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There has been a recent increase on research focusing on partial identification of 

average treatment effects in the program evaluation literature. In contrast with traditional 

point identification, partial identification approaches derive bounds on parameters of 

interest based on relatively weak assumptions. Thus, they deliver more credible results in 

empirical applications. This dissertation extends Instrumental Variable (IV) methods in 

the program evaluation literature by partially identifying treatment effects of interest 

when evaluating a program or intervention. 

An influential approach for studying causality within the IV framework was 

developed by Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996). They 

show that, when allowing for heterogeneous effects, IV estimators point identify the local 

average treatment effect (LATE) for compliers, whose treatment status is affected by the 

instrument. This dissertation advances the current IV literature in two important ways. 

First, inspired by the common criticism that LATE lacks external validity, this dissertation 

derives sharp nonparametric bounds for population average treatment effects (ATE) 

within the LATE framework. Second, the dissertation extends the LATE framework to 

bound treatment effects in the presence of both sample selection and noncompliance. 

Even when employing randomized experiments to evaluate programs -- as is now 



common in economics and other social science fields -- assessing the impact of the 

treatment on outcomes of interest is often made difficult by those two critical 

identification problems. The sample selection issue arises when outcomes of interest are 

only observed for a selected group. The noncompliance problem appears because some 

treatment group individuals do not receive the treatment while some control individuals 

do. The dissertation addresses both of these identification problems simultaneously and 

derives nonparametric bounds for average treatment effects within a principal 

stratification framework. More generally, these bounds can be employed in settings 

where two identification problems are present and there is a valid instrument to address 

one of them. The bounds derived in this dissertation are based on two sets of relatively 

weak assumptions: monotonicity assumptions on potential outcomes within specified 

subpopulations, and mean dominance assumptions across subpopulations. 

The dissertation employs the derived bounds to evaluate the effectiveness of the Job 

Corps (JC) program, which is the largest federally-funded job training program for 

disadvantaged youth in the United States, with the focus on labor market outcomes and 

welfare dependence. The dissertation uses data from an experimental evaluation of JC. 

Individuals were randomly assigned to a treatment group (whose members were allowed 

to enroll in JC) or to a control group (whose members were denied access to JC for three 

years). However, there was noncompliance: some individuals who were assigned to 

participate in JC did not enroll, while some individuals assigned to the control group did. 

The dissertation addresses this noncompliance issue using random assignment as an IV 

for enrollment into JC. Concentrating on the population ATE, JC enrollment increases 

weekly earnings by at least $24.61 and employment by at least 4.3 percentage points four 



years after randomization, and decreases yearly dependence on public welfare benefits by 

at least $84.29. These bounds are significantly narrower than the ones derived in the 

current IV literature. The dissertation also evaluates the effect of JC on wages, which are 

observed only for those who are employed. Hence, the sample selection issue has to be 

addressed when evaluating this effect. In the presence of sample selection and 

noncompliance, the average treatment effect of JC enrollment on wages for the always-

employed compliers, who would comply with their assigned treatment and who would be 

always employed regardless of their assignment statuses, is bounded between 5.7 percent 

and 13.9 percent four years after random assignment. The results suggest greater positive 

average effects of JC on wages than those found in the literature evaluating JC without 

adjusting for noncompliance. 

The dissertation closes by pointing out that a similar analytic strategy to the one used 

in this dissertation can be used to address other problems, for example, to bound the ATE 

when the instrument does not satisfy the exclusion restriction, and to derive bounds on 

the part of the effect of a treatment on an outcome that works through a given mechanism 

(i.e., direct or net effects) in the presence of one identification issue (e.g., 

noncompliance). 
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CHAPTER 1

INTRODUCTION

There has been a recent increase on research focusing on partial identification of av-

erage treatment effects in the program evaluation literature. In contrast with traditional

point identification, partial identification approaches derive bounds on parameters of in-

terest instead of estimating a single value. Their main advantage is their dependence

on weaker assumptions. Thus, partial identification approaches deliver more reliable

results in empirical applications. This dissertation extends instrumental variable (IV)

methods in the program evaluation literature by partially identifying treatment effects of

interest when evaluating a program or intervention.

This dissertation is motivated by an influential approach for studying causality in IV

contexts. Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) (hereafter

IA and AIR, respectively) show that, when allowing for heterogeneous effects, IV es-

timators point identify the local average treatment effect (LATE) for compliers, whose

treatment status is affected by the instrument. However, a common criticism of their

approach is the focus on the effect for a subpopulation, which cannot be identified from

the population of interest (e.g., Heckman, 1996; Robins and Greenland, 1996; Deaton,

2010; Heckman and Urzua, 2010). Policy makers may be more interested in the popu-

lation average treatment effect (ATE). AIR (1996) and Imbens (2009) responded to the

criticism that the discussion is limited to compliers because it is the only subpopulation

about which the data are directly informative.

The dissertation advances the current IV literature in two import ways. First, it de-

rives sharp nonparametric bounds for the population ATE within the LATE framework.

1
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It improves the bounds on the ATE in the current IV literature by combining two sets

of assumptions that may be useful in practice. The first is monotonicity in the treatment

of the average outcomes of subpopulations. This assumption infers the sign of average

treatment effects for other subpopulations from that for compliers. In contrast to the

existing literature (e.g., Manski and Pepper, 2000; Bhattacharya, Shaikh and Vytlacil,

2008, hereafter BSV; Shaikh and Vytlacil, 2011), monotonicity is imposed on the aver-

age outcomes within the same subpopulation rather than on the individuals’ outcomes.

This makes the assumption more plausible in practice by allowing some individuals to

experience a treatment effect that has the opposite sign to the LATE. The second set of

assumptions is mean dominance that compares average potential outcomes across differ-

ent subpopulations. Unlike the monotonicity, which informs the unobserved outcomes

in the LATE framework by inferring the sign of treatment effects, the mean dominance

infers the unobserved terms from the identified average outcomes across subpopulations.

Different from the literature on partially identifying the ATE within an IV, some of the

bounds in the present research do not require a bounded-outcome assumption once com-

bining the monotonicity and mean dominance assumptions. Moreover, the direction of

the mean dominance can be informed by comparing average baseline characteristics of

strata that are likely to be highly correlated with the outcome of interest, and these aver-

age characteristics can be obtained by estimating an overidentified nonparametric GMM

problem.

The second way this dissertation advances the current IV literature is to derive non-

parametric bounds for treatment effects in the presence of both sample selection and

noncompliance. Randomized experiments are now commonly used to evaluate pro-
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grams or interventions in economics and other social science fields. Despite the fact

that randomized experiments are reliable approaches to establishing causality, assessing

treatment effects of interest in randomized experiments is often made complicated by

two critical identification issues: sample selection and noncompliance with the assigned

treatment. The sample selection issue arises when outcomes are only observed for a

selected group. For example, future health status is only observed for individuals who

are alive at the time of following waves of surveys. The noncompliance problem ap-

pears because individuals can still decide whether or not to take the treatment in most

of randomized experiments, especially in the ones with encouragement designs. As a

result, it is common that in social experiments some treatment group individuals do not

take the treatment, while some control individuals do.

The dissertation extends the partial identification results in Zhang, Rubin, andMealli

(2008) (hereafter ZRM) and Lee (2009), who construct bounds in the presence of sample

selection, to also account for noncompliance using the LATE framework proposed by

IA (1994) and AIR (1996). The LATE framework is a special case of principal stratifica-

tion, which partitions the population based on the joint potential values of post-treatment

variables under the two treatment assignment arms. Within the principal stratification

framework, this dissertation derives nonparametric bounds for the always-selected com-

pliers, who would comply with their assigned treatment and whose outcomes would

be always observable regardless of treatment assignment. Analogous to the cases ana-

lyzed in IA (1994) and AIR (1996), ZRM (2008) and Lee (2009), among others, this

is the only group of individuals whose outcomes can be observed in both treatment

receipt arms in settings where both sample selection and noncompliance are present.
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Additional assumptions are necessary to derive bounds on treatment effects for other

subpopulations.

Principal stratification has often been used to address a single post-treatment compli-

cation. While there are a few papers that employ principal stratification to point identify

treatment effects in the presence of more than one complication, it is my understand-

ing that this is one of the first studies deriving bounds for treatment effects within this

framework accounting for more than one identification problem. More generally, these

bounds can be employed in settings where two identification problems are present and

there is a valid instrument to address one of them. Some of these complications may in-

clude sample selection, noncompliance, endogeneity of the treatment variable, missing

outcomes, among others. For example, when assessing the effect of military service on

future health using the Vietnam-era draft lottery as an instrument to address endogeneity

(e.g., Angrist, Chen, and Frandsen, 2009), the results could be used to bound the average

effect on those who enrolled in the military because of the draft lottery (compliers) and

who were alive when the outcome was measured regardless of their veteran status.

This dissertation employs the derived bounds to evaluate the effectiveness of the Job

Corps (JC) program, which is the largest and most comprehensive federally-funded job

training program for disadvantaged youth in the United States. It provides academic,

vocational, and social skills training, among many other services, at over 120 centers

throughout the country. Assessing the effect of this and other programs is of great

importance to policy makers (e.g., Tennessee class size project STAR, Greater Avenues

for Independence (GAIN) program, Tax Deferred Account (TDA) retirement plan). This

dissertation uses data from the National Job Corps Study (NJCS), which is a randomized
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social experiment undertaken in the mid-to-late nineties to evaluate the effectiveness of

JC. Individuals were randomly assigned to a treatment group (whose members were

allowed to enroll in JC) or to a control group (whose members were denied access to JC

for three years). However, there was noncompliance: some individuals in the treatment

group did not enroll, while some individuals in the control group did.

Previous studies evaluating the JC program (Schochet, Burghardt, and Glazerman,

2001; Schochet, Burghardt, and McConnell, 2008; Lee, 2009; Flores-Lagunes, Gon-

zalez, and Neumann, 2010; Flores et al., 2012; Blanco, Flores, and Flores-Lagunes,

2012) usually focus on intention-to-treat (ITT ) effects. An ITT effect compares poten-

tial outcomes according to the assigned treatment and ignores possible noncompliance,

and thus would dilute the effect of actual JC enrollment. Schochet, Burghardt, and

Glazerman (2001) and Schochet, Burghardt, and McConnell (2008) also address non-

compliance by using IV estimators, hence focusing on the LATE for compliers. Using

random assignment as an IV, this dissertation addresses this noncompliance issue and

looks at the population ATEs of actual JC enrollment on participants’ labor market out-

comes and welfare. It also examines wage effects of JC enrollment by focusing on a

specified subpopulation (i.e., the always-employed compliers). Thus, the dissertation

also contributes to the empirical literature on the evaluation of the JC program by pro-

viding credible bounds based on relatively weak assumptions for treatment effects of

interest other than LATE and the ITT effect.

Focusing on the ATE on labor market outcomes and welfare, JC enrollment in-

creases weekly earnings by at least $24.61 and employment by at least 4.3 percentage

points four years after randomization, and decreases yearly dependence on public wel-



6

fare benefits by at least $84.29. More specifically, the preferred bounds on the ATE un-

der the monotonicity and mean dominance assumptions are [24.61, 201.04] for weekly

earnings, [.042, .163] for employment, and [−142.76,−84.29] for public benefits. These

bounds are significantly narrower than the IV bounds proposed byManski (1990), Heck-

man and Vytlacil (2000), Kitagawa (2009). The enhanced identification power comes

from the mean dominance assumption, which is not considered in the current literature.

This assumption provides new information to the bounds of the ATE by using identified

average outcomes across strata. Accordingly, combining it with the monotonicity as-

sumption sharpens the bounds. The width of the bounds is also smaller than that under

both the IV and Monotone Treatment Response (MTR) assumptions of Manski and Pep-

per (2000), especially for public benefits. The bounds on employment are also narrower

than those proposed by Balke and Pearl (1997), BSV (2008), Chesher (2010), Chiburis

(2010b) and Shaikh and Vytlacil (2011) for the case of a binary outcome. The lower

bounds for weekly earnings and employment are 10 percent higher than their respec-

tive ITT effects (22.19 and .038), while the upper bound for public benefits is equal to

its ITT effect. The LATEs for compliers on the three outcomes also fall within these

bounds.

The dissertation also evaluates the effect of JC enrollment on wages, which are ob-

served only for those who are employed. Ignoring this sample selection issue would

give biased results. Hence, it is necessary and important to address sample selection

when evaluating wage effects. In the presence of sample selection and noncompliance,

the bounds on the wage effect of JC enrollment are derived for the always-employed

compliers, who would comply with their assigned treatment and who would always be
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employed regardless of assignment status. This is the only stratum for which wages are

observed for individuals who enrolled and for individuals who did not enroll in the JC

program. It is also the largest stratum in the sample, accounting for about 40 percent

of the population. The wage effect of JC enrollment for the always-employed compli-

ers is between 5.7 percent and 13.9 percent four years after random assignment, and

between 7.7 and 17.5 percent for Non-Hispanics. The results suggest greater positive

average effects of JC on wages than those found without adjusting for noncompliance

in Lee (2009) and Blanco, Flores, and Flores-Lagunes (2012). This evidence suggests

that the JC training program has positive effects not only on the employability of its

participants but also on their wages, implying that JC participation is likely to increase

their human capital. By mimicking the characteristics of the sample, this section also

presents simulation exercises done to analyze the sensitivity of the empirical results to

violations of the two main assumptions employed (monotonicity and mean dominance).

The simulation results suggest that the estimated bounds are robust to small departures

from these assumptions.

The remainder of the dissertation is organized as follows. Chapter 2 presents a

review of the partial identification literature. Chapter 3 presents the econometric frame-

work and the partial identification results for the parameters of interest, and then dis-

cusses estimation and inference. Chapter 4 briefly describes the JC program and the

NJCS, and empirically analyzes the effects of JC enrollment on participants’ labor mar-

ket outcomes and welfare dependence. Chapter 5 concludes.



CHAPTER 2

LITERATURE REVIEW

2.1 Partial Identification in the IV Literature

Instrumental variable (IV) approaches have been widely used in the literature of program

evaluation due to their high internal validity. IA (1994) and AIR (1996) develop an in-

fluential approach for studying causality within the IV framework. Using a randomized

instrument, they partition the population into always-takers, never-takers, compliers,

and defiers according to the joint potential values of treatment status. Always-takers

(never-takers) are individuals who would always (never) take the treatment irrespec-

tive of instrument status. Compliers behave consistently with the assigned instrument,

while defiers do the opposite of the assigned instrument. Under the monotonicity of

the treatment in the instrument, defiers are ruled out. In the absence of strong homo-

geneity or distributional assumptions, data never reveals information on the outcome

of always-takers under the inactive treatment or the outcome of never-takers under the

active treatment. As a result, IV estimators point identify the local average treatment

effect (LATE) for compliers in heterogenous treatment effect models.

A common criticism of their approach, however, is the focus on the effect for a

subpopulation (e.g., Deaton, 2010; Heckman and Urzua, 2010). Heckman (1996) and

Robins and Greenland (1996) state that the LATE is defined for a latent subpopulation

in the sense that compliers cannot be identified from the population of interest. The

latter suggests that attention should be on the population average treatment effect (ATE).

AIR (1996) and Imbens (2009) respond that one may also be interested in averages

8
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for the entire population from the point of view of policy makers, but they stress that

compliers is the only subpopulation about which the data are directly informative, and

that extension to treatment effects for other subpopulations has to be extrapolations in

IV contexts.

Point identification of the population treatment effects by the IV methods usually

requires parametric or structural assumptions. Heckman (2010) proposes a method to

nonparametric identify the ATE, but the instrument in his approach is required that

is strong enough to drive the probability of being treated from zero to one, which is

hard to satisfy in practice. In contrast to traditional point identification, Manski (1990)

pioneered partial identification of the population ATE under the assumption of mean

independence of the instrument.

There has been a growing literature on partial identification of the ATE with IV

methods since Manski (1990). One strand of this literature endeavors to improve Man-

ski’s bounds by assuming different versions of monotonicity of the outcome. Manski

and Pepper (2000) introduce the assumptions of monotonicity of the treatment response

(MTR) and the monotonicity of the treatment selection (MTS). Combined with the mean

independence assumption, Chiburis (2010a) derives the bounds for the ATE under both

MTR and MTS assumptions without specifying the direction of the monotonicity a pri-

ori. Instead of the monotonicity assumptions employed in the above papers, another

strand of the literature assumes structural models on the treatment or the outcome. Un-

der the statistical independence assumption of the instrument, Heckman and Vytlacil

(2000) impose a threshold crossing model with a separable error on the treatment. Fo-

cusing on a binary outcome, Shaikh and Vytlacil (2011) impose threshold crossing mod-
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els on both the treatment and the outcome, while Chiburis (2010b) considers a threshold

crossing model on the outcome. Rather than assuming the threshold crossing model

with separable errors, Chesher (2010) imposes a non-separable structural model on the

outcome and assumes the structural function is weakly increasing in the non-separable

error.

Comparison of identification power among these assumptions are also discussed in

the existing literature on partial identification with IV methods. First, the monotonicity

assumption on the treatment (e.g., Balke and Pearl, 1997; Huber and Mellace, 2010) and

the structural model assumptions on the treatment (e.g., Heckman and Vytlacil, 2000)

do not improve Manski’s bounds derived under the mean independence assumption.

Second, monotonicity assumptions on the outcome (e.g., Manski and Pepper, 2000) and

the structural model assumptions on the outcome do improve Manski’s bounds (e.g.,

BSV, 2008; Chiburis, 2010a; 2010b; Chesher 2010; Shaikh and Vytlacil, 2011). Third,

because the bounds for the ATE involve counterfactual potential outcomes, partial iden-

tification with IV methods usually requires bounded support of the outcome. This might

also be the reason why quite a few papers focus on binary outcomes (e.g., Balke and

Pearl, 1997; BSV, 2008; Hahn, 2010; Chiburis, 2010b; Shaikh and Vytlacil, 2011).

It’s worth noting that for a binary dependent variable, the monotonicity assumptions

and the structural model assumptions are equivalent. Vytlacil (2002) shows the equiv-

alence between the monotonicity assumption and the threshold crossing model on the

treatment. Machado et al. (2011) notice the equivalence between the MTR assump-

tion and the threshold crossing model on the outcome. In the absence of covariates,

Chiburis (2010b) observe the equivalence between the threshold crossing model with a
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separable error and the non-separable structural function being weakly increasing in the

non-separable error. BSV (2008) show that in the absence of covariates, the bounds for

a binary outcome under MTR and the mean independence assumptions are equal to the

ones derived from the threshold crossing models on both the treatment and the outcome.

Chiburis (2010b) noticed that his bounds obtained by imposing the threshold crossing

model on the outcome are equal to the ones under MTR and the mean independence

assumptions.

This dissertation improves Manski’s nonparametric bounds on the population ATE

by extending the work of IA (1994) and AIR (1996). The setup of a binary treatment

and a binary instrument is used in most of the program evaluation literature (e.g., Im-

bens and Wooldridge, 2009) and common in empirical applications (e.g., Angrist, 1990;

Oreopoulous, 2006). And the LATE framework allows nonparametric identification of

the ATE within the context of heterogeneous treatment effects. This dissertation adds to

the literature by considering two different sets of assumptions. The first is monotonicity

in the treatment of the average outcomes of subpopulations defined by the joint potential

values of the treatment status under each value of the instrument. As in BSV (2008) and

Shaikh and Vytlacil (2011), prior knowledge about the direction of the monotonicity is

not required. This assumption infers the sign of average treatment effects for other sub-

populations from that for compliers. In contrast to the existing literature (e.g., Manski

and Pepper, 2000; BSV, 2008; Shaikh and Vytlacil, 2011), monotonicity is imposed on

the average outcomes of the strata rather than on the individuals’ outcomes. This makes

the assumption more plausible in practice by allowing some individuals to experience a

treatment effect that has the opposite sign to the ATE. The second set of assumptions is
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mean dominance that compares average potential outcomes across different subpopula-

tions. Assumptions similar to the mean dominance have been shown to have significant

identifying power in other settings (e.g., ZRM, 2008; Flores and Flores-Lagunes, 2010).

Different from the monotonicity, which informs the unobserved outcomes by inferring

the sign of treatment effects, the mean dominance infers the unobserved terms from the

identified average outcomes across subpopulations. Once combining the two sets of as-

sumptions, the sharp bounds of the ATE in the present study are significantly narrower

than the ones obtained in the current IV literature, and some of the bounds do not re-

quire a bounded-outcome assumption. Moreover, the directions of the mean dominance

can be informed by comparing average baseline characteristics of strata that are likely

to be highly correlated with the outcome of interest. These average characteristics are

estimated by solving an overidentified nonparametric GMM problem.

A recent paper by Huber and Mellace (2010) also derives bounds on the ATE within

the IV framework. The main difference between this research and theirs is that the

monotonicity assumption is imposed on the average outcomes of the strata, which results

in narrower bounds and can be justified by economic theory in many applications. Also,

a priori direction of the monotonicity is avoided, while its direction can be inferred

from data. In addition, the mean dominance assumptions not only differ from theirs,

but the direction of the mean dominance can be informed by comparing the average

baseline characteristics across strata, which are estimated by solving an overidentified

nonparametric GMM problem.
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2.2 Partial Identification Addressing Sample Selection

One of the leading examples of sample selection in the program evaluation literature is

to evaluate the effect of a training program on participants’ wages. The sample selection

issue arises from the fact that wages are only observed for those who are employed, with

the employment decision itself being potentially affected by the program. Assessing the

effect of training programs on wages is of great importance to policy makers. Most of

the econometric evaluations of training programs, however, focus on the impact on total

earnings, which are the product of the hourly wage and the hours worked. As discussed

by Lee (2009), focusing only on total earnings fails to answer the relevant question

of whether the programs lead to an increase in participants’ wages (e.g., through hu-

man capital accumulation), or to an increase in the probability of being employed (e.g.,

through counseling and job search assistance services) without any increase in wages.

Standard approaches for point identification of treatment effects in the presence of

sample selection require strong parametric assumptions or the availability of a valid

instrument (e.g., Heckman, 1979). In settings where an instrument is unavailable, an

alternative strategy is to partially identify the effects under relatively mild assumptions

(Zhang and Rubin, 2003; ZRM, 2008; Imai, 2008; Lee, 2009; Lechner and Melly, 2010;

Huber and Mellace, 2010). Part of this literature uses principal stratification (Fran-

gakis and Rubin, 2002), which provides a framework for studying causal effects when

controlling for a variable that has been affected by the treatment (in this example, the

employment decision). The basic idea behind principal stratification is to compare in-

dividuals within common principal strata (subpopulations of individuals who share the
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same potential values of the employment variable under both treatment arms). Since

membership to a particular principal stratum is not affected by treatment assignment,

sample selection is not an issue within the principal strata, and the estimated effects are

causal effects.

ZRM (2008) and Lee (2009) derive bounds for the average effect of a training pro-

gram on wages for a particular stratum: the “always-employed” (those individuals who

would be employed whether or not they were assigned to enroll in the training pro-

gram). They focus on this stratum because it is the only one for which the individuals’

outcomes are observed under both treatment assignments. Following Zhang and Rubin

(2003), ZRM (2008) consider two assumptions and derive bounds for this effect under

each assumption and when both are imposed. The first assumption is a monotonicity

assumption on the effect of the treatment (training program) on the selection (employ-

ment), and the second is a stochastic dominance assumption comparing the potential

outcomes of the always-employed to those of other strata. Lee (2009) uses an alternative

approach to that in ZRM (2008) to derive bounds under the monotonicity assumption.

Importantly, the bounds derived in these papers do not impose the assumption that the

support of the outcome is bounded. Lee (2009) uses his bounds to evaluate the wage

effects of JC. More recently, Blanco, Flores, and Flores-Lagunes (2012) employ the

bounds used by ZRM (2008) and Lee (2009), and their extension to quantile treatment

effects by Imai (2008) to study the wage effects of JC for different demographic groups

without adjusting for noncompliance.

Huber and Mellace (2010) and Lechner and Melly (2010) derive bounds for sub-

populations other than the always-employed. Huber and Mellace (2010) use a principal



15

stratification approach to construct bounds on the effects for two other strata (those who

would be employed only if assigned to the treatment group, and those who would be

employed only if assigned to the control group), as well as for the “selected” subpopula-

tion (those whose wages are observed and are a mixture of different strata). While their

assumptions are similar to those in ZRM (2008) and Lee (2009), additional assumptions

are required (e.g., bounded support of the outcome), since bounds are constructed for

strata and subpopulations for which the outcome is never observed under one of the

treatment states. Lechner and Melly (2010) derive bounds for mean and quantile treat-

ment effects for the “treated and selected” subpopulation (employed individuals who

received training and are also a mixture of different strata). Contrary to the previously

described literature, they do not follow a principal stratification approach to derive their

results. The assumptions they consider involve monotonicity assumptions on the train-

ing program’s effect on employment (conditional on covariates), as well as stochastic

dominance assumptions involving observed subpopulations (e.g., employed versus un-

employed) rather than involving different strata. Similar to Huber and Mellace (2010),

they require an outcome with bounded support to partially identify the mean effects.

The previously discussed literature, with the exception of Lechner and Melly (2010),

focuses on the intention-to-treat (ITT ) effect of being offered to participate in the train-

ing program. The ITT effect compares potential outcomes according to the assigned

treatment and ignores possible noncompliance. The popularity of the ITT effect in the

program evaluation literature is partly stimulated by the fact that randomized and natural

experiments are now commonly used in economics and other social science fields to de-

liver causal effects. However, though individuals are randomly assigned to the treatment
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group and the control group, it is usually the case that they can still choose whether or or

not to actually take the treatment. In the case of training programs, the noncompliance

problem appears when some treatment group individuals did not enroll in the program,

while some of the control individuals did enroll. For example, in the data set of the

NJCS employed in the dissertation, only 73 percent of the individuals assigned to the

treatment group enrolled in JC, while 4 percent of the individuals assigned to the con-

trol group enrolled in JC in the four years after random assignment. The noncompliance

issue dilutes the effect of actual participation in the program.

This dissertation derives nonparametric bounds for treatment effects in settings where

both sample selection and noncompliance are present. It extends the partial identifica-

tion results in ZRM (2008) and Lee (2009) to account for noncompliance. Thus, this

part bounds the wage effect of actual enrollment in the program, rather than the effect

of being allowed to enroll in the program. The approach to account for noncompli-

ance is based on the works by IA (1994) and AIR (1996), who use the IV approach

to address noncompliance in the absence of sample selection. Their approach is also a

special case of principal stratification. Based on the individuals’ potential compliance

behavior under the two treatment assignments, they stratify the population into four

strata: the so-called always-takers, never-takers, compliers, and defiers. The disserta-

tion employs principal stratification to address the sample selection and noncompliance

problems simultaneously, and derive bounds for the average effect of participating in a

training program on wages for the stratum of always-employed compliers. This stratum

consists of those who comply with their treatment assignment and would be employed

whether or not they enrolled in the training program. Analogous to the cases analyzed
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in IA (1994), AIR (1996), ZRM (2008), and Lee (2009), among others, this is the only

stratum for which wages are observed for individuals who enrolled and did not enroll in

the training program. In the context of analyzing the effects of JC on wages, this is also

the largest stratum (about 40 percent of the population).

Principal stratification has often been used to address a single post-treatment compli-

cation. While there are a few papers that employ principal stratification to point identify

treatment effects in the presence of more than one complication, it is my understand-

ing that this is one of the first papers deriving bounds for treatment effects within this

framework accounting for more than one identification problem. A particularly rele-

vant paper in a similar setting is the one by Frumento et al. (2012), who analyze the

effects of JC on employment and wages using data from the NJCS. They perform a

likelihood-based analysis to simultaneously address three problems: sample selection,

noncompliance and missing outcomes due to non-response. They stratify the popula-

tion based on the potential values of the compliance behavior and employment status to

address the noncompliance and sample selection issues, and they employ a “missing at

random” assumption (Rubin, 1976) to address the missing-outcome problem.1 Under

some parametric assumptions, Frumento et al. (2012) point identify the effect of JC on

wages for the always-employed compliers.2 The thesis complements the work by Fru-

mento et al. (2012) by constructing nonparametric bounds for the effect of JC on wages

based on an alternative set of assumptions. In the empirical part, it also presents results
1The missing at random assumption states that the probability that the outcome is missing for a given

individual is random conditional on a set of observable characteristics.
2Another assumption in Frumento et al. (2012) is that the individuals in the control group never

enroll in JC, which rules out the existence of “always-takers”. This assumption may not be plausible in
applications in the dissertation, especially when looking at outcomes four years after random assignment.
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that account for missing values due to non-response by using weights constructed by the

NJCS using non-public use data that account for sample design and non-response.



CHAPTER 3

THEORY: BOUNDS ON THE PARAMETERS OF INTEREST

3.1 The LATE Framework

Consider a random sample of size n from a population. Let Di ∈ {0,1} indicate whether

unit i is treated (Di = 1) or not (Di = 0), and let Zi ∈ {0,1} be an instrument for treat-

ment. Let Di(1) and Di(0) denote the treatment individual i would receive if Zi = 1

or Zi = 0, respectively. The outcome of interest is Y . Denote by Yi (1) and Yi (0) the

potential outcomes as a function of D, i.e., the outcomes individual i would experience

if she received the treatment or not, respectively. Finally, let Yi(z,d) be the potential

outcome as a function of the instrument and the treatment. For each unit, econome-

tricians observe {Zi,Di(Zi),Yi(Zi,Di(Zi))}. The notation implicitly imposes the stable

unit treatment value assumption (SUTVA) (Rubin 1978, 1980, 1990), which is common

in the literature and implies that the potential outcomes for each unit are unrelated to

the treatment assignment and treatment receipt of the other individuals. For the sake of

simplicity, the subscript i is omitted unless deemed necessary for clarity. This setting

has received considerable attention in the literature (e.g., AIR, 1996; BSV, 2008).

AIR (1996) partition the population into four strata based on the joint potential val-

ues of {Di (0) ,Di (1)}: {1,1}, {0,0}, {0,1} and {1,0}. AIR (1996) and the subsequent

literature refer to these strata as always-takers (a), never-takers (n), compliers (c), and

defiers (d), respectively. AIR (1996) impose the following assumptions:

Assumption 1.1 (Randomized Instrument). {Y (z,d),D(z)} is independent of Z for all

z,d ∈ {0,1}.

19
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Assumption 1.2 (Exclusion Restriction). Yi(0,d) =Yi(1,d) =Yi(d),d ∈ {0,1} for all i.

Assumption 1.3 (Nonzero First Stage). E[D(1)−D(0)] �= 0.

Assumption 1.4 (Individual-Level Monotonicity of D in Z). Either Di(1) ≥ Di(0) for

all i or Di(1)≤ Di(0) for all i.

Assumptions 1.1 through 1.4 are standard assumptions in the IV literature (e.g., IA,

1994; AIR, 1996; Huber and Mellace, 2010; Blanco, Flores, and Flores-Lagunes, 2012).

Assumption 1.4 rules out the existence of defiers (compliers) when the monotonicity

is non-decreasing (non-increasing). The direction of the monotonicity can be inferred

from the data given the independence of Z. Following BSV (2008), Z is ordered so that

E[D|Z = 1]≥ E[D|Z = 0] to simplify notation.

Let LATEk = E[Y (1)−Y (0)|k] and πk denote, respectively, the local average treat-

ment effect and the stratum proportion in the population, for stratum k, with k = a,

n, c. Let Yzd = E[Y |Z = z,D = d] and pd|z = Pr(D = d|Z = z). Under Assumptions

1.1 through 1.4, the following quantities are point identified: πa = p1|0, πn = p0|1,

πc= p1|1− p1|0, E[Y (1)|a] =Y 01, E[Y (0)|n] =Y 10 and LATEc=(E[Y |Z= 1]−E[Y |Z=

0])/(p1|1− p1|0). As shown in IA (1994) and AIR (1996), LATEc is point identified for

compliers whose treatment status is affected by the instrument, and equals the conven-

tional IV estimand in the absence of covariates.

3.2 Bounds on the Population ATE

The parameter of interest in this section is the population average treatment effect,

ATE = E[Yi(1)−Yi(0)]. To derive the bounds, ATE is decomposed as a weighted aver-
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age of the LATEs for always-takers, never-takers, and compliers:

ATE = LATEaπa+LATEnπn+LATEcπc (3.1)

= Y 11p1|1−Y 00p0|0+E[Y (1)|n]p0|1−E[Y (0)|a]p1|0, (3.2)

where E[Y |Z = z] = E[E[Y |Z = z,D= d]|Z = z] is used in the second equality. By equa-

tion (3.2), since Y (1) for never-takers and Y (0) for always-takers are never observed in

the data, additional assumptions are needed to bound ATE. The most basic assumption

considered in the previous literature is the bounded support of the outcome.

Assumption 2.1 (Bounded Outcome). Y (0),Y (1) ∈ [yl,yu].

This assumption states that the potential outcomes under the two treatment arms

have a bounded support. Replacing E[Y (1)|n] and E[Y (0)|a] in equation (3.2) with yl

and yh, I obtain sharp bounds on the ATE under Assumptions 1.1 through 1.4, and 2.1.

Proposition 2.1 Under Assumptions 1.1 through 1.4, and 2.1, the bounds LB≤ ATE ≤

UB are sharp, where

LB = Y 11p1|1−Y 00p0|0+ yl p0|1− yup1|0

UB = Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0.

The bounds in Proposition 2.1, which is presented for reference, coincide with the

IV bounds in Manski (1990), Heckman and Vytlacil (2000) and Kitagawa (2009), and

with those in Huber and Mellace (2010). When the outcome is binary, these bounds also

coincide with those in Balke and Pearl (1997).
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3.2.1 Bounds under Monotonicity

In this subsection, the monotonicity assumption is introduced to improve the identifica-

tion power of the bounds in Proposition 2.1.

Assumption 2.2 (Monotonicity in D of Average Outcomes of Strata).(i) Either E[Y (1)|k]

≥ E[Y (0)|k] for all k = a,n,c; or E[Y (1)|k] ≤ E[Y (0)|k] for all k = a,n,c. (ii)

E[Y (1)−Y (0)|c] �= 0.

Assumption 2.2 requires that the LATEs of the three existing strata are all either

non-negative or non-positive. This assumption is similar to that in BSV (2008), with

the important distinction that the monotonicity is imposed on the LATEs rather than on

the individual effects, which makes it more plausible in practice by allowing some indi-

viduals to have a treatment effect of the sign different from that of the ATE. Since Z is

ordered so that E[D|Z = 1]≥ E[D|Z = 0], the direction of the monotonicity is identified

from the sign of the IV estimand (LATEc) under the current assumptions. The following

proposition presents sharp bounds on the ATE under the additional Assumption 2.2.

Proposition 2.2 Under Assumptions 1.1 through 1.4, 2.1 and 2.2, the bounds LB ≤

ATE ≤UB are sharp, where, if E[Y |Z = 1]−E[Y |Z = 0]> 0,

LB = E[Y |Z = 1]−E[Y |Z = 0]

UB = Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0;

and if E[Y |Z = 1]−E[Y |Z = 0]< 0,

LB = Y 11p1|1−Y 00p0|0+ yl p0|1− yup1|0

UB = E[Y |Z = 1]−E[Y |Z = 0].
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Depending on the sign of LATEc, either the lower or the upper bound in Proposition

2.2 improves upon the corresponding bound in Proposition 2.1. When LATEc > 0, the

lower bounds on LATEa and LATEn become zero; otherwise, their upper bounds be-

come zero. Consequently, either the lower or upper bound on the ATE equals the ITT

effect, depending on the sign of LATEc. When the outcome is binary, the bounds in

Proposition 2.2 coincide with those in BSV (2008) and Chiburis (2010b), which both

equal the bounds in Shaikh and Vytlacil (2011) and Chesher (2010) when there are no

exogenous covariates other than the binary instrument. Moreover, if LATEc is positive

(negative) and Assumptions 1.1 through 1.4, 2.1 and 2.2, hold, then the bounds in Propo-

sition 2.2 equal the bounds obtained by imposing the mean independence assumption

of the instrument and increasing (decreasing) MTR assumptions in Manski and Pepper

(2000). MTR imposes monotonicity of the outcome in the treatment at the individual

level, and it requires one to know the direction of the effect a priori. Depending on the

sign of the individual effect, BSV (2008) shows the equivalence of their bounds to those

under the IV and MTR assumptions for the case of a binary outcome. Thus, in this

setting along with the relaxed version of the monotonicity assumption, these results can

be seen as an extension of those in BSV (2008) to the case of a non-binary outcome.3

3.2.2 Bounds under Mean Dominance

In practice, some strata are likely to have more favorable characteristics and thus better

mean potential outcomes than others. The three alternative assumptions below formal-
3For a discussion of the trade-off between the MTR assumption and assuming monotonicity of the

treatment in the instrument, see BSV (2008).
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ize the notion that under the same treatment status, never-takers tend to have the best

average potential outcome among the three strata, while always-takers tend to have the

worst one.

Assumption 2.3a E[Y (d)|a]≤ E[Y (d)|n] for d = 0,1.

Assumption 2.3b E[Y (0)|a]≤ E[Y |Z = 0,D= 0] and E[Y (1)|n]≥ E[Y |Z = 1,D= 1].

Assumption 2.3c E[Y (0)|a]≤ E[Y (0)|c] and E[Y (1)|n]≥ E[Y (1)|c].

The direction of these assumptions can be inverted depending on the application

in question. The always-takers and never-takers are likely to be the most “extreme"

groups in many applications, so Assumption 2.3a may be viewed as the weakest of the

three. Assumption 2.3b compares the mean Y (0) and Y (1) of the always-takers and

never-takers, respectively, to those of a weighted average of the other two strata, while

Assumption 2.3c compares them to those of the compliers. Although none of these

assumptions is directly testable, it is possible to obtain indirect evidence about their

plausibility by comparing relevant average pre-treatment characteristics of the different

strata that are highly related to the outcome. These average characteristics of each stra-

tum can be estimated from an overidentified nonparametric GMM problem. For details

on the GMM procedure see Appendix C. For Assumption 2.3c, the direction may also be

inferred by comparing point identified quantities, E[Y (1)|a] to E[Y (1)|c] and E[Y (0)|n]

to E[Y (0)|c], if these inequalities also hold under the alternative treatment status.

The following bounds are presented under Assumptions 1.1 through 1.4, 2.1, and

each of the three versions of Assumption 2.3. In each case, the lower bound is higher

than that in Proposition 2.1.
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Proposition 2.3 Let UB= Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0.

(a) Under Assumptions 1.1 through 1.4, 2.1 and 2.3a the bounds LB≤ ATE ≤UB

are sharp, where

LB= Y 11p1|1−Y 00p0|0+Y 01p0|1−Y 10p1|0.

(b) Under Assumptions 1.1 through 1.4, 2.1 and 2.3b the bounds LB≤ ATE ≤UB

are sharp, where

LB= Y 11−Y 00.

(c) Under Assumptions 1.1 through 1.4, 2.1 and 2.3c the bounds LB≤ ATE ≤UB

are sharp, where

LB= Y 11p1|1−Y 00p0|0+
Y 11p1|1−Y 01p1|0
p1|1− p1|0

p0|1−
Y 00p0|0−Y 10p0|1
p1|1− p1|0

p1|0.

Assumptions 2.3a through 2.3c have testable implications when combined with As-

sumption 2.2, if LATEc < 0. The following inequalities are expected to hold: Y
01 ≤Y 10

(2.3a); Y 01 ≤ Y 00 and Y 11 ≤ Y 10 (2.3b); and, Y 01 ≤ E[Y (0)|c] and E[Y (1)|c] ≤ Y 10

(2.3c). If some (or all) of these inequalities are not rejected in applications, then their

corresponding assumptions are expected to hold. The following three propositions pro-

vide bounds when Assumptions 2.2 and 2.3 are combined.

Proposition 2.4 Under Assumptions 1.1 through 1.4, 2.1, 2.2 and 2.3a the bounds LB≤

ATE ≤UB are sharp, where, if E[Y |Z = 1]−E[Y |Z = 0]> 0,

LB = Y 11p1|1−Y 00p0|0+max{Y 10,Y 01}p0|1−min{Y 10,Y 01}p1|0

UB = Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0;
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and if E[Y |Z = 1]−E[Y |Z = 0]< 0,

LB = Y 11p1|1−Y 00p0|0+Y 01p0|1−Y 10p1|0

UB = E[Y |Z = 1]−E[Y |Z = 0].

Proposition 2.5 Under Assumptions 1.1 through 1.4, 2.1, 2.2 and 2.3b the bounds LB≤

ATE ≤UB are sharp, where, if E[Y |Z = 1]−E[Y |Z = 0]> 0,

LB = Y 11p1|1−Y 00p0|0+max{Y 10,Y 11}p0|1−min{Y 01,Y 00}p1|0

UB = Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0;

and if E[Y |Z = 1]−E[Y |Z = 0]< 0,

LB = Y 11−Y 00

UB = E[Y |Z = 1]−E[Y |Z = 0].

Proposition 2.6 Under Assumptions 1.1 through 1.4, 2.1, 2.2 and 2.3c the bounds LB≤

ATE ≤UB are sharp, where, if E[Y |Z = 1]−E[Y |Z = 0]> 0,

LB = Y 11p1|1−Y 00p0|0+max{Y 10,
Y 11p1|1−Y 01p1|0
p1|1− p1|0

}p0|1

−min{Y 01,Y
00p0|0−Y 10p0|1
p1|1− p1|0

}p1|0

UB = Y 11p1|1−Y 00p0|0+ yup0|1− yl p1|0;

and if E[Y |Z = 1]−E[Y |Z = 0]< 0,

LB = Y 11p1|1−Y 00p0|0+
Y 11p1|1−Y 01p1|0
p1|1− p1|0

p0|1−
Y 00p0|0−Y 10p0|1
p1|1− p1|0

p1|0

UB = E[Y |Z = 1]−E[Y |Z = 0].
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Note that, if LATEc < 0, the bounds in Propositions 2.4 through 2.6 do not require

boundedness of the outcome, because Assumption 2.2 improves upon the upper bound

in Proposition 2.1, while Assumption 2.3 improves upon the lower bound. In contrast,

if LATEc > 0, Assumptions 2.2 and 2.3 each improve only upon the lower bound in

Proposition 2.1. The bounds in Propositions 2.4 through 2.6 are narrower compared with

the bounds in Proposition 2.2 and the corresponding bounds in Proposition 2.3. This is

because under the combined assumptions, the monotonicity assumption improves upon

further either the lower or upper bound in Proposition 2.3, depending on the sign of

LATEc, while the mean dominance assumptions further improve upon the lower bound

in Proposition 2.2.

Proposition 2.5 overlaps with the bounds recently derived by Chiburis (2010a) un-

der the MTR assumption without specifying a priori direction and the decreasing MTS

assumption, as well as the mean independence assumption of the instrument. This is be-

cause Assumption 2.3b coincides with the decreasing MTS assumptions imposed on the

counterfactual average outcomes for always-takers and never-takers (i.e., E[Y (0)|a] and

E[Y (1)|n]). The form of Chiburis’ bounds, however, cannot simplify to Proposition 2.6,

in that his monotonicity assumptions also involve the counterfactual average outcome

for the mixture of never-takers and compliers and that for the mixture of always-takers

and compliers (i.e., E[Y (1)|Z = 0,D = 0] and E[Y (0)|Z = 1,D = 1]), which are not

involved in the current setting.

It is important to note that the bounds in Proposition 2.6 are also sharp for ATE if

Assumption 2.3c is replaced with the assumption, E[Y (d)|a] ≤ E[Y (d)|c] ≤ E[Y (d)|n]

for d = 0,1. However, since E[Y (d)|c] may suffer from the potential issue of a weak
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IV (i.e., p1|1− p1|0 is close to zero), and thus it may be more difficult to estimate than

E[Y |Z = z,D= d].

3.3 Bounds Addressing Sample Selection and Noncompliance

3.3.1 Setup, Principal Strata, and Parameter of Interest

To setup the framework in the presence of sample selection and noncompliance, again

assume a random sample of size n from a large population is available. For each unit

i in the sample, let Zi = z ∈ {0,1} indicate whether the unit was randomly assigned

to the treatment group (Zi = 1) or to the control group (Zi = 0). Let Di = d ∈ {0,1}

indicate whether individual i actually received the treatment (Di= 1) or not (Di= 0). Let

me further introduce the sample selection indication and the latent outcome. Let Si =

s ∈ {0,1} be a post-treatment sample selection variable indicating whether the latent

outcome variable Y ∗i is observed (Si = 1) or not (Si = 0). In the setting of evaluating

wage effects, Si specifies whether individual i is employed or not, and Y ∗i is the offered

market wage. The observed outcome variable is Yi = Y ∗i if Si = 1, and Yi is missing if

Si = 0.

As in IA (1994) and AIR (1996), D(z) denotes the potential compliance behavior as

a function of the treatment assignment. In addition, let S(z,d) and Y ∗(z,d) denote the

potential values of the selection indicator and the potential latent outcome, respectively,

as a function of the treatment assignment (z) and the treatment received (d). In the new

setting, we observe {Zi,Di(Zi),Si(Zi,Di(Zi))} for all units, and Y ∗i (Zi,Di(Zi)) for those

with Si = 1.
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The following assumptions are imposed in the new setting to address sample selec-

tion and noncompliance simultaneously.

Assumption 3.1 (Randomly Assigned Instrument). {Y ∗(z,d),S(z,d),D(z)} is indepen-

dent of Z for all z,d ∈ {0,1}.

Assumption 3.2 (Exclusion Restriction of Z). Y ∗(z,d) = Y ∗(z′,d) = Y ∗(d) and S(z,d)

= S(z′,d) = S(d) for all z,d ∈ {0,1}.

Assumption 3.3 (Nonzero Average Effect of Z on D). E [D(1)−D(0)] �= 0.

Assumption 3.2 states that any effect of the instrument Z on the potential outcomes

Y ∗ and on the potential sample selection indicator S must be via an effect of Z on

the treatment D. In other words, this assumption prevents the instrument from having

a direct effect on Y ∗ and S. In the context of the empirical application, Assumption

3.2 requires that randomization affects potential wages and employment only through

its effect on JC enrollment. Assumption 3.2 allows me to write the potential variables

Y ∗(z,d) and S(z,d) as a function of the treatment d only.

As in IA (1994) and AIR (1996), a valid instrument in this context should satisfy

Assumptions 3.1, 3.2, and 3.3 simultaneously. An important difference with respect to

the assumptions in those two papers is that here Z is required to be a valid instrument

for both Y ∗ and S.

To derive bounds for wage effects accounting for sample selection and noncompli-

ance, a principal stratification framework (Frangakis and Rubin, 2002) is employed.

This framework, which generalizes the approach in AIR (1996), is useful for studying

causal effects when controlling for post-treatment or intermediate variables (i.e., vari-
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ables that have been affected by the treatment). The basic principal stratification with

respect to a given post-treatment variable is a partition of the population into groups

such that, within each group, all individuals share the same potential values of the post-

treatment variable under each treatment arm. A principal effect is then defined as a

comparison of potential outcomes within a given stratum. Since membership to a par-

ticular stratum is not affected by treatment assignment, individuals within a group are

comparable and thus principal effects are causal effects.

The intermediate variables to control for are the compliance behavior (D) and the

sample-selection (S) indicator. Thus, in this setting, the principal strata are defined by

the joint potential values of {D(z = 0),D(z = 1)}×{S(z = 0),S(z = 1)}. Four strata

are defined based on the potential compliance behavior: always-takers (a), never-takers

(n), compliers (c), and defiers (d) in AIR (1996). Following ZRM (2008) and Frumento

et al. (2012), the following subpopulations are defined based on potential employment

status:

• EE = {i : Si(0) = Si(1) = 1}, the “always-employed”, those who would be em-

ployed regardless of treatment assignment;

• NN = {i : Si(0) = Si(1) = 0}, the “never-employed”, those who would be unem-

ployed regardless of treatment assignment for them;

• NE = {i : Si(0) = 0,Si(1) = 1}, those who would be employed only if assigned to

the treatment group;

• EN = {i : Si(0) = 1,Si(1) = 0}, those who would be employed only if assigned to

the control group.
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In total, sixteen strata: {a,n,c,d}× {EE,NN,NE,EN} are defined. These strata are

the same as those in Frumento et al. (2012), and they result from combining the strata

employed in AIR (1996) to account for noncompliance with those used in ZRM (2008)

to address sample selection.

An important characteristic of principal strata is that they are latent subpopulations,

meaning that, in general, econometricians cannot observe to which stratum each indi-

vidual belongs. Thus, additional assumptions are usually imposed to point or partially

identify effects of interest by reducing the number of strata that exist in the population.

Note that Assumption 3.2 implies that the following four strata do not exist: aNE, aEN,

nNE, and nEN. The reason is that for the individuals in these four strata there exists an

effect of the treatment assignment (Z) on employment (S) that is not through their JC

enrollment status (since Di(1) = Di(0)), which contradicts the exclusion restriction of

Z.

The following assumption, which was also employed by AIR (1996) is introduced

to further reduce the number of existing strata.

Assumption 3.4 (Individual-Level Monotonicity of D in Z). Di(1)≥ Di(0) for all i.

Assumption 3.4 rules out the existence of defiers, thus eliminating the strata dEE,

dNN, dEN, and dNE in this setting. In the context of the application, it eliminates the

existence of individuals who would enroll in JC only if assigned to the control group.

A necessary condition for this assumption to hold is that Z has a non-negative average

effect on D, which can be falsified by the data. As further discussed in Subsection 3.3.4,
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it is possible to relax Assumption 3.4 by letting the direction of the monotonicity be

unknown, just as Assumption 1.4 imposes monotonicity without a priori direction.

Under Assumptions 3.1 through 3.4, IV estimators point identify the average treat-

ment effect of D on Y ∗ (and S) for the compliers in the absence of sample selection. If

sample selection is present, however, those assumptions are not enough to point identify

the average effect of D on Y ∗.

In this section, the parameter of interest is the average treatment effect ofD on wages

for the "always-employed compliers" (i.e., the cEE stratum):4

Δ= E[Y ∗(1)−Y ∗(0)|cEE] = E[Y (1)−Y (0)|cEE]. (3.3)

As can be seen from the definition of the different subpopulations above, this stratum

is the only one for which wages are observed for individuals who enrolled and did not

enroll into JC after imposing Assumption 3.4. The parameter in (3.3) is also considered

in Frumento et al. (2012). It is the average effect for the intersection of the subpopulation

IA (1994) and AIR (1996) focus on when accounting for noncompliance with what Lee

(2009) and ZRM (2008) focus on when addressing sample selection. In the application,

this stratum is the largest one in the population, accounting for about 40 percent. The

following subsections construct bounds for (3.3) by considering two more assumptions.

3.3.2 Bounds under Monotonicity

This subsection derives the bounds for Δ in equation (3.3) by extending the trimming

procedure bounds in Zhang and Rubin (2003), ZRM (2008), and Lee (2009) to allow
4Note that since for compliers Z =D, the stratum cEE can also be interpreted as those compliers who

would be always employed regardless of treatment receipt.
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for noncompliance. The following assumption is imposed to further reduce the number

of principal strata.

Assumption 3.5 (Individual-Level Monotonicity of S in D). Si(1)≥ Si(0) for all i.5

Assumption 3.5 states that there is a non-negative effect of D on S for every unit.

In the application, it assumes that there is a non-negative effect of JC on employment

for every individual. While this assumption is similar to the monotonicity assumption

employed in ZRM (2008) and Lee (2009), it differs in that the monotonicity of S is

imposed in the actual treatment received (D), rather than in the treatment assigned (Z).

This type of monotonicity assumption has been employed in the partial identification

literature to address problems other than sample selection (e.g., AIR, 1996; Manski and

Pepper, 2000; Flores and Flores-Lagunes, 2010a). A testable implication of Assump-

tion 3.5 is that the average effect of D on S for compliers, which is point identified under

Assumptions 3.1 through 3.4, is non-negative. Similar to Assumption 3.4, and as fur-

ther discussed in Subsection 3.3.4, it is possible to relax Assumption 3.5 by letting the

direction of the monotonicity be unknown.

Assumption 3.5 rules out strata where the selection indicator S is negatively affected

by D. From the strata remaining after imposing Assumptions 3.1 through 3.4, Assump-

tion 3.5 rules out the existence of the cEN stratum. Therefore, under Assumptions 3.1

through 3.5 there are seven strata in the population: aEE, aNN, nEE, nNN, cEE, cNN

and cNE. The relationship between these seven strata and the observed groups defined

by the values of {Z,D(Z),S(Z,D(Z))} is given in Table 3.1.
5Under Assumptions 3.1 through 3.4, Assumption 3.5 can be relaxed as "Si(1)≥ Si(0) for all compli-

ers" in deriving the bounds for Δ.



34

Table 3.1: Observed Groups and Principal Strata

Z = 0 Z = 1
D D
0 1 0 1

S 0 cNE,cNN,nNN aNN S 0 nNN cNN,aNN
1 cEE,nEE aEE 1 nEE cNE,cEE,aEE

Thus, while some observed groups are composed of only one stratum, some of them

are mixtures of two or more strata. Under Assumptions 3.1 through 3.5, the proportion

of each stratum in the population can be identified. Let πk denote the proportion of

stratum k in the population, and let pds|z ≡ Pr(D = d,S = s|Z = z) and qs|z ≡ Pr(S =

s|Z = z). Then:

πaNN = p10|0;πaEE = p11|0;πnNN = p00|1;πnEE = p01|1 (3.4)

πcEE = p01|0− p01|1;πcNN = p10|1− p10|0;πcNE = q1|1−q1|0.

In addition, the mean outcomes for those observed cells with S = 1 can be written

as a function of mean potential outcomes for different strata. Letting Yzds ≡ E[Y |Z =

z,D= d,S= s], then:

Y 011 = E[Y (1)|aEE] (3.5)

Y 101 = E[Y (0)|nEE] (3.6)

Y 001 = E[Y (0)|cEE]πcEE
p01|0

+E[Y (0)|nEE]πnEE
p01|0

(3.7)

Y 111 = E[Y (1)|cEE]πcEE
p11|1

+E[Y (1)|cNE]πcNE
p11|1

+E[Y (1)|aEE]πaEE
p11|1

(3.8)
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The average potential outcomes under treatment and control are point identified

for the nEE and aEE strata, respectively. Moreover, it is possible to point identify

E[Y (0)|cEE] by combining equations (3.4), (3.6), and (3.7) to obtain:

E[Y (0)|cEE] = p01|0
p01|0− p01|1

Y 001− p01|1
p01|0− p01|1

Y 101. (3.9)

Thus, one of the terms of Δ in (3.3) is point identified. But the term E[Y (1)|cEE] is

not point identified because two of the conditional means in (3.8) are not point identified.

Next, bounds are constructed for E[Y (1)|cEE] and Δ.

In a setting without noncompliance, Zhang and Rubin (2003), ZRM (2008), and

Lee (2009) construct bounds for the non-point identified expectation of the potential

outcome in the definition of their average effect based on a cell containing only two

strata. To illustrate the main idea behind their “worst-case” bounds, suppose that there

were no individuals in the aEE stratum, so that πaEE = 0 and the cell {Z = 1,D= 1,S=

1} contained only two strata, cEE and cNE. Then, E[Y (1)|cEE] would be bounded

from above (below) by the mean of Y for the fraction πcEE/(πcEE+πcNE) of the largest

(smallest) values of Y for those individuals in that cell. A key difference between the

bounds derived in those studies and this one is that in the current setting the bounds for

E[Y (1)|cEE] are derived from a cell containing three strata.

By equations (3.5) and (3.8), although the observed mean Y 111 is a weighted av-

erage of the mean potential outcome of Y (1) for three strata, the mean E[Y (1)|aEE]

is point identified. Thus, the bounds are constructed by considering “worst-case” sce-

narios that exploit the information that Y 011 = E[Y (1)|aEE]. To motivate the way to

construct the bounds, the problem can be thought of as finding “worst-case” scenarios
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for E[Y (1)|cEE] subject to the constraint that Y 011 = E[Y (1)|aEE]. The strategy to de-

rive bounds for E[Y (1)|cEE] is to solve the unconstrained problem first, and then check

whether the value of E[Y (1)|aEE] implied by this solution can satisfy the constraint that

Y 011 = E[Y (1)|aEE]. If the constraint can be satisfied, then the unconstrained solution

is just the solution to the constrained problem. Otherwise, impose the constraint first

and then obtain the solution to the constrained problem.

Additional notations are introduced to describe the bounds for Δ. Let y111r be the r-th

quantile of Y in the cell {Z = 1,D= 1,S= 1}, and let

Y (y111r′ ≤ Y ≤ y111r )≡ E[Y |Z = 1,D= 1,S= 1,y111r′ ≤ Y ≤ y111r ]. (3.10)

Hence, Y (y111r′ ≤Y ≤ y111r ) gives the mean outcome in the cell {Z = 1,D= 1,S= 1} for

those outcomes between the r′-th and r-th quantiles ofY in that cell. Suppose that I want

to derive the lower bound for E[Y (1)|cEE]. To begin, I consider the problem without the

constraint and ignore the information about aEE. In this case, I can directly apply the

existing trimming procedure in ZRM (2008) and Lee (2009) and bound E[Y (1)|cEE]

from below by the expected value of Y for the πcEE/p11|1 fraction of the smallest values

of Y in the cell {Z = 1,D = 1,S = 1}, or, Y (Y ≤ y111πcEE/p11|1
), where p11|1 = πcEE +

πcNE + πaEE . Next, check whether this solution is consistent with the constraint that

Y 011 = E[Y (1)|aEE]. To do this, I construct the “worst-case” scenario lower bound for

E[Y (1)|aEE], call it LY1,aEE , implied by the unconstrained solution by assuming that

all the observations that belong to the aEE stratum are at the bottom of the remaining

observations in the cell {Z = 1,D = 1,S = 1}. This yields LY1,aEE = Y (y111πcEE/p11|1
≤

Y ≤ y1111−(πcNE/p11|1)). If LY1,aEE ≤Y
011, the unconstrained solution is consistent with the
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constraint and the lower bound for E[Y (1)|cEE] isY (Y ≤ y111πcEE/p11|1
). If LY1,aEE >Y

011,

then the unconstrained solution is inconsistent with Y 011 = E[Y (1)|aEE]. Intuitively,

having LY1,aEE > Y
011 implies that some observations from the aEE stratum must be at

the bottom πcEE/p11|1 fraction of the smallest values of Y in the cell {Z = 1,D= 1,S=

1} and thus Y (Y ≤ y111πcEE/p11|1
) is not a sharp lower bound for E[Y (1)|cEE]. In this case,

the “worst-case” scenario lower bound for E[Y (1)|cEE] is constructed by placing all the

observations in the aEE and cEE strata at the bottom of the distribution of Y in the cell

{Z = 1,D = 1,S = 1}. Thus, if LY1,aEE > Y 011, the lower bound for E[Y (1)|cEE], call

it LY1,cEE , is derived from the equation:

Y (Y ≤ y1111−(πcNE/p11|1)) =
πcEE

πcEE +πaEE
LY1,cEE +

πaEE
πcEE +πaEE

Y 011, (3.11)

where Y (Y ≤ y1111−(πcNE/p11|1)) is the mean of Y for the 1− (πcNE/p11|1) fraction of the

smallest values of Y in the cell {Z = 1,D= 1,S= 1}.

Note that the lower bound LY1,cEE derived from equation (3.11) does not yield a

sharp bound for E[Y (1)|cEE] if LY1,aEE ≤Y 011. For example, if Y 011 = E[Y (1)|aEE] is

large, so that it is impossible that all individuals from the aEE stratum are at the bottom

1− (πcNE/p11|1) fraction of the smallest values of Y in the cell {Z = 1,D = 1,S = 1},

then the lower bound derived from (3.11) will be much lower thanY (Y ≤ y111πcEE/p11|1
), the

lower bound derived without using the information on E[Y (1)|aEE]. Intuitively, in this

case the value of Y 011 = E[Y (1)|aEE] is so large that it provides little information about

the “worst-case” lower bound scenario for E[Y (1)|cEE] (but it will provide valuable

information for the upper bound of E[Y (1)|cEE]).
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The upper bound for E[Y (1)|cEE] is derived in a similar way as the lower bound,

but now by placing the observations in the corresponding strata in the upper part of the

distribution of Y in the cell {Z = 1,D = 1,S = 1}. Once bounds for E[Y (1)|cEE] are

obtained, they can be combined with the point identification of E[Y (0)|cEE] in (3.9) to

construct bounds for the average effect of the always-selected compliers, Δ in (3.3). The

following proposition presents bounds for Δ under Assumptions 3.1 through 3.5.

Proposition 3.1 If Assumptions 3.1 through 3.5 hold, then LcEE ≤ Δ≤UcEE. LcEE and

UcEE are lower and upper bounds for Δ given by:

LcEE = LY1,cEE −Y 001
p01|0

p01|0− p01|1
+Y 101

p01|1
p01|0− p01|1

UcEE =UY1,cEE −Y 001
p01|0

p01|0− p01|1
+Y 101

p01|1
p01|0− p01|1

,

where

LY1,cEE =
{ Y (Y ≤ y111αcEE ), if Y (y

111
αcEE ≤ Y ≤ y1111−αcNE )≤ Y

011

Y (Y ≤ y1111−αcNE )
q1|0−p01|1
p01|0−p01|1 −Y

011 p11|0
p01|0−p01|1 , otherwise

UY1,cEE =

{ Y (Y ≥ y1111−αcEE ), if Y (y
111
αcNE ≤ Y ≤ y1111−αcEE )≥ Y

011

Y (Y ≥ y111αcNE )
q1|0−p01|1
p01|0−p01|1 −Y

011 p11|0
p01|0−p01|1 , otherwise

αcEE =
πcEE
p11|1

=
p01|0− p01|1
p11|1

, and

αcNE =
πcNE
p11|1

=
q1|1−q1|0
p11|1

.

Proof. See Appendix A.

3.3.3 Bounds under Mean Dominance

This subsection considers a mean dominance assumption that narrows the bounds in

Proposition 3.1.
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Assumption 3.6 (Mean Dominance). E[Y (1)|cEE]≥ E[Y (1)|cNE].

The intuition behind Assumption 3.6 is the same as the one behind Assumption 2.3:

some strata are expected to have more favorable characteristics and thus better potential

outcomes than others. In the application, this assumption states that the mean potential

outcome under treatment of the always-employed compliers is greater than or equal

to that of those who would be employed only if they enrolled in JC. Assumption 3.6

implies a positive correlation between employment and wages, which is supported by

standard economic models of labor supply. Zhang and Rubin (2003), ZRM (2008) and

Huber and Mellace (2010) consider stochastic-dominance versions of Assumption 3.6.

For example, in the current setting, such an assumption would state that the potential

outcome under treatment of the cEE stratum at any rank of the outcome distribution is

weakly less than that of the cNE stratum. For the purposes of the dissertation, stochastic

dominance is much stronger than needed.

As Assumption 2.3 in the Section 3.2, even though Assumption 3.6 is not directly

testable, it is possible to get indirect evidence about its plausibility by comparing the

average baseline characteristics of the cEE and cNE strata that are closely related to the

outcome of interest (e.g., values of the outcome prior to randomization). Assumption

3.6 is less likely to hold if these comparisons suggest that the cNE stratum has bet-

ter characteristics at the baseline than does the cEE stratum. Under Assumptions 3.1

through 3.5 it is possible to point identify the average characteristics for all seven strata

at the baseline. This can be seen by noting that the observed average characteristics at

the baseline for each of the observed groups {Z,D,S} in Table 3.1 is a weighted average

of the average characteristics for the different strata (see, for reference, equations (3.7)
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and (3.8)), with the weights being point identified from (3.4). Based on these equations,

the average characteristics at the baseline for all seven strata can be estimated by solv-

ing an overidentified GMM problem. This tool is implemented in the application and

further details are provided in the Appendix C.

The mean dominance assumption above tightens the bounds in Proposition 3.1 by

increasing the lower bound on E[Y (1)|cEE]. To get the new lower bound, note that,

similar to equation (3.8), I can write

Y 111 = E[Y (1)|cEE,cNE]πcEE +πcNE
p11|1

+E[Y (1)|aEE]πaEE
p11|1

, (3.12)

where the stratum proportions and E[Y (1)|aEE] are point identified. With Assumption

3.6, E[Y (1)|cEE]≥ E[Y (1)|cEE,cNE], which provides a lower bound for E[Y (1)|cEE]

that is greater than or equal to the one obtained in Proposition 3.1. The following propo-

sition presents bounds for Δ under Assumptions 3.1 through 3.6.

Proposition 3.2 If Assumptions 3.1 through 3.6 hold, then LcEE ≤ Δ≤UcEE. LcEE and

UcEE are lower and upper bounds for Δ, where UcEE is equal to the upper bound

for Δ given in Proposition 3.1 and LcEE equals:

LcEE = LY1,cEE −Y 001
p01|0

p01|0− p01|1
+Y 101

p01|1
p01|0− p01|1

,

with

LY1,cEE =
p11|1Y

111− p11|0Y 011
p11|1− p11|0

.

Proof. See Appendix A.

3.3.4 Remarks on Assumptions

The following remarks discuss how to relax the assumptions used in Section 3.3.
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Remark 1. As Assumption 1.4 in Section 3.1, it is possible to relax the individual-

level monotonicity assumptions (Assumptions 3.4 and 3.5) by not requiring prior knowl-

edge about their direction. This is closely related to the work by Shaikh and Vytlacil

(2011), who derive bounds for average treatment effects on binary outcomes with a

valid instrument by imposing monotonicity (or threshold crossing models) assumptions

similar to those in Assumptions 3.4 and 3.5 without specifying the direction of the

monotonicity (see also BSV, 2008). In this setting, Assumptions 3.4 and 3.5 can be

replaced with the following assumptions.

Assumption 3.4’ (Individual-Level Monotonicity of D in Z, unknown direction). Either

Di(1)≥ Di(0) for all i or Di(1)≤ Di(0) for all i.

Assumption 3.5’ (Individual-Level Monotonicity of S in D, unknown direction). Either

Si(1)≥ Si(0) for all i or Si(1)≤ Si(0) for all i.

Assumption 3.7 E[S|Z = 1]−E[S|Z = 0] �= 0.

Under Assumptions 3.1, 3.2, 3.3, 3.4’, 3.5’, and 3.7, it is possible to infer the direc-

tions of the monotonicity assumptions above from the observed data, and hence, derive

bounds for the average effect of D on Y for either the cEE or dEE stratum by the pro-

cedure described in Subsection 3.3.2.

The direction of the monotonicity of D in Z can be inferred directly from E[D|Z =

1]−E[D|Z = 0]. In addition, note that under Assumption 3.7 the instrumental variable

estimator of the effect ofD on S, (E[S|Z = 1]−E[S|Z = 0])/(E[D|Z = 1]−E[D|Z = 0]),

point identifies the effect of D on S for a subpopulation (either the compliers or the de-

fiers, depending of the direction of Assumption 3.4’). Since all the individuals in the
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population share the same direction of the monotonicity, the direction of the monotonic-

ity of S in D can be inferred from the sign of the instrumental variable estimator.6

Depending on the direction of the monotonicity in Assumption 3.4’, the parameter of

interest would be the average effect of D on Y either for the always-employed compliers

or the always-employed defiers. In the context of constructing bounds for this effect,

the three assumptions above imply the existence of only one stratum out of cNE, cEN,

dNE and dEN.7 Thus, similar to the case considered in Subsection 3.3.2, one of the

mean potential outcomes in the parameter of interest would be point identified (e.g.,

E[Y (0)|cEE]), while the other is partially identified (e.g., E[Y (1)|cEE]). The bounds for

the non-point identified term can be constructed following the same procedure described

in Subsection 3.3.2. Moreover, an appropriate mean dominance assumption similar to

Assumption 3.6 could be used to narrow the bounds, as in Subsection 3.3.3.

Remark 2. It is possible to construct bounds on Δ without Assumption 3.5, in

which case the stratum cEN is not ruled out and appears in the observed cells {Z =

0,D= 0,S= 1} and {Z = 1,D= 1,S= 0} in Table 3.1. Although the proportions of the

strata aEE, aNN, nEE, and nNN are still point identified, neither the proportions of the

strata cEE, cNN, cNE, and cEN nor the term E[Y (0)|cEE] is now point identified. To

construct bounds for Δ in this case, the approach in Subsection 3.3.3 can be combined

with that followed by Zhang and Rubin (2003), ZRM (2008), Imai (2008), and Huber

and Mellace (2010) in a setting with sample selection but without the noncompliance
6Note that, under the current assumptions, if E[S|Z = 1]−E[S|Z = 0] = 0, the number of strata reduces

to six: aEE, aNN, nEE, nNN, plus either cEE and cNN or dEE and dNN. In this case, the average
treatment effect of D on Y is point identified for either the cEE or the dEE stratum.

7To see this, note that by Assumptions 3.1 and 3.2, E[D|Z = 1]−E[D|Z = 0] = πc−πd and E[S|Z =
1]−E[S|Z = 0] = [Pr(cNE|c)−Pr(cEN|c)]πc+[Pr(dNE|d)−Pr(dEN|d)]πd .
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issue. The main idea for constructing their bounds is to consider “worst-case” scenarios

for their effect of interest that are consistent with the possible values that πEN (and hence

πEE) can take based on the data.8 In the current setting, the “worst-case” scenarios for Δ

occur when πcEE is at its minimum value that is consistent with the data, which equals

p01|0− p01|1− p10|1+ p10|0.9 Given this lower bound for πcEE , the same approach as

in Subsection 3.3.2 to derive bounds for Δ by constructing bounds for E[Y (1)|cEE] and

E[Y (0)|cEE]. However, the bounds in this case will be wider than those presented in

Proposition 3.1, and may result in uninformative bounds (see e.g., Blanco, Flores, and

Flores-Lagunes, 2012).

Remark 3. In the absence of Assumptions 3.5 and 3.6, the lower bound for Δ

in Proposition 3.2 provides information for another parameter of interest, ATEcEE,cNE ,

which is defined as the weighted average of Δ and the ATE for cNE. LcEE in Proposition

3.2 can be viewed as the lower bound for ATEcEE,cNE , under Assumptions 3.1 through

3.4 and the following assumption.

Assumption 3.5” E[Y (0)|cEE,cEN]� E[Y (0)|cEE,cNE], where E[Y (0)|k1,k2] is the

weighted average of Y (0) between two strata k1 and k2.

This assumption states that the mean value of Y (0) (i.e., the potential wage if not

attending JC) for compliers who would be employed if they did not attend JC (cEE and
8Zhang and Rubin (2003) and ZRMwrite the bounds for their parameter as functions of πEN , and then

obtain the upper or lower bound by minimizing or maximizing the bounds over all possible values of πEN
that are consistent with the data. Huber and Mellace (2010) show that the numerical optimization is not
necessary, and the bounds are obtained at the maximal value of πEN .

9The range of possible values of πcEE is calculated from the eight cells in Table 3.1, which yields
πcEE ∈ [max(0, p01|0− p01|1− p10|1+ p10|0),min(p01|0− p01|1, p11|1−p11|0)]. As noticed by Lee (2009),
the bounds of Δ are well defined only if πcEE > 0, which implies πcEE is minimized at p01|0− p01|1−
p10|1+ p10|0.
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cEN) is greater than or equal to that for compliers who would be employed if they did

attend JC (cEE and cNE). This assumption exploits the positive correlation between

employment and wages implied by standard models of labor supply, as the cEN are

employed under the control treatment but the cNE are not. Indirect evidence regarding

the plausibility of Assumption 3.5” can be obtained by comparing the weighted aver-

age baseline characteristics, E[X |cEE,cEN] and E[X |cEE,cNE], derived from the cells

{Z = 0,D = 0,S = 1} and {Z = 1,D = 1,S = 1}, respectively. In applications where

Assumption 3.5 or 3.6 are difficult to justify, Assumption 3.5” may become attractive.

Furthermore, the mixture of the strata cEE and cNE seems to be an interesting target

group, since those are individuals who would comply with the treatment assignment and

would be employed if they attended JC.

Remark 4. This section focuses on the average treatment effect of the cEE stratum.

It is possible to combine the methods in the previous subsections with those in Huber

and Mellace (2010) to construct bounds for the average effects of other subpopulations.

For instance, consider the average effect of the treated and selected individuals (those

with D = 1 and S = 1), or of the treated and selected compliers. As can be seen from

Table 3.1, these other subpopulations are mixtures of different strata for which, with the

exception of cEE, wages are unobserved under one of the treatment assignments. For

example, wages are never observed under the control treatment for those who would be

unemployed if they did not enroll in JC (the cNE group), or for those who would be

always employed regardless of treatment assignment (the always-takers). Thus, addi-

tional assumptions (e.g., a bounded outcome) are needed to partially identify the effects

for other strata or subpopulations.
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3.4 Estimation and Inference

A first consideration when performing statistical inference in partially identified models

is whether one wants to construct confidence regions for the identified set (e.g., [LB,UB],

[LcEE ,UcEE ]) or for the true value of the parameter (e.g., ATE, Δ). The section focuses

on confidence regions for the partially identified parameter.

Imbens and Manski (2004) and Stoye (2009) provide confidence intervals that as-

ymptotically cover the true value of a parameter θ 0 with a fixed probability when the

bounds are of the form θ l0 ≤ θ 0 ≤ θ u0 and there are estimators of θ l0 and θ u0 that behave

asymptotically like sample means. Their analysis, however, does not apply to all the

bounds in the dissertation because the bounds in Propositions 2.4, 2.5, 2.6, and 3.1, 3.2

involve minimum (min) and maximum (max) operators. For example, the upper bound

UY1,cEE for E[Y (1)|cEE] in Proposition 3.1 can be written as UY1,cEE = min{Y (Y ≥

y1111−αcEE ),Y (Y ≥ y111αcNE )
q1|0−p01|1
p01|0−p01|1 −Y

011 p11|0
p01|0−p01|1}. When the two quantities in the min

operator are close to each other, the distribution of the estimator for the upper bound is

not well approximated by a normal distribution. Those two operators create complica-

tions for estimation and inference. First, sample analog estimators of the bounds can

be severely biased in small samples. Because of the concavity (convexity) of the min

(max) function, sample analog estimates of the bounds tend to be much narrower than

the true bounds. Second, closed-form characterization of the asymptotic distribution of

estimators for parameters involving min or max functions is very difficult to derive and,

thus, usually unavailable. Moreover, Hirano and Porter (2012) show that there exist no

locally asymptotically unbiased estimators and no regular estimators for parameters that
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are nonsmooth functionals of the underlying data distribution, such as those involving

min or max operators.10 Hence, the uniform asymptotic normality condition in Imbens

and Manski (2004) and Stoye (2009) does not hold when the two operators are present.

This has generated a growing literature on inference methods for partially identified

models of this type (see Tamer, 2010, and the references therein).

To address those issues, the dissertation employs the methodology proposed by

Chernozhukov, Lee, and Rosen (2011) that are applicable to bounds of the form [θ l0,θ
u
0],

where θ l0 = supv∈V θ l(v), θ u0 = infv∈V θ u(v), θ l(v) and θ u(v) are bounding functions,

and V is the set over which the infimum and supremum are taken. They employ

precision-corrected estimates of the bounding functions before applying the infimum

and supremum operators. The precision adjustment consists of adding to each esti-

mated bounding function its pointwise standard error times an appropriate critical value.

Hence, estimates with higher standard errors require larger adjustments. Depending on

the choice of the critical value, it is possible to obtain confidence regions for either the

identified set or the true parameter value, as well as half-median unbiased estimators

for the lower and upper bounds. The half-median-unbiasedness property means that the

upper (lower) bound estimator exceeds (falls below) the true value of the upper (lower)

bound with the probability of at least one-half asymptotically. This property is impor-

tant because achieving local asymptotic unbiasedness is impossible (Hirano and Porter,

2012). For details on the procedure of applying their method to the bounds in these

five propositions see Appendix B. For the bounds without min or max operators, sample
10As documented by Hirano and Porter (2011), nonexistence of local asymptotic unbiased estimators

implies that bias correction procedures cannot completely get rid of local bias and that reducing bias too
much will eventually lead to arbitrarily large variance.
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analog estimators and the confidence regions for the true parameter value proposed by

Imbens and Manski (2004) are used.



CHAPTER 4

APPLICATION: EVALUATION OF JOB CORPS

4.1 Job Corps and the National Job Corps Study

Since 1964, Job Corps (JC) has been a central part of the federal government efforts to

provide job training and employment assistance to disadvantaged youth. Services such

as academic education, vocational training, residential living, health care and health ed-

ucation, counseling and job placement assistance are delivered at more than 120 centers

nationwide. To be eligible for the program, an individual must be a legal resident of the

United States, be between 16 and 24 years old and come from a low-income household.

According to the US Department of Labor (2005), a typical JC student lives at a local

JC center for eight months and receives about 1100 hours of academic and vocational

instruction, which is equivalent to approximately one year in high school.

This dissertation employs data from the National Job Corps Study (NJCS), a ran-

domized experiment funded by the US Department of Labor to evaluate the effective-

ness of JC. The study examined the impacts of JC on labor market outcomes, welfare

dependence and several other outcomes to help assess whether the program achieved

its goals of helping students become more responsible and productive citizens. Eligible

individuals who applied to JC for the first time between November 1994 and December

1995 (80,833 individuals) were randomly assigned to a program, control, or program

non-research group. Individuals in the control group (5,977) were embargoed from the

program for a period of three years, while those in the program (treatment) group (9,409)

were allowed to enroll in JC. The research sample was interviewed at the time of ran-

48
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dom assignment and at 12, 30, and 48 months after random assignment. Due to both

design and programmatic reasons, some subpopulations were randomized in the NJCS

with different (but known) probabilities (Schochet, Burghardt, and Glazerman, 2001).

Hence, design weights are employed throughout the analysis.

Taking advantage of randomization, most of previous literature evaluating the JC

program studies ITT effects or LATEs for compliers (e.g., Burghardt et al., 2001; Scho-

chet, Burghardt, and Glazerman, 2001; Schochet, Burghardt, and McConnell, 2008;

Lee, 2009; Blanco, Flores, and Flores-Lagunes, 2012). The noncompliance behavior,

however, tends to dilute the impacts of JC. Across the samples in the dissertation, 73%

of individuals of the treatment group actually enrolled in JC, while 4% of individuals

of the control group also enrolled. Burghardt et al. (2001), Schochet, Burghardt, and

Glazerman (2001) and Schochet, Burghardt, and McConnell (2008) also adjust to non-

compliance by examining the LATE, which is representative for the subpopulation (i.e.,

compliers) accounting for 69% in the population. Different from the previous literature,

using the random assignment as an IV, the present research addresses this noncompli-

ance issue and analyzes the population ATEs of actual JC enrollment on participants’

labor market outcomes and welfare. It also examines wage effects of JC enrollment by

focusing on a specified subpopulation, i.e., the always-employed compliers. Thus, the

dissertation also contributes to the previous literature on the evaluation of the JC pro-

gram by providing credible partial identification results for treatment effects other than

LATE and the ITT effect.
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4.2 The Population ATE of JC Enrollment

4.2.1 Specific Sample

Given the objectives and services provided by JC (e.g., academic and vocational train-

ing, job search assistance), making inference about the population average treatment

effects of JC enrollment is of great public interest. This section uses data on individu-

als who responded to the 48-month interview to examine the ATEs on weekly earnings

and employment at Week 208 (i.e., four years) and public assistance benefits received

during the fourth year after randomization11. On one hand, JC tends to have positive

effects on participants’ labor market outcomes given its objectives and services. On the

other hand, participants may experience a reduction in welfare receipt while they enroll

in JC, because the program provides shelter (except to nonresidential students), food,

and a stipend. After they leave JC, participants may receive less public income support

because of higher earnings. Schochet, Burghardt, and Glazerman (2001) report that the

reductions in benefit receipt persisted throughout four years after randomization.

The treatment variable indicates whether or not the individual ever enrolled in JC

during the 208 weeks after random assignment. The random assignment indicator serves

as an instrument for JC enrollment. Two samples are obtained by dropping individuals

with missing relevant variables from the survey.12 The sample for weekly earnings and

employment involves 10,520 individuals (4,187 and 6,333 in the control and treatment
11Benefits include Aid to Families with Dependent Children (AFDC) or Temporary Assistance for

Needy Families (TANF), food stamps, Supplemental Security Income (SSI) or Social Security Retire-
ment, Disability, or Survivor (SSA), and General Assistance.
12Two samples are derived because individuals with missing labor market outcomes and with missing

public benefits are different.
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groups, respectively), and for public benefits 10,976 individuals (4,387 and 6,589 in the

control and treatment groups, respectively).

Table 4.1 reports the average baseline characteristics of both samples by treatment

assignment status along with the percentage of missing values for each of those vari-

ables. The pre-treatment variables include demographic characteristics, education and

background variables, employment, earnings and public benefits dependency at base-

line, as well as labor market outcomes in the year prior to randomization. As one would

expect, the average pre-treatment characteristics of the treatment and control groups are

similar in both the samples due to randomization, with the difference in means being

statistically different from zero at the five percent level for only one variable (personal

income: 3,000-6,000). Thus, both samples maintain the balance of baseline variables

between the control and treatment groups.

4.2.2 Assessment of Assumptions

Assumptions 1.1 through 1.4 are commonly used in the literature to address noncompli-

ance in experimental settings. This subsection concentrates on the discussion of assess-

ment of Assumptions 2.2 and 2.3.

Table 4.2 shows some relevant point identified averages for both samples. The non-

compliance behavior is similar between the two samples. As already mentioned, 73%

of individuals of the treatment group actually enrolled in JC, while 4% of individuals of

the control group also enrolled during the 208 weeks after randomization. The ITT ef-

fects on weekly earnings, employment and public benefits are 22.19 , .038 and −84.29,

respectively. These effects are all statistically significant, with their signs as expected.



52

Table 4.1: Summary Statistics of Baseline Variables (Population ATE of JC)

Sample for Labor Market Outcomes Sample for Public Assistance Benefits

Missing Prop. Z=1 Z=0 Diff. (Std.Err.) Missing Prop. Z=1 Z=0 Diff. (Std.Err.)

Female 0 .417 .407 .009 (.010) 0 .415 .406 .009 (.010)

Age at Baseline 0 18.42 18.38 .035 (.042) 0 18.41 18.38 .031 (.041)

White, Non-hispanic 0 .273 .266 .007 (.009) 0 .274 .269 .005 (.009)

Black, Non-Hispanic 0 .483 .478 .005 (.010) 0 .477 .474 .003 (.010)

Hispanic 0 .171 .179 -.008 (.008) 0 .172 .180 -.008 (.007)

Other Race/Ethnicity 0 .073 .078 -.005 (.005) 0 .076 .076 .000 (.005)

Never Married .017 .916 .915 .001 (.006) .020 .914 .915 -.001 (.005)

Married .017 .020 .022 -.002 (.003) .020 .020 .022 -.001 (.003)

Living Together .017 .040 .041 -.001 (.004) .020 .040 .041 -.001 (.004)

Separated .017 .024 .022 .002 (.003) .020 .025 .022 .003 (.003)

Has Child .007 .181 .184 -.003 (.008) .008 .181 .183 -.002 (.008)

Number of Children .011 .253 .248 .005 (.012) .012 .251 .247 .004 (.012)

Personal Education .018 10.08 10.09 -.008 (.031) .021 10.08 10.10 -.019 (.030)

Mother’s Education .194 11.50 11.51 -.011 (.058) .197 11.49 11.53 -.042 (.057)

Father’s Education .391 11.43 11.54 -.110 (.073) .394 11.45 11.57 -.127* (.072)

Ever Arrested .017 .258 .263 -.005 (.009) .019 .259 .266 -.007 (.009)

Household Inc.: <3000 .368 .252 .258 -.006 (.011) .371 .250 .255 -.005 (.011)

3000-6000 .368 .201 .204 -.004 (.010) .371 .198 .208 -.010 (.010)

6000-9000 .368 .116 .111 .006 (.008) .371 .117 .109 .008 (.008)

9000-18000 .368 .245 .243 .001 (.011) .371 .246 .241 .005 (.011)

>18000 .368 .187 .183 .003 (.010) .371 .189 .187 .002 (.010)

Personal Inc.: <3000 .083 .786 .790 -.004 (.008) .086 .783 .788 -.006 (.008)

3000-6000 .083 .129 .129 .000 (.007) .086 .130 .131 -.000 (.007)

6000-9000 .083 .055 .046 .009** (.005) .086 .056 .046 .010** (.004)

>9000 .083 .031 .036 -.005 (.004) .086 .031 .035 -.004 (.004)

Have Job .031 .216 .209 .007 (.008) .034 .219 .211 .009 (.008)

Weekly Hours Worked 0 21.69 21.13 .563 (.417) 0 21.71 21.14 .576 (.407)

Weekly Earnings 0 110.35 104.29 6.059 (4.482) 0 110.66 104.53 6.136 (4.328)

Had Job, Prev. Yr. .016 .651 .643 .008 (.010) .019 .653 .646 .007 (.009)

Months Employed,Prev.Yr. 0 3.575 3.516 .058 (.085) 0 3.582 3.518 .064 (.083)

Earnings, Prev.Yr. .081 2991.8 2873.1 118.65 (109.10) .084 3020.7 2893.8 126.84 (107.01)

Received Public Benefits .115 .590 .595 -.005 (.010) .118 .582 .590 -.008 (.010)

Months Received Benefits .127 6.554 6.542 .012 (.125) .129 6.469 6.493 -.024 (.122)

Numbers of Observations 10520 6333 4187 10976 6589 4387

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0) in
the program. Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in
parentheses are standard errors. ** and * denote that difference is statistically different from 0 at 5% and
10% level, respectively. Computations use the weights that account for sample and interview design and
interview non-response.
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The LATEc estimates for compliers on earnings, employment and public benefits are

32.29, .055 and −122.28, respectively, 45 percent higher than their corresponding ITT

estimates. By Assumption 2.2, the sign of LATEc identifies the sign of the LATEs for

the other two strata. Thus, the estimates of LATEc indicate positive population average

treatment effects on weekly earnings and employment and a negative population effect

on public benefits.

Table 4.2 also shows the proportion of each stratum in the samples. In both of

them, the proportion of compliers is the largest, .69, followed by never-takers, .27, and

always-takers, .04. And by Assumption 2.2, there are no defiers in the samples. The

end part of Table 4.2 reports the point identified averages cited in Assumptions 2.2 and

2.3.13 These estimates are all statistically significant and follow a certain pattern in both

samples: under the treated status, the average outcome for always-takers is the smallest,

followed by the average for the mixture of always-takers and compliers, and the average

for compliers, while under the untreated status, the average outcome for compliers is

the smallest, followed by the average for the mixture of never-takers and compliers, and

the average for never-takers. Always-takers seem to be the least favorable group despite

their strong initiative of participation while never-takers seem to do fine even without

participation.

As mentioned previously, differences across these point identified averages may

provide a preliminary hint for Assumption 2.3. To begin, the direction of Assump-
13As in Lee (2009), a transformed measure is used to estimate the sample averages of weekly

earnings and public benefits to minimize the effect of outliers. Specifically, the entire observed out-
come distribution (for either weekly earnings or public benefits) is split into 20 percentile groups
(5th,10th, . . . ,95th,100th), and then the mean outcome within each of the 20 groups is assigned to each
individuals.
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Table 4.2: Point Identified Average Outcomes after Random Assignment

Labor-Market-Outcome Sample Public-Benefit Sample
Variables: Enrollment Earnings Employment Enrollment Public benefits
Averages for Z = 1 .730**

(.006)
228.78**
(3.004)

.608**
(.006)

.732**
(.005)

747.21**
(23.40)

Averages for Z = 0 .043**
(.003)

206.60**
(3.552)

.570**
(.008)

.043**
(.003)

831.50**
(30.28)

ITT E f f ects .687**
(.006)

22.19**
(4.652)

.038**
(.010)

.689**
(.006)

-84.29**
(38.27)

LATEc 32.29**
(7.007)

.055**
(.015)

-122.28**
(56.78)

Proportions of Strata under Assumptions 1.1 through 1.4
πn .270**

(.006)
.268**
(.006)

πc .687**
(.007)

.689**
(.006)

πa .043**
(.003)

.043**
(.003)

Other Point Identified Average Outcomes under Assumptions 1.1 through 1.4
E[Y (1)|a] 132.10**

(14.94)
.393**
(.037)

545.45**
(110.12)

E[Y (0)|n] 223.79**
(5.967)

.600**
(.012)

880.67**
(47.98)

E[Y (1)|c] 236.82**
(4.022)

.624**
(.008)

707.81**
(28.26)

E[Y (0)|c] 204.53**
(5.655)

.569**
(.012)

830.09**
(49.69)

E[Y |Z = 1,D= 1] 230.63**
(3.614)

.611**
(.007)

698.35**
(25.87)

E[Y |Z = 0,D= 0] 209.96**
(3.709)

.578**
(.008)

844.25**
(33.18)

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0)
in the program. D denotes whether the individual was ever enrolled in the program (D= 1) or not
(D= 0) during the 4 years (208 weeks) after randomization. Benefits include AFDC/TANF, food stamps,
SSI/SSA, and General Assistance. Numbers in parentheses are standard errors. ** denotes estimate is
statistically different from 0 at 5% level. Computations use the weights that account for sample and
interview design and interview non-response. The standard errors of LATEs, proportions of strata and
other identified average outcomes are calculated by 5000-repetition bootstrap.
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tion 2.3c may be inferred by comparing the identified averages of always-takers and

never-takers to those of compliers under the same treatment status. The hypotheses that

E[Y (1)|at] ≤ E[Y (1)|c] and E[Y (0)|c] ≤ E[Y (0)|nt] are not rejected for all of the three

outcomes. Thus, if the same relationship with compliers also hold under the alternative

treatment status, Assumption 2.3c is expected to hold. Furthermore, since the ITT ef-

fect on public benefits is negative, testable implications are available when Assumption

2.3c is combined with Assumption 2.2, as discussed in Subsection 3.2.3. These testable

implications are not rejected in the application.

More importantly, indirect evidence of Assumption 2.3 is obtained by comparing

the average baseline characteristics across strata. These average characteristics of each

stratum are estimated from a nonparametric GMM problem. For each baseline variable,

5 moment functions (4 derived from the conditional expectations defined by {Z,D}

plus 1 from the the entire sample) are used to identify three (stratum) means. The

procedure for estimating this overidentified nonparametric GMM problem is provided

in Appendix C. Tables 4.3 and 4.4 show these estimates and their differences across

strata for the samples. The average characteristics across strata are similar between

the two samples. Among the three strata, never-takers are more likely to be female,

older, married, have children, a higher level of education, personal income above $9,000

(less likely to have personal income below $3,000), higher weekly earnings at baseline,

and to have better labor market outcomes the year before randomization. By contrast,

always-takers tend to be male, younger, have a lower level of education at baseline,

and have lower earnings in the previous year. The higher earnings of never-takers may

be explained by their higher level of education and around one more year of working
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experience compared with those of always-takers. Related to the identified outcomes

of the two strata in Table 4.2, this may explain why never-takers lacked an initiative

to participate in the JC. Doing household work and taking care of children may also

prevent them from spending extra time training. The statistically significant difference

between always-takers and never-takers indirectly supports Assumption 2.3a, while the

differences obtained by comparing to compliers (i.e., columns 4 and 5) tend to support

Assumption 2.3c (except those in proportion of individuals who have household income

above $18,000 or personal income below $3,000). When the differences across the three

strata are all statistically significant, Assumption 2.3b are more likely to hold. Note that

the differences across the strata in the public benefit dependency at the baseline are not

statistically significant.14 Thus, it is concluded from these results that the data do not

provide indirect evidence against Assumption 2.3, and that the point estimates of the

differences suggest that this assumption is plausible.

4.2.3 Empirical Results

Table 4.5 shows the bounds on the population ATEs on the labor market outcomes

and the public dependency under Proposition 2.1 through Proposition 2.6. Under each

pair of the estimated bounds, a 95% level confidence interval for the true parameter is

reported. Since the bounds for weekly earnings and employment in Propositions 2.4

through 2.6 involve max or min operators, this subsection reports the half-median unbi-

ased estimators and the corresponding confidence intervals proposed by Chernozhukov,
14Unfortunately, information about the amount of public benefits in dollars is unavailable at the base-

line.
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Table 4.3: Average Baseline Characteristics in the Sample for Labor Market Outcomes

Variable nt c at nt− c c−at nt−at
Female .467**

(.011)
.397**
(.007)

.324**
(.035)

.070**
(.015)

.073**
(.037)

.143**
(.036)

Age at Baseline 18.74**
(.052)

18.32**
(.029)

17.64**
(.133)

.428**
(.063)

.674**
(.137)

1.102**
(.143)

White, Non-hispanic .284**
(.011)

.263**
(.006)

.296**
(.034)

.021*
(.013)

-.033
(.036)

-.012
(.036)

Black, Non-Hispanic .472**
(.012)

.484**
(.007)

.488**
(.037)

-.012
(.015)

-.004
(.039)

-.016
(.039)

Married .035**
(.004)

.016**
(.002)

.005
(.005)

.019**
(.005)

.011**
(.005)

.030**
(.006)

Has Child .237**
(.010)

.162**
(.005)

.148**
(.028)

.075**
(.012)

.015
(.030)

.089**
(.029)

Personal Education 10.27**
(.035)

10.05**
(.020)

9.637**
(.095)

.224**
(.044)

.408**
(.101)

.632**
(.100)

Household Inc.:<3000 .267**
(.008)

.255**
(.005)

.187**
(.021)

.012
(.010)

.068**
(.022)

.080**
(.022)

>18000 .181**
(.007)

.181**
(.004)

.233**
(.027)

.000
(.009)

-.052*
(.028)

-.052*
(.027)

Personal Inc.: <3000 .750**
(.010)

.799**
(.005)

.843**
(.026)

-.049**
(.012)

-.044
(.027)

-.093**
(.027)

>9000 .042**
(.005)

.030**
(.002)

.015*
(.008)

.012*
(.006)

.015*
(.009)

.027**
(.009)

Have Job .224**
(.010)

.208**
(.006)

.216**
(.031)

.015
(.012)

-.008
(.033)

.008
(.032)

Weekly Hrs.Worked 22.07**
(.488)

21.29**
(.272)

20.44**
(1.652)

.775
(.585)

.853
(1.734)

1.629
(1.700)

Weekly Earnings 113.79**
(2.989)

102.76**
(2.041)

92.63**
(7.986)

11.03**
(3.989)

10.13
(8.328)

21.15**
(8.562)

During the Year Prior to Random Assignment
Had Job .667**

(.010)
.640**
(.006)

.651**
(.035)

.027**
(.013)

-.010
(.036)

.016
(.035)

Mths.Worked 3.684**
(.102)

3.527**
(.057)

3.120**
(.310)

.157
(.125)

.407
(.324)

.563*
(.325)

Earnings 3246.8**
(101.80)

2831.5**
(63.58)

2302.9**
(251.57)

415.30**
(127.99)

528.64**
(263.42)

943.94**
(273.94)

Received Benefits .607**
(.011)

.588**
(.006)

.596**
(.037)

.020
(.013)

-.009
(.038)

.011
(.037)

Mths. Received 6.744**
(.122)

6.503**
(.073)

6.518**
(.414)

.240
(.153)

-.014
(.437)

.226
(.424)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in paren-
theses are standard errors. ** and * denote that estimate is statistically different from 0 at 5% and 10%
level, respectively. Computations use the weights that account for sample and interview design and inter-
view non-response. Missing values for each of the baseline variables were imputed with the mean of the
variable.
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Table 4.4: Average Baseline Characteristics in the Sample for Public Assistance Benefits

Variable nt c at nt− c c−at nt−at
Female .464**

(.011)
.396**
(.006)

.330**
(.035)

.069**
(.014)

.066*
(.037)

.134**
(.036)

Age at Baseline 18.75**
(.049)

18.31**
(.027)

17.68**
(.126)

.435**
(.061)

.635**
(.135)

1.070**
(.133)

White, Non-hispanic .289**
(.011)

.265**
(.006)

.289**
(.035)

.024*
(.014)

-.024
(.037)

-.000
(.036)

Black, Non-Hispanic .461**
(.012)

.480**
(.007)

.503**
(.037)

-.019
(.015)

-.023
(.039)

-.042
(.039)

Married .036**
(.004)

.016**
(.002)

.006
(.005)

.020**
(.005)

.010**
(.005)

.030**
(.006)

Has Child .234**
(.009)

.163**
(.005)

.164**
(.029)

.072**
(.012)

-.001
(.031)

.071**
(.030)

Personal Education 10.27**
(.034)

10.05**
(.020)

9.663**
(.091)

.225**
(.043)

.382**
(.096)

.607**
(.094)

Household Inc.:<3000 .262**
(.008)

.253**
(.004)

.198**
(.020)

.009
(.010)

.055**
(.022)

.064**
(.021)

>18000 .184**
(.007)

.184**
(.004)

.233**
(.028)

.000
(.009)

-.050*
(.029)

-.049*
(.028)

Personal Inc.: <3000 .746**
(.010)

.797**
(.005)

.840**
(.024)

-.051**
(.012)

-.043*
(.026)

-.094**
(.025)

>9000 .042**
(.005)

.030**
(.002)

.015**
(.007)

.012**
(.006)

.015*
(.008)

.027**
(.009)

Have Job at Baseline .227**
(.010)

.211**
(.005)

.213**
(.028)

.016
(.012)

-.002
(.030)

.014
(.029)

Weekly Hrs. Worked 21.80**
(.460)

21.41**
(.291)

20.63**
(1.426)

.392
(.594)

.774
(1.548)

1.165
(1.494)

Weekly Earnings 112.60**
(2.890)

103.55**
(2.180)

94.21**
(7.394)

9.025**
(4.094)

9.342
(7.954)

18.37**
(7.804)

During the Year Prior to Random Assignment
Had Job .667**

(.011)
.642**
(.006)

.668**
(.031)

.025*
(.013)

-.026
(.033)

-.001
(.032)

Mths. Employed 3.644**
(.103)

3.553**
(.057)

3.060**
(.282)

.091
(.130)

.492
(.302)

.584*
(.299)

Earnings 3241.9**
(99.19)

2863.6**
(65.20)

2390.4**
(233.19)

378.31**
(130.21)

473.14*
(250.73)

851.45**
(249.72)

Received Benefits .601**
(.010)

.581**
(.006)

.583**
(.033)

.020
(.013)

-.001
(.035)

.019
(.034)

Mths. Received 6.684**
(.122)

6.433**
(.076)

6.395**
(.378)

.251
(.158)

.038
(.408)

.289
(.385)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in paren-
theses are standard errors. ** and * denote that estimate is statistically different from 0 at 5% and 10%
level, respectively. Computations use the weights that account for sample and interview design and inter-
view non-response. Missing values for each of the baseline variables were imputed with the mean of the
variable.
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Table 4.5: Bounds on the Population Average Treatment Effects

Earnings Employment Public Benefits
LB UB LB UB LB UB

Bounds under Each Assumption
Proposition 2.1 -69.86 201.02 -.150 .163 -632.86 1812.4
Bounded Outcome (A2.1) (-78.34, 210.61) (-.167, .179) (-702.21, 1901.6)
Proposition 2.2 22.19 201.02 .038 .163 -632.86 -84.29
Monotonicity (A2.2) (14.18, 210.61) (.021, .179) (-702.21, -22.13)
Proposition 2.3a -6.507 201.02 -.027 .163 -188.43 1812.4
Mean Dominance (A2.3a) (-16.65, 210.61) (-.050, .179) (-265.90, 1901.6)
Proposition 2.3b 20.67 201.02 .033 .163 -145.90 1812.4
Mean Dominance (A2.3b) (11.97, 210.61) (.015, .179) (-212.69, 1901.6)
Proposition 2.3c 22.57 201.02 .037 .163 -142.76 1812.4
Mean Dominance (A2.3c) (13.72, 210.61) (.019, .179) (-210.62, 1901.6)

Bounds under Combined Assumptions
Proposition 2.4 20.43 201.02 .034 .163 -188.43 -84.29
(A2.1, A2.2, A2.3a) (13.01, 210.58) (.018, .180) (-265.95, -22.09)
Proposition 2.5 22.97 201.01 .039 .163 -145.90 -84.29
(A2.1, A2.2, A2.3b) (14.53, 210.56) (.020, .180) (-213.01, -21.83)
Proposition 2.6 24.61 201.04 .042 .163 -142.76 -84.29
(A2.1, A2.2, A2.3c) (16.01, 210.59) (.023, .180) (-210.62, -22.13)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in paren-
theses are 95% level confidence intervals for true parameters of interest. The confidence intervals of the
bounds under each assumption are calculated by the method of Imbens and Manski (2004). For earnings
and employment, the confidence intervals of the bounds under combined assumptions are calculated by
the method of Chernozhukov, Lee and Rosen (2011), while the bounds under combined assumptions are
estimated by their half-median unbiased estimators. For public benefits, the confidence intervals are cal-
culated by the method of Imbens and Manski (2004). Computations use the weights that account for sam-
ple and interview design and interview non-response. Standard errors are calculated by 5000-repetition
bootstrap.

Lee, and Rosen (2011). The bounds without max or min operators are estimated with

sample analogs and their confidence intervals are obtained by the method of Imbens and

Manski (2004).15

15Specifically, the Imbens and Manski (2004) confidence interval at 95% level is calculated from

(Δ̂LB−Cn ∗ σ̂LB/
√
N, Δ̂UB+Cn ∗ σ̂UB/

√
N), where σ̂LB =

√
̂V (Δ̂LB) , σ̂UB =

√
̂V (Δ̂UB), and Cn sat-

isfies Φ(Cn+
√
N(Δ̂UB− Δ̂LB)/max(σ̂LB, σ̂UB))−Φ(−Cn) = .95.
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Let me begin with the ATE on weekly earnings in the first two columns. Proposi-

tion 2.1 provides the bounds in the AIR setting under the bounded-outcome assumption

(A2.1). The estimated bounds are rather wide and fail to identify the sign of the ATE.

Note that these bounds are also the IV bounds proposed byManski (1990), Heckman and

Vytlacil (2000), Kitagawa (2009) and Huber and Mellace (2010). The ATE in Proposi-

tion 2.2 under the monotonicity assumption (A2.2) is bounded between [22.19, 201.02],

obtained by identifying positive LATEs for always-takers and never-takers. Note that

they are also the ones under the IV and MTR assumptions proposed by Manski and Pep-

per (2000). The mean dominance assumptions (A2.3) improve upon the lower bound

in Proposition 2.1, and negative effects are ruled out in Propositions 2.3b and 2.3c in

the absence of inferring the sign of the LATEa and LATEn from that of the LATEc.

When Assumptions 1.1 through 1.4, and 2.1 through 2.3 are all imposed together, all

of the bounds and their corresponding confidence intervals lie in the positive region. In

particular, the bounds on the ATE on the weekly earnings in Proposition 2.6 are the

narrowest, [24.61, 201.04], with the lower bound 10 percent higher than the ITT effect

(22.19), while the LATEc for compliers (32.29) falls within the bounds. It turns out that

inferring the unobserved terms (i.e., E[Y (0)|a] and E[Y (1)|n]) from the point identi-

fied outcomes of compliers (A2.3) provides a sharper lower bound on the ATE on the

weekly earnings than that obtained by identifying the sign of LATEa and LATEn under

the monotonicity assumption (A2.2).

The next two columns show the bounds on the ATE on employment, whose value is

between 0 and 1. A similar pattern to the bounds for the weekly earnings is also found

in the bounds for employment. Note that the identified set in Proposition 2.1, [−.015,
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.163], is unable to identify the sign of the ATE, and that it also coincides with those in

Balke and Pearl (1997) for the case of a binary outcome. The bounds in Proposition

2.2 indicate a positive ATE, which varies between [.038, .163], and also equal the ones

proposed by BSV (2008), Chesher (2010), Chiburis (2010b) and Shaikh and Vytlacil

(2011), all of which analyze a binary outcome. Again, Proposition 2.6 provides the

narrowest bounds on the ATE on employment under Assumptions 2.1, 2.2 and 2.3c,

[.042, .163], with the lower bound 10 percent higher than the ITT effect (.038), while

the LATEc for compliers (.055) falls within the bounds in Proposition 2.6.

The final two columns report the bounds on the ATE on public benefits. Different

from the labor market outcomes, since the ITT effect on public benefits is negative,

imposing only the monotonicity assumption improves upon its upper bound in Propo-

sition 2.1, while imposing only the mean dominance assumptions improves upon its

lower bound. The bounds in Proposition 2.1 are extremely wide and uninformative.

The monotonicity assumption (A2.2) has strong identification power compared with the

mean dominance assumptions (A2.3) in the case of the public benefits, in that the former

identifies the negative sign of the ATE on the public benefits, though the latter greatly

sharpens the lower bound in Proposition 2.1 by at least 70 percent. However, once the

two types of assumptions are taken into account together, the bounded outcome assump-

tion is no longer necessary and the width of the bounds shrinks dramatically. Under the

combined assumptions, the estimated bounds and their corresponding confidence inter-

vals lie in the negative region. Proposition 2.6 provides the narrowest bounds on the

ATE on public benefits, [−142.76, −84.29], with the upper bound equal to the ITT

effect, while the LATEc on compliers (−122.28) falls within the bounds.
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I draw the following conclusions from the empirical results of the population av-

erage treatment effects of JC enrollment. Focusing on the labor market outcomes and

welfare dependence, the monotonicity assumption (A2.2) and the mean dominance as-

sumption (A2.3) together provide the narrowest bounds on the ATEs. In particular,

when the former is combined with Assumption 2.3c, these bounds are [24.61, 201.04]

for weekly earnings, [.042, .163] for employment, and [−142.76, −84.29] for public

benefits. These bounds are significantly narrower than the IV bounds proposed by Man-

ski (1990), Heckman and Vytlacil (2000), Kitagawa (2009) and Huber and Mellace

(2010). The width of these bounds is also smaller than that under the IV and MTR

assumptions of Manski and Pepper(2000), especially for public benefits. The bounds

on employment are also narrower than the ones proposed by Balke and Pearl (1997),

BSV (2008), Chesher (2010), Chiburis (2010b) and Shaikh and Vytlacil (2011) for the

case of a binary outcome. The lower bounds for weekly earnings and employment are

10 percent higher than their respective intention-to-treat (ITT ) effects (22.19 and .038),

while the upper bound for public benefits is equal to its ITT effect. The LATEs for

compliers on the three outcomes also fall within these narrowest bounds. In sum, these

empirical results suggest that enrolling into the Job Corps program increases weekly

earnings by at least $24.61 and employment by at least 4.3 percentage points four years

after randomization, and decreases yearly dependence on public welfare benefits by at

least $84.29.



63

4.3 The Wage Effect of JC Enrollment

4.3.1 Specific Sample

Assessing the effect of training programs on wages is of great importance to policy mak-

ers. Further analysis of the wage effects of the Job Corps program answers an important

question of whether the program increases participants’ human capital accumulation

and thus leads to an increase in their wages. To compare with the wage effects of JC

in the absence of addressing the noncompliance issue, this section employs the same

sample from the NJCS used by Lee (2009). This sample involves only individuals with

non-missing values for weekly earnings and weekly hours worked for every week after

random assignment (9,145 individuals). I construct the data set by adding enrollment

information at Week 208 (i.e., 48 months) after random assignment. Again, this binary

variable indicates whether or not the individual was ever enrolled in JC during the 208

weeks after random assignment. 55 observations are dropped from Lee’s sample due to

the missing enrollment variable, resulting in the final sample of 9,090 individuals (3,599

and 5,491 individuals in the control and treatment groups, respectively). Wages at Week

208 are obtained by dividing weekly earnings by weekly hours worked at that week.

An individual is regarded as unemployed when the wage is missing, and as employed

otherwise.

The first four columns of Table 4.6 report the average baseline characteristics of

the entire sample by treatment assignment status, along with the percentage of miss-

ing values for each of those variables. The pre-treatment variables include demographic

characteristics, education and background variables, employment and earnings informa-
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tion at the baseline, and labor market outcomes in the year prior to randomization. The

average pre-treatment characteristics of the treatment and control groups are similar as

expected, with the difference in means being statistically different from zero at the five

percent level only for weekly hours worked at baseline. Thus, this sample maintains the

balance of baseline variables between the treatment and control groups.

The first three columns of Table 4.7 show the averages of some relevant post-treatment

variables based on treatment assignment status, along with their differences, at Week

208 after randomization. The first row shows information on the JC enrollment variable.

By Week 208, 73.8 percent of those assigned to the treatment group and 4.4 percent of

the control group had ever enrolled in JC.16 The difference in these two numbers, which

equals the proportion of compliers in the population, is 69.4 percent. The rest of the

rows in Table 4.7 present the ITT effect and LATE for JC compliers on various labor

market outcomes at Week 208. All the ITT effects of JC on weekly hours worked,

weekly earnings, and employment are positive and statistically significant. The LATE

estimates for those three variables are also positive and statistically significant, and they

are larger than the ITT estimates by about 44, 44 and 50 percent, respectively. The es-

timated average effects of JC on earnings and employment for compliers is 39.9 dollars

and 6 percentage points, respectively. These results are consistent with the findings in

the NJCS (Burghardt et al., 2001).

For reference, Table 4.7 also shows the estimated ITT and LATE effects of JC on

ln(wage) for employed individuals. The LATE estimate implies an average effect of JC

on ln(wage) of about 5.4 percent for compliers. However, these estimates are biased
16From these controls, 3.2 percent enrolled after the end of the embargo period, while 1.2 percent of

them enrolled in the program despite the three-year embargo imposed on them.
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Table 4.6: Summary Statistics of Baseline Variables (Wage Effect of JC)

Entire Sample Non-Hispanics

Missing Prop. Z=1 Z=0 Diff.(Std.Err.) Missing Prop. Z=1 Z=0 Diff.(Std.Err.)

Female 0 .454 .458 -.004 (.011) 0 .454 .454 -.010 (.012)

Age at Baseline 0 18.44 18.35 .087* (.046) 0 18.44 18.34 .096* (.050)

White, Non-hispanic 0 .265 .263 .002 (.009) 0 .319 .318 .001 (.011)

Black, Non-Hispanic 0 .494 .491 .003 (.011) 0 .595 .593 .002 (.012)

Hispanic 0 .169 .172 -.003 (.008) − − − −
Other Race/Ethnicity 0 .072 .074 -.002 (.006) 0 .087 .089 -.003 (.007)

Never married .017 .917 .916 .002 (.006) .018 .926 .924 .002 (.006)

married .017 .020 .023 -.003 (.003) .018 .015 .018 -.003 (.003)

Living together .017 .039 .040 -.002 (.004) .018 .035 .037 -.002 (.004)

Separated .017 .024 .021 .003 (.003) .018 .023 .020 .003 (.003)

Has Child .007 .189 .193 -.004 (.008) .006 .187 .190 -.004 (.009)

Number of children .010 .270 .268 .002 (.014) .180 .269 .271 -.003 (.015)

Personal Education .018 10.12 10.11 .013 (.033) .018 10.14 10.12 .022 (.036)

Mother’s Education .188 11.49 11.46 .030 (.061) .182 11.81 11.83 -.021 (.055)

Father’s Education .383 11.40 11.54 -.145* (.077) .379 11.72 11.86 -.147** (.072)

Ever Arrested .017 .248 .249 -.001 (.009) .017 .255 .257 -.002 (.010)

Household Inc.: <3000 .358 .253 .251 .001 (.012) .357 .248 .244 .004 (.013)

3000-6000 .358 .205 .208 -.003 (.011) .357 .202 .213 -.012 (.012)

6000-9000 .358 .117 .114 .003 (.009) .357 .119 .105 .015 (.009)

9000-18000 .358 .246 .245 .001 (.011) .357 .244 .248 -.003 (.013)

>18000 .358 .180 .182 -.002 (.010) .357 .187 .191 -.003 (.012)

Personal Inc.: <3000 .079 .788 .789 -.001 (.009) .077 .787 .788 -.001 (.010)

3000-6000 .079 .128 .131 -.003 (.008) .077 .129 .136 -.007 (.008)

6000-9000 .079 .053 .046 .007 (.005) .077 .052 .043 .009* (.005)

>9000 .079 .031 .034 -.003 (.004) .077 .031 .033 -.001 (.004)

At Baseline:

Have job .021 .198 .192 .007 (.009) .021 .204 .187 .017* (.009)

Weekly hours worked 0 21.83 20.91 .922** (.447) 0 21.97 20.75 1.216** (.491)

Weekly earnings 0 111.08 102.89 8.183 (5.134) 0 107.79 102.28 5.516** (2.804)

Had job, Prev. Yr. .017 .635 .627 .008 (.010) .017 .642 .627 .015 (.011)

Months employed,Prev.Yr. 0 3.603 3.530 .074 (.091) 0 3.654 3.512 .143 (.100)

Earnings, Prev.Yr. .062 2911.0 2810.5 100.56 (117.58) .064 2900.3 2794.7 105.57 (106.34)

Numbers of observations 9090 5491 3599 7529 4551 2978

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0) in
the program. Numbers in parentheses are standard errors. ** and * denote that difference is statistically
different from 0 at 5% and 10% level, respectively. Computations use design weights.
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Table 4.7: Summary Statistics of Post-treatment Variables by Random Assignment

Entire Sample Non-Hispanics
Z = 1 Z = 0 Diff.

(Std.Err.)
Z = 1 Z = 0 Diff.

(Std.Err.)

Enrollment Variable
Ever enrolled in JC .738 .044 .694**

(.007)
.737 .047 .689**

(.008)

Intention-to-Treat (ITT ) Effects
Hours per week 27.80 25.83 1.967**

(.559)
28.05 25.53 2.523**

(.617)
Earnings per week 228.19 200.50 27.69**

(5.121)
230.22 194.66 35.57**

(5.555)
Employed .607 .566 .041**

(.011)
.609 .559 .050**

(.012)
ln(wage) 2.029 1.991 .038**

(.011)
2.028 1.977 .050**

(.013)

Local ATE for Compliers, LATE (IV estimates)
Hours per week 2.834**

(.782)
3.661**
(.867)

Earnings per week 39.90**
(6.457)

51.62**
(6.960)

Employed .060**
(.015)

.072**
(.017)

ln(wage) .054**
(.016)

.073**
(.017)

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0)
in the program. Numbers in parentheses are standard errors. ** denotes that difference is statistically
different from 0 at 5% level. Computations use design weights. The standard error of the effect for
employed compliers is calculated by an ML estimator, where the endogenous dummy variable is the
treatment receipt indicator. The treatment assignment indicator is used as the exclusion restriction and
all baseline characteristics (where mean values were imputed for missing values) are included in both the
selection and outcome equations.

because of sample selection.

4.3.2 Assessment of Assumptions

Since Assumptions 3.1 through 3.4 have been previously used in the NJCS to estimate

the effect of JC on labor market outcomes that are not affected by sample selection
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(Burghardt et al., 2001; Schochet, 2001; Schochet, Burghardt, and Glazerman, 2001),

here the discussion is concentrated on the plausibility of Assumptions 3.5 and 3.6.

Assumption 3.5 states that there is a non-negative effect of JC enrollment on em-

ployment for every individual at Week 208. This assumption seems plausible in the

application given the objectives and services provided by JC (e.g., academic and voca-

tional training, job search assistance). A testable implication of this assumption is that

the LATE for JC compliers on employment is non-negative. As discussed above, this

effect is positive and highly statistically significant.

There are two potential threats to the validity of Assumption 3.5. First, individuals

who enroll in JC may be less likely to be employed while undergoing training than

those who do not enroll, which is usually referred to as the “lock-in” effect (van Ours,

2004). Second, trained individuals may raise their reservation wages because of the

JC training, which may lead them to reject some job offers that they would otherwise

accept if they had not received training. Both potential threats, however, are likely to

become less relevant in the long run, as trained individuals are no longer “locked-in”

away from employment, and individuals who chose to remain unemployed in the short

run because of raising their reservation wages find jobs in the long run. Consistent with

this view, Schochet, Burghardt, and Glazerman (2001), and Lee (2009) find negative

effects of JC on employment in the short run, and positive effects in the long run. Thus,

the analysis focuses on wages at Week 208 after random assignment, which is the latest

wage measure available in the NJCS.

Based on a likelihood-based analysis, Frumento et al. (2012) provide evidence that

there may be a positive proportion of compliers in the population for whom JC has
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a negative effect on employment at Week 208, even though this proportion falls over

time after randomization. Therefore, to further increase the plausibility of Assumption

3.5 in the application, a sample that excludes Hispanics is also considered. Hispanics

were the only demographic group in the NJCS for which negative (although statistically

insignificant) effects of JC on both employment and earnings were found (Schochet,

Burghardt, and Glazerman, 2001; Flores-Lagunes, Gonzalez, and Neumann, 2010).

Flores-Lagunes, Gonzalez and Neumann (2010) investigate this issue and find that the

different outcomes of white, blacks and Hispanics are strongly related to the different

local labor market conditions they face. In particular, they find evidence that during that

period Hispanics faced worst local unemployment rates than blacks and whites. There-

fore, Assumption 3.5 may not be appropriate for Hispanics. The last set of columns in

Tables 4.6 and 4.7 present summary statistics of pre- and post-treatment variables for the

Non-Hispanics sample (7,529 individuals). As expected, the estimated ITT and LATE

effects of JC on labor outcomes for Non-Hispanics are stronger than those for the entire

sample, with a statistically significant average effect on employment for compliers of

7.2 percentage points.

Assumption 3.6 states that the mean potential outcome under treatment of the always-

employed compliers (cEE stratum) is greater than or equal to that of individuals who

would be employed only if they enrolled in JC (cNE stratum). As discussed before,

it is possible to indirectly shed some light on the plausibility of this assumption by

comparing average baseline characteristics of the cEE and cNE strata that are likely

to be highly correlated to wages at Week 208. Appendix Table C.1 presents the av-

erage characteristics of two strata for the entire and Non-Hispanics samples, obtained
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by estimating the overidentified GMM procedure described in Appendix C. Focusing

on the Non-Hispanics sample, relative to individuals in the cNE stratum, individuals in

the cEE stratum are more likely to be male and white, to have never been arrested at

the baseline, and to have better labor market outcomes the year before randomization.

These differences, however, are not statistically different from zero. Thus, it is con-

cluded that the data do not provide indirect evidence against Assumption 3.6, and that

the point estimates of the differences suggest that the assumption is plausible.

Related to their plausibility, I also check the sensitivity of the bounds in Propositions

3.1 and 3.2 to these assumptions. Subsection 3.3.4 provides simulation exercises to

examine how the bounds behave when Assumptions 3.5 and 3.6 fail.

4.3.3 Empirical Results

This analysis begins with bounding the average effect of being allowed to enroll in JC

on wages (ITT effect) for the individuals who would always be employed regardless

of treatment assignment, and then bound the average effect of JC enrollment on wages

for those compliers who would always be employed regardless of the treatment receipt

(Δ in (3.3)). The first parameter is the one considered in Lee (2009) and ZRM (2008),

which ignores the noncompliance issue. In their setting, the principal strata are EE, NN,

NE, and EN, where the last stratum is ruled out by assuming the monotonicity of S in

Z.

Table 4.8 presents bounds on the average ITT effect of JC on ln(wage) for always-

employed individuals (EE stratum). The first column of Table 4.8 presents results for

the entire sample. The proportion of the always-employed individuals (EE) in the popu-
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lation equals 56.6 percent, and the proportion of those in the NE stratum (which equals

the ITT effect of JC on employment) equals 4.1 percent. Under the monotonicity of

S in Z assumption, the estimated lower and upper bounds for the ITT effect of JC on

ln(wage) for the EE stratum are −.022 and .100, respectively. These results are very

similar to those obtained by Lee (2009).17 As noted by Lee (2009), although the bounds

include zero, they rule out plausible negative effects. Also as noted by Lee (2009), these

particular lower bounds are based on the extreme and unintuitive assumption that wages

are perfectly negatively correlated with the probability of being employed.18 This is con-

tradicted by standard models of labor supply, in which individuals with higher wages are

also more likely to be employed.

The last set of rows in Table 4.8 present the bounds on the ITT effect of JC on

ln(wage) for the EE stratum under the mean dominance assumption that the average

potential wage under z = 1 of the EE stratum is greater than that of the NE stratum.

This assumption can be seen as a way to rule out the implausible extreme case mentioned

above by implying a positive correlation between wages and employment. In this case,

the estimated lower bound for the ITT effect for the EE stratum is .038. Thus, under

this additional assumption, the bounds are able to rule out the negative ITT effect of

JC on wages, which illustrates the identifying power of this assumption. Table 4.8 also

presents 95 percent confidence intervals, which are calculated based on the results from
17The results are not numerically the same as those in Lee (2009) who uses a transformed wage variable

to calculate bounds to minimize the effect of outliers by splitting the entire observed wage distribution
into 20 percentile groups (5th,10th, . . . ,95th,100th), and then assigning the mean wage within each of the
20 groups to each individual. Here the original wage variable is used, and 55 observations are dropped
from Lee’s sample because of missing enrollment information. For reference, the corresponding lower
and upper bounds in Lee (2009) are −.019 and .093, respectively.
18To obtain the lower bound all the EE individuals are placed at the bottom of the wage distribution in

the cell {Z = 1,S= 1}, which is a mixture of the EE and NE strata.
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Table 4.8: Bounds for the ITT Effects on ln(wage) at Week 208

Entire Sample Non-Hispanics
Proportions of strata:
Always-employed(EE) .566** (.009) .559** (.009)
Never-employed(NN) .393** (.007) .391** (.007)
Employed only if assigned to program(NE) .041** (.011) .050** (.012)

E[Y (Z = 0)|EE] 1.991** (.009) 1.977** (.010)

Proportion of EE in cell{Z = 1,S= 1} .932** (.017) .918** (.019)

Bounds with Monotonicity
Lower bound for the ITT effect for EE stratum -.022 (.016) -.018 (.017)
Upper bound for the ITT effect for EE stratum .100** (.014) .119** (.015)
Imbens and Manski 95% confidence interval [-.048, .123] [-.047, .144]

Bounds with Monotonicity and Mean Dominance
Lower bound for the effect for EE stratum .038** (.012) .050** (.013)
Upper bound for the ITT effect for EE stratum .100** (.014) .119** (.015)
Imbens and Manski 95% confidence interval [.019, .123] [.029, .144]

Note: Numbers in parentheses are standard errors. ** denotes that estimate is statistically dif-
ferent from 0 at 5% level. Computations use design weights. The standard error is calcu-
lated by a 5,000-repetition bootstrap. Imbens and Manski 95% confidence interval is calculated as
(Δ̂LB−1.645∗σ̃LB,Δ̂UB+1.645σ̃UB), where Cn= 1.645 and σ̃LB and σ̃UB are calculated by
bootstrap.

Imbens and Manski (2004) and asymptotically cover the true value of the parameter

with .95 probability.19 As above, while the 95 percent confidence intervals do not rule

out a zero effect under the monotonicity assumption, they rule out negative effects once

the mean dominance assumption is employed.

The second column of Table 4.8 presents results for Non-Hispanics, for whom the

monotonicity assumption of S in Z is more plausible. In general, the lower and upper

bounds under the two sets of assumptions are larger for Non-Hispanics than for the entire
19Imbens and Manski (2004) confidence intervals are valid for the ITT effect of JC on wages because

the bounding functions do not involve min or max operators.
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population. Under the monotonicity and mean dominance assumptions, the estimated

lower and upper bounds on the ITT effect of JC on ln(wage) for the EE stratum are .050

and .119, respectively, and the 95 percent confidence interval is [.029, .144].

Table 4.9 shows the estimation results for the parameter of interest, the average effect

of JC enrollment on ln(wage) for always-employed compliers. This table shows the es-

timated proportions, relevant quantities used in estimating the bounds, and the unbiased

half-median estimators for the bounds and the confidence intervals for true parameters

proposed by Chernozhukov, Lee, and Rosen (2011) (hereafter, CLR). As above, the

first column presents the results for the entire sample, and the second shows the re-

sults for Non-Hispanics. For both samples, the largest stratum is the cEE stratum, with

an estimated proportion of almost 40 percent, while the stratum of always-employed

always-takers (aEE) is the smallest stratum, with an estimated proportion of about 1.6

and 1.8 percent for the entire and Non-Hispanics samples, respectively. The estimated

proportion of always-takers (πaEE + πaNN) is 4.4 percent for the entire sample, while

the proportion of never-takers is 26.2 percent. These proportions are slightly higher

for the Non-Hispanics sample. All the estimated stratum proportions in Table 4.9 are

statistically different from zero.

For the entire population, the estimated lower and upper bounds on the average effect

of JC on ln(wage) for the cEE stratum under Assumptions 3.1 through 3.5 are −.022

and .130, respectively, while the corresponding numbers for Non-Hispanics are −.014

and .161. Given the weak effects of JC on labor market outcomes for Hispanics, it is not

surprising that the bounds for Non-Hispanics cover a larger positive region than those for

the entire population. For both samples, the estimated lower and upper bounds are larger
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Table 4.9: Bounds for the Effects of JC on ln(wage) for the cEE Stratum

Entire Sample Non-Hispanics
Number of observations 9090 7529

πaEE .016** (.002) .018** (.002)
πnEE .158** (.005) .160** (.005)
πcEE .391** (.010) .381** (.011)
πcNE .041** (.011) .050** (.012)
πaNN .028** (.003) .030** (.003)
πnNN .104** (.004) .104** (.005)
πcNN .261** (.007) .258** (.008)
αcEE .872** (.023) .849** (.025)

E[Y (1)|aEE] 2.033** (.059) 2.016** (.061)
E[Y (0)|nEE] 2.033** (.016) 2.033** (.017)
E[Y (0)|cEE] 1.972** (.015) 1.952** (.016)

Y (y111αcEE ≤ Y ≤ y1111−αcNE ) 2.429** (.066) 2.376** (.057)
Y (y111αcNE ≤ Y ≤ y1111−αcEE ) 1.676** (.034) 1.703** (.035)

Bounds with Monotonicity (Proposition 3.1)
[LY 1,cEE ,UY 1,cEE ] [1.951, 2.102] [1.938, 2.113]
CLR 95% level confidence interval (1.921, 2.128) (1.907, 2.140)
[LcEE ,UcEE ] [-.022, .130] [-.014, .161]
CLR 95% level confidence interval (-.061, .168) (-.057, .201)

Bounds with Monotonicity and Mean Dominance (Proposition 3.2)
[LY 1,cEE ,UY 1,cEE ] [2.027, 2.102] [2.026, 2.113]
CLR 95% level confidence interval (2.011, 2.129) (2.008, 2.141)
[LcEE ,UcEE ] [.055, .130] [.074, .161]
CLR 95% level confidence interval (.023, .170) (.039, .202)

Note: ** denotes estimate is statistically different from 0 at 5% level and numbers in parentheses are
standard errors. Computations use design weights. The standard error is calculated by a 5,000-repetition
bootstrap. Numbers in square brackets are half-median unbiased estimators for the bounds, while numbers
below them are CLR 95% level confidence intervals.
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than the corresponding bounds for the ITT effect presented in Table 4.8, especially the

upper bound (e.g., for Non-Hispanics, .119 versus .161, or a 35.3 percent increase).

From Tables 4.8 and 4.9, the positive region covered by the bounds on the effect of JC

enrollment on wages for the cEE stratum is larger than the positive region covered by

the bounds on the ITT effect of JC on wages for the EE stratum. This suggests that

the effects of JC on wages obtained by Lee (2009) were conservative, as the effect was

weakened by noncompliance to the assigned treatment.

As in Lee (2009), the bounds in Proposition 3.1 are unable to rule out zero effects

of JC on wages at Week 208 employing only the monotonicity assumption on the ef-

fect of JC on employment. However, as before, the lower bounds are constructed under

the implausible “worst-case” scenario of a perfect negative correlation between em-

ployment and wages, which is contradicted by standard economic models. The mean

dominance assumption rules out this implausible extreme case and helps to increase the

lower bound. The last set of rows in Table 4.9 show results when the monotonicity and

mean dominance assumptions are both used. Under Assumptions 3.1 through 3.6, the

estimated lower bound on the average effect of JC on ln(wage) for the cEE stratum is

.055 for the entire population, and it is .074 for Non-Hispanics. Therefore, under all

six assumptions, the results imply positive average effects of JC on wages for the cEE

stratum in both the entire and Non-Hispanics samples. These results also reinforce the

notion that the ITT effects of JC on wages are likely to be lower than the effect of JC en-

rollment on wages. Also note that, as already mentioned in Remark 3, the lower bound

for Δ in Proposition 3.2 can be interpreted as the lower bound for ATEcEE,cNE under

Assumptions 3.1 through 3.4 and 3.5”.



75

The following conclusions are derived from the empirical analysis of the effects of

JC on wages. First, the results in the subsection strongly suggest a positive average

effect of participating in JC on wages four years after random assignment for the always

employed compliers. For Non-Hispanics, for whom the monotonicity assumption on

the effect of JC on employment is more likely to hold, the estimated bounds under

Assumptions 3.1 through 3.6 imply that, on average, JC enrollment increases the average

wage (as oppose to ln(wage)) of the always-employed compliers who participate in JC

by at least 7.7 and at most 17.5 percent. Therefore, this evidence suggests that JC

has an effect on participants’ earnings not only by increasing their probability of being

employed but also by increasing their wages, which is most likely a consequence of their

human capital accumulation during enrollment in JC.

Second, the analysis implies that the results from the study of the ITT effects of JC

on wages (e.g., Lee, 2009) are conservative because the noncompliance issue is likely

to dilute the effect of JC enrollment on wages. In particular, for the two samples, and

regardless of whether or not Assumption 3.6 is employed, the positive region covered

by the bounds on the effect of JC enrollment on wages for the cEE stratum is larger than

the positive region covered by the bounds on the ITT effect of JC on wages for the EE

stratum. This is consistent with the results presented in Subsection 4.3.1, regarding the

effect of JC on other labor market outcomes not suffering from sample selection, which

show that the LATE estimates of the effects are larger than the ITT estimates. This

conclusion is also consistent with the literature on point estimation of the wage effects

of JC.20

20Frumento et al. (2012) find that their point estimate of the effect of JC enrollment on wages at week
208 for the always-employed compliers is larger than the point estimate of the ITT effect in Zhang, Rubin,
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Finally, to analyze the sensitivity of the results for missing values of relevant vari-

ables, and to compare the results to those in Frumento et al. (2012), I estimate the bounds

on Δ that account for this issue. I employ another weight constructed by the NJCS using

non-public data that accounts for both sample design and non-response.21 Thus, the key

assumption is that the probability that the information is missing for a given individual

is random conditional on the set of variables used to construct the weight. Frumento et

al. (2012) employ the same assumption but use variables available in the public version

of the NJCS data. To construct the data used in this exercise, all the individuals who

responded to the 48-month interview are included and those with missing values for

weekly working hours, weekly earnings, or enrollment information are dropped.22

The estimation results are presented in Table 4.10. The estimated lower and upper

bounds for the effect of JC on ln(wages) for the cEE stratum are below those estimated

in Table 4.9, which ignore the non-response issue. Focusing on Non-Hispanics, the

positive region covered by the bounds under both sets of assumptions (monotonicity and

mean dominance) is slightly less than the corresponding region covered by the bounds

in Table 4.9. The estimated upper bound in Table 4.10 equals .153, which is close to

the one presented in Table 4.9 (.161). The estimate of the lower bound in Table 4.10

is also lower than, but still relatively close to, that presented in Table 4.9. In general,

although adjusting for non-response slightly weakens the previous findings, the results

and Mealli (2009), who estimate the effect of JC on wages for the always-employed individuals without
adjusting for non-compliance.
21More specifically, the weights address sample design, 48-month interview design, and 48-month

interview non-response.
22As discussed in Section 4.3.1, the sample used in the previous tables includes only individuals with

non-missing values for weekly earnings and weekly hours worked for every week after random assign-
ment. This is done to make the results comparable to those in Lee (2009).
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still strongly suggest a positive average effect of JC enrollment on wages four years after

random assignment for the always-employed compliers.

As previously mentioned, Frumento et al. (2012) point identify the average effect of

JC enrollment on wages, adjusting for sample selection, non-compliance, and missing

outcomes, by imposing a different set of assumptions from the two sets discussed here.

Employing a different sample from the one here, they estimate this effect to be about

3.8 percent for the always-employed compliers in the population. This point estimate

is consistent with the estimated bounds for this effect presented in Table 4.10 for the

entire population under Assumptions 3.1 through 3.5 and, although 3.8 percent is below

the estimated lower bound under Assumptions 3.1 through 3.6 (4.4 percent), it falls

inside the 95 percent confidence interval constructed under the six assumptions. Thus,

the point estimate of the effect of JC on wages for the cEE stratum in Frumento et al.

(2012) is consistent with the bounds adjusting for non-response.

4.3.4 Simulation Exercises

Simulation exercises aim to examine how the bounds in Propositions 3.1 and 3.2 behave

when Assumptions 3.5 and 3.6 fail. By mimicking the characteristics of the sample in-

volving all the individuals with continuously non-missing values of key variables, the

simulation results suggest that the bounds are relatively robust even if the two assump-

tions fail.

In each simulation, 9090 observations are generated, with each randomly assigned

to the treatment with the probability of 5491/9090. Membership of principal strata is

drawn from a uniform distribution. By mimicking pds|z in the sample, the true values
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Table 4.10: Bounds for the Effects of JC on ln(wage) for cEE Adjusting for Non-Response

Entire Sample Non-Hispanics
Number of observations 10520 8701

πaEE .017** (.002) .018** (.002)
πnEE .162** (.005) .162** (.005)
πcEE .391** (.009) .381** (.010)
πcNE .038** (.010) .049** (.011)
πaNN .026** (.003) .028** (.003)
πnNN .108** (.004) .108** (.004)
πcNN .258** (.006) .254** (.007)
αcEE .877** (.022) .851** (.024)

E[Y (1)|aEE] 2.010** (.050) 2.001** (.052)
E[Y (0)|nEE] 2.033** (.015) 2.032** (.016)
E[Y (0)|cEE] 1.985** (.013) 1.961** (.015)

Y (y111αcEE≤ Y ≤ y1111−αcNE ) 2.449** (.065) 2.383** (.056)
Y (y111αcNE≤ Y ≤ y1111−αcEE ) 1.666** (.036) 1.702** (.034)

Bounds with Monotonicity (Proposition 1)
[LY1,cEE ,UY1,cEE ] [1.957, 2.102] [1.940, 2.114]
CLR 95% level confidence interval (1.928, 2.127) (1.911, 2.140)
[LcEE ,UcEE ] [-.028, .117] [-.021, .153]
CLR 95% level confidence interval (-.065, .153) (-.060, .191)

Bounds with Monotonicity and Mean Dominance (Proposition 2)
[LY1,cEE ,UY1,cEE ] [2.029, 2.102] [2.028, 2.114]
CLR 95% level confidence interval (2.013, 2.128) (2.011, 2.142)
[LcEE ,UcEE ] [.044, .117] [.067, .153]
CLR 95% level confidence interval (.015, .155) [.035, .193]

Note: ** denotes estimate is statistically different from 0 at 5% level and numbers in parentheses are
standard errors. Computations use weights accounting for sample design, interview design and interview
non-response. The standard error is calculated by a 5,000-repetition bootstrap. Numbers in square brack-
ets are half-median unbiased estimators for the bounds, while numbers below them are CLR 95% level
confidence intervals.
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of proportions of strata are set as follows: πaNN = .030, πaEE = .015, πnNN = .105,

πnEE = .155, πcEE = .395−πcEN , πcNN = .260−πcEN , and πcNE = .040+πcEN . Note

that without Assumption 3.5, πcEN �= 0. The observed treatment and employment sta-

tuses, D and S, are jointly determined by the membership of principal strata and the ran-

dom assignment indicator. Observed wages of different strata follow lognormal distrib-

utions with means: E[Y (1)|cEE] = 2.04, E[Y (0)|cEE] = 1.97, E[Y (1)|aEE] = 2.035,

E[Y (0)|nEE] = 2.035 and E[Y (0)|cEN] = 2. Thus, the true effect Δ is equal to .07. The

variances of these average outcomes are equal to .2. These values are chosen such that

they are close to the observed Yzds in the sample.

Simulation 1 examines the bounds when only Assumption 3.5 fails. Assumption

3.6 holds as E[Y (1)|cEE]−E[Y (1)|cNE] = .16. Figure 4.1 shows the bounds when

πcEN changes over [0, .26]. Note that the range of πcEN is determined by the propor-

tions of other strata. In order to give a sense about the variability of the estimates of

the bounds, this subsection also shows the 5th percentile of the estimates of the lower

bound from 1000 repeated simulations, and the 95th percentile of the estimates of the

upper bound.23 The bounds slope downward as πcEN increases. This is because in the

trimming cell {Z = 1,D = 1,S = 1}, πcEE decreases and πcNE increases along with

the increasing πcEN , and since E[Y (1)|cEE] is larger than E[Y (1)|cNE], the propor-

tion of the observations with larger values of log(wage) increases while the proportion

with smaller values decreases. As a result, with the trimming proportions and range

of log(wage) in the trimming cell fixed, the averages obtained from both the top and

the bottom distribution become smaller. The true effect is above the lower bound in
23For example, 95 percent of the estimates of the upper bound fall below p95_UB, and 95 percent of

the estimates of LB1 lie above p5_LB1.



80

Figure 4.1: Bounds When Monotonicity Fails in Simulation 1
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Proposition 3.2 over the entire range of πcEN , and it falls outside the upper bound when

πcEN > .16. Note that the lower bound in Proposition 3.2 identifies a positive treatment

effect as long as πcEN ≤ .12. Figure 4.2 shows percentage of times out of 1000 rep-

etition the true effect falls inside the bounds. The percentage of times for Proposition

3.2 starts at a lower value than that for Proposition 3.1 because the true effect is very

close to the lower bound in Proposition 3.2 at the origin. The percentage of times for

both propositions coincide with each other when πcEN > .06. Note that both assump-

tions hold at the origin. The simulated bounds are [−.027, .136] in Proposition 3.1 and

[.054, .136] in Proposition 3.2, respectively, similar to the empirical results for the entire

sample in Table 4.9.

Simulation 2 analyzes how the mean dominance assumption affects the bounds

when πcEN = 0. The horizontal line shows the difference between E[Y (1)|cEE] and

E[Y (1)cNE], and the assumption holds in the right region of the axis origin. The down-
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Figure 4.2: Percentage of Times True Effect Falls within the Bounds in Simulation 1
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ward slope of the bounds in Figure 4.3 follows a different story in Simulation 2: larger

values of the outcome of cNE members are gradually replaced with smaller values; with

the constant proportions of cEE and cNE in the trimming cell, the bounds decrease

along the x-axis. The true effect Δ falls within the bounds in Proposition 3.1 over the

entire range [−.5, .5] of the difference. Instead, Δ crosses the lower bound in Proposition

3.2 at the origin. This is because when πcNE = 0 the direction of the mean dominance

assumption determines whether the quantity in Proposition 3.2 is a lower bound or an

upper bound for the parameter of interest Δ. The lower bound in Proposition 3.2 iden-

tifies a positive treatment effect over the entire range of the difference. Note that the

lower bound in Proposition 3.1 also identifies a positive effect when the direction of

the mean dominance assumption is reversed at E[Y (1)|cNE]−E[Y (1)cEE] ≥ .15. As

shown in Figure 4.4, Δ falls within the bounds in Proposition 3.1 in almost every single

simulation. In contrast, the percentage of times for Proposition 3.2 increases as the mean
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Figure 4.3: Bounds When Mean Dominance Fails in Simulation 2
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Figure 4.4: Percentage of Times True Effect Falls within the Bounds in Simulation 2
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dominance assumption holds to a greater extent. Note that at the origin the percentage

of times is around 50%.

Simulations 3 to 5 illustrate how the bounds behave when both assumptions fail,

with πcEN set as .05, .10 and .15, respectively. Comparing among Figures 4.3, 4.5,
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4.7, and 4.9, Δ falls within the bounds in Proposition 3.1 over the shrinking range of

E[Y (1)|cEE]−E[Y (1)|cNE] as πcEN increases. In contrast to Figure 4.3 where πcEN =

0, the intersection of Δ with the lower bound in Proposition 3.2 moves slightly leftward

in Figures 4.5, 4.7 and 4.9. Mathematically, when the difference between E[Y (0)|cEN]

and E[Y (0)|cEE] stays positive, the intersection moves leftward away from the origin as

πcEN increases. The tilt of the bounds over the entire range of the difference increases

because the effect of cEN members through their wages on the identified quantity of

E[Y (0)|cEE] is strengthened as πcEN increases at each value of the difference. The

increasing tilt plays different roles in how these bounds identify the sign of Δ. When

πcEN = .05 and πcEN = .10, the upper bound stays positive. Accordingly, the extent

to which the lower bound in Proposition 3.2 identifies a positive treatment effect is

attenuated by the increasing proportion of πcEN , as shown by the narrower range of

the difference over which the lower bound stays beyond the zero line. Instead, the

range over which the lower bound in Proposition 3.1 identifies a positive effect enlarges

slightly, in spite of the negative region of the axis. When πcEN = .15, the lower bounds

in Propositions 3.1 and 3.2 identify a positive effect when the difference is not larger

than −.05 and .15, respectively. Moreover, the upper bound identifies a negative effect

when the difference is not smaller than .35. In contrast with Figure 4.4, Figures 4.6,

4.8, and 4.10 display a bell shape of percentage of times the propositions are verified.

The bell covers a shrinking area as πcEN increases. The percentages of times for both

propositions coincide with each other when Δ falls outside the bounds in Proposition

3.1. Otherwise, the one for Proposition 3.1 is above that for Proposition 3.2, with its

center at the origin. Instead, the center for Proposition 3.2 moves slightly leftward as
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Figure 4.5: Bounds When Both Assumptions Fail with πcEN = .05 in Simulation 3
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Figure 4.6: Percentage of Times True Effect Falls within the Bounds in Simulation 3
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πcEN increases. Note that the percentage of times for Proposition 3.2 increases at the

origin as πcEN increases.

The following conclusions can be drawn from the simulation exercises above. First,

when Assumption 3.6 holds, the bounds in both propositions are relatively robust to the
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Figure 4.7: Bounds When Both Assumptions Fail with πcEN = .10 in Simulation 4
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Figure 4.8: Percentage of Times True Effect Falls within the Bounds in Simulation 4
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Figure 4.9: Bounds When Both Assumptions Fail with πcEN = .15 in Simulation 5
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Figure 4.10: Percentage of Times True Effect Falls within the Bounds in Simulation 5
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existence of a small fraction of cEN members. As shown in Simulation 1, the allowable

limit of πcEN is .16. Second, when both assumptions fail, the bounds in Proposition 3.1

are still valid over a symmetric range of E[Y (1)|cEE]−E[Y (1)|cNE] around the ori-

gin, though the range shrinks gradually as πcEN increases. The range for the bounds in

Proposition 3.2 also shrinks, but the lower bound becomes less sensitive to the violation

of Assumption 3.6 at the origin as πcEN increases. The lower bound in Proposition 3.2

remains to identify a positive treatment effect for cEE as long as small departures occur

to the assumptions. In summary, the simulation results show that the bounds in the pres-

ence of sample selection and noncompliance are relatively robust to the key identifica-

tion Assumptions 3.5 and 3.6. This reinforces the robustness of the bounds obtained for

the wage effects of JC enrollment in the previous subsection. For the always-employed

compliers, the wage effect is bounded between 5.7 percent and 13.9 percent four years

after random assignment. This evidence suggests that Job Corps has positive effects not

only on the employability of its participants but also on their wages, implying that Job

Corps is likely to have positive effects on their human capital.



CHAPTER 5

CONCLUSION

Research on partial identification approaches has recently received increasing atten-

tion in program evaluation literature. The main advantage of partial identification over

traditional point identification is its dependence on milder assumptions, thus delivering

more credible results in empirical applications. This dissertation extends Instrumen-

tal Variable (IV) methods in the program evaluation literature by partially identifying

treatment effects of interest.

Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) developed an in-

fluential approach within the IV framework. They show that, when allowing for hetero-

geneous effects, IV estimators point identify the local average treatment effect (LATE)

for compliers. This dissertation advances the current IV literature in two important

ways. First, inspired by a common criticism of their approach that the focus is on the

effect for a subpopulation, the dissertation derives sharp nonparametric bounds for the

population average treatment effect (ATE) within the LATE framework. It improves

the bounds on the ATE proposed in the current IV literature by combining two sets

of assumptions. The first is monotonicity in the treatment of the average outcomes of

strata without specifying a priori direction. This assumption infers the sign of average

treatment effects for other subpopulations from that for compliers. In contrast to the

existing literature, monotonicity imposed on the average outcomes within the same sub-

population allows some individuals to experience a treatment effect that has the opposite

sign to the LATE. The second set of assumptions is mean dominance that compares av-

erage potential outcomes across different subpopulations. This assumption infers the
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unobserved terms from the identified average outcomes across subpopulations. Differ-

ent from the current literature, some of the bounds do not require a bounded-outcome

assumption once combining the monotonicity and mean dominance assumptions. More-

over, indirect evidence regarding mean dominance can be obtained by estimating pre-

treatment average characteristics of each stratum from an overidentified nonparametric

GMM problem.

Second, this dissertation extends the LATE framework to bound treatment effects in

the presence of sample selection and noncompliance. The sample selection issue arises

when outcomes of interest are only observed for a selected group. The noncompliance

problem appears because individuals can choose whether or not to actually take the treat-

ment in most of randomized experiments in economics and other social science fields,

especially the experiments with encouragement designs. As a result, it is common that

some individuals in the treatment group do not take the treatment while some individu-

als in the control group do. The dissertation extends the partial identification results in

Zhang, Rubin, and Mealli (2008) and Lee (2009), who construct bounds in the presence

of sample selection, to also account for noncompliance. Within the framework of princi-

pal stratification, it derives nonparametric bounds on the average treatment effect for the

always-selected compliers, who would comply with their assigned treatment and whose

outcomes are always-selected regardless of treatment assignment. This is the only group

of individuals whose outcomes are observable under both treatment receipt arms. Ad-

ditional assumptions are necessary to derive bounds for other subpopulations. More

generally, these bounds can be employed in settings where two identification problems

are present (e.g., endogeneity and missing outcomes) and there is a valid instrument to



90

address one of them. Thus, the dissertation provides an important extension to the cur-

rent partial identification literature in program evaluation, as it is common in empirical

applications to face more than one identification problem.

The dissertation employs the derived bounds to evaluate the effectiveness of the Job

Corps (JC) program, which is the most comprehensive and largest federally-funded job

training program for disadvantaged youth in the United States. It uses experimental

data from the National Job Corps Study (NJCS). Though individuals were randomly as-

signed to a treatment group or a control group, noncompliance arises. In the NJCS, 26%

of individuals who were assigned to participate in JC did not enroll, while 4% of individ-

uals who should have been embargoed from JC participation did enroll. Accordingly,

previous literature on the evaluation of the JC program usually analyzes intention-to-

treat (ITT ) effects or the LATE for compliers. Using random assignment as an IV to

address noncompliance, the dissertation contributes to this empirical literature by pro-

viding credible and informative bounds for treatment effects other than LATE and ITT

effects.

Focusing on the population average treatment effect on labor market outcomes and

welfare dependence, the monotonicity assumption and the mean dominance assumption

together provide the narrowest bounds on the ATEs of JC enrollment: [24.61, 201.04]

for weekly earnings and [.042, .163] for employment four years after randomization, and

[−142.76, −84.29] for the yearly dependence on public welfare benefits. These bounds

are significantly narrower than the bounds proposed in the current IV literature. The

lower bounds for weekly earnings and employment are 10 percent higher than their re-

spective ITT effects (22.19 and .038), while the upper bound for public benefits is equal
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to its ITT effect. The LATEs for compliers on the three outcomes also fall within these

narrowest bounds. Thus, it is safe to conclude that JC enrollment increases weekly earn-

ings by at least $24.61 and employment by at least 4.3 percentage points, and decreases

the fourth yearly dependence on public welfare benefits by at least $84.29.

The dissertation also evaluates the wage effect of JC, where both the sample selec-

tion issue (wages are only observed for employed individuals) and noncompliance are

present. The two key assumptions are a monotonicity assumption on the effect of JC on

employment, and a mean dominance assumption stating that the average potential wage

under treatment of the always-employed compliers is greater than that of compliers who

would be employed only if they participated in JC. As discussed in the dissertation, both

assumptions are plausible, especially for Non-Hispanics. The simulation exercises also

reinforce the identification power of the bounds under these two assumptions. Focusing

on the always-employed compliers, who would comply with their assigned treatment

and who would be always employed regardless of assignment status, the wage effect of

JC enrollment is between 5.7 percent and 13.9 percent four years after random assign-

ment, and between 7.7 and 17.5 percent for Non-Hispanics. This evidence suggests that

Job Corps has positive effects not only on the employability of its participants but also

on their wages, implying that Job Corps is likely to have positive effects in their human

capital. Therefore, it is very important to consider the potential benefits of Job Corps

and other training programs on wages when evaluating their effect.

The assumptions and methodologies employed in this dissertation can be used in

partial identification of treatment effects in other settings. For example, one important

extension is to bound the population ATE when the instrument does not satisfy the ex-
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clusion restriction. Argument over an IV usually concentrates on the plausibility of the

exclusion restriction. Thus, how to make inference about the ATE when this assumption

is violated is of great importance. Another interesting extension is to identify direct and

indirect effects (e.g., Rubin, 2004; Sjölander, 2009; VanderWeele, 2011) in the presence

of one identification issue (e.g., sample selection, noncompliance). When the causal

channel between the treatment and the outcome is intervened by an intermediate vari-

able, the direct effect refers to the causal effect of the treatment on the outcome net of

the part that works through the intermediate variable while the indirect effect refers the

part that works through the intermediate variable. Current literature on direct and indi-

rect effects usually involves intensive computation and thus deliver numerical solutions.

The methodology in this dissertation can be used to derive analytical bounds in the pres-

ence of one identification issue, for example, endogeneity. While beyond the scope of

this dissertation, these extensions are at the top of the research agenda. Further topics

to develop the present methodology include narrowing bounds by exploiting variations

among covariates and deriving bounds for treatment effects in alternative designs, for

example, an IV with three values, which is common in the fields of public health and

epidemiology.
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APPENDIX A

DERIVATION OF THE BOUNDS

A.1 Derivation of the Bounds in Section 3.2

This section only presents the proof of Proposition 2.2, as the proofs for the rest of the

propositions are similar.

Proof. Under Assumptions 1.1 through 1.4, AIR (1996) show that LATEc = (E[Y |Z =

1]− E[Y |Z = 0])/(p1|1− p1|0). By Assumption 2.2(ii), and since Z is ordered such

that p1|1 > p1|0, the direction of the monotonicity in Assumption 2.2(i) is identified

from the sign of LATEc. Here I consider only the case when LATEc > 0, as the

sharp bounds when LATEc < 0 are constructed in the same way. By equation (2.1),

ATE = πat(E[Y (1)|at]−E[Y (0)|at])+ πnt(E[Y (1)|nt]−E[Y (0)|nt])+ πcLATEc. Un-

der Assumptions 1.1 though 1.4, the sampling process identifies each of the quantities

to the right of this equation except for E[Y (1)|nt] and E[Y (0)|at], and thus equation

(2.2) follows. Since there are no restrictions on these two means other than those im-

posed by Assumptions 2.1 and 2.2(i), these two assumptions directly imply the bounds

yu ≥ E[Y (1)|nt]≥ E[Y (0)|nt] =Y 10 and Y 01 = E[Y (1)|at]≥ E[Y (0)|at]≥ yl . The lower

(upper) bound on ATE in Proposition 2.2 is obtained from equation (2) by setting

E[Y (1)|nt] at its lower (upper) bound and E[Y (0)|at] at its upper (lower) bound.

For sharpness, first of all, ATE attains its smallest value when E[Y (0)|at] = Y 01

and E[Y (1)|nt] = Y 10. Otherwise, always-takers or never-takers violate Assumption

2.2(i). Similarly, ATE attains its largest value when E[Y (0)|at] = yl and E[Y (1)|nt] =

yu. Otherwise, always-takers or never-takers violate Assumption 2.1. Next, I will
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show that ∀α ∈ [LB,UB], there exist distributions consistent with observed data, and

ATE = α evaluated under such distributions. ∀α ∈ [LB,UB], it can be written as

α = Y 11p1|1−Y 00p0|0+ q1p0|1− q0p1|0, where q1 ∈ [Y 10,yu] and q0 ∈ [yl,Y 01]. Let

FY1|Z,D(y1|1,d) denote the distribution of the potential outcome Y (1) conditional on

Z = 1 and D = d. Similarly, FY0|Z,D(y0|0,d) denotes the distribution of the potential

outcome Y (0) conditional on Z = 0 and D= d. Then, define

FY1|Z,D(y1|1,d) =

⎧⎪⎨
⎪⎩
FY |Z,D(y|1,1), if D= 1
1[y1 ≥ q1], if D= 0

and

FY0|Z,D(y0|0,d) =

⎧⎪⎨
⎪⎩
FY |Z,D(y|0,0), if D= 0
1[y0 ≥ q0], if D= 1

.

ATE = E[Y (1)−Y (0)]

= E[Y (1)|Z = 1]−E[Y (0)|Z = 0]

= p1|1E[Y (1)|Z = 1,D = 1] + p0|1E[Y (1)|Z = 1,D = 0]− p1|0E[Y (0)|Z = 0,D =

1]− p0|0E[Y (0)|Z = 0,D= 0]

= p1|1E[Y |Z = 1,D = 1]+ p0|1E[Y (1)|Z = 1,D = 0]− p1|0E[Y (0)|Z = 0,D = 1]−

p0|0E[Y |Z = 0,D= 0]

= p1|1Y
11
+ p0|1q1− p1|0q0− p0|0Y 00

= α .

The second line follows Assumption 1.1, the third line follows Law of Iterated Ex-

pectation, and the fourth and fifth lines follow the defined distributions.
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A.2 Derivation of the Bounds in Section 3.3

A.2.1 Proof of Proposition 3.1

First, I show that under Assumptions 3.1 through 3.5 LcEE andUcEE are the smallest and

largest possible values, respectively, for the average treatment effect for the stratum cEE.

Next, I prove that for ∀Δ ∈ [LcEE ,UcEE ], there exist distributions for cEE, aEE, and

cNE consistent with the observed data of Y in {Z = 1,D= 1,S = 1} and the constraint

that E[Y (1)|aEE] = Y 011. In other words, the interval [LcEE ,UcEE ] contains any other

bounds that are consistent with Assumptions 3.1 through 3.5. The first-step proof is

similar to that in Horowitz and Manski (1995), except that a binding constraint should

be satisfied under the lower and upper bounds. Since both LcEE andUcEE depend on the

range of Y 011, I need to discuss multiple cases in the proof.

Proof. First by Assumptions 3.1 through 3.5, the proportions of each stratum are

uniquely determined by the observed data. Thus, the proof is completed given the pro-

portions of the strata. Second since E[Y (0)|cEE] is point identified by Assumptions 3.1

through 3.5, the proof can be completed with respect to E[Y (1)|cEE] instead of the av-

erage treatment effect for cEE. Let θ = E[Y (1)|cEE], and then Δ = θ −E[Y (0)|cEE].

Third, since both LY1,cEE and UY1,cEE depend on the range of Y
011, I have to discuss

multiple cases.

Let Qy be the observed distribution of Y in the cell [Z = 1,D = 1,S = 1]. yaEE =

Y (y111αcEE ≤ Y ≤ y1111−αcNE ), ỹaEE = Y (y
111
αcNE ≤ Y ≤ y1111−αcEE ). Denote the expression of

LY1,cEE as L̃Y 1,cEE when yaEE > Y
011 and the expression of UY1,cEE as ŨY 1,cEE when
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ỹaEE < Y
011, The probability density functions for each stratum are f ycEE , f yaEE , and

f ycNE , and their corresponding distributions are FycEE , FyaEE , and FycNE .

For the first-step proof, I discuss the two cases to show that LY1,cEE is the smallest

possible value for E[Y (1)|cEE]. The other two cases for the UY1,cEE can be shown in

the same way.

1. LY1,cEE = Y (Y ≤ y111αcEE ), when Y
011 ≥ yaEE .

Let Gy=

⎧⎪⎨
⎪⎩

Qy
αcEE , if y≤ y111αcEE

1, if y> y111αcEE

.

To show that Y (Y ≤ y111αcEE ) is the smallest value, I have Gy ≥ FycEE , for all FycEE

∈ {αcEEFycEE+αaEEFyaEE+αcNEFycNE =Qy, E[Y (1)|aEE] =Y 011} and all y ∈R.

If y≤ y111αcEE , Gy< FycEE⇒Qy< αcEEFycEE⇒Qy< αcEEFycEE+αaEEFyaEE+

αcNEFycNE . This contradicts the feasible set of FycEE.

If y> y111αcEE , Gy−FycEE = 1−FycEE ≥ 0.

Next, I show that the distributions exist, when E[Y (1)|cEE] = Y (Y ≤ y111αcEE ) and

E[Y (1)|aEE] = Y 011.

When Y 011 ≥ yaEE and Y 011 ≥ Y (y111αcEE ≤ Y ≤ y1111−αaEE ), let ty be the observed den-

sity of Y (Y ≥ y1111−αaEE ) and hy the observed density of Y (y
111
αcEE ≤ Y ≤ y1111−αaEE ). Then

∃τ ∈ [0,1], s.t. τY (Y ≥ y1111−αaEE )+ (1− τ)Y (y111αcEE ≤ Y ≤ y1111−αaEE ) = Y
011. Therefore,

gy= f ycEE , τty+(1− τ)hy= f yaEE and (1−τ)πaEE
πcNE ty+(1− (1−τ)πaEE

πcNE )hy= f ycNE .

When Y (y111αcEE ≤ Y ≤ y1111−αaEE ) ≤ Y
011 ≤ yaEE , let ty be the observed density of

Y (Y ≥ y1111−αcNE ) and hy the observed density of Y (y
111
αcEE ≤ Y ≤ y1111−αcNE ). Then ∃τ ∈

[0,1], s.t. τY (Y ≥ y1111−αcNE )+ (1− τ)Y (y111αcEE ≤ Y ≤ y1111−αcNE ) = Y
011. Similarly, gy =

f ycEE , τty+(1− τ)hy= f yaEE and (1− τπaEE
πcNE )ty+

τπaEE
πcNE hy= f ycNE .
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2. LY1,cEE = L̃Y 1,cEE , when Y
011 ≤ yaEE .

In this case, I first prove that Y (Y ≤ y111p1−1,cNE ) is the smallest feasible value for the

quantity πcEE
πcEE+πaEE E[Y (1)|cEE]+

πaEE
πcEE+πaEE E[Y (1)|aEE], and then show L̃Y 1,cEE is the

smallest feasible value for E[Y (1)|cEE].

Let Gy=

⎧⎪⎨
⎪⎩

Qy
1−αcNE , if y≤ y1111−αcNE

1, if y> y1111−αcNE

.

To show that Y (Y ≤ y111p1−1,cNE ) is the smallest value for
πcEE

πcEE+πaEE E[Y (1)|cEE] +
πaEE

πcEE+πaEE E[Y (1)|aEE], I haveGy≥
πcEE

πcEE+πaEE FycEE+
πaEE

πcEE+πaEE FyaEE , for all FycEE ∈

{αcEEFycEE +αaEEFyaEE +αcNEFycNE = Qy, E[Y (1)|aEE] = Y 011} and all y ∈R.

If y ≤ y1111−αcNE , Gy <
πcEE

πcEE+πaEE FycEE +
πaEE

πcEE+πaEE FyaEE ⇒ Qy < αcEEFycEE +

αaEEFyaEE ⇒Qy< αcEEFycEE+αaEEFyaEE+αcNEFycNE . This contradicts the fea-

sible set of FycEE.

If y> y1111−αcNE , Gy− ( πcEE
πcEE+πaEE FycEE +

πaEE
πcEE+πaEE FyaEE) = 1−

πcEE
πcEE+πaEE FycEE −

πaEE
πcEE+πaEE FyaEE ≥ 0.

Since E[Y (1)|aEE] = Y 011, L̃Y 1,cEE is the smallest value for E[Y (1)|cEE].

Next, I show that there exist distributions of cEE, aEE and cNE in the trimming

cell, such that E[Y (1)|cEE] = L̃Y 1,cEE and E[Y (1)|aEE] = Y 011.

When Y 011 ≤ yaEE and Y 011 ≤ Y (y111αaEE ≤ Y ≤ y1111−αcNE ), let sy be the observed den-

sity of Y (Y ≥ y1111−αcNE ), ty the observed density of Y (y
111
αaEE ≤ Y ≤ y1111−αcNE ) and hy the

observed density of Y (Y ≤ y111αaEE ). Then ∃τ ∈ [0,1], s.t. τY (y111αaEE ≤ Y ≤ y1111−αcNE )+

(1− τ)Y (Y ≤ y111αaEE ) = Y
011. Therefore, sy = f ycNE , τty+ (1− τ)hy = f yaEE and

(1− τπaEE
πcEE )ty+

τπaEE
πcEE hy= f ycEE .
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When Y (y111αaEE ≤ Y ≤ y1111−αcNE ) ≤ Y
011 ≤ yaEE , let sy be the observed density of

Y (Y ≥ y1111−αcNE ), ty the observed density of Y (y
111
αcEE ≤Y ≤ y1111−αcNE ) and hy the observed

density of Y (Y ≤ y111αcEE ). Then ∃τ ∈ [0,1], s.t. τY (y111αcEE ≤Y ≤ y1111−αcNE )+(1−τ)Y (Y ≤

y111αcEE ) = Y
011. Therefore, sy = f ycNE , τty+(1− τ)hy= f yaEE and (1−τ)πaEE

πcEE ty+(1−
(1−τ)πaEE

πcEE )hy= f ycEE .

For the second-step proof, I have four cases to discuss, taking into account the

lower and upper bound simultaneously. Since they form different segmentations of

Qy, in each case I use some cutoff values to discuss ∀θ ∈ [LY1,cEE ,cuto f f ] and ∀θ ∈

[cuto f f ,UY1,cEE ] separately. In either interval for θ , I have to discuss the range of

Y 011as I have done in the first-step proof. The four cases are listed as follows.

1. LY1,cEE = Y (Y ≤ y111αcEE ),UY1,cEE = Y (Y ≥ y1111−αcEE )

It happens when yaEE ≤ Y 011 ≤ ỹaEE ; in other words, πcNE ≥ πcEE . Since Y (Y ≤

y111αcEE ) ≤ Y
111 ≤ Y (Y ≥ y111αcEE ) and Y (Y ≤ y1111−αcEE ) ≤ Y

111 ≤ Y (Y ≥ y1111−αcEE ), thus,

cuto f f = Y 111.

For ∀θ ∈ [Y (Y ≤ y111αcEE ),cuto f f ], it is necessary to discuss two cases when Y
011 ≥

yaEE &Y
011 ≥ Y (y111αcEE ≤ Y ≤ y1111−αaEE ) and yaEE ≤ Y

011 ≤ Y (y111αcEE ≤ Y ≤ y1111−αaEE ).

For ∀θ ∈ [cuto f f ,Y (Y ≥ y1111−αcEE )], it is necessary to discuss two cases whenY
011≤

ỹaEE &Y
011 ≤ Y (y111αaEE ≤ Y ≤ y1111−αcEE ) and Y (y

111
αaEE ≤ Y ≤ y1111−αcEE )≤ Y

011 ≤ ỹaEE .

2. LY1,cEE = Y (Y ≤ y111αcEE ),UY1,cEE = ŨY 1,cEE

In this case, I have to discuss the relationship between yaEE and ỹaEE first. I solve

this problem with two different cutoffs:

For ∀θ ∈ [Y (Y ≤ y111αcEE ),cuto f f ], I have two cases to discuss: Y
011 ≥ yaEE &Y 011 ≥

Y (y111αcEE ≤ Y ≤ y1111−αaEE ) and yaEE ≤ Y
011 ≤ Y (y111αcEE ≤ Y ≤ y1111−αaEE ).
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For ∀θ ∈ [cuto f f ,ŨY 1,cEE ], I have two cases to discuss: Y 011 ≥ ỹaEE &Y 011 ≥

Y (y111αcNE ≤ Y ≤ y1111−αaEE ) and ỹaEE ≤ Y
011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE ).

3. LY1,cEE = L̃Y 1,cEE ,UY1,cEE = Y (Y ≥ y1111−αcEE )

Like case 2, I have to discuss the relationship between yaEE and ỹaEE first. I solve

this problem with two different cutoffs:

For ∀θ ∈ [L̃Y 1,cEE ,cuto f f ], I have two cases to discuss: Y 011 ≤ yaEE &Y 011 ≤

Y (y111αaEE ≤ Y ≤ y1111−αcNE ) and Y (y
111
αaEE ≤ Y ≤ y1111−αcNE )≤ Y

011 ≤ yaEE .

For ∀θ ∈ [cuto f f ,Y (Y ≥ y1111−αcEE )], I have two cases to discuss: Y
011≤ ỹaEE &Y 011≤

Y (y111αaEE ≤ Y ≤ y1111−αcEE ) and Y (y
111
αaEE ≤ Y ≤ y1111−αcEE )≤ Y

011 ≤ ỹaEE .

4. LY1,cEE = L̃Y 1,cEE ,UY1,cEE = ŨY 1,cEE

This happens when ỹaEE ≤ Y 011 ≤ yaEE ; in other words, πcNE ≤ πcEE . In this

case, it is difficult to get a uniform cutoff. I discuss multiple cases conditional on the

proportions of the strata.

When πcNE ≤ πcEE and πaEE ≤ πcEE , I discuss the intervals ∀θ ∈ [L̃Y 1,cEE ,yaEE ]

and ∀θ ∈ [ỹaEE ,ŨY 1,cEE ] to complete the proof in the entire range, i.e., ∀θ ∈ [L̃Y 1,cEE ,

ŨY 1,cEE ]. For ∀θ ∈ [L̃Y 1,cEE ,yaEE ], the two cases are Y 011 ≤ yaEE &Y 011 ≤ Y (y111αaEE ≤

Y ≤ y1111−αcNE ) and Y (y
111
αaEE ≤ Y ≤ y1111−αcNE ) ≤ Y

011 ≤ yaEE . For ∀θ ∈ [ỹaEE ,ŨY 1,cEE ],

the two cases are Y 011 ≥ ỹaEE &Y 011 ≥ Y (y111αcNE ≤ Y ≤ y1111−αaEE ) and ỹaEE ≤ Y
011 ≤

Y (y111αcNE ≤ Y ≤ y1111−αaEE ).

When πcNE ≤ πcEE ≤ πaEE , I discuss the intervals ∀θ ∈ [L̃Y 1,cEE ,Y (y111αaEE ≤ Y ≤

y1111−αcNE )] and ∀θ ∈ [Y (y111αcNE ≤ Y ≤ y1111−αaEE ),ŨY 1,cEE ] to complete the proof in the

entire range. For ∀θ ∈ [L̃Y 1,cEE ,Y (y111αaEE ≤ Y ≤ y1111−αcNE )], I have Y
011 ≤ yaEE &Y 011 ≤
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Y (y111αaEE ≤ Y ≤ y1111−αcNE ). For ∀θ ∈ [Y (y111αcNE ≤ Y ≤ y1111−αaEE ),ŨY 1,cEE ], I have Y
011 ≥

ỹaEE &Y
011 ≥ Y (y111αcNE ≤ Y ≤ y1111−αaEE ).

From all the above, I can find that though cutoffs are different in the four cases, the

discussion of Y 011 is repeated. Cases 2 and 3 compose a complete discussion of Y 011.

In the following, I only write the proof of Case 2. Case 3 can be shown in a similar way.

First, let me discuss the relationship between yaEE and ỹaEE in Case 2 and derive

two different cutoffs.

When yaEE ≤ ỹaEE ≤ Y 011(i.e., πcNE ≥ πcEE), I have LY1,cEE ≤ Y (y111αcEE ≤ Y ≤

y1111−αaEE ) ≤ Y (Y ≥ y111αcEE ) and ŨY 1,cEE = Y (Y ≥ y111αcNE )
πcEE+πaEE

πcEE −Y 011 πaEE
πcEE ≥ Y (Y ≥

y111αcNE )
πcEE+πaEE

πcEE −Y (Y ≥ y1111−αaEE )
πaEE
πcEE = Y (y

111
αcNE ≤ Y ≤ y1111−αaEE ) ≥ Y (y111αcEE ≤ Y ≤

y1111−αaEE ). The first inequality is derived from Y
011 ≤ Y (Y ≥ y1111−αaEE ), and the last in-

equality is derived from πcNE ≥ πcEE . Thus, ŨY 1,cEE ≥ Y (y111αcEE ≤ Y ≤ y1111−αaEE ) ≥

Y (Y ≤ y111αcNE ). Therefore, the cutoff value cuto f f = Y (y
111
αcEE ≤ Y ≤ y1111−αaEE ).

When ỹaEE ≤ yaEE ≤ Y 011(πcNE ≤ πcEE), LY1,cEE ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE ) ≤

Y (Y ≥ y111αcNE )≤ Y (Y ≥ y111αcEE ). The last inequality is derived from πcNE ≤ πcEE . Thus,

LY1,cEE ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE ) ≤ Y (Y ≥ y111αcEE ). And ŨY 1,cEE ≥ Y (y111αcNE ≤ Y ≤

y1111−αaEE )≥Y (Y ≤ y111αcNE ). Its derivation is the same as that in the last paragraph. There-

fore, cuto f f = Y (y111αcNE ≤ Y ≤ y1111−αaEE ).

Second, ∀θ ∈ [cuto f f ,ŨY 1,cEE ], where cuto f f is the corresponding value in either

case yaEE ≤ ỹaEE or ỹaEE ≤ yaEE , ∃λ ∈ (0,1], s.t. λŨY 1,cEE+(1−λ )Y (Y ≤ y111αcNE ) = θ ,

since Y (Y ≤ y111αcNE )≤ θ ≤ ŨY 1,cEE . (λ = θ−Y (Y≤y111αcNE )

ŨY 1,cEE−Y (Y≤y111αcNE )
.)

To construct f yaEE , it is necessary to discuss the value of Y
011. One case is Y 011 ≥

Y (y111αcNE ≤ Y ≤ y1111−αaEE ). This happens when either πcEE ≤ πaEE , or πcEE ≥ πaEE
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but aEE take up the very top quantiles of the observed distribution. The other case is

Y 011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE ). This is true only when πcEE ≥ πaEE .

(1) Y 011 ≥ ỹaEE &Y 011 ≥ Y (y111αcNE ≤ Y ≤ y1111−αaEE )

Let ty be the observed density of Y (y ≥ y1111−αaEE ), hy the density of Y (y
111
αcNE ≤ Y ≤

y1111−αaEE ) and gy the density of Y (y ≤ y111αcNE ). Since Y (Y ≤ y1111−αaEE ) ≤ Y
011 ≤ Y (Y ≥

y1111−αaEE ), ∃τ ∈ (0,1], s.t. τY (Y ≥ y1111−αaEE )+(1−τ)Y (Y ≤ y1111−αaEE ) =Y
011. τty+(1−

τ) πcEE
πcNE+πcEE hy+(1−τ) πcNE

πcNE+πcEE gy= f yaEE . Since ŨY 1,cEE is obtained by temporarily

assuming aEE is above y111αcNE , ∃φ ∈ [0,1], s.t. φY (Y ≥ y1111−αaEE )+ (1− φ)Y (y111αcNE ≤

Y ≤ y1111−αaEE ) = Y
011. Thus, λ{πaEE

πcEE ty+ hy− [φ ty+ (1− φ)hy]πaEEπcEE }+ (1− λ )gy =

f ycEE . Since αaEEty+αcEEhy+αcNEgy=αaEE f yaEE+αcEE f ycEE+αcNE f ycNE , the

corresponding density for cNE is πaEE
πcNE [1−τ−λ (1−φ)]ty+ πcEE

πcNE [1−(1−τ) πaEE
πcEE+πcNE −

λ (1− (1−φ)πaEE
πcEE )]hy+[1− (1− τ) πaEE

πcEE+πcNE − (1−λ )πcEE
πcNE ]gy= f ycNE .

(2) ỹaEE ≤ Y 011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE )

Let ty be the observed density of Y (y ≥ y1111−αcEE ), hy the density of Y (y
111
αcNE ≤ Y ≤

y1111−αcEE ) and gy the density of Y (y ≤ y111αcNE ). Since Y (Y ≤ y111αcNE ) ≤ Y
011 ≤ Y (Y ≥

y111αcNE ), ∃τ ∈ (0,1), s.t. τY (Y ≥ y111αcNE )+ (1− τ)Y (Y ≤ y111αcNE ) = Y
011. τ πcEE

πaEE+πcEE ty+

τ πaEE
πaEE+πcEE hy+(1−τ)gy= f yaEE . As in (1), since ŨY 1,cEE is obtained by temporarily

assuming aEE is above y111αcNE , ∃φ ∈ [0,1], s.t. φY (Y ≥ y1111−αcEE )+(1−φ)ỹaEE = Y
011.

Thus, λ{ty+ πaEE
πcEE hy− [φ ty+(1−φ)hy]πaEEπcEE }+(1−λ )gy= f ycEE . Similarly as in (1),

I finally get πcEE
πcNE [1− τ πaEE

πcEE+πaEE − λ (1− φ πaEE
πcEE )]ty+

πaEE
πcNE [1− τ πaEE

πcEE+πaEE − λφ ]hy+

[1− (1− τ)πaEE
πcNE − (1−λ )πcEE

πcNE ]gy= f ycNE .

Third, ∀θ ∈ [Y (Y ≤ y111αcEE ),cuto f f ], ∃λ ∈ [0,1), s.t. λY (Y ≥ y111αcEE )+(1−λ )Y (Y ≤

y111αcEE ) = θ , since Y (Y ≤ y111αcEE )≤ θ ≤ Y (Y ≥ y111αcEE ). (λ =
θ−Y (Y≤y111αcEE )

Y (Y≥y111αcEE )−Y (Y≤y111αcEE )
.)
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To discuss the value of Y 011, one case is Y 011 ≥Y (y111αcEE ≤Y ≤ y1111−αaEE ). It happens

when either πcNE ≤ πaEE , or πcNE ≥ πaEE but aEE take up very top quantiles of the

observed distribution. The other case is Y 011 ≤ Y (y111αcEE ≤ Y ≤ y1111−αaEE ) when πcNE ≥

πaEE .

(1) Y 011 ≥ yaEE &Y 011 ≥ Y (y111αcEE ≤ Y ≤ y1111−αaEE )

Let ty be the observed density of Y (y ≥ y1111−αaEE ), hy the density of Y (y
111
αcEE ≤ Y ≤

y1111−αaEE ), and gy the density of Y (y ≤ y111αcEE ). Since Y (Y ≤ y1111−αaEE ) ≤ Y
011 ≤ Y (Y ≥

y1111−αaEE ), ∃τ ∈ (0,1], s.t. τY (Y ≥ y1111−αaEE ) + (1− τ)Y (Y ≤ y1111−αaEE ) = Y
011. τty+

(1− τ) πcNE
πcNE+πcEE hy+ (1− τ) πcEE

πcNE+πcEE gy = f yaEE . For cEE, I have λ πaEE
πcNE+πaEE ty+

λ πcNE
πcNE+πaEE hy+ (1− λ )gy = f ycEE . Finally, πaEE

πcNE (1− τ − λ πcEE
πaEE+πcNE )ty+ [1− (1−

τ) πaEE
πcEE+πcNE −λ πcEE

πcEE+πcNE ]hy+
πcEE
πcNE [λ − (1− τ) πaEE

πcEE+πcNE )]gy= f ycNE .

(2) yaEE ≤ Y 011 ≤ Y (y111αcEE ≤ Y ≤ y1111−αaEE )

Let ty be the observed density of Y (y ≥ y1111−αcNE ), hy the density of Y (y
111
αcEE ≤ Y ≤

y1111−αcNE ), and gy the density of Y (y ≤ y111αcEE ). Since Y (Y ≤ y1111−αcNE ) ≤ Y
011 ≤ Y (Y ≥

y1111−αcNE ), ∃τ ∈ (0,1], s.t. τY (Y ≥ y1111−αcNE ) + (1− τ)Y (Y ≤ y1111−αcNE ) = Y
011. τty+

(1− τ) πaEE
πaEE+πcEE hy+ (1− τ) πcEE

πaEE+πcEE gy = f yaEE . For cEE, I have λ πcNE
πcNE+πaEE ty+

λ πaEE
πcNE+πaEE hy+ (1− λ )gy = f ycEE . Finally, (1− τ πaEE

πcNE − λ πcEE
πaEE+πcNE )ty+

πaEE
πcNE [1−

(1− τ) πaEE
πcEE+πaEE −λ πcEE

πaEE+πcNE ]hy+
πcEE
πcNE [λ − (1− τ) πaEE

πcEE+πaEE ]gy= f ycNE .

A.2.2 Proof of Proposition 3.2

The proof of Proposition 3.2 is similar to that of Proposition 3.1, except for two differ-

ences: multiple cases reduce to two due to LcEE , and the constructed distributions for

cEE and cNE should also satisfy the mean dominance assumption.
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Proof. As in the proof of Proposition 3.1, I first show that LY1,cEE is the smallest feasible

value for E[Y (1)|cEE], and then show ∀θ ∈ [ LY1,cEE ,UY1,cEE ], there exist distributions

FycEE , FyaEE and FycNE satisfying Assumptions 3.1 through 3.6.

For ∀θ ∈ [LY1,cEE ,UY1,cEE ], by equation (3.6), I have

E[Y (1)|cEE]−E[Y (1)|cNE]

= θ − (Y 111 πcEE+πcNE+πaEE
πcNE −θ πcEE

πcNE −Y
011 πaEE

πcNE )

≥ (1+ πcEE
πcNE )LY1,cEE +Y

011 πaEE
πcNE −Y

111 πcEE+πcNE+πaEE
πcNE = 0.

If there was another lower bound smaller than LY1,cEE , E[Y (1)|cEE]−E[Y (1)|cNE]

would be negative when E[Y (1)|cEE] reached that lower bound. This contradicts As-

sumption 3.6. Thus, LY1,cEE is the smallest value for E[Y (1)|cEE] under Assumptions

3.1 through 3.6.

As in Proposition 3.1, I have to show the distributions exist when E[Y (1)|cEE] =

LY1,cEE and E[Y (1)|aEE] = Y 011. According to the range of Y 011, I have four cases to

discuss:

(1) Y 011 ≤ ỹaEE&Y 011 ≤ Y (y111αaEE ≤ Y ≤ y1111−αcEE )

(2) Y (y111αaEE ≤ Y ≤ y1111−αcEE )≤ Y
011 ≤ ỹaEE

(3) Y 011 ≥ ỹaEE&Y 011 ≥ Y (y111αcNE ≤ Y ≤ y1111−αaEE )

(4) ỹaEE ≤ Y 011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE )

These four cases correspond with those in the second-step proof that for ∀θ ∈

[LY1,cEE ,UY1,cEE ], there exist distributions FycEE , FyaEE , and FycNE satisfying As-

sumptions 3.1 through 3.6. Since for ∀θ ∈ [LY1,cEE ,UY1,cEE ], ∃λ ∈ [0,1], s.t. λUY1,cEE+

(1−λ )LY1,cEE = θ , the proof that the distributions exist when E[Y (1)|cEE] = LY1,cEE

and E[Y (1)|aEE] =Y 011 is a special case of the second-step proof, i.e. λ = 0. In the fol-
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lowing, I take Case (4) as an example to illustrate the second-step proof of Proposition

3.2.

(4) ỹaEE ≤ Y 011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE )

Let ty be the observed density of Y (y ≥ y1111−αcEE ), hy the density of Y (y
111
αcNE ≤ Y ≤

y1111−αcEE ), and gy the density of Y (y≤ y111αcNE ).

∀θ ∈ [LY1,cEE ,ŨY 1,cEE ],∃λ ∈ [0,1], s.t. λŨY 1,cEE +(1−λ )LY1,cEE = θ .

As in the proof of Proposition 3.1, since ỹaEE ≤ Y 011 ≤ Y (y111αcNE ≤ Y ≤ y1111−αaEE ),

∃ τ ∈ (0,1], s.t. τY (Y ≥ y1111−αcEE ) + (1− τ)Y (Y ≤ y1111−αcEE ) = Y
011. And τty+ (1−

τ) πaEE
πcNE+πaEE hy+(1−τ) πcNE

πcNE+πaEE gy= f yaEE . Since ŨY 1,cEE is obtained by temporarily

assuming aEE is above y111αcNE , ∃φ ∈ [0,1], s.t. φY (Y ≥ y1111−αcEE )+(1−φ)ỹaEE = Y
011.

Thus, λ{ty+ πaEE
πcEE hy− [φ ty+(1− φ)hy]πaEEπcEE }+(1−λ )( πcEE

πcEE+πcNE ty+
πaEE

πcEE+πcNE hy+

πcNE
πcEE+πcNE gy− f yaEE

πaEE
πcEE+πcNE ) = f ycEE . After some algebra, [λ (1− φ πaEE

πcEE ) + (1−

λ )( πcEE
πcEE+πcNE −τ πaEE

πcEE+πcNE )]ty+{λφ πaEE
πcEE +(1−λ ) πaEE

πcEE+πcNE [1−(1−τ) πaEE
πaEE+πcNE ]}hy

+(1−λ ) πcNE
πcEE+πcNE [1− (1− τ) πaEE

πaEE+πcNE ]gy = f ycEE . Then, the corresponding density

for cNE is {−πaEE
πcNE τ+ πcEE

πcNE [1−λ (1−φ πaEE
πcEE )− (1−λ )( πcEE

πcEE+πcNE − τ πaEE
πcEE+πcNE )]}ty+

πaEE
πcNE {−λφ− [1−(1−λ ) πcEE

πcEE+πcNE ][1−(1−τ) πaEE
πaEE+πcNE ]}hy+[1−(1−λ ) πcEE

πcEE+πcNE ][1

−(1− τ) πaEE
πaEE+πcNE ]gy= f ycNE .

The inequality in the second paragraph of this proof shows that Assumption 3.6

holds, as long as E[Y (1)|cEE] ≥ LY1,cEE . Since θ ∈ [LY1,cEE ,UY1,cEE ] holds by con-

struction, the constructed densities satisfy Assumption 3.6.



APPENDIX B

PROCEDURE FOR ESTIMATION AND INFERENCE

In this section, I use the upper bound for E[Y (1)|cEE] in Proposition 3.1 as an

illustration to show how to employ the methodology proposed by Chernozhukov, Lee,

and Rosen (2011) (hereafter CLR) to calculate the half-median-unbiased estimators and

the confidence interval for the true parameter of interest when the bounds involve max

or min operator.

The upper bound for θ 0 = E[Y (1)|cEE] is given by θ u0 = minv∈V ={1,2}θ u(v), with

θ u(1) =Y (Y ≥ y1111−αcEE ) and θ u(2) =Y (Y ≥ y111αcNE )
q1|0−p01|1
p01|0−p01|1 −Y

011 p11|0
p01|0−p01|1 . Then the

precision-corrected estimate of θ u0 is given by θ̂
u
(p) = minv∈{1,2}[θ̂

u
(v) + k(p)s(v)],

where θ̂
u
(v) is a consistent estimate of θ u(v), s(v) is its standard error and k(p) is a

critical value.

The selection of k(p) relies on standardized process Zn(v) = {θ u(v)− θ̂
u
(v)}/σ(v),

where σ(v)/s(v)→ 1 uniformly in v. CLR (2011) approximate this process by a stan-

dardized Gaussian process Z∗n(v). Specifically, for any compact set V , CLR (2011) ap-

proximate by simulation the p-th quantile of supv∈V Z∗n(v), denoted by kn,V (p), and use

it in place of k(p). Since setting V = V leads to asymptotically valid but conservative

inference, CLR (2011) propose a preliminary set estimator V̂n of V0 = argminv∈V θ u(v)

for the upper bound (where argmin is replaced by argmax for the lower bound), which

they call an adaptive inequality selector. Intuitively, V̂n selects the bounding functions

that are close enough to binding to affect the asymptotic distribution of the estimators

of the upper and lower bounds.

111
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Now let me describe the precise procedure to obtain half-median-unbiased estima-

tors for the upper bounds of Δ and E[Y (1)|cEE] in Proposition 3.1.24 These upper

bounds can be written as θ un0=minv∈V ={1,2}θ un(v), where the bounding functions θ un(v)

are given in Proposition 3.1, as illustrated in the example above.25 Let γn = [θ
u
n(1)

θ un(2)]′ be the vector containing the two bounding functions and let γ̂n = [θ̂
u
n(1) θ̂

u
n(2)]′

denote its sample analog estimator, which can be shown to be consistent and asymp-

totically normally distributed using standard results (e.g., Newey and McFadden, 1994;

Lee, 2009). The specific steps are as follows.

1. Let Ωn denote the asymptotic variance of
√
n(γ̂n− γn). A consistent estimate of

Ωn, Ω̂n, is obtained by a 5000-repetition bootstrap. Let ĝn(v)′ denote the vth row

of Ω̂1/2n , sn(v) = ‖ĝn(v)‖/√n and, following CLR (2011), set cn = 1−(.1/ logn).

2. Simulate R = 1,000,000 draws from N (0, I2), denoted Z1, ...,ZR, where I2 is a

2×2 identity matrix, and let Z∗r (v) = ĝn(v)′Zr/‖ĝn(v)‖ for r = 1, ...,R.

3. Let Qp(X) denote the p-th quantile of a random variable X . Compute kn,V (cn) =

Qcn(maxv∈V Z∗r (v),r = 1, ...,R); that is, for each replication r calculate the maxi-

mum of Z∗r (1) and Z∗r (2), and take the c-th quantile of those R values. Then, use

the critical value to compute the set estimator V̂n= {v∈V : θ̂
u
n(v)≤minṽ∈V {[θ̂

u
n(ṽ)

+kn,V (cn)sn(ṽ)]+2kn,V (cn)sn(v)}.

4. Compute kn,V̂n(p) = Qp(maxv∈V̂n Z
∗
r (v),r = 1, ...,R), so that the critical value is

based on V̂n instead of V .
24For further details on the procedure see CLR (2011), especially in Appendix A and Section 4.1
25The subscript "n" indicates local parameters.
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5. To get the half-median-unbiased estimator of θ un0, θ̂
u
n(1/2), Set p= 1/2 and com-

pute θ̂
u
n(1/2) =minv∈V [θ̂

u
n(v)+ kn,V̂n(1/2)sn(v)].

To obtain half-median-unbiased estimators for the lower bounds in Proposition 3.1,

which have the form θ ln0 =maxv∈V ={1,2}θ ln(v), V̂n in step 3 above is replaced by V̂n =

{v ∈ V : θ̂
l
n(v)≥maxṽ∈V [θ̂

l
n(ṽ)− kn,V (cn)sn(ṽ)]−2kn,V (cn)sn(v)}, and in step 5 I set

θ̂
l
n(1/2) =maxv∈V [θ̂

l
n(v)− kn,V̂n(1/2)sn(v)].26

To describe the construction of confidence intervals for the true parameter θ 0, let

θ̂
u
n(p) = minv∈V [θ̂

u
n(v) + kn,V̂n(p)sn(v)] and θ̂

l
n(p) = maxv∈V [θ̂

l
n(v)− kn,V̂n(p)sn(v)],

where the critical values are obtained as described above. Following CLR (2011), let

Γ̂n = θ̂
u
n(1/2)− θ̂

l
n(1/2), Γ̂+n = max(0, Γ̂n), ρn = max{θ̂

u
n(3/4)− θ̂

u
n(1/4), θ̂

l
n(1/4)−

θ̂
l
n(3/4)}, τn= 1/(ρn logn) and p̂n= 1−Φ(τnΓ̂+n )α , whereΦ(·) is the standard normal

CDF. Note that p̂n ∈ [1−α,1−α/2], with p̂n approaching 1−α/2 when the length of

the identified set tends to zero. Then, an asymptotically valid 1−α confidence inter-

val for θ 0 is given by [θ̂
l
n(p̂n), θ̂

u
n(p̂n)], i.e., infθ0∈[θ ln0,θun0]P(θ 0 ∈ [θ̂

l
n(p̂n), θ̂

u
n(p̂n)]) ≥

1−α+o(1).

26Note that, because of the symmetry of the normal distribution, no changes are needed when comput-
ing the quantiles in steps 3 and 4.



APPENDIX C

GMMMOMENT FUNCTIONS

C.1 GMMMoment Functions for Assumption 2.3

The moment functions for average baseline characteristics of all the strata is based on

the conditional expectation defined by {Z,D}. Let xk denote the expectation of a scalar

baseline variable for a certain stratum k. The moment function for this variable is defined

as:

g({xk}) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x− xat)(1−Z)D
(x− xnt)Z(1−D)

(x− xc πc
p1|1
− xa πat

p1|1
)ZD

(x− xc πc
p0|0
− xn πnt

p0|0
)(1−Z)(1−D)

x−∑k πkxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.1)

where {xk}= {xat ,xnt ,xc}. By Law of Iterated Expectation, E[g({xk})] = 0 when eval-

uated at the true value of {xk}.

C.2 GMMMoment Functions for Assumption 3.6

Similarly, the moment functions for average baseline characteristics of all the strata in

this setting is based on the conditional expectation in each cell defined by {Z,D,S}.

Let xk denote the expectation of a scalar baseline variable for a certain stratum k. The

moment function for this variable is defined as:
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g({xk}) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x− xaNN)(1−Z)D(1−S)
(x− xaEE)(1−Z)DS

(x− xnNN)Z(1−D)(1−S)
(x− xnEE)Z(1−D)S

(x− xcEE πcEE
p01|0

− xnEE πnEE
p01|0

)(1−Z)(1−D)S
(x− xcNN πcNN

p10|1
− xaNN πaNN

p10|1
)ZD(1−S)

(x− xcNE πcNE
p00|0

− xcNN πcNN
p00|0

− xnNN πnNN
p00|0

)(1−Z)(1−D)(1−S)
(x− xcNE πcNE

p11|1
− xcEE πcEE

p11|1
− xaEE πaEE

p11|1
)ZDS

x−∑k πkxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.2)

where {xk} = {xaNN ,xaEE ,xnNN ,xnEE ,xcNN ,xcEE ,xcNE}. By Law of Iterated Expecta-

tion, E[g({xk})] = 0 when evaluated at the true value of {xk}.

Alternatively, it is possible to write the moment function for the proportions of all the

strata and then to estimate the model together with the average baseline characteristics

simultaneously by GMM. However, such GMM estimators do not behave well in the JC

data employed in the dissertation. Thus, in the applications, I first identify the propor-

tions of all the strata, and then estimate all the average baseline characteristics given the

identified proportions. In the case of addressing sample selection and noncompliance,

as seen in g({xk}), for each variable, nine equations (eight derived from the conditional

expectations defined by {Z,D,S} plus one from the expectation for the entire sample)

are used to identify seven means, i.e., {xk}. Since the standard errors obtained from

this GMM model do not take into account the fact that the proportions of the strata are

also estimated, I use a 500-repetition bootstrap to calculate the standard errors of the

estimated average baseline characteristics.
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Table C.1: Average Baseline Characteristics for the cEE and cNE Strata

Entire Sample Non-Hispanics
cEE cNE Diff. cEE cNE Diff.

Female .396**
(.015)

.630**
(.165)

-.234
(.174)

.390**
(.016)

.544**
(.134)

-.154
(.145)

Age at Baseline 18.44**
(.056)

19.19**
(.699)

-.749
(.735)

18.39**
(.068)

19.18**
(.592)

-.786
(.632)

White, Non-hispanic .299**
(.012)

.260**
(.126)

.039
(.133)

.369**
(.015)

.259**
(.126)

.110
(.135)

Black, Non-Hispanic .445**
(.013)

.622**
(.158)

-.177
(.166)

.550**
(.015)

.624**
(.136)

-.074
(.147)

Has Child .161**
(.011)

.229**
(.112)

-.068
(.119)

.151**
(.012)

.210*
(.111)

-.059
(.119)

Number of children .215**
(.018)

.356*
(.187)

-.141
(.200)

.209**
(.019)

.280
(.179)

-.071
(.192)

Personal Education 10.22**
(.040)

10.34**
(.504)

-.123
(.529)

10.24**
(.048)

10.27**
(.402)

-.036
(.434)

Ever Arrested .230**
(.012)

.223*
(.128)

.007
(.136)

.228**
(.013)

.292**
(.112)

-.064
(.121)

At Baseline
Have job .241**

(.011)
.174
(.108)

.068
(.115)

.244**
(.012)

.159
(.102)

.084
(.110)

Weekly hrs. worked 24.07**
(.583)

25.27**
(6.365)

-1.196
(6.766)

24.05**
(.613)

25.23**
(5.768)

-1.187
(6.160)

Weekly earnings 113.86**
(3.987)

120.08**
(39.90)

-6.219
(40.90)

115.48**
(3.500)

142.57**
(34.31)

-27.09
(36.51)

Had job, Prev. Yr. .714**
(.013)

.585**
(.141)

.129
(.151)

.718**
(.014)

.588**
(.126)

.130
(.136)

Mths. employed,Prev.Yr. 4.346**
(.122)

3.286**
(1.201)

1.060
(1.280)

4.435**
(.137)

2.935**
(1.105)

1.500
(1.201)

Earnings, Prev.Yr. 3396.2**
(128.63)

3136.2**
(1185.0)

260.02
(1250.6)

3377.6**
(128.55)

2879.7**
(1009.5)

497.88
(1095.9)

Note: Numbers in parentheses are standard errors. ** and * denote that estimate is statistically different
from 0 at 5% and 10% level, respectively. Computations use design weights. Missing values for each of
the baseline variables were imputed with the mean of the variable. The standard error is calculated by a
500-repetition bootstrap.

C.3 Baseline Characteristic Estimates

To assess Assumption 3.6, Table C.1 shows the average baseline characteristics for the

cEE and cNE strata and their difference in Section 4.3. It is obtained by estimating the

above GMM function (C.2).
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