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This thesis has two parts, each with a different subject. Part 1 studies the macroe-

conomic implications of alternative health care reforms. Part 2 studies the computation

and simulation of dynamic competitive equilibria in models with heterogeneous agents and

market frictions.

In 2007, 44.5 million non-elderly in the U.S did not have health insurance coverage.

Empirical studies suggest that there are serious negative consequences associated with

uninsurance. Consequently, there is wide agreement that reforming the current health care

system is desirable and several proposals have been discussed among economists and in

the political arena. However, little attention has been paid to quantify the macroeconomic

consequences of reforming the health insurance system in the U.S. The objective of this

section is to develop a theoretical framework to evaluate a broad set of health care reform

plans. I build a model that is capable of reproducing a set of key facts of health expendi-

ture and insurance demand patterns, as well as key macroeconomic conditions of the U.S.

during the last decade. Then, I use this model to derive the macroeconomic implications of

alternative reforms and alternative ways of funding these reforms.

The second part of this thesis studies the computation and simulation of dynamic com-

petitive equilibria in models with heterogeneous agents and market frictions. This type of

models have been of considerable interest in macroeconomics and finance to analyze the

effects of various macroeconomic policies, the evolution of wealth and income distribu-

tion, and the variability of asset prices. However, there is no reliable algorithm available

to compute their equilibria. We develop a theoretical framework for the computation and



simulation of dynamic competitive markets economies with heterogeneous agents and mar-

ket frictions. We apply these methods to some macroeconomic models and find important

improvements over traditional methods.
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Part I

Macroeconomics of health care reform

in the U.S.
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Chapter 1

Health insurance markets and health
care reform in the U.S.

One of the major social policy issues facing the United States in the first decade of the

21st century is the large number of Americans lacking health insurance. There is wide

agreement that reforming the current health care system is desirable and several proposals

have been discussed among economists and in the political arena. Reform of the health

insurance system could potentially affect macroeconomic variables by distorting the labor

market through changes in tax rates, creating deadweight loss, and ultimately changing

the number of uninsured and the aggregate health expenditure. In recent years, a number

of analyses have been devoted to understanding the health insurance system in the United

States as well as to exploring the impacts of health care reforms on the macro-economy.

The purpose of this chapter is to review the implications of this literature.

In this chapter I proceed as follows. I begin by reviewing the important facts on the

insurance market in the U.S. I then focus on existing explanations for why the U.S. has

such a large number of uninsured individuals, and why this may be undesirable. I then

describe the major existing health care reform proposals as well as the current state of the

literature in estimating the impacts of alternative health care reforms on macroeconomic

variables, such as labor supply, GDP, health expenditure, number of uninsured and welfare.
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1.1 The key features of the health insurance market in the
United States.

The health insurance market in the U.S. is a mixture of private and public health in-

surance. More than half (67%) of non-elderly Americans, who are under age 65, have

private insurance. While Medicare covers virtually all those who are 65 years or older, the

non-elderly who do not have access or cannot afford private insurance go without health

coverage unless they qualify for public insurance through the Medicaid program, State

Children’s Health Insurance Program, or other state-subsidized programs. The gap in the

private and public health insurance systems left 44.5 million non-elderly in the U.S without

health insurance coverage in 2007. The distribution of insurance coverage in the U.S. is

shown in table 1.1.1

Table 1.1: Health Insurance Coverage of the Non-Elderly Population, 2007

People (Millions) Percentage of Population
Total Population 261.4 100.0%

Private 175.1 67.0%
Employment-based 159.5 61%
Individually purchased 15.7 6%

Public 41.8 16%
Medicare 6.5 2.5%
Medicaid 34.9 11.2%
TRICARE/CHAMPVA 7.1 2.3%

Uninsured 44.5 17%

1.1.1 Private health insurance

Private insurance is the most important source of health insurance in the United States.

Among those with insurance, 80 percent are covered with private insurance. The vast

majority of this group purchase insurance through their employer. Only 10 percent of those

1Data source: Kaiser foundation
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with private insurance purchase insurance individually through the non-group insurance

market.

Most, but not all, employers offer group health insurance to their employees and to their

employees’ families. About half of those insured through employer-sponsored health plans

are covered by their own employer (52%) and half are covered as an employee’s dependent

(48%). Employer-sponsored health insurance is voluntary. Employers are not legally re-

quired to offer a health benefit, and employees can choose not to take the offer. Large firms

and workers with higher wages are more likely to offer coverage. Employers also charge

employees some share of the costs of insurance, averaging 16 percent of insurance cost for

individuals and 27 percent for families. Even when businesses offer health benefits, some

employees are ineligible because they are part-time workers or they cannot afford the re-

quired share of the premium. On average 80 percent of employees who are offered health

benefits enroll in the health insurance plan.

There are two reasons why employer-sponsored insurance is predominant in the private

insurance market. The first is risk pooling. The insurer minimizes the cost by creating

large insurance pools with a predictable distribution of medical risks. When the pools are

large and are constructed for reasons independent of health risk, it is easier to estimate the

distribution.

The second reason is that the government subsidizes the purchasing of employer-sponsored

insurance coverage. When a health plan is sponsored by an employer, typically both the

employer and the employee who wishes to sign up for coverage contribute to paying the

premium of the health plan. The employer portion of the premium is not included as taxable

income, reducing employee tax liability. This lowers the amount workers owe to federal

and state governments for income taxes, and for the payroll taxes paid to help support

Medicare and Social Security. And while many employees pay for their share of the pre-

mium with after-tax income, federal law also allows employees to contribute to premiums

with pre-tax income, in which case taxes would also not be paid on the employee share.
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1.1.2 Public health insurance

There are two major public health insurance programs. The first is Medicare, which pro-

vides health insurance coverage for all people over age 65 and disabled people under age

65. This program is funded by a payroll tax.

The other major public health insurance program in the U.S. is Medicaid, which pro-

vides health care for the poor. Medicaid covers about 14 percent of the non-elderly pop-

ulation. Medicaid primarily covers four main categories of non-elderly low-income indi-

viduals (typically below 200 percent of the federal poverty level): children, their parents,

pregnant women, and individuals with disabilities. Individuals who do not fall into one of

these groups may be ineligible for Medicaid regardless of their income. Although Medi-

caid covers 45 percent of those below the poverty level, the categorical requirement leaves

35 percent of low-income individuals without insurance coverage.

The government also provides health insurance for those currently or formerly in the

military and their dependents. Tri-Care provides civilian health benefits for military per-

sonnel, military retirees, and their dependents, including some members of the Reserve

Component. The Civilian Health and Medical Program (CHAMPVA) is a health bene-

fit program from the Department of Veteran’s Affairs that is awarded to spouses, widows,

widowers and children of veterans who have been rated disabled due to a service connected

disability while living or at the time of death. Together, these two programs cover about 7

million Americans.

1.1.3 The uninsured

The health insurance system in the U.S. leaves 45 million Americans without any insurance

coverage. According to CPS data, over 80 percent of the uninsured come from working

families. About two-third of the uninsured are individuals and families with income below

the poverty level ($21,203 for a family of four in 2007) or between one and two times the

federal poverty level. These individuals are less likely to be offered employer-sponsored



6

coverage or to be able to afford to purchase their own coverage. Uninsured adults are more

likely than the insured to be under age 35, unmarried, and single parents, likely because of

the role of lower health risk.

1.2 The problem of uninsured

Almost all existing health care reform proposals share the same target, which is to reduce

the number of uninsured. To study the impacts of these reforms, we must first understand

why individuals are uninsured and why we should care about the uninsured.

1.2.1 Why are people uninsured

A simple model with concave utility predicts that individuals would purchase health insur-

ance at a cost of actuarially fair premiums so that they are fully insured for medical risks.

Why then do 18 percent of non-elderly lack health insurance coverage?

Individuals may be unwilling to purchase insurance if it is not available at an actuar-

ially fair price. There are at least two reasons why the price may not be actuarially fair.

Private insurance in the U.S. has administrative costs averaging about 12 percent of premi-

ums paid. Adverse selection in the insurance market also raises the cost of insurance by

screening potential applicants to identify the most costly cases and through the standard

lemons pricing effect [Akerlof (1970)]2. Such deviations from actuarial fairness can cause

individuals with lower levels of risk aversion to forgo insurance.

Another reason why individuals may not be willing to purchase insurance is that they

are implicitly insured by hospital uncompensated care, if their medical risks are primarily

catastrophic. According to current law, a hospital that receives Medicare money from the

government has to treat any individuals who show up in the emergency room, regardless of

their ability to pay. Uninsured patients have the liability but they can avoid such costs in the

2There is clear evidence of adverse selection within health insurance markets [see Cutler and Zeckhauser
(2000), Cutler and Reber (1998)]
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limit through personal bankruptcy. When the uninsured are unable to pay for the health care

they receive, that uncompensated care is paid for through a patchwork of federal, state and

private funds amounting to approximately $57 billion in 2008 according to Kaiser (2008).

The possibility of receiving free care for emergent health conditions provides a valuable

option to primarily healthy individuals. Rask and Rask (2000) and Herring (2005) suggest

that individuals are more likely to be uninsured when more free care is available. It is

important to have a model to capture the above facts and to study how health care reform

affects individual’s demand for health insurance.

1.2.2 Why should we care about the uninsured

It has been taken as given by the public that the large number of uninsured is a major social

policy issue. However, what are the economic arguments suggesting we should reform the

current system to cover these uninsured?

The common argument for reducing insurance coverage is that there are externalities

associated with the uninsured. For example, uninsured people are less likely to receive vac-

cinations and care for communicable diseases and thus they impose physical externalities

on the population. There are also significant financial externalities imposed by the unin-

sured on the insured through uncompensated care, whose costs were estimated to be about

$30 billion in 2005 [Gruber and Rodriguez(2007)].

Uninsured adults are far more likely to postpone accessing health care or to forgo it al-

together and are less able to afford prescription drugs or follow through with recommended

treatments. A 2003 report by the Institute of Medicine states that the uninsured have a more

rapid decrease in general health and a higher risk of dying prematurely than the insured.

According to their estimation, the cost of diminished health and shorter life span due to

lack of insurance was between $65 and $130 billion in 2003.

Another potential inefficiency associated with uninsurance is distortions in the labor

market caused by employer-sponsored insurance coverage. The employee may be unwill-
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ing to move to a more suitable job for fear of losing health insurance. This phenomena is

referred to as job lock [Gruber (2000)]. Madrian (1994) finds that job lock decreases job

mobility by as much as 25 percent. However, the welfare cost of such inefficiency is rather

small. Gruber and Madrian (2004) estimate the welfare cost from the reduced job mobility

is on the order of 0.1-0.2 percent of GDP.

The major motivation for covering the uninsured comes from the concern that being

uninsured is bad for the individual’s health. The Institute of Medicine recently reviewed the

major studies in the literature considering the health problems associated with uninsurance.

It found that uninsured individuals use only half as much medical care as the insured, and

have a mortality risk that is 25 percent higher, with over 18000 people dying each year

because of lack of insurance.

The final reason why we should care about the uninsured is redistribution. The unin-

sured are a disproportionately low income group. Therefore they may be a group to whom

we want to redistribute health care resources. Providing health insurance to poor children

can fix the failure of intra-household utility maximization by offsetting the failures of their

parents to sufficiently provide for their care. More important, many believe that to cover

the uninsured ensures the basic rights of the uninsured poor.

The literature suggests that it would be interesting to have a framework to study the

under-use of medical service and worse health problems associated with uninsurance and

how changes in health care policy may affect individual’s medical usage decisions and

health status. In order to do that it is important to explicitly model health investment as

well as the health insurance decision.

1.3 Alternative reform proposals to the health care system

The negative effects associated with the large number of uninsured have encouraged pol-

icymakers to consider substantial changes to the U.S. health care system. In recent years
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alternative proposals have been brought forth in an effort to cover the uninsured. They

can be grouped into three broad categories. The first group consists of incremental health

insurance expansion plans, such as tax credits for individual purchase of non-group in-

surance, expansion of the existing State Children’s Health program (SCHIP) to cover all

uninsured children, or expanding Medicare to cover people between the ages of fifty-five

and sixty-five. A second class of reforms consist of combinations of subsidy expansion and

an individual mandate. A version of this reform has been enacted in Massachusetts and

proposed in California and Pennsylvania. Under this plan all individuals are required to

carry a minimum level of health insurance and the government expands the public health

insurance to cover more low income families. The third type of reform is a single-payer

plan, which offers publicly financed health insurance to all citizens. This approach is based

on the expansion of the traditional Medicare program to the whole population or on the

Canadian health care system.

There are many empirical studies that explore the impacts of health care reforms on in-

dividual’s behavior such as crowd-out by public insurance, medical usage and health status.

The expansion of public insurance coverage, such as Medicaid expansion, can shift some

individuals from existing private insurance coverage to public coverage. This is because

the Medicaid insurance package is much more generous than the typical private insurance

plan and it does not cost anything. It might be attractive to some individuals to leave

private insurance for public insurance when the government expands the eligibility of pub-

lic insurance programs. This crowding-out phenomenon of expanded public insurance is

reviewed in Gruber and Simon (2009). Culter and Gruber (1996) suggest that private insur-

ance coverage can decline by half as much as the government public insurance enrollment.

In addition, Lo Sasso and Buchmueller (2004) show that about 50 percent of enrolles in

SCHIP previously had private insurance.

Once a health care reform that improves insurance coverage (such as a Single-payer sys-

tem) is instituted, the newly insured will consume more medical services and have better
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health status through better health care access and lower prices (under the current system,

the uninsured are charged more for comparable services than the insured). Such a reform

may decrease the health disparity and increase aggregate health status and labor produc-

tivity, which encourages economic activity. Cheng and Chiang (1997) found that after the

introduction of universal health insurance in Taiwan, the newly insured consumed more

than twice the amount of outpatient physician visits and hospital admissions than before

universal health insurance was implemented. Hanratty (1996) studied the impact of the

introduction of national health insurance in Canada and found that it was associated with a

4 percent decline in the infant mortality rate and an 8.9 percent decrease in the incidence

of low birth weight among single mothers. While the study by Lurie et al. (1984) indicated

that health deteriorated significantly after the state of California removed the eligibility for

public insurance for a large group of individuals. Currie and Gruber (1996a, 1996b) found

that the expansion of public insurance across the U.S. states in the 1980s and 1990s led

to an 8.5 percent reduction in infant mortality and a 5 percent reduction in child mortal-

ity. Decker and Remler (2004) suggest that the availability of universal health insurance

reduces the health disparity.

Some recent studies compare the effects of health insurance reform proposals. Gruber

(2008) uses a micro-simulation model to estimate the impact of alternative health policies

targeted at insurance coverage. He finds that alternative reforms to provide health insurance

can have different effects on aggregate health expenditure, insurance coverage and private

and public sector health care cost. Meara et al (2008) use CPS data to examine the effects of

three different health insurance reforms on insurance coverage, health expenditure, wages

and employment. They suggest that Medicaid expansion will increase insurance coverage

as well as employment. They also find that tax credits have negligible effects on labor

supply and require substantial public funding.

The literature reviewed above provides valuable insights about how health care reform

can affect individuals, as well as a comprehensive view of the pros and cons associated
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with alternative health policies. However, health care reform may have important general

equilibrium effects on macroeconomic variables that have been unexplored by the empirical

literature.

Reforming the health system will affect the household’s demand for health insurance.

This in turn alters the pool of agents insured, which affects insurance premiums. Simi-

larly, different insurance decisions result in changing health status and worker productivity,

which in turn affect wages and hours worked. A change in labor income tax may be re-

quired to fund the reform, which will in turn affect individual’s labor supply decisions. A

reform will also affect agents’ saving behavior (and thus the aggregate capital stock and

factor prices) because health insurance influences precautionary saving motives. Under re-

forms that increase insurance coverage, agents have a decreased exposure to health shocks,

which decrease the demand for precautionary saving. Better health implies longer life ex-

pectancy and thus higher saving incentive. These complicated tradeoffs can only be fully

captured in a general equilibrium framework.

The classic works of Bewley (1986), Imrohoroglu (1992), Huggett (1993) and Aiyagari

(1994) have set up a framework to study uninsurable labor productivity risk. Many recent

papers introduce exogenous health expenditure shocks into Bewley-type models to add re-

alism. For example, Palumbo (1999) and De Nardi, French and Jones (2006) incorporate

heterogeneity in medical expenses in order to understand the pattern of saving among the

elderly. Jeske and Kitao (2008) study the welfare costs of a tax policy change associated

with health insurance. A few papers endogenize health expenditures as investments in

health following the seminal work of Grossman (1972). Suen (2006) endogenizes house-

holds’ medical expenditure decision to explain the rapid growth in health expenditure. Jung

and Tran (2008) use an OLG model built upon Jeske and Kitao (2008) to analyze the ef-

fect of the Health Saving Accounts on the health expenditure and individual’s insurance

decision.

The labor supply decision is absent from most of the existing macro-literature regarding
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health, and consequently labor income tax revenues are obtained distortion free. However,

having endogenous labor supply is critically important for welfare analysis. The cost of

reforms in terms of labor supply distortions is weighed against the benefits of reforms,

such as higher productivity and a larger risk pool (reduced adverse selection).

To that end, I build up a dynamic general equilibrium overlapping generations model

with idiosyncratic health shocks and endogenous labor supply in the following chapter.

This model enables us to compare the welfare effect of policy experiments, changes in the

aggregate health expenditure as well as labor supply. Moreover, the model can take into

account important general equilibrium effects of reforms, including the distortions associ-

ated with a change in taxes, as well as the interaction between the medical usage demand

and labor supply that affects factor prices. My study is also related to the literature on tax-

ation and labor supply (Prescott (2004), Rogerson (2007)). In my model, the government

adjusts tax rates to fund the reforms, which creates distortions in labor supply. The main

contribution of my work is to develop a tool to quantify the effects of alternative health

care reforms. I use the Medical Expenditure Panel Survey to calibrate the model and suc-

ceed in closely matching the current pattern of health expenditure and insurance demand

as observed in the data. Numerical simulations indicate that reforming the health insurance

system has a quantitatively relevant impact on the number of uninsured, hours worked, and

welfare.



Chapter 2

Macroeconomic consequences of
alternative reforms to the health
insurance system in the U.S.

This chapter examines the macroeconomic and welfare implications of alternative re-

forms to the U.S. health insurance system. In particular, I study the effect of the expansion

of Medicare to the entire population, the expansion of Medicaid, an individual mandate,

the removal of the tax break to purchase group insurance and providing a refundable tax

credit for insurance purchases. This chapter is organized as follows: section 1 introduces

the model; section 2 explains the calibration of the model; section 3 details some reform

proposals and presents the numerical results both from the benchmark and from policy

experiments; the last section concludes.

2.1 Benchmark Model

2.1.1 Demographics

This economy has overlapping generations of agents who live a maximum of three periods

as young, middle-aged, and old. Let g ∈ {1,2,3} denote the age. In the first period, the

measure of newly born agents is normalized to 1. Individuals alive in period t survive to

the next period with a certain probability. For old people this probability is always 0. For

young and middle-aged people, the survival probability is given by ρ(hg), which depends

13
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on the health status hg at the end of age g as described below. The population of young

individuals grows at a constant rate n, implying that the population of young in period t is

(1+n)t . I denote the relative size of age g to the population as μg, which is determined in

the equilibrium.

2.1.2 Agent types

All individuals enter the economy with the same level of health h̄0, an idiosyncratic en-

dowment e0, and idiosyncratic health types ih. Health type determines the probability of

drawing a certain health shock εt ∈ Ωε = {ε1, ...,εNε}. The probability distribution of the

shock is assumed to be age-type-dependent. Specifically, the probability of drawing ε ∈Ωε

by type ih agent at age g is denoted by pg,ih(ε), with Σε∈Ωε pg,ih(ε) = 1 for all (g, ih). A

typical history of shocks up to time t is denoted by σt ≡ {ε0, ...,εt}, with σt+1 = {σt ,εt+1}.

Agents are endowed with a fixed amount of time per period that can be allocated to leisure

or labor. Agents participate in the labor market during the first two periods and receive a

wage income w̃eζhl. Here ζ measures the effect of health on labor productivity.1 Health

is an important form of human capital. It can enhance workers’ productivity by increasing

their physical capacities, such as strength and endurance, as well as their mental capacities.

I postulate a positive relationship between health and productivity.

During their work stage agents receive income in the form of wages and profit Πt from

the firm. They can also save ag units of the consumption good using a storage technology

with gross rate of return Rt+1 = 1+r. Retired agents have income through previous saving

and profit, and consume all of their income at their last period of life.

The type of an agent is a triple (g, ih,x), where g∈{1,2,3} is age; ih ∈{healthy,unhealthy}
is health risk type; and x ∈ R+ is their disposable resources at the beginning of each period

defined as follows:
1See Bloom and Canning (2005). They model the human capital of the worker by v = eφss+φhh, where s

represents years of schooling and h represents health. Here we normalize the effect of schooling.
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x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e0, i f g = 1

(1+ r)a1, i f g = 2

(1+ r)a2 i f g = 3

2.1.3 Preferences

Preferences over stochastic sequences of consumption, leisure and health are given by

U = Et

3

∑
g=1

β g−1Πρ(hg−1) ·u(cg,Lg,hg) (2.1)

where β denotes the discount factor, ρ survival probability, c consumption, L leisure

and h health status. Et denotes the conditional expectation with the information available

when the agent is born.

2.1.4 The evolution of health

I use the idea of health capital introduced by Grossman (1972a). The price of medical care

pm is exogenously given so that each unit of consumption good can be transformed into 1
pm

units of medical care. In my model medical care m can be used to produce new units of

health. Each agent chooses an optimal amount of health expenditure m to build up health

capital h. The accumulation process of health is given by:

h′ = (1−δh)h+
ε

exp
[
Ammζ

] . (2.2)

where Am measures the medical technology. I assume that technological progress in the

production of medical service Am is exogenously given.

In Jeske and Kitao (2007) the health expenditure is an exogenous random shock. Each

period in time individuals must pay the full amount for necessary health care after the

shock, independent of their income level and current health stock. I, instead, endogenize
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medical expenditures. Hence, agents may choose the optimal amount of health care usage

to build up health stock. For agents who have the same levels of health and face the same

health shocks, richer agents will spend more on health care to build up better health stock2.

Richer individuals have higher levels of consumption and lower marginal utility from con-

sumption goods, therefore they will substitute some health for consumption goods.

Conditional on being alive at the current age with end of period health stock h, a given

agent will survive to the next period with probability ρ(h). Death is certain when health

falls below zero (ρ(h) = 0 if h ≤ 0). I assume that ρ ′(h) > 0. Deceased agents leave their

savings a as an accidental bequest that is collected by the government as revenues.

2.1.5 Medical expenses and health insurance

Young agents can have one out of three possible insurance states labeled as in = {1,2,3}.

Private health insurance is in = 1, in = 2 denotes that the agent has Medicaid, and in =

3 indicates the agent has no insurance. The out of pocket health expenditure will be

(1− q̃(pmm,1))pmm if the agent chooses to buy insurance and (1− q̃(pmm,2))pmm when

he/she is covered by the government program. It will cost the entire expenditure pmm

(q̃(pmm,3) = 0) if the agent does not have insurance. Here q̃(pmm, in) is function that rep-

resents the coinsurance rate and varies with the health insurance state in as we discuss in

the following subsection. Agents take it as exogenously given and it is calibrated from the

data. Retired agents are insured under Medicare.

2Wobus, Diana Z. and Gary Olin (2005) found that the average health expenditures per person with
expense decrease as you have higher income level in 2002. However, the low income has lower health
insurance coverage rate and worse health status. For people age under 65, the un-insurance rate among person
in families with income less than 200% of poverty line is 24.5%, while the number is only 8.7% among person
in middle and high income families. The price of medical services is much higher for uninsured due to the
cost shifting (see Anderson (2007)), which implies the prices of medical care paid by low income families
are higher. There are 52.4% people from low income families who report their health status are very good
or excellent, compared to 69.1% for middle and high income person. Taking these factors into account, it is
plausible that rich agent consumes more medical service than the poor agent given the same level of health
shock.
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2.1.5.1 Private health insurance

To simplify the analysis, the only available private health insurance I considered is the

Employer-Sponsored Health Insurance (EHI). Even when an employer offers health insur-

ance, not all workers get coverge. Some choose not to enroll, perhaps because they are

young or very healthy and feel that health insurance is not a pressing need, and others’

incomes are so low that they cannot afford insurance. These tradeoffs will be present in the

benchmark simulation.

Once an agent chooses to purchase EHI a constant premium πE must be paid to the

insurance company, and a fraction qE(pmm) of the total medical expenditure will be paid

by the health insurance company. The premium is not dependent on prior health history or

any individual states. This accounts for the practice that group health insurance does not

price-discriminate the insured by such individual characteristics.

2.1.5.2 Public health insurance

The government supplies two type of health insurances, Medicaid and Medicare, to the

individuals.

Medicaid Medicaid is a joint federal-state program that provides health insurance cover-

age to low-income children, parents, seniors and people with disabilities. The main crite-

rion for Medicaid eligibility is limited income and financial resources. I assume that young

and middle-aged individuals are eligible to receive Medicaid if their disposable resources

at the beginning of the period is lower than the poverty line Yma. There is also an exoge-

nous probability χ of getting a Medicaid offer. This captures the fact that Medicaid is only

eligible for child and adults with children. The program will cover the fraction qma(pmm)

of the total medical expenditure. Medicaid is a part of government spending.
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Medicare I assume that all retirees are enrolled in the Medicare program. Each retiree

pays a fixed premium πmr for Medicare and the program will cover the fraction qmr(pmm)

of the total medical expenditures. Medicare is funded by the Medicare tax τmr that is

proportional to the worker’s labor income.

2.1.6 The representative agent’s problem

A representative agent of generation g = {1,2} enters each period with characteristics

sg = (ih,x,hg−1, ima), where ih is the risk type of the agent, x is the disposable resources,

hg−1 is the health status at the beginning of the period, and ima is the indicator function that

signals the availability of the Medicaid benefit in the current period. Since all old agents

are enrolled in the Medicare program and leave the labor market, their characteristics sim-

ply are s3 = (ih,x,h2). The distribution of households over their state space is given by

fg(sg,σt), which is endogenously determined in the equilibrium and evolves over time.

Agents observe sg at the beginning of the period. They take prices as given and make

the insurance decision ing(sg) and choose a set of state-contingent decision rules, which can

be denoted by {cg(sg,εg),ag(sg,εg),mg(sg,εg),Lg(sg,εg)}, to solve the following problem.

maxEt

{
3

∑
g=1

β g−1Πρ(hg−1) ·u [cg(sg,εg),Lg(sg,εg),hg(sg,εg)] | σt

}
(2.3)

subject to the budget constraint and a no-borrowing constraint

(1+ τc)c1(s1,ε1)+ [1− q̃(pmm1, in)] · pmm1(s1,ε1)+ π̃(in)+a1(s1,ε1)

≤ e0 +Πt +(1−0.5τmr)
[
w̃te

ζh1 l1(s1,ε1)−1{in=1}π̃(in)
]
−T (y1) (2.4)

a1(s1,ε1) ≥ 0 (2.5)
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when young;

(1+ τc)c2(s2,ε2)+ [1− q̃(pmm2, in)] · pmm2(s2,ε2)+ π̃(in)+a2(s2,ε2)

≤ Rt+1a1(s2,ε2)+Πt+1 +(1−0.5τmr)
[
w̃t+1eζh2 l2(s2,ε2)−1{in=1}π̃(in)

]
−T (y2)

(2.6)

a2(s2,ε2) ≥ 0 (2.7)

when middle-aged; and

(1+ τc)c3(s3,ε3)+ [1−qmr(pmm3)] · pmm3(s3,ε3)+πmr

≤ Rt+2a2(s3,ε3)+Πt+2 −T (y3) (2.8)

when old, where

hg = (1−δh)hg−1 +
εg

exp[Ammζ
g (sg,εg))]

(2.9)

w̃t = (1−0.5τmr)wt (2.10)

Πt =
(1−α)Yt

∑g={1,2,3} μg
∫

fgdsg
(2.11)

π̃(in) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πE , if in = 1

πma, if in = 2

0 if in = 3

(2.12)

q̃(pmm1, in) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qE(pmm1), if in = 1

qma(pmm1), if in = 2

0 if in = 3

(2.13)

yg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃teζh1 l1(s1,ε1)+Π(σt)−1{in=1}π̃(in), if g = 1

ra1(s1,ε1)+ w̃t+1eζh2 l2(s2,ε2)+Π(σt+1)−1{in=1}π̃(in), if g = 2

ra2(s2,ε2)+Π(σt+2) if g = 3

(2.14)
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Figure 2.1: Timeline for the generation born in period t

The timeline for the generation who was born in period t is shown in Figure 2.1.

Each agent born at t is endowed with e0. They save some storage goods {ag(σt+g−1,sg)}g=1,2

to attain desirable amounts of consumption. Equation (2.10) presents the individual’s after-

Medicare-tax adjusted wage rate. Agents survive to the next period with probability ρ(hg).

The firm needs to share the Medicare tax τmr with the agent. Hence, in equilibrium a frac-

tion 0.5τmr of tax is subtracted from the wage. Profit Πt will be uniformly distributed to the

household as payment as displayed in equation (2.11). Equations (2.12) and (2.13) explain

the insurance premium paid by the individual and the co-payment rate, which vary with his

health insurance state. Income taxes are imposed on the labor income paid to a worker plus

accrued interest on savings and profit from the firm. Equation (2.14) represents the income

tax base, which depends on the agent’s age. T (·) is a progressive income tax function.
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2.1.7 Aggregate production function

The consumption goods are produced by a neoclassical production function. The aggregate

production function takes a nested Cobb-Douglas specification in the following form.

Yt = AtE
α
t (2.15)

Et = ∑
g={1,2}

μg(t)
∫ [

eξhg lg(sg,εg)
]

fgdsg (2.16)

where At is a total factor productivity, and Et is an aggregate efficiency labor input,

which depends on individual worker’s health status. The firm’s profit maximization prob-

lem is

max
{Et}

AtE
α
t −wtEt . (2.17)

Profits Πt are distributed back to households in a lump-sum payment.

2.1.8 The government

I impose a government balanced budget constraint period by period. The government has

three different types of outlays: general public consumption, Medicaid and Medicare ex-

penses. The government collects revenues from various sources: income taxation according

to a progressive tax function T (·), consumption taxation at rate τc, Medicare taxation at rate

τmr, Medicare premium πmr, Medicaid premium πma, and accidental bequests B collected
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from deceased agents.

Gt + ∑
g={1,2}

μg(t)
∫

[qma(pmmg)pmmg −πma] ·1{in=3} fgdsg+

μ3(t)
∫

[qmr(pmm3)pmm3 −πmr] f3ds3

= RtBt + ∑
g={1,2}

μg(t)
∫
τmr

[
w̃te

ξhglg −0.5 ·1{in=1}πE

]
fgdsg+

∑
g={1,2,3}

μg(t)
∫

[τccg +T (yg)] fgdsg (2.18)

where yg is the taxable income for age g agent.

2.1.9 Health insurance company

The health insurance company is competitive. Hence, in equilibrium the premium πE is

charged such that expected expenditures on the insured are precisely covered.

πE =
∑g={1,2} μg(t)

∫ [
qE(pmmg)pmmg ·1{in=1}

]
fgdsg

∑g={1,2} μg(t)
∫

1{in=1} fgdsg
(2.19)

Notice the coverage ratio functions qE(·) are taken as exogenously given.

2.1.10 Stationary competitive equilibrium

Let ih ∈ I2 = {healthy,unhealthy},x ∈ R+,hg ∈ R+, ima ∈ I2 = {0,1},εg ∈ R−. The state

space for age g = {1,2} year old agents is Sg = I2 ×R+ ×R+ × I2 ×R−, and the state

space for the old is S3 = I2 ×R+×R+ ×R−.

Definition 2.1.1 A stationary competitive equilibrium is i) fiscal variables {G,τc,T(·),τmr};

ii) a sequence of prices for medical services pm; iii) health insurance choices {in(sg)}g=1,2,

a set of state-contingent decision rules {cg(sg,εg),ag(sg,εg),mg(sg,εg),Lg(sg,εg)}g=1,2,3

for the agents; iv) a state-contingent sequence of labor demand E; v) insurance premium

πE; vi) distributions of agents fg(sg) over the state space S such that
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1. {in(sg),cg(sg,εg),ag(sg,εg),mg(sg,εg),Lg(sg,εg)}g=1,2,3 solve the consumers prob-

lem (2.3) taking prices and taxes as given;

2. given the distribution f ∗g of households, the insurance companies choose πE such

that the budget constraint of insurance companies (2.19) holds;

3. the government sets τmr, and T (·) such that (2.18) holds;

4. given price w, the labor market clears

E = ∑
g={1,2}

μg

∫
eζhglg(sg,εg) fgdsg (2.20)

5. the accidental bequests matches the remaining assets.

B = ∑
g={1,2}

μg

∫
ag(sg,εg) · (1−ρ(hg,εg)) fgdsg (2.21)

6. the aggregate resource constraint holds

G+ ∑
g={1,2,3}

μg

∫
[cg(sg,εg)+ pmmg(sg,εg)] fgdsg + ∑

g={1,2}
μg

∫
ag(sg,εg) fgdsg

= μ1

∫
e0 f1ds1 + ∑

g={1,2}
μg

∫
Rt ·ag(sg,εg) fgdsg +Y +B (2.22)

7. there is a consistency between beliefs and the actual prices.

8. the relative size of age g to the population μg is recursively determined by

μg =
∫
ρ(hg−1, ,εg−1) fg−1dsg−1

1+n
μg−1 (2.23)

9. the law of motion for the distribution of agents over the state space S satisfies

f t+1
g =

∫
ρ(hg−1,εg−1) f t

g−1dsg−1 (2.24)
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2.2 Calibration

In this section I outline the calibration of the model. Table B.4 summarizes the values and

describes the parameters.

Most parameters can be independently estimated. However, there are 16 parameters that

cannot be determined independent of each other as I discuss below. These include parame-

ters of preference (γ3,g,η), the health production function (Am,ζ ), the survival probability

function (aρ ,bρ), the magnitude of the negative health shock (ε1,ε2), the probability distri-

bution of the shock pg,ih and the price of medical service pm. Hence, I use a minimization

procedure to determine these parameter values. More specifically, I pick parameter values

such that the distance between key moments in the stationary distribution of the benchmark

model and the real-world statistics listed in Table C.1 are minimized. Formally, let ψ de-

notes the vector of parameters, and Γ be the vector of selected real-world moments. Given

ψ , a prediction Γ̂(ψ) on Γ can be computed in the stationary distribution of the benchmark.

The minimization procedure can be defined as the following problem:

min
ψ

∥∥Γ̂(ψ)−Γ∥∥ (2.25)

2.2.1 Data sources

The data used for estimating the process of health insurance decision and health production

come from the Household Component of the Medical Expenditure Panel Survey (MEPS),

which is based on a series of national surveys conducted by the U.S. Agency for Health

Care Research and Quality (AHRQ). The MEPS consists of eight two-year panels from

1996/1997 up to 2003/2004 and includes data on demographics, income and most impor-

tantly health status and insurance.
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2.2.2 Demographics

One period is defined as 20 years. Agents enter the economy at the age of 25 (g = 1) and

survive up to the maximum age of 85 (g = 3). In line with Suen (2006), I assume that

the survival probability function ρ(·) takes the form of the cumulative Weibull distribution

function:

ρ(h) = 1− exp(−aρhbρ ) (2.26)

with aρ > 0 and bρ > 0. The endogenous survival probability rules out the case that agents

survive to the next period with negative health stock.

I consider a yearly population growth of 1.25%. Together with the survival probability

ρ(h), the ratio of retired people to active population (the dependency ratio) is equal to

18.6% (19.2% according to the 2000 Population Census for the United States). The initial

level of health at age 1, h̄0, is assumed to be constant over time and is normalized to 100.

2.2.3 Preferences and technology

Agents have period utility over consumption, leisure and health:

u(cg,Lg,hg) = logcg + γ2,g logLg + γ3,g
h1−η

g

1−η (2.27)

The parameter γ2,g is age-dependent and I choose parameter values such that the average

fraction of the time endowment allocated to market work is 0.33, which implies γ2,1 = 1.3,

and γ2,1 = 0.85. Notice old agents retire from the labor market and they spend all time on

leisure. For simplicity I set γ2,3 = γ2,1. γ3,g, which is age-dependent as is γ2,g, measures the

importance of health and η denotes the coefficient of relative risk aversion of health.

The annual subjective discount factor is taken to be 0.97, so β = (0.97)20 = 0.5936.

The average annual interest rate in the U.S is 4%, so r = (1+0.04)20−1 = 1.19.
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2.2.4 Production of health and health shocks

The health measure h used in this paper is the Physical Component Summary scores formed

from the answers to the Short-Form 12 questions. For people aged between 25 and 85, the

lowest health level is 4.56 and the highest level is 72.17 in the MEPS data.3 This paper as-

sumes that human beings can live up to 85 years without any accident or illness. We choose

δh such that 72.17×(1− δ̃h)60 = 4.56, where δ̃h refers to annual health depreciation rate. I

also assume that the depreciation rate increases with age. Therefore I choose depreciation

rate of {0.4,0.4,0.5}.

The transition of agent’s health is described by equation (2.2). Agents can offset the

negative effect of a health shock by purchasing medical care. The productivity of medical

care is captured by Am, and the price of medical care is pm. Both are exogenously given.

Brown (2006) found that uninsured people in California pay 65% more for common

prescription drugs than the federal government does for the same medications. Anderson

(2007) found that the uninsured patients pay up to 2.5 times for hospital service than health

insurers. I assume that uninsured consumers pay a 60% higher price for medical services

than the insured, so that pu
m = 1.6× pi

m. This is similar to Jung and Tran (2008). I assume

that the relative price of medical service pm is the weighted average price paid by the

insured and the uninsured, i.e. pm = (1−θ)pi
m +θ pu

m, where θ is the fraction of uninsured

in the population. According to Kaiser (2007), the value of θ was 18% in 2006. Therefore,

I pick pi
m = 0.9145pm, and pu

m = 1.4605pm.

I differentiate agents into two groups, which are high-risk and low-risk, by using the

estimation procedure of Bundorf, M. Kate et al (2005).4 The health shocks take two pos-

sible values {ε1,ε2}. For the same age cohort high-risk people are different from low-risk

people in terms of the probabilities pg,ih(ε) of getting the same shock ε . The health shocks

ε ∈Ωε = {ε1,ε2} and the probability distribution of the shock pg,ih(ε) are chosen so that

3As for how to calculate these summary scores, please refer to Ware et al, How to Score the SF-12(r)
Physical and Mental Health Summary Scales, QualityMetric,Inc., Lincoln, RI.

4Please refer to the technical appendix of Bundorf, M. Kate et al (2005) for the detailed procedure.
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the health insurance take-up rate (percentage of workers buying private insurance per age-

type group) and the share of health expenditure in GDP is approximated.

2.2.5 Health insurance

Private health insurance The coverage rate increases in the health expenditures in-

curred by the patients. Similar to Jeske and Kitao (2007) I assume that the coverage ratio

is a function of total health expenditure pmm and takes the following form.

qE(pmm) = βE
0 +βE

1 log(pmm)+βE
2 [log(pmm)]2 (2.28)

I estimate the set of parameters {βE
0 ,βE

1 ,βE
2 } using the MEPS data. I rank the health

expenditure and use 5 bins for health expnediture data. I specify the bins of uniform size.

Therefore the first bin contains individuals whose health expenditure is between zero and

20-quantile. The 20% spending the most on health care belongs to the fifth bin. I plug in

the health expenditure data to attain the average coverage ratio for each bin.

The coverage ratios of Medicaid and Medicare are estimated by the same procedure. I

report the parameter values and coverage ratios for each expenditure grid in table B.2 and

B.3. In table B.3, the standard errors in brackets and all coefficient estimates are significant

at the 1% level. The insurance premium πE is determined in the equilibrium to ensure zero

profits for the insurance company.

Medicaid I use Medicaid as a proxy of public health insurance for the non-elderly

population, which includes S-CHIP. I use the MEPS data to calculate the acceptance rate

of Medicaid χ = 0.6. The beneficiaries of Medicaid typically do not pay anything for

enrolling in the program. I pick πma = 0 in the simulation.

Medicaid is funded by general government revenue. The income level characteristic

of Medicaid is typically 100% to 133% of the federal poverty line (FPL) and SCHIP is
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200%.5 I set Yma = $12,000 or about 34% of annual per capita GDP in the benchmark.

Medicare I assume that every old agent is enrolled in Medicare. Medicare taxes are

levied on all labor income and split between employer and employee contributions. The

Medicare premium was $799.20 annually in 2004 or about 2.11% of annual GDP. The

Medicare tax rate τmr is determined within the model so that the government budget is

balanced.

2.2.6 Firms

I choose a standard labor share in production of α = 0.66 from NIPA. Total factor produc-

tivity is normalized to A = 8 such that the average labor income equals 10 in the benchmark.

In line with Bloom and Canning (2005), I assume that individual worker’s health status af-

fects the efficiency of labor input by a factor of eξh. Therefore, labor income is given by

weξhl, where w is the average wage rate. I estimate the parameter ξ that fits the following

equation using the MEPS data.

log(LaborIncome) = ξh+ log(AverageWage×WorkingHours)+ ε (2.29)

where h is the Physical Component Summary scores that measure the individual’s health

status ranging from 0 to 100. I normalize the average labor income observed in the data to

be 10.0 and I calculate ξ = 0.1393 in the benchmark.

2.2.7 Government

The value for G is exogenously given and is fixed across all policy experiments. I calibrate

it to 27.5% to match the share of government consumption, social security and gross in-

vestment excluding transfers, at federal, state and local levels (The Economic Report of the

5Source: Genevieve M. Kenney, Jennifer M. Haley, Alexandra Tebay. Children’s Insurance Coverage
and Service Use Improve. Urban Institute. July 31, 2003. http://www.urban.org/publications/310816.html



29

President, 2004). This number is bigger than the standard value of 18% because I do not

model a Social Security program and Social Insurance as in Jeske and Kitao (2007). The

consumption tax rate is 5.67% as in Mendoza, Razin, and Tesar (1994).

The income tax function follows the functional form studied by Gouveia and Strauss

(1994), which is given as

T (y) = b0

(
y− (y−b1 +b2)−1/b1

)
+ τyy (2.30)

Parameter b0 is the limit of marginal taxes in the progressive part as income goes to in-

finity, b1 denotes the curvature of marginal taxes and b2 is a scaling parameter. I use the pa-

rameters estimated by Gouveia and Struss (1994), which are {b0,b1,b2}= {0.258,0.768,0.716}.

When they calibrate the tax function, the income has been normalized to the range of [0,1].

In my model, I divide taxable income of every agent by the maximum income observed in

the simulated economy to get the normalized income. Then I use this normalized income

directly in (2.30) to get the tax rate. The parameter τy in the proportional term of the income

tax equals 10% in the benchmark.

2.3 Numerical results

All potential reforms start from the same initial steady state calibrated to the current U.S.

economy and end in a different final steady state with an alternative health insurance sys-

tem. Therefore, I first compare moments of associated invariant distributions. Then I

discuss the quantitative aspects of the transitions and welfare analysis associated with each

of the reforms considered.
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2.3.1 Benchmark model

Table C.1 reports the main features of the benchmark simulation. Under the baseline

parameterizations the model is able to match the main features of the current economy in

the U.S. The fraction of insured agents among all young and middle-aged agents is 84.8%,

which is slightly higher than 82% in the data. Among non-elderly, 12.3% are covered by

the Medicaid program (12.9% in the data). The model overstates total health expenditure

as a ratio of GDP, which is about 15.8% according to Department of Health & Human

Services (2006). The model reports 16.6%. The model matches working hours fairly well,

which is 30.6% of total non-sleeping time (33.3% in the data). The gross saving rate is

25.8% (21% in the data).

Next, I examine the model’s predictions on the life-cycle patterns of medical spending

and consumption. Panel 1 of Figure 2.2 displays medical spending over various age groups.

According to MEPS, the average health expenditure is roughly constant from ages 25 to

64 and almost triples afterwards. The benchmark model is able to replicate the increas-

ing pattern. However, the magnitude of the health expenditure is bigger than in the data,

especially for non-elderly agents. In the steady state, a representative agent age between

25 to 44 spends $5,697 or about 14.5% of per capita GDP (7.48% in the data). Agents

between ages 45 to 64 years old on average spend $6,783, or about 12.7% of per capita

GDP (11.02% in the data). Agents over 65 spend $13,283, or about 29.8% of per capita

GDP (32.59% in the data).

Panel 2 of Figure 2.2 shows the consumption over various age groups. Fernandez-

Villaverde and Krueger (2002) estimated the life-cycle consumption profiles using data

from the Consumer Expenditure Survey. They found that non-durable consumption peaked

at age 52 and was about 29% higher than at age 25. The current model is able to generate

similar hump-shaped patterns. However the peak level is only about 13.7% higher than that

in ages between 25 and 44.
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Figure 2.2: Health expenditure and consumption life profiles

2.3.2 Policy experiments

I now conduct experiments to determine the effect of reforming the health insurance sys-

tem. I am interested in changes in health expenditure as a ratio of GDP, the change in

taxes that balances the government budget, aggregate labor supply, aggregate health status,

savings rate and output. I treat changes in government revenue as follows: expenditures G,

consumption tax rate τc, the progressive part of income tax function T (·) and the propor-

tional income tax rate τy remain unchanged from the benchmark. I adjust the medicare tax

τmr to balance the government’s budget.

In each experiment I first compute a steady state outcome under the stationary equilib-

rium and then the transition dynamics. In line with Conesa and Krueger (1999), I measure

the welfare effect of a reform by computing the consumption equivalent variation (CEV ).

I quantify the welfare change of a given policy reform for an individual of type (ih,x, ima)

by asking by how much (in percent) this individual’s consumption has to be increased in all

future periods and contingencies (keeping health expenditure, leisure and health insurance

status constant) in the old steady state so that his expected life-time utility equals that under
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a specific policy reform. I denote it with CEV (ih,x, ima). For example, a CEV (ih,x, ima) of

−10% implies that if the given policy reform is put into place, then an individual of type

(ih,x, ima) will experience an decrease in welfare due to the reform equivalent to sacrifice

10% of his consumption in the initial steady state with leisure, health insurance and health

expenditure constant at the initial steady-state choices.

Alternative sources of revenue to fund these reforms are also considered. I first consider

supporting the reform by adjusting the income tax. I also conduct companion experiments

where the government funds the reform through a payroll tax and through a lump-sum

transfer separately.

2.3.2.1 Policy experiment A: expansion of Medicare to the entire population

In this experiment the private health insurance and the Medicaid program are abolished.

Non-elderly will be covered by a uniform health insurance program, which is sponsored

by the government, with premium πmr and coverage rate qE(·). Specifically, non-elderly

pay for a premium that equals 2.11% of the per capita GDP. A fraction qE(pmm) of their

health expenditure will be paid by the government. Compared to the benchmark, 72.5% of

non-elderly who purchase private insurance pay an actuarially fair premium πE , which is

about 10.9% of the per capita GDP.

I assume that the price for medical service equals the average price for medical service

in the equilibrium of the benchmark, which means pexp
m = pben

m = (1−θ)pi
m +θ pu

m. The

medical technology Am is constant and exogenously given. I can also consider a case in

which the technology slows down (or speeds up) as a result of the reform.

Experiment results are summarized in Table 2.1. The top section displays some statis-

tics on aggregate variables: the fraction of insured non-elderly, the Medicare tax rate, the

average effective income tax rate, average working hours, average effective working hours,

and the health expenditure as a ratio of GDP. The lower section displays the welfare effects

of each reform. % w/ CEV > 0 indicates the fraction of young agents in the benchmark that
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would experience a welfare gain (positive CEV) if the alternative reform is taken place.

Expansion of Medicare to the entire population achieves a universal coverage as shown

in the fraction of insured non-elderly. The aggregate health expenditure as a ratio of GDP

increases by 0.3%. This is because those newly insured non-elderly will consume more

medical service and incur higher amounts of health expenditure as the reform provides

them with cheaper health insurance. The program needs to cover 15.2% of the non-elderly

who would be uninsured in the benchmark and to pay for part of the expenditure of the

insured, who pay a premium of πmr after the reform, which is about 20% of the premium

they paid in the benchmark. Therefore, the government raises the proportional income tax

rate by 4.5%. As a consequence, average working hours decreases by 4.8% to 28.7. The

average health stock of the non-elderly increases from 46 to 47, which implies a long life

expectancy and a higher saving incentive. A decreased exposure to the health shocks lowers

the precautionary saving demand, but this effect is dominated by the previous one and the

aggregate saving rate slightly increases by 0.8%.

Although the proportional income tax rate τy is higher than in the benchmark, the

cheaper health insurance program from the government is enough to compensate this cost

for most agents. As shown in % w/ CEV > 0, 72.6% of young agents would experience

a welfare gain from this reform, and the average welfare effect is in the order of 2.6% in

terms of consumption in every state. However, low income agents, especially those with

Medicaid offers, will suffer because the new insurance program from such a reform is less

generous than Medicaid. On average, low-income individuals would experience a welfare

loss equivalent to 4.27% of consumption. While agents who have income above the poverty

line have a welfare gain of 5.96% of consumption.

A-1: Medicare expansion.

A-2: Medicare expansion with Medicaid.

I also consider a experiment A-2 to test whether an expansion of Medicare can improve

all individuals’ well-being. In this experiment, the government offers low-income agents
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Table 2.1: Policy Experiment A

Bench. A-1 A-2
Insured non-elderly (in %) 84.8 100 100
Medicare tax (in %) 2.5 2.5 2.5
Ave. income tax (in %) 24.6 29.4 30.39
Ave. Working hrs. 30.6 28.7 28.5
Ave. Effective Working hrs. 61.06 57.3 56.97
Health exp. (in % of GDP) 16.6 16.91 17.7
πE (in % of per capita GDP) 10.1 2.11 2.11
Output 100 97.96 98.06
Aggregate saving rate (in %) 25.8 26.6 26.9
Average consumption 100 97.1 95.6
Average health stock 46.6 46.88 46.84
CEV from transition

all young (in %) − 2.6 2.8
young w/ e0 > Yma (in %) − 5.96 4.85
young w/ e0 ≤Yma (in %) − −4.27 −1.39
% w/ CEV > 0 (young) − 72.6 76.7

with Medicaid and keeps the rest the same as in experiment A-1. Specifically, non-elderly

whose incomes are below the poverty line will be covered by Medicaid. Agents whose

income are above the poverty line need to pay a premium equal to 2.11% of the per capita

GDP. A fraction qE(pmm) of their health expenditure will be paid by the government.

Apparently, the tax rate needs a bigger increase. This can be explained by the fact that

this reform is more generous to low income individuals and they will spend more in health.

However, the benefit from such a guaranteed Medicaid coverage cannot offset the loss due

to a higher tax rate, which is used to supply generous Medicaid program to low income

agents. As shown in CEV from transition, young agents with e0 ≤ Yma still experience

a welfare loss, but at a much smaller magnitude of 1.39%. The welfare gain of higher

income young agents decreases to 4.85% from 5.96% in experiment A-1. On average,

young agents have a welfare gain in the order of 2.8% in terms of consumption in every

state. From this experiment, it seems possible to make expansion of Medicare a welfare

improving program for everybody by appropriately funding the reform.
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2.3.2.2 Policy experiment B: expansion of public health insurance

Policy experiment B involves expansion of the public health insurance, including Medicaid/S-

CHIP (Jonathan Gruber, 2001). Approaches that follow this model generally build on ex-

isting public programs by raising income limits to include many more needy people and do

away with all tests of eligibility except income. In experiment B-1, I increase the Medicaid

offer rate to χ = 1. Specifically, agents who meet the maximum income requirement will

be covered by Medicaid with probability 1, compared to a probability of 0.6 in the bench-

mark. While in experiment B-2, I leave the Medicaid offer rate χ unchange and increase

the maximum income requirement to 300% of the poverty line. I report experiment results

in Table 2.2.

When the government extends Medicaid to include all agents who meet the maximum

income requirement, the spending in Medicaid as a ratio of GDP increases from 1.65% to

2.46%. As these newly insured people consume more medical services than in the bench-

mark, aggregate health expenditure increases as well. The proportional income tax rate

has been raised by 1.5% to match this spending. As a consequence, average working

hours decrease by 1.3%. Medicaid expansion alone cannot achieve “universal health care”.

This reform will leave 10.5% of the non-elderly without insurance coverage. These agents

choose not to purchase private insurance because they are relatively healthy and expect to

have a smaller health shock.

When the government increases the maximum income requirement in experiment B-2,

some previously insured agents will choose to apply for Medicaid and at the risk of be-

ing uninsured. Consequently, the insured as a fraction of non-elderly decreases to 81.2%.

However the aggregate health expenditure increases to 17.4% of GDP. This is because

Medicaid is more generous than private insurane in terms of the coverage ratio. The expan-

sion of Medicaid by raising the income standard requires a bigger increase in income tax

rate as it covers another 18% of non-elderly. The average working hours decreses by 3%.

B-1: Public health insurance expansion 1.
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Table 2.2: Policy Experiment B

Bench. B-1 B-2
Insured non-elderly (in %) 84.8 89.5 81.2
Medicare tax (in %) 2.5 2.5 2.5
Ave. income tax (in %) 24.6 25.9 30.6
Ave. Working hrs. 30.6 30.2 29.7
Ave. Effective Working hrs. 61.1 60.4 59.3
Health exp. (in % of GDP) 16.6 17.02 17.4
πE (in % of per capita GDP) 10.8 10.8 9.7
Output 100 99.9 98.7
Aggregate saving rate (in %) 25.8 25.9 27.2
Average consumption 100 99.2 97.1
Average health stock 46.6 46.7 46.79
CEV from transition

all young (in %) − −0.28 −2.4
young w/ e0 > Yma (in %) − −1.07 −1.64
young w/ e0 ≤ Yma (in %) − 1.34 −2.73
% w/ CEV > 0 (young) − 10.96 0

B-2: Public health insurance expansion 2.

Now let’s look at the welfare effect. Public insurance expansion as in experiment B-

1, which includes all agents who meet the maximum income requirement, is beneficial

to low-income agents. They experience a welfare gain in the order of 1.34% in terms of

consumption in all states in B-1. They benefit from these reforms with a guaranteed public

insurance coverage and in exchange pay a higher income tax. Given the small size of the

program, the benefit is enough to compensate for the loss due to a tax increase. This type

of reform is welfare decreasing for high income agents who do not qualify the maximum

income requirement. This is because their health benefits are intact and they need to pay for

a higher tax to support the expanded Medicaid program. They will suffer a loss equivalent

to more than 1% in terms of consumption in all states.

While to increase the maximum income requirement makes everybody worse off. Agents

whose income is below the existing maximum income requirement have the same public

insurance coverage as in the benchmark. However they are are required to pay for a higher
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tax rate. As a consequence, they experience a welfare loss of the order of 2.73% in terms of

consumption in all states. High income agents benefit from the reform with a cheaper in-

surance or a chance of being covered by Medicaid depending on their income level. While

the cost of higher income tax cannot be offset by this benefit. Consequently, they experi-

ence a welfare loss of the order of 1.64% in terms of consumption, which is in a smaller

magnitude compared with low income agents who do not benefit from this reform.

2.3.2.3 Policy experiment C: individual mandate

Table 2.3: Policy Experiment C

Bench. C
Insured non-elderly (in %) 84.8 100
Medicare tax (in %) 2.5 2.5
Ave. income tax (in %) 24.6 25.2
Ave. Working hrs. 30.6 30.66
Ave. Effective Working hrs. 61.1 61.3
Health exp. (in % of GDP) 16.6 17.04
πE (in % of per capita GDP) 10.8 9.5
Output 100 100.2
Aggregate saving rate (in %) 25.8 26.7
Average consumption 100 99.1
Average health stock 46.6 47.1
CEV from transition

all young (in %) − −0.63
young w/ e0 > Yma (in %) − −0.29
young w/ e0 ≤ Yma (in %) − −1.32
% w/ CEV > 0 (young) − 0

In this experiment about 15% of non-elderly are forced to purchase private insurance,

who are relatively healthier. Their entry into the insurance market makes the risk pool

better and the insurance premium lower. Consequently, the price of private insurance de-

creases by 12%. The aggregate health expenditure as a ratio of GDP increases to 17.04% as

everybody has insurance coverage. The aggregate health status becomes better and the av-

erage working hours increases by 0.2% even though the reform requires an higher income
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tax rate. In terms of welfare, an individual mandate makes everybody worse off. Such a re-

form imposes a higher income tax rate, whose cost cannot be offset by a cheaper insurance

for high income agents. Among low income agents, only a small fraction holds private

insurance. Consequently they benefit less from the cheaper insurance and they experience

a welfare loss at the magnitude of 1.32% in terms of consumption in all states, compared

with a loss at the order of 0.29% for high income agents.

2.3.2.4 Policy experiment D: abolishing tax deductibility of private insurance pre-
miums and providing a tax credit

Compared with the above experiments, policy experiment D-1 is a market-based reform

rather than a government program. Under this experiment, the deductibility of the insurance

premium for income tax is abolished. Taxes are now collected on the entire portion of the

premium and the taxable income is given as

yg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃teζh1 l1(s1,ε1)+Π(σt), if g = 1

ra1(s1,ε1)+ w̃teζh2 l2(s2,ε2)+Π(σt), if g = 2

ra2(s2,ε3)+Π(σt) if g = 3

(2.31)

At the same time, the government will provide agents with a refundable tax credit in exper-

iment D-2. This tax credit is only given to agents who purchase private insurance.

Experiment results are summarized in Table 2.4. Removing the tax subsidy in D-1

leads to a partial collapse of the private insurance market as found by Jeske and Kitao

(2007). The fraction of non-elderly who purchase private insurance falls from 72.5% to

37.5%.6 More than 1/3 of the non-elderly opt out of the private insurance market and

choose to be self-insured. Those are the agents in a better health condition who face a lower

6This experiment is similar to experiment A in Jeske and Kitao (2007). The magnitude of the decrease
here is bigger than in their paper. This result can be explained by the fact that I model the health expenditure
as endogenous decision. The demand for medical services by healthy individuals is more elastic to price
change than unhealthy individuals as found by Bajari, Hong and Khwaja (2006). A model with exogenous
health expenditure as in Jeske and Kitao (2007) cannot capture this effect and the change in the number of
insured will be smaller.
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probability of suffering a bad health shock. The exit of these agents out of the insurance

market deteriorates the risk pool and the price of the private insurance jumps by 15%. The

aggregate health expenditure as a ratio of GDP falls 1.2% as those self-insured spend less

on health. The income tax rate falls as the income base increases with the removal of the

tax deductability for premium. As a consequence, average working hours slightly increase

by 0.5%.

A tax credit creates incentives for individuals to purchase private insurance as in exper-

iment D-2. The fraction of insured non-elderly jumps to 94.2% as the tax credit goes to

agents who purchase private insurance. Consequently, the price of private insurance falls

to 9.68% of per capita GDP and the health expenditure rises to 16.89% of GDP.

Table 2.4: Policy Experiment D

Bench. D-1 D-2
Insured non-elderly (in %) 84.8 49.1 94.2
Medicare tax (in %) 2.5 2.5 2.5
Ave. income tax (in %) 24.6 23.1 27.5
Ave. Working hrs. 30.6 30.76 29.8
Ave. Effective Working hrs. 61.1 61.11 59.43
Health exp. (in % of GDP) 16.6 15.38 16.89
πE (in % of per capita GDP) 10.8 12.14 9.68
Output 100 100.01 99.15
Aggregate saving rate (in %) 25.8 25.76 26.17
Average consumption 100 102.4 98.3
Average health stock 46.6 46.35 46.78
CEV from transition

all young (in %) − 1.76 −0.22
young w/ e0 > Yma (in %) − 1.58 0.81
young w/ e0 ≤ Yma (in %) − 2.14 −2.3
% w/ CEV > 0 (young) − 73.97 67.1

C-1: Abolish private insurance deductibility from income tax base.

C-2: Abolish private insurance deductibility from income tax base and provide credit

for individuals who purchase private insurance.

In terms of welfare, the removal of the subsidy for purchasing private health insurance
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is welfare improving, as 74% of the young would experience a welfare gain. For most

individuals, a lower income tax rate is enough to compensate for the welfare loss due to

the lower insurance coverage and increased exposure to health shocks. On average a young

individual will benefit from this reform in the order of 1.76% in terms of consumption in all

states. In D-2, A tax credit to private insurance buyers would encourage health insurance

market participation. While the proportional tax rate τy is higher than in the benchmark

due to the tax credit, it cannot be offset by the benefit from the higher insurance coverage.

On average, a young agent would experience a welfare loss equivalent to 0.22% in terms

of consumption.

2.3.3 Alternative approaches of funding the reforms

2.3.3.1 Income tax v.s. payroll tax

In order to understand how the macroeconomic effects of these proposals change in re-

sponse to how the government finances the reform, I also consider funding the reform by

changing the payroll tax τmr. Now, government expenditure G, consumption tax rate τc

and the progressive part of income tax function T (·), as well as the proportional tax rate

τy remain unchanged from the benchmark. I adjust the payroll tax rate τmr to balance the

government’s budget.

As shown in average working hours in table 2.5, to adjust the payroll tax creates bigger

distortions compared with income taxes.7 Notice I change some policy targets in order to

make the experiment meaningful. In experiment A, the Medicare premium doubles from

2.11% of GDP to 4.22%. Otherwise the payroll tax rate will skyrocket and partially crash

the labor market as some agents will leave the market. To finance the reform with payroll

tax requires the Medicare tax to increases from 2.5% to 7.87%. As a consequence, average

7There is no capital in my model. The profit Π is distributed back to the agent as a payment, which is
inelastic supply to the individual. The interest rate is exogenous and the demand for saving is inelastic as
well. Furthermore, the tax base of income tax is broader than labor tax. These facts explain why tax labor
income creates more distortion than to tax income.
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working hours decrease by 5.6%. The welfare of an average agent decreases compared to

funding the reform through the income tax change.

Given the relatively small size of the Medicaid program, public insurance expansion

(experiment B-1, B-2) requires a gradual increase in the Medicare tax. Average working

hours decrease by 4.6% in B-1 and 6.5% in B-2 (1.3% and 0.9% when the reforms are

funded through payroll taxes). Again, welfare decreases compared to the experiments when

the government funds the reform through income tax.

Similar to experiment A, the tax credit has been decreased to $500 in D-2. When reform

D-1 is funded through the labor tax, a larger tax rate drop leads to a 6.7% rise in average

working hours and the young agent experiences a welfare gain of more than double. Even

though the tax credit in D-2 is much smaller than in the experiment when the reform is

funded through income tax, we still can observe a decrease in working hours of 3.3%.

Table 2.5: Policy Experiments - payroll tax

Bench. A-1 A-2 B-1 B-2 C D-1 D-2
Insured non-elderly (in %) 84.8 100 100 89.5 84.6 100 49.1 74.7
Medicare tax (in %) 2.5 7.87 11.2 7.81 2.7 5.56 −7.77 9.3
Ave. income tax (in %) 24.6 24.7 24.5 24.1 24.6 24.2 26.2 24.6
Ave. Working hrs. 30.6 28.87 27.8 29.18 30.5 30.06 32.67 28.9
Ave. Effective Working hrs. 61.1 57.73 55.8 58.4 60.93 60.15 64.86 57.5
Health exp. (in % of GDP) 16.6 16.84 17.73 17.06 16.59 17.06 15.33 16.32
πE (in % of GDP) 10.8 4.22 4.22 10.05 10.1 9.66 12.17 10.5
Average consumption 100 97.2 95.1 97.4 99.9 98 105.9 95.8
Average health stock 46.6 46.88 46.83 46.69 46.82 47.4 46.39 46.4
CEV from transition
all young (in %) − 1.81 2.52 −1.57 1.09 −1.32 3.84 −3.5
% young w/ e0 > Yma − 5.45 4.37 −1.92 3.09 0.76 2.89 −2.87
% young w/ e0 ≤ Yma − −5.63 1.26 −0.85 0.11 −2.46 5.78 −4.8
% w/ CEV > 0 (young) − 72.6 76.7 9.59 15.07 0 75.3 0

A-1: Medicare expansion.

A-2: Medicare expansion with Medicaid.

B-1: Public health insurance expansion 1.
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B-2: Public health insurance expansion 2.

C: Individual mandate.

D-1: Abolish private insurance deductibility from income tax base.

D-2: Abolish private insurance deductibility from income tax base and provide credit

for individuals who purchase private insurance.

2.3.3.2 Changing tax rates vs. Lump-sum transfer

The analysis so far indicates that the change in taxes may play a dominant role in how the

reform affects the macroeconomy. In order to isolate the effect of tax changes, I also con-

ducted companion exercises in which the government funds the reform through a lump sum

transfer. In the companion experiments, the tax rates are kept intact as in the benchmark.

The government returns a lump sum transfer to each individual. The transfer is determined

so that the government’s budget is balanced.

The results in Table 2.6 confirm the above conjecture. The greatest labor supply effect

is observed in experiment D-1 with a 2.3% decrease in average working hours, compared

to an average 4% change when the reforms are funded through the income tax.

A-1: Medicare expansion.

A-2: Medicare expansion with Medicaid.

B-1: Public health insurance expansion 1.

B-2: Public health insurance expansion 2.

C: Individual mandate.

D-1: Abolish private insurance deductibility from income tax base.

D-2: Abolish private insurance deductibility from income tax base and provide credit

for individuals who purchase private insurance.

Health insurance reforms that can decrease the number of uninsured (as in A-1, A-2,

B-1, C, and D-2) will improve the aggregate health status even though the effect might be

small. As the insured consume more medical service, the aggregate health spending rises
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Table 2.6: Policy Experiments - Lump sum transfer

Bench. A-1 A-2 B-1 B-2 C D-1 D-2
Insured non-elderly (in %) 84.8 100 100 89.5 80.44 100 49.1 94.2
Medicare tax (in %) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Ave. income tax (in %) 24.6 25.4 25.4 24.7 25.0 24.6 25.2 25.3
Ave. Working hrs. 30.6 30.56 30.6 30.66 31.08 30.81 29.89 30.7
Ave. Effective Working hrs. 61.06 60.97 61.2 61.26 61.94 61.53 59.41 61.2
Health exp. (in % of GDP) 16.6 16.67 17.5 16.98 17.3 16.81 15.46 16.8
πE (in % of GDP) 10.1 2.11 2.11 10.1 9.7 9.66 11.18 9.64
Average consumption 100 99.3 98.6 99.8 98.9 99.6 101.2 99.6
Average health stock 46.6 46.82 46.85 46.7 46.8 46.96 46.3 46.78
CEV from transition
all young (in %) − 2.73 3.0 0.25 −2.51 −0.38 1.75 −0.14
% young w/ e0 > Yma − 5.97 4.94 −1.1 −1.44 −0.1 1.59 0.81
% young w/ e0 ≤ Yma − −3.89 −0.87 1.49 −3.04 −0.95 2.07 −2.1
% w/ CEV > 0 (young) − 72.6 76.7 10.96 0 5.48 73.97 67.12

as well. Better health encourages labor supply as labor productivity increases with health

stock. As shown in experiment C, average working hours increase by 0.7% as average

health stock increases by 0.5%. Among the reforms I considered, only experiment B-2 and

D-1 fail to decrease the number of the uninsured. Aggregate health expenditure decreases

as fewer people have insurance coverage in experiment D-1. The average health stock falls

as well. In experiment C-1, poorer health status discourages labor supply and the average

working hours decreases by 2.3%, which is substantial.

In terms of welfare, the implication is almost identical to when the government finances

the reforms with the income tax, but with a slightly different magnitude.

2.4 Conclusion

I build a micro-founded dynamic general equilibrium model to study the impact of alterna-

tive health care reform proposals on the aggregate labor supply, health expenditure, saving,

welfare, and on the fraction of adults with no health insurance. As opposed to some papers
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in the literature, I consider a model with a labor-leisure choice. This is important because

a health care reform affects the demand for medical usage, which in turn affects the indi-

vidual’s health status and labor productivity. A reform may create distortions on the labor

supply by requiring additional tax revenues to fund such reform. The magnitude of the

distortion depends on the details of the reform as well as how to fund the reforms.

As policymakers evaluate alternative approaches to reforming the health insurance sys-

tem in the U.S., they should consider several tradeoffs: the reduction in the number of

uninsured, alternative distortions of the labor market, deadweight loss and the cost of rais-

ing public funds to cover government programs. These complicated tradeoffs can only

be fully captured in a general equilibrium framework, similar to the one employed in my

analysis. My results suggest that Medicare expansion and an individual mandate are good

candidates for achieving universal health care, while a removal of the tax subsidy to pur-

chase private insurance would result in a significant reduction in the insurance market. For

all proposals studied, the aggregate health expenditure rises as the number of insured in-

creases. Funding the reform through payroll taxes does not seem promising because such

a policy can heavily distort the labor market, especially in the case of the expansion of

Medicare and providing tax credit to the insured.

Regarding quantitative implications of the reforms, I find that the impact on the ag-

gregate labor supply may vary between −9.1% and 6.8%, depending on the details of the

reforms and how they are funded. In some reforms, such as the expansion of Medicare

to the entire population and the expansion of Medicaid, cheaper insurance means a better

health risk pool, lower premiums and better health, which in turn increases labor productiv-

ity and working hours. However, some reforms require higher taxes which result in lower

working hours, for example the expansion of Medicare and an individual mandate. Quan-

titatively, I find that the expansion of Medicaid funded with income taxes results in the

smallest change in hours worked because the government only needs to collect tax revenue

to include about 5% of the non-elderly into the public insurance program. Similarly, the
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change with the strongest impact on hours worked is the removal of the tax break to pur-

chase the group insurance funded through the labor tax. This is because a larger fraction

of non-elderly (72.5%) pay a tax for the insurance premium, which is income tax free in

the benchmark. Consequently, a lower labor tax rate is needed to balance the government

budget.

In terms of welfare implications, an increase in insurance coverage does not always

improve welfare. Both Medicare expansion and individual mandate can achieve univer-

sal insurance coverage. Medicare expansion improves the aggregate welfare by offering

cheaper insurance. In contrast, an individual mandate may deteriorate welfare even though

the risk pooling becomes more inclusive and the premiums go down as agents are forced

to purchase insurance. This is because the government needs to increase other taxes so

that the newly insured can enjoy the subsidy for purchasing insurance. The removal of the

tax subsidy to purchase private insurance makes agent better off by lowering the tax rate,

which is enough to compensate the loss due to lower insurance coverage.

Since I focus on the effect of reforming the health insurance system, I chose not to

alter the health production sector along the transition. However, as the demand for medical

service changes after the reform is instituted, the supply side may be affected as well. An

interesting extension of the current paper would be to ask how medical technology and the

price of medical services are determined and how they will be affected by health insurance

reforms.
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Chapter 3

Numerical simulation of nonoptimal
dynamic equilibrium models 1

3.1 Introduction

In this paper we present a recursive method for the computation of sequential competitive

equilibria for dynamic economic models in which the welfare theorems may fail to hold

because of the presence of incomplete agents’ participation, taxes, externalities, incom-

plete financial markets, and other financial frictions. These models have become central to

analyze the effects of various macroeconomic policies, the evolution of wealth and income

distribution, and the variability of asset prices. However, computation of their equilibrium

solutions may be a formidable task. Indeed, dynamic programming arguments may fail to

apply, and a continuous Markov equilibrium may not exist. Therefore, existing numerical

techniques cannot be readily extended to non-optimal economies.

We shall address the following issues for the computation and simulation of dynamic

equilibrium solutions: (i) Existence: Lack of Markov equilibria. Even though the model

may have a recursive structure, a Markovian equilibrium may not exist – or no Markov equi-

librium may be continuous – over a natural space of state variables. We prove existence of

a Markov equilibrium over an expanded state space. (ii) Computation: Non-convergence

1joint with M. Santos: University of Miami. J. Miao: Boston University. A. Peralta-Alva: Research
Division, Federal Reserve Bank of Saint Louis.
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of the algorithm. Backward iteration over a candidate equilibrium function may not reach

a Markovian equilibrium solution. Contraction arguments underlying dynamic program-

ming methods usually break down for non-optimal economies. We prove convergence of

our algorithm to a fixed-point solution that can generate all sequential competitive equi-

libria. (iii) Approximation: Accuracy properties of the computed solution. Approximation

errors may cumulate over time. Consequently, as we refine the approximation we need to

ensure that discretized versions of the algorithm approach an exact solution. Again, con-

traction arguments cannot be invoked to guarantee good approximation properties of the

algorithm. We establish convergence of the computed solution to the set of competitive

equilibria. (iv) Simulation: Convergence of the moments from sample paths. Standard laws

of large numbers require certain regularity conditions – such as continuity of the law of

motion – that would be rather imposing for the equilibria of these economies. We present a

discretized method in which the moments from sample paths approach the set of moments

of the invariant distributions of the model.

In dynamic competitive-markets economies with frictions the existence of Markovian

equilibria has been well established under certain monotonicity properties on the equilib-

rium dynamics [e.g., see Bizer and Judd (1989), Coleman (1991), and Datta, Mirman and

Reffett (2002)]. But existence of Markov equilibria remains largely unexplored in many

other models in which these monotonicity conditions may not be satisfied. Regular ex-

amples of non-existence of Markovian equilibria have been found in one-sector growth

models with taxes and externalities [Santos (2002)], in exchange economies with incom-

plete financial markets [Krebs (2004) and Kubler and Schmedders (2002)], and in overlap-

ping generations (OLG) economies [Kubler and Polemarchakis (2004)]. For the canonical

one-sector growth model with taxes and externalities, monotonicity conditions follow from

fairly mild restrictions on the primitives, but monotone dynamics are much harder to ob-

tain in multi-sector models with heterogeneous agents and incomplete financial markets.

Duffie et al. (1994) dispense with such monotonicity requirements by expanding the state
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space with endogenous variables such as asset prices and individual consumptions. By a

suitable randomization of the equilibrium correspondence [Blume (1982)] they then prove

the existence of an ergodic invariant distribution for a wide class of discrete-time infinite-

horizon models with exogenous short-sale constraints on asset holdings. Building on these

methods, Kubler and Schmedders (2003) prove the existence of a Markovian equilibrium

for a class of financial economies with collateral requirements.

We extend this existence result to various types of economies. Our state space includes

agents’ shadow values of investment. This choice of the state space seems suitable for com-

putation. The set of all Markov equilibria can be characterized as the fixed-point solution of

a convergent iterative procedure. (A key factor of convergence is that our operator is acting

over candidate equilibrium sets on a compact domain.) Then, we develop a computable

version of the theoretical algorithm. This numerical algorithm is shown to approximate the

original fixed-point solution. Moreover, the moments derived from simulated paths of the

computed solution converge to a set of moments of the invariant distributions of the model.

We apply our methods to two growth economies, a stochastic OLG economy with money,

and an asset pricing model with incomplete financial markets and heterogeneous agents.

We illustrate the applicability of our algorithm by comparing our numerical solution with

those generated from some other standard methods. These other methods may display low

accuracy properties, fail to converge to the equlibrium solutions, or capture only one of the

possible existing equilibria.

The computation of competitive equilibria for non-optimal economies has been of con-

siderable interest in macroeconomics and finance [e.g., Castaneda, Diaz-Gimenez and

Rios-Rull (2003), Krusell and Smith (1998), Heaton and Lucas (1996), Marcet and Sin-

gleton (1999), and Rios-Rull (1999)], but most of this literature does not deal with the

problem of existence of a Markovian equilibrium. Kubler and Schmedders (2003) refine

the analysis of Duffie et al. (1994) and develop a reliable computational algorithm over an

expanded state space. But in the implementation of this algorithm they iterate over contin-
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uous equilibrium functions, and such iteration process does not guarantee convergence to a

fixed-point solution. Also, their state space includes additional variables which seem hard

to compute, and so their algorithm may not be computationally efficient.

The idea of enlarging the state space with the shadow values of investment was first

suggested by Kydland and Prescott (1980) in their seminal study of time inconsistency.

Abreu, Pierce and Stacchetti (APS, 1990) use a similar approach for the computation of

sequential perfect equilibria in which they expand the state space with continuation util-

ity values. The analyses of Kydland and Prescott and APS have been extended in several

directions involving strategic decisions [e.g., Atkenson (1991), Chang (1998), Judd, Yel-

tekin and Conklin (2003), Marcet and Marimon (1998) and Phelan and Stacchetti (2001)],

but none of these papers are concerned with the computation of sequential equilibria for

competitive-market economies with heterogeneous agents. To the best of our knowledge,

the only related paper is Miao (2006) who sets forth a recursive solution method for the

model of Krusell and Smith (1998). However, as in the original APS approach Miao’s

state space includes expected continuation utilities over the set of sequential competitive

equilibria, and this choice of the state space does not seem operative for the computation

of equilibrium solutions in the present framework.

Finally, for nonoptimal economies convergence properties of numerical algorithms and

convergence of the simulated moments remain largely unexplored. As already discussed,

Duffie et al. (1994) show existence of an ergodic distribution (which validates a law of

large numbers for these economies). This result is not practical for computational purposes

as it is usually hard to locate the ergodic set. In the absence of continuity of the equilibrium

law of motion, other ways to validate laws of large numbers for these economies would be

to resort to monotonicty assumptions on the equilibrium dynamics [Santos (2008)] or to

artificial expansions of the noise space [Blume (1979)]. These latter approaches seem less

attractive for these economies.

We proceed as follows. In Section 2 we present our general framework and lay out our
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theoretical algorithm. Section 3 studies the numerical implementation of our algorithm and

its convergence properties. Sections 4-6 explore the existence and computation of recursive

equilibria for various families of models. We conclude in Section 7.

3.2 General Theory

In this section, we first set out a general analytic framework that encompasses various

competitive equilibrium models. We then present our numerical approach and main results

on existence and global convergence to the Markovian equilibrium correspondence.

3.2.1 The Analytical Framework

Time is discrete, t = 0,1,2, · · · . The state of the economy includes a state vector of en-

dogenous variables x and vector of exogenous shocks z. Vector x belongs to a compact

domain X and contains all predetermined variables, such as agents’ holdings of physical

capital, human capital, and financial assets. The exogenous state vector follows a Markov

chain (zt)t≥0 over a finite set Z. This Markovian process is described by positive transition

probabilities π (z′|z) for all z,z′ ∈ Z. The initial state, z0 ∈ Z, is known to all agents in the

economy. Then zt = (z1,z2, ...,zt) ∈ Zt is a history of shocks, often called a date-event or

node. Let y denote the vector of all other endogenous variables. These variables could be

equilibrium prices or choice variables such as consumption and investment.

In all our models the dynamics of the state vector x is conformed by a system of non-

linear equations:

ϕ (xt+1,xt ,yt ,zt) = 0. (3.1)

Function ϕ incorporates technological constraints as well as individual budget constraints.

For some models, such as those analyzed in Section 4, function ϕ is known and we can

explicitly solve for xt+1 as a function of (xt ,yt ,zt) . In other applications such as in various

models with adjustment costs, vector xt+1 may not admit an analytical representation.
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Let m denote a vector of shadow values of the marginal investment return for all assets

and all agents. This vector lies in a compact space M, and it will be a function of existing

variables such as prices, rates of interest, and marginal utilities and productivities:

mt = h(xt ,yt ,zt) . (3.2)

Let us assume that a sequential competitive equilibrium exists and can be represented by a

sequence (xt(zt),yt(zt))∞t=0 satisfying (3.1), (3.2) and the additional sytem of equations

Φ(xt ,yt ,zt ,Et [mt+1]) = 0, (3.3)

where E [m] is the expectations operator. Function Φ may describe individual optimality

conditions (such as Euler equations), market-clearing conditions, various types of budget

restrictions, and resource constraints. We assume that equations (3.1)-(3.3) fully character-

ize any sequential competitive equilibrium, and that ϕ,h, and Φ are continuous functions.

3.2.2 Recursive Equilibrium Theory

In order to compute the set of equilibria for the model economy we define the equilibrium

correspondence V ∗ (x,z) containing all the equilibrium vectors m for any given state (x,z) .

From this correspondence V ∗ we can generate recursively the set of sequential competitive

equilibria as V ∗ is the fixed point of an operator B : V 	−→ B(V ) that links state variables to

future equilibrium states. Operator B embodies all equilibrium conditions such as agents’

optimization and market-clearing conditions from any initial node z to all immediate suc-

cessor states z+. This operator is analogous to the expectations correspondence defined in

Duffie et al. (1994), albeit it is defined over a smaller set of endogenous variables.

More precisely, let B(V )(x,z) be the set of all values m = h(x,y,z) satisfying the follow-

ing temporary equilibrium conditions: For given x,z there exist y and m+ (z+) ∈V (x+,z+)

with z+ ∈ Z such that
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Φ(x,y,z, ∑
z+∈Z

π (z+|z)m+ (z+)) = 0,

and

ϕ (x+,x,y,z) = 0. (3.4)

Note that operator B is well defined as a sequential competitive equilibrium is assumed

to exist. Also, B is monotone in the sense that if V ⊂V ′ then B(V ) ⊂ B(V ′).2 Moreover, if

V has a closed graph then B(V ) also has a closed graph since the above functions ϕ,h,Φ

are all assumed to be continuous. Indeed, in all our models below operator B satisfies the

following

Assumption 3.2.1 Operator B preserves compactnes in the sense that if V is compact val-

ued, then B(V ) is also compact valued.

Using this assumption we can show existence of a fixed-point solution V ∗ which is

globally convergent for every initial guess V0 ⊃V ∗. Convergence, should be understood as

pointwise convergence3 in the Hausdorff metric [e.g., see Hildenbrand (1974)]. If V ∗ is a

continuous correspondence then convergence will be uniform over all points (x,z).

Theorem 3.2.1 (convergence) Let V0 be a compact-valued correspondence such that V0 ⊃
V ∗. Let Vn = B(Vn−1) ,n ≥ 1. Then, Vn → V ∗ as n → ∞. Moreover, V ∗ is the largest fixed

point of the operator B, i.e., if V = B(V ), then V ⊂V ∗

Theorem 3.2.1 provides the theoretical foundations of our algorithm. The iterative pro-

cess starts as follows: For all (x,z) , pick a sufficiently large compact set V0 (x,z)⊃V ∗ (x,z) .

Then apply operator B to V0 and iterate until a desirable level of convergence is attained.

This is possible since limn→∞Vn equals the equilibrium correspondence V ∗. An important

2For correspondences V,V ′ we say that V ⊂V ′ if V (x,z) ⊂V ′ (x,z) for all (x,z).
3Later, we will establish uniform convergence of the simulated moments even though the equilibrium

correspondence V ∗ is only upper semicontinuous.
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advantage of our approach is that if there are multiple equilibria, we can find all of them.

Finally, under assumption 2.1 by the measurable selection theorem [Hildenbrand (1974)]

it follows that from operator B we can select a measurable policy function y = gy(x,z,m),

and a transition function m+ (z+) = gm(x,z,m;z+), for all z+ ∈ Z. These functions give a

Markovian characterization of a dynamic equilibrium in the enlarged state space.

Note that the equilibrium shadow value correspondence V ∗ may not be single-valued;

hence, there could be multiple equilibrium selections in which none of them is continuous.

Moroever, there may not be an equilibrium function y = g(x,z) , and hence a simple re-

cursive equilibrium may not exist.4 Kubler and Schmedders (2002) construct an example

economy with multiple equilibria. They show that the model does not admit a recursive

solution g(x,z):

Φ(x,g(x,z) ,z, ∑
z+∈Z

π (z+|z)h( f (x,g(x,z) ,z) ,g( f (x,g(x,z)) ,z+)) = 0. (3.5)

where x+ = f (x,y,z). Kubler and Schmedders (2003) propose a computation procedure to

recover such Markov equilibria numerically by a related expansion of the state space. But

their computational algorithm relies on the assumption that the policy correspondence is

a continuous function. Their algorithm may fail if there are multiple equilibria or if the

policy function is not continuous. Our approach overcomes this problem as we illustrate

by the various examples in the coming sections.

3.3 Numerical Implementation

Numerical implementation of our theoretical results requires the construction of a com-

putable algorithm that approximates the fixed point of operator B. In this section we de-

velop and study properties of such an algorithm.

4Of course, if the competitive equilibrium is always unique then there is a continuous function y = g(x,z).
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We first partition the state space into a finite set of simplices
{

X j
}

with non-empty

interior and maximum diameter h. Over this partition we define a family of step correspon-

dences which take constant values over each X j. To obtain a computer representation of a

step correspondence we resort to an outer approximation in which each set-value is defined

by N elements. Using these two simplifications we get a discretized version of operator B,

which we denote by Bh,N . By a suitable selection of an initial condition V0, the sequence

{V h,N
n+1} defined recursively as V h,N

n+1 = Bh,NV h,N
n converges to a limit point V ∗,h,N contain-

ing the equilibrium correspondence V ∗. Moreover, the sequence of fixed points {V ∗,h,N}
approaches the equilibrium correspondence V ∗ as the accuracy of the discretizations goes

to the limit. It should be understood that convergence is uniform in economies where the

equilibrium corespondence is continuous. At a later stage, we address the issue of conver-

gence of the moments obtained from simulations of our numerical approximations. This

problem has been hardly addressed in the literature, and again it has to cope with the fact

that the equilibrium correspondence may not be continuous.

3.3.1 The Numerical Algorithm

Let
{

X j
}

be a finite family of simplices with non-empty interior such that ∪ jX j = X and

int(X j)∩ int(Xi) is empty for every pair Xi,X j. Define the mesh size h of this discretization

as

h = max
j

diam
{

X j} .

Consider a correspondence V : X ×Z → 2M that takes values in space M. Then, its step

approximation V h over the partion
{

X j
}

takes constant set-values V h(x,z) on each simplex

X j and is conformed by the union of sets V (x,z) for x ∈ X j for given z. That is, for each z

V h(x,z) = ∪x∈X jV (x,z). (3.6)

Accordingly, we can define operator Bh that takes a correspondence V into the step corre-
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spondence [B(V )]h. By similar arguments as above, we can prove that Bh has a fixed point

solution V ∗h. Moreover, we shall soon clarify the sense in which the correspondence V ∗h

constitutes an approximation to V ∗.

As already mentioned, to obtain a computer representation of the step correspondence

we also perform a discretization on the image space. We say that C N (V (x,z)) ⊇ V (x,z)

is an N-element outer approximation of V (x,z) if C N (V (x,z)) can be generated by N ele-

ments. In what follows we assume that this approximation satisfies a strong uniform con-

vergence property.5 Namely, for any ε > 0 there is 0 < N∗ <∞ such that d[C N (V (x,z)) ,V (x,z)]≤
ε for all N > N∗, and all V (x,z). For instance, this later property can be satisfied if the outer

approximation is generated by convex combinations of N points as M is a compact set.

We are now ready to put forward a computable version of operator B. That is, we

can define a new operator Bh,N that sends a correspondence V to the step correspondence

[B(V )]h and then each set-value is adjusted with the N-element outer approximation so as

to get C N
(
[B(V )]h

)
. Sections 4 to 6 illustrate examples of this type of operators, and their

application in different dynamic models. Let us first show that our discretized operator has

good convergence properties: The fixed point of this operator V ∗,h,N contains the equilib-

rium correspondence V ∗ and it approaches V ∗ as we refine the discretizations. The proof

of this result extends the convergence arguments of Beer (1980) to a dynamic setting.

Theorem 3.3.1 Suppose that V0 ⊇ V ∗ is an upper-semicontinuous correspondence. Con-

sider the recursive sequence defined by V h,N
n+1 = Bh,NV h,N

n for given h and N and with

initial condition V0. Then: (i) V h,N
n ⊇V ∗ for all n; (ii) V h,N

n →V ∗,h,N uniformly as n →∞;

and (iii) V∗,h,N →V ∗ as h → 0 and N → ∞.

The output of our numerical algorithm is summarized by the equilibrium correspon-

dence V h,N
n from operator Bh,N . By Theorem 3.3.1, we have that graph[C N

(
[B(V h,N

n )]h
)
]

can be made arbitrarily close to graph[B(V∗)] for appropriate choices of n, h, and N. As

5Again, convergence should be understood in the Hausdorff metric d (see opt. cit.).
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graph[C N
(
[B(V h,N

n )]h
)
] is compact, by the measurable selection theorem [Hildenbrand

(1974)] we can choose an approximate equilibrium selection y = gy,h,N
n (x,z,m), and a tran-

sition function m+ (z+) = gm,h,N
n (x,z,m;z+). From these approximate equilibrium functions

we can generate simulated paths (xt(zt),yt(zt))∞t=0 .

3.3.2 Convergence of the Simulated Moments

To assess model’s predictions, analysts usually calculate moments of the simulated paths

(xt(zt),yt(zt))∞t=0 from a numerical approximation. The idea is that the simulated moments

should approach steady-state moments of the true model. Under continuity of the policy

function, Santos and Peralta-Alva (2005) establish various convergence properties of the

simulated moments. They also provide examples of non-existence of stochastic steady-state

solutions for non-continuous functions, and lack of convergence of emprirical distributions

to some invariant distribution of the model. Hence, it is not clear how economies with

distortions should be simulated, since for these economies the continuity of the policy

function does not usually follow from standard economic assumptions.

We now outline a reliable simulation procedure that circumvents the lack of continuity

of the equilibrium law of motion. We append two further steps to the standard model

simulation. First, we discretize the image space of the approximate equilibrium selection

so that this function can take on a finite number of points. Then, the simulated moments are

generated by a finite Markov chain that has an invariant distribution, and every empirical

distribution from the simulated paths converges almost surely to some ergodic invariant

distribution of the Markov chain. Second, following Blume (1982) and Duffie et al. (1994)

we randomize over continuation values of operator B. We construct a new operator Bcv that

is a convex-valued correspondence in the space of probability measures. It follows then that

there is an invariant distribution μ∗ ∈ Bcv(μ∗). Moreover, as we refine the approximations

the simulated moments from our numerical approximations are shown to converge to the

moments of some invariant distribution μ∗.
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(i) Discretization o f the equilibrium law o f motion: In order to make the analysis

more transparent, let S = X ×M. Let χh,N
n : S×Z → S×Z be a selection from

graph[C N
(
[B(V h,N

n )]h
)
]. Note that function χh,N

n is simply defined from the above func-

tions y = gy,h,N
n (x,z,m), and m+ (z+) = gm,h,N

n (x,z,m;z+) and the law of motion for state

variable x as given by equation (1). Then, χh,N
n gives rise to a time-homogeneous Markov

process (s,z) → s+(z+) for s = (x,m) and all z+ ∈ Z. Now, let Aγ be a set with a finite

number of points in S such that d(Aγ ,S) < γ so that each point in S is within a γ-ball of

some point in A. Let χh,N,Aγ
n (s,z) = argmins+∈Aγd(s+,χh,N

n (s,z)). If there are various solu-

tion points s+ we just pick arbitrarily one solution s+. Hence, the new discretized function

χh,N,Aγ
n takes values in the finite set Aγ×Z, and gives rise to a Markov chain that has an in-

variant distribution ν∗,h,N,Aγ
n . Further, the moments of a simulated path (st ,zt)∞t=0 converge

almost surely to those of some ergodic invariant distribution ν∗,h,N,Aγ
n [e.g., see Stokey,

Lucas and Prescott (1989), Ch. 11].

(ii) Randomization over continuation equilibrium sequences: We can view operator

B : V ∗ → V ∗ as a correspondence in the space of probability measures μ on S×Z. That

is, ν ∈ B(μ) if there is a selection χ of B such that ν = χ · μ , where χ · μ denotes the

action of function χ on probability measure μ [e.g., see Stokey, Lucas and Prescott (1989)].

Following Blume (1982) and Duffie et al. (1994) we convexify the image of B. Thus, if

ν and ν ′ are two probability measures that belong to the range of B we assume that every

convex combination λν+(1−λ )ν ′ also belongs to the range of B. We let Bcv denote the

convexification6 of operator B over the space of probability measures μ on S× Z. The

new operator Bcv is a convex-valued, upper semicontinuous correspondence. Since S×Z is

assumed to be compact, the set of probability measures μ on S×Z is also compact in the

weak topology of measures. Therefore, operator Bcv has a fixed point solution; i.e., there

exists an invariant probability, μ∗ ∈ Bcv(μ∗).
6Duffie et al. (1994) argue that such convexification amounts to a weak form of sunspot equilibria since

the randomization proceeds over equilibrium distributions rather than over an external parameter or extrane-
ous sunspot variable.
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(iii) Convergence o f the simulated moments to population moments o f the model:

For given function χh,N,Aγ
n and a randomly selected sequence (zt)∞t=0, we generate an ap-

proximate equilibrium path (st)∞t=0. Let f : S×Z → R+ be a function of interest. Then,

1
T ∑

T
t=0 f (st,zt) represents a simulated moment or some other statistic. Since χh,N,Aγ

n de-

fines a Markov chain, it follows that (st ,zt)∞t=0 must enter an ergodic set in finite time.

Therefore, 1
T ∑

T
t=0 f (st ,zt) must converge almost surely to

∫
f (s,z)dν∗,h,N,Aγ

n as T → ∞for

some ergodic invariant distribution ν∗,h,N,Aγ
n . We now link convergence of invariant distri-

butions ν∗,h,N,Aγ
n of numerical approximations to some invariant distribution of the original

model μ∗so that the simulated statistics converge almost surely to those of some invariant

distribution μ∗.

Theorem 3.3.2 Let
(
ν∗,h,N,Aγ

n

)
be a sequence of invariant distributions corresponding to

functions
(
χh,N,Aγ

n

)
. Then, every limit point of

(
ν∗,h,N,Aγ

n

)
converges weakly to some in-

variant distribution μ∗ ∈ Bcv(μ∗).

To summarize our work in this section, convergence of the simulated moments involves

discrete approximations over the following margins:

1. Discretization o f the domain: h mesh size of the family of simplices {X j}.

2. Discretization o f the image: N number of elements in every outer approximation.

3. Finite iterations: n number of iterations over operator Bh,N .

4. Finite Markov chain: γ maximum distance of every point in S to some point in set

Aγ .

5. Finite simulations: T lenght of a simulated path (st ,zt)t≥0 .

6. Convexi f ication o f equilibrium distributions: Bcv regularized operator in the space

of distributions with a convex image.
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Thus, for every ε > 0 we can make the aforementioned parameters sufficiently close to

their respective limits so that for a given path (st ,zt)
∞
t=0 generated under function χh,N,Aγ

n ,

there are invariant distributions μ∗,μ ′∗ of Bcv such that
∫

f (s,z)dμ∗+ε ≤ 1
T ∑

T
t=0 f (st ,zt)≤∫

f (s,z)dμ ′∗ − ε almost surely. Therefore, for a sufficiently fine approximation the mo-

ments from simulated paths are close to the set of moments of the invariant distributions of

the model. Of course, if Bcv has a unique invariant distribution μ∗ then μ ′∗ = μ∗ and the

above expression reads as
∫

f (s,z)dμ∗ + ε ≤ 1
T ∑

T
t=0 f (st,zt) ≤

∫
f (s,z)dμ∗ − ε.

3.4 Non-Optimal Growth Models

In this section we present a standard stochastic growth model with taxes, heterogeneous

agents, and incomplete markets. This framework comprises several macroeconomic mod-

els that are often simulated by numerical methods. We illustrate the applicability of our

algorithm with two simple specifications of the model, and contrast its performance against

standard numerical methods. In the first application, we study a representative-agent de-

terministic economy with capital income taxes. We show that a continuous Markov equi-

librium may not exist; moreover, standard computation methods would usually fail to con-

verge or yield inaccurate solutions. In the second application, we consider a stochastic

economy with heterogeneous agents. For our simple parameterization, the competitive

equilibrium is unique, and hence there is a continuous Markovian solution. We compare the

solution of our accurate algorithm against a simplified algorithm that uses an approximate

aggregation strategy. We show that this latter algorithm yields a rather poor approximation

of the equilibrium correspondence and simulated statistics are strongly biased. Therefore,

the first numerical experiment alerts us of the dangers of using continuous approximations

when the true solution may not be continuous, and the second numerical experiment alerts

us of the dangers of using heuristic simplifications as they may introduce large errors in the

equilibrium law of motion.
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3.4.1 Economic Environment

The economy is populated by a finite number of agents, I, who live forever. The vector

of shocks z affects the overall productivity level, as well as individual income and prefer-

ences. Capital is the only asset in this economy, and hence financial markets are technically

incomplete.

Each agent i has preferences represented by the intertemporal objective

E

[
∞

∑
t=0

(
β i)t

ui (ci
t ,zt

)]
, (3.7)

where β ∈ (0,1) is the discount factor, and ct is consumption of the aggregate good at

a given node zt . Function u(·,zt) is increasing, strictly concave, and twice continuously

differentiable.

Stochastic consumption plans
(
ci

t

)
t≥0 are financed from after-tax capital returns, wages,

profits, and commodity endowments. These values are expressed in terms of the single

good, which is taken as the numeraire commodity of the system at each date-event. For a

given rental rate rt and wage wt household i offers ki
t ≥ 0 units of capital to the production

sector, and supplies inelastically li
t(zt) ≥ 0 units of labor. For simplicity, we abstract from

leisure considerations.

Each household i is subject to the following sequence of budget constraints

ki
t+1

(
zt)+ ci

t

(
zt) = (1−δ )ki

t

(
zt−1)+(1− τk(K))rt

(
zt)ki

t

(
zt−1)+ (3.8)

+wt
(
zt) li

t

(
zt)+ ei

t

(
zt)+T i

t

(
zt)+π i(zt)

ki
t+1

(
zt) ≥ 0, for all state histories zt = (z0, ...,zt), and ki

0 given.

Capital income is taxed according to function τk, which depends on the aggregate capital

stock, Kt . This tax function is assumed to be positive, continuous, and bounded away from

1. Tax revenues are rebated back to consumers as lump-sum transfers T i
t . π i

t denotes profits.
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The production sector is made up of a continuum of identical units that have access to a

constant returns to scale technology in individual factors. Hence, without loss of generality

we shall focus on the problem of a representative firm. After observing the current shock

vector z the firm hires K units of capital and L units of labor. The total quantity produced

of the single aggregate good is given by a production function AtF (Kt ,Lt), where At is the

firm’s total factor productivity and F (Kt ,Lt) is the direct contribution of the firm’s inputs

to the production of the aggregate good. Hence, at each date event zt , the representative

firm seeks to maximize one-period profits by an optimal choice of factors (K,L),

πt = maxAtF (Kt ,Lt)− rtKt −wtLt . (3.9)

We shall maintain the following standard conditions on function F:

Assumption 3.4.1 F : R+ ×R+ → R+ is increasing, concave, continuous and linearly

homogeneous. This function is continuously differentiable at each interior point (K,L);

moreover, limK→∞D1F (K,L) = 0 for each given L > 0.

3.4.2 Sequential and Recursive Competitive Equilibrium

The present model contemplates several deviations from a frictionless world and so a com-

petitive equilibrium cannot usually be recast as the solution to an optimal planning pro-

gram. The model includes individual uninsurable shocks to preferences and labor, capital

income taxes, and an aggregate shock to production. Households can hold capital to trans-

fer wealth, but they may be unable to smooth out consumption since there is only one single

asset and capital holdings must be non-negative.

Definition 3.4.1 A sequential competitive equilibrium (SCE) is a tax function τk(K), and

a collection of vectors
({

ci
t(z

t),ki
t+1(z

t)
}

i ,Kt(zt),Lt(zt),wt(zt),rt(zt)
)

t≥0
that satisfy

(i) Constrained utility maximization: For each household i, the sequence
(
ci

t ,k
i
t+1

)
t≥0

maximizes the objective (3.7) subject to the sequence of budget constraints (3.8).
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(ii) Profit maximization: For each zt , vector (Kt(zt),Lt(zt)) maximizes profits (3.9).

(iii) Market clearing: For each zt and its predecessor node zt−1,

Kt
(
zt)+

I

∑
i=1

ci
t

(
zt)= AtF

(
Kt
(
zt) ,Lt

(
zt))+(1−δ )Kt

(
zt)+

I

∑
i=1

ei
t

(
zt) ,

I

∑
i=1

ki
t

(
zt−1)= Kt

(
zt) and

I

∑
i=1

li (zt) = Lt
(
zt) .

Note that the equilibrium quantities (Kt(zt),Lt(zt))t≥0 may be inferred from households’

aggregate supply of these factors. Hence, we may refer to a SCE as simply a sequence of

vectors
({

ci
t(z

t),ki
t+1(z

t)
}

i ,rt(zt),wt(zt)
)

t≥0
. There does not seem to be a general proof

of existence of competitive equilibria for infinite-horizon economies with distortions. We

are aware of a related contribution by Jones and Manuelli (1999), but their analysis is

not directly applicable to models with incomplete markets or externalities. Hence, in the

Appendix we outline a proof of the following result.

Proposition 3.4.2 A SCE exists.

For computational purposes we need to bound the equilibrium values of the key vari-

ables of the model. In the Appendix below we show that there are positive constants Kmax

and Kmin such that for every equilibrium sequence of physical capital vectors
(
ki

t+1(z
t))
)

t≥0

if Kmax ≥ ∑I
i=1 ki

0(z
0) ≥ Kmin then Kmax ≥ ∑I

i=1 ki
t+1(z

t) ≥ Kmin for all zt . Moreover,

Kmin > 0 if limK→0 D1F (K,L) =∞ for some positive L. Hence, in what follows the domain

of aggregate capital will be restricted to the interval [Kmin,Kmax], and it should be under-

stood that Kmin = 0 only if limK→0 D1F (K,L) is bounded for all given L > 0. This implies

that every equilibrium sequence of factor prices (rt(zt),wt(zt))t≥0 is bounded.

We also need to bound the equilibrium shadow values of investment. To accomplish this

task, we define an auxiliary value function of an individual sequential optimization prob-

lem. For a given sequence of factor prices and aggregate capital (r0(z0),w0(z0),K(z0))

= (rt(zt),wt(zt),Kt (zt))t≥0, let
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Ji(ki
0,z0,r0(z0),w0(z0),K(z0)) = maxE

∞

∑
t=0

β tui(ct(zt),zt)

s.t.

ki
t+1

(
zt)+ ci

t

(
zt)= (1−δ )ki

t

(
zt−1)+

(1− τk(Kt
(
zt)))rt

(
zt)ki

t

(
zt−1)+

+wt
(
zt) li

t + ei
t +T i

t

(
zt)+π i

t ,

ki
t+1

(
zt)≥ 0,ki

0 given.

For every bounded sequence (r0(z0),w0(z0),K(z0)) = (rt(zt),wt(zt),Kt (zt))t≥0, the value

function Ji(ki
0,z0,r0(z0),w0(z0),K(z0)) is well defined, and continuous. Moreover, map-

ping

Ji(·,z0,r0(z0),w0(z0),K(z0)) is increasing, concave, and differentiable with respect to the

initial condition ki
0. Further, the partial derivative D1Ji(ki

0,z0,r0(z0),w0(z0),K(z0)) varies

continuously with (ki
0,r0(z0),w0(z0),K(z0)) [cf. Rincon-Zapatero and Santos (2009)].

The next result readily follows from these regularity properties of the value function.

Proposition 3.4.3 For all SCE
({

ci
t(z

t),ki
t+1(z

t)
}

i ,rt(zt),wt(zt)
)

t≥0
with Kmax ≥∑I

i=1 ki
0(z

0)≥
Kmin, there is a constant γ such that 0 ≤ D1Ji(ki

0,z0,r0(z0),w0(z0),K(z0)) ≤ γ for all zt .

Observe that these bounds apply to the following types of utility functions: (i) Both

function u(·,z) and its derivative are bounded, (ii) function u(·,z) is bounded, and its

derivative function is unbounded, and (iii) both function u(·,z) and its derivative are un-

bounded. Phelan and Stacchetti (2001) deal with case (i) and Krebs (2004) and Kubler and

Schmedders (2003) consider utility functions of type (iii). We provide a uniform method

of proof that covers all the three cases, as well as production functions with bounded and

unbounded derivatives. As a matter of fact, Proposition 3.4.3 fills an important gap in the

literature, since no general results are available on upper and lower bounds for factor prices
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and marginal utilities for production economies with heterogeneous consumers and market

frictions.

For any initial distribution of capital k0 and a given shock z0, we define the Markov

equilibrium correspondence V ∗ : K×Z → RI
+ as

V ∗ (k0,z0) =

⎧⎪⎨
⎪⎩
(· · · ,D1Ji(ki

0,z0,r0(z0),w0(z0),K(z0)), · · ·
)

:({
ci

t(z
t),ki

t+1(z
t)
}

i ,rt ,wt
)

t≥0
is a SCE

⎫⎪⎬
⎪⎭ , (3.10)

where K = {k : Kmax ≥ ∑I
i=1 ki ≥ Kmin}. Hence, the set V ∗ (k0,z0) contains all current

equilibrium shadow values of investment m0 =
(· · · ,mi

0, · · ·
)
, for every household i.

Corollary 3.4.4 Correspondence V ∗ is nonempty, compact-valued, and upper semicontin-

uous.

This corollary is a straightforward consequence of Propositions 3.4.2 and 3.4.3. Note

that by the envelope theorem we must have D1Ji(ki
0,z0,r0(z0),w0(z0),K(z0)) ≥ (1−δ +

(1−τk)r0(z0))D1ui(ci
0,z0), with equality when c0

i > 0. Moreover, Proposition 3.4.3 implies

0≤D1Ji(ki
0,z0,r0(z0),w0(z0),K(z0)) ≤ γ , and so ci

0 = 0 is only possible if the derivative

of the utility function ui is bounded at ci
0 = 0.

The second key element of our analysis is operator B which is defined as follows.

For any given correspondence V : K × Z → RI
+ let B(V )(k,z) be the set of values m =

(· · · ,mi, · · ·), with 0 ≤mi ≤ γ for all i, such that there is some vector (c,k+,r,w,m+,λ ,ζ )∈
RI

+×RI
+×R+×R+×(RI

+
)N ×RI

+×RI
+, with m+ (z+) ∈V (k+,z+) for all z+ ∈ Z that sat-

isfies all individual and aggregate temporary equilibrium conditions.

3.4.3 Numerical example 1: A model with capital income taxes

Let us first consider a deterministic version of the above model with a representative agent

and capital income taxes. To further simplify our analysis, assume that capital is the only
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production factor with full depreciation δ = 1, and the utility function is logarithmic. The

production function and discount rate are given by

f (k) = k1/3, β = 0.95. (3.11)

Assume that there is a piecewise linear, tax schedule given by

τ(K) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.10 if K ≤ 0.160002

0.05−10(K−0.165002) if 0.160002 ≤ K ≤ 0.170002

0 if K ≥ 0.170002.

(3.12)

Then, a continuous Markov equilibrium fails to exist [cf. Santos (2002, Prop. 3.4)].

However, it follows from the foregoing analysis that a recursive equilibrium in an ade-

quately expanded state space does exist.

Implementation of our algorithm

Following the notation of our general theoretical framework, we can write:

ϕ(kt+1,ct) = f (kt)− ct − kt+1, and (3.13)

mt = h(kt,ct) =
rt (1− τk(Kt))

ct
=

1
3k−2/3

t (1− τ(kt))
ct

. (3.14)

Similarly, aggregate feasibility and the intertemporal optimality conditions for the house-

hold can be summarized by the Euler equation

Φ(kt ,ct ,mt+1) =
1
ct
−βmt+1. (3.15)

The, let B(V )(kt) be the set of values mt such that there is (ct ,kt+1) and mt+1 ∈ V (kt+1)

satisfying the temporary equilibrium conditions (3.13- 3.15).

For the numerical implementation of our algorithm we exploit the low dimensional-
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ity of the state space and compactness of the equilibrium correspondence. Specifically,

notice that for each given kt the shadow values of investment, m(kt), lie in a compact in-

terval [m(kt) ,m(kt)]. Hence, our numerical algorithm starts by approximating the upper

and lower bound functions m(kt) and m(kt) using step functions. Notice, however, that

these functions may be discontinuous. Hence, the standard strategy of approximating these

functions only at the vertex points of the triangulation may not work. In our case it is

necessary to obtain bounds for all values within each of the simplices. Some technical de-

tails are relegated to Appendix B. Here, we just illustrate some properties of our numerical

approximation.

Figure 3.1 presents our initial guess (left panel), V h,N
0 , and the correspondence defined

by the area (right panel) between the upper and lower approximated functions m(kt) and

m(kt) . A useful feature of this example is that the backward shooting algorithm can be

used to obtain highly accurate solutions. (Of course, for stochastic versions the shooting

method no longer works.) The dots in the Figure below represent an approximate solution

derived via backward shooting.

Since the limiting correspondence is not single valued near the middle steady state, our

method is signaling the possibility of a multiple valued equilibrium correspondence. The

resulting policy correspondence is illustrated in Figure 3.2 below together with the solution

obtained via the shooting method.

In this specific example both our method and the shooting algorithm yield highly ac-

curate solutions. However, we remark that shooting cannot be used for stochastic models

whereas our algorithm will be use below in several examples with uncertainty.

Comparing with other computational algorithms

A standard practice in quantitative analysis is to assume that a continuous policy func-

tion exists. Hence, let

k1 = g(k,ξ ),
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Figure 3.1: Initial (left grey area) and limiting correspondence (right grey area) vs solution
obtained via the backward shooting method (black dots)
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Figure 3.2: Equilibrium correspondence computed with our method vs the backwards
shooting method
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where g is a continuous approximation defined by a finite vector of parameters ξ . We

obtain an estimate for ξ by forming an Euler equation system over as many points as the

dimensionality of the parameter space

u′(ki,g(ki,ξ )) = βu′(g(ki,ξ ),g(g(ki,ξ ),ξ )) · [ f ′(g(ki,ξ ))(1− τ(g(ki,ξ )))+(1−δ )
]
.

The choice of the grid points, ki, for the Euler equation may be dependent on the functional

approximations for the policy function (e.g. Chebyshev polynomials could be evaluated

at the Chebyshev nodes). Here, we assume that g(k,ξ ) belongs to the class of piecewise

linear functions. First, we should note that this approximation failed to converge in several

instances. In particular, we found that vector ξ could oscillate with no discernible pattern

across different iterations. As expected, the area of the domain where the lack of con-

vergence occurred was close to the middle steady state. Figure 3.3 below displays some

representative functions from different iterations of the algorithm. Second, in some other

cases the distance between candidate policy functions was relatively small, but this does not

mean that these policies are close to the true solution. Of course, for points near the middle

steady state solution a continuous policy function will arbitrarily redirect the convergence

of initial conditions to one of the remaining two competitive steady-states solutions.

In summary, the equilibrium correspondence of this model cannot be represented by

a continuous law of motion. Traditional computational methods based on iterations of

continuous functions may either fail to converge or yield inaccurate solutions that highly

distort the dynamics of competitive equilibria.

3.4.4 Numerical example 2: A model with two agents and no taxes

We now consider a specification of the model with two agents who face idiosyncratic and

aggregate uncertainty. There are no taxes. Both agents have the same utility function,
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Figure 3.3: Different iterations of a standard solution method vs Shooting solution

ui(ci) = (ci)1−σ

1−σ , with discount factor, β 1 = β 2 = 0.95. The capital share is α = 0.34 and

depreciation rate δ = 0.06. Total factor productivity is a random variable with two possible

values: Ag = 1.0807 and Ab = 1.0593. Each agent has a random endowment of labor, li,

which can take two possible values, lb = 0 and lg = 1. These idiosyncratic shocks do not

affect the aggregate labor supply; that is, l1
t + l2

t = 1 at all date-events. Productivity and

labor endowments are assumed to be jointly driven by a Markov process with transition

matrix

Π=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.4 0.06 0.04

0.6 0.3 0.06 0.04

0.45 0.35 0.15 0.05

0.5 0.3 0.15 0.05

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, entry Πp,q is the probability of moving to state p from the current state q.7

Implementation of our algorithm

Mapping this model into the notation of our general theoretical framework is simple.

7Notice there are four possible states (Ag, lg, lb),(Ag, lb, lg),(Ab, lg, lb), and (Ab, lb, lg).
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The vector of endogenous predetermined variables is given by the capital holdings of each

agent, xt = (k1
t ,k

2
t ), while the vector of current endogenous variables contains the consump-

tion and investment choices of each agent, yt = (c1
t ,c

2
t , i

1
t , i

2
t ). Equilibrium interest rates and

wages can be explicitly written in terms of the aggregate capital Kt and unit labor supply.

Hence, capital and the shadow multipliers for investment are determined by the following

equations

ϕ(xt+1,xt ,yt ,zt) = (i1t +(1−δ )k1
t − k1

t+1, i
2
t +(1−δ )k2

t − k2
t+1), (3.16)(

m1
t ,m

2
t

)
= h(xt ,yt ,zt) = ((rt +1−δ )

(
c1

t

)−σ
,(rt +1−δ )

(
c2

t

)−σ
).(3.17)

with rt = θAtK
θ−1
t ,wt = (1−θ)AtKθ

t . Finally, intertemporal optimality and all individual

and aggregate constraints are collected in a function Φ defined as Φ(xt ,yt ,zt ,Et[mt+1]) =

((rt +1−δ )ki
t +wtl

i
t − ci

t − iit , (3.18)(
c j

t

)−σ −βEtm
j
t+1(zt+1)+λ j

t , for j = 1,2,

∑
i
(ci

t + iit)−AtK
θ
t ,

where λ i
t is the multiplier associated to the constraint ki

t+1 ≥ 0.

Our algorithm operates as follows. Let V be any given correspondence, then BV (x,z)

is the set of all values
(
m1

t ,m
2
t

)
for which one can find values c1

t ,c
2
t , i

1
t , i

2
t ,k

1
t+1,k

2
t+1, and(

m1
t+1,m

2
t+1

) ∈V (k1
t+1,k

2
t+1,zt+1) at all successors zt+1 that satisfy (3.16-3.18). Appendix

B explains further details of the operation of this algorithm that considers multiple agents.

Comparing with other computational algorithms

A commonly employed method to solve this type of models is the "approximate aggre-

gation" procedure pioneered by Krusell and Smith (1998). A key insight of this method

is that in equilibrium aggregate variables may be well approximated as functions of sim-

ple statistics. In particular, the stochastic process driving aggregate capital is assumed to be
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characterized by a finite vector of moments. Individual decisions are computed on the basis

of such expectations for aggregate variables. And a fixed point is reached if the simulated

moments from the individual decision rules match those of the law of motion for aggregate

capital.

In our baseline model, the algorithm is applied in the following way. Start with a guess

on a parameterized functional form for the first moment of aggregate capital. Then, use

value function to compute the problem of the representative household

ν(ki;K,z) = max{U(c)+βE[ν(k′i;K′,z′)|z,ε]} (3.19)

s.t. c+ ki′ = r(K,z)ki +w(K,z)ε i +(1−δ )ki

ki′ ≥ B

logKt+1 = a(z) logKt +b(z) (3.20)

The algorithm estimates coefficients (a(zg),b(zg),a(zb),b(zb)) and individual policy func-

tions in the following fashion: (i) Start with initial parameter estimates; (ii) Solve the

dynamic programming problem of each agent (3.19); (iii) Construct aggregate capital time

series by aggregating the resulting individual time series simulations; (iv) Perform a regres-

sion over the stationary region to obtain new estimates for such coefficients. This process

stops when there is no variation in the coefficient estimates and the R2 and standard error

of the aforementioned regression are sufficiently good.

An obvious advantage of “Approximate Aggregation" is computational cost. Indeed,

the algorithm can accommodate an arbitrary number of agents and idiosyncratic shocks.

Surprisingly, relatively little is known about the accuracy properties of the solutions and of

the simulated moments for this type of algorithms. In Table 3.1 below, we compare some

quantitative properties of the “Approximate Aggregation" method described above to those

of our algorithm. EEi refers to the Euler equation residuals, and Mean(ki) is the average of

simulated capital values for each agent i = 1,2.
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Table 3.1: Euler equation residuals and simulated moments of alternative solution methods

Method Mean( |EE1|) Mean( |EE2|) Mean(k1) Mean(k2)
Approx. Aggregation 1.57×10−2 2.71×10−2 2.8196 4.5210

Our Algorithm 5.14×10−4 7.58×10−4 3.0898 3.8623

Even though in this case the model always has a unique competitive equilibrium which may

be generated by a continuous policy function, we can see that our method yields higher ac-

curacy of approximation as measured by Euler equation residuals. Further, our non-linear

equilibrium approximation results in substantially different simulated statistics for indi-

vidual wealth from those of the approximate aggregation method. Indeed, approximation

errors for these simple moments are of the order of 10 percent.

3.5 A Stochastic OLG Economy

Overlapping generations (OLG) models have become central in the analysis of several

macro issues such as the funding of social security, the optimal profile of savings and

investment over the life cycle, the effects of various fiscal and monetary policies, and the

evolution of future interest rates and asset prices under current demographic trends.8

As already stressed, there are no known convergent procedures for the computation of

sequential competitive equilibria in OLG models even for frictionless economies with com-

plete financial markets. We now illustrate that our approach delivers a reliable, computable

algorithm for the solution of competitive equilibria in a general class of OLG models.

8For instance, see Champ and Freeman (2002), Conesa and Krueger (1999), Geanakoplos, Magill and
Quinzii (2003), Gourinchas and Parker (2002), Imrohoroglu, Imrohoroglu, and Joines (1995), Storelesletten,
Telmer and Yaron (2004), and Ventura (1999).
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3.5.1 Economic Environment

The economy is conformed by a sequence of overlapping generations that live for two

periods. The primitive characteristics of the economy are defined by a stationary Markov

chain. At every time period t = 0,1,2, · · · a new generation is born. Each generation is

made up of I agents, who are present in the economy for two periods. More specifically,

for a household of type i born at time t preferences are defined over consumption bundles

of the goods available at times t and t + 1, and the agent can only trade goods and assets

in these two periods. The economy starts with an initial generation who is only present

in the initial period t = 0. This generation is endowed with the aggregate supply of assets

θ0. At each node zt , there exist spot markets for the consumption good and J securities.

These securities are specified by the current vector of prices, qt(zt) = (· · · ,q j
t (zt), · · ·),

and the vectors of future dividends dr(zr) = (· · · ,d j
r (zr), · · ·) promised to deliver at future

information sets zr|zt for r > t. We assume that the vector of security prices qt(zt) is non-

negative – a condition implied by free disposal of securities – and the vector of dividends

dt(zt) is positive in all components and depends only on the current realization of the vector

of shocks zt ; hence, (dt(zt))t≥0 is a time invariant Markov chain.

For simplicity, we assume that every utility function Ui is separable over consumption

of different dates. For an agent i born in period t, let ci
y,t (z

t) denote the consumption of the

aggregate good in period t over the history of shocks zt , and let ci
o,t+1

(
zt+1|zt

)
denote the

consumption in period t +1 for every successor node zt+1|zt of zt . Then the intertemporal

objective Ui is defined as

Ui (ci
y,c

i
0;zt,zt+1)= ui (ci

y,t

(
zt) ,zt

)
+β ∑

zt+1∈Z

vi (ci
o,t+1

(
zt+1) ,zt+1

)
π
(
zt+1|zt) (3.21)

The one-period utilities ui and vi satisfy the following conditions:

Assumption 3.5.1 For each z ∈ Z the one-period utility functions vi(·,z),ui(·,z) : R+ →
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R∪{−∞} are increasing, strictly concave, and continuous. These functions are also con-

tinuously differentiable at every interior point c > 0.

Each agent i born at t = 1,2, · · · is endowed with a vector of goods ei
t = (ei

y,t ,e
i
o,t+1) and

trades an asset portfolio θ i to attain desirable amounts of consumption. The endowment

process (ei
t(zt)) = (ei

y,t(zt),ei
o,t+1(z

t+1|zt)) follows a time invariant Markov chain; hence

ei
y,t(z

t) = ei
y(zt), and ei

o,t+1(z
t+1|zt) = ei

o(zt+1) for every agent i and every t. Given prices

(qt (zt))t≥0 , a consumption-savings plan (ci
y,t (z

t) ,ci
o,t+1

(
zt+1

)
,θ i

t (zt)) must obey the fol-

lowing two-period budget constraints:

θ i
t+1

(
zt) ·qt

(
zt)+ ci

y,t

(
zt)≤ ei

y,t (zt) , for θ i
t+1

(
zt)≥ 0, (3.22)

ci
o,t+1

(
zt+1)≤ θ i

t+1

(
zt) · (qt+1

(
zt+1)+dt (zt+1)

)
+ ei

o,t+1 (zt+1) , all zt+1|zt. (3.23)

For an initial stock of securities θ i
0 each agent i at time t = 0 seeks to maximize the

total quantity of consumption ci
o,0(z0) for given endowments of the aggregate good ei

o and

the vector of securities θ i
0. More precisely,

ci
o,0 (z0) = θ i

0 · (q0 (z0)+d0 (z0))+ ei
o (z0) . (3.24)

3.5.2 Sequential and Recursive Competitive Equilibrium

In this economy the aggregate commodity endowment is bounded by a portfolio-trading

plan [Santos and Woodford (1997)], and hence asset pricing bubbles cannot exist in a SCE.

Definition 3.5.1 A SCE is a collection of vectors {
(

ci
y,t (z

t) ,ci
o,t+1

(
zt+1|zt

)
,θ i

t+1 (zt)
)I

i=1
,

qt (zt)}t≥0 such that

(i) Utility maximization: For every household i and all t, vector (ci
y,t (z

t) , ci
o,t+1

(
zt+1|zt

)
,

θ i
t+1 (zt)) maximizes the objective (3.21) subject to (3.22)-(3.23). For every household i of

the starting generation, ci
o,0 (z0) satisfies (3.24).
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(ii) Market clearing: For each zt ,

I

∑
i=1

(
ci

y,t

(
zt)+ ci

o,t

(
zt)) =

J

∑
j=1

d j
t (zt)+

I

∑
i=1

(
ei

yt (zt)+ ei
ot (zt)

)
I

∑
i=1

θ ji
t+1

(
zt) = 1, j = 1, · · · ,J.

Note that to circumvent technical issues concerning existence of a SCE, we still main-

tain the short-sale constraint θt ≥ 0 for all t. Then, the existence of a SCE can be established

by standard methods [e.g., Balasko and Shell (1980), and Schmachtenberg (1988)]. More-

over, by similar arguments used by these authors it is easy to show that every sequence of

equilibrium asset prices (qt (zt))t≥0 is bounded.

Then, we define the Markov equilibrium correspondence V ∗ : θ ×Z → RJI
++ as

V ∗ (θ0,z0) =
{(

...
(

q j
0 (z0)+d j

0 (z0)
)

D1vi (ci
0 (z0) ,z0

)
...
)

: (cy,co,θ ,q) is a SCE
}

.

From the above results on existence of SCE for OLG economies we obtain

Proposition 3.5.2 Correspondence V ∗ is nonempty, compact-valued, and upper semicon-

tinuous.

3.5.3 Numerical Example: A monetary model

We consider a simplified version of the OLG model with money of Benhabib and Day

(1982) and Grandmont (1985). This simple model is useful because it can be solved with

arbitrary accuracy. Hence, it is possible to compare the true solution of the model with

other numerical approximations. Extensions to a stochastic environment are easy to handle

by our algorithm, but may become problematic when using other algorithms.

Each individual receives an endowment e1 of the perishable good when young and e2

when old. There is a single asset, money, that pays zero dividends at each given period.
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The initial old agent is endowed with the existing money supply M. Let Pt be the price level

at time t. An agent born in period t chooses consumption c1t when young, c2t+1 when old,

and money holdings Mt to solve

maxu(c1t)+βv(c2t+1)

subject to

c1t +
Mt

Pt
= e1,

c2t+1 = e2 +
Mt

Pt+1
.

A sequential competitive equilibrium for this economy is a sequence of prices (Pt)t≥0,

and sequences of consumption and money holdings {c1t ,c2t+1,Mt}t≥0 such that individual

solves the budget-constrained utility maximization problem and markets clear:

c1t + c2t = e1 + e2, and Mt = M for all t.

A sequential competitive equilibrium can be characterized by the following first-order con-

dition:
1
Pt

u′
(

e1 − M
Pt

)
=

1
Pt+1

βv′
(

e2 +
M

Pt+1

)
.

Let bt = M/Pt be real money balances at t. Then,

btu
′ (e1 −bt) = bt+1βv′ (e2 +bt+1) .

Hence, all competitive equilibria can be generated by an offer curve in the (bt ,bt+1) space.9

A simple recursive equilibrium would be described by a function g such that bt+1 = g(bt) .

In the remainder of this section, we restrict our attention to the following parameteriza-

9We can also use the (c1t ,c2t+1) space as in Cass, Okuno, and Zilcha (1979).
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Figure 3.4: “Exact” offer curve for the OLG model

tions:

u(c) = c0.45, v(c) = −1
7

c−7, β = 0.8,

M = 1, e1 = 2, and e2 = 26/7 −21/7. For this simple example, the offer curve is backward

bending. Hence, the equilibrium correspondence is multi-valued, and standard methods –

based on the computation of a continuous equilibrium function bt+1 = g(bt) – may portray

a partial view of the equilibrium dynamics.

The solution is illustrated in Figure 3.4.

Implementation of our algorithm.

Note that the implementation our numerical algorithm of Section 3 is fairly straight-

forward. In fact, since the shadow multipliers of investment lie on a compact subset of

R, we can follow the same computational steps as in the growth model of the previous

section. Then, upper and lower bound functions are selected to compute the fixed point

that can generate all competitive equilibria. The results from this algorithm are reported in

Figure 3.5 where the dark grey area represents the initial correspondence, the light grey

area represents the fixed point of algorithm Bh,N , and the dotted line is the equilibrium
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Figure 3.5: Initial guess, limiting correspondence, and approximated equilibrium policy
correspondence from operator Bh,N .

correspondence constructed using the equilibrium selection algorithm of Section 3.

For this example, we find that the policy correspondence and time series from our

method generate an Euler equation residual of order 10−6, so that the solution obtained

with our algorithm is indistinguishable from the “exact” solution.

Comparing with other computational algorithms

A common practice in OLG models is to start the search with an equilibrium guess

function of the form b′ = g(b). In several numerical experiments we obtained that either

the upper part or the lower part of the offer curve. Which one one will obtain depends

on the initial guess. This strong dependence on initial conditions is a rather undesirable

feature of this method. In particular, note that for initial conditions where the method

yields the lower part of the actual equilibrium correspondence all competitive equilibria

converge to autarchy. Indeed, zero real monetary holdings are the unique absorbing steady

state associated with the lower part of the equilibrium correspondence. Hence, even in

the deterministic version of the model, we need a global approximation of the equilibrium
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Figure 3.6: Time-series behavior of different numerical solutions

correspondence to analyze the various predictions of the model. As shown in Figure 3.6,

in the approximate equilibrium correspondence there is cyclical equilibrium in which real

money holdings oscillate between 0.85296237892 and 0.09517670718. It is also known

that the model has a three-period cycle. But if we just iterate over the upper part of the

offer curve we find that money holdings converge monotonically to M̄
p = 0.418142579084,

as illustrated by the dashed line of Figure 3.6. Indeed, the upper part of the equilibrium

correspondence is monotonic, and can at most have cycles of period two, whereas the

model generates lots of equilibrium cycles of various periodicities.

In conclusion, for OLG economies standard computational methods based on iteration

of continuous functions may miss some important properties of the equilibrium dynamics.

3.6 Asset Pricing Models with Incomplete Markets

There is an important family of macroeconomic models that incorporate financial frictions

in the form of sequentially incomplete markets, borrowing constraints, transactions costs,
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cash-in-advance constraints, and margin and collateral requirements. These models are

commonly used to assess the effects of monetary policies, and the variability of macroeco-

nomic aggregates such as asset prices, consumption, interest rates, and inflation.10 Fairly

general conditions rule out the existence of financial bubbles in these economies, and hence

equilibrium asset prices are determined by the expected value of future dividends [Santos

and Woodford (1997)]. However, in the presence of financial frictions the equivalence of

competitive equilibria and optimal allocations breaks down, and standard computational

methods are of limited application. The purpose of this section is to illustrate the applica-

bility of our proposed algorithm in a model with collateral requirements taken from Kubler

and Schmmeders (2003). Our choice of the state space simplifies the computations, and

becomes instrumental to solve the model by a reliable iteration procedure.

3.6.1 Economic Environment

The economy is populated by a finite number of agents. At each date, agents can trade

quantities of the unique aggregate good as well as a fixed set of assets that span the hori-

zon of the economy. There are various financial frictions: Incomplete markets, collateral

requirements, and short-sale constraints.

Each agent i maximizes the intertemporal objective

E

[
∞

∑
t=0

(
β i)t

ui (ci
t

)]
, (3.25)

subject to a sequence of budget constraints. We assume that β i ∈ (0,1), and ui is strictly

increasing, strictly concave and continuously differentiable with derivative (u′i (0) =∞. At

each node zt , there exist spot markets for the consumption good and J securities. These

securities are specified by the current vector of prices, qt(zt) = (· · · ,q j
t (zt), · · ·), and the

10For instance, see Campbell (1999), Heaton and Lucas (1996), Huggett (1993), Krebs and Wilson (2004),
Mankiw (1986), and Telmer (1993). For some monetary models see Bewley (1980), Lucas (1982), and Santos
(2006).
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vectors of dividends d(zr) = (· · · ,d j(zr), · · ·) promised to deliver at future information sets

zr|zt for r > t. The vector of security prices qt(zt) is non-negative, and that the vector

of dividends dt(zt) is positive and depends only on the current realization of the vector of

shocks zt . Also, at each node zt the agent receives ei(zt) > 0 units of the consumption good.

There is also a market for one-period bonds available at all times. A bond is a promise

to one unit of the consumption good at all successor nodes zt+1|zt . Bonds are are in zero net

supply, and are specified by the price vector pt(zt). Agents can default on bond payments,

and hence they required to hold at least k j ≥ 0 units worth of each security j as collateral.

In case of default, the buyer of the bond will garnish the collateral wealth.

For a given a price process (qt (zt) , pt (zt))t≥0 , each agent i chooses desired quantities

of consumption, real securities and bond holdings (ci
t (z

t) , θ i
t+1 (zt) ,φ i

t+1(z
t))t≥0 subject to

the following sequence of budget constraints

ci
t

(
zt)−φ i

t (z
t−1)min

{
1,∑

j
k j q j

t (zt)

q j
t−1(z

t−1)

}
+θ i

t+1

(
zt) ·qt

(
zt)= (3.26)

ei (zt)+θ i
t

(
zt−1) · (qt

(
zt)+d (zt)

)−φ i
t+1(z

t)pt(zt),

−k jφ i
t+1(z

t) ≤ q j
t (z

t)θ i j
t+1(z

t), for j = 1..J, (3.27)

0 ≤ θ i
t+1

(
zt) , all zt , θ i

0 given. (3.28)

Note that (3.28) imposes non-negative holdings of real securities, and (3.27) is meant to

limit the amount of bond debt to a fraction of collateral wealth. The minimum in expression

(3.26) above reflects that it is optimal to default on previous bond short-sales whenever the

promised payment is larger than the cost of loosing the collateral.

3.6.2 Sequential and Recursive Competitive Equilibrium

Definition 3.6.1 A sequential competitive equilibrium (SCE) for this economy is a collec-

tion of vectors (ct (zt) , θt+1 (zt) , φt+1(zt), pt(zt),qt (zt))t≥0 such that (i) for each agent i the
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plan (ci
t (z

t) , θ i
t+1 (zt) , φ i

t+1(z
t))t≥0 maximizes the objective (3.25) subject to (3.26)-(3.28),

and (ii) markets clear:

I

∑
i

ci
t

(
zt) =

J

∑
j

d j (zt)+
I

∑
i

ei
t

(
zt) , (3.29)

I

∑
i
θ ji

t+1

(
zt) = 1, for j = 1, · · · ,J, (3.30)

I

∑
i
φ i

t+1

(
zt) = 0, at all zt . (3.31)

For the recursive specification of equilibria the state space includes the space of exoge-

nous shocks Z, the space of possible values for share prices, Q, the distribution of shares

Θ=
{
θ ∈ RJI

+ :∑I
i=1 θ ji = 1 for all j

}
and bond holdingsΔ=

{
φ ∈ RI

+ : ∑I
i=1 φ i = 0

}
. The

equilibrium shadow value correspondence V ∗ : Q×Θ×Δ×Z → RJI
+ is then defined as

V ∗ (q−,θ0,φ0,z0) =

⎧⎪⎨
⎪⎩
(
...,
(

q j
0 (z0)+d j (z0)

)
Ui

1

(
ci

0 (z0)
)
, ...
)

:

(ct ,θt+1,φt+1,qt , pt ,λt,γt)t≥0 is a SCE

⎫⎪⎬
⎪⎭ .

Observe that, for every (q−,θ0,φ0,z0) , the set V ∗ (q−,θ0,φ0,z0) contains all equilibrium

JI-vectors m0 = (· · · ,m ji
0 , · · ·) of shadow values of investing in each asset j for every agent

i. It follows that operator B : V 	−→ B(V ) is defined as: For each (q−,θ ,φ ,z) ∈ Q×Θ×
Δ× Z, the set B(V )(q−,θ ,φ ,z) contains all values m = (· · · ,m ji

+, · · ·) such that there is

some vector (c,θ+,φ+,q,q+, p,λ ,γ) satisfying all the equilibrium conditions with m+ =(
...,m ji

+(z+) , ...
)
∈V (q,θ+,φ+,z+) for each z+ ∈ Z.

Under similar regularity conditions Kubler and Schmedders (2003) show existence and

compactness of the equilibrium set. Building on the previous literature we can then derive

the following result.

Proposition 3.6.2 Correspondence V ∗ is nonempty, compact-valued, and upper semicon-

tinuous.



84

We now illustrate an application of our algorithm for a model with two agents and two

assets.

3.6.3 Numerical Example

There are two infinitely lived agents i = 1,2, and a real security that generates a sequence

of random dividends. Following Kubler and Schmedders (2003) we choose the auxiliary

variable,

ω =
θq+φ min

{
1,k q+

q

}
q

,

Then, the set of predetermined variables is reduced to y =
(
ω,dt ,

{
eh

t

}2
h=1

)
. Further, the

budget constraints also simplify to

c1
t = e1

t +ωtqt +θt (dt −qt)−φt pt (3.32)

c2
t = e2

t +(1−ωt)qt +(1−θt)(dt −qt)+φt pt (3.33)

0 ≤ θt ≤ 1.

With this simplification it is no longer necessary to keep track of last period or next period

prices. This change of variable is actually not needed for our methods but it will speed up

computations.

Implementation of our algorithm

Under the above change of variable, it becomes easier to consider the related shadow

value

m̂i
t ≡ (qt)u′i(ci

t). (3.34)

From the above definition, and the individual constraints (3.32-3.33) we can solve for θt and

qt as functions of m̂1
t , m̂

2
t ,yt , pt ,φt . Hence, given a correspondence V , we have that

(
m̂1

t , m̂
2
t

)
will belong to BV if we can find bond holdings φt and prices (pt ,qt+1) , a wealth level,ωt+1,

and continuation values for the shadow investment values,
(

m̂1
yt+1

, m̂2
yt+1

)
∈V (yt+1) for all
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successor nodes, which satisfy the individual budget constraints as well as the intertemporal

optimality conditions

(dt −qt)Ui
1

(
ci

t

)
+βEtm

i
yt+1

+qtλ i
c,t +λ i

ss = 0 (3.35)

−ptU
i
1(c

i
t)+βEt

[
k
qt

mi
yt+1

|ΩA

]
+βEt

[
mi

yt+1

qt+1
|ΩB

]
+ kλ i

c,t = 0 (3.36)

whereΩA =
{

(bt ,qt ,qt+1) : min
{

bt ,k
qt+1
qt

}
= k qt+1

qt

}
,ΩB =

{
(bt ,qt ,qt+1) : min

{
bt ,k

qt+1
qt

}
= bt

}
,

and

ωt+1 =
θtqt+1 +φt min

{
bt ,k

qt+1
qt

}
qt+1

. (3.37)

Comparing with other computational algorithms

Kubler and Schmedders (2003) enlarge the state space with all exogenous and endoge-

nous variables, and wealth. Recursive equilibrium is constructed from a correspondence

that maps the enlarged state space into the set of all endogenous variables. As we have

seen in our previous examples, the computational cost of approximating a set operator

grows exponentially in the dimension of the domain and range of the operator. Hence, in

the end these authors proceed with a computational algorithm that iterates over f unctions

from the enlarged state space into the set of all endogenous variables. Unfortunately, itera-

tion over functions does not guarantee of convergence to the equilibrium correspondence,

and can only identify one one equilibrium at a time. In contrast, our proposed algorithm

constructs recursive equilibria from an operator that maps the enlarged state space into the

space of shadow multipliers of investment. This is a lower dimensional object that makes

the algorithm more amenable to computation.

To illustrate the performance of our algorithm, assume both agents have identical util-

ities u = c1−σ
1−σ , with a common coefficient of risk aversion of σ = 2 and β1 = β2 = 0.95.

There are four possible values for the aggregate endowment, e ∈ (9.9,10.5,9.9,10.5), with
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Table 3.2: Simulated moments from alternative solution methods

mean c1

(σ (c1))
mean c2

(σ (c2)) mean( |EE1|) mean(|EE2|)

Continuous Markov equilibrium
4.96

(0.78)
5.26

(0.78) 5.05×10−6 3.27×10−8

Our algorithm
4.96

(0.78)
5.26

(0.78) 2.41×10−5 9.01×10−6

dividends d = 0.3 · e, and individual endowments

e1 ∈ (1.386,2.205,5.544,5.145),

e2 = 0.7 e− e1.

Also, the transition matrix driving individual shocks

Π(z′|z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0.4 0.1 0.1

0.4 0.4 0.1 0.1

0.1 0.1 0.4 0.4

0.1 0.1 0.4 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We simulate the economy using the decision rules obtained from our method, as well as

from the algorithm based on continuous value function iteration. The resulting simulated

statistics are summarized in Table 3.2 below. As before, EEi denotes the Euler equation

residual over the computed solution and ci is consumption for i = 1,2.

Note that for this benchmark calibration both methods deliver identical simulated moments.

As a straightforward consequence of Theorem 3.3.1, we obtain that convergence to a con-

tinuous function can only occur when the equilibrium is always unique. Hence, we have

shown uniqueness of equilibria for the present model. Of course, iterations over a con-
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tinuous functions may fail to converge, and for models in which there is no continuous

equilibrium selection this procedure may lead to poor approximations of the equilibrium

dynamics.

3.7 Concluding Remarks

This paper provides a theoretical framework for the computation and simulation of dynamic

competitive-markets economies in which the welfare theorems may fail to hold because of

market frictions or the existence of an infinite number of generations. We have applied

these methods to some macroeconomic models with heterogeneous agents, taxes, sequen-

tially incomplete markets, borrowing limits, short-sales, and collateral requirements.

For optimal economies, sequential competitive equilibria are generated by a continuous

policy function which is the fixed-point solution of a contractive operator. Continuity of

the policy function allows for various methods of approximation and functional interpola-

tion, and it is essential to validate laws of large numbers for the simulated paths. Moreover,

differentiability and contractive properties are useful for the derivation of error bounds that

can guide the computation process. But for OLG models and economies with distortions

several papers [e.g. Krebs (2004), Kubler and Polemarchakis (2004), Kubler and Schmed-

ders (2002), and Santos (2002)] have shown that a continuous Markov equilibrium may not

exist. We establish a general result on the existence of a Markovian equilibrium solution in

a suitably expanded space of state variables. We construct a numerical algorithm that has

desirable approximation properties and guarantees convergence of the moments computed

from simulated paths.

There are three main features of our algorithm that should be of interest for quantitative

work in this area. First, the existence of a Markovian competitive equilibrium is obtained

in an enlarged space of state variables. Our choice of the marginal utility values of assets

returns is dictated by computational considerations. This is a minimal addition to the state
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space to restore existence of a Markovian equilibrium and with the property that the extra

added variables enter linearly into the Euler equation. Second, the algorithm iterates in a

space of candidate equilibrium sets – rather than in a space of functions. Iteration over can-

didate equilibrium sets guarantees convergence to the fixed-point solution even if Markov

equilibria are not continuous. Moreover, we also establish some desirable approximation

properties of the computed solutions. And third, the algorithm provides a reliable method

for model simulation. We resort to a further discretization of the equilibrium law of motion

so that it becomes a Markov chain. It should be stressed that the usual simulation over

a continuum of values cannot be justified on theoretical grounds: The simulated moments

may fail to converge to the set of moments of the invariant distributions of the model. Other

ways to restore laws of large numbers for the simulated paths of these economies would be

by imposing monotonicity assumptions on the equilibrium dynamics [Santos (2008)] or by

expanding artificially the noise process [e.g., Blume (1979)]. These latter approaches seem

to be of more limited economic interest.

Of course, our methods have to face some computational challenges. Iteration over sets

is computationally much more costly than iteration over functions. Therefore, the expan-

sion of the state space along with iteration over sets should certainly be manifested into

an additional computational burden. Besides, our general convergence results lack error

bounds. This lack of accuracy should be expected since our models cannot be restated as

optimization programs, and miss some common concavity, differentiability and contractive

properties. In terms of numerical implementation the innovative techniques for error esti-

mation proposed by Judd, Yeltekin, and Conklin (2003) seem to be of limited application

for our economies. These authors use outer and inner approximations over convex sets. It

is not clear to us that an outer approximation over convex sets will converge to the convex

hull of the equilibrium correspondence. Moreover, inner convex approximations may be

hard to find. Still, these techniques may work well in some applications.

There are several directions in which our analysis can be extended. For example, in the
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preceding sections we considered exogenous short-sales constraints and exogenous bor-

rowing limits. We could incorporate borrowing constraints that depend on future income

[e.g., Miao and Santos (2005)]. These general borrowing schemes arise in financial models

and in the modeling of the public sector so as to allow for various types of fiscal policy

rules. In most quantitative studies of recursive equilibrium with fiscal policy, the govern-

ment must balance the budget in each state of the world. This is a rather strong assumption.

Another extension is to the area of policy games. As our algorithm includes all the shadow

values of investment, it can deal with heterogeneity and market frictions. For example, we

can generalize the model of Phelan and Stacchetti (2001) to include heterogeneous agents

and various types of financial frictions.



Appendix A

Computation algorithm to stationary
equilibrium

Given the parameter values as shown in the text, I compute the stationary equilibrium

as follows:

Step 1. Discretize the state space S = (ih,x,h, ima,ε).

Step 2. Start with an arbitrary pair of the steady state values of aggregate labor supply

E, tax rate τmr, bequest B, and EHI premium πE . Define Θ= {E,τmr,B,πE}. Compute the

value w.

Step 3. Agents solve their optimization problem.

Step 4. Simulate the economy:

4.1. Set t = 0, there are Nppl agents live in the economy, who are randomly assigned

the values of (ih,x,hg−1, ima,εg) if young or middle-aged, and (ih,x,hg−1,εg) if retired.

4.2. Given shocks agents choose whether to insure, how much to save, and how much

to spend;

4.3. New period starts, t = t + 1, g = g + 1, the government collects the assets left

behind by the accidentally deceased.

4.4. A sequence of time series is generated by repeating step 4.2 & 4.3;

4.5. Store the distribution of
{
(ih,x,hg, ima,εg, ing)

}3
g=1 with {Ψg}3

g=1;

4.6. Stop the process if the economy enters the stationary distribution.

Step 5. Compute the insurance premium πnew
E , aggregate labor supply Enew, bequest

90
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Bnew, and tax rate τnew
mr based on the distribution {Ψg}3

g=1 according to equations (2.19),

(2.16), (2.21), and (2.18). Denote Θ′ = {Enew,τnew
mr ,Bnew,πnew

E }.

Step 6. Find the fixed point of Θ by iteration. If ‖Θ′ −Θ‖ > δ , set Θ = (Θ+Θ′)
2 and

return to step 3. Otherwise set Θ∗ =Θ′ and define

cg = Gcg(in, ih,x,hg−1, ima,εg;Θ∗) (A.1)

lg = Glg(in, ih,x,hg−1, ima,εg;Θ∗) (A.2)

mg = Gmg(in, ih,x,hg−1, ima,εg;Θ∗) (A.3)

ag = Gag(in, ih,x,hg−1, ima,εg;Θ∗) (A.4)

ing = Gin(ih,x,hg−1, ima,εg;Θ∗) (A.5)



Appendix B

Calibration

Table B.1: Health shocks by age group

Age Shock 1 Shock 2
25-44 −0.5 −10.0
45-64 −2.5 −10.0
65-85 −10.0 −20.0

Table B.2: Coverage ratio for each expenditure grids

bin 1 2 3 4 5
qE(pmm) 0.55487 0.61017 0.65671 0.70503 0.78060
qma(pmm) 0.76524 0.81319 0.85763 0.88673 0.94784
qmr(pmm) 0.49942 0.57952 0.63345 0.69578 0.77799

Table B.3: Parameter values in the coverage ratio functions

qE qma qmr

β0 0.63632(0.00144) 0.83671(0.00353) 0.51344(0.00416)
β1 0.05444(0.00079) 0.02315(0.00165) 0.03223(0.00266)
β2 0.00546(0.00371) 0.00349(0.00067) 0.01477(0.00094)
R2 0.0863 0.0475 0.1634
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Table B.4: Parameters of the model

Parameter Description Values
n population growth rate 1.25%

{aρ ,bρ} parameters in survival probability {0.35895,1.0}
β discount factor 0.97
γ2,g preference on leisure {1.3,0.85,1.3}
γ3,g preference on health {0.05,0.5,2.5}
η relative risk aversion over health 1.35

{Am,ϑ} health production {1.96,0.52}
ξ parameter in health on labor 0.1393
εg health shock see table B.1
δh health depreciation see text
pm price for medical service see text
A total factor productivity 8.0
α labor share 0.66
r interest rate 4%

{b0,b1,b2} income tax parameters (progressive part) {0.258,0.768,0.716}
τy income tax parameter (proportional part) 10%
τc consumption tax 5.67%
τmr medicare tax 2.5%
G government expenditure 27.5% of GDP

qma(·) Medicaid coverage rate see text
πma Medicaid premium see text

qmr(·) Medicare coverage rate see text
πmr Medicare premium see text

qE(·) private insurance coverage rate see text
πE private insurance premium see text



Appendix C

Numerical results

Table C.1: Data vs. model

Parameters Data Benchmark
All insured (in % of non-elderly) 82 84.8

w/ Private insurance (in % of non-elderly) 71.1 72.5
w/ Medicaid (in % of non-elderly) 12.9 12.3

Health Expenditures (in % of GDP) 15.8 16.6
Labor supply (in % of total time) 33.3 30.6
Ratio of retired to active population (in %) 19.2 18
Marginal income tax at 10% quantile 15 20
Marginal income tax at 50% quantile 26 25.4
Marginal income tax at 99% quantile 35 27
Medicare tax (in %) 2.9 2.5
Ave. insurance premium (in % of per capita GDP) 10.9 10.1
Size of Medicaid & Medicare (in % of GDP) 4.6 4.8
Consumption and health expenditure profiles see figure 2.2
Gross saving rate (in %) 21 25.8
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Figure C.1: Life cycle profiles of health expenditure and consumption
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Appendix D

Proofs

In this Appendix we prove all results formally stated in Section 3 and Proposition 4. All

remaining results follow from similar arguments.

Proof of Proposition 1 (Sketch): As in the original work of Bewley (1972), the existence

of a SCE can be established by approximating the infinite-horizon economy by a sequence

of finite economies. This is the strategy followed by Jones and Manuelli (1999), but their

proof is incomplete and does not apply to sequential competitive economies. As is usual

in this approximation argument the hardest part of the proof is to provide upper bounds for

equilibrium allocations and prices over all the finite-horizon economies. We nevertheless

skip this part since these bounds follow from the proof of Proposition 2 below.

Hence, following Jones and Manuelli (1999), we consider the following steps for the

proof of a SCE: (i) Existence of an equilibrium for a finite horizon economy. This re-

sult is covered by the general proofs of existence of competitive equilibria for economies

with taxes and externalities of Arrow and Hahn (1971), Mantel (1975), and Shafer and

Sonneschein (1976). (ii) Uniform bounds for equilibrium allocations and prices of finite-

horizon economies. As already pointed out, these bounds can be established by the method

of proof of Proposition 2. (iii) Existence of SEC as a limit point of finite equilibria. The

preceding steps (i) and (ii) guarantee that there is a collection of vectors
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(
ct(zt),kt+1(zt),Kt(zt),Lt(zt),Kt(zt),wt(zt),rt(zt)

)
that can be obtained as a limit of equi-

libria of finite economies. It is obvious that for such limiting solution the market clearing

conditions must be satisfied at each zt , and that one period-profits must be maximized.

Moreover, for each agent i the limiting allocation
(
ci

t(zt),ki
t+1(z

t)
)

must satisfy the se-

quence of budget constraints (2), and it is optimal since the discounted objective (1) is

continuous in the product topology over the set of feasible consumption plans
(
ci

t (z
t)
)

t≥0

which are preferred to the endowment allocation
(
ei

t (zt)
)

t≥0. This is because feasible con-

sumption plans
(
ci

t (z
t)
)

t≥0 are bounded above (see below) and the endowment process(
ei

t (zt)
)

t≥0 is bounded below by a positive quantity.

Proof of Proposition 2: We first show that there are positive constants Kmax and Kmin

such that for every equilibrium sequence of physical capital vectors
(
ki

t+1(z
t))
)

t≥0 if Kmax ≥
∑I

i=1 ki
0(z

0) ≥ Kmin then Kmax ≥ ∑I
i=1 ki

t(z
t+1) ≥ Kmin for all zt . The existence of Kmax

follows directly from Assumptions 2 and 3. In particular, A is bounded by Assump-

tion 2, and by Assumption 3 the marginal productivity of capital converges to zero as

K goes to ∞ for every fixed L > 0. Also, it obvious that Kmin ≥ 0. We now claim that

if limK→0 D1F (K,L) = ∞ for some given positive L, then Kmin > 0. For if not, there is

a sequence of equilibrium capitals
(
ki

t+1(z
t)
)

t≥0 such that ∑I
i=1 ki

t(z
t+1) is arbitrarily close

to 0 for some zt+1. Under the system of budget constraints (2), it follows that there is an

arbitrarily small number ε ≥ 0 such that ci
t(zt) ≥ ei

t(zt)− ε for every i. Therefore, mod-

ulo an arbitrarily small number the derivative D1u(ci
t(z

t),zt) is bounded by D1u(ei
t(z

t),zt),

and D1F (Kt ,Lt) is arbitrarily large. These latter two conditions together are not compati-

ble with utility maximization, since the existence of Kmax implies that future consumption

ci
t(zr|zt) for r > t is uniformly bounded. Consequently, if limK→0 D1F (K,L) = ∞ for some

positive L, then Kmin > 0.

Since L takes on a finite number of positive values, our bounds Kmax and Kmin imply

that there are constants rmax and wmax such that for every equilibrium sequence of fac-



101

tor prices
(
ri
t (z

t) ,wi
t (z

t)
)

t≥0 we have 0 ≤ rt(zt) ≤ rmax and 0 ≤ wt(zt) ≤ wmax for all zt .

Hence, the value function Ji(ki
0,z0,r0(z0),w0(z0)) is well defined, and as already pointed

out the derivative D1Ji(·,z0,r0(z0),w0(z0)) is continuous in (ki
0,r0(z0),w0(z0)). More-

over, by a simple notational change it follows from (2) that function Ji can be rewrit-

ten as Ji(ai
0(z0),z0,r0(z0),w0(z0)), where ai

0 = ei
0(z0)+ r0ki

0. Then we can conclude that

0 ≤ D1Ji(ki
0,z0,r0(z0),w0(z0)) ≤ γ , since ei

0(z0) is bounded below by a positive number,

and as shown above all feasible vectors (ki
0,r0(z0),w0(z0)) lie in a compact set.

Proof of Theorem 1: For the proof of Theorem 1, we shall invoke the following version

of Bellman’s equation.

Ji(ki
0,z0,r0(z0),w0(z0)) = maxui(ci

0(z0),z0)+βE[Ji(ki
1(z

1),z1,r1(z1),w1(z1))]

s. t. ki
1 (z0)+ ci

0 (z0) = r0 (z0)ki
0 (z0)+w0 (z0) li

0(z0)+ ei
0(z0),

ki
1 (zt) ≥ 0, ki

0 given.

We now divide the proof into three parts:

(i) V ∗ ⊂ B(V ∗) : This part essentially follows from (BE). Since

mi
0 = D1Ji(ki

0,z0,r0(z0),w0(z0)) is the derivative of the value function, and (5)-(6) in the

definition of operator B provide necessary conditions for utility maximization. Conditions

(7)-(10) are also satisfied in every SCE.

(ii) B(V ∗) ⊂V ∗ : This is the sufficiency part; again, the most difficult step of the proof

follows from (BE). More specifically, since value function Ji(ki
0,z0,r0(z0),w0(z0)) is con-

cave in ki
0 and mi

0 = D1Ji(ki
0,z0,r0(z0),w0(z0)), conditions (5)-(7) imply that (BE) holds.

But by the well-known arguments of dynamic programming the Bellman equation (BE)

implies that the original sequential optimization problem (SOP) attains a global solution.

Hence, constrained utility maximization in the definition of SCE is satisfied. Conditions

(8)-(9) imply profit maximization, and condition (10) implies market clearing.

(iii) V ∗ is the largest fixed point of B. First note that by the same arguments as in
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the proof of Proposition 2 we can show that every fixed-point solution Ŵ = B(Ŵ) is a

compact correspondence. Now, as in Section 3 we may consider a measurable selection

f (k,z,m) for every (k,z,m) in the graph of Ŵ . Let (kt+1(zt), zt+1, mt+1(zt+1), ct(zt),

rt(zt), wt(zt), λt(zt), δt(zt)) = f (kt(zt−1),zt,mt(zt)) for each zt+1|zt . Then we claim that

(ct(zt),kt+1(zt),rt(zt),wt(zt))t≥0 is a SCE. Indeed, operator B is compact, and hence the

sequence of factor prices (rt(zt),wt(zt))t≥0 is bounded. Moreover, individual consump-

tions and capital holdings
(
ci

t(z
t),ki

t+1(z
t)
)

t≥0 are bounded, and the sequence of shadow

values of investment
(
mt+1(zt+1)

)
t≥0 is bounded. Along these sequences, the Euler equa-

tions and the budget constraints are satisfied for every agent i, and so the individual (SOP)

attains a global maximum [e.g., see Rincon-Zapatero and Santos (2009)]. Also, Conditions

(8)-(9) imply profit maximization, and condition (10) implies market clearing. It follows

that every selection f generates a SCE. Therefore, Ŵ = V ∗.

Proof of Theorem 2: Let Ŵ =
⋂

nWn. Hence, Ŵ = {(k,z,m) : m∈Bn(W )(k,z) for every n}.

Consequently, B(Ŵ ) = {(k,z,m) : There are some continuation values (k+,z+,m+) such that m+ ∈
Bn(W )(k+,z+) for every n ≥ 1 and all z+ ∈ Z}.

It follows that B(Ŵ) ⊂ {(k,z,m) : m ∈ Bn+1(W )(k,z) for every n ≥ 1}. Therefore,

B(Ŵ ) ⊂ Ŵ as the sequence (Wn)n≥0 is decreasingly monotone. We next show that Ŵ ⊂
B(Ŵ ).

Consider any (k,z,m) that belongs to the graph of Ŵ . Hence, m ∈ Bn(W )(k,z) for

every n. Let Ψn be the set of continuation values (k+,z+,m+) of (k,z,m) such that m+ ∈
Bn−1(W )(k+,z+). This set is non-empty and compact, and so Ψ =

⋂
nΨn is not empty.

Consequently, for every (k,z,m) that belongs to the graph of Ŵ , there exists a non-empty

set of continuation values (k+,z+,m+) that belong to the the graph of Ŵ . This proves that

(k,z,m) belongs to the graph of B(Ŵ), and so Ŵ ⊂ B(Ŵ ).

We thus obtain that Ŵ = B(Ŵ ). Finally, by the monotonicity of B the assumed condition

V ∗ ⊂W implies V ∗ ⊂ Bn(W ) for every n. Hence, V ∗ ⊂ Ŵ . Moreover, Ŵ ⊂ V ∗ since V ∗ is
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the largest fixed point of B. We thus obtain V ∗ = Ŵ .

Proof of Theorem 2.1: Let V0 ⊃V ∗
0 , let Vn = B(Vn−1),n ≥ 1.

Consider, VU
N = ∪∞n=NVn. Then VU

N+1 = B(VU
N ) and VU

N+1 ⊂VU
N for all N ≥ 1. It follows

that the sequence {VU
N } must converge to a non-empty set V ∗U .

Moreover, V ∗U = B(V ∗U ), since V ∗U = ∩N=nVU
N , for all n ≥ 1. It is easy to see that

V ∗U = V ∗
t , Indeed, by the monotonicity of operator B we get that V ∗U is a fixed point that

contains V ∗, and V ∗U ⊂ V ∗ since every fixed point conforms an equilibrium – given that

the transversality conditions are trivially satisfied in this model.

To complete the proof of the theorem, just note that V ∗ ⊂V ∗
n ⊂VU

n for all n ≥ 1. Since

we have already established that VU
n →V ∗, we get that Vn →V ∗.

Proof of Theorem 3: This follows trivially from part (iii) of the proof of Theorem 1.

Proof of Theorem 3.1: (i) Obvious. Operator Bh,N is monotone, V0 ⊇V ∗ and Bh,N(V ∗)⊃
V ∗.

(ii) Proof follows similar arguments as in proof of Theoreom 2.1. Actually, it is possible

that V h,N
n ⊂V ∗,h,N .

(iii) Note that operator Bh,N varies continuously with h and N. Hence, the fixed point

of Bh,N is an uppersemicontinuous correspondence on parameter values h and N. Since

V ∗ ⊂V ∗,h,N , it follows that V ∗,h,N →V ∗ as h → 0 and N → ∞.

Proof of Theorem 3.2: The proof follows directly from Blume (1982), Theorem 2.1. The

sequence of operators {Bh,N,Aγ} converges to B. Moreover, the convexfication of operator

Bcv has a fixed point μ∗ ∈ Bcv(μ∗).

Proof of Proposition 4: This result is proved along the lines of Levine and Zame (1996)

and Magill and Quinzii (1994). For every agent i the objective in (1) satisfies Assumption

(A.2) of Santos and Woodford (1997). Hence, for every optimal consumption-portfolio
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plan {ci
t(z

t),θ i
t+1(z

t)}t≥0 the sequence of portfolio values {θ i
t+1(z

t)qt(zt)}t≥0 is bounded

above, and a uniform bound can be found that applies to all equilibrium sequences of asset

prices {qt(zt)}t≥0. Since there is a finite number I of agents and one unit of the asset,

equilibrium condition (18) implies the existence of the lower bound −M.

The second part of the proposition is proved by contradiction. Note that the dividend

process (dt(zt))t≥0 is bounded below by a positive number. Also, by the argument above

all equilibrium sequences of asset prices {qt(zt)}t≥0 are bounded above. By a similar

argument, it is easy to see that {qt(zt)}t≥0 is bounded below by a positive number. Hence, it

follows from (19) that any initial small debt θ0 < 0 that is rolled over at every period, it will

grow to −∞. Indeed, at every zt the debt θt+1 must be incremented to pay for the dividend

d(zt), and these negative increments can be bounded uniformly. Since every sequence of

asset prices {qt(zt)}t≥0 is bounded below, the value {qt(zt)θt+1(zt)}t≥0 must also converge

to −∞. Now, by the definition of πei(zt), if (22) is violated at some date-event zt , it means

that the debt cannot be repaid in finite time, and hence it must grow without bound along

some history of date-events {zr|zt}t≥0. The proposition is thus established.
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