatically in Figs.4.1,4.2. Hence environmental cleaning is key in the

control of MRSA infections and hospitals should use antibiotics as properly and as

little as possible. Moreover, according to our observation, the optimal environmental

cleaning rate γb(t) has a similar seasonal pattern as the number of colonized patients

with antibiotic exposure PcA and the bacteria in the environment Be, which implies

that hospitals should be aware of intensifying their cleansing efforts during peak

periods.

Furthermore, we discussed how hospitals should adjust their strategies when dif-

ferent hospital scenarios occurs. Firstly, since the cost associated with environmental

cleaning is unknown, we tried different cost weights in objective functional to see

how the optimal strategies change. Next, we considered a scenario in which the

proportion of colonized patients with antibiotic exposure on admission is increased

due to increasing colonization cases at the community. We found that even though

hospitals increase the optimal environmental cleaning effort, the percentage of PcA in-
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creases, as well as the number of bacteria in the environment. Hence it is important

to highlight the public education about how to prevent MRSA at the community,

such as maintaining good hand and body hygiene especially after exercise, avoiding

sharing personal items such as towels and razors, keeping scrapes and wounds clean

and covered until healed. Then, we considered screening and subsequent isolation as

an effective intervention supplement. Finally, since colonized patients with antibiotic

exposure tend to have a lengthier duration in hospitals, our simulations implied that

how to treat colonized patients, especially with antibiotic exposure, as quickly and

efficiently as possible is a big challenge in controlling MRSA infections.



Chapter 5

Conclusions and Future Work

As one of the most common causes of hospital-acquired infections, especially in in-

tensive care units, MRSA, which is resistant to multiple commonly used antibiotics,

calls attention to the need to find effective strategies for prevention. In Chapter

2, both deterministic and stochastic mathematical models are developed to study

the transmission dynamics of MRSA infections in hospitals, which include uncolo-

nized patients without and with antibiotic exposure, colonized patients without and

with antibiotic exposure, uncontaminated and contaminated health-care workers, and

free-living MRSA. Under the assumption that there is no admission of the colonized

patients, the basic reproduction number R0 was calculated. It was shown that when

R0 < 1 the infection-free equilibrium is globally asymptotically stable, and when

R0 > 1 the infection is uniformly persistent. For the deterministic model, numerical

simulations were performed to demonstrate the behavior of the solutions and the de-

pendence and sensitivity of the basic reproduction number of various parameters. For

the stochastic model, numerical simulations were also carried out to study the effect

of antibiotic prescribing rate ε, the discharge rate of colonized patients with antibiotic

exposure γcA, and environmental cleaning rate γb on the number of colonized patients,

respectively.

In Chapter 3, we extended the deterministic model with periodic transmission rate

100
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to study MRSA infections in hospitals, including key factors such as environmental

contamination and antibiotic exposure. Inspired by the work of Sun et al [34], we

modeled the antibiotic prescribing rate as a periodic function depending on time t

in the transmission of MRSA, i.e., ε(t) = ε0(1 + ε1 sin( 2π
365

(t − 240))), which has a

period of one year (365 days) and implies that antibiotic prescribing rate increases

starting at the beginning of August, reaches a peak in winter and then decreases

starting at the beginning of February according to the data shown in Figs.3.1-3.2.

Based on the definition in Bacaër and Guenaoui [3] and the calculation procedure in

Wang and Zhao [41], we deduced the basic reproduction number R0 for the periodic

deterministic model and carried out some mathematical analysis to prove that the

infection would go to extinction if the basic reproduction number is less than unity

and would persist if it is greater than unity. On the basis of parameter values given

in Table 2.1, the basic reproduction number is estimated to be 1.476, which implies

that MRSA infections persist in hospitals.

In Chapter 4, in order to better understand how environmental cleaning and an-

tibiotic use affect the transmission and control of MRSA infections in hospitals, we

apply the optimal control theory to the seven-compartment system of ordinary dif-

ferential equations. Our goal is to minimize the numbers of colonized patients and

bacteria in the environment while minimizing the cost associated with environmen-

tal cleaning rate and antibiotic use in a particular time period. Characterizations

of optimal control strategies are formulated, and how hospitals should adjust their

strategies when different hospital scenarios happen is discussed.

The simulations from Chapter 2-4 strongly suggest that that environmental clean-

ing is the most important intervention to control the infection, which emphasizes the

importance of environmental contamination in the transmission of MRSA infections.
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Hospitals should use more effective products, enhance the monitoring of cleaning by

ongoing assessments and feedbacks, and even use technology (cleaning robots) to sup-

plement the manual cleaning [16]. It is also necessary to highlight the importance of

effective antimicrobial stewardship programs including increasing the public educa-

tion about how to use antibiotics properly at community such as maintaining good

hand and body hygiene especially after exercise, avoiding sharing personal items such

as towels and razors, keeping scrapes and wounds clean and covered until healed [6].

Increasing active screening at admission and subsequent isolation of positive cases

are important intervention supplement. However, how to treat colonized patients

especially with antibiotic exposure as quickly and efficiently as possible is still a big

challenge in controlling MRSA infections.

Our project emphasizes many times the importance of incorporating the indirect

transmission via free-living bacteria in the environment, where they are assumed to

be uniformly distributed. However, bacterial density varies in hospitals. It is more

realistic but difficult to take such heterogeneity into consideration in future work. In

addition, If it is possible to get data from hospitals, we would be able to get more

convincing results in the future.
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