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   Several philosophical theories of scientific evidence (or confirmation) have been 

proposed. I argue, however, that none satisfactorily explain the way that evidence is 

gathered and used to confirm the variety of hypotheses that are commonly formulated in 

clinical medical science. 

   I consider five philosophical theories of scientific evidence, and Inference to the Best 

Explanation to the extent that it can be considered a theory of evidence or theory choice. I 

argue that none adequately explain confirmation in clinical medical science, and I offer a 

new account of evidence that I argue does constitute a satisfactory explanation, and 

which I am calling the weight of evidence account. 

   I divide hypotheses that are found in clinical medical science into three categories: 

therapeutic, etiologic, and diagnostic. Therapeutic hypotheses are those that are 

concerned with treatments or other medical interventions, etiologic hypotheses are those 

concerned with the causes of disease or other adverse medical conditions, and diagnostic 

hypotheses are those considered by clinicians when making a diagnosis. I illustrate the 

methods of gathering and using evidence in the confirmation process by using examples 

of each type of hypothesis drawn from the clinical medical scientific literature.  



   I also argue that the weight of evidence account supplies a satisfactory explanation and 

rationale for the “hierarchical pyramid” of evidence–based medicine, with randomized 

clinical trials and their derivatives, meta-analyses and systematic reviews of randomized 

clinical trials, at the top of the pyramid, and case reports, case series, expert opinion and 

the like at the bottom. Cohort, case-control, cross-sectional, and nonrandomized clinical 

trials fall into the middle. I illustrate the development of various “levels” of evidence by 

considering the evolution of less invasive surgical treatments for early breast cancer, and 

argue that the weight of evidence account satisfactorily explains the notion of    

levels of evidence and other efforts to rank evidence. In addition, I provide a defense of 

randomization as a method to maximize accuracy in the conduct of clinical trials. 

   I also consider ethical issues surrounding experimentation with medical therapies in 

human subjects, and illustrate and discuss these issues as they arose in studies of 

respiratory therapies in neonates and treatment for cancers of the anus and testis in adults. 

I argue that in many cases sufficient evidence can be accrued to warrant generally 

accepted new therapies without the need for evidence derived from randomized clinical 

trials.          
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Chapter 1 
 
Introduction 
 
     My aim in this dissertation is to investigate the way that evidence is gathered and used 

to confirm hypotheses in clinical medical science. I use the term “clinical medical 

science” to include studies of both individuals and groups of people where the subject 

matter concerns health and disease. Such studies may be centered in physicians’ offices, 

clinics, hospitals, health departments, and the like. I consider three types of hypotheses 

that are commonly formulated: therapeutic, etiologic, and diagnostic. Therapeutic 

hypotheses are those that are concerned with treatments or other interventions; etiologic 

hypotheses are those concerned with the causes of disease; and, diagnostic hypotheses are 

those entertained by clinicians when making a diagnosis. How is evidence gathered and 

used to confirm these hypotheses in clinical medical science? My thesis is that a new 

account of evidence is needed to satisfactorily explain these processes, which I am 

developing and calling the weight of evidence account. 

     Several theories of evidence (or confirmation)1 have been proposed, and while I have 

made no attempt to be exhaustive in examining them, to me the most salient ideas are to 

be found in five accounts that enjoy some degree of currency: Bayesianism, Karl 

Popper’s elaboration of hypothetico-deductivism, Carl Hempel’s “satisfaction” theory, 

Deborah Mayo’s “error-statistical” theory, and Peter Achinstein’s theory. In these 

theories are to be found new approaches and efforts to improve on other accounts, and 

thus I believe they merit the attention that I will give them. I also consider “Inference to 

the Best Explanation,” and address the extent to which explanatory factors should be 

                                                
1 I use the expressions “theory of evidence” and “theory of confirmation” interchangeably 
  (see Achinstein, Nature of Explanation 351). 
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considered in confirmation, since Achinstein has incorporated the requirement 

of an explanatory connection between a hypothesis and the evidence 

supporting it into his theory.  

 The present study is motivated by what seems to me to be inadequacies 

in these theories of evidence currently discussed in the philosophy of science. 

While each of the theories listed above, perhaps with the exception of 

Hempel’s theory, can  be considered to capture some of the important elements 

in the way that evidence is gathered and used in clinical medical science, none 

does so in a comprehensive and generally satisfactory way, or so I shall argue. 

This dissertation is an effort toward meeting these shortcomings. 

     What should we expect from a theory of confirmation? According to Clark 

Glymour: 

 The aim of confirmation theory is to provide a true account of 
the principles that guide scientific argument insofar as that 
argument is not, and does not purport to be, of a deductive kind. 
A confirmation theory should serve as a critical and explanatory 
instrument quite as much as do theories of deductive inference. 
Any successful confirmation theory should, for example, reveal 
the structure and fallacies, if any, in Newton’s argument for 
universal gravitation, in nineteenth-century arguments for and 
against the atomic theory, in Freud’s arguments for 
psychoanalytic generalizations...  

 
 The aim of confirmation theory ought not to be simply to 

provide precise replacements for informal methodological 
notions, that is, explications of them. It ought to do more; in 
particular, confirmation theory ought to explain both 
methodological truisms and particular judgments that have 
occurred within the history of science. By “explain” I mean that 
at least that confirmation theory ought to provide a rationale for 
methodological truisms and ought to reveal some systematic 
connections among them and, further, ought without arbitrary or  
question-begging assumptions to reveal particular historical 
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judgments as in conformity with its principles (Theory and 
Evidence 63-64). 

 
     Achinstein is more succinct: 

 A theory of evidence, as I understand that expression, provides 
 conditions for the truth of claims of the form 
 (1) e is evidence that h, where e is a sentence describing some 
 state   of affairs and h is a hypothesis for which e provides the 
 putative evidence (Four Mistaken Theses 35).2 
 

     Glymour’s notion is the more sweeping, and if he is correct, then ideally it 

would seem that a satisfactory theory of confirmation would be a 

comprehensive explanatory instrument for the inductive, empirical sciences. 

As such, it should be able to satisfactorily explain how evidence is gathered 

and used to confirm the variety of hypotheses encountered in clinical medical 

science. These include the kinds of hypotheses found in experimental studies 

such as randomized clinical trials (RCTs), nonexperimental (usually 

observational) studies such as those concerning disease etiology, and those 

involved in making a diagnosis. Since I argue that none of the current theories 

satisfactorily does this, it follows that more work is needed. 

     Another reason why a new account of evidence may be of value is the 

frequency of “medical reversals,” which has recently received increased 

attention (Prasad et al.). Medical reversals are cases in which current or recent 

medical practice has been found to be inferior to some lesser or prior standard 

of care. They occur when new, better studies contradict current practice that is 

based on prior, inferior evidence. An example is coronary artery stenting. For 

                                                
2 Parenthetically, Achinstein states that more accurately it is the fact that e rather than the 
sentence describing that fact that constitutes the evidence, but that he is following standard 
philosophical practice of speaking of the sentence e. 
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decades, stenting of the coronary arteries in the initial management of stable 

coronary artery disease was very common, but the practice was contradicted 

when it was found to be no better than optimal medical management alone for 

most patients (Boden et al.). Prasad et al. analyzed 146 such instances of 

medical reversals, which they find to be common and to occur across all 

classes of medical practice. Thus a new account of evidence focused on the 

types of hypotheses found in clinical medical science and how they are 

confirmed, with attention to sources of error, seems especially timely. 

     The current theories of confirmation that I will discuss can be broadly 

divided into two groups: those that consider hypotheses to have probabilities 

(i.e., p(h) = r ; 0 ≤ r ≤ 1), and those that do not. The theories of Popper, 

Hempel, and Mayo fall into the latter group, whereas Bayesianism and 

Achinstein’s theory fall into the former. In chapter 2, I will discuss the theories 

of Popper, Hempel, and Mayo, including what I believe to be strengths and 

weaknesses along with some standard objections that have been offered.  

     In chapter 3, I treat Bayesianism and Achinstein’s theory in much the same 

way as I do the theories in chapter 2, and in addition I consider Inference to the 

Best Explanation and Achinstein’s “explanatory connection” requirement in 

the context of the role of explanation in clinical medical science. I will argue 

that explanation is not necessary for confirmation. 

     In chapter 4, I consider therapeutic, etiologic, and diagnostic hypotheses, 

and illustrate and discuss each type with one or more examples drawn from the 

scientific medical literature. An RCT and a N of 1 study (a trial involving a 
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single person) are presented as examples for evaluating therapeutic hypotheses, 

and cohort, case-control, and cross-sectional studies are used as examples for 

etiologic hypotheses. Diagnostic hypotheses are illustrated with cases drawn 

from published clinicopathologic conferences and similar sources, with an 

emphasis on the various strategies employed to arrive at a diagnosis. 

     In chapter 5, I will explicate the weight of evidence account. My emphasis 

will be on the accuracy of individual observations and studies, where accuracy 

is understood to be a function of validity and precision. Observations and 

studies are accurate just to the extent that they are valid and precise. Weight of 

evidence is a function of accuracy. 

     I will defend the weight of evidence account in chapter 6, where I argue that 

it remedies the deficiencies in the other accounts, and also satisfactorily 

explains the case studies, as well as explaining the various efforts to rank 

evidence. 

     The evidence-based medicine (EBM) movement is a current effort within 

the medical scientific community to place medicine on a sounder scientific 

evidentiary basis. Part of its approach is to rank sources of evidence according 

to the degree of confidence that should be placed on them. It is sometimes 

illustrated as a “hierarchical pyramid” with RCTs (or systematic reviews and 

meta-analyses of RCTs) at the apex, with case reports, expert opinion, and the 

like at the base. Cohort, case-control, and cross-sectional studies fall into the 

middle. In chapter 7, I use the weight of evidence rationale to provide a 

philosophical justification for the EBM hierarchical ranking of studies and 
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other sources of evidence. In addition, I defend the need for randomization in 

RCTs against critics from both the philosophical and medical communities. I 

also argue that the weight of evidence account explains the various “levels” of 

evidence encountered in clinical medical science, and illustrate this with the 

historical case study of the evolution of treatments for early breast cancer. 

     It will become clear that although historically many of the approaches used 

in medical practice are based on the experiences of clinicians, and have not 

evolved based on formal testing, in the modern era research questions in 

clinical medical science are answered by the formal gathering and using of 

evidence for or against hypotheses. Since this may include interventions that in 

some cases may involve serious risk, ethical questions inevitably arise. Are 

there limits to acquiring evidence in human beings? Can studies designed to 

improve therapeutic outcomes, or to decrease mortality or morbidity, be 

unethical? In chapter 8, I will discuss these issues, and argue that it is possible 

to determine when sufficient evidence has been acquired to justify the use of a 

new therapy. I will argue that evidence from RCTs is not invariably necessary, 

and illustrate this by discussing the ethical issues surrounding a series of 

studies on respiratory therapies in neonates. I also describe how and why 

sufficient evidence accumulated to establish generally accepted definitive 

therapies in cancer of the testis and cancer of the anus without subjecting the 

hypotheses on which they were based to RCTs.      
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Chapter 2     

Theories of Confirmation in which Hypotheses do not have Probabilities  
                            
Hypothetico-Deductivism 
 
     Hypothetico-deductivism, sometimes called falsificationism or refutationism, was 

developed in some detail by Karl Popper.  Popper rejected inductivism as a method for 

the acquisition of scientific knowledge. He maintained that hypotheses, once formed, 

should be subjected to test in order to falsify them. For Popper, hypotheses are not 

confirmed by positive instances or observations consistent with or predicted by them; 

rather, they are only corroborated by such evidence and by withstanding attempts at 

falsification. For example, no matter how many white swans we observe, we are never 

justified in concluding that all swans are white (27). The extent to which a hypothesis has 

been subjected to testing in an attempt to falsify it is the extent to which it has “proved its 

mettle” (33). 

     The logical form of Popper’s method is (Butts 352-53; Popper 75-76): 

                                                       (H ⋅ A) → O                                                       
                                                         O 
                                                     ___________ 
                                                      ∴   (H ⋅ A)  
                           
     Here, H signifies a hypothesis that is conjoined with one or more auxiliary hypotheses 

or initial conditions A, and O denotes an observation.  Thus, even if a hypothesis 

logically implies an observation O, and that observation is made, one cannot assume the 

truth of the hypothesis since infinitely many other hypotheses and their conjuncts could 

theoretically imply the same observation. It is deductively invalid, committing the logical 
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fallacy of affirming the consequent. However, the attempt to refute (H ⋅ A) by making an 

observation that contradicts O (i.e., not O) would falsify the conjunct (H ⋅ A), and is 

deductively valid by modus tollens:  

                                                       (H ⋅ A) → O 
                                                        ∼ O 
                                                      ____________ 
                                                       ∴  ∼ (H ⋅ A) 
 
     Popper regards scientific theories as universal statements. To give a causal 

explanation of an event is to deduce a statement that describes it, using as premises in the 

deduction one or more universal laws along with certain singular statements, the initial 

conditions or auxiliary hypotheses (59). For example, to explain the breaking of a thread 

that has a tensile strength of one pound when a weight of two pounds was placed on it 

might be constructed as follows: H: “When a thread is loaded with a weight greatly 

exceeding its tensile strength it will break”.  This statement has the character of a 

universal law of nature. Statements of initial conditions might be “The tensile strength of 

this thread is one pound”, and, “A two-pound weight was put on this thread”. From these 

statements we deduce the prediction that the thread will break. For Popper, the initial 

conditions describe what is usually called the cause of the event, and the prediction 

describes what is usually called the effect (60). However, Popper wishes to avoid the use 

of the terms “cause” and “effect”, regarding any “principle of causality” (i.e., the 

assertion that any event whatever can be causally explained, and that it can be 

deductively predicted) as metaphysical. He does, however, propose the methodological 

rule that we should not abandon the search for universal laws and coherent theoretical 

systems, nor give up the attempt to explain causally any kind of event we can describe 

(61).  
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     Popper distinguishes the process of conceiving a new idea, or the generation of 

hypotheses and theories, and the methods of examining them logically. For Popper, there 

is no such thing as a logical method of having new ideas, or any logical reconstruction of 

the process. Every discovery contains an “irrational” element or a “creative intuition”. He 

writes, “In a similar way Einstein speaks of the “search for those highly universal 

laws…from which a picture of the world can be obtained by pure deduction. There is no 

logical path”, he says, “leading to these…laws. They can only be reached by intuition, 

based upon something like an intellectual love (“Einfühlung”) of the objects of 

experience” (32).  

     For Popper, the postulate of the existence of universal laws of nature is an example of 

a methodological rule. Methodological rules are conventions. They are the rules of the 

game of science, much as the game of chess has rules (53).  It is part of our definition of 

natural laws that they are invariant with respect to space and time, and derives from our 

faith in the “uniformity of nature,” which is also a metaphysical concept (253). 

     Popper notes that probability statements are impervious to strict falsification (146), 

and yet such statements as well as probabilistic hypotheses are extant in science. For 

example, although we may regard the hypothesis “This is a fair coin” as falsified if it 

invariably turns up heads, nevertheless the number of tosses is finite and there cannot be 

any question of falsification in a logical sense. Indeed, probability hypotheses do not rule 

out anything observable (190). Yet Popper acknowledges the success science has had 

with predictions obtained from hypothetical estimates of probabilities, and proposes that 

probability hypotheses can play the role of natural laws in empirical science. Thus he 
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proposes that we accept something like what he believes a physicist might offer as a 

practically applicable physical concept of probability:  

          There are certain experiments which, even if carried out under controlled  
          conditions, lead to varying results. In the case of some of these 
          experiments – those which are “chance-like”, such as tosses of a coin – 
          frequent repetition leads to results with relative frequencies which, upon 
          further repetition, approximate more and more to some fixed value which 
          we may call the probability of the event in question. This value is 
          “…empirically determinable through long series of experiments to any 
          degree of approximation”; which explains, incidentally, why it is possible  
          to falsify a hypothetical estimate of probability. (198-99).  
 
     Popper rejects the notion that hypotheses can be “probably true” based on tests, since 

the idea that scientific theories can be justified or verified, or even probable, is based on 

induction (315). He regards as a mistake the historical idea that science is a body of 

knowledge that is progressing toward truth, but that once it became clear that certain truth 

was unattainable, perhaps that it could be considered as “probably true”. He believes that 

we should “…not look upon science as a “body of knowledge”, but rather as a system of 

hypotheses; that is to say, as a system of guesses or anticipations, which in principle 

cannot be justified, but with which we work as long as they stand up to tests, and of 

which we are never justified in saying that we know that they are “true” or “more or less 

certain” or even “probable” (317). 

       Popper’s view on falsification accords with the views of some scientists. For 

example, the physicist Richard Feynman writes: 

           In general we look for a new law by the following process. First we guess it. 
          Then we compute the consequences of the guess to see what would be implied if  
           this law that we guessed is right. Then we compare the result of the computation 
 to nature with experiment or experience, compare it directly with observation, to 
 see if it works. If it disagrees with experiments it is wrong. In this simple 
 statement is the key to science… 
 
           You can see, of course, that with this method we can attempt to disprove any 
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          definite theory. If we have a definite theory, a real guess, from which we  
 can conveniently compute consequences which can be compared with  
 experiment, then in principle we can get rid of any theory. There is always  
 the possibility of proving any definite theory wrong, but notice that we can 
 never prove it right. Suppose that you invent a good guess, calculate the 
 consequences, and discover every time that the consequences you have  
 calculated agree with experiment. The theory is then right? No, it is simply  
 not proved wrong. (156-57)   
 
     A principal objection to Popper’s theory is that hypotheses are rarely if ever tested in 

isolation, but are accompanied by a variety of initial conditions or auxiliary hypotheses. 

Thus, suppose that a complicated hypothesis, consisting of the conjunction of several 

distinct subhypotheses, logically entails an observation sentence, and that the observation 

sentence is found to be false. Then the conjunction must be false, so at least one conjunct 

must be false, but where do we place the blame for the negated prediction (Glymour, 

Theory and Evidence 30-31; Earman 65)? 

     Hempel has also argued that Popper’s theory of admitting only relatively falsifiable 

sentences is overly restrictive in that it severely limits the possible forms of scientific 

hypotheses. For example, it rules out all purely existential hypotheses as well as most 

hypotheses requiring both universal and existential quantification, and thus is inadequate 

to explicate satisfactorily the status and function of more complex scientific theories and 

hypotheses (Aspects 45-46). 

Hempel’s “Satisfaction” Theory  

     In his Aspects of Scientific Explanation, Carl Hempel set out to formulate the basic 

principles of a logic of confirmation. He wanted to characterize in precise and general 

terms the conditions under which a body of evidence can be said to confirm or disconfirm 

an empirical hypothesis. Hempel sought objective criteria in which there was no 

necessary mention of the subject matter of the evidence or hypothesis; he wanted formal 
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criteria of confirmation in the way that deductive logic provides formal criteria for the 

validity of deductive inferences. Confirmation can be construed as a relation between 

sentences: for example, “a is a raven & a is black” is an evidence sentence confirming the 

hypothesis sentence “All ravens are black”. Hempel interprets confirmation as a logical 

relation between sentences. 

     Evidence sentences are like observation reports, for example, direct observation (e.g., 

“black”), but not theoretical constructs, like “heavy hydrogen”. An observation sentence 

describes a possible outcome of the accepted observational techniques. An observation 

report can be a conjunction of sentences or a class of sentences. Evidence is relevant to a 

hypothesis only if it tends to confirm or disconfirm it. 

     For Hempel, an adequate analysis of scientific prediction (and, analogously of 

scientific explanation and the testing of empirical hypotheses) requires an analysis of the 

concept of confirmation. Many scientific laws and theories connect terms that are 

theoretical constructs rather than those of direct observation. From observation sentences, 

no merely deductive logical inference leads to statements about theoretical constructs that 

can serve as a starting point for predictions; statements about theoretical constructs such 

as “This piece of iron is magnetic” can be confirmed, but not entailed, by observation 

reports. Thus, even though based on general scientific laws, the prediction of new 

observational findings by means of given ones is a process involving confirmation in 

addition to logical deduction.  

     Hempel outlines several conditions of adequacy of any definition of confirmation (30-

33): 
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1) Applicable to hypotheses of any degree of logical complexity, in addition to 

simple universal conditionals. 

2) Any sentence that is entailed by an observation report is confirmed by it 

(entailment condition). 

3) If an observation report confirms every one of a class K of sentences, then it also 

confirms any sentence that is a logical consequence of K (consequence condition). 

4) If an observation report confirms a hypothesis H, then it also confirms every 

hypothesis that is logically equivalent to H (equivalence condition).   

5) Every logically consistent observation report is logically compatible with the class 

of all the hypotheses that it confirms (consistency condition). 

     While 1) - 5) are necessary, they are not sufficient. A definition of confirmation must 

also be materially adequate and provide a reasonably close approximation to the concept 

of confirmation that is implicit in scientific procedure and methodological discussion. 

Also required is reference to some accepted “language of science” in which all 

observation reports and hypotheses being considered are assumed to be formulated, and 

whose logical structure is supposed to be precisely determined. 

     Hempel’s satisfaction criterion of confirmation in essence states that a hypothesis is 

confirmed by a given observation report if the hypothesis is satisfied in the finite class of 

those individuals which are mentioned in the report; that is, an observation report 

confirms a hypothesis H if H is entailed by a class of sentences, each of which is directly 

confirmed by the observation report.  An observation report disconfirms a hypothesis H if 

it confirms the denial of H.  And, an observation report is neutral with respect to H if it 

neither confirms nor disconfirms H (37).  
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     If an observation report entails H, then it conclusively confirms (verifies) H. If the 

report entails the denial of H, then it conclusively disconfirms (falsifies) H. These 

concepts of verification and falsification are relative; a hypothesis is verified or falsified 

only with respect to some observation report. Absolute verification does not belong to 

logic, but rather to pragmatics: it refers to acceptance of H by scientists on the basis of 

relevant evidence.  

     Hempel outlines three phases of scientific tests of hypotheses (40-42): 

1) Performance of suitable experiments or observations with acceptance of 

observation reports. 

2) Confronting the given H with the accepted observation reports, which 

confirm or disconfirm H, etc. 

3) Accepting or rejecting H based on observation reports, or suspending 

judgment, or awaiting further evidence, etc. 

 

     Hempel is mainly concerned with 2), which for him is purely logical, and invokes 

only logical concepts. 1) and 3) are pragmatic; for example, 3) usually is tentative and 

could be changed. Relative verifiability or falsifiability is a simple logical fact, but 

absolute verifiability or falsifiability may not be attainable in empirical science since new 

evidence or hypotheses can overturn any previous evidence or hypotheses.  

     Statistical syllogisms, unlike deductive methods, can lead to inconsistencies, i.e., 

incompatible conclusions. Hempel (54) notes that Toulmin (109) has put forward as valid 

certain types of argument that he calls quasi-syllogisms. These can take forms such as the 

following: 
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          a is F 

          The proportion of F’s that are G is less than 2 percent 

          So, almost certainly (or: probably), a is not G3 

     Consider the following argument (Toulmin 109; Hempel 55): 

          Petersen is a Swede 

          The proportion of Roman Catholic Swedes is less that 2 percent 

          So, almost certainly, Petersen is not a Roman Catholic 

     Suppose that the premises are true. But, as Cooley (305) notes, the following can also 

be true: 

          Petersen made a pilgrimage to Lourdes 

          Less that 2 percent of those making a pilgrimage to Lourdes are not Roman 

          Catholics 

          So, almost certainly, Petersen is a Roman Catholic4 

     The conclusions are incompatible, but with a deductive syllogism this cannot happen:  

          a is F 

          All F are G 

          a is G 

     If the premises are true, there is no rival argument of the same form whose premises 

are true as well and whose conclusion is incompatible with that of the given argument. 

Incompatible conclusions can only be deduced from incompatible sets of premises, and 

sets of true premises are not incompatible (57). 

                                                
3 For the conclusion form “almost certainly, or probably, a is not G,” see Toulmin (139) 
4 Hempel (55) notes that he has slightly modified Cooley’s example to more closely fit 
the pattern of the other examples. 
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    Thus, in considering what to do when, for example, we have two sets of premises that 

are true but the conclusions are incompatible for, say, some future event, Hempel avers 

that we should use the totality of the available evidence. Quoting Carnap, he says: “In the 

application of inductive logic to a given knowledge situation, the total evidence available 

must be taken as a basis for determining the degree of confirmation” (64).  This principle, 

according to Hempel, specifies a necessary, though not sufficient condition for the 

rationality of inductive beliefs and decisions. Accepting certain statements, like the 

notion of “total evidence”, is pragmatic. 

     Hempel’s account has been criticized on several grounds (Earman 68-69). For 

example, it is silent on how theoretical hypotheses are confirmed, since evidence 

statements are in a purely observational vocabulary. 

    It has also been criticized as too liberal, since, for example, it allows confirmation of 

Goodman’s “new riddle” cases. Consider: “All ravens are black”:  (∀x) (Rx →Bx). Let x 

be not black but blite: i.e., black if examined before 2000 and white if examined after. On 

Hempel’s account it confirms the prediction that after 2000 ravens will be white if up 

until then they have been black. 

     Earman notes that any account of confirmation modeled on Hempel’s approach will 

have two major problems: 1) For Hempel, whether evidence confirms a hypothesis 

depends only on the syntax, but we know from the Goodman example above that this is 

wrong.  2) For Hempel, confirmation is a 2-place relation, but we know that background 

information must be brought into the analysis to get an illuminating treatment. Earman 

provides an example. Consider: 

          H1:  “All ravens are black” (∀x) (Rx → Bx) 
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          H2:  “All ravens live happily in heaven after they die” (∀x) (Rx → Hx) 

     Suppose that the two hypotheses H1 and H2 constitute theory T that is logically 

closed. Thus, it is part of T that H3: [Rx → ( Bx ↔ Hx)]. So from a confirming instance 

of H1, say, Ra & Ba, we can deduce via H3 that Ra & Ha, which is a Hempel positive 

instance of H2, which is absurd. However, consider the following: 

          H1:  “All patients with symptoms S have antibodies to a certain virus” (∀x) (Sx → 

                  Ax)   

          H2:  “All patients with symptoms S are infected with said virus” (∀x) (Sx → Vx) 

If the evidence is Sa & Aa, it seems perfectly reasonable to deduce Sa & Va. But 

structurally, syntactically, the examples are the same. The difference is in the background 

information (74-75). Others have also stressed that confirmation is a 3-place relation 

between data, the hypothesis in question, and a body k of background information (e.g., 

Howson and Urbach 299). 

Mayo’s Error-Statistical Theory 

      In her Error and the Growth of Experimental Knowledge, Deborah Mayo presents her 

error-statistical theory of confirmation, which rests on the notion that for a hypothesis to 

be confirmed it must be subjected to and pass a severe test. Thus, evidence e should be 

taken as good grounds for hypothesis H to the extent that H has passed a severe test with 

e. A passing result is a severe test of the hypothesis H just to the extent that it is very 

improbable for such a passing test to occur, were H false. Her theory largely rests on 

concepts in probability theory and (classical) statistics, and does not require that 

probabilities be assigned to hypotheses.  

     Requirements for error severity are (178-80): 
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1) e must “fit” H 

2) e’s fitting H must constitute a good test of H. It rules out “e is a poor test of H” 

and at the same time “e is evidence for H.”  

3) Severity criterion (for experimental testing contexts) 

a) There is a very high probability that test procedure T would not yield such 

a passing result, if H is false 

b) There is a very low probability that test procedure T would yield such a 

passing result, if H is false 

     Mayo offers examples of minimum and maximum severity tests (182-83): 

          Minimum severity (0) test 

          H passes a zero severity test with e iff test T would always yield such a passing 

      result even if H is false 

     H: Student knows the name of all 50 U.S. state capitals 

     T: Student exists, ∴ evidence e 

      Result: Student always passes 

     Maximum severity (1) test 

     H passes a maximally severe test with e iff test T would never yield results that accord  

     with H as well as e does, if H is false 

     H: Student knows the name of all 50 capitals 

     T: Test student, e = student knows all 50 capitals 

     Mayo’s emphasis is on the detection and elimination of error in scientific 

experimentation. For Mayo, most progress in science and the growth of experimental 

knowledge occurs in the quotidian scientific laboratory or other experimental venue, and 
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is most akin to Kuhn’s “normal science” or Hacking’s “topical hypotheses.” Her idea is 

rather than “go big,” like Einstein’s General Theory of Relativity (GTR), we should “go 

small,” and focus on local hypotheses. Normal experimental testing is the testing of local 

hypotheses, and is, for Mayo, what justifies her heavy reliance on frequentist (classical) 

statistics (459).  

     Mayo draws attention to several sources of error, including the design and control of 

experiments, and how data are generated, modeled, and analyzed. Four canonical or 

standard sources of error that must be addressed are (18): 

1) Mistaking experimental artifacts for real effects; mistaking chance effects for 

genuine correlations or regularities 

2) Mistakes about a quantity or value of a parameter 

3) Mistakes about a causal factor 

4) Mistakes about the assumptions of experimental data 

     These sources of error are addressed by methodological rules, including rules for 

pretrial planning, conduct of experiments, and post experiment analysis. The rules are 

empirical claims or hypotheses about how to find out things from experiments, and about 

how to proceed in given contexts to learn from experiments. Thus, she avers that her 

model of an epistemology of experiment is both naturalistic and normative.  

     According to Mayo, an adequate account of experimental testing must not begin at the 

point where data and hypotheses are given, but also must incorporate the intermediate 

theories of data, instruments, and experiment that are required to obtain the experimental 

data in the first place. At least three models are involved (129-30): 
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1) A primary model involving breaking down a substantive inquiry into one or more 

local questions that can be probed reliably 

2) An experimental model that involves relating primary questions to canonical 

questions about the particular type of experiment and how to relate the data to the 

experimental questions 

3) A data model, considering how raw data are to be generated and modeled so as to 

put them into canonical form, and how to check if the actual data generation 

satisfies various assumptions of experimental models  

     Mayo illustrates her approach by considering an RCT carried out in Puerto Rico to 

determine if women taking birth control pills (BCPs) were at increased risk of 

thromboembolism (141-44). The primary question in this study was whether there is an 

increased risk of blood clotting disorder among women using BCPs (for a specified 

length of time). Hypothesis H: The incidence of clotting disorder in women taking BCPs 

does not exceed the incidence among control women (women not taking BCPs). The 

study was modeled as a difference in average incidence rates: ∆ = µT − µC, where µT = 

incidence rate among BCP users and µC = incidence rate among controls. The primary 

question was to test Ho: ∆ = 0 vs. H′: ∆ > 0. 

     The experimental model was to specify two groups, for example 5000 women in each 

group. The observed rates in the two groups are represented by the means in the two 

samples, 𝑋𝑋�T and 𝑋𝑋�C, where 𝑋𝑋�T  and 𝑋𝑋�C represent the sample means for BCP users and 

nonusers, respectively. We define a risk increase RI for BCP users to be 𝑋𝑋�T  − 𝑋𝑋�C. If Ho is 

true, we expect RI = 0. The distance from Ho = observed RI − expected RI. The further 
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the distance, the less likely Ho is to be true. This may be reported as a significance level 

(explicated below).  

     To generate the experimental data, 10,000 women were randomly assigned to each 

group. The recorded data, the data model, is the value of RI obtained once the experiment 

has been run and the results observed. In utilizing the observed RI, it is important to see 

that other risk factors (factors other than BCPs that could spuriously alter the results) 

were also evenly distributed between the two groups. The RI in this experiment was 

0.0002. 

     Another example of a canonical model of error is the binomial model of experiment, 

for example, coin toss experiments that can be modeled as success or failure. Let the 

probability of success of each trial = p (which are Bernoulli trials with parameter p), 

which can be modeled using the binomial distribution, with n trials. An example is the 

coin toss. Here, considering the coin to be a fair coin (i.e., the probability of heads = the 

probability of tails), p = 0.5. The probability of “success,” (e.g., the relative frequency of 

heads), is given by: 

                                     k/n = n! / [k! (n−k)!] ×  pk (1−p) n−k 

     To illustrate, consider the example of a lady tasting tea, who claims to be able to tell 

whether milk is added to the cup before or after the tea has been poured (154-60). The 

primary question is whether she can do better than mere guessing. Thus we have Ho :  p = 

0.5 (just guessing) versus the hypothesis H′ :  p > 0.5, in which she does better than 

expected for someone just guessing. Suppose we let her taste 100 cups of tea. The 

experimental statistic is the relative frequency of successes in the n experimental trials, 𝑋𝑋�.  

Suppose we let n = 100. In the data model, we concern ourselves with ensuring that the 
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experimental assumptions are met, for example, factors that might tip off the lady are 

eliminated (e.g., all the cups are alike, the same amounts of milk and tea in each cup, 

etc.). The tests constitute a single data set, and address a specific question. The test 

statistic here is the distance measure D(𝑋𝑋�) = 𝑋𝑋�observed − 𝑋𝑋�expected. We will determine the 

statistical significance level of the difference Dobs (in testing Ho), which is the probability 

of obtaining a difference as large as or larger than Dobs, assuming Ho is true. 

     Suppose that the observed proportion is 0.6, i.e., she successfully identified 60 of the 

100 tastings. Then:  P(𝑋𝑋� ≥ 0.6) = 0.03. The frequentist statistical interpretation here is 

that the probability that the lady would get at least 60 successes (or more) out of 100 tries 

if she were just guessing is 0.03. This is the probability of incorrectly rejecting the 

hypothesis Ho (which is the “null” hypothesis of just guessing) when in fact she is just 

guessing. This is called the α level of significance, or the probability of a Type I error. It 

is the probability of rejecting the null hypothesis when it is true. This trial constitutes for 

Mayo a severe test of the null hypothesis, and thus, whether to accept the hypothesis that 

she can tell the difference, since the probability of just guessing is so low (0.03).  Mayo’s 

measure of severity is 1− α, which in this case is 0.97. Since α denotes a probability, the 

numerical value of 1 − α will lie between 0 and 1. 

     The statistical theory of experiment deals only with certain kinds of experiments 

insofar as their results can be modeled by certain parameters. A characteristic of key 

interest is the relative frequency with which certain results obtain. We want to separate 

“signal” from “noise.” We have “subtracted out” the effect of mere guessing in the tea 

lady example. Thus, for Mayo, the use of statistical methods is what allows her error-

statistical theory to be “truly ampliative” (443).  
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     Mayo also defends her theory as applicable to “big” theories like Einstein’s GTR, to 

which the theory in the totality might be difficult or impossible to assign a frequentist 

interpretation, but nevertheless to which many of the local hypotheses entailed by the 

theory could be subjected to test in the piecemeal “normal science” methodology which 

she claims is how experimental knowledge grows. Thus, in the 1919 test of the bending 

of starlight by the sun, Einstein’s theory predicted an almost doubling of the deflection at 

the limb of the sun as compared to Newtonian theory. Attention to multiple possible 

sources of error, along with the determination of point estimates with statistical margins 

of error recorded, Mayo believes accords well with her approach. The test results, 

considered a severe test by her criteria, were in line with Einstein’s predictions and 

confirmed his theory (278-92). 

     A strength of Mayo’s error-statistical theory is that the frequentist approach is widely 

used in the testing of statistical hypotheses in the sciences, including clinical medical 

science. Giora Hon has criticized her theory as being too narrowly focused on error 

probabilities, and that her philosophy of experiment relies neither on scientific theories 

nor on a theory of experiment, but instead on methods – statistical methods – for 

producing experimental effects. He argues that her focus is primarily on statistical 

calculations rather than the actual practice of experimentation, and errors are not errors at 

large, but instead statistical error probabilities, and that while it can be said that her 

approach does constitute a contribution to experimental design in the traditional sense of 

the term as well as to an analysis of error probabilities, it does not illuminate the inner 

epistemic processes of experiments and no theory of experiment is forthcoming. Thus, 
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while Mayo claims that her theory is a “full-bodied experimental philosophy” (444), it 

comes up short (Hon 191-93).     
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Chapter 3 

Theories of Confirmation in which Hypotheses have Probabilities, and Inference to 
the Best Explanation 
 
     Bayesianism and certain types of evidence in Peter Achinstein’s theory of evidence 

require that for e to be evidence that h, e must raise the probability of h. In addition, 

Achinstein adds an “explanatory connection” requirement for e to be evidence that h in 

those types of evidence. In Inference to the Best Explanation, explanatory considerations 

predominate in hypothesis or theory choice. 

Bayesianism 

     The Bayesian theory of confirmation rests on the notion that a confirmatory piece of 

evidence e raises the probability of a hypothesis h. Conversely, e could disconfirm h if it 

lowers h’s probability. Bayesianism derives its name from Bayes’ theorem, which is 

derivable from the axioms of probability theory. Bayes’ theorem can be written thusly:                                         

                                       P(h/e)  =   P(e/h) P(h) / P(e) 

where P(h/e) is read as “the probability of h given (or, conditioned on) e”. Similarly, 

P(e/h), P(h), and P(e) are read as “the probability of e given h”, “the probability of h”, 

and “the probability of e”, respectively. P(h) and P(e) are unconditional probabilities. 

P(e/h) is technically defined as the likelihood of h, and is the probability that h confers on 

e (Sober 9-10). It has also been referred to as the likelihood of e on h (Earman 34).  

     In the Bayesian scheme, a hypothesis h has a prior probability, P(h), prior to the 

acquisition of evidence e. After e is acquired, we have the posterior probability P(h/e), 

the probability of h given e. In the simple case, P(h/e) can become a new “prior 

probability”, on which some further e could act to affect its probability. 
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     The Bayesian definitions of confirmation are as follows (Howson & Urbach 91-92): 

                      e confirms or supports h just in case P(h/e) > P(h) 

                      e disconfirms h just in case P(h/e) < P(h) 

                      e is neutral towards h just in case P(h/e) = P(h) 

    Bayes’ theorem as written above relates four quantities synchronically, so that if three 

quantities are known, the fourth can be calculated. Bayesianism involves a rule for 

updating, and describes how probabilities should be related diachronically (Sober 11). 

     To illustrate, assume that a physician is talking to a patient about the results of his 

tuberculosis (TB) test, which is a chest radiograph (chest x-ray).  Further assume that the 

ability of a chest x-ray to correctly identify a person with TB in the population has been 

determined empirically (Brown and Hollander 26-28): 

Table 3 
False-positive and False-negative Errors in a Study of X-ray Readings 

 
 Persons without TB Persons with TB  

 
Negative x-ray reading 1739  8 1747 
Positive x-ray reading     51 22     73 
 1790 30 1820 
 
h = person has TB          (∼h = person does not have TB)   
e = positive x-ray reading      (∼e = negative x-ray reading)   

 
Sources: B.W.Brown, Jr., and M. Hollander. Statistics: A Biomedical Introduction. New York: 
     Wiley, 1977. p. 26, table 6. Also J. Yerushalmy et al. The Role of Dual Reading in Mass  
     Radiography. Amer Rev Tuberc 61 (1950). p.447, table 2.  
 
     Assuming no other information or evidence, the probability of h, that the patient has 

TB, is the prevalence of TB in the population, 30/1820, or P(h) = .016. If the patient tests 

positive, the probability of that event occurring, the evidence, is 73/1820, or P(e) = .040. 

Since the test can be falsely positive or falsely negative, the unconditional P(e) is the 
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average probability of obtaining e under the two alternative hypotheses, with TB (h) or 

without TB (∼h) :   P(h/e) = P(e/h) P(h) / [P(h) P(e/h) + P(e/∼h) P(∼h)] (Sober 13-15). 

     Substituting, we have:  P(h/e) = (.733) (.016) / [(.733) (.016) + (.028) (.984)] = .30. 

     Based on acquisition of e, a Bayesian agent would update his prior probability, .016, 

to his posterior probability, .30. Thus, in this case, e confirms h.  

     If instead the patient had tested negative, then the probability of having TB can be 

determined: 

                  P(h/∼e) = P(∼e/h) P(h)/ [P(∼e/h) P(h) + P(∼e/∼h) P(∼h)]  

                  P(h/∼e) = (.267) (.016) / [(.267) (.016) + (.972) (.984)]  

                  P(h/∼e) = .004 

     Since our posterior probability, P(h/∼e), equals .004, and is less than our prior 

probability of .016, a negative x-ray reading (∼e) disconfirms h. 

     In the above example, both a subjective and objective interpretation can be given. On 

a subjective view, the degree of belief in h has been increased by the acquisition of e, but 

there is also an objective increase in probability based on actual frequency data. 

     Bayesians use the laws of probability as coherence constraints on rational degrees of 

belief in their inductive logic of confirmation, and one justification for this that has been 

advanced are Dutch Book arguments, which relate degrees of belief with willingness to 

wager (Talbott). These arguments are designed to show that if the laws of probability are 

not followed, losses will inevitably occur. For example, let us assume that a person with 

degree of belief p in sentence S is willing to pay up to and including $p for a unit wager 

on S (i.e., a wager that pays $1 if S is true), and is also willing to sell such a wager if the 

price is equal to or greater than p. A Dutch Book is a combination of wagers that, on the 
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basis of deductive logic alone, can be shown to entail a sure loss. Talbott provides an 

example: 

           Suppose that agent A’s degrees of belief in S and ~S (written db(S) and  
 db(~S)) are each .51, and, thus that their sum 1.02 (greater than one). On  
 the behavioral interpretation of degrees of belief…, A would be willing to  
 pay db(S) × $1 for a unit wager on S and db(∼S) × $1 for a unit wager on  
 ∼S. If a bookie B sells both wagers to A for a total of $1.02, the combination 
 would be a synchronic Dutch Book -- synchronic because the wagers could  
 both be entered into at the same time,  and a Dutch Book because A would  
 have paid $1.02 on a combination of wagers guaranteed to pay exactly $1.  
 Thus, A would have a guaranteed net loss of $.02 
                 

     Several virtues have been ascribed to Bayesianism. One source of support credited to 

the theory is that it can explain the role of hypothetico-deductive explanation in 

confirmation. When h logically entails e, e confirms h. This obtains because e has ruled 

out ∼e, which would reduce the probability of h to zero. In Bayesian terms, ∼e reduces 

the probability of h to zero, providing maximum disconfirmation (Howson and Urbach 

93-94). Nevertheless, as noted earlier, h is usually conjoined with auxiliary hypotheses a: 

(h&a) → e, and disconfirmation might actually be due to a false a, and leave h unscathed 

(Earman 63-65).  

     Another virtue claimed for Bayesianism is that it solves the riddle of the Raven 

Paradox, since Bayesian confirmation is a matter of degree. If one accepts that 1) 

hypotheses of the form “All Rs are Bs” is confirmed by the finding of an R that is also a 

B, and, 2) logically equivalent hypotheses are confirmed by the same evidence, then one 

may be led to the conclusion that an object that is both non-black and non-raven is 

confirmatory of the hypothesis “All ravens are black” as would be the finding of a black 

raven. That, for example, finding a white shoe is also confirmatory of the hypothesis. 

Bayesians concede that both are confirmatory, but finding a black raven carries more 
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force and is confirmatory to a much greater degree, since the class of non-black things is 

vastly more numerous than the class of ravens. So if we are sampling from the class of 

ravens and the class of non-black things, we are more likely to produce a non-black 

raven, and the greater confirmatory power derives from the relative threat of falsification 

(Earman 69-73; Howson and Urbach 99-103). 

     Bayesianism is said to illuminate the problem of irrelevant conjunction. Consider that 

if hypothesis h logically implies evidence e, then any conjunct i when conjoined with h 

also implies e, even a totally irrelevant conjunct. Thus, e confirms h & i, as well as h. But 

Bayesian incremental confirmation is proportional to the prior probabilities of h and h&i; 

in general, P(h&i) < P(h), so adding the irrelevant conjunct i to h lowers the incremental 

confirmation afforded by e (Earman 64-65). 

     Bayesianism has also been said to address the old and widely held idea that different 

and varied evidence (consilience) supports a hypothesis more than a similar volume of 

homogeneous evidence. Thus, if two items of evidence, e1 and e2, are similar, then 

P(e2/e1) may approximate 1. For example, a report that a stone fell to the ground from a 

certain height in such-and-such a time on a Tuesday is similar to that relating to the 

stone’s fall on a Friday, and in this case e2 provides little additional support when e1 is 

known. But e1 and e2 are both different from, say, a planet’s trajectory. Thus when the 

pieces of evidence are dissimilar, then P(e2/e1) is significantly less than 1, so that e2 adds 

a useful amount of confirmation to any already supplied by e1. This allows similarity of 

evidence to be analyzed in terms of degree (Howson and Urbach 125-26). 

     Bayesianism has also been criticized on several grounds as being inadequate as a 

theory of scientific confirmation. One criticism is that it is too weak; all that is required 



30 
 

 

for confirmation of theory T by a piece of evidence is an increase in T’s probability over 

its prior probability. Thus, my buying one ticket in a million-ticket lottery is evidence that 

I will win the lottery, thus confirming that hypothesis. Granted it is not much evidence, 

but it is some. Likewise, for example, assuming one elevator accident per six million 

rides, my riding this elevator today increases the probability that I will be involved in an 

elevator accident today. Thus, it is claimed that any notion of evidence or theory 

confirmation that only requires an increase in T’s probability is too weak to be taken 

seriously (Achinstein, Book of Evidence 6). 

     Reasons have also been advanced for why the use of betting odds or Dutch Book 

arguments are far from conclusive as an accurate measure of the degrees of belief of a 

rational agent. There are many cases of propositions in which we may have degrees of 

belief for which no wager will be offered; and, we may have values other than the values 

we place on gambling odds and these may affect our decision even to gamble. Also, we 

could avoid a possible loss by refusing to gamble at all, even if the odds were in our favor 

(Glymour, Theory and Evidence 71-72). In addition, it has been argued that betting 

behavior may only be indicative of, and not constitutive of, underlying belief states, and 

that actual betting behavior by gamblers and laymen is often at variance with that 

predicted by Dutch Book arguments. In poker, for example, betting high may be a good 

way to scare off other players and win the pot (Earman 40-43). If betting behavior 

actually was an accurate measure of rational belief, it would be difficult to explain why 

millions of people bet $1 on a lottery ticket when the chance of winning is, say, one in 16 

million. 
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     Bayesian principles have been advanced as providing a unified scientific method 

(Howson and Urbach 91), but there is a substantial difference between the relatively 

straightforward case of TB diagnosis illustrated above and the use of Bayes’ theorem in 

testing a deep and general scientific theory like Darwin’s theory of evolution or Einstein’s 

GTR. To illustrate, in the case of the GTR there are no frequency data on which to rely, 

and a problem arises in attempting to quantify the probability of the evidence in the case 

of, for example, Eddington’s data on the bending of starlight during a solar eclipse. 

Although a value could be assigned to P(e/GTR), how is not-GTR (~GTR) to be 

evaluated? It consists of all the theories (T1, T2 …, Tn) that are incompatible with the 

GTR (and when taken together, is (∼ GTR), and is called the catchall hypothesis), some 

of which presumably have not even been formulated yet. The likelihood of ∼GTR is the 

average likelihood of these specific alternatives, weighted by the probability they have, 

conditioned on the GTR being false: 

               P(observation/∼GTR) = ∑i  P(observation/Ti ) P(Ti /∼GTR)  

How can this be objectively quantified? Although subjective Bayesians may give 

likelihoods reflecting personal degrees of confidence, it would seem that we should 

expect more (Sober 28-29; Earman 117). 

Achinstein’s Theory of Evidence 

     Peter Achinstein, in his Book of Evidence, has developed a theory of evidence in 

which for a fact e to be evidence for a hypothesis h, e must provide a good reason to 

believe h. Thus, he rejects Bayesianism, hypothetico-deductivism, and Hempel’s 

satisfaction theory as being too weak to accurately reflect scientific practice, i.e., the way 

that most scientists assess evidence in support of hypotheses. Hypothetico-deductivism 
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fails because e, if true, is evidence that h iff h entails e, which would, for example, allow 

that since the fact that light travels in a straight line is derivable from the classical wave 

theory of light, it is evidence that light is a classical wave motion. Hempel’s theory 

allows that the observation of a black raven is evidence for the hypothesis that “All 

ravens are black”. In neither case, Achinstein avers, does the evidence provide a good 

reason to believe the hypothesis (6).  

     Achinstein postulates that scientists use both objective and subjective concepts of 

evidence, but that the most important concept for them is objective (6). He outlines his 

concept of subjective evidence as being relativized to a specific person or group, and also 

may be evidence for that person or group at one time but not another. Subjective evidence 

satisfies at least three conditions, (23): 

1) X believes that e is evidence that h  

2) X believes that h is true or probable 

3) X’s reason for believing that h is true or probable is that e is true 

   In the above, e does need not be true, but only that X believes it is. Evidence e is 

accepted until new evidence refutes it. It requires belief, and that someone or some group 

is in a certain epistemic situation in regard to the evidence.  

     An example of subjective evidence that he provides is that of Heinrich Hertz’s 

evidence for the neutrality of cathode rays in 1883 that was based on a flawed 

experimental setup. Hertz concluded (wrongly) at the time that cathode rays were not 

electrically charged, but later in 1897 J. J. Thomson repeated the experiment under 

conditions satisfactory for demonstrating that cathode rays were indeed negatively 



33 
 

 

charged. Hertz’s experimental results were subjective evidence for the neutrality of 

cathode rays from 1883 to 1897, but not thereafter (13-24).  

     Achinstein develops three objective concepts of evidence that he believes scientists 

also employ: epistemic situational (ES), veridical, and potential. ES evidence is of the 

sort obtained by Hertz in 1883, but it is relativized to a type of epistemic situation, and 

there is no requirement that anyone be in that situation. Evidence e can be ES evidence 

for h even if no one in fact believes that e or h is true or believes that e is ES evidence for 

h. Unlike subjective evidence, ES evidence requires that e be true, and that the person or 

group whose evidence it is be justified in believing h on the basis of e (19-22). 

     Veridical evidence requires that h be true, and that e provides a good reason to believe 

h. Evidence later rejected as wrong based on new findings is not evidence and never was. 

“Not a good reason to believe” is Achinstein’s way to describe this, unlike “justification” 

in the subjective and ES cases. Thus “good reason to believe” functions like a “sign” or 

“symptom”. For example, a rash may be a good reason to believe that a certain disease is 

present, even if no one is aware of the connection. The epistemic situation that pertains at 

any time is irrelevant. Veridical evidence can also depend on empirical facts not reported 

in e or h. Veridical evidence is distinguished from conclusive evidence: conclusive 

evidence establishes the certain truth of h, i.e., P(h/e) = 1. If e is veridical evidence with 

respect to h, then h is true, but it does not have to establish that h is true with certainty 

(24-27). 

     Potential evidence is like veridical evidence, but weaker. It does not require h to be 

true, only probably true. It is fallibilist. It is not relativized to an epistemic situation, as in 

ES, but, like ES, it requires e to be true (27-28). 
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     Achinstein advances a new interpretation of probability that he calls objective 

epistemic probability. It attempts to deal with the question of how reasonable it is to 

believe a proposition: what does it mean to say that it is reasonable to believe something? 

It can be relativized to other beliefs held by someone, or, say, some group. It can also be 

abstract, and not dependent on other beliefs, for example a belief about the number of 

heads in a coin tossing experiment. It admits of degrees, hence is subject to the rules of 

probability. Achinstein’s concept of probability is not a measure of how much belief one 

has or ought to have, or how strong the belief is or ought to be, but rather it is how 

reasonable it is to believe something that is subject to differences of degree. There is no 

relativization to persons, so it differs from a subjective view of probability. It differs from 

Carnap’s view that beliefs come in degrees; e.g., for Carnap, if P(h) = r, then one is 

justified in believing h to the degree r. It also differs from frequentist and propensity 

views of probability, which are objective views about the world, and not about 

reasonableness of belief. For Achinstein, a probability statement of the form “P(h) = r” is 

understood to mean that: The degree of reasonableness of believing h is r. Also, if the 

probability of h = ¾, then it is three times more reasonable to believe that h is true than 

that h is false (95-100). 

     For Achinstein, although evidence is related to probability, an increase in probability 

is neither necessary nor sufficient. On his view (Four Mistaken Theses 44), 

(a) For a hypothesis h and putative evidence e, if e is a good reason to believe h, then 

there is some number k (greater than or equal to 0) such that p(h/e) > k. 

(b) If e is evidence that h, then e must be a good reason to believe h. 

(c) If e is a good reason to believe h, then e cannot be a good reason to believe not-h. 
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He states that assumptions (a)-(c) can be shown to require that k in (a) be ½, so that  

(d) e is evidence that h only if p(h/e) > ½. 

As he notes, whether (a), (b), and (c) require (d) depends on his argument in his Book 

of Evidence (115-16).   

      In addition to raising the probability of h to above ½, there needs to be some 

relevance relation, or some connection between h and e. Consider: 

                                    e:  Michael Jordan eats Wheaties 

                                    b:  Michael Jordan is a male basketball star 

                                    h:  Michael Jordan will not become pregnant 

     Here, e, b, and h are the evidence, background information, and hypothesis, 

respectively. Evidence e provides no additional reason to believe h, since b alone makes 

h’s probability approximately one, since it asserts that Jordan is male (145-46). It is 

irrelevant; it provides no explanatory connection between h and e. Thus he develops the 

notion of an explanatory connection between h and e, which he defines by reference to 

that of a correct explanation:  

     There is an explanatory connection between h and e iff either h correctly explains why       

     e is true, or e correctly explains why h is true, or some true hypothesis correctly  

     explains why h is true and why e is true (160).     

     His notion of “correct explanation” has three characteristics: 

1) It is objective: whether h correctly explains e does not depend on what anyone 

knows or believes 

2) It is non-contextual: in this sense, it is like causation, in that it does not vary with 

the interests and knowledge of different inquirers 
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     3)  It does not depend on any requirement of evidence, nor invoke other explanatory 

          or evidential concepts 

     Achinstein wishes to avoid some evidence e which could appear, for example, as an 

irrelevant conjunct: In the above Michael Jordan example, p(h/e&b) = p(h/b), which is 

approximately one, and p(h/e) = p(h). Unlike causation, he avers that probability is not 

selective: “If some fact or event E1 caused an event E, it will be false to say that E1 and E2 

caused E, even if E2 is a fact or is an event that occurred, unless E2 was causally involved 

in producing E” (146). But for probability, an irrelevant conjunct could appear and the 

probability of h be unaffected: p(h/e&b) = p(h/b). To avoid this, he requires an 

explanatory connection between h and e. 

Achinstein’s necessary and sufficient conditions for potential evidence are (170): 

(PE)     e is potential evidence that h, given b, only if 

1) p (there is an explanatory connection between h and e/e&b) > ½ 

2) e and b are true 

3) e does not entail h 

His definitions of veridical, ES, and subjective evidence are (174): 

     e is veridical evidence that h, given b, iff: 

     1)  e is potential evidence that h, given b 

     2)  h is true 

     3)  There is an explanatory connection between e’s being true and h’s being true 

     e is ES evidence that h (with respect to an epistemic situation ES) iff e is true and  

     anyone in ES is justified in believing that e is (probably) veridical evidence that h 

     e is X’s subjective evidence that h at time t iff at t, X believes that e is (probably)  
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     veridical evidence that h, and X’s reason for believing h is true (or probable) is that e  

     is true. 

      Does Achinstein’s explanatory connection condition somehow establish a necessary 

role for explanation before we can have a good reason to believe a hypothesis? Consider 

a hypothesis H that might be encountered in clinical medical science: 

                   H : X will experience outcome Y from intervention Z  

Here, X represents an individual patient, Z is an intervention, and Y is the expected 

outcome experienced by patient X due to (because of) intervention Z. 

     Although H is a perfectly good therapeutic hypothesis, in modern clinical medical 

science hypotheses such as H are treated as predictions based on evidence, for example,  

studies such as RCTs, which have established the extent to which we can expect outcome 

Y from intervention Z in an individual patient. 

     Achinstein conveniently provides an example of H from clinical medical science in 

discussing his explanatory connection (156): 

     John, who has symptoms S, presumably is taking medicine M in hopes of getting 

relief from symptoms S. Background information b includes the facts that 80 percent of 

patients with symptoms S that take M get relief in a week (R), so p(R ⁄ S&M) = .8, and 

also that among those with S who take M and get relief in a week, 70 percent do so 

because they took M, so p(R because of M ⁄ R&S&M) = .7. He then shows that p(R 

because of M ⁄ S&M) = .56. Thus, letting 

        e: John, who has symptoms S, is taking M 

        h: John will get relief in a week 

        b: the probability information given above   
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Achinstein concludes from this example that p(h because of e ⁄ e&b) = .56, which meets 

his criteria for “a good reason to believe” h (although he says that it is not particularly 

strong evidence, since only a little more than half of those with symptoms S who take M 

get relief because of M). To have a good reason to believe h does not only consist in e’s 

raising the probability of h to greater than ½, but also the probability that the reason that 

John’s symptoms will be relieved by M, given e&b, is greater than ½. 

     The explanatory connection required by Achinstein seems established in this example, 

since it is based on the probability information provided in b, in which the putatively 

correct explanation is objective, noncontextual, and not explicated in terms of evidence or 

other explanatory concepts. But the important point for our discussion is to note that the 

basis for inferring or establishing an explanatory connection between h and e comes from 

background information b. But how would we acquire the kind of information provided 

in b in this example? That is, that 80 percent of patients with symptoms S taking 

medicine M get relief in a week, and that 70 percent of those who get relief do so because 

they took M? 

     It obviously comes from studying a group or groups of patients, either from 

observation or from one or more clinical trials. Since b is assumed by Achinstein to be 

true, presumably he would not object to our assuming that it came from an RCT, say, like 

the following: 

     An RCT was conducted to test the efficacy of medicine M in producing relief for 

patients with symptoms S. A total of 200 patients with symptoms S were randomized to 

receive M or a placebo. At the end of one week, among 100 patients randomized to M, 80 

percent got relief. Among 100 controls, the comparable figure was 24 percent. 



39 
 

 

Conclusion: M was 56 percent efficacious in relieving symptoms S within a week. 

Another 24 percent got relief in a week for other reasons.  

     It seems from the above that the explanatory element in the explanatory connection 

between h and e is derived from the results of one or more studies that have tested the 

therapeutic hypothesis regarding the efficacy of M in patients with S. This is the 

evidentiary basis for believing h: John will get relief in a week. The explanatory 

connection between h and e does exist, apparently, because e correctly explains (or 

might) why h is true. But the correct explanation, hence the explanatory connection, is 

based on the previously confirmed hypothesis concerning the efficacy of M in patients 

with S. It is derivative: it depends on confirmation. Another of Achinstein’s examples can 

also be used to illustrate this (152): 

     e: Arthur has a rash on his arm that itches 

     b: Arthur was weeding yesterday bare-armed in an area filled with poison ivy, to 

         which he is allergic 

     h: Arthur’s arm was in contact with poison ivy 

In this example, Achinstein avers that given e and b, the probability is high that the 

reason (e) Arthur has a rash on his arm that itches is that (h) his arm was in contact with 

poison ivy. Thus, under these conditions, given e and b, e is a good reason to believe h. 

That is, p(h/e) is high, and p(there is an explanatory connection between h and e/e&b) is 

high. But why is this so? Because of a previously highly confirmed hypothesis, which is 

assumed but is unstated, that I will call h1: 

     h1: There is a high probability that persons allergic to poison ivy will develop a rash 

           that itches on their skin if it is exposed to poison ivy 
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Here, h1 is assumed as part of b. Without h1, b loses its force in providing the needed 

explanatory connection between e and h. Thus, it is derivative: it depends on 

confirmation.  

     It appears that the explanatory element in the explanatory connection between h and e 

is based on one or more confirmed hypotheses, which establishes in these cases his 

desired relevance relation between h and e. Achinstein’s notion of explanation as used 

here is objective and non-contextual, and does not depend on what anyone knows or 

believes. Thus, it is a different concept of explanation than that employed in Inference to 

the Best Explanation, which is context-dependent and does depend on the knowledge and 

interests of different inquirers. I will argue that at least this latter notion is not necessary 

for confirmation in clinical medical science.   

Inference to the Best Explanation 

     Gilbert Harmon argued that various forms of non-deductive inference, including 

“abduction,” “enumerative induction,” and “eliminative induction,” correspond 

approximately to what he calls The Inference to the Best Explanation. To explain certain 

evidence, one forms a hypothesis, and makes an inference to the truth of that hypothesis. 

In general, more than one hypothesis could explain this evidence, and therefore one must 

first eliminate rival hypotheses so that the “best” hypothesis is chosen. Harmon notes that 

arriving at the best explanation presumably involves considerations such as simplicity, 

plausibility, being less ad hoc, explaining more, and so forth, but concedes that the actual 

process is problematic and not well understood (Inference 89). 

     Inference to the Best Explanation as a description of our inductive practices is 

attractive because it plausibly seems to account for how we go about making everyday 
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inferences. When a detective puts together all of the evidence in a certain case and infers 

that a particular suspect must be guilty, he is reasoning that no other explanation is 

sufficiently simple or plausible to be accepted. When a physician examines a patient with 

a characteristic rash and diagnoses measles, he has essentially eliminated rival hypotheses 

and inferred that measles is the best explanation for the evidence before him. Beginning 

with the evidence, we infer, what would, if true, provide the best explanation of that 

evidence.  

     In the case of causal explanation, Harmon argues, a better account of inference 

emerges if “cause” is replaced by “because.” We infer not only statements of the form X 

causes Y but, more generally, statements of the form Y because X or X explains Y. Here, 

inductive inference is construed as inference to the best of competing explanatory 

statements, of which inference to a causal explanation is a special case. Thus, one might 

infer that a certain mental state explains someone’s behavior, but such an explanation by 

reasons might not be causal explanation (Thought 130). 

     Peter Lipton has further explored Inference to the Best Explanation. He notes that the 

attempt to justify Inference to the Best Explanation, which itself is an inductive process, 

runs up against Hume’s objections, and that any such attempt is fraught with the problem 

that it is itself inductive. Unlike deduction, we are faced with underdetermination: even if 

our premises are true, we can have a false conclusion. Thus Lipton focuses on trying to 

describe the process of Inference to the Best Explanation, and avers that explanatory 

considerations are our guide to inference. He argues that in many ways, explanatory 

considerations guide inquiry into determining what inferences to make. They tell us what 
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to look for and whether we have found it. The physician infers that the patient has 

measles because this is the best explanation for the evidence before him.  

     Lipton stresses that the best explanation is selected from among the pool of potential 

explanations. Inference to the Best Explanation cannot be understood as inference to the 

best of the actual explanations, since that would make us too good at inference and make 

our inferences true. We also should wish to consider only plausible explanations and not 

just possible explanations, since many possible explanations could be wildly off the 

mark. Lipton considers two notions of “best”: likeliest and loveliest. The likeliest is the 

most warranted; the loveliest is the one that, if true, would be the most explanatory or 

provide the most understanding. Aspects of loveliest include broadly aesthetic 

considerations like theoretical elegance, simplicity, and unification. Likeliness is relative 

to the total available information, whereas loveliness may not be. If we choose likeliest as 

the best, it may be trivial since we still need more than the likeliest cause. We should 

show how likeliness is determined at least in part by explanatory considerations. So, we 

should choose loveliest. Scientists also entertain these broadly aesthetic considerations.  

     To explain why P rather than Q, we need to find a causal difference between P and 

not-Q (∼ Q), consisting of a cause of P and the absence of a corresponding event in the 

history of ∼ Q. Therefore we explain why Jones rather than Smith got paresis, since only 

Jones had syphilis. Of course our interests determine the foil that we use in contrastive 

inference, and our explanations may be different when different foils are used. Thus, our 

explanation of why Jones got paresis and Smith did not because Jones had syphilis and 

Smith did not, will not suffice to explain why Jones got paresis and Smith did not in the 
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event that both Jones and Smith had syphilis. Thus, for Lipton, explanation is highly 

context dependent.  

     To illustrate his notion of contrastive inference, Lipton uses the example of the 

investigation of childbed fever by the Austrian physician Ignaz Semmelweiss (Hempel, 

Philosophy of Natural Science 3-8). Between 1844 and 1848, while working in a 

Viennese hospital, Semmelweiss observed that the women in the First Maternity Division 

got the disease at a much higher rate than women in the Second Division. He developed 

three types of hypotheses: 1) Hypotheses that did not mark a difference between the 

divisions, and so were rejected (e.g., “epidemic influences” descending over the entire 

area); 2) Hypotheses that did mark a difference between the divisions, but where 

eliminating the difference in putative cause did not affect the difference in mortality. For 

example, women in the First Division were delivered lying on their backs, while women 

in the Second Division were delivered lying on their sides; but when Semmelweiss 

arranged for all women to be delivered on their sides, there was no change in the disease 

rates; and, 3) Hypotheses that marked a difference between the two groups, and where 

eliminating the difference also eliminated the difference in disease rates. One of 

Semmelweiss’s colleagues got a puncture wound after doing an autopsy, and died of an 

illness with symptoms similar to those of childbed fever. Semmelweiss hypothesized that 

“cadaveric matter” was the etiology. Medical students did the deliveries in the First 

Division after doing autopsies. However, midwives did the deliveries in the Second 

Division, and the midwives did not do autopsies. So he had the medical students disinfect 

their hands before deliveries, and the excessive number of childbed fever cases in the 

First Division went down.  
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     Although Hempel used the Semmelweiss example as a paradigm of the hypothetico-

deductive method, Lipton suggests that Inference to the Best Explanation works better. It 

illuminates the context of discovery and how hypotheses are generated, something that 

hypothetico-deductivism rejects. Explanatory considerations focus and direct inquiry. 

Potential hypotheses are not assembled and deductively rejected. Lipton contends that 

Popper is wrong that disconfirmation works through refutation. Scientists reject theories 

as false because, while they are not refuted by the evidence, they fail to explain the 

salient contrasts. Thus, for example, the hypothesis of “epidemic influences” was not 

rejected because it was contradicted by the evidence. Like any epidemic, Lipton argues, 

some people get sick and others do not. So the hypothesis does not entail that the 

mortality in the two divisions is the same. Semmelweiss rejected hypotheses because they 

failed to explain contrasts, not because they were logically incompatible with them.  

     In his Laws and Symmetry, Bas van Fraassen has criticized Inference to the Best 

Explanation on several grounds. One criticism has been called the “bad lot” argument 

(142-43). Inference to the best Explanation selects one hypothesis among those that are 

available to us. So, it is possible that our selection may be nothing more than the best of a 

bad lot. Although selecting the “best” hypothesis from among a set of rivals is a 

“weighing” of the evidence (and, justifiably so) within the set, the inference to the best 

explanation requires another step - an ampliative step. To infer that some hypothesis is 

more likely to be true than not requires the prior belief that the truth is already more 

likely to be found in the set than not. This cannot be justified based on some notion of a 

“privilege of our genius” at being naturally endowed, with faculties that lead us to hit on 

the right range of hypotheses. Nor can it be justified that we must select the best on the 
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basis of some rule of right reason (143-45). In this connection, Psillos has argued that van 

Fraassen has ignored background information that scientists use to arrive at a set of 

plausible potential hypotheses, which he calls the background knowledge privilege (37).  

     Another argument against Inference to the Best Explanation is the argument from 

indifference. Van Fraassen says, “… there are many theories, perhaps never yet 

formulated but in accordance with all evidence so far, which explain at least as well as 

the best we have now. Since these theories can disagree in so many ways about 

statements that go beyond our evidence to date, it is clear that most of them by far must 

be false. I know nothing about our best explanation, relative to its truth value, except that 

it belongs to this class. So I must treat it as a random member of this class, most of which 

is false. Hence it must seem very improbable to me that it is true” (146). Psillos alleges 

that for this argument to have force, one must first show that there always are other 

potentially explanatory hypotheses waiting to be discovered, in addition to explaining the 

evidence at least as well (43). Ladyman et al. point out, however, that even if it were the 

case that none of the unborn hypotheses offers a better explanation of the evidence than 

the best of the lot we now have, Inference to the Best Explanation would still be 

unacceptable. This is because it would require the additional premise that there is 

(almost) always a unique best explanation, that explanation would be ranked or ordered 

according to some standard of “goodness” for which there would exist a greatest element. 

But what justification do we have that this is so? (309). 

     Van Fraassen does not deny that there is a common sense element in Inference to the 

Best Explanation that must be respected. He says, “If I already believe that the truth 

about something is likely to be found among certain alternatives, and if I want to choose 
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one of them, then I shall certainly choose the one I consider the best. That is a core of 

common sense which no one will deny” (149). He objects to the idea that Inference to the 

Best Explanation can be considered a rule to form warranted new beliefs on the basis of 

the evidence, and the evidence alone, in a purely objective manner. In Inference to the 

Best Explanation, this is done by evaluating hypotheses by how well they explain the 

evidence, where evidence is an objective relation between hypothesis and evidence alone 

(142).   

What is an Explanation?   

     Several philosophical theories of explanation have been proposed (e.g., see 

Achinstein, The Nature of Explanation), but no theory has as yet gained general 

acceptance. I will briefly discuss part of one such theory, the one proposed by van 

Fraassen in The Scientific Image (97-157), which will help lead us into a discussion of the 

role of explanation in clinical medical science. 

   For van Fraassen, an explanation is an answer to a “why” question. Thus, a theory of 

explanation must be a theory of why-questions (134). For example, consider the question: 

Why is this conductor warped? The question implicitly assumes that the conductor is 

warped, and the questioner is asking for a reason why. The proposition that the conductor 

is warped is the topic of the question. Next we have a contrast class for this question, 

which is a set of alternatives. For example, one contrast for this topic could be why is this 

conductor warped instead of that one; another contrast could be why is this conductor 

warped and not straight. Finally there is a relevance relation, which is the respect-in-

which a reason is requested and what determines what is to count as a possible 

explanatory factor or set of factors. So in the case of the warped conductor, the request 
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might be for the events leading up to the warping. In this case, relevant factors might 

include an account of human error, switches being closed, or moisture condensing in the 

switches, for example. Thus a why-question Q expressed by an interrogative in a given 

context will be determined by three factors: a topic P, a contrast-class X consisting of 

{P1, …, Pk, …} and a relevance relation R. 

     How would an answer to a why-question look given this schema? A direct answer, 

van Fraassen writes, would look like this (143): 

                   Pk in contrast to (the rest of) X because A. 

     This sentence must express a proposition. What is claimed here is that Pk is true, that 

the other members of the contrast class are not true, that A is true, and that A is a reason. 

     Consider an example of a why-question Q. Q: Why does Smith have a swollen ankle 

(as opposed to his ankle’s not being swollen)? A: (Because) he suffered an inversion 

sprain. Here the conditions are met: 

                         Pk: Smith’s ankle is swollen (true) 

     (the rest of) X: Smith’s ankle is not swollen (untrue) 

                        A: He suffered an inversion sprain (true) 

And, A is a reason.  

     The relevance relation R could come into the schema perhaps as “events leading up 

to” Pk. Relevant here might be the following: Smith stepped off a curb, and as his foot 

was coming down his ankle inverted and bore the full weight of his body, producing a 

severe sprain. 

     As van Fraassen notes, we evaluate the answers to why-questions in the light of 

accepted background theory as well as background information (145). So the answer to Q 
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may involve the accepted background theory of the pathophysiology of inversion sprains 

of the ankle: The force of the weight of the body coming down on the ankle causes 

tearing and disruption of the soft tissues of the ankle, which include blood vessels and 

lymphatic vessels; these events lead to bleeding and the accumulation of fluid under the 

skin surrounding the ankle, thereby producing the swelling.  

     Van Fraassen also considers how description and explanation relate to scientific 

theory. He avers that whereas description is a two-term relation between theory and fact, 

explanation is a three-term relation between theory, fact, and context. Being an 

explanation, he says, is essentially relative, for an explanation is an answer, and what 

answer is given depends on context (156). The why-question is a request for information, 

and that information is essentially descriptive. If a scientist is asked to explain something, 

the answer is not different in kind, nor does it sound or look different, than the 

information given when a description is asked for. If an economist were asked to explain 

the rise in oil prices, for example, the answer would consist of descriptive information 

such as changes in oil producers, oil supplies, and oil consumption. Scientific 

explanations do not differ in form from “ordinary” explanations; in general, the 

information comes from science (155).  

     Thus for van Fraassen, 

          ... scientific explanation is not (pure) science, but an application of science. It is a 
          use of science to satisfy certain of our desires: and these desires are quite specific 
          in a specific context, but they are always desires for descriptive information ... The 
          exact content of the desire, and the evaluation of how well it is satisfied, varies 
          from context to context ... [and] in each case, a success of explanation is a success 
          of adequate and informative description (156-57).   
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Evidence, Hypothesis, and Explanation in Clinical Medical Science 

     For the most part, the type of explanation sought in clinical medical science is causal 

explanation. “Why does this patient have these symptoms?” is a request for the cause of 

the patient’s symptoms. “Why does my head hurt?” is a request for the cause of the 

patient’s headache. 

     Consider the following clinical scenario concerning a diagnostic hypothesis: 

     James arrives at his physician’s office complaining of malaise and a sore throat. On 

examination, he is found to be febrile, and his throat is inflamed with a white exudate. 

The clinical diagnosis is acute pharyngitis. Based on the physician’s background 

information, she considers two hypotheses as to the etiology of the pharyngitis: 

        H1 :  A bacterial infection, such as with streptococcus, is the cause 

        H2 :  A viral infection is the cause 

     Evidence is sought to confirm or disconfirm these hypotheses. Results from a blood 

test strongly favor a bacterial infection. A throat culture is obtained, which grows out 

streptococci. Thus the weight of the evidence strongly favors bacterial infection with 

streptococci as the etiology. Therefore, 

        Q :  Why does my throat hurt? 

        A :  (Because) you have streptococcal pharyngitis 

     Clinical medical scientists, like all scientists, want their hypotheses and theories to be 

true. But those theories and hypotheses that are selected for clinical decision making, 

such as those that form the basis for therapy or prevention programs, are increasingly 

being selected based on the weight of evidence supporting them. While no one can argue 

that explanatory considerations are not important, the thesis that I wish to defend is this: 
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             T : Confirmation is prior to explanation 

More specifically, for the clinical medical scientist, the “best” explanation will be based 

on the hypothesis that is best confirmed by the evidence. 

     In Inference to the Best Explanation, Lipton states, “Beginning with the evidence 

available to us, we infer what would, if true, provide the best explanation of that 

evidence” (1). Similarly Harmon says, “In making this inference one infers, from the fact 

that a certain hypothesis would explain the evidence, to the truth of that hypothesis” 

(Inference 89). Harmon goes on to say that more than one hypothesis may explain the 

evidence, so we must reject alternative hypotheses so that we are ultimately left with the 

hypothesis that best explains the evidence. We infer from the best explanation to the truth 

of the hypothesis. 

     Much has been written about how one decides which of the competing hypotheses 

provides the “best” explanation. Keith Lehrer has remarked on the “hopelessness” that 

any useful analysis of the concept that one explanation is better than another may be 

forthcoming (165). Thagard advances the notions of consilience, simplicity, and analogy 

as providing useful criteria for theory choice (79). Nevertheless, one starts with the 

evidence, and infers to the truth of the hypothesis that best explains it. 

     However, what is the relationship between confirmation and explanation? Here we are 

concerned with the hypothesis that is best confirmed by the evidence, and the “best” 

explanation. Does one precede (in time) the other? Can they be arrived at concurrently? 

Does one in some way depend on the other?  

     It would not seem that they are causally related. The hypothesis that is best confirmed 

does not cause the best explanation to be the best. Nor would it seem that the best 
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explanation would cause the best confirmed hypothesis to be the best confirmed. But 

consider Harmon’s Y because X in the non-causal sense: Is the best confirmed 

hypothesis best confirmed because it provides the best explanation? Or, is the converse 

true, that the best explanation is best because the hypothesis is best confirmed? Or can 

these two in some way be contemporaneous? 

     Consider a pediatrician that has just been told by the nurse that the child in the next 

examination room has a rash. On entering the examination room, the pediatrician notes 

the characteristic rash of measles. Immediately, it seems, the pediatrician has both 

confirmed the diagnosis of measles and, potentially at least, provided at least one 

explanation for the rash. But an explanation arguably is, at least in part, an answer to a 

why-question. Must the question be explicitly asked? It might be plausible to suppose 

that the pediatrician implicitly desires a correct explanation for the rash, in addition to (or 

even in place of) making the correct diagnosis. Can we assume that the pediatrician is 

perhaps implicitly or unconsciously seeking an explanation?   

     It would seem more plausible to assume that the pediatrician primarily wishes to make 

the correct diagnosis. To the extent that explanation is desired or requested (e.g., “Why 

does my daughter have this rash?”), no doubt one candidate for the “best” explanation 

would be a correct one, commensurate with the diagnosis (e.g., “She has measles.”).   

     This measles example seems closely related to Lipton’s example of the snowshoe 

tracks. He says, “Suppose you ask me why there are certain peculiar tracks in the snow in 

front of my house. Looking at the tracks, I explain to you that a person on snowshoes 

recently passed this way. This is a perfectly good explanation, even if I did not see the 

person and so an essential part of my reason for believing my explanation are the very 
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tracks whose existence I am explaining” (24). Lipton goes on to say that these “self-

evidencing” explanations are ubiquitous and may be perfectly acceptable, and that the 

circularity is benign. 

     Let us alter Lipton’s example. Suppose I am alone and walk outside and see the 

snowshoe tracks. I simply know that someone has passed by wearing snowshoes. And 

suppose that I look up into the sky, and far up without hearing a sound, I see a 

characteristic condensation trail. I simply know that an airplane has passed overhead. Is 

there a role here, in these quotidian examples, for explanation or confirmation? My 

hypotheses are: “Someone has passed by wearing snowshoes” and “An airplane has 

passed overhead.” My evidences are: “There are snowshoe tracks” and “There is a 

condensation trail overhead.” My explanations for the evidences are: “Someone has 

passed by wearing snowshoes” and “An airplane has passed overhead.” But notice that 

the statements expressing the hypotheses and those expressing the explanations are the 

same. For someone with the requisite knowledge, hypothesis and explanation may be one 

and the same. Hypothesis, evidence, and explanation are all there contemporaneously. In 

the quotation from Lipton above, he is being asked for an explanation: someone has seen 

peculiar tracks, and apparently not knowing they are snowshoe tracks, asks for an 

explanation (“...why there are...”). Similarly, for the pediatrician, having the requisite 

knowledge, hypothesis, evidence, and explanation are all there contemporaneously. 

However, the mother may ask, “Why does my daughter have this rash?” This, of course, 

is a request for an explanation. 

     These “self-evidencing” cases of contemporaneous hypothesis, evidence, and 

explanation such as our measles example are the exception in clinical medical science, 
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and as a rule most diagnoses are not arrived at quite so easily. We may start with some 

evidence such as information provided by the patient along with various signs or 

symptoms, but most often, particularly for serious conditions, additional diagnostic 

testing must be done in the process of confirming or disconfirming various diagnostic 

hypotheses, such as in the above case of the patient with the sore throat. In that case two 

hypotheses were considered initially. The weight of the evidence favored the diagnosis of 

streptococcal pharyngitis, and that became the working diagnosis on which treatment 

decisions would be based. Is there some role here for explanation? 

     Maybe it would be possible to view the case of James as an exercise in explanation: 

James went to his physician seeking an explanation for his sore throat. The physician 

sought to explain his sore throat, and on examination her explanation for the soreness was 

acute pharyngitis. She formed two explanatory hypotheses, and the best explanation 

based on the evidence of the blood test results and throat culture was streptococcal 

pharyngitis. Thus she inferred the truth of the hypothesis of streptococcal pharyngitis 

because it was the best explanation of the evidence. Is this not a clear-cut case of 

Inference to the Best Explanation?   

     The more plausible interpretation, I would argue, is that James visited his physician 

primarily because he wanted treatment for his sore throat, in addition to wanting to know 

why it hurt. The physician wanted to make the correct diagnosis and institute appropriate 

treatment. We should note here however, that in this example that the best confirmed 

hypothesis is streptococcal pharyngitis: “The patient has streptococcal pharyngitis.” If 

James were a bacteriologist, a candidate for the best explanation, should he ask why his 

throat hurts, might be “You have streptococcal pharyngitis.” If James were a young adult 
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instead, he might be satisfied with the relatively well-known lay term for this condition, 

“Strep Throat.” If James were an inquisitive nine year-old, considerably more in the way 

of explanation may be required. In view of this dependence on context for explanation, 

for Inference to the Best Explanation as a theory of confirmation to work in this example, 

it must be the diagnosing physician who must decide what is the best explanation, and as 

I said earlier, this will almost invariably be the one that is believed to be the correct one. 

And why, exactly, should we assume that an explanation is being sought rather than 

seeking the information necessary to make the correct diagnosis? 

     The primary aim in differential diagnosis is to make the correct diagnosis. The 

primacy of making the correct diagnosis derives from its overarching importance: it 

forms the basis for instituting treatment and providing prognostic information. It is true 

that the process may involve seeking explanations for various findings, but the correct 

diagnosis is not correct because it explains anything, but because criteria for making the 

diagnosis have been met. The correct diagnosis will be, I argue, the “best” explanation 

for the diagnostician. Consider the following case (Lalazar, Doviner, and Ben-Chetrit): 

     A previously healthy 25-year-old man was admitted to the hospital because of 

abdominal pain, nausea, vomiting, and weight loss. Two weeks earlier, fever, chills, and 

weakness had developed. On examination, he was afebrile, had a slightly enlarged spleen 

and liver, and tenderness in the upper abdomen. Initially, the diagnostic possibilities that 

were considered included viral or bacterial infection, pancreatitis, and lymphoma. 

     Blood test results favored a viral infection, and antibodies in the blood to 

cytomegalovirus (CMV) were detected. Hypoalbuminemia (low albumin) was also 

present. A computerized tomographic scan of the abdomen showed enlarged gastric 
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folds. At this point, diagnostic hypotheses were focused on those that were associated 

with enlarged gastric folds, which are uncommon. The serologic findings for acute CMV 

infection, along with the large gastric folds and hypoalbuminemia, were suggestive of 

Ménétrier’s disease; other possibilities that were considered included gastric carcinoma.  

     A gastroscopy (direct visualization of the inside of the stomach through a fiberoptic 

endoscope) showed the enlarged folds; also noted was erosive gastritis, a type of 

inflammation. No evidence of cancer was seen. A biopsy showed viral inclusion bodies 

in several gastric mucosal cells that stained positive for CMV. The authors concluded 

that, 

           … the finding of inclusion bodies in the gastric mucosal cells that stained 
           positively for CMV confirmed the diagnosis of CMV-associated  
 Ménétrier’s disease … This diagnosis reasonably explains all the  
 patient’s presenting features: a prodrome of viral infection, splenomegaly,  
 abdominal pain, erosive gastritis, large gastric folds, and hypoalbuminemia  
 (1348). 
 
     In this case, it seems clear that the diagnosis chosen as the correct one was done so not 

primarily because of explanatory considerations. But, as the authors note, the diagnosis 

“reasonably explains” all the patient’s presenting findings. And, as I have argued, the 

correct diagnosis supplies the basis for the best explanation in this context.  

     In conclusion, there can be no doubt that the search for explanations motivates much 

scientific inquiry. And Lipton is surely correct when he asserts that the search for 

explanations illuminates the process of scientific discovery. Why is the world the way it 

is? In clinical medical science, much of the desire for explanation is for causal 

explanation, and many of the hypotheses formulated and tested are causal hypotheses. A 

causal hypothesis that is well confirmed by evidence must surely be different from any 

causal explanations stemming from it. Clearly, if the best explanation (e.g., the patient 
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has measles) for the evidence (e.g., a rash) is the best-confirmed diagnostic hypothesis 

(e.g., the patient has measles), then we have nothing more than a tautology. Achinstein, 

who has construed explanation rather narrowly in his theory of evidence as being an 

objective, noncontextual relation between hypothesis and evidence, notes that,  

“Explanation is a richer, more demanding idea than mere entailment” (Book of Evidence 

149). Everywhere hypotheses and explanations are assumed to be different. It seems 

much more plausible to view explanations as being based on hypotheses, since we know 

that a single hypothesis can potentially supply many different explanations, depending on 

the context in which an explanation is sought. Thus it appears reasonable to conclude 

that, at least in clinical medical science, confirmation is prior to explanation, and that 

explanation is not necessary for confirmation.          
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Chapter 4  
 
Confirmation of Hypotheses in Clinical Medical Science 
 
     How are hypotheses confirmed in clinical medical science? How is evidence used in 

the confirmation process? This section presents several different hypotheses with the aim 

of exploring the various methods and strategies employed. They are illustrated using 

actual cases drawn from the medical literature.  

     For present purposes, hypotheses in clinical medical science can be divided into three 
 
groups: therapeutic, etiologic, and diagnostic. Therapeutic hypotheses are concerned 

with treatments or other health interventions. Etiologic hypotheses are concerned with the 

causes of diseases or other adverse health outcomes. Diagnostic hypotheses are those 

entertained by clinicians when making a diagnosis. 

I. Therapeutic Hypotheses 
 
     In clinical medical science, typical therapeutic hypotheses might include hypotheses 

such as: 

     H0 :  Treatment A and treatment B give equivalent (in some sense) results 

     H1 :  Treatment A is better (in some sense) than treatment B 

Here, “treatment” could include a wide range of interventions, for example, drug therapy, 

radiation therapy, physical therapy, or some surgical procedure. The type of study could 

be primarily observational, or primarily experimental. In observational studies, 

researchers typically do not actively influence the treatment; rather, they observe 

treatments and make comparisons. An example would be the retrospective review of the 

results of two surgical procedures for the same condition at a particular institution over 

some time period. 
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     In experimental studies, researchers may design an experiment using human subjects 

to test the effectiveness of some treatment, for example, to test whether some treatment is 

better in some sense than another treatment for the same condition, or better than no 

treatment at all. Controlled clinical trials and N of 1trials are examples of experimental 

studies.  

Controlled Trials 

     An example of a controlled trial is that conducted by the Gastrointestinal Tumor Study 

Group to assess the value of adjuvant therapy following surgery for rectal cancer 

(Thomas and Lindblad). The mainstay of treatment for rectal cancer is surgical 

extirpation of the tumor, usually consisting of either resection of the affected portion of 

the rectum with re-attachment end–to-end, or abdominal perineal resection, in which the 

rectum and anus are removed, with resultant colostomy. The results of several studies 

assessing the use of radiation therapy, chemotherapy, or both, had suggested that the use 

of these modalities as adjuvant therapy to surgery might improve outcomes. 

     The study was designed as a four-arm RCT of patients with stage B2 (tumor 

penetrating deeply into the rectal wall) or stage C (tumor spread to nearby lymph nodes) 

adenocarcinoma of the rectum following “curative” resection (i.e., no clinical, 

radiological, surgical, or pathological evidence of disease remaining). Patients were 

randomly assigned to one of four groups: no adjuvant therapy (control), chemotherapy 

only, radiotherapy only, or radiotherapy and chemotherapy (combined modality). 

     Eleven cancer centers participated, 10 in the U.S. and one in Italy. Accrual to the 

study commenced in mid 1975, and by early 1980, 227 patients had been entered. At that 

point, the study was terminated since one of the arms showed a statistically higher 
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recurrence rate than one of the other arms over a period of 18 months and three separate 

interim analyses. On review, seven patients were declared ineligible and another 18 

patients were withdrawn from the study after randomization but before treatment, leaving 

202 patients available for analysis. Outcome variables studied were recurrences, disease-

free survival (alive without evidence of recurrence), and survival (alive with or without 

recurrence). Statistical analysis was performed using the Kaplan-Meier product limit 

method (Kaplan and Meier) and the log-rank test and the Cox proportional hazard 

method (Cox). 

     The analysis presented is from mid 1987, nearly 6.5 years after the last patient had 

been entered into the study. At that time, 96 patients had demonstrated a recurrence (46 

percent). The distribution of recurrences by type of recurrence is shown in Table 4.1: 

Table 4.1 
First Recurrence Among Treatment Arms

 
 Control Chemotherapy Radiotherapy Combined 

modality 
 

No. of patients 58 48 50      46 
No. of recurrences 32 (55%) 22 (46%) 24 (48%)       15 (33%) 
Locoregional only 12   9   9         3 
Locoregional and distant   2   4   1         2 
Distant only 18   9 14        10 

 
Source: P.R.M. Thomas and A.S. Lindblad. “Adjuvant Postoperative Radiotherapy and 
    Chemotherapy in Rectal Carcinoma: A Review of the Gastrointestinal Tumor Study Group 
    Experience.” Radiother Oncol 13 (1988). p. 249, table IV. 
 
     Locoregional recurrences are those located in the area of surgery and radiotherapy, 

and distant sites are more removed, e.g., lungs and liver. A proportional hazard analysis 

adjusted for stage and type of surgery showed differences among the four treatment arms 

to be significant (p = .04). An adjusted comparison of time to recurrence between the 

control group and the combined modality therapy group showed a significantly longer 
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disease-free interval for the combined modality group (p = .005). The difference in 

survival between the combined modality therapy group and the control group was 

significant (p = .01). Importantly, the authors stated, “In addition, the importance of a no 

adjuvant therapy control arm cannot be overemphasized. Our results for this cohort of 

patients are much better than would be suggested by historical controls” (250). 

     Although the number of patients was relatively small, the Gastrointestinal Tumor 

Study Group trial was one of the first RCTs that showed a significant difference in favor 

of combined modality adjuvant therapy in rectal cancer, and similar trials continue to be 

conducted with the aim of improving treatment outcomes with the use of newer cancer 

chemotherapy drugs and improved surgical and radiotherapy techniques.  

N of 1Trials 

     The routine treatment of a patient resembles in many respects an experiment, in the 

sense that a treatment is prescribed based on a diagnostic hypothesis, and if, as hoped and 

predicted, the patient improves, it is concluded that the treatment was efficacious. But 

this conclusion can be wrong for a number of reasons (Guyatt et al., Determining Optimal 

Therapy 889): 

1) The patient’s illness may simply have run its course, and recovery would have     

occurred with no treatment;     

2) The patient’s symptoms, signs, or laboratory values at presentation may represent 

temporary extreme levels that will “regress toward the mean” when they are next 

measured; thus any treatment begun between the two measurements will appear to 

be effective;   
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3) The “placebo effect,” which has been said to be responsible for as much as 30 

percent of many treatment effects, may underlie the improvement;  

4) When both clinician and patient know what is expected from the treatment, their 

lack of “blindness” may influence their interpretations of whether the symptoms 

and signs of illness have been relieved, and 

5) When the patient appreciates the efforts of the clinician, a willingness to please (or 

at least not to disappoint) the clinician may cause the patient to minimize 

symptoms or overestimate recovery (the “obsequiousness bias”).     Although 

treatments are often based on sound scientific studies like clinical trials, many 

times, arguably the majority, treatment decisions cannot be made on their basis. 

First, no controlled trial may be available; or if studies are available, their results 

or the interpretation of their results may be conflicting. Even when a randomized 

trial has generated a positive result, it may not apply to an individual patient. For 

example, the patient may not meet the eligibility criteria and thus generalization of 

findings may not be appropriate. 

     The N of 1 study (“N” being a standard abbreviation for sample size) has been 

suggested as a possible method for testing the hypothesis of drug efficacy in an individual 

patient. The method has a history of several decades of use in experimental psychology to 

investigate behavioral and pharmacologic interventions. Ideally, an easily determined and 

reliable measure of treatment efficacy (a “target”) should be available, and should be a 

symptom or sign that is troubling to the patient. Rapid improvement must occur when 

effective treatment is begun, and the improvement must regress quickly (but not 

permanently) when effective treatment is stopped. Selecting signs or symptoms that are 
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particularly troubling or relevant to the individual patient is one of the major advantages 

of the N of 1 randomized controlled trial over conventional controlled trials, in which 

tailoring of outcomes is generally sacrificed in favor of uniform endpoints that are 

applied to all study subjects (Guyatt et al., Determining Optimal Therapy 890). 

     Although several study designs have been found useful, Guyatt et al. employed a pair 

design in which an active drug was compared with a placebo. Each pair consisted of two 

treatment periods, one period in which active drug was used, and the other in which 

placebo was used. For each pair, whether active drug or placebo came first was decided 

randomly, and both patient and clinician were blinded. Identical appearing active drug 

and placebo were prepared by the pharmacy, which also was responsible for the random 

allocation. The patient reported relevant symptoms or signs according to a standard form 

for each treatment period.  

     The results of a double-blind N of 1 randomized trial of theophylline use as part of a 

multidrug regimen in a 65-year-old man with severe asthma are shown in Table 4.2: 

Table 4.2 
An N of 1 Randomized Controlled Trial of Theophylline 

 
Symptom Pair 1 Pair 2 

 
 Period 1 

(Drug) 
Period 2 
(Placebo) 

Period 1 
(Drug) 

Period 2 
(Placebo) 

score* 
Shortness of breath 3 6 3 6 
 3 5 3 5 
 4 7 4 5 
Need for inhaler 3 5.5 3 5 
Sleep disturbance 5 5.5 3 5 

*The patient rated his symptoms on a 7-point scale in which 7 represented optimal 
function and 1 represented severe symptoms 

 
 

Source: G. Guyatt et al. “Determining Optimal Therapy – Randomized Trials in Individual  
 Patients.” N Engl J Med 314 (1986). p. 890; table 1.  
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   Each treatment period lasted ten days, and at the end of each period the patient rated his 

symptoms on the 7-point scale described above. The patient reported that 

he was feeling much worse during the first period of the two pairs completed, and both he 

and his physician felt confident that the Period 2 treatments were superior. At this point, 

it was decided that it would be unfair to ask the patient to undergo additional pairs. When 

the code was broken, it was revealed that active drug was administered during the first 

period of each pair. Theophylline was discontinued and the patient reported that he felt 

much better. In retrospect, it was thought that the theophylline was probably contributing 

to nocturnal gastroesophageal reflux and pulmonary aspiration (Guyatt et al., 

Determining Optimal Therapy 890). 

     The authors note that often results may be evident in the absence of statistical analysis. 

If, however, analysis is performed, in the simple case where each period results in a 

yes/no preference for one treatment (e.g., active therapy) over the alternative (e.g., 

placebo), one can use the binomial distribution to estimate the probability of an outcome 

as favorable or more favorable than the one observed with active treatment. In most such 

experiments, however, a quantitative result will be obtained, allowing a more powerful 

analysis such as a paired t-test or the Wilcoxon test. 

     In deciding whether to execute a N of 1 trial, Straus et al. advise that a crucial first 

step is having a discussion with the patient to determine his or her interest, willingness to 

participate, expectations of the treatment, and desired outcomes. They have advanced 

guidelines for these and other considerations (132).  
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II. Etiologic Hypotheses 

     Another type of hypothesis in clinical medical science is that involving disease 

causation. For example, 

     H3 :   Exposure to x causes outcome y 

Here, persons exposed to some x, say tobacco smoke in cigarette smokers, are 

hypothesized to be more likely to get outcome y, say lung cancer, than persons not 

exposed (e.g., nonsmokers or ex-smokers). Most such studies are observational, since 

they involve exposure to some noxious agent that is thought to cause disease. To confirm 

such hypotheses, persons both exposed and non-exposed are compared with regard to the 

frequency of outcome y. Cohort studies, case-control studies, and cross-sectional studies 

are examples of types of observational studies that address disease causation.                 

Cohort Studies 

     Cohort studies are observational studies of two or more groups of (usually) non-

diseased persons exposed to some agent believed to cause disease or some other outcome. 

Persons that have been exposed to the agent, often at more than one level or intensity of 

exposure, are assembled and followed over some time period, often years or even 

decades, and the frequency of disease or other outcome is recorded. Often one large 

group comprises the cohort, which includes individuals unexposed as well as others 

exposed at various levels of exposure. If the exposure is unrelated to the subsequent 

development of disease, then the frequency of disease in persons at each exposure level, 

including the unexposed, would be expected to be similar. 

     For example, one well-known large cohort study was conducted in the United 

Kingdom in which mortality (the outcome measure) was assessed in relation to cigarette 



65 
 

 

smoking. In 1951, smoking information was obtained from about two-thirds (34,439) of 

all male British doctors, and updated over five decades through 2001 (Doll et al.). Interim 

analyses were reported at 4, 10, 20, and 40 years of follow-up. Overall mortality (death 

from any cause) and cause-specific mortality (death from a particular cause) were 

assessed in different cohorts that were assembled according to smoking status. The 

statistical hypotheses utilized ratios of the mortality experience of smokers with non-

smokers overall, and the various levels of smoking (heavy, moderate, and light), were 

also compared with non-smokers. Standardized survival curves were constructed and 

mortality ratios were standardized to age and other factors (known as standardized 

mortality ratios) and assessed using chi-square tests and tests for trend. Overall mortality, 

as well as cause-specific mortality, was strongly related to cigarette smoking (p < .0001).  

     Among the specific causes of death that were analyzed, lung cancer, chronic 

obstructive lung disease, and ischemic heart disease were the most strongly associated 

with smoking, but all of the other conditions analyzed were also strongly associated, 

including cancers of the mouth, pharynx, larynx, esophagus, all other neoplasms as a 

group, and vascular disease. Overall mortality, as well as cause-specific mortality, 

showed a dose-response relationship: among smokers, heavy smokers had the highest 

risk, whereas light smokers had the lowest risk. Interim reports also showed the 

significant risk and were instrumental in demonstrating that the relationship between 

smoking and deleterious health effects was not mere coincidence, but causal (Greenhalgh 

41). 

     Although it is a cohort study, several considerations lead to the conclusion that 

possible sources of bias or imprecision have been minimized and that the evidence 
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favoring the hypothesis that cigarette smoking causes a number of adverse health 

conditions is convincing. The subjects in the study, male British doctors, are easily 

traceable because their addresses were known by the British Medical Association. Their 

responses to questionnaires are thought to be generally accurate because of their 

educational level and because health information was sought in addition to smoking 

habits. The 1978 questionnaire, for example, also requested information on a wide range 

of characteristics including alcohol use, height, weight, blood pressure, and medical 

history. Recorded causes of death are believed to be relatively accurate since the doctors’ 

medical conditions were probably well known to their treating physicians. 

     The authors concede that the study has some degree of bias and confounding, 

however. For example, confounding by alcohol consumption can elevate risks associated 

with cigarettes, including various cancers and cirrhosis of the liver, but alcohol 

consumption also may act in the opposite direction to decrease risk of ischemic heart 

disease and perhaps of some other conditions. Because of the large number of subjects 

under study (over 34,000 initially) and the strengths of the associations, however, the 

authors concluded that the study has provided strong evidence of a causative role by 

cigarette smoking on overall mortality as well as the specific causes of death under study 

amongst the cohort. 

Case-Control Studies 

     In a case-control study, cases of a disease or other health outcome are assembled and 

various exposures or other possible risk factors are recorded. One or more control groups 

that consist of persons without the disease or other health outcome are selected, and 

similar information concerning exposures or the presence of other risk factors is likewise 
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obtained. By comparing the exposure and risk factor histories of cases and controls, 

differences of possible etiologic interest are sought (Rothman, Greenland, and Lash, 

Case-Control). 

     Case-control studies commonly use the exposure odds ratio as an estimate of the 

relative risk of disease among the exposed compared with the non-exposed. It is the ratio 

of the odds of exposure among cases to the odds of exposure among controls for some 

exposure or other factor. A high odds ratio means that exposure occurs more frequently 

among cases than among controls. The odds ratio in a case-control study is an estimate of 

the incidence rate ratio or risk ratio obtained in a cohort study. Statistical analyses are 

conducted most often using chi-squared tests such as the Mantel-Haenszel technique 

(Mantel and Haenszel) or logistic regression (Hosmer and Lemeshow).  

     Under ideal circumstances, a case-control study may be thought of as yielding the 

same information that would be obtained in a cohort study. However, in general, case-

control studies are known to be more subject to biases than are cohort studies. One 

problem is the selection of controls. Cases may be selected in a variety of ways, but study 

validity is threatened if the control group is not drawn from the same population that gave 

rise to the cases. Imagine, for example, a case-control study of Hodgkin’s disease (also 

called Hodgkin lymphoma) carried out at Stanford University. Patients with Hodgkin’s 

disease come to Stanford from all over the world. Although numerous cases would be 

available for inclusion in the study, in order to obtain controls, how would one determine 

the specific source population that gave rise to the cases?  

     Case selection may also be problematic, in that ideally cases would consist of a direct 

sampling of cases within a source population. Not all cases need to be included, however. 
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Cases, like controls, can be randomly selected from the source population, as long as the 

sampling is independent of any exposure under study. Thus, cases that are identified in a 

single institution or practitioner’s office are candidates for possible inclusion in a case-

control study. For any particular disease, the source population for the cases treated in the 

clinic is all the people that would attend that clinic or office and would be diagnosed with 

the disease if they had the disease in question. 

          In a case-control study, as noted, a source population is defined and ideally the 

selection of controls will involve direct sampling from that population. Two basic rules 

that have been advanced are (Rothman, Greenland, and Lash, Case-Control 116): 

1. Controls should be selected from the same population – the source population – 

that gives rise to the study cases. If this rule cannot be followed, there needs to be 

solid evidence that the population supplying controls has an exposure distribution 

identical to that of the population that is the source of cases, which is a very 

stringent demand that is rarely demonstrable. 

2. Within strata of factors that will be used for stratification in the analysis, controls 

should be selected independently of their exposure status, in that the sampling rate 

for controls . . . should not vary with exposure. 

 The stratification referred to above is a common method for attempting to control 

bias such as confounding. For example, by choosing controls with the same age 

structure (strata) as cases, any influence due to age imbalance would be eliminated.  

As indicated, these ideal circumstances are rarely met and in practice it is most often 

necessary to select controls in some other way. One method is to use neighborhood 

controls. So, for example, a control may be selected who resides in the same residential 
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neighborhood as the case for which the control was selected. This may easily introduce 

bias, however, in that neighbors of cases may not be representative of the opportunity for 

exposures characteristic of cases. To illustrate, suppose cases were obtained from a single 

U.S. Veterans Administration hospital. Controls selected from neighbors may differ 

considerably in their exposure histories. For example, only a minority may have served in 

the military with their attendant exposures secondary to combat or weapons handling, as 

would be the case with, say, veterans of the Vietnam conflict that had been exposed to 

Agent Orange. Several other methods of control selection have also been proposed, 

including random-digit dialing, friend controls, or general population controls. All of 

these methods have potential biases that pose a threat to study validity. 

     When there is a strong association between an exposure and a particular disease, 

however, the aforementioned limitations of the case-control study design may sometimes 

be easily overcome. This was apparently true of the case-control studies of the relation 

between cigarette smoking and lung cancer that preceded the cohort study by Doll et al. 

of male British doctors described above. Several case-control studies from Western 

Europe (e.g., Doll and Hill) and North America (e.g., Wynder and Graham) led in 1950 

to the conclusion that smoking was a cause of lung cancer (Doll et al. 1), which in turn 

led to the decision to launch the British doctor study.  

     In the case-control study by Doll and Hill, for example, lung cancer cases were drawn 

prospectively from several London hospitals between April, 1948 and October, 1949. For 

each case, a control patient of the same sex and same five-year age group was selected 

concurrently, and for the most part was selected from the same hospital. All patients were 

personally interviewed. Cases of lung cancer totaled 709, of which 649 were men and 60 
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were women. Among men, 0.3 percent of cases and 4.2 percent of controls were non-

smokers. For women, the corresponding figures were 31.7 percent and 53.3 percent. 

Statistical tests of significance on these differences were p < .0001 for men and .01 < p < 

.02 for women.  

     Among smokers, a relatively high proportion of lung cancer cases tended to be heavier 

smokers. Lung cancer patients were observed, on the whole, to have begun smoking 

earlier and continued for longer than controls, but these differences were not statistically 

significant. It will be noted that the percentages of smokers among male and female 

controls were 95.8 and 46.7, respectively. These high percentages no doubt reflect, at 

least partially, the over-representation of smoking related ailments associated with 

hospitalized patients, since today we know that cigarette smoking is associated with 

many diseases including various lung ailments and heart disease. Thus, even with the 

heavily biased control group, a relationship between cigarette smoking and lung cancer 

was nevertheless found.  

     In the case-control study reported by Wynder and Graham, 605 male cases of 

histologically verified epidermoid, undifferentiated, or unclassified carcinomas of the 

lung were identified from a geographically diverse group of hospitals and medical 

practices in the U.S. Control subjects numbered 780 males that were drawn from 

hospitalized patients on the general medical and surgical services of three of the hospitals 

from which cases were drawn. All subjects completed the same questionnaire and over 90 

percent were personally interviewed. Data sought included lung disease in general, 

histories of tobacco and alcohol use, and occupational history. The amount of cigarette 

use was divided into six categories, including one for non-smokers. The five categories of 
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cigarette use ranged from minimal smoking (1-9 cigarettes per day for at least 20 years) 

to chain smokers  (≥ 35 cigarettes per day for at least 20 years). Adjustments were made 

for persons that had smoked for less than 20 years, although the great majority had 

smoked for 20 years or longer (e.g., a person who had smoked 20 cigarettes daily for ten 

years was classed as having smoked 10 cigarettes daily for 20 years). The age distribution 

of the controls was adjusted to that of the cases.  

     Statistical analysis of the data revealed a strong association between cigarette smoking 

and lung cancer (p < .0001). Among their observations was that the occurrence of 

carcinoma of the lung in a male nonsmoker or minimal smoker is a rare phenomenon (2 

percent).  

     A case-control study that investigated a possible relationship between cigarette 

smoking and myocardial infarction in healthy young women was conducted in the 

northeastern United States during the mid 1970s (Slone et al.). Trained nurse interviewers 

conducted interviews with all cases and controls, which were drawn from 152 

participating hospitals that had coronary care units. All cases met World Health 

Organization criteria for “definite myocardial infarction.” Potential controls as close in 

age as possible to cases were selected from the surgical, orthopedic, and medical services 

of the same hospital. 

     Since the object of the study was to examine factors related to myocardial infarction in 

otherwise healthy young women, known risk factors for myocardial infarction and 

ischemic heart disease were excluded. Disqualifying factors included drug-treated 

hypertension, drug-treated diabetes mellitus, previous myocardial infarction, drug-treated 
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obesity, drug-treated angina pectoris, abnormal blood lipids, and use of oral 

contraceptives within the month prior to admission.  

     To ensure that the comparisons would not be confounded, each case of myocardial 

infarction was matched to four controls that were for the most part from the same five-

year age group, and from the same hospital (41 percent), or, failing that, from the same 

area of residence (59 percent). Results from an analysis of 55 cases and 220 controls are 

shown in Table 4.3. Of the cases, 89 percent were smokers compared with 55 percent of 

the controls.  

Table 4.3 
Relation of Myocardial Infarction to Smoking Habits in 55 Cases and 220 Controls

 
 Cases Controls  

 
Current Smokers 49 120 169 
Not Current Smokers   6 100 106 
 55 220 275 

 
Source: Adapted from D. Slone et al. “Relation of Cigarette Smoking to Myocardial Infarction in 
    Young Women. “ N Engl J Med 298 (1978). p. 1275, table 3. 
 
     In this analysis, the relative risk of myocardial infarction among current smokers 

compared to those who are not current smokers is estimated by the exposure odds ratio, 

which is the ratio of the odds of exposure (current smoking) among cases to the odds of 

exposure among controls: 

Exposure odds for cases: 49/6              Exposure odds for controls: 120/100 

Odds Ratio = (49/6) / (120/100)  =  6.8 (chi square 22.2; p < .001) 

     With women who have never smoked as the reference category (relative risk set at 

1.0), the estimate of the relative risk for ex-smokers (women that had not smoked for at 

least one year) is 1.4, as seen in Table 4.4: 

 



73 
 

 

Table 4.4 
Relation of Myocardial Infarction to Smoking Habits in 55 Cases and 220 Controls 

 
Cigarettes/Day          Cases          Controls  Estimated Relative 

Risk 
 no. % no. %  

 
Never smoked   4   7 73 33 1.0* 
Ex-smoker   2   4 27 12 1.4 
1-14   8 15 33 15 4.4 
15-24 15 27 59 27 4.6 
25-34 12 22 16   7 14 
> 35 14 25 12   5 21 

 
* Reference category 
Source: D. Slone et al. “Relation of Cigarette Smoking to Myocardial Infarction in Young       
     Women. “ N Engl J Med 298 (1978). p. 1275, table 3.  
 
     As can be seen, the relative risk for myocardial infarction increases with an increase in 

the number of cigarettes smoked per day. The relative risks associated with the categories 

of one to 14, 15 to 24, 25 to 34, and 35 or more cigarettes per day are 4.4, 4.6, 14, and 21, 

respectively. A statistical test for trend showed that the trend of increasing relative risk 

with increasing cigarette consumption is statistically significant (p < .001). 

     Although the authors could not evaluate duration of cigarette smoking in their study, 

they observed that cigarette smokers who died of conditions other than coronary heart 

disease have been found at autopsy to have thickening of the inside lining of the coronary 

arteries as well as an excess of atheromatous plaques, suggesting that duration of 

smoking may have a cumulative deleterious effect. They also noted that cigarette 

smoking might exert a precipitating effect, since the relative risk in ex-smokers (1.4) 

represented only a small increase over non-smokers.         

     In perhaps most case-control studies, however, an exposure-disease relationship is 

weaker or non-existent and the potential for biases to exert themselves may pose a 

significant difficulty in interpretation of results. An example is provided by the case-
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control studies that investigated a possible increase in risk of Hodgkin’s disease among 

persons that had undergone tonsillectomy in childhood (Mueller). Tonsillectomy is a risk 

factor for multiple sclerosis and poliomyelitis, both of which share epidemiological 

characteristics with Hodgkin’s disease. It was postulated that Hodgkin’s disease might 

have an infectious origin, in view of its association with fever, night sweats, and cervical 

adenopathy. Since the disease usually starts in the neck with enlarged lymph nodes, the 

removal of lymphoid tissue in the tonsillar and adenoid areas such as occurs with 

tonsillectomy might remove a lymphoid barrier to an as yet unidentified infectious agent, 

perhaps a virus, allowing access to cervical lymph nodes and subsequent spread. In 14 

published studies, however, the relative risk of persons with prior tonsillectomy relative 

to those without has ranged from 0.7 to 3.6. 

     The reasons for this degree of variability are unclear. Hodgkin’s disease has 

previously been shown to be related to socioeconomic status, with children in relatively 

poor living conditions more susceptible to the disease, while among young adults and 

middle aged persons evidence exists that Hodgkin’s disease may be a host sequela to a 

common infection. Tonsillectomy rates in the populations studied varied widely, from 9 

percent in Denmark to 74 percent among Boston area cases (Mueller 900). Tonsillectomy 

rates are also directly related to socioeconomic status as well as local medical practice 

(Gutensohn et al. 22).  

     In their study of tonsillectomy and Hodgkin’s disease, Gutensohn et al. used two 

comparison groups, siblings and spouses, to control for socioeconomic status in 

childhood and adulthood, respectively. The study compared 136 young adult patients 

with Hodgkin’s disease being followed at the Joint Center for Radiation Therapy, 
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Harvard Medical School, in 1972 with their 315 siblings and 78 spouses. All subjects 

completed a questionnaire. Matched analyses were used in all comparisons since controls 

were matched to cases for factors that might correlate with tonsillectomy. Risk ratios 

expressing the risk of Hodgkin’s disease were estimated for persons who have had a 

tonsillectomy in relation to a risk of unity for those who have not. On the basis of the 

case-spouse comparison, the risk ratio of Hodgkin’s disease among persons with previous 

tonsillectomy was 3.1 (p < .05) and on the basis of the case-sibling comparison it was 1.4, 

which was statistically non-significant. The investigators concluded that any relation 

between Hodgkin’s disease and tonsillectomy is either non-causal or is complex and 

modified by family size. 

     A later, larger population-based case-control study of tonsillectomy and Hodgkin’s 

disease from the Detroit and eastern Massachusetts area that studied 556 cases and 1499 

siblings found no significant elevated risk of Hodgkin’s disease among young adults (age 

15-39 years) or middle aged adults (age 40-54 years), with risk ratios of 1.0 and 1.5, 

respectively. Among older persons, the risk ratio was significantly elevated, 3.0 (95 

percent confidence interval 1.3-6.9), but the data were sparse. The authors concluded that 

it was unlikely that prior tonsillectomy is a risk factor for the development of Hodgkin’s 

disease in young or middle aged adults, but whether it is a risk factor for the malignancy 

occurring late in life is unclear (Mueller et al.).  

     For rare diseases, however, the case-control study design may be the only feasible 

method for exploring exposure-disease relationships. Although sporadic case reports of 

rare conditions often provoke curiosity, an unusual clustering of cases of some rare 

condition in a relatively small geographic area may cause concern and provide an 
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opportunity for a meaningful investigation. This occurred, for example, in the Boston 

area with the observation of several cases of a rare vaginal cancer in young women 

(Herbst, Ulfelder, and Poskanzer).  

     Cancer of the vagina is rare. Most cases are of squamous cell histology, and occur in 

women over 45 years of age, with a median age at diagnosis of 69 years (Daling and 

Sherman 1117-18). Between 1966 and 1969, however, seven young females 15 to 22 

years of age with clear cell or endometrial type adenocarcinoma of the vagina were seen 

at Vincent Memorial Hospital in Boston. These seven cases, plus another case of clear 

cell adenocarcinoma in a 20-year-old female patient treated in 1969 at another Boston 

area hospital, formed the case series for a case-control study to identify possible risk 

factors. 

     Four matched controls were selected for each case, based on the birth records of the 

hospital in which each case was born. Controls were born within five days from when the 

case was born, and on the same type of service (ward or private). All mothers and 

daughters were personally interviewed using a standard questionnaire by trained 

interviewers. Statistical tests included chi-square tests, paired and unpaired t-tests, and a 

matched control method for nonparametric data.  

Information on numerous factors was analyzed, but only three were statistically 

significant, as shown in Table 4.5: 
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Table 4.5 
Summary of Data Comparing Patients with Matched Controls 

 
 Cases Controls Chi-square P value 

 
Bleeding in This Pregnancy 3/8 1/32   4.52 <.05 
Any Prior Pregnancy Loss 6/8 5/32   7.16 <.01 
Estrogen Given in This Pregnancy 7/8 0/32 23.22 <.00001 

 
Source: Adapted from A.L. Herbst, H. Ulfelder, and D.Poskanzer. “Adenocarcinoma of the    
    Vagina. Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young 
    Women.” N Engl J Med 284 (1971). p. 879, table 2 
 

     Bleeding during pregnancy and a history of prior pregnancy loss are associated with 

high-risk pregnancies, which provided the indication for stilbestrol (a type of estrogen) 

administration. All of the mothers using stilbestrol began using it during the first 

trimester of pregnancy.  

     To estimate the frequency of stilbestrol administration and the risk of development of 

these tumors in female offspring whose mothers took stilbestrol during pregnancy, the 

authors studied deliveries from a special high-risk pregnancy clinic at Boston Lying-In 

Hospital that occurred from 1946 to 1951, the period during which the eight cases were 

delivered. Of approximately 14,500 ward deliveries, stilbestrol was administered to 675, 

about one in 21. Only one case of vaginal adenocarcinoma in a young female is known to 

the authors to have occurred from deliveries at that hospital, so the risk to exposed 

offspring is thought to be low. The authors also note that sporadic cases of 

adenocarcinoma of the vagina occur in young females whose mothers were not exposed 

to stilbestrol during pregnancy, which was also observed in one of the eight cases in the 

present study. Thus factors other than exogenous maternal estrogen use during pregnancy 

appear to be involved. 
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Cross-Sectional Studies 

     Studies that include all persons in a population, or some representative sample of all 

such persons, at a point in time or over some relatively short time interval are usually 

referred to as cross-sectional studies. In general, subjects are not selected based on 

exposure or disease status, but information on these factors, in addition to other factors 

deemed of importance to the investigators, are gathered.  

     Cross-sectional studies may be employed for a variety of purposes, including 

estimating the prevalence of disease in a population or gathering other information for 

use by health planning agencies. However, they are also frequently performed to assess 

exposure – disease relationships with aims similar to cohort and case-control studies. The 

cross-sectional study design is most often used to study risk factors for diseases of slow 

onset and long duration, and for which medical care is usually not sought until late in the 

course of the disease (Kelsey, Thompson, and Evans 187). Hypertension, various mental 

disorders, osteoarthritis, and chronic bronchitis are examples of such conditions. Case-

control studies of these diseases are often less practical and more difficult to interpret, 

since it is usually difficult to establish when someone becomes a “case.” Most often, 

incident cases in case-control studies are identified when they seek medical care. Cohort 

studies suffer the same problem, in that it is difficult to say at what point in time people 

have these diseases and when they do not. Cross-sectional studies have one major 

advantage over many case-control studies since they are often based on a sample of the 

general population, and not just on individuals seeking medical care, and therefore their 

results may be more easily generalized. They also share the advantage over cohort studies 
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possessed by case-control studies in that they are usually performed more quickly and at 

less cost. 

     Since information on exposure and disease status, as well as other factors, is usually 

not available prior to conduct of the study, techniques for control of confounding 

variables prior to analysis such as matching or stratification are likewise not available, 

and multivariable statistical techniques are often used for hypothesis testing. These 

methods are applicable to studies where the outcome is either the presence or absence of 

disease, or for continuously distributed variables such as blood pressure. For example, for 

a continuously distributed outcome variable, the multivariable model is an extension of 

simple linear regression, represented by the equation 

                                                         y = a + bx  

Here, “y” is the dependent, or outcome variable; “x” is an independent or predictor 

variable; and, “a” and “b” are constants estimated from the data. 

The multivariable model is 

                                        y = a + b1x1 + . . . + brxr 

 Here, “r” denotes the number of predictor variables included in the model, and where x1, 

. . . , xr are a particular person’s set of values for the regressor variables, which can be 

binary or continuous. (Both equations contain a random error term that has been omitted). 

     An example of a cross-sectional study where the outcome of interest was blood 

pressure is the study of Japanese men by Ueshima et al., and discussed by Kelsey, 

Thompson, and Evans (194-98). Between 1975 and 1977, these investigators surveyed 

487 men aged 40 – 69 years from Osaka, an urban area, and 365 men of the same age 

from Akita, a rural area. Information on several variables thought to be related to blood 
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pressure was obtained, including age, smoking history, alcohol intake, weight, height, 

hemoglobin, uric acid, cholesterol, and triglycerides. All of the factors were considered 

continuous variables. Alcohol consumption was the primary variable of interest and was 

categorized on a six-point scale ranging from total abstention to consumption greater than 

83 grams per day. Smoking was measured on a five-point scale ranging from non-

smokers to greater than 19 cigarettes per day.  

     Selected results of a stepwise multiple regression of systolic blood pressure on 

selected variables are shown Table 4.6: 

Table 4.6 
Stepwise Multiple Regression* of Systolic Blood Pressure on Daily Alcohol Intake, Ponderosity 
Index, Cholesterol, Triglycerides, Hemoglobin, Uric Acid, Smoking and Age, Men Aged 40-69 
years, Osaka and Akita, 1975-1977 

 
Variable Coefficient ∆R2 Standard error p value 

 
Osaka (487 men) 

Age (yr) 0.7187 0.0918 0.09608 <0.001 
Daily alcohol intake 2.4704 0.0465 0.54582 <0.001 
Ponderosity index† 1.8275 0.0328 0.47979 <0.001 
Uric acid (mg/dl) 1.4627 0.0059 0.78953 NS 

Akita (365men) 
Age 0.8208 0.0596 0.14395 <0.001 
Daily alcohol intake 3.1268 0.0528 0.67293 <0.001 
Ponderosity index† 1.2090 0.0135 0.75454 NS 
Triglycerides 
(mg/dl) 

0.0327 0.0080 0.01842 NS 

Hemoglobin (g/dl) 1.5488 0.0053 0.92881 NS 
 

* The selection criterion is F=2. 
† Ponderosity index = weight/height3 x 106 

NS = nonsignificant 
R2 for Osaka and Akita are 0.1771 and 0.1458, respectively. 
Sources: Adapted from H. Ueshima et al. “Alcohol Intake and Hypertension Among Urban and 
    Rural Japanese Populations.” J Chronic Dis 37 (1984). p.589, table 5. Also adapted from J. 
    Kelsey, W. Thompson, and A. Evans. Methods in Observational Epidemiology. Oxford:   
    Oxford UP, 1986. p. 196, table 8-2. 
 

     The dependent variable for the above analyses is systolic blood pressure. The 

strongest predictor for systolic blood pressure for both areas was age. The coefficient for 
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age in Osaka was 0.7187. The interpretation of this result is that, on average, in this 

population a one-year increase in age for one man is associated with a blood pressure that 

is 0.7187 mmHg higher than in another man, contingent on the remaining variables in the 

model being equal for the two men. Thus the estimate of a 20-year difference in age is 

associated with a difference in systolic blood pressure of 20 × 0.7187 = 14.374 mmHg. A 

95 percent confidence interval around this estimate is calculated as follows:          

           (20 × 0.7187) ± (1.96 × 20 × .09608) = 10.608 mmHg, 18.140 mmHg                         

That is, we can be 95 percent confident that the true value for the estimated parameter 

falls between 10.608 and 18.140 mmHg, which are the lower and upper limits of the 

confidence interval, respectively.  

     The quantity denoted by ∆R2 is the proportion of the total variation in systolic blood 

pressure that is accounted for by each of the variables in the regression equation. For 

example, a value close to unity means that most of the variability is accounted for by that 

variable. For Osaka men, for example, age alone accounts for 9.18 percent (100 × .0918) 

of the variation in systolic blood pressure, and alcohol intake accounts for an additional 

4.65 percent. Adding in the other two variables (uric acid and ponderosity index) gives a 

total of 17.71 percent of the variation in systolic blood pressure accounted for by the four 

variables. This low percentage indicates that most of the variability in systolic blood 

pressure is not accounted for by the variables selected for inclusion in the statistical 

model, and that most probably important determinants of systolic blood pressure were not 

measured.   

     Two major limitations of the cross-sectional study design have been advanced, 

namely, problems associated with the temporal relation of exposure to disease, and 
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problems associated with measuring prevalence rather than incidence (Checkoway, 

Pearce, and Crawford-Brown 223-24). The temporal problem is that it is often not 

possible to be confident that exposure preceded disease, thus hindering causal inference. 

Consider the example of a study of the prevalence of cardiovascular disease among 

London bus drivers and conductors. Bus drivers, whose job is mostly sedentary, were 

found to have a higher prevalence of cardiovascular disease than conductors, whose job 

requires more physical activity. However, the drivers’ cardiovascular risk factors, such as 

obesity, and perhaps symptom manifestations like shortness of breath on exertion, were 

probably factors that motivated them seeking jobs as drivers, rather than conductors, who 

have to physically exert themselves to a greater extent. This type of bias is always of 

concern in studies that elicit information on exposures or other risk factors 

simultaneously with disease. 

     A problem that arises when prevalence rather than incidence is measured is that 

prevalence is a function of incidence and duration of disease. Diseases that have a longer 

duration will tend to be over-represented in these studies, and often it is not possible to 

determine whether observed effects on disease prevalence are due to effects on incidence, 

duration, or both. Checkoway, Pearce, and Crawford-Brown provide an example: 

Suppose that exposures in section A of an industrial plant cause fatal coronary heart 

disease, and exposures in section B cause non-fatal coronary disease. A cross-sectional 

study might reveal a higher prevalence of coronary heart disease in section B workers, 

even if the combined incidence of both fatal and non-fatal coronary heart disease were 

the same in both sections of the plant. This type of bias could be avoided in a full cohort 

study (224).  
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     Etiologic research, as we have seen, is concerned with identifying factors that are 

associated with disease occurrence, with the aim of identifying those factors that are 

causative. This is, more often than not, a complex process. Consider etiologic research on 

cancer as an example: the list of subjects for study is quite long, and includes tobacco, 

alcohol, ionizing radiation, solar radiation, electromagnetic fields and radiofrequency 

radiation, occupation, air pollution, diet and nutrition, infectious agents, and chemicals, to 

name a few. Thousands upon thousands of studies have been done, and many, if not 

most, putative causal inferences continue to generate controversy. We discussed earlier a 

possible association between tonsillectomy and Hodgkin’s disease. As another example, 

consider studies on the etiology of pancreatic cancer. Anderson, Mack, and Silverman  

listed over 50 possible risk factors that have been studied in relation to the etiology of 

pancreatic cancer (721-62). Here I will consider just two: tobacco use and coffee 

drinking. 

     The authors note that the most consistent risk factor for pancreatic cancer is cigarette 

smoking (725). In 2004, the International Agency for Research on Cancer (IARC) 

concluded: “Cancer of the pancreas is causally associated with cigarette smoking. The 

risk increases with duration of smoking and number of cigarettes smoked daily. The risk 

remains elevated after allowing for potentially confounding factors such as alcohol 

consumption. The relative risk decreased with increasing time since quitting smoking” 

(IARC). What evidence is this conclusion based on? Anderson, Mack, and Silverman 

note that an IARC working group had concluded in 1986 that smoking was a cause of 

pancreatic cancer, and that conclusion was based on the evaluation of nine cohort studies 

and eight case-control studies, and that all of the cohort studies and all but one of the 
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case-control studies showed increased risks for smokers and most had evidence of a 

positive dose response. The estimates of relative risk were about twofold, with some as 

high as sixfold in association with heavy cigarette use. They also noted that studies after 

the 1986 report supported the conclusion, including at least 10 cohort studies and 18 

case-control studies (725). One hospital-based case-control study found no association, 

but the reported odds-ratios (male OR 1.42, 95 percent C.I. 0.73-2.78; female OR 1.12, 

95 percent C.I. 0.51-2.45) were consistent with an increased risk from cigarette smoking 

(Clavel et al.).  

     Attention was drawn to the possibility that coffee drinking was associated with an 

increased risk of pancreatic cancer with the publication in 1981 by MacMahon et al. of a 

case-control study showing a twofold to threefold increase in risk among coffee drinkers 

consuming three cups a day. The effect became evident after control for smoking. The 

high correlation between coffee drinking and smoking in the U.S. at that time made it 

difficult to be confident that the effect was not due to some residual confounding by 

smoking, since smoking itself is considered to be associated with pancreatic cancer. 

     In 1991, the IARC published its evaluation of the risk of coffee drinking and 

pancreatic cancer. The report evaluated 21 case-control studies and six cohort studies. It 

was concluded that the data as a whole were suggestive of a weak association between 

high levels of coffee drinking and pancreatic cancer, but that bias or confounding could 

account for the association. In their review of studies published since the 1991 IARC 

report, Anderson, Mack, and Silverman note that 11 case-control studies found null or 

non-significant associations between coffee consumption and pancreatic cancer, and that 

five cohort studies also showed null associations. Nevertheless, they also noted that at 
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least five studies have shown statistically significant associations. They conclude: “The 

possibility that coffee is associated with an increased risk of pancreatic cancer seems 

unlikely. Reports of an increased risk associated with coffee drinking likely result from 

residual confounding from cigarette smoking, and possibly from other sources of 

confounding or bias” (741).            

III. Diagnostic Hypotheses 

     Diagnosis in clinical medical science has been said to mean “the identification of a 

disease by the investigation of its various manifestations” (Barondess, Carpenter, and 

Harvey v.). The term differential diagnosis refers to evaluating more than one diagnostic 

hypothesis that may be entertained in the process of making a diagnosis. This process 

may involve taking a medical history, performing a physical examination, collecting 

laboratory and imaging data, and performing other tests like electrocardiograms, among 

other things. At least some of this information may need to be obtained more than once 

during the diagnostic process, since a disease may be evolving in its manifestations. 

     From this body of information will come the evidence that will be used to confirm or 

disconfirm the various alternative diagnostic hypotheses. In the ideal case, what is sought 

is the correct diagnosis, or the true hypothesis, but due to the inherent uncertainty 

involved (e.g., laboratory tests may be in error, or signs or symptoms may be 

misinterpreted), what usually emerges is a “working diagnosis,” the hypothesis that is 

most confirmed. This working diagnosis will serve as the basis for further diagnostic 

testing or therapeutic intervention. A potentially complicating factor is that a patient may 

have more than one correct diagnosis, for example, a woman with diabetes, hypertension, 

and endometrial cancer existing contemporaneously. 



86 
 

 

     How is evidence used to confirm or disconfirm diagnostic hypotheses? Becoming 

familiar with the process of advancing and confirming diagnoses is an important part of a 

medical education and one popular method for teaching these skills involves case 

presentations that employ diagnostic reasoning, including those that are described in 

medical journals, such as clinicopathologic conferences. An illustrative case is that 

involving a patient with migrating polyarthralgias (migratory pains involving multiple 

joints) in a 28 year-old woman published in the New England Journal of Medicine (Casey 

et al.). 

     The case described is that of an actual patient who presented to the emergency 

department complaining of fatigue and joint pain. She gave no clinically significant 

medical history. She initially had pain in the right foot and ankle, which limited her 

ability to walk. These symptoms persisted for a few days, and then resolved, but then 

pain in her knees and hips developed, along with pain and swelling in her right elbow. 

She also reported intermittent low-grade fevers, and denied a recent cough or sore throat. 

     Although the range of possible causes of joint pain and fatigue is broad, the 

polyarticular, migratory nature of her joint pain helped narrow the possibilities. The 

differential diagnosis at this point included a viral syndrome, postinfectious or reactive 

arthritis, gonococcal infection with associated arthritis, and systemic rheumatic illnesses, 

including rheumatoid arthritis. Crystalline arthropathies like gout can be polyarticular, 

but this class was thought to be unlikely due to her young age and the presence of a 

systemic symptom (fatigue). 

     Pertinent findings on examination included a temperature of 38.3°C (101.0°F) and 

diffuse tenderness of the joints on palpation, but no swelling or limitation of motion was 
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present. Cardiac examination revealed a tachycardia (increased heart rate), but no 

murmurs were detected. A chest radiograph showed no evidence of infection, and the 

white blood cell count was elevated. The fever and elevated white-cell count did not help 

to distinguish infectious causes from inflammatory causes. She was given a diagnosis of 

viral infection and discharged with a course of non-steroidal anti-inflammatory drugs.  

     She returned to the emergency department five days later with progressive shortness 

of breath. Her joint pain had diminished, but she still had symptoms in her right knee. 

The left knee was warm, and painful when flexed, but without swelling. She had a slight 

tachycardia with a new heart murmur consistent with mitral valve regurgitation. Signs 

and symptoms were consistent with congestive heart failure. Her temperature was 37.5°C 

(99.5°F), with normal blood pressure and respirations. 

     The combination of an apparently new regurgitant murmur and recent fever is 

suggestive of infective endocarditis, with the former being a major Duke criterion and the 

latter a minor Duke criterion for the diagnosis. The diagnosis of infective endocarditis is 

established when two major, one major plus three minor, or five minor Duke criteria are 

met. Obtaining blood cultures is thus important, since bacteremia (bacteria in the blood) 

with a causative organism is a major Duke criterion and would establish the diagnosis. 

The reported findings on physical examination did not include any of the stigmata of 

infective endocarditis, such as petechiae (small hemorrhages under the skin) or 

conjunctival hemorrhages. 

     Other causes of mitral regurgitation with heart failure were considered, but were 

believed to be unlikely for various reasons. For example, the most common cause of 

mitral regurgitation, mitral-valve prolapse, can lead to heart failure, but would not be 
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expected to have such a fulminant course. Although rare in developed countries, it was 

suggested that acute rheumatic fever should also be considered. 

     She had never sought medical care before, and so, as noted previously, had no medical 

history. She was born in Brazil and moved to the northeastern United States 10 years 

before presentation. She was employed as a preschool teacher. She denied being sexually 

active, or using alcohol or intravenous drugs. She denied medication use or drug 

allergies. 

     The authors noted that the patient had no documented risk factors for infective 

endocarditis, such as human immunodeficiency virus (HIV) infection or end stage renal 

disease, but the fact that she was born in Brazil placed her at increased risk for rheumatic 

heart disease, which is a risk factor for both infective endocarditis and recurrent 

rheumatic fever. Rheumatic heart disease is a minor Duke criterion, and patients who 

have had acute rheumatic fever are at high risk for recurrent disease after subsequent 

group A streptococcal infections. 

     Acute rheumatic fever is a complication of pharyngeal infection with group A 

streptococcus, and symptoms usually develop two to three weeks after infection. 

However, subclinical episodes do occur. The absence of a history of sore throat in this 

patient does not reduce the likelihood of acute rheumatic fever, since most patients with 

the diagnosis of acute rheumatic fever do not recall a previous sore throat, even when 

there is serologic evidence of recent infection. A migratory arthritis can be one of the 

predominant symptoms of acute rheumatic fever.   

     Some patients with rheumatic heart disease recall having a low exercise tolerance in 

childhood. On further questioning, she recalled that when growing up in Brazil, she 
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became short of breath easily, and was unable to play with the other children. At this 

point, with this history of shortness of breath in childhood, along with the combination of 

fever, mitral regurgitation, and migratory arthritis, acute rheumatic fever became the most 

likely diagnosis.  

     Acute rheumatic fever is diagnosed by meeting the Jones criteria and by obtaining 

evidence of a recent group A streptococcal infection. The major Jones criteria are 

migratory arthritis, carditis, chorea (irregular, involuntary muscular movements), 

erythema marginatum (a type of acute skin eruption), and subcutaneous nodules. The 

minor criteria are arthralgia, fever, elevated blood levels of acute phase reactants 

(proteins associated with stressful or inflammatory states), and a prolonged PR interval 

(an electrocardiographic finding). To satisfy the diagnostic criteria, either two major 

criteria or one major and at least two minor criteria must be met. This case met two major 

criteria (migratory arthritis and carditis) and one minor criterion (fever on initial 

presentation to the emergency department). To confirm the diagnosis, evidence of recent 

infection with group A streptococcus is required. Throat culture has a low diagnostic 

sensitivity, since the symptoms of acute rheumatic fever appear two to three weeks after 

the antecedent streptococcal infection, by which time throat cultures are negative in many 

patients. Evidence for group A streptococcal infection in this patient was obtained by 

detecting elevated titers of antistreptolysin and anti-DNase B antibodies in the blood 

stream. Evidence against infective endocarditis came from negative blood cultures, 

indicating the absence of bacteremia. Transthoracic and transesophageal 

echocardiograms demonstrated structural heart disease, with a combination of severe 
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mitral regurgitation and stenosis (narrowing). In the vast majority of cases, mitral stenosis 

is caused by rheumatic disease. 

     The diagnosis of acute rheumatic fever in this patient was confirmed by meeting 

specified diagnostic criteria. However, it is conceded that there is still no single symptom, 

sign, or laboratory test that is pathognomonic or diagnostic of acute rheumatic fever 

(Dajani et al. 302). When Jones first advanced his criteria for the diagnosis in 1944, he 

did so with the intention to reduce variation in diagnostic criteria, which differed widely 

by observer, and he averred that “ . . . it would seem logical to make a positive diagnosis 

on rather strict criteria” (484). His original criteria were divided into “major 

manifestations” and “minor manifestations,” the former offering “ . . . the least likelihood 

of an improper diagnosis” (481). Carditis was included as a major manifestation because 

active carditis was found in all fatal cases of rheumatic fever, and arthralgia because 

migrating polyarthritis was generally considered the classic feature of rheumatic fever. 

He included chorea as a major manifestation because, based on his own reported data, 

about one half of all young rheumatic fever patients have chorea at some time, and about 

three-fourths of young patients with chorea in time develop other major manifestations of 

rheumatic fever.  He lists five major manifestations in all, and states that a combination 

of them makes a diagnosis of rheumatic fever reasonably certain.  

     He advanced seven minor manifestations, but stated that even a combination of them 

may not be sufficient to make a certain diagnosis, but might be suggestive. He did 

suggest, however, that any single major manifestation with at least two of the minor 

manifestations would seem to place the diagnosis on “reasonably safe grounds” (483).  



91 
 

 

     The Jones criteria have been periodically modified, revised, and updated by the 

American Heart Association, the most recent update being that presented by Dajani et al. 

Thus it appears that the criteria were originally based on a somewhat loose appreciation 

of the relative frequencies of the various manifestations of the condition as it evolves in 

patients. Exceptions to the Jones criteria have also been advanced (Dajani et al. 307).   

     It will be recalled that one of the initial diagnostic hypotheses considered in the case 

of rheumatic fever discussed above was infective endocarditis, but that diagnosis was 

essentially eliminated when the Duke criteria were not met. The Duke criteria have been 

relatively extensively evaluated in numerous studies in both Europe and the United 

States, and the sensitivity and specificity have been reported. Using the value of 80 

percent for the sensitivity (Li et al.) and 99 percent for the specificity (Hoen et al.), the 

positive predictive value is 99 percent, as illustrated in Table 4.7: 

Table 4.7 
Hypothetical Population with 80% Sensitivity and 99% Specificity 

 
 IE present IE Absent  

 
DC met   80     1   81 
DC not met   20   99 119 
 100 100 200 

 
DC = Duke Criteria 
IE = Infective Endocarditis 
 

Sensitivity = probability of meeting the DC when IE is present = .80 

Specificity = probability of not meeting the DC when IE is absent = .99 

Positive Predictive Value = probability of having IE when the DC are met        

                                         = 80/81 = .99 
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     It will be noted that the positive predictive value, the probability of disease (in this 

case infective endocarditis) given the evidence (in this case meeting the Duke criteria) is 

the left hand side of the familiar Bayes’ equation. 

     Thus objective probabilities are available in the case of Duke criteria for the diagnosis 

of infective endocarditis, but are not available for the Jones criteria for diagnosing 

rheumatic fever. This is so because a “gold standard,” pathological confirmation, was 

used to define cases of infective endocarditis, against which the probability that various 

criteria could successfully predict presence or absence of disease was assessed. No such 

gold standard for rheumatic fever is yet known to exist. 

      This application of Bayes’ theorem raises the possibility that Bayesian confirmation 

theory may at least partially underlie the process of reasoning in differential diagnosis, 

and indeed it has been postulated that there exists a close parallelism between the implicit 

reasoning processes that physicians use to revise and refine diagnostic hypotheses with 

new information and the formal prescriptive process that calculates these revisions 

(Elstein and Schwartz). Kassirer, Wong, and Kopelman have discussed Bayesian analysis 

in the context of differential diagnosis, illustrated by a case of a man with renal 

insufficiency (21-23). The man’s examination and a variety of laboratory studies had 

narrowed the diagnostic possibilities of the cause to five conditions: glomerulonephritis 

(GN), interstitial nephritis (IN), acute tubular necrosis (ATN), functional acute renal 

failure from dehydration (FARF), and atheromatous embolism (AE). The diagnostic 

importance of two physical findings, hypertension and livedo reticularis (a type of 

purplish skin discoloration), and two laboratory findings, sparse urine sediment and low 

complement (CH50), were assessed. Approximate conditional probabilities of the four 



93 
 

 

factors were obtained from a literature survey, and the results of a Bayesian analysis of 

the prior probabilities, conditional probabilities, and calculated posterior probabilities are 

shown in Table 4.8:  

Table 4.8 
Bayesian Analysis for Acute Renal Failure 

 
Disease Prior Pr  Htn   Lr sparse sed Low CH50 Posterior Pr 

 
       
GN .29 .60 .05 .01 .40 .019 
IN .10 .10 .05 .15 .01 <.01 
ATN .40 .05 .05 .15 .01 <.01 
FARF .25 .01 .20 .95 .01 <.01 
AE .01 .80 .60 .95 .40 .977 

 
Pr = probability; Htn = hypertension; Lr = livedo reticularis; sed = sediment; CH50 = 
complement; GN = glomerulonephritis; IN = interstitial nephritis; ATN = acute tubular necrosis; 
FARF = functional acute renal failure from dehydration; AE = atheromatous embolism  
Source: Adapted from J. Kassirer, J. Wong, and R. Kopelman. Learning Clinical Reasoning. 2nd 

ed. New York: Lippincott, 2010. p. 22, table 4.8 
 
 According to the authors, several observations can be made. A “diagnosis” is in truth 

a probability distribution for a set of diagnostic possibilities, which in this case are the 

various causes of acute renal failure. Also, the estimate of the prior probabilities of any 

given diagnosis and the relation between the conditional probabilities substantially affect 

the posterior probabilities. For example, the prior probability of .29 for 

glomerulonephritis made it a serious candidate initially, and this was supported by the 

findings of hypertension and low complement. However, the rarity of a sparse urine 

sediment and livedo reticularis in this disorder rendered the posterior probability of .019, 

which is quite low. Also, atheromatous embolism was quite unlikely initially, with a prior 

probability of .01, but because the conditional probabilities overall of the factors 

considered was higher than in the other disorders, the posterior probability of .977 made 

the diagnosis of atheromatous embolism the most likely.  
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     As the authors point out, several conditions are either necessary or highly desirable in 

order to apply Bayes’ theorem. Definitions of all the diagnostic hypotheses under 

consideration should be unambiguous. Most desirable is that they be based on some “gold 

standard,” that is, some generally accepted and relatively irrefutable evidence that a 

certain condition exists, such as in the pathological confirmation for the Duke criteria 

above. A histologic diagnosis is the most common type of such evidence, although in 

some cases biochemical or genetic markers may substitute. Disease attributes that form 

the basis of conditional probabilities may vary according to factors such as age or stage 

of disease; in addition, diseases are often unstable and evolve over time, and thus the 

probability of certain attributes may likewise vary over time. Thus, care must be taken 

when formulating attributes that will serve as conditional probabilities.  

     Other considerations include the lack of a need to list every possible diagnostic 

hypothesis separately; many may be combined into a “catchall hypothesis.” In the above 

example, this might take the form of a category labeled “other etiologies of acute renal 

failure.” Of course, all relevant diagnoses must be included or the correct diagnosis might 

never be made. In addition, each diagnostic hypothesis must be mutually exclusive of all 

the others under consideration, and each conditional probability used in a calculation 

must be independent of the others. Also noted is that certain diseases cannot be 

considered as being simply present or absent. Often stages of diseases have different 

manifestations, thus quantitative analyses must recognize that attributes may vary over 

time. Thus, particularly when simultaneously considering many findings or diagnostic 

hypotheses, mathematical predictive modeling methods such as logistic regression are 

often preferred. 
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     Eddy and Clanton have also evaluated a potential role for Bayes’ theorem in 

differential diagnosis. They note that in order to select the most probable diagnosis, the 

physician needs to calculate and compare the probabilities of various diseases that could 

have caused the patient’s symptoms. The most direct method would be to use Bayes’ 

theorem, however the obstacles to employing Bayes’ theorem in the vast majority of 

cases where diagnoses are actually made seem almost insurmountable. These include the 

vast amount of information to be considered, the need to interpret signs and symptoms 

even though medical knowledge is learned primarily by disease, and the need to 

manipulate probabilities. These make it unlikely that the reasoning process used by 

physicians to perform complicated diagnoses resembles the actual application of the 

Bayes’ equation. 

     Eddy and Clanton point out that when a clinician encounters a patient, the clinician 

faces a vast amount of information: the patient’s lifelong personal and medical history; 

the patient’s report of the current medical problem; and the results of numerous 

examinations, procedures, and tests. Also, the clinician must have a tremendous amount 

of knowledge about health and disease. However, in spite of these barriers, they go on to 

state: “Somehow, seasoned clinicians are able to sort their way through the details, clear 

the confusion, and make the diagnosis” (1263). 

     Eddy and Clanton studied 50 case reports published as clinicopathologic conferences 

in the New England Journal of Medicine with the aim of elucidating the principles of 

reasoning employed by clinicians when forming, assessing, and confirming various 

diagnostic hypotheses. Their study suggested that six steps are used to arrive at a clinical 

diagnosis: aggregation of elementary findings, selection of a “pivot” (or pathognomonic 
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finding), generation of a cause list, pruning of the cause list, selection of the diagnosis, 

and validation of the diagnosis. Elementary findings are single pieces of information 

about a case, for example cough with sputum production or a heart murmur. In a typical 

case, the discussant is presented with hundreds of elementary findings, which are 

combined to produce aggregates. Thus, some aggregate of findings may suggest a 

particular disease. The goal is to find an explanation or cause of a set of findings.  

     In very rare cases there is a pathognomonic finding. Lacking this, the discussant must 

move from a list of findings to a list of causes for those findings. Usually one or possibly 

two particularly salient findings were selected for focus, which the authors call the 

selection of a “pivot.” After selecting the pivot, the possible diseases that could have 

caused the pivot are considered. The heuristic device of the pivot obviates the need for 

explicit probabilistic reasoning: the discussant is not concerned with the probability of 

any disease on the list, only with the fact that it could have caused the pivot. Pruning of 

the cause list begins by inspecting the diseases on the cause list one at a time. Because 

only the pivot has been used to construct the cause list, most of its diseases will not be 

plausible explanations of the case. If the likelihood of a disease falls below some 

threshold of credibility it is rejected. If more than one disease remains, this pruned cause 

list is a tentative differential diagnosis of the case.  

     In pruning the cause list, the discussant is searching for the most probable diagnosis. 

But rather than trying to estimate the probability that a patient has a particular disease, the 

clinician merely has to determine whether the pattern of findings in the case could have 

caused the disease under consideration. As the authors note, this is a comparison rather 

than a calculation, and it uses knowledge of the characteristics of diseases instead of 
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requiring estimation of the probabilities of a disease, given the findings (i.e., P(D/e), the 

left hand side of Bayes’ equation). Most discussants use the heuristic of comparing two 

diseases at a time, which is theoretically correct. If one always chooses the more likely of 

two diseases in these comparisons, the most probable disease will emerge. It allows 

selection of the most probable disease without requiring estimation of a single 

probability. 

     They also point out that these published cases are usually complicated, and that far 

more often most problems are far simpler and easier to solve, yielding to little more than 

aggregation. For example, the patient presents with the classical findings of one or two 

conditions, and the diagnosis is evident. They do believe, however, that the case 

reconstructions used in published clinicopathologic conferences closely mirror what goes 

on in actual clinical practice, as evidenced in bedside teaching, informal discussions of 

difficult cases among colleagues, and the like.  
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Chapter 5 

 A Weight of Evidence Account 

     In this chapter I will explicate a notion of evidence that I believe makes sense of the 

way that evidence is gathered and used in clinical medical science. It is a variation of the 

notion of weight of evidence. The term “weight of evidence” in support of a hypothesis is 

roughly equivalent to expressions like “strength of evidence,” “amount of evidential 

support,” and “degree of confirmation or corroboration.”  

     The term weight of evidence has been used previously. For example, it was used by 

Good in an attempt to sharpen Popper’s notion of the degree to which evidence 

corroborates a hypothesis (Weight of Evidence, Corroboration 319). As Mayo has noted, 

Popper’s notion of severe testing can be construed as a simple comparative likelihood 

account where e is evidence for H if P(e/H) > P(e/H′) (Evidence as Passing Severe Tests 

105). Good defines weight of evidence to be  

                               W (H : E|G) =  log { P(E|H·G) / P(E|~H·G) } 

Here H is a hypothesis, ~H is its negation, E is the (proposition expressing the) evidence 

obtained from observations or experiments, and G is any assumed proposition (often 

omitted in formulae). The colon means “provided by” and the vertical stroke means 

“given.” Good notes that when H and ~H are simple statistical hypotheses, W is the 

logarithm of a simple likelihood ratio, and also that any real function of P(E|H) and 

P(E|~H), that, together with P(H), mathematically determines P(H|E), is a monotonic 

function of W(H : E). Good also provides several examples of other uses of the term 

weight of evidence (Brief Survey).  
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     The notion of weight of evidence that I will advance is objective, and the observations 

or experiments that constitute evidence are principally based on data that have been 

objectively obtained. In modern clinical medical science, evidence for a given hypothesis 

is compiled and evaluated as to the extent of weight that is accorded the hypothesis. The 

notion can be applied either to a single observation or study, or to groups of these. 

     The weight of evidence account strives to be a comprehensive explanatory instrument 

for clinical medical science in the spirit of Glymour’s notion of the aims of confirmation 

theory (Theory and Evidence 63-64). As such, it seeks not only to describe and explain 

how medical scientists make judgments about the strength of evidence, but also to 

describe and explain the determinants of strength of evidence; that is, what makes 

evidence weak or strong, or of high or low quality. In addition, it can be construed as a 

causal theory in the sense that the hypotheses that we are considering are causal 

hypotheses. For therapeutic hypotheses, for example, in an ideal RCT, as Cartwright 

notes, if the assumptions of the test are met, a positive result implies the appropriate 

causal conclusion (RCTs). And for studies of etiologic hypotheses and for diagnostic 

hypotheses, we are seeking the causes of disease or other adverse outcome and the causes 

of the patient’s signs and symptoms, respectively. 

     The principal types of study used in clinical medical science include RCTs, meta-

analyses of RCTs, non-randomized controlled clinical studies, cohort studies, case-

control studies, cross-sectional studies, and case series. These are studies conducted on 

groups of subjects. The weight given to any individual study is directly proportional to 

the extent that the study is thought to be accurate. Accuracy here is to be understood to 

consist of a combination of validity and precision. Validity is concerned with systematic 
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error; precision is concerned with random error or variation. Inferences from a study are 

accurate just to the extent that the study is valid and precise. The precision of a study can 

often be improved by increasing the number of study subjects, and sometimes a 

modification in study design can achieve a similar result. Validity is the more important 

of the two, and the greatest threats to validity come from biases and confounding. The 

notion of study accuracy as consisting of validity and precision is appreciated by 

researchers (Rothman, Greenland, and Lash, Validity 128-29). 

     In experimental therapeutics, RCTs or meta-analyses of RCTs are thought to provide 

the greatest accuracy due to the theoretical minimization or elimination of potential 

sources of bias or confounding. In an RCT, eligible study subjects are randomly assigned 

to a therapeutic arm (e.g., an active drug) or to a control arm (e.g., a placebo), and all 

aspects of the study are controlled so that only the treatment variable (e.g., the active 

drug) is able to influence the treatment result. Assuming that the study was well-designed 

and conducted, and the data properly analyzed, possible biasing or confounding factors 

would be expected to be evenly distributed, thus minimizing or eliminating their 

influence. This is not to say that RCTs cannot be confounded, however. Rothman has 

considered the possibility of confounding in RCTs, and notes that methods for preventing 

or controlling confounding that are used in observational research may on occasion also 

have applicability for experimental research as well. Different therapeutic alternatives 

can of course be compared retrospectively by, for example, comparing different groups 

that have received different therapies at different times. However, such studies suffer 

from the possible influence of confounding and biases, which can be subtle. Thus, in 

general such studies are accorded less weight. 



101 
 

 

     A randomization procedure is usually not available for studying etiologic hypotheses, 

thus bias and confounding are threats that are ever present and must be controlled to the 

extent possible. Sackett reported that 35 biases had been cataloged that could occur in 

analytic research (51). However, the most important threats to validity come from 

selection and information biases, in addition to confounding. Although I have treated 

these issues to some extent earlier, they are of sufficient magnitude to warrant further 

discussion. Some examples are provided below. 

Selection Bias 

     Selection bias results from methods of subject selection and factors that influence 

study participation. When the exposure-disease relationship is different for study 

participants than it would have been for all subjects eligible for inclusion in the study, 

then the estimate of effect may become distorted. One type of selection bias is self-

selection. 

     An example of distortion due to self-selection occurred in the estimation of a 

leukemogenic effect secondary to radiation exposure from nuclear testing (Caldwell, 

Kelley, and Heath). In 1957 a nuclear device called “Smoky” was detonated at the 

Nevada test site. It was later estimated that it was witnessed by over 3000 observers, most 

of whom were military troops. In 1976 the Center for Disease Control received notice of 

a patient who developed leukemia, and who associated it with his exposure to the Smoky 

test. To test the hypothesis that an increase in leukemia cases was related to the Smoky 

test, an investigation was undertaken to identify the persons present at the test and their 

radiation exposure, and the subsequent development of leukemia. Nine cases of leukemia 

occurred among 3,224 men who participated in military maneuvers during the explosion, 
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but only 2,459 members of the study cohort could be traced (76 percent). Extensive 

efforts to identify cohort members were undertaken, including widespread publicity in 

addition to record searching. The publicity produced responses from more than 3000 

persons, of whom 447 were confirmed to have been present at the Smoky test. Four cases 

of leukemia were identified among this group. 

     As Rothman, Greenland, and Lash note (Validity 134-35), a self-selection bias is 

present, consistent with previous studies that have shown that the reasons for self-referral 

may be associated with the outcome under study, and may be different from the 

remaining members (non-respondents) of the study population (Criqui, Austin, and 

Barrett-Connor). Of the 76 percent of the cohort that were traced, 82 percent were by the 

investigators and 18 percent were self-referred due to publicity. Thus, four leukemia 

cases were found among the 0.18 x 0.76 = 14 percent of cohort members that referred 

themselves, and four were found among the 0.82 x 0.76 = 62 percent of cohort members 

traced by the investigators. Thus, self-selection bias was present. How should we assess 

the expected number of leukemia cases in the 24 percent of the cohort that was 

untraceable? A different number of expected cases would result from the different 

assumptions that could be made. For example, if we assume that the 24 percent of the 

cohort that was not traced had a leukemia experience similar to the 62 percent traced by 

the investigators, we should expect 4(24/62) = 1.5 or about one or two cases occurring in 

this 24 percent, resulting in nine or ten cases for the entire cohort. If instead we assume 

that the experience of the 24 percent was like that of the remaining 76 percent with 

known outcomes, then we should expect 8(24/76) = 2.5 or about two or three cases in this 

group, resulting in 10 or 11 cases for the entire cohort.    
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     Berkson in 1946 described a different type of selection bias, called Berkson’s bias or 

Berksonian bias. It is of particular concern in studies conducted among hospitalized 

patients, but may occur in other settings as well. It occurs because subject selection is 

affected by both exposure and disease, and specifically because it affects selection. For 

example, two diseases that are unassociated in the general population could be spuriously 

associated in a hospitalized population when both diseases affect the probability of 

hospital admission. So in a hypothetical case-control study in which the cases were 

hospitalized patients with disease x and controls were hospitalized patients with disease 

y, an exposure E that causes disease y would appear to be a risk factor for disease x. 

Berkson’s bias and several other types of selection biases that may occur in etiologic 

studies are discussed by Hernán, Hernández-Díaz, and Robins. Selection bias is also an 

important concern in therapeutic non-randomized controlled trials, in which selection 

factors may render the control group to be unsatisfactory to produce a valid estimate of a 

treatment effect (Green, Benedetti, and Crowley 143-50). 

Information Bias 

     Information biases result from a distortion in the estimation of effect that occurs from 

inaccurate measurement of the exposure or disease condition. This can result, for 

example, from the use of a measurement device (e.g., questionnaire or interview 

procedure) that does not measure what is intended, an inaccurate diagnostic procedure 

(for disease status), or an erroneous or incomplete data source. When situations such as 

these occur, a study subject may be misclassified as to exposure or disease status.  

     One type of information bias is recall bias. In etiologic studies using questionnaires, 

for example, information is often elicited from subjects that must recall relevant 
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exposures. For example, in case-control studies of congenital malformations, one source 

of exposure information comes from interviews of mothers. The mothers of cases have 

recently given birth to a malformed baby, whereas control mothers have recently given 

birth to an apparently healthy baby. If the experience of having given birth to a 

malformed baby stimulated recall by mothers of exposures to drugs, trauma, or other 

potential factors related to malformations to a different extent than controls, this could be 

a source of bias (Rothman, Greenland, and Lash, Validity 138). It has also been found 

that the amount of time between exposure and recall is an important indicator of the 

accuracy of recall. Differences in the time between exposure and recall, if different 

between cases and controls, could also produce bias (Klemetti and Saxén). 

Confounding 

     Confounding results from the distortion produced by one or more factors on the 

estimate of effect. Three necessary (but not sufficient or defining) characteristics have 

been ascribed to confounders (Rothman, Greenland, and Lash, Validity 132-34): 1) A 

confounding factor must be an extraneous risk factor for the disease; 2) A confounding 

factor must be associated with the exposure under study in the source population (the 

population at risk from which the cases are derived); and, 3) A confounding factor must 

not be affected by the exposure or the disease. In particular, it cannot be an intermediate 

step in the causal path between the exposure and the disease. 

     A simple example of confounding is supplied by Gordis (185-86). Assume the 

following exposure-disease data from a case-control study: 
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Table 5.1 
Hypothetical Example of Confounding in an Unmatched Case-Control Study: I. Numbers of 
Exposed and Not Exposed Cases and Controls 

 
Exposed Cases Controls 

 
Yes   30  18 
No   70   82 
Total 100 100 
 
Odds ratio = (30 x 82) ÷ (70 x 18) = 1.95 

 
Source: Adapted from L. Gordis. Epidemiology. Philadelphia: Saunders, 1996. p. 185,        
     table 14-2. 
 
Suppose that we consider whether the increased risk among cases might be due to a 

confounding factor. We will investigate whether age might be confounding the observed 

association. Thus we perform an age analysis as follows: 

Table 5.2 
Hypothetical Example of Confounding in an Unmatched Case-Control Study: II. 
Distribution of Cases and Controls by Age 

 
Age (yr) Cases Controls 

 
<40   50   80 
>40   50   20 
Total 100 100 

 
________________________________________ 
Source: L. Gordis. Epidemiology. Philadelphia: Saunders, 1996. p. 186, table 14-3. 

 We see that 80 percent of the controls are younger than 40 years compared with 

50 percent of the cases. Thus, older age is associated with being a case (having the 

disease) and younger age with being a control (not having the disease). We next 

investigate whether age is related to exposure: 
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Table 5.3  
Hypothetical Example of Confounding in an Unmatched Case-Control Study III. Relationship of 
Exposure to Age 

 
Age (yr)   Total     Exposed Nonexposed %Exposed 

 
<40 130 13 117 10 
> 40   70 35   35 50 

 
Source: L. Gordis. Epidemiology. Philadelphia: Saunders, 1996. p. 186, table 14-4. 
 

We see that in studying the relationship of age to exposure in the total 200 subjects, that 

age is related to exposure status. Fifty percent of persons aged ≥ 40 years were exposed, 

whereas only ten percent of those aged < 40 years were exposed. Is the exposure-disease 

relationship causal or are we seeing the effect of a confounder, in this case, age? One 

approach to analyze this is to stratify on the basis of age, and carry out separate analyses 

for each age group: 

Table 5.4 
Hypothetical Example of Confounding in an Unmatched Case-Control Study IV. Calculation of 
Odds Ratios After Stratifying by Age 

 
Age (yr) Exposed Cases Controls 

 
<40 Yes   5   8 
 No 45 72 
 Total 50 80 
>40 Yes 25 10 
 No 25 10 
 Total 50 20 

 
The odds ratio for persons aged < 40 is (5 x 72) ÷ (45 x 8) = 1.0 (null value of no effect) 
The odds ratio for persons aged ≥ 40 is (25 x 10) ÷ (25 x 10) = 1.0 
Source: Adapted from L. Gordis. Epidemiology. Philadelphia: Saunders, 1996. p. 186, table 14-5. 

Thus, the only reason we had an odds ratio of 1.95 in Table 5.1 was because there was a 

difference in age distributions, and here age is a confounder. 

     Age is such a well - known potential confounder that it is routinely controlled for. 

Other potential confounders we have already considered in the examples thus far include 
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cigarette smoking in studies of coffee drinking and pancreatic cancer, alcohol use in 

studies of cigarette smoking and lung cancer, and other diseases associated with 

myocardial infarction in studies of cigarette smoking and myocardial infarction in healthy 

young women. Control of confounding can be done before a study is launched, for 

example, by age – matching cases and controls to control confounding by age, or after a 

study is completed, by, for example, stratification as in the above example. To control for 

the effects of a potential confounding factor, it must be known that the factor is 

potentially confounding, and investigators must also have accurate information about the 

presence or absence of the factor in the study population. Lack of such information is a 

major source of potential inaccuracy, especially in etiologic research. 

How is the Weight of Evidence Determined? 

     Modern computer technology and access to the Internet have allowed a potentially 

large amount of evidence to be compiled and evaluated for nearly all of the types of 

hypotheses encountered in clinical medical science. For hypotheses that have undergone 

extensive testing, such as those therapeutic and etiologic hypotheses believed by 

investigators to be the most important, the opportunity has arisen for expert panels or 

committees to be tasked with reviewing the available evidence. This has resulted in the 

publication of meta-analyses, systematic reviews, guidelines, and other reports that 

evaluate the evidence with the aim of providing a scientific justification for therapeutic 

decisions, as well as for health promotion and disease prevention efforts generally. 

     For therapeutic hypotheses, systematic reviews, like those done by the Cochrane 

Collaboration, and guidelines, such as those done by the National Comprehensive Cancer 

Network (NCCN), provide examples of the way that the weight of evidence is evaluated 
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and established. For etiologic hypotheses, examples would include reports issued by 

organizations like the IARC and the U.S. Department of Health and Human Services. For 

diagnostic hypotheses, gold standards represent an example of maximum weight of 

evidence, such as biopsy confirmation for the diagnosis of breast cancer. Another 

example of maximum weight of evidence is meeting diagnostic criteria, such as 

satisfying the Duke criteria for the diagnosis of infective endocarditis.  

     In some cases the weight of evidence supporting a hypothesis may have accrued from 

a long history of success in clinical medicine. Examples would include appendectomy for 

acute appendicitis and screening by cervical cytological examination (the Papanicolaou 

test, or “Pap smear”) for early diagnosis of cervical cancer. Evidential support for 

hypotheses such as these did not come from having been tested in clinical trials. In the 

modern era, however, efforts to improve on such well-established approaches most 

probably would require formal testing of some kind.  

     As I have indicated, the weight of evidence account that I am developing can apply to 

a single observation or study, or to groups of these, and the same applies to accuracy. 

Several observations, such as results of physical examination or laboratory results in a 

case of differential diagnosis, are accurate just to the extent that the individual elements 

are accurate. For example, modern automation of many laboratory tests has resulted in a 

high degree of accuracy due to increased precision when compared with earlier methods. 

Variation among observers in the interpretation of physical findings or assessment of 

symptoms may occur, and increased precision can be enhanced through training and 

experience. This interobserver variability may apply to any of the myriad encounters that 

involve interpretation by clinicians, including radiographic or pathological examination. 
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This occurs frequently with diagnostic hypotheses, and instances of deference to “expert 

opinion” in the assessment of evidence could include, for example, the obtaining by a 

hospital pathologist of a consultation with an expert academic pathologist in a case of 

difficult pathological diagnosis, or deferring to the opinion of a cardiologist by a general 

practitioner in the interpretation of heart sounds heard through a stethoscope. Insufficient 

accuracy could lead to misdiagnosis, in which flawed data lead to the erroneous 

confirmation of an alternative, incorrect diagnostic hypothesis. Thus, validity and 

precision issues are present for diagnostic hypotheses as well as therapeutic and etiologic 

hypotheses.  

     The weight of evidence for a diagnostic hypothesis is just that which has accrued short 

of meeting a gold standard or diagnostic criteria (which would provide maximum weight 

of evidence). This is the situation, for example, that exists with a working diagnosis. 

When various diagnostic hypotheses are being considered, the situation is similar. 

Recalling the example of renal insufficiency and the use of Bayes’ theorem in Table 4.8, 

in which several competing diagnostic hypotheses were evaluated, various observations 

and tests led to the hypothesis that atheromatous embolism was most likely the correct 

diagnosis since its posterior probability was .977. The gold standard for this diagnosis is a 

kidney biopsy, which would provide maximum confirmation. This should not necessarily 

be construed to mean that Pr = 1, however, since it is possible for the application of the 

gold standard in any particular case to be in error.  

     Thus in these diagnostic hypothesis cases where Bayes’ theorem could be used, the 

hypothesis with the highest probability has the support of the greatest weight of evidence. 

In cases where two hypotheses are being compared, which, according to Eddy and 
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Clanton represents the majority of cases of differential diagnosis, the hypothesis thought 

to have the highest probability has the support of the greatest weight of evidence. The 

weight of evidence account also easily accommodates any hypothesis involving a simple 

probability calculation. So if I own 800 tickets in a fair 1000 ticket lottery, for example, 

the probability that I will win is .800, and this would likewise represent the weight of 

evidence that I will win.   

     In the case of therapeutic hypotheses where several studies comprise the evidence, the 

weight of evidence account can be illuminated by the example of Cochrane systematic 

reviews. 

Cochrane Systematic Reviews 

     The Cochrane Collaboration “is an international organization whose primary aim is to 

help people make well-informed decisions about health care by preparing, maintaining 

and promoting the accessibility of systematic reviews of the evidence that underpins 

them” (Higgins and Green). Founded in 1993, the Cochrane Collaboration has grown to 

include over 15,000 contributors from more than 100 countries. The work of the 

Collaboration revolves around 52 Cochrane Review Groups, each of which is responsible 

for preparing and maintaining reviews in specific areas of health care. These review 

groups are composed of those with special knowledge of the subject, and include 

clinicians, researchers, statisticians, and sometimes may also include consumers. 

Systematic reviews are periodically updated as new evidence becomes available. 

     An example of a Cochrane systematic review is that assessing the value of adding 

radiotherapy to chemotherapy for early stage Hodgkin lymphoma (Herbst et al.). 

Combined modality therapy consisting of chemotherapy followed by localized 
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radiotherapy for early stage (stages I and II) Hodgkin lymphoma is considered standard 

therapy, but because of long term adverse effects, including secondary malignancies, 

some have questioned the need for the addition of radiotherapy, suggesting that 

chemotherapy alone may be adequate treatment. A systematic review with meta-analysis 

of RCTs in which chemotherapy alone was compared with combined modality therapy in 

patients with early stage Hodgkin lymphoma was performed, with response rate, 

progression-free survival (or tumor control), and overall survival being the parameters of 

analysis. The method used for the accrual of the relevant studies was a search of the 

MEDLINE, EMBASE, and CENTRAL databases, as well as conference proceedings 

from January 1980 to November 2010 for RCTs in which chemotherapy alone was 

compared with combined modality therapy.  

     Two authors independently screened the titles and abstracts of potentially relevant 

RCTs that compared chemotherapy alone with chemotherapy combined with 

radiotherapy. The chemotherapy regimen had to be identical in both arms. The study was 

restricted to clinical stages I and II according to predefined criteria. Both authors 

identified eligible trials using a “study eligibility form” that included the following 

eligibility criteria (Herbst et al. 8): 

(1)  Is the study described as randomized? 

(2)  Did ≥ 80 percent of the included participants have early stage Hodgkin 

lymphoma? 

(3)  Were comparison arms treated with chemotherapy alone in one arm and 

combined chemotherapy and radiotherapy in another arm or arms? 

(4)  Was the same chemotherapy regimen used in the comparison arms? 
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(5)  Did the study document overall survival, tumor control  (progression-free or 

similar) or response rate as outcome measure? 

     Studies that met the above mentioned inclusion criteria from screening titles and 

abstracts were retrieved as full-text publications for detailed evaluation. Any 

disagreement between authors was referred to a third author and a decision was made by 

consensus. 

     A total of 2800 potentially relevant publications were identified, of which 2749 were 

excluded. Fifty-one publications were retrieved for more detailed evaluation, and finally 

five trials were used in the systematic review. 

     An assessment of the risk of bias in the included studies was made independently by 

two authors in order to comply with the new Cochrane Handbook for Systematic 

Reviews of Interventions. The following areas were examined (Herbst et al. 8):  

(1) Was the allocation sequence adequately generated? 

(2) Was allocation adequately concealed? 

(3) Was knowledge of allocated intervention adequately prevented during the trial 

from outcome assessors? 

(4) Were incomplete outcome data adequately addressed? 

(5) Are reports of the trial free of suggestion of selective  

outcome reporting? 

(6) Was the trial apparently free of other problems that could put it at risk of bias (e.g. 

similarity of patients’ characteristics at baseline)? 

Any disagreement between reviewers was referred to a third author and a decision was 

made by consensus. 
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     The five RCTs involved 1245 patients. The statistic used to report results was the 

hazard ratio (HR), which was 0.41 for tumor control (95 percent C.I. 0.25 to 0.66; p = 

.0003), and 0.40 for overall survival (95 percent C.I. 0.27 to 0.61; p = .00002) for patients 

receiving radiotherapy plus chemotherapy compared with those receiving chemotherapy 

alone. Complete response rates were similar for the two groups. Another six trials were 

included in a sensitivity analysis that were deemed relevant to the topic but did not meet 

inclusion criteria. The authors concluded that the addition of radiotherapy to 

chemotherapy improves tumor control and overall survival in early stage Hodgkin 

lymphoma. Thus, the weight of evidence strongly supports this hypothesis.  

     It is worthwhile noting here, however, that meta-analysis is at least sometimes a 

controversial analytic method. There have, for example, been instances where different 

meta-analyses of the same evidence have produced different results (e.g., see Stegenga; 

discussed more below).   

     For etiologic studies where several studies comprise the evidence, an example that 

illuminates the weight of evidence account is provided by IARC reviews.  

IARC Reviews 

     The IARC is the specialized cancer agency of the World Health Organization. A 

stated objective is to promote international collaboration in cancer research. The Agency 

is interdisciplinary and brings together skills in epidemiology, laboratory sciences, and 

biostatistics with the aim of identifying the causes of cancer. International expert working 

groups are formed to evaluate the carcinogenicity of specific exposures, similar in 

purpose to the expert groups employed by the Cochrane Collaboration. The IARC is not 

directly involved in evaluating research on cancer care or therapeutics. 
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     In the last chapter, we considered two IARC reviews. The 2004 review was concerned 

with the association between cigarette smoking and pancreatic cancer, in which it was 

concluded that the weight of evidence strongly supported an association. The 1991 

review was on a possible association between coffee drinking and pancreatic cancer, in 

which it was concluded that studies on the whole were suggestive of a weak association 

between high levels of coffee drinking and pancreatic cancer, but that bias or 

confounding could account for the association. On their review of studies published since 

the IARC review, it will be recalled that Anderson, Mack, and Silverman noted that 11 

case-control studies found null or non-significant associations between coffee 

consumption and pancreatic cancer, and that five cohort studies also found null 

associations. However, they also note that at least five studies did show statistically 

significant associations. They concluded that the possibility of an association between 

coffee drinking and pancreatic cancer seems unlikely and that reports of a significant 

association result from residual confounding from cigarette smoking, and possibly other 

sources of confounding or bias (741).   

     Thus, the weight of evidence is strong that cigarette smoking causes pancreatic cancer, 

but the weight of evidence does not support the hypothesis that coffee drinking is a cause 

of this disease. 

How is the Weight of Evidence Quantified? 

     For diagnostic hypotheses where sufficient information is available for an analysis 

using Bayes’ theorem, which is rarely the case in practice, the probabilities that are 

produced can be directly translated into the weight of evidence account, as previously 

noted. The higher the probability of a hypothesis, the greater the weight of evidence 
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accorded to it. In the more usual case, where diagnoses that have what are considered low 

probabilities are discounted, the one that is considered to have the highest probability 

becomes the working diagnosis. In any given case of differential diagnosis, more than 

one working diagnosis may appear as a disease evolves in its manifestations. Working 

diagnoses are not normally considered in precise probabilistic terms, but it would be 

reasonable to consider a working diagnosis to have a probability somewhere near .5 or 

greater, due to the fact that it is considered to have the highest probability among the 

alternatives being considered based on the evidence at hand. Should a diagnostic 

hypothesis meet a gold standard or criteria for the diagnosis of a specific disease, it would 

constitute maximum weight of evidence, as noted above. Also, it will be recalled that a 

patient may have more than one disease contemporaneously, thus a hypothesis meeting a 

gold standard or specific diagnostic criteria does not necessarily exclude other diagnoses. 

     The notion of probability being employed here for diagnostic hypotheses is 

frequentist, and thus is objective. In theory, the probability that, given some group of 

signs and symptoms, a patient has a particular disease can be calculated, as was done in 

Chapter 4 with the case of renal insufficiency, and illustrated in Table 4.8. As Eddy and 

Clanton note, this is unwieldy and rarely done in practice; therefore signs and symptoms 

are aggregated, and attention is focused on certain findings, which may result in a certain 

salient finding that they refer to as a “pivot” that helps narrow the differential diagnosis. 

(An example of a pivot is the finding of gastric folds in the patient with Ménétrier’s 

disease discussed in Chapter 3.) When the differential diagnosis is sufficiently narrow, 

gold standard evidence is usually sought, particularly if the disease is serious, as was the 
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case of the woman with acute rheumatic fever discussed in Chapter 4, where the Jones 

criteria were met. 

     The medical literature is vast, and clinicians cannot master it all. However, for the 

common diseases, of which there are many, clinicians subsume a great quantity of 

information during primary training and subsequent educational activities, and a great 

deal of attention is focused on diseases and the signs and symptoms associated with them. 

Quantitative data are available and studied, but what is usually retained is a qualitative 

notion of the probability of some disease given the signs and symptoms that are present. 

In difficult cases quantitative data may be sought from the medical literature, as was done 

in the urinary insufficiency case mentioned above. 

     Consider an example: 

     A 75 year-old man presents to the urology clinic complaining of difficulty urinating 

and back pain. Evaluation discloses a prostate gland that is enlarged, firm, and nodular; a 

bone scan and x-rays reveal multiple blastic metastases in bones; and, his Prostate 

Specific Antigen (PSA) level is 1350  (normal < 4.0).  

     This combination of signs and symptoms is practically diagnostic of prostate cancer, 

but why is this thought to be so? A Bayes’ theorem analysis could be employed to obtain 

precise quantitative data, and given the conditional probabilities that would no doubt 

result in a probability calculation for prostate cancer close to 1. But the reasoning is the 

same: It is a qualitative estimate of an objectively quantifiable probability. 

     Thus when an assessment of the following sort is made, “These signs and symptoms 

point to disease x,” or, (given these signs and symptoms), “Disease x is more probable 

than disease y,” arguably a qualitative estimate of a quantifiable probability is being 



117 
 

 

made. It is based on reasoning using Bayes’ theorem, and it is a frequentist concept of 

probability because in these cases, the use of Bayes’ theorem is given a frequentist 

interpretation.   

     For etiologic hypotheses, the relationship between an exposure and disease is usually 

quantified according to measures of effect or association (Greenland, Rothman, and Lash, 

Measures of Effect). These include odds ratios, rate ratios, difference measures, and the 

like. As an example, consider the odds ratio in case-control studies. It is a measure of the 

relative effect of exposure on disease outcome. The higher the odds ratio, the greater is 

the effect. Thus, ceteris paribus, a study resulting in an odds ratio = 3 would provide 

greater weight of evidence of a relative effect than would a study where the odds ratio = 

1.5. The same general principle holds for the other measures. 

     Sometimes the term “relative risk” is used to quantify the measure of effect or 

association. An example of its use was provided in Table 4.3 and in the discussion of the 

risk of myocardial infarction among healthy women in relation to smoking status. It is a 

more general term and is based on odds ratios, rate ratios, and the like, and can also be 

used as a measure of the weight of evidence. Recall, for example, that I argued that the 

weight of evidence was very strong that cigarette smoking causes lung cancer based on a 

large body of evidence, which was illustrated by the British doctor study (Doll et al.) and 

two case-control studies (Doll and Hill; Wynder and Graham), where the p-values were 

very low. In a recent review of tobacco-related health conditions, estimates of the relative 

risks of mortality associated with tobacco use were presented.  For current male smokers, 

for example, the relative risks were 23.3, 14.6, and 2.3 for cancers of the lung, larynx, 

and pancreas, respectively (Thun and Henley 219). Thus, imprecise terms like “strong” or 
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“moderate” in describing the weight of evidence can usually be given more precise 

numerical quantification.       

     Relative risks substantially higher than the null value of 1.0 usually would be 

statistically significant at the conventional p < .05 level. For example, consider the odds 

ratio = 1.95 in Table 5.1: This result is statistically significant (chi-square = 3.947; p = 

0.0469). Yet the observed effect was shown to be entirely erroneous, and was explained 

by confounding due to age. Thus, in etiologic studies in particular, the totality of the 

available evidence must be used to arrive at an accurate assessment of the weight of 

evidence for any given hypothesis, since etiologic studies are more subject to potential 

inaccuracy. This was amply demonstrated in the studies of, for example, cigarette 

smoking and lung cancer, where the relative effect of smoking was consistently very 

strong, and in the studies of coffee drinking and cancer of the pancreas, where it was 

concluded that it is doubtful that coffee drinking has any effect at all, notwithstanding 

that some studies showed a statistically significant association. 

     For therapeutic hypotheses, RCTs and the systematic reviews and meta-analyses based 

on them provide the greatest weight of evidence. Although cohort, case-control, and 

perhaps other study designs sometimes are used to evaluate therapeutic hypotheses, the 

relative lack of control over the many variables present renders them potentially less 

accurate. Where a group of RCTs comprise the evidence, the overall accuracy of the 

group is a function of the accuracy of the individual studies that comprise the group. 

Thus, for example, in the Cochrane review cited above of the five RCTs that studied the 

value of adding radiotherapy to chemotherapy in early Hodgkin lymphoma, the weight of 

evidence must be considered quite strong. All of the studies were consistent. And the 
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weight of evidence is stronger than it would have been if fewer than five studies had been 

evaluated.  

     The point estimates and C.I.s provide objective measures of therapeutic effect, and 

these in turn are related to the strength of the effect and the calculated p-values. The 

lower the p-value, the stronger is the effect. This is based on the notion that the stronger 

the effect, the less probable it is that the effect can reasonably be considered to be due to 

chance. Validity is relatively assured through the study design and randomization. Thus, 

for example, if two RCTs studying the same hypothesis differed only by the width of the 

confidence intervals around the point estimate of effect, the RCT with the narrower C.I.s 

would be the more precise, and hence more accurate in my account. And, since it would 

be more accurate, it would therefore carry more weight. 

     Meta-analysis is an important tool for quantifying an overall measure of effect by 

aggregating the measures of effect and C.I.s from several studies of the same hypothesis. 

This was done in the Cochrane systematic review of the five RCTs that compared 

chemotherapy alone with chemotherapy plus radiotherapy for early stage Hodgkin 

lymphoma described above. The reported HRs were less than 1.0 (null value) because 

they reflected the reduction in the risk to patients receiving chemotherapy plus 

radiotherapy compared with those that received chemotherapy alone. Meta-analyses are 

especially useful for groups of RCTs that are relatively homogeneous. Overall 

assessments of effect in systematic reviews that do not employ meta-analysis are by 

necessity usually not as precisely quantified. 

     Meta-analysis is less frequently employed in etiologic research due to the greater 

variability among studies and the greater threats from biases and confounding (Greenland 
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and O’Rourke). Data may be obtained differently in different studies, for example, by 

face-to-face interviews, mail-in questionnaires, or from record reviews. More generally, 

different studies may employ quite different protocols to collect, analyze, and report data. 

For example, Poole et al. reviewed the evidence linking socioeconomic status to 

childhood leukemia, and found such a large variation in the definition and measurement 

of socioeconomic status that they could only justify qualitative contrasts among the study 

results. Sometimes a review will simply list a range for the observed effect measures, as 

we saw in Chapter 4 was done with the studies of a possible relationship between 

previous tonsillectomy and Hodgkin lymphoma: in those studies, it will be recalled, the 

relative risks ranged from 0.7 to 3.6. Most often, it seems, the overall evidence for an 

etiologic hypothesis is expressed as none (e.g., coffee drinking and pancreatic cancer), 

weak, moderate, strong, or some variation of these, such as very strong (e.g., cigarette 

smoking and lung cancer).  

     However, when the relationship between exposure and disease is strong, even in 

etiologic studies a meta-analysis may sometimes be fruitfully undertaken. An example is 

the meta-analysis by Cannegieter, Rosendaal, and Briët that evaluated the use of 

anticoagulant therapy on the risk of thromboembolism in patients that had undergone 

cardiac valve replacement. A total of 46 reports met inclusion criteria. The ratio of the 

incidence rates of thromboembolism in patients that did not receive anticoagulation was 

5.6 (95 percent C.I. 4.2-7.5) compared with patients that received the anticoagulant 

warfarin. Thus the relative risk of thromboembolism associated with warfarin was 0.18 

(95 percent C.I. 0.13-0.24). This large effect was considered high quality evidence 
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(Guyatt et al., GRADE  997). This would be considered strong evidence in the weight of 

evidence account.  

The Importance of Accuracy 

     Accuracy is an important factor on which the weight of evidence account is based. As 

I have indicated, the notion applies both to individual observations and studies as well as 

groups of these, and the accuracy of the groups is dependent on the individual 

observations or studies that comprise them. Although I have mentioned accuracy earlier, 

it is sufficiently important to merit further discussion. 

     Accuracy is, as I have noted, comprised by validity and precision. Observations and 

studies are accurate just to the extent that they are valid and precise. The most important 

threats to accuracy come from threats to validity, which most often result from biases or 

confounding. 

     Observations in the weight of evidence account are to be construed broadly. For 

diagnostic hypotheses, for example, they include (but are not limited to) findings on 

physical examination such as the observation of scleral pallor in a patient with anemia or 

the palpation of an abnormal lump in the breast, laboratory results, radiographic study 

results, and results of other diagnostic methods like electrocardiography. For etiologic 

studies they include items such as answers on a questionnaire, death certificate diagnoses, 

and the like; more generally, they are the individual data elements that comprise the large 

amount of information collected on exposure and disease status, and any factors that 

might be relevant to the exposure-disease relationship under investigation, particularly 

factors that might produce bias or confounding. For therapeutic hypotheses, similarly, a 

large number of factors are recorded in methods like RCTs.  
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     Data that are sufficiently inaccurate may fail to produce evidence for a true 

hypothesis, or provide putative evidence for a false hypothesis. In the latter case, it is not 

evidence at all. Following are some examples that help illuminate these concepts. 

     Consider the case of the young woman with migrating polyarthralgias discussed in 

Chapter 4. Early in her diagnostic evaluation, infective endocarditis was considered in the 

differential diagnosis due to the detection of an apparently new regurgitant heart murmur. 

A new regurgitant heart murmur is a major Duke criterion for the diagnosis of this 

disease: The diagnosis is established when two major, one major plus three minor, or five 

minor criteria are met. Thus it was important to obtain blood cultures, since bacteremia 

with a causative organism is a major Duke criterion and would establish the diagnosis. 

Blood cultures were obtained, which were negative. It will be recalled that further 

investigation led to meeting the Jones criteria for acute rheumatic fever, which was the 

final diagnosis (presumed true hypothesis). 

     Suppose, however, that through faulty technique a blood culture became contaminated 

with a causative organism; suppose further that the standard procedure of obtaining 

several separate blood cultures was not followed and it was concluded that the patient 

indeed had bacteremia with the organism. This would be an example of a biased, hence 

invalid and inaccurate observation (putative bacteremia when it is not present) leading to 

the weight of evidence falsely being regarded as supporting the false hypothesis that the 

patient had infective endocarditis.  

     Other examples of inaccurate observations leading to false hypotheses would be a 

clinician mistaking the rash of measles for a rash secondary to an allergic reaction, or a 

pathologist misinterpreting a lymph node biopsy as lymphoma when in fact it is reactive 
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hyperplasia, a benign condition. In a patient with a variety of signs and symptoms in 

which several diagnostic hypotheses are being considered in which sufficient information 

is available for a Bayesian analysis (rare in practice), the observations that constitute the 

data for the conditional probabilities, if sufficiently inaccurate, could significantly distort 

the posterior probabilities. This can be seen in the case of the man with renal 

insufficiency discussed in Chapter 4 and pertinent data tabulated in Table 4.8, where 

inaccuracy in one or more of the four factors for which we have observations with 

conditional probabilities obviously could lead to inaccurate posterior probabilities. 

     Similar concerns with accuracy apply to etiologic studies. An etiologic study typically 

utilizes numerous observations that are organized in such a way as to assess whether one 

or more factors are related to the occurrence of disease or other adverse health outcome. 

If systematic error in the recording of one or more observations is present, for example 

the systematic misclassification of exposure or disease status in the individuals in the 

study, then bias may occur: The aggregate effect of the inaccurate data may lead to the 

study results themselves being inaccurately interpreted (e.g., as providing no evidence for 

a true hypothesis or falsely providing putative evidence for a false hypothesis).  

     Consider for example the case-control study by MacMahon et al. in which an elevated 

risk of pancreatic cancer was reported in coffee drinkers, after putative control for the 

known risk factor of cigarette smoking. Information on personal use factors such as 

cigarettes, coffee, or tea must be elicited directly form the subjects themselves, or 

sometimes from surrogates such as spouses or family members. Whatever the method, 

whether it be telephone interview, questionnaire, or some other tool, it is possible that the 

method itself may result in error such as bias. The exposure status of subjects may be 
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systematically misclassified. It will be recalled that multiple other studies of the putative 

association between coffee consumption and pancreatic cancer failed to find such an 

association, notwithstanding that a very few did report an association. The few positive 

studies were later regarded as biased, probably as a result of residual confounding by 

cigarette smoking. 

     A more rigorous method such as an RCT can expose inaccuracy in prior observational 

research. Such a case is provided by the Nurses Health Study, a large cohort of nurses 

followed for health outcomes. For example, in a ten-year followup study of this group it 

was reported that current estrogen use in postmenopausal women was associated with a 

reduction in the incidence of coronary heart disease and in mortality from cardiovascular 

disease (Stampfer et al.). These findings were later contradicted. For example, a 

subsequent RCT found that estrogen use in this group not only was not beneficial, but 

may actually increase the risk of coronary heart disease (Manson et al.). As Mayo notes, 

the earlier observational studies were probably confounded, since women using the 

estrogens were found to have characteristics such as better health and education that are 

separately correlated with the beneficial outcomes (Evidence as Passing Severe Tests 97). 

     In cases such as this where observational studies are contradicted by more rigorous 

methods such as RCTs, inaccuracy due to unappreciated biases or confounding can be 

detected and evaluated. Sources of such inaccuracy could include, among others, failure 

to appreciate a factor as a risk factor and not collect information on it for the purpose of 

control, inaccurate recording of risk factor information, or misclassification of exposure 

or disease status. 



125 
 

 

     The RCT, and meta-analyses of RCTs, are widely regarded as providing the best 

(most accurate in the weight of evidence account) evidence for the types of hypotheses 

that can be studied by their use, which includes most therapeutic hypotheses. 

Nevertheless, they can produce inaccurate results. As Rothman has noted, RCTs can be 

confounded even when done properly, since randomization can fail to evenly distribute 

risk factors and there can be confounding due to chance. And not all RCTs have been 

carried out with strict adherence to method, resulting in poor RCTs with inaccurate 

results. In questionable cases, several RCTs may be required to provide needed evidence 

for any given hypothesis. 

     Meta-analyses may also be flawed and produce inaccurate estimates of effect. For 

example, Stegenga has argued that meta-analysis, even of RCTs, falls short of being the 

platinum standard of evidence that many regard it as being. For one, it may not 

adequately constrain the intersubjective assessments of hypotheses, because the 

numerous decisions to be made in designing and performing meta-analysis require 

personal judgment and expertise, which in turn allows personal biases to influence the 

outcome. This he suggests may partially account for cases in which multiple meta-

analyses of the same evidence can reach contradictory conclusions. He also criticizes 

meta-analysis for relying on a narrow range of evidential diversity, suggesting that 

perhaps a broader method of amalgamating evidence for a hypothesis may be, at least in 

some cases, preferable. 

     Thus, accuracy is important in the weight of evidence account since the weight of 

evidence for any hypothesis is dependent on the accuracy of the observations or studies 

that constitute the evidence. Relative accuracy is the relative absence of error – both 
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systematic and random. Understanding the sources of error and enabling efforts to 

eliminate them lie at the heart of understanding and improving confirmation in clinical 

medical science.             
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Chapter 6 

The Weight of Evidence Account Defended 

     In this chapter, I will defend the weight of evidence account by arguing that the other 

accounts of evidence are unsatisfactory for clinical medical science, and that the weight 

of evidence account remedies deficiencies in the other accounts and also satisfactorily 

explains the case studies. I will also argue that the weight of evidence account explains 

the various efforts to rank evidence in clinical medical science, and that the ranks can be 

justified because they are based on the weight of evidence rationale. 

Current Theories of Evidence are Unsatisfactory for Clinical Medical Science 

     I have considered five theories of confirmation, in addition to Inference to the Best 

Explanation to the extent that it is considered a theory of confirmation or theory choice. 

None of these adequately explain how evidence is gathered and used in clinical medical 

science. 

     Popper’s hypothetico-deductive method fails on several counts. His method relies on 

modus tollens, which is deductive. By refuting a prediction deduced from the hypothesis, 

the hypothesis is thereby refuted. A hypothesis surviving a test is “corroborated.” Thus, 

the finding of a non-black raven refutes the hypothesis that all ravens are black. Popper 

realized that in the empirical sciences, statistical testing is widespread, and that statistical 

methods rely on probability models. As we have seen, the analysis of most hypotheses in 

therapeutic and etiologic research relies on classical frequentist techniques. 

     Popper viewed statistical testing as deductive (412-13). A null statistical hypothesis 

may state, for example, that two treatments, A and B, are in some sense equivalent. An 

experiment can then be set up to test that hypothesis, and if test results show that the 
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assumption of the null hypothesis is highly improbable, then it is rejected. The surviving 

hypothesis is then corroborated. Most RCTs and etiologic hypotheses are studied in this 

way. For RCTs in particular, these study methods do involve strategies to minimize or 

eliminate alternate hypotheses (from biases or confounding) that could explain the test 

outcomes, and thus may qualify as “severe tests” as envisioned by Popper. 

     Here it will be useful to distinguish what I will call a scientific hypothesis from a 

statistical hypothesis. A statistical hypothesis is rejected if study results show that it is 

highly improbable under the model assumptions. This is the method used to reject null 

hypotheses. Let us assume that an RCT has shown treatment A to be better in some sense 

than treatment B by its having led to the rejection of the null hypothesis of no difference 

in the treatments. Here the hypothesis that treatment A is better than treatment B is most 

likely the scientific hypothesis, and it was the scientific hypothesis that was being tested. 

Here it must be stressed that RCTs, particularly large ones, are not ordinarily undertaken 

unless preliminary studies or observations have indicated that A indeed might be better 

than B. The RCT is done to more vigorously test this hypothesis. Whereas the assumption 

underlying the statistical hypothesis is that the treatments are not different, the RCT is 

undertaken in fact to test the hypothesis that A is better than B. 

     Scientific hypotheses are the important hypotheses in clinical medical science; 

statistical hypotheses result from the assumptions of the statistical models and null 

statistical hypotheses are assumed as part of the model. The statistical tests are in essence 

tools used to test and evaluate scientific hypotheses. Is A really better than B, or could the 

results just be due to chance? 
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     Although if in fact A is better than B, and the results of several RCTs support that 

hypothesis, a subsequent RCT finding no difference cannot disconfirm the hypothesis, 

because an RCT finding no difference not only could occur but even is expected to occur 

with some frequency, depending on the statistical model that is used. These 

considerations apply as well to etiologic hypotheses. Consider the studies of coffee 

drinking and pancreatic cancer: many studies found no association, some studies found 

an association, and some studies were equivocal. Studies that show no association in 

etiologic or therapeutic research cannot be relied on to reject the scientific hypothesis, 

thus a theory of evidence focusing on rejection of hypotheses at best explains only part of 

the relation between evidence and hypothesis in clinical medical science.  

     Another reason that Popper’s approach is unsatisfactory is that he denied that 

hypotheses have probabilities, and he endeavored to show that his notion of corroboration 

is also not a probability. But in clinical medical science, some hypotheses clearly do have 

probabilities. This is true for many screening tests, and many diagnostic hypotheses as 

well. Consider the screening test for TB using chest x-rays in Table 3. Here Bayes’ 

theorem was used to show that someone with a positive chest x-ray reading had a higher 

probability of having TB than someone drawn randomly from the population, hence these 

hypotheses clearly have probabilities. And recall the way Bayes’ theorem was used in 

Table 4.8, where the various probabilities associated with the diagnoses under 

consideration were used to determine the hypothesis with the highest probability, based 

on various findings. It is unclear whether Popper would object to these uses of 

probabilities assigned to hypotheses when they can be given a frequentist interpretation, 

but Bayesian statistical methods are also occasionally used in clinical medical science, 
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and these are not given a frequentist interpretation (discussed more below). Thus 

Popper’s methods are untenable here as well. 

     Hempel’s “satisfaction theory” is based on logical relations between hypotheses and 

confirmatory observations, thus is ill - suited to the stochastic manner in which 

hypotheses are confirmed in clinical medical science. It allows for the derivation of 

absurdities and “grue” hypotheses, as previously noted, since it is based only on the 

syntax of the sentences expressing the evidence and hypothesis, considering the relation 

to be two – place and ignoring background information (Earman 68-75; Howson and 

Urbach 299). 

     Bayesian confirmation theory also fails because, it will be recalled, the theory requires 

that hypotheses have probabilities. Evidence e confirms hypothesis h just to the extent 

that e raises the probability that h enjoyed before the acquisition of e (its prior 

probability) to h’s probability after the acquisition of e (its posterior probability). Since 

frequentist statistics are used for analysis in the great majority of therapeutic and 

etiologic studies, the results of these studies do not have a Bayesian interpretation. 

Neither the scientific nor the statistical hypotheses have probabilities. The rejection of the 

null hypothesis does not result in the null hypothesis receiving a low probability, nor does 

the scientific hypothesis (the “alternate” hypothesis under the model) receive a higher 

probability.  

     As we have seen however, Bayes’ theorem is used in some areas of clinical medical 

science, including screening tests and in medical diagnoses. But the use of Bayes’ 

theorem per se is not an endorsement of Bayesian epistemology, since Bayes’ theorem is 

derivable from the axioms of probability theory and is used by frequentist as well as 
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Bayesian statisticians. And, as Glymour notes, Bayesian statistics and Bayesian 

epistemology are different (Explanation and Truth 334). In clinical medical science, the 

use of Bayes’ theorem ordinarily requires the use of a “gold standard,” or criteria against 

which persons having some characteristic such as a positive chest x-ray finding or 

laboratory result can be assigned a probability of having the diagnosis in question. In the 

example of using chest x-rays as a screening test for TB in Table 3, for example, the 

definitive diagnosis of TB would require the gold standard of a positive direct sputum 

examination or sputum culture revealing the presence of Tubercle bacilli. The use of 

Bayes’ theorem in Bayesian epistemology is not given a frequentist interpretation and no 

gold standard is used in the evaluation of hypotheses. 

     Although Bayesian statistical analysis of the types of studies found in clinical medical 

science is possible, including RCTs (Cox, Borio, and Temple 2351; Berry, Bayesian), by 

far most are analyzed using frequentist methods. Some defenders of the Bayesian theory 

of confirmation have derided the use of frequentist statistical analysis. For example, 

Howson and Urbach state, “Classical estimation theory and significance tests . . . are not 

estimates in any normal or scientific sense, and, like judgments of “significance” and 

“non-significance”, they carry no inductive meaning at all. Therefore, they cannot be 

used to arbitrate between rival theories or to determine practical policy” (181-82). But, in 

clinical medical science, classical, frequentist techniques are used to arbitrate between 

rival theories and to determine practical policy, such as their use in establishing treatment 

guidelines. 

     The most important aspect of a scientific study, I am arguing, is its accuracy. The 

science of statistics is itself evolving, and it seems premature to insist that some particular 
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statistical approach should be adopted to the exclusion of others. I will have more to say 

on these matters below and in the next chapter where I will defend randomization and 

frequentist statistical analysis against Bayesian and other critics. 

     Mayo’s error-statistical theory of confirmation is also unsatisfactory for clinical 

medical science, notwithstanding the fact that classical frequentist statistical methods are 

almost exclusively used in the analysis of therapeutic and etiologic hypotheses, methods 

that she champions. Her error-statistical theory of experiment does a satisfactory job of 

describing therapeutic research, which is mostly experimental and in which studies are 

usually designed to have sufficient numbers of subjects to detect differences in outcome 

at or below some threshold significance level (e.g., α < .05) and sufficient power to 

justify the inference that a false null statistical hypothesis has been rejected. Many such 

studies are RCTs in which randomization and stratification are used to minimize errors, 

thus constituting severe tests according to her theory; thus, a given hypothesis would pass 

such a test if it met her probability requirement. Her theory of experiment applies well to 

individual RCTs, or even to non-randomized clinical trials that have an appropriate 

control group. 

     However, her theory does not illuminate other important areas in therapeutic research, 

such as how many RCTs should be done in some particular case except to occasionally 

imply that sometimes more tests may be needed. Her philosophy of experiment may 

extend to meta-analysis, which is a method of analysis that is also based on frequentist 

statistical methodology, but is silent on such things as systematic reviews of RCTs and 

other studies not employing meta-analyses, which are pivotal to the notion of weight of 

evidence that I am developing. 
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     However, even if her theory is true, much more is needed, I am arguing, for a 

satisfactory theory of evidence for clinical medical science. Issues concerning error and 

accuracy in etiologic research, which is mostly observational, and in the methods that 

underpin the confirmation of diagnostic hypotheses must be addressed. For etiologic 

hypotheses, for example, a description and explanation of the types of biases that may 

occur, as well as confounding, is needed. A discussion and explanation of how diagnostic 

hypotheses are confirmed, with attention to the sources of inaccuracy that may arise, is 

also required.   

     Achinstein’s theory of evidence is also unsatisfactory. As we have seen, it includes 

both subjective and objective notions, the latter he claims being of most importance to 

scientists. His objective notion of potential evidence, it will be recalled, includes that 

                p(there is an explanatory connection between h and e/e&b)  > .5 

His theory requires that h be assigned a probability, and is similar to Bayesianism in this 

respect. Since the great majority of therapeutic and etiologic hypotheses are analyzed 

using frequentist statistical methods, this renders study results not interpretable in his 

schema. Thus, for example, if I hold 800 tickets in a fair 1000 ticket lottery, it is 

consonant with Achinstein’s notion of objective epistemic probability that it is four times 

more reasonable to believe that I will win than that I will not win, and it qualifies as his 

potential evidence that I will win. But if I examine the results of one or more studies of 

the type found in therapeutic and etiologic research, I seem to be in a quandary if I adopt 

this notion. For example, suppose that after examining the results of the British doctor 

study on cigarette smoking and lung cancer, I am impressed by the substantially 

increased frequency of lung cancer cases among smokers compared with non-smokers 
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that cannot reasonably be explained by chance. How many more times is it reasonable to 

believe that cigarette smoking causes lung cancer than that it does not? If this is potential 

evidence, what is the resulting probability?  

     Another shortcoming of Achinstein’s approach is that for e to be evidence that h, e 

must supply a “good reason to believe” h, and that one of his necessary requirements is 

that p(h/e) > .5, since e cannot also supply a good reason to believe ∼h. Recall that one of 

his objections to Bayesianism was that for e to be evidence that h, all that e must do is to 

increase h’s probability. But if the Bayesian concept of evidence is too weak, 

Achinstein’s is arguably too strong for a desired concept of evidence in clinical medical 

science. In differential diagnosis, for example, the presence of fever surely would be 

considered evidence of an infection, although in some particular case if that were the only 

evidence then its weight for that hypothesis might be relatively weak. But it still would be 

evidence. Consider the case of meeting diagnostic criteria for a specific diagnosis, as in 

the example of infective endocarditis. Recall that to make the diagnosis of infective 

endocarditis, it was necessary to meet the Duke criteria. The diagnosis is established 

when two major, one major plus three minor, or five minor criteria are met. Each 

individual major and minor criterion is evidence for the diagnosis, but no single criterion 

alone establishes it. But any one of the criteria should qualify as evidence. Also, in the 

TB and chest x-ray example of Table 3, following a positive x-ray reading the probability 

of having TB was raised from its prior probability of  .016 to the posterior probability of  

.30. This should be considered evidence of having TB, although it does not raise the 

probability of having TB to more than .5. Thus, for the above reasons, Achinstein’s 

theory falls short here as a satisfactory theory of evidence for clinical medical science.  



135 
 

 

     Diagnostic hypotheses, however, are probably interpretable under Achinstein’s theory 

in most cases. For example, as Eddy and Clanton have noted, when several diagnostic 

hypotheses are considered, some are eliminated as being less probable and the most 

probable becomes the working diagnosis. This kind of “eliminative induction” would 

usually result in an initial probability of somewhere near .5 or greater, and often the other 

conditions for potential evidence would be met. But since the weight of evidence account 

that I am developing need not be a probability, it has no clear or necessary 

correspondence to Achinstein’s notion of objective epistemic probability.    

     It might also be worth noting that his notion of subjective evidence may also often be 

applicable. Subjective evidence, it will be recalled, satisfies at least three conditions, 

where X is a person or group (Book of Evidence  23): 

                          1) X believes that e is evidence that h            

                          2) X believes that h is true or probable 

                          3) X’s reason for believing that h is true or probable is that e is true  

Here, e does not need to be true, but only that X believes it is. Evidence e is accepted 

until new evidence refutes it. It requires belief, and that someone or some group is in a 

certain epistemic situation in regard to the evidence. Thus, this notion of subjective 

evidence seems to fit the situation that exists with most hypotheses in clinical medical 

science that are supported by a substantial weight of evidence, for example, the 

hypothesis that cigarette smoking causes lung cancer. However, one important 

characteristic of my notion of weight of evidence is that one need not believe h based on 

e, although belief is of course not precluded. For example, to argue for a smoking 

cessation program one need only acknowledge that the objective weight of evidence 
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strongly supports h: cigarette smoking causes lung cancer. Belief is not required, 

although in fact most observers acquainted with the evidence probably believe that the 

hypothesis is true.  

The Weight of Evidence Account Remedies Deficiencies in the other Accounts 

     Compared with previous accounts, the weight of evidence account better explains the 

way that evidence is gathered and used to confirm the types of hypotheses encountered in 

clinical medical science, and remedies the deficiencies in those accounts. For example, I 

am arguing that the notion of accuracy is more salient here than is the notion of 

“severity” advanced by Popper and Mayo. Since Popper’s notion is best understood as 

being based on comparative likelihoods, it is not directly applicable to the type of 

frequentist statistical testing typically done in clinical medical science. Mayo has argued 

that passing a severe test is more probative in securing evidence for a hypothesis than is 

increasing the probability of the hypothesis, which she has referred to as “the highly 

probed versus highly probable debate” (Evidence as Passing Severe Tests 96). Her notion 

of severity is quantified as 1-α, where the α level is the result of a frequentist statistical 

test. I am advancing the notion of accuracy as being the more important concept, not just 

for assessing an individual observation or study, but also groups of these. The weight of 

evidence account with its focus on accuracy improves on the severity notion and at the 

same time embraces probability as a measure of weight of evidence for those hypotheses 

that have probabilities. In a well designed and executed experiment like an RCT or other 

controlled study, a result with a low α level, say α< .05, constitutes passing a severe test 

under Mayo’s theory, and also would be considered an accurate result and accorded 

strong evidence under the weight of evidence account.  
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     The weight of evidence account explains the need for more than one study, especially 

in cases where the threat to accuracy is high. Severity applied to individual tests or even 

to a meta-analysis does not explain this. For a given hypothesis, how many studies should 

be done? The other accounts do not adequately address this, but the answer is, in general, 

that the number is sufficient when additional studies are not thought to appreciably 

change the weight of evidence. Thus it is unnecessary, for example, to do another 

etiological study of cigarette smoking and lung cancer since the present weight of 

evidence is sufficiently strong to establish a causal relationship. Likewise, unless 

methodological advances are made to better rule out confounding, further studies are 

probably unnecessary on coffee drinking as a possible cause of pancreatic cancer, since a 

study showing a statistically significant result will likely be interpreted as the result of 

residual confounding in view of the large number of negative studies already done. 

     The weight of evidence account accommodates hypotheses with probabilities, where 

the weight of evidence is directly related to the probability. It explains why a working 

diagnosis is accorded a lesser weight of evidence, since it is less probable than a 

diagnosis meeting a gold standard or diagnostic criteria, which would establish a high 

probability and maximal weight of evidence. How many observations are needed in a 

particular case of differential diagnosis? This number will vary, depending on a number 

of factors, one of the most important being the severity of the disease and the need for a 

correct diagnosis. For example, for the common cold, the presence of fever, sore throat, 

and nasal congestion may be sufficient for diagnosis and treatment; for someone brought 

to the emergency department in a coma, many more observations will be needed, 
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including more detailed physical examination, radiographic and laboratory testing, and 

the like. 

     The weight of evidence account is superior also because it allows for a multiplicity of 

statistical approaches and does not depend on a particular interpretation of statistics or 

statistical theory. Thus frequentist, Bayesian, likelihoodist, or other methods may be used 

depending on the type of study and method of analysis considered most appropriate by 

the investigators. Frequentist methods are at present used most commonly, but Bayesian 

methods are also sometimes employed and may even be preferable in some cases, such as 

bias analysis. As I have argued, the science of statistics is itself evolving, and new 

methods are being developed and tested. Modern clinical medical science uses statistics 

as an inferential tool in the assessment of scientific hypotheses, and more than one 

method may be applicable in any given case. Indeed, Mayo has acknowledged that given 

a set of well-defined statistical problems, and for given sets of data, Bayesian and non-

Bayesian inferences may formally agree, notwithstanding differences in rationale and 

interpretation (Error and Growth 69). This inclusiveness of the weight of evidence 

account overcomes the limitations of Mayo’s frequentist-based approach, and also 

overcomes the limitations imposed by Bayesianism and Achinstein’s theory due to their 

requirement that hypotheses have probabilities. 

The Weight of Evidence Account Satisfactorily Explains the Case Studies 

     The weight of evidence account explains why the evidence in the case studies is 

accorded the degree of confidence by clinical medical scientists that it has received. I am 

arguing that scientists have confidence in the results of observations or studies just to the 
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extent that they are judged to be accurate, and this applies to a single observation or study 

or to groups of these.  

     For therapeutic hypotheses, recall the RCT performed by the Gastrointestinal Tumor 

Study Group that randomized patients with rectal cancer to surgery only, surgery plus 

radiotherapy, surgery plus chemotherapy, or to surgery plus both chemotherapy and 

radiotherapy. The results showed a statistically significant benefit for the group that 

received both radiotherapy and chemotherapy after surgery. The RCT maximized 

accuracy due to the study design and randomization procedure that in theory minimized 

or eliminated any effect of bias or confounding. Thus the study provided relatively 

accurate evidence for the result that was quantified by the statistically significant p-values 

associated with the outcome measures of effect. And to reiterate, the authors emphasized 

that the control group (surgery only) had a much better outcome than would have been 

expected based on historical groups of similar patients treated only with surgery, 

illustrating the need for concurrent controls in randomized studies, and thus why RCTs 

provide the most accurate source of evidence. 

     The weight of evidence account also explains why evidence from an N of 1 trial 

receives a greater weight of evidence for the treatment of an individual patient than 

evidence from a study of a group of patients with the same condition. Consider, for 

example, a study of pain reduction by a drug in patients experiencing migraine headache. 

Suppose a study showed an average of 60 percent pain reduction (95 percent C.I. 40 – 80 

percent) in a group of 200 patients receiving the drug, but an N of 1 trial in a patient 

showed a 30 percent average reduction with a range of 25-35 percent. The predictive 

value from the N of 1 trial is more accurate for that individual than is the average and 
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range derived from the study of the group, since the results are averaged over a large 

number of individuals in the group. This is what occurred in the N of 1 trial of 

theophylline in the patient with asthma in Chapter 4, in which the patient felt worse when 

taking the drug. Theophylline would have been predicted to be beneficial based on 

studies in groups of patients with asthma.   

     The weight of evidence account also satisfactorily explains the degree of evidential 

support accorded to the etiologic hypotheses illustrated by the case studies. Because of 

the strong effect of cigarette smoking on the diseases studied, the weight of evidence was 

strong for a causal role for the subsequent development of chronic obstructive lung 

disease, ischemic heart disease, and cancers of the lung, esophagus, and upper 

aerodigestive tract as indicated by the results of the large British doctor study and 

supported by the case-control studies. In addition, a causal role for cigarette smoking and 

the subsequent occurrence of myocardial infarction in healthy young women was found 

in the case-control study by Slone et al., and a causal role for pancreatic cancer was 

reported by the 2004 IARC review, which concluded that the evidence was strong. A 

strong association was found between maternal stilbestrol use and later vaginal 

adenocarcinoma in young female offspring. 

     The main reason that the weight of evidence is strong for the above etiologic 

hypotheses is because of the strength of the association between the exposure and the 

disease. Even though etiologic studies are more prone to inaccuracy, the strength of the 

associations allowed any effect from bias or confounding to be overcome. However, as 

we have seen, when associations between exposure and disease are weak or non-existent, 

etiologic study methodologies often give conflicting results. Thus the relative risks for an 
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association between tonsillectomy and later Hodgkin lymphoma ranged from 0.7 to 3.6, 

and it was concluded that it was unlikely that tonsillectomy was a risk factor for Hodgkin 

lymphoma in young or middle aged adults, but it was still unclear whether it was a risk 

factor for the disease later in life. Similarly, the great variation in the results of studies of 

coffee drinking and cancer of the pancreas led to the conclusion that an association is 

unlikely, and that studies showing an association were probably confounded.  

     In the case of the cross-sectional study by Ueshima et al. of a possible relation 

between alcohol consumption and systolic blood pressure, it will be recalled that the 

variables of age, alcohol consumption, uric acid, and ponderosity index among the Osaka 

men accounted for only about 18 percent of the total variation in systolic blood pressure, 

indicating that probably important risk factors were left out of the model. As this case 

illustrates, one problem with the analysis of cross-sectional studies when used for 

etiologic research is that the investigators must gather information on the variables 

thought to be of etiologic interest, and important risk factors for outcome may be left out. 

Coupled with the problems associated with the temporal relation of exposure to disease 

and with measuring prevalence rather than incidence identified earlier, this relative lack 

of accuracy renders results from cross-sectional studies as a group to provide a lower 

weight of evidence when etiologic hypotheses are considered than do the cohort and 

case-control study designs.  

     The weight of evidence account explains why diagnostic hypotheses are accorded 

weights of evidence based on probabilities of being correct. The probabilities involved 

can be more or less well quantified depending on the information available. For example, 

in the chest x-ray and TB screening case illustrated in Table 3, a positive x-ray reading 
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raised the probability of having TB from .016 to .30. Thus, the evidence arguably went 

from very weak to perhaps weak-to-moderate. Contrast this with the evidence presented 

in Table 4.8 of the renal insufficiency case in which the probability of atheromatous 

embolism went from .01, which might be characterized as negligible or very weak, to 

.977, which must be considered very strong.   

     The weight of evidence account explains why working diagnoses are accorded a lower 

weight than diagnoses based on meeting a gold standard or diagnostic criteria. In the case 

of the young woman with fever, elevated white cell count, and arthralgias presented in 

Chapter 4, the initial observations were non-specific and could not differentiate between 

infectious and noninfectious inflammatory causes. The working diagnosis was “viral 

infection,” and she was prescribed anti-inflammatory drugs. At this point, the weight of 

evidence for infection was at best somewhere around .5. On her next visit to the 

emergency department, she was found to have a heart murmur. The new heart murmur 

and recent fever narrowed the differential diagnosis, and infective endocarditis became a 

new diagnostic consideration. The heart murmur and positive blood cultures would have 

established infective endocarditis as the diagnosis since they are both major Duke 

criteria, and would have met criteria for the diagnosis. The blood cultures were negative, 

however, and it will be recalled that she subsequently met the Jones criteria for the 

diagnosis of acute rheumatic fever, which was the final diagnosis.  

     In the above case the initial working diagnosis of viral infection gave way to the 

diagnosis of infective endocarditis or acute rheumatic fever as the disease progressed and 

new observations were made.  The negative blood cultures provided evidence against 

infective endocarditis and sheds light on the notion of accuracy in differential diagnosis. 
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Blood cultures are usually obtained by taking several independent blood samples 

(typically at least three) under sterile conditions in order to reduce the chance of bacterial 

contamination. This illustrates an example of a threat to accuracy, in this case validity, 

since a false positive blood culture could lead to misdiagnosis. The practice of multiple 

separate samples reduces this threat. An example of a precision issue is that of the 

patient’s recollection of shortness of breath as a child, consistent with rheumatic fever in 

childhood. But “shortness of breath” per se is imprecise. Her description of getting short 

of breath easily and not being able to play with the other children provided sufficient 

evidence that her shortness of breath was of sufficient magnitude to be a factor in the 

diagnosis of rheumatic fever. And although this patient met two major Jones criteria 

(migratory arthritis and carditis) and one minor criterion (fever) which established the 

diagnosis of rheumatic fever, additional evidence was sought which included blood tests 

for antibodies showing previous streptococcal infection, which were positive, thus 

strengthening confidence that the diagnosis is the correct one. 

     The rheumatic fever case illustrates the process that is most frequently used to confirm 

a diagnostic hypothesis. No probabilities were calculated. The analysis by Eddy and 

Clanton seems relevant here. The finding of a heart murmur might accord well with their 

notion of a pivot: a finding around which the various diagnostic hypotheses coalesce. 

What explains fever, arthralgias, and a new heart murmur? Evidence is then sought to 

discount some causes of these findings and increase the probability of others, but it is 

done as a series of comparisons and no probabilities are calculated. A better description is 

that the weight of evidence for or against these hypotheses shifts as evidence for or 

against them accumulates. Any argument that the process is one that necessarily involves 
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a consideration of probabilities would seem to leave the proponent as expressing some 

notion of subjective probability. While this might fit with at least some versions of 

subjective Bayesianism, it would seem that this would represent a less satisfactory 

approach than the weight of evidence account, which I argue subsumes this line of 

reasoning (Bayesianism in general) into a more comprehensive framework. 

The Weight of Evidence Account Explains Efforts to Rank Evidence 

     The weight of evidence account explains the various efforts to rank evidence in 

clinical medical science. For example, consider the GRADE system for rating the quality 

of evidence (Guyatt et al., GRADE). In this system, the quality of evidence reflects the 

extent to which confidence in an estimate of effect is adequate to support 

recommendations such as those that are found in treatment guidelines. The approach 

considers study design to be important in grading the quality of evidence, and avers that 

RCTs in general provide stronger evidence than do observational studies. Factors that can 

decrease the quality of evidence include study limitations (e.g., assessments being 

biased), inconsistency of results across studies, and imprecision. Factors that can increase 

the quality of evidence include a large magnitude of effect and a dose-response gradient. 

The evidence supporting a recommendation is graded according to quality, and Guyatt et 

al. provide several examples in which quality is assessed as being of high quality to very 

low quality. 

      This system is satisfactorily explained as being focused on accuracy in the evidence 

that is assessed, and the weight of evidence account satisfactorily explains their grading 

of evidence according to what they consider quality.  
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     Another example is that provided by the NCCN in the assessment of evidence in 

publishing guidelines. The NCCN is a not-for-profit alliance of 26 mostly university-

affiliated cancer centers located throughout the U.S. Expert panels are assembled and 

constituted similarly to those of the Cochrane Collaboration and IARC. Among NCCN 

publications are detailed guidelines for the treatment of cancer according to type or tissue 

of origin (e.g., breast, lung) and factors such as stage of disease. A separate expert panel 

exists for each area (e.g., Hodgkin lymphoma).  

     The NCCN categories of evidence are “high-level” and “lower-level.” The level of 

evidence depends on the extent of data (e.g., number and size of trials), consistency of 

data (similar or conflicting results), and quality of data (e.g., RCTs, non-RCTs, meta-

analysis or systematic reviews, clinical case reports, case series). It seems clear that in 

assessing these factors that the notion of accuracy as it applies to each observation (e.g., a 

clinical case report) or study, or groups of these, satisfactorily explains the assignment of 

evidence into the high-level and lower-level categories. Also, the categories themselves 

are readily explained as efforts to assign different weights to the evidence. 

     The weight of evidence account also explains the “hierarchical pyramid” of EBM, 

which is taken up in the next chapter.       
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Chapter 7  

Justification for the Hierarchical Pyramid of Evidence-Based Medicine and Defense 
of Randomization 
 
     No doubt one of the most important aims of the EBM movement is to place the 

clinical practice of medicine on a firm scientific evidential basis. According to Sackett et 

al., “Evidence-based medicine is the conscientious, explicit, and judicious use of current 

best evidence in making decisions about the care of individual patients” (71). EBM 

requires the integration of the best research evidence with the clinician’s clinical 

expertise and judgment and each patient’s unique values and circumstances (Straus et al. 

1). Greenhalgh has emphasized the quantitative nature of most modern clinical medical 

research, and proposes an alternative definition of EBM: 

         Evidence-based medicine is the use of mathematical estimates of the risk  
 of benefit and harm, derived from high-quality research on population  
 samples, to Inform clinical decision-making in the diagnosis, investigation 
 or management of individual patients (1). 
 
     The EBM community postulates that evidence derived from some types of studies 

provide, in general, better confirmation of the hypotheses under test than do other types 

of studies. This is often illustrated in the form of a “hierarchical pyramid,” with 

systematic reviews of randomized clinical trials and meta-analyses of these trials at the 

top, or apex of the pyramid, and case studies, anecdote, bench studies, personal opinion 

and the like at the bottom, or base (Greenhalgh 18). One suggested ordering, from highest 

to lowest, of the relative weight carried by the different types of primary study when 

making decisions about clinical interventions is (Greenhalgh 43-44): 

1) Systematic reviews and meta-analyses 
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2) RCTs with definitive results (i.e., confidence intervals which do not overlap 

the threshold clinically significant effect) 

3) RCTs with non-definitive results (i.e., a point estimate which suggests a 

clinically significant effect but with confidence intervals overlapping the 

threshold for this effect 

4) Cohort studies 

5) Case-control studies 

6) Cross-sectional surveys 

7) Case reports 

     The above ordering of “relative weights” to be given to types of studies suggest that 

what might be termed “levels” of evidence may exist that bear on the confirmation of 

hypotheses. For example, “suggestive” evidence from some type of study that some 

hypothesis may be superior to alternatives (lower-level evidence) may encourage more 

extensive and focused research to gather more confirmatory evidence (higher-level 

evidence). This notion of lower-level evidence prompting acquisition of higher-level 

evidence in the pursuit of stronger confirmation can be illustrated by studies that were 

performed in the evolution of treatments for early breast cancer. 

Background  

     Cancer of the female breast begins as an uncontrolled proliferation of cells lining the 

breast milk ducts and spreads locally, regionally, and distantly. Local spread occurs in the 

breast itself where the tumor grows into a mass or lump which can become quite large 

and even ulcerate the overlying skin. Regional spread refers to cancer cells entering the 

lymph channels which drain to lymph glands located in the axilla (armpit), base of the 
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neck just above the clavicle (collarbone), and sometimes to glands located along the 

sternum (breastbone). Distant spread occurs by cancer cells invading small blood vessels 

and being carried to other organs where they may lodge and grow. The most common 

sites of such spread are the bones, lungs, liver, and brain. Early breast cancer, in which 

the cancer is still confined to the breast, or even in some cases of regional spread, is 

potentially curable. Breast cancer that has spread to distant organs is almost invariably 

fatal. 

     Modern treatment for women with early breast cancer consists of surgery, radiation 

therapy, and systemic therapies including drugs, antibodies, or hormones. These 

modalities may be used alone or in some combination. The curability of early breast 

cancer is achieved primarily by surgery and/or radiation therapy, and much interest has 

been shown in trying to determine how best to use these forms of treatment in order to 

achieve the highest probability of cure, and at the same time minimize the adverse effects 

of the treatment itself.  

     Surgery in one form or another has been used for centuries by physicians. In 1867, 

Charles Moore, an English surgeon, introduced an extensive operation for the removal of 

cancer of the breast (Williams, Murley, and Curwen). Experimentation and refinement of 

technique led to an operation called the radical mastectomy, usually associated with the 

English surgeon W.S. Halsted. In the radical mastectomy, the entire breast is removed, 

along with the underlying muscles and muscles around the axilla. The entire axillary 

content on the side where the cancer is located is removed. The operation is 

psychologically damaging and physically disfiguring, and swelling of the arm occurs 

frequently due to the disruption of lymphatic channels from the axillary dissection. The 
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objective is to radically remove all cancer. More aggressive variations of the Halsted 

radical mastectomy involve removal of the lymph glands around the clavicle and along 

the sternum.   

     X-rays were discovered by Roentgen in 1895, and experimentation with the new rays 

for medical applications was swift. By the 1920s, high voltage irradiation for the 

treatment of cancer was introduced (Adair). Most early experimentation with X-ray 

treatment was by trial and error as physicians learned techniques for maximizing the 

antitumor effects while at the same time minimizing the adverse effects on normal 

tissues. It was soon learned that radiation was most effective against microscopic and 

small volumes of cancer and that surgery was more effective against larger volumes. 

Ways were sought to combine surgery with radiation to achieve maximum effect. Radical 

operation followed by postoperative irradiation became recognized as providing the best 

chance for cure or long-term control of locoregionally confined breast cancer. Yet, many 

women refused such disfiguring and psychologically damaging radical surgery while 

others were medically unfit for such a major operation. Thus, many women, for a variety 

of reasons, were treated with lesser surgery.  

Early Studies 

     In 1954, Mustakallio reported on a series of women from Finland with cancer 

confined to the breast with no enlarged glands detectable in the axilla that he had treated 

with minimal surgery (in which essentially just the cancer lump was removed) and 

irradiation. His study was a personal case series consisting of 127 women who had been 

followed post-treatment for at least five years. He simply described what he had done and 

what the outcome was, and made no attempt at statistical analysis. Of the 127 women, 
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107 (84 percent) lived five years or longer, and 20 had died. Fourteen of the deaths (11 

percent) were from metastases and six (five percent) were from other diseases. He 

observed that some women die from metastases later than five years and thus observation 

beyond five years is desirable. In his series, 18 patients were followed more than 10 

years, and 13 (72 percent) lived more than 10 years. He estimated that about one–third of 

all cases of breast cancer could be treated by this method. Although he conceded that 127 

patients followed for five years was “still too limited a number to allow of a final 

evaluation of this method of treatment,” he went on to conclude that he “may be justified 

in asserting, however, that the method of treatment in which the breast is saved has 

passed its experimental stage and can now well be recommended for more general use.”   

     Mustakallio’s study contains no comparison group, thus he seems to be implicitly 

using as a comparison similar studies of radical surgery and radiation. One such earlier 

study was published by Adair in 1943 from Memorial Hospital in New York. During the 

22 years prior to publication, over 7,000 women with breast cancer were seen at the 

hospital, of which over 3,000 were deemed operable and potentially curable. They were 

treated by a variety of physicians using evolving techniques of surgery and radiation, but 

were grouped for study according to whether they received surgery only, surgery 

followed by radiation therapy, radiation therapy followed by surgery, or irradiation alone. 

The study was a presentation of what was done and the outcome, and no attempt at 

statistical analysis was made. The percent of women in each group surviving five years 

was calculated. Since by this time it was known that the presence of axillary node 

involvement by cancer (positive nodes) in a woman that otherwise had the disease 

confined to the breast conferred a worse prognosis than if the nodes were negative, the 
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patient groups were further divided into those with nodes positive or negative. In the 

group that had radical surgery followed by radiation with nodes negative, the group that 

seems most suitable as a comparison group to Mustakallio’s series, the five year survival 

rate was 77 percent. 

     Other prognostic factors came to be identified, which when taken into account 

influenced results. Williams, Murley, and Curlen in 1953 reported a series of over 1000 

cases of breast cancer from St. Bartholomew’s Hospital in London that was treated in the 

1930s. The cases were divided into Stages, with Stage I being no enlarged glands could 

be palpated in the axilla, and Stage II where enlarged glands could be palpated. Age was 

recognized as a prognostic factor and was taken into account and adjusted for. For 

example, among their Stage I cases that were 65 years of age or older, the crude 10 year 

survival rate was 22 percent, but when age adjusted it was 49 percent. These authors 

found that the age adjusted five year survival rate for Stage I cases undergoing simple 

surgery and radiation was 76 percent and for radical surgery and radiation was 72 

percent. They concluded “that where efficient radiotherapy is available radical 

mastectomy should be abandoned in favor of conservative surgery.” 

     Based on reports such as those cited above, some cancer centers began to use limited 

surgery and radiation therapy to treat early breast cancer, and by the 1970s reports had 

begun to appear of the results of the more conservative approach. In 1976 Cope et al. 

from the Harvard Medical School reported on their experience with 131 women with 

early breast cancer that had been advised to have a radical mastectomy but refused, but 

did accept more limited surgery and irradiation. Results were presented according to 

Stage. They concluded that the “survival rates of those treated by limited excision and 
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primary irradiation compare favorably with those of patients treated by radical 

mastectomy.”  

     In 1986 Spitalier et al. reported on a series of 1,133 cases of operable breast cancer 

treated between 1961 and 1979 by limited surgery and radiation therapy at the Marseille 

Cancer Institute in France. Follow up ranged from five to 23 years. Combining Stages I 

and II, the percent of patients alive and well at five, 10, and 15 years was 86 percent, 80 

percent, and 62 percent, respectively. It was concluded that the conservative approach 

yielded survival rates equivalent to those achieved by primary radical surgery, and 

allowed the majority of patients to retain their breasts in an esthetically acceptable 

condition. In an accompanying commentary from the surgical community on the results 

of this series, it was stated that “Even today with the literature demonstrating the 

favorable effects of conservative surgery there remains a large segment of general 

surgeons who refuse to treat a patient unless they will accept a modified mastectomy.” 

Although the commentator noted also that an increasing number of surgeons were 

performing more limited surgery, he also opined that “while one weighs the value of 

retrospective studies, we must be very analytically critical of some of their conclusions 

until randomization studies support those conclusions.” 

     In 1989 Haffty et al. from the Yale University Medical Center reported their 20-year 

experience in treating 281 women. The paper describes their experience and patient 

outcomes. No statistical analysis is presented. The study is not controlled for prognostic 

factors, but data are presented separately for Stage I and Stage II. Patients were staged 

according to the more modern American Joint Committee/Union Internationale Contre le 

Cancer system. In Stage I, the five year survival was 91 percent, and for Stage II it was 
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68 percent. They concluded “that conservative treatment of early – stage breast cancer 

with limited resection and radiation therapy is a viable alternative to mastectomy.” 

     Comparison of results from similarly conducted studies from different institutions is 

made difficult by the numerous sources of possible bias, most often from poor control or 

no consideration of prognostic factors. Even when the “same” prognostic factors are 

recorded, they may be different. For example, Stage I breast cancer is cancer confined to 

the breast, but is defined differently in the study by Williams, Murley, and Curwen, 

which allows for ulceration of the overlying skin by tumor erosion. Such ulceration 

would place the case in Stage III in the staging system employed by Haffty et al. 

Controlled Trials in Clinical Medical Science 

     As has been noted, controlled clinical trials in clinical medical science usually involve 

two groups of subjects, all of whom are suffering from some medical condition; one of 

the groups, the test group, is administered the experimental therapy, while the other, the 

control group, is not; the progress of each group is then monitored over a period. In some 

trials, there may be more than one experimental group to be compared with controls.  

     In constituting the control group it is desired that they be as comparable as possible to 

the test group in regard to the causally relevant (prognostic) factors that could influence 

the outcome of the study and any inference as to the effectiveness of the experimental 

therapy. By balancing all of these factors as evenly as possible between the two groups, 

and leaving the experimental therapy as the only causally active variable, it becomes 

possible to infer that differences in outcome between the two groups are related to the 

therapy. This process is referred to as eliminative induction (Howson and Urbach 184). 
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     The question that arises is how to first identify and then evenly distribute these 

prognostic variables. R.A.Fisher noted that not only are there the known prognostic 

factors, but a possibly long list of unknown factors that could influence results (17-21). 

Fisher developed the processes of control and randomization to deal with known and 

unknown prognostic factors, respectively. 

     A prognostic factor has been “controlled for” in a trial when that factor is equally 

distributed between test and control groups. For example, if age were a factor, then the 

groups would have similar age structures. Randomization is designed to evenly distribute 

unknown factors, although in most cases it should also evenly distribute the known 

factors as well. Subjects are randomly assigned to treatment or control groups, thus 

avoiding selection factors that might bias results. 

     In a clinical trial, how does one control for prognostic factors? One method is to use 

patients recently treated using some “standard” or accepted form of therapy, a form of 

“historical” controls. Thus when a new treatment is introduced, the patients receiving the 

new therapy may be compared to such a historical control group assembled in such a way 

as to be as comparable as possible to known prognostic factors. Another method is to 

randomly assign patients to either the experimental therapy or to a control therapy. The 

control therapy could be some “standard” or accepted therapy, or no therapy at all, such 

as with a placebo. 

Randomized Controlled Clinical Trials in Early Breast Cancer     

      In modern medical practice as well as EBM, there is the widespread belief that the 

“best” evidence on which to base treatment recommendations comes from RCTs. The 

following statement is typical: “The critical issue regarding primary radiation therapy [for 
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women with early breast cancer] is whether it yields survival equal to mastectomy. This 

issue can only be answered by randomized prospective trials in which the treatment arms 

are well balanced in terms of prognostic features” (Recht et al. 437). Based on 

uncontrolled or partially controlled studies such as the ones cited above, several RCTs 

comparing minimal breast surgery to traditional mastectomy were undertaken in the U.S. 

and abroad. In minimal breast surgery, the tumor is removed (variously called 

lumpectomy, partial mastectomy, segmental mastectomy, quadrantectomy, etc.) and the 

breast is preserved, usually followed by breast irradiation. I will discuss three of these 

trials, which are typical. 

     One RCT was carried out in North America by the National Surgical Adjuvant Breast 

Project (NSABP) to compare traditional mastectomy with segmental mastectomy in the 

treatment of early breast cancer (Fisher et al., Eight-year Results). Eighty-nine 

institutions in the U.S. and Canada enrolled a total of 1843 women into the trial, and they 

were randomly allocated to three groups: total mastectomy, segmental mastectomy, and 

segmental mastectomy followed by irradiation. The patients were followed for eight 

years and results were assessed with standard (classical, frequentist) statistical 

techniques. Major end points were disease-free survival (alive without evidence of 

disease), distant disease- free survival (alive without evidence of disease outside the 

locoregional area), and overall survival (alive regardless of disease status). Ninety 

percent of the women treated with breast irradiation after lumpectomy remained free of  

ipsilateral (on the same side) breast tumor, compared with 61 percent of those not treated 

with irradiation after lumpectomy (p<0.001). Lumpectomy with or without irradiation of 

the breast resulted in rates of disease-free survival (58 ± 2.6 percent), distant disease-free 
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survival (65 ± 2.6 percent) and overall survival (71 ± 2.6 percent) that were not 

significantly different from those observed after total mastectomy (54 ± 2.4 percent, 62 ± 

2.3 percent, and 71 ± 2.4 percent, respectively). There was no significant difference in the 

rates of distant disease-free survival (p=0.2) or survival (p=0.3) among the women who 

underwent lumpectomy (with or without irradiation), despite the greater incidence of 

recurrence in the ipsilateral breast in those who received no irradiation. The authors 

concluded that the study results support the use of lumpectomy in patients with Stages I 

or II breast cancer, and that irradiation reduces the probability of local recurrence of 

tumor in patients treated with lumpectomy. 

     Another RCT in the U.S. comparing conservative treatment with mastectomy was that 

performed at the National Cancer Institute (Jacobson et al.). Between 1979 and 1987, the 

Institute conducted a single – institution trial comparing lumpectomy, axillary dissection, 

and radiation with mastectomy and axillary dissection for Stages I and II breast cancer. 

Two hundred forty-seven patients were randomized to modified radical mastectomy 

(which includes axillary dissection) or to lumpectomy, axillary dissection, and radiation 

therapy. Randomized patients were followed for a median of over 10 years. At 10 years, 

overall survival was 75 percent for patients assigned to mastectomy and 77 percent for 

patients assigned to lumpectomy plus irradiation (p=0.89). Disease-free survival at 10 

years was 69 percent for the patients assigned to mastectomy and 72 percent for the 

patients assigned to lumpectomy plus irradiation (p=0.93). The rate of locoregional 

recurrence at 10 years was 10 percent after mastectomy and 5 percent after lumpectomy 

plus irradiation (p=0.17). The authors concluded that breast conservation therapy with 
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lumpectomy and radiation in Stages I and II breast cancer offers results at 10 years that 

are equivalent to those with mastectomy.  

     An RCT comparing Halsted radical mastectomy with quadrantectomy, axillary 

dissection, and radiotherapy in patients with early breast cancer (tumor less than two 

centimeters in size) with no palpable axillary disease was conducted between 1973 and 

1980 at the National Cancer Institute in Milan, Italy (Veronesi et al.). Randomized 

patients numbered 701, with 349 receiving Halsted mastectomy and 352 receiving 

quadrantectomy. Survival curves showed no difference between the two groups in 

disease-free survival (p=0.54) or overall survival (p=0.88). The authors concluded that 

“... radical mastectomy appears to involve unnecessary mutilation in patients with 

carcinoma of the breast measuring less than 2 cm and without palpable axillary nodes” 

(11). 

Is Randomization Necessary? 

     The view that randomization of subjects to test and control groups is the best method 

currently available for eliminating potential bias in controlled clinical trials has been 

challenged from within both the philosophical and medical communities. Howson and 

Urbach, for example, in arguing in favor of Bayesian over classical, frequentist statistical 

approaches to clinical trial analysis, offer several criticisms of randomization. Worrall 

(Evidence in Medicine) has also argued that randomization is not necessarily to be 

preferred. Similarly, criticisms are found within the medical community, such as those 

advanced by Freireich and Gehan.  

     Howson and Urbach challenge the notion that randomization is absolutely essential 

and state that “… the problem of nuisance variables in trials cannot be solved by its 
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means” (187). They maintain that the essential feature of a trial that permits a satisfactory 

inference of causal efficacy of a treatment “…is the presence of adequate controls” (187). 

Freireich and Gehan similarly state: “The most important element to control is the 

comparability of patient populations receiving different treatments” (282). Howson and 

Urbach examine two main arguments for randomization found in the literature: 1) that of 

classical statisticians for whom significance tests are central to inference that such tests 

are valid only if experiments were randomized, and 2) an eliminative-inductive defense. 

     In evaluating 1), Howson and Urbach emphasize that the population from which 

subjects are drawn for random sampling is often poorly defined. They consider the 

randomization step itself, i.e., that just those patients randomized could be considered the 

population. They find this unsatisfactory, however, since one aim of the trial is to extend 

results to other populations, for example people in faraway places or those presently 

healthy or as yet unborn who will develop the disease in the future. They state that, “…in 

no trial can random samples be drawn from hypothetical populations of notional people” 

(190). They further state “…the path from “representative sample” to “general body of 

patients” – two vague notions - cannot be explored via significance tests and is left 

uncharted; yet unless that path is mapped out, the randomized clinical trial can have 

nothing at all to say on the central issue that it is meant to address” (191). 

     Howson and Urbach also cite Kendall and Stuart as implying that the randomization 

process is subjective: “A substantial part of the skill of the experimenter lies in the choice 

of factors to be randomized out [i.e., distributed at random] of the experiment. If he is 

careful, he will randomize out all the factors which are suspected to be causally 

important…every experimenter necessarily neglects some conceivably causal factors…” 
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(193). They then go on to say that this subjectivity is at odds with the classical 

methodology underlying Fisher’s argument. 

     In 2), in the eliminativist-inductive defense, it is argued that randomization tends to 

balance prognostic factors whether or not they are known. As Howson and Urbach state, 

it is essentially that “…although randomization does not give a complete assurance that 

the experimental groups will be balanced, it makes such an outcome very probable, and 

the larger the groups the greater the probability” (195).  They think that this is mistaken 

unless significantly modified, and the modified position, while compatible with Bayesian 

thought, is inimical to classical inferential theory. 

     Howson and Urbach consider that the number of unknown prognostic factors could in 

fact be quite large. In addition, they raise the possibility that there could also be factors 

not only related to the subjects but to the treatment, for example, impure drug or different 

treatment environments. They conclude that the objective probability could range 

anywhere between zero and one. They reject the strong claim for randomization, that it 

guarantees the groups to be balanced, but also find fault with the more popular, weaker 

claim that it probably or tends to balance the groups, stating that this weaker claim “… 

cannot exploit eliminative induction. For, the premise that the experimental groups were 

probably balanced does not imply that differences that arise in the clinical trial were 

probably due to the experimental treatment, unless Bayes’s theorem were brought to 

bear, but that would require the input of prior probabilities and the abandonment of the 

classical approach” (197).  

     Howson and Urbach concede that randomization is not necessarily harmful, nor claim 

that it is never useful, but deny that it is absolutely necessary. They consider it 
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undesirable that a requirement for randomization makes the use of historical controls 

illegitimate, and state: “The control group could be formed from past records and the new 

treatment applied to a fresh set of patients who have been carefully matched with those in 

the artificially constructed control group (or historical control)” (202). Freireich and 

Gehan also state: “…an unfortunate consequence is that the unqualified acceptance of the 

randomized clinical trial has often led to the rejection of the validity of historical data” 

(278). They also argue that data from an RCT is of no better quality than that generated 

by a test group compared with historical controls (295). 

     Howson and Urbach consider ethical issues in randomization, stating: 

      A new treatment, which is deemed worth the trouble and expense of the 
 investigator, has often recommended itself in extensive pilot studies and in 
 informal observations as having a reasonable chance of improving the  
 condition of patients and of performing better than established treatments.  
 But if there were evidence that a patient would suffer less with the new  
 therapy than the old, it would surely be unethical to expose randomly  
 selected sufferers to the established and apparently or probably inferior  
 treatment. Yet this is just what the theory of randomization insists upon.  
 No such ethical problem arises when patients receiving the new treatment  
 are compared with a matched set of patients who have already been treated 
 under the old regime (203).  
 
     Freireich and Gehan also address ethical concerns with the RCT. They state:  

 …the ethical basis of the randomized clinical trial is questionable because 
 therapeutic research depends upon the investigation of new treatments that have a 
 greater potential for benefit than for risk compared with a standard treatment, and 
 this is a circumstance in which it would be unethical to randomize patients” (294). 
 
     Howson and Urbach believe that a Bayesian approach to clinical trials is preferable to 

classical approaches involving randomization, and state: “…despite the weight of opinion 

that regards it as a sine qua non, the randomizing of treatments in a trial does not do the 

job expected of it and, moreover, that in the medical context, it can be unnecessary, 

inconvenient, and unethical” (254). They recognize the need for controls in clinical trials, 
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however, as necessary to estimate how test patients would have fared without the therapy. 

They believe that Bayes’ theorem provides a rational basis for selecting controls, and 

extol the virtues of historical controls. They, like Freireich and Gehan, have no problem 

with the admissibility of such controls, apparently matched on the known prognostic 

factors. Both Freireich and Gehan as well as Howson and Urbach point to the practical 

advantages of using historical controls, like the need to treat fewer subjects and in general 

being less expensive to conduct. Historical comparison groups don’t expose patients to 

ineffective placebos, “… considerations that address natural ethical concerns and mitigate 

the reluctance commonly found amongst patients to participate in trials” (Howson and 

Urbach 261). They acknowledge, however, that such historically controlled trials aren’t 

easy to set up, relying often on thorough medical records that are more detailed and 

accessible than those routinely available. 

     Howson and Urbach believe that the Bayesian approach to clinical trials is superior to 

the classical approach. They state: 

         Bayes’s theorem supplies coherent and intuitive guidelines for clinical and 
 similar trials, which contrast significantly with classical ones. One striking 
 difference between the two approaches is that the second simply takes the  
 need for controls for granted, while the first explains the need and,  
 moreover, distinguishes in a plausible way between factors that have to  
 be controlled and those that do not (262). 
 
     They go on: 

        We have shown that frequentist tools do not solve any problems. The conclusions 
        they license … have no inductive significance whatever. True, one can often draw 
        frequentist conclusions “easily,” but this is of no account and does not render them 
        scientifically meaningful. True, many scientists feel “comfortable” with frequentist 
        results, but this, we suggest, is because they are misinterpreting them… (264). 
  
     Worrall also argues that Fisher’s belief that randomization is required to justify the use 

of significance tests is unnecessary, and that multiple other factors could exist which 
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might explain the outcome of an RCT (Evidence in Medicine 996-1001). He also agrees 

with Howson and Urbach that randomization might not succeed in evenly distributing 

confounding factors, and that classical, frequentist statistics makes no intuitive sense 

because it has no formal method for assigning probabilities to hypotheses (Evidence in 

Medicine 1001-08). He does, however, grant that preventing selection bias is a “cast-iron 

argument for randomization” (Evidence in Medicine 1009). However, he adds that 

randomization is only a means to an end, and not an end in itself. The aim is to take away 

from experimenters control over which arm of the trial patients are assigned to, and that 

randomization is just one way of achieving this.  

     Although they do not champion a Bayesian approach to data analysis, Freireich and 

Gehan also criticize what they regard as an over – reliance on statistics. For example, 

they point out that a statistically significant difference can always be shown between any 

two treatments if the samples are large enough, and state that “One of the difficulties in 

the application of the scientific method to clinical studies is the impossibility of proving a 

null hypothesis” (286).  

A Defense of Randomization 

     The critics cited above minimize the importance of randomization in clinical trials and 

emphasize the value of historical controls in assessing the effectiveness of novel 

therapies. They also draw attention to greater expense and inconvenience, as well as 

negative ethical aspects of such RCTs. Howson and Urbach criticize the frequentist 

interpretation of parameter estimates as nearly useless since subjects are not drawn 

randomly from a defined population.  
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     I believe that such critics have underestimated the importance of randomization, and 

that it is quite often absolutely necessary, particularly to help settle controversies over 

competing therapies for major illnesses. Their faith that historical controls can suffice to 

the extent that they imply is unjustified. Their comments on negative ethical aspects are 

mostly one-sided and tell only half the story. Howson and Urbach have not told us under 

what circumstances it is necessary to randomize, only that it is not absolutely necessary, 

and much of their case seems to rest on a confusing intermingling of what I will call 

statistical and scientific inferences. 

     By statistical inference I will mean inferring from a noncontroversial statistical point 

of view arising from the assumptions made and application of the probability axioms. 

Examples would be the probability of 0.5 of getting heads on the toss of a fair coin, or 

estimating the mean height θ of a large population of people, whose standard deviation σ 

is known, by the sample mean x̄. As Howson and Urbach note, because the distribution is 

essentially normal, it follows that, with a probability of 0.95, −1.96 σn ≤ θ − x̄ ≤ 1.96 σn 

(169-70). By scientific inference I will mean an inference that may, though not 

necessarily, involve a statistical inference but is a generalization not justified by strictly 

statistical considerations. Examples would be inferring that, ceteris paribus, women in 

Denmark will respond similarly to a treatment for breast cancer administered to women 

in New York, or that children everywhere would respond similarly to children in Rio de 

Janeiro successfully vaccinated against measles. 

     First, what of the arguments by Worrall and Howson and Urbach against Fisher’s 

notion that random samples are necessary to underwrite significance tests? This perhaps 

appears to be a straw man: Significance tests are used not only in RCTs but are also 
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frequently used in studies where no randomization has been carried out, such as cohort 

and case-control studies. And Papineau, a defender of RCTs, also concedes that random 

samples are unnecessary (437, 444), but also argues, as I do below, that it misses the 

point of randomization in RCTs.   

     What of the claim by Worrall and Howson and Urbach that the problem of nuisance 

variables can’t be solved by randomization? These “nuisance variables” are the 

prognostic factors that can’t be controlled for because they are unknown. But if they are 

unknown to frequentists, they are also unknown to Bayesians. Both frequentists and 

Bayesians would agree that control of known prognostic factors is essential, but also that 

no threat to validity by bias from unknown prognostic factors is necessary. Frequentists 

offer randomization as a solution, albeit an imperfect one. What is the Bayesian 

alternative? None are on offer. But interestingly, Howson and Urbach also state that 

randomization may “sometimes be useful” to better balance groups, apparently by 

helping to eliminate selection bias (259). And, Worrall agrees that randomization is a 

valid method to control selection bias (Evidence in Medicine 1008-09). 

     It is comforting to know about selection bias, but if we need to randomize to eliminate 

a bias like this that we know about, what about the possible biases that we don’t know 

about? The main reason for random allocation to begin with is to balance unknown 

prognostic factors. And, selection bias is not limited to selection by experimenters of 

which group to assign a patient to, as these critics seem to imply. 

     Selection bias is one of several types of biases, which along with confounding, is a 

threat to study validity, and thus accuracy. As I have argued, it is particularly problematic 

with observational studies such as cohort and case-control studies, in which study groups 
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must somehow be selected. But the problem is the same: ensuring to the extent possible 

that groups are comparable except for the factor(s) under study. How should patients in 

an RCT be assigned to study groups? Should patients themselves select which group they 

will enter? Self-selection is a known threat to validity, as illustrated in the Smoky nuclear 

study in Chapter 5, so this method would be unsatisfactory. The problem is that if 

patients are not assigned randomly, then some nonrandom method of assignment must be 

put in place. This implies that some criteria for assignment would be required. These 

criteria presumably would specify how patients would be selected for assignment to the 

study groups. Thus, possible selection factors might be introduced that could bias study 

results, exactly what randomization seeks to avoid. Critics like Worrall and Howson and 

Urbach have offered no plausible alternative to the RCT to control selection bias, and I 

believe the reason is that there may well not be one.     

     What of the claim that the essential feature of a trial that permits a satisfactory 

inference of causal efficacy of a treatment is the presence of adequate controls? Few 

would argue that trials need “adequate” controls. And few would disagree that known 

prognostic factors should be evenly distributed between test and control groups. Observe 

how Howson and Urbach model a drug experiment (256-58): 

     Hα:   P(R \ L, M, N, Drug) ≈ 0.80 & P(R \ L, M, N, ~ Drug) ≈ 0.40, and  

     Hβ: Patients in the experimental groups satisfy conditions L, M, and N. 

     The important thing to notice is that prognostic factors L, M, and N have to be known 

in order to enter the schema. But then they think of and add another factor that could bias 

the experiment, an optimistic attitude O that could promote recovery. What is their 

solution? Add the O to the L, M, and N! They hardly acknowledge the possibility of 
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unknown factors which could also bias the experiment. When do we have “adequate” 

controls? I would say when we have done our best to ensure that all prognostic factors are 

distributed evenly in the experimental groups. This approach by Howson and Urbach is 

not reassuring. 

     Many critics seem to believe that a new therapy can be evaluated by forming a test 

group and comparing it with a control group already treated with some comparison 

therapy and carefully matched on known prognostic factors without the need for 

randomization. But the use of historical controls is fraught with pitfalls (Byar; Byar et 

al.). For example, in RCTs, great attention is usually paid to the setting up of 

standardized definitions, not necessarily the case in historical settings. Also, definitions 

may change over time. More sensitive diagnostic procedures may systematically detect 

earlier, thus less severe states. The same names may be used to describe these new states, 

thus leading an investigator to think the states are comparable. Changes in general 

supportive care may also occur over time, affecting prognosis in countless subtle ways. 

Treatment techniques often vary considerably in nonrandomized settings. For example, 

the “same” surgical operation may be performed with several variations, and techniques 

may improve over time. Already noted above in the studies by Haffty et al. and Williams, 

Murley, and Curwen is how the “same” stage of disease can actually be quite different. 

The use of laboratory and other diagnostic tests may vary greatly depending on personal 

preferences by practitioners. In RCTs, there is standardization and direct comparability 

between test and control subjects that is designed to remove these potential obstacles. 

Test and control subjects are derived from the same group of eligible patients, and are 

concurrently randomized to the study groups. Finally, historical controls even in principle 
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can only control for known prognostic factors. Green, Benedetti, and Crowley describe 

several examples of erroneous conclusions when historical controls have been relied on 

in nonrandomized studies (143-50), and Mayo also provides the example of misleading 

inferences from the nonrandomized studies of hormone replacement therapy that weren’t 

appreciated until the later RCTs (Evidence as Passing Severe Tests 97). And, not to be 

forgotten is the observation from the Gastrointestinal Tumor Study Group RCT described 

earlier, in which the authors stated: “... the importance of a no adjuvant therapy control 

arm cannot be overemphasized. Our results for this cohort of patients are much better 

than would be suggested by historical controls” (Thomas and Lindblad 250). Such 

observations are by no means unusual among those conducting RCTs.  

     Freireich and Gehan as well as Howson and Urbach apparently believe that if some 

evidence exists that a new therapy is better than established therapy, an RCT to better 

establish this is unethical. For example, Howson and Urbach state: “But if there were 

some evidence that a patient would suffer less with the new therapy than with the old, it 

would surely be unethical to expose randomly selected sufferers to the established and 

apparently or probably inferior treatment “ (203). But, I think this belief is mistaken. 

     The problem is that “some” evidence usually isn’t enough to establish a new form of 

therapy in place of an old. If the illness is serious, like cancer for example, RCTs are 

usually necessary to convince practitioners to adopt the new therapy or for organizations 

like the American Cancer Society or the NCCN to alter treatment guidelines. 

     The dominant ethical justification for randomization is clinical equipoise (Freedman). 

It is based on the recognition that the purpose of an RCT is social, to change standards of 

medical practice. Clinical equipoise exists when there is uncertainty or disagreement 
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among the expert medical community about which intervention is better. As Freedman 

notes, physicians “must simply recognize that their less-favored treatment is preferred by 

colleagues whom they consider to be responsible and competent” (144). It is this absence 

of consensus among medical experts about what is the best treatment that ethically 

justifies the RCT. 

     This is not to say that insistence on performing an RCT when other arguably good 

evidence exists of therapeutic effect never raises ethical concerns. I have argued that we 

have done a sufficient number of studies to confirm a hypothesis when additional study is 

believed unlikely to change the weight of evidence for that hypothesis. I address these 

issues further in Chapter 8. 

     Howson and Urbach claim that the randomization process is necessarily subjective, 

citing Kendall and Stuart as noted above. They go on to state: “What Kendall and Stuart 

demonstrated is that randomization has to be confined to factors that the experimental 

designers judge to be of importance, and that this judgment is necessarily a personal one, 

which cannot be based solely on objective considerations” (194). 

     The experiment referred to by Howson and Urbach and discussed by Kendall, Stuart, 

and Ord (135-37) concerned the effects of blood alcohol levels on reaction times among 

male automobile drivers. The drivers were randomly assigned to various doses of alcohol 

and their reaction times and blood alcohol levels were measured after a fixed interval. It 

was a regression analysis problem. They made the point that if the time of day that the 

experiment was conducted interacted with reaction times and blood alcohol levels, then it 

could be studied as a factor in a regression analysis after the experiment whether or not it 

had been randomized out (distributed at random). But if the time of day that the tests 
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were done had been fixed, for example at 6 p.m., then it couldn’t be studied. What 

variables to fix or randomize out are subjective and left to the investigator. 

     This is fine as far as it goes, but it is hard to see how this is a criticism of an RCT. We 

want to eliminate bias and confounding, which may result from the uneven distribution of 

some prognostic factor(s) between experimental groups. If a factor is fixed, it will not 

produce bias. If it is randomized out, we expect it to be distributed randomly (and evenly) 

between the groups, thus avoiding bias. This example seems to not go through as a 

criticism of randomization in an RCT.   

     Howson and Urbach criticize clinical trials from the standpoint of what they regard as 

the inapplicability of classical statistical techniques to samples not drawn randomly from 

a well-defined population. As noted above, they state that, “… in no trial can random 

samples be drawn from hypothetical populations of notional people” (190). They are 

correct, but it is beside the point. Usually no effort is made to draw patients from some 

defined “population,” hypothetical or real. Consider as an example the RCT carried out 

by the NSABP cited above. The important point in this trial (and the other RCTs in early 

breast cancer) is that the only “random” aspect was the method of allocation of the 

patients to the experimental groups. When an eligible patient appeared at a participating 

institution, she was offered the opportunity to participate. If she agreed, she was 

randomly allocated to one of the three experimental groups by the central NSABP office. 

No effort to form a “representative sample” was made. So it is difficult to assess their 

statement that “… the path from “representative sample” to “general body of patients” – 

two vague notions – cannot be explored via significance tests and is left uncharted; yet 



170 
 

 

unless that path is mapped out, the randomized clinical trial can have nothing at all to say 

on the central issue that it is meant to address” (191). 

     But what is the “central issue” to which they refer? For the NSABP and other similar 

randomized trials, the research question is whether the less disfiguring partial breast 

removal can replace whole breast removal without compromising expected outcomes. 

“Representative samples” have nothing to do with it. It is true that significance tests are 

applied to the groups in the trial, but any inference from the women in the trial to a 

woman elsewhere is a scientific inference: it is that a woman with similar characteristics 

to the women in the trial who is treated similarly can reasonably expect a similar 

outcome. It is not a statistical inference that is hampered by the lack of a formal 

procedure for assigning probabilities to hypotheses in classical (frequentist) statistics. 

     Howson and Urbach also maintain that eliminative induction cannot be used to justify 

the weaker claim that randomization tends to balance the groups, stating “…the premise 

that the experimental groups were probably balanced does not imply that differences that 

arise in the clinical trial were probably due to the experimental treatment, unless Bayes’s 

theorem were brought to bear, but that would require…the abandonment of the classical 

approach” (197). They grant, however, that the strong claim for randomization, which is 

that it guarantees that the groups are balanced, if true, “…then the conditions for an 

eliminative induction would be met, so that whatever differences arose between the 

groups in the clinical trial could be infallibly attributed to the trial treatment” (196-97). 

     Let’s look more closely at their argument: If we knew that the groups were balanced 

(the strong claim), then we would know (infallibly) that differences could be attributed to 

the trial treatment. This is of the form: If A, then B. In probabilistic terms: If P(A)=1, 
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then P(B)=1. But then they say we can’t say that if probably A, then probably B unless 

we invoke Bayes’ theorem, assign priors, etc. etc. and abandon classical statistical 

methods. Is this true?  

     No, for the following reason, and here I will assume that probably means a probability 

that is greater than 0.5 but less than 1. We have strong evidence from computer modeling 

and computer – based simulations that random assignments like those carried out in 

RCTs distribute factors evenly among experimental groups with a high probability, which 

increases as the number of patients increases. It is not a subjective assessment by 

investigators. 

     Consider, for example, an RCT testing some treatment A against a treatment B. 

Suppose results favor treatment A at the p<0.05 level. Thus, the probability that this 

result or a result more extreme favoring treatment A occurred simply by chance is less 

than .05. If I have good reason to believe (that is, the probability is high) that the groups 

were balanced with respect to possible confounders, and that other potentially biasing 

factors have been controlled, then it would seem eminently plausible to conclude that 

probably treatment A was responsible for the result. Or, stated differently, probably 

treatment A caused the result (Papineau; Cartwright, RCTs). No resort to Bayesian 

reasoning is required.  

     Now of course one can use a Bayesian approach to the analysis of the results of an 

RCT. But this is not the inevitable result of whether or not we can use eliminative 

induction, for Bayesians are no better off here than frequentists. We can never be certain 

that the groups were balanced (the strong claim), thus we can never know (infallibly) that 

differences could be attributed to the trial treatment. But science isn’t about certainty. It is 
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about, among other things, eliminating possible sources of error to the extent possible 

before making inferences based on the results of the trial. In the analysis of an RCT, 

standard, classical statistical techniques are used to study differences in the endpoints 

(e.g., survival curves) generated describing the groups. If they are so different that the 

probability of observing a difference that extreme or more extreme is very low (say, 

p<0.05), then we are to that extent confident that the test treatment is causally active. By 

randomizing we have done everything we know how to do to reduce bias from uneven 

distribution of unknown prognostic factors. It is difficult to see how we could be more or 

even as confident in the results of a Bayesian analysis in which only the known 

prognostic factors have been controlled for, and randomization has been voluntarily 

dismissed as unnecessary.  

     Critics often overlook how at least many, if not most, RCTs are actually conducted. It 

must be remembered that randomization tends to balance both known and unknown 

factors, and thus it is not surprising that known prognostic factors are often not controlled 

for before randomization under the expectation that they will be evenly distributed by the 

randomization process itself. Thus, in the NSABP trial discussed above, all eligible 

patients were randomized without prior control for all known prognostic factors. In Table 

3 from the five-year results of this trial (Fisher et al., Five-year), several known 

prognostic factors were shown to be evenly distributed among the experimental groups, 

adding confidence that unknown prognostic factors were also evenly distributed. 

     So, after randomization, if we can show (that is, we have evidence) that known 

prognostic factors have been evenly distributed, it seems that we can be more justified 

that the unknown prognostic factors have likewise been evenly distributed than in the 
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Bayesian approach as outlined by Howson and Urbach, in which we have no assurance 

whatever that unknown factors have been evenly balanced. Thus, Simon seems quite 

justified in asserting that, “…some people believe that Bayes’ theorem is somehow a 

substitute for randomization. In fact, however, randomization is just as important for the 

validity of Bayesian methods as for frequentist methods” (582).  

Analysis of Evidence in Studies of Treatment for Early Breast Cancer 

     Radical surgery originally became the accepted treatment for locoregional breast 

cancer because there were no alternatives. With the introduction of radiation therapy, it 

became possible to consider less disfiguring and mutilating surgery. If the lesser 

approach resulted in no lower probability of survival or of other outcome measures, the 

lesser treatment would become a viable, and in general, preferred alternative. 

     But to adopt such a new treatment approach, particularly for a serious, often fatal 

disease like breast cancer, what is required is evidence that the new approach will not 

reduce a woman’s chances of surviving the disease. Thus the hypothesis being 

entertained is a null hypothesis, that of no difference in outcome. 

     I suggest that at least three “levels” of such evidence can be identified from the 

historical evolution of studies assessing the conservative approach. The first level, Level 

I, is the least convincing, and comes from studies that simply adopt lesser surgery and 

radiation therapy in a series of patients and then compare it to some series of patients 

treated by radical surgery. Simple measures, like the percent of women alive at five or ten 

years, are presented. In this level, no effort is made to control for prognostic factors that 

could bias results. An example is the study by Mustakallio. A second level of evidence, 

Level II, “better” and more convincing than the first, takes into account prognostic 
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factors and attempts to “control” for them in some way. Studies in this level are more 

heterogeneous than in the first level and include studies that control for only one or two 

prognostic factors as well as studies that try to control several or even all known  

prognostic factors. Examples are the studies by Williams, Murley, and Curwen and Cope 

et al. The third level, Level III, I contend provides the “best” or most convincing 

evidence that clinical medical research can aspire to. It is that provided by RCTs (which 

also lead to their derivatives, such as systematic reviews or meta-analyses of RCTs) that 

control to the best of our ability all prognostic factors, known and unknown.  

     Analyses of the survival outcomes in Levels I and II studies were quantitative, and 

simple descriptive statistics were used, including simple adjustment techniques in some 

Level II studies. Level III studies employed classical, frequentist statistical methods and 

were designed to pose what Mayo would consider a severe test, and what I am calling an 

accurate study or test. More specifically, the analyses used in the type of RCTs directed 

at detecting survival differences in the populations tested make use of sophisticated 

techniques utilizing life table (Cutler and Ederer) and log-rank methods (Mantel). These 

methods pose a much more sophisticated analysis than would a simple five or ten year 

survival percentage, even if the study was an RCT in which all prognostic factors had 

been evenly balanced between the two groups. This can be illustrated by a simple (albeit 

extreme and implausible) example. Suppose in an RCT that 1000 women were given 

Treatment A and 1000 women were given Treatment B, and each group was followed for 

five years. Assume further that 900 women given Treatment A died in the first year and 

100 survived until the end of year five, and that all 1000 women given Treatment B 

survived until the beginning of year five, and during that year 900 died with only 100 
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surviving until the end of year five. The five year survival rate for both Treatments A and 

B is 10 percent, but clearly the treatments have produced quite different effects, with 

many more women given Treatment B surviving many more years overall. These 

differences are captured and quantified in modern survival analyses. 

     In none of the RCTs was evidence provided that one of the treatment arms was 

superior. Many surgeons believed that any form of therapy short of radical removal had 

to be inferior, and certainly the Level I and II studies could be (and were) criticized by 

them as possibly biased due to poor or no control of prognostic factors. So, it would 

seem, the RCTs have provided the most convincing evidence possible of the truth of the 

null hypothesis of no difference between mastectomy and the conservative approach. Or 

are we entitled to that claim? Certainly, most in the health care field would say that we 

are. But how should we react to Mayo’s statement that “… taking no evidence against the 

null as evidence for it is a well-known fallacy” (Evidence as Passing Severe Tests 111)?  

     Mayo does not fully develop this notion here, however. Certainly, if we fail to reject 

the null hypothesis in an RCT at the conventional level of p<0.05 with a p-value of, say, 

0.06, then we would hardly be justified in claiming that the results of the trial constituted 

evidence for the null hypothesis. In questionable cases, additional studies must be done. 

However, it may not be necessary to claim evidence for the null hypothesis. For if the 

purpose of these studies is construed as assessing the claim that radical surgery is “better” 

(in the appropriate sense), then radical surgery has failed to pass the severe test imposed 

by any of the RCTs. In none of the trials was the p-value evenly remotely close to values 

that would be considered as even suggestive that radical surgery was superior. 
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     But if the null hypothesis is indeed true, how can we obtain evidence for it? It is not 

uncommon to see RCTs designed to test the noninferiority of some less radical or toxic 

therapy against a more standard therapy, which is essentially a test of a null hypothesis, 

such as the study by Muss et al. comparing standard multi-drug chemotherapy to single 

agent capecitabine in older women with early breast cancer. But even if we grant that 

failure to reject the null hypothesis in a single RCT may not be evidence for it, could 

performing several RCTs in which the null hypothesis is not rejected provide such 

evidence? This would seem to be at least part of the rationale for a meta-analysis of 

RCTs. Indeed, as Greenhalgh observes, the meta-analysis sits at the pinnacle of the 

traditional hierarchy of evidence (43).  

     Greenhalgh states that: “RCTs are often said to be the gold standard in medical 

research” (37). She observes that in nonrandomized controlled clinical trials that the 

baseline differences between the groups being compared very often are so great as to 

invalidate any difference ascribed to the intervention (52-53). In a meta-analysis of 

RCTs, she notes, results from a number of similarly conducted studies addressing the 

same research question are pooled, with the objective of obtaining a more accurate 

estimate of effect. Point estimates and confidence intervals from the various trials are 

combined to achieve a single point estimate and confidence interval (121-28). 

     A meta-analysis of results of nine RCTs comparing mastectomy with breast 

conservation therapy in the treatment of early breast cancer was performed (Early Breast 

Cancer Trialists’ Collaborative Group). A total of 2423 women were randomized to 

mastectomy and 2468 to conservative therapy. There was no apparent difference in total 

mortality (p=0.7), rates of local recurrence, or other outcome measures studied. 
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What is the Hypothesis? 

     Historically the hypothesis that developed was that breast conservation therapy yields 

results equivalent to mastectomy. The major clinical question for physicians is: Can 

patients with early breast cancer be told that, to the best of our knowledge, conservation 

therapy yields survival and other prognostic end results comparable to mastectomy, and 

is a viable treatment option? If so, then a woman’s choice of therapy can be based on 

other factors. For example, a woman who highly values preservation of her own breast 

may elect to undergo breast conservation, which requires several weeks of daily radiation 

treatments, whereas a woman for whom it makes little difference may elect mastectomy 

and forego the requirement for radiation. 

     So ideally what we seek is evidence for the hypothesis of equivalence. But as 

Freireich and Gehan note, we can never “prove” a null hypothesis, since if we make the 

sample size large enough we can in theory obtain evidence of an effect for one of the 

treatments at whatever statistical level of significance that we choose. But science, 

including clinical medical science, is not about certainty or “proving” anything, as I noted 

earlier. But let us assume that the two forms of therapy are indeed equivalent. Then if we 

did several very large RCTs such that at some level of statistical significance, say, 

p<0.05, that each study showed a significant effect for one form of therapy, then we 

would expect to see about as many studies “positive” for mastectomy as we would for 

conservation therapy, since the probability of a positive result for either is 0.5. We do not 

have this, but we do have the results from the meta-analysis of nine RCTs. What we see 

is that in three of the trials the point estimates are to the left of the vertical “no effect” 

line of odds ratio 1.0 (Greenhalgh 123) and six are to the right (the side favoring 
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conservative therapy.) All 95 percent confidence intervals cross the “no effect” line, so 

this meta-analysis passes the Chi-squared test for homogeneity (Greenhalgh 126). These 

data are consistent with the null hypothesis of no significant difference between 

treatments. Certainly, there is no evidence favoring mastectomy. 

     Applying the test of significance from the binomial distribution assuming n=9 trials 

with x=6 binary outcomes, p=0.5 for each outcome, we find that the probability of 

obtaining this result or a result more extreme (that is, B≥6) = 0.254. There is no statistical 

evidence to suggest a departure from the null value. Thus, I argue that we are justified in 

making the scientific inference that there is no apparent difference between the two forms 

of therapy. From a practical point of view, as clinical scientists, it is reasonable to believe 

that we have done as much as reasonably possible to rule out the possibility that one form 

of therapy is superior. This is at the heart of EBM.  

     Thus, the weight of evidence favoring the hypothesis of the essential equivalence of 

mastectomy and conservation therapy seems very strong. 

How Generalizable are RCT Results in Clinical Medical Science? 

     I have argued that generalizing from RCT results in clinical medical science is a 

scientific inference rather than a statistical inference. The extent to which the results from 

any RCT or group of RCTs addressing the same issue, for example, some new therapy, 

will depend on numerous factors, not the least being the extent to which patients that 

might be considered candidates for the new therapy are comparable to trial patients. This 

is sometimes referred to as external validity, and the larger population to which results 

are to be generalized is sometimes referred to as the target population (Cartwright, 

RCTs).  
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     Ideal RCTs are one of a group of methods that Cartwright calls “clinchers” (RCTs 14).  

According to Cartwright, it can be proved that if the auxiliary assumptions are true, the 

methods are applied correctly and the outcomes are true and have the right form, then the 

hypothesis must be true. They work deductively, a view shared by Howson and Urbach 

(197). Another characteristic Cartwright ascribes to RCTs is that they are self-validating 

(Evidence-Based Policy 130). Manuals exist for the correct conduct of RCTs to ensure 

that all of the assumptions are met, including randomization for the equal distribution of 

confounders, blinding, and other tactics. However, Cartwright views these positive 

characteristics of RCTs to come at a price: narrowness of scope. How do we justify 

exporting a causal claim from the experimental population to a target population? For 

Cartwright, external validity for RCTs is hard to justify (RCTs 19).  

     Cartwright considers evidence-based policy, and argues that not only must evidence 

claims be credible (likely to be true), but also that “the full body of evidence should make 

the conclusion probable, or probable enough given the size of the policy bet” (Evidence-

Based Policy 128). These concerns go straight to the heart of EBM and the conclusions 

derived from studies that form the basis for policy recommendations, such as the warning 

of the U.S. Surgeon General about the hazards of cigarette smoking or the treatment 

guidelines for women with early breast cancer promulgated by the NCCN. Results from 

RCTs must be relevant to the target population. 

     Erroneous generalizations from RCTs conducted in one setting to another, different 

setting may certainly occur, and Cartwright illustrates this with an RCT done in 

Tennessee that showed that school class size reductions improved reading scores 

(Evidence-Based Policy 131-32). The California class-size reduction program, in which 
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class sizes were reduced in an effort to improve reading scores, used as evidence the 

well-conducted RCT done in Tennessee. Yet, in California, when class sizes were 

reduced, reading scores did not go up.  

     Apparently, significant differences existed between Tennessee and California, and 

there is a conventional explanation for the unexpected results. California rolled out the 

program in a short time and over a short period, which created a sudden need for new 

teachers and new classrooms. Large numbers of poorly qualified teachers were hired and 

the more poorly qualified teachers went to the more disadvantaged schools. Also, classes 

were held in inappropriate spaces and other educational programs thought to be 

conducive to learning to read were curtailed due to lack of space. In addition, it was 

thought likely that the distribution of confounding factors already in place were different 

in California than in Tennessee.  

     Roush also addresses the problem of generalizability (which she calls transferability) 

and notes that it is not peculiar to RCTs but to any kind of study, and that although the 

studies themselves offer no solution, the problem can be addressed through further 

studies. Thus, for example, although we could see some specific result in one RCT, we 

would be considerably more confident if the same or nearly the same result were seen in 

several RCTs studying the same intervention, since it would be expected that spurious 

results due to local bias or confounding in one study would not be replicated. This 

replication of results is what we have in the RCTs of early breast cancer described earlier, 

which, as noted, adds confidence in the validity of the findings.  

     Roush believes that we should resist the expectation that there will be a single time 

when the generalizability problem for a study result is solved (142). Nevertheless, by 
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utilizing common sense, practitioner experience, observational studies and the like, we 

can continue to uncover additional potentially confounding factors for each new round of 

RCTs and other studies (144-45). 

      Thus, findings from RCTs do not guarantee generalizability, and even may not be 

generalizable at all. How do RCTs in clinical medical science fare? There is, I believe, no 

simple answer to this question, but on reflection, it is a problem not just for RCTs, but as 

Roush notes, also for any type of study in clinical medical science. Indeed, it would seem 

that the problem permeates nearly all, if not all, of the inductive empirical sciences. It 

must be rare indeed that scientists are able to study all of the individual units, elements, 

or individuals of the subject or phenomenon that they are investigating. Virtually every 

study can be considered the study of a sample in which results at least in theory might be 

generalized to some larger population. This is as true of the physical sciences as it is of 

the social sciences, the latter of which would include the Tennessee RCT. 

     Consider, for example, the boiling point of water (H2O). No doubt water has been 

found countless times and in countless geographic locations to reliably boil at 100°C 

(assuming appropriate purification and under the appropriate experimental conditions). 

Nevertheless, these are observations on only a miniscule fraction of all the water that 

exists. We confidently treat the statement “Water boils at 100°C” as the statement of a 

law of nature, or an indisputable fact that is generalizable to the maximal extent. We treat 

it thusly because we believe water molecules to be homogeneous with respect to their 

physical properties. Providing that purity and the other experimental condition caveats 

are met, there is every reason to believe that, for example, water from my faucet and a 
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water sample from Lake Tanganyika will both boil at 100°C without any need for prior 

special testing of these water sources for verification. 

     Objects of study in the biological sciences are known to be, in general, not so 

homogeneous as those in the physical sciences, but at least we are still in the realm of the 

natural sciences, where we expect a certain order of nature to prevail, as experience has 

amply shown. Contributing to the relative homogeneity of human beings is the fact that 

we are of a single species, Homo sapiens, and we can reliably expect normal humans to 

share the same anatomy and physiology, and to respond similarly to medical 

interventions such as drugs or vaccinations, and to physical stimuli such as scalding water 

producing burns. Worrall, in his comments on RCTs, has noted that many interventions, 

such as aspirin for mild headache and appendectomy for acute appendicitis, are very well 

established even though they were not subjected to an RCT (Evidence in Medicine 986). 

Surely this observation is just another indication of the relative homogeneity of humans, 

and that interventions such as these, which are almost too numerous to count, would be 

equally applicable to patients whether they lived in London or Nairobi, without the need, 

as in the boiling water example, for special prior testing of patients in these two locations 

to verify this.  

     Nevertheless, demonstrably some inhomogeneity exists, such that we cannot be 

certain that all humans will always react exactly in the same way to medical 

interventions. Thus, we must be content that they will do so with some (usually high) 

degree of probability. Therefore, some degree of uncertainty always pervades clinical 

medical science, and the focus is on minimizing this to the extent possible. The 

generalizability of RCT results will always be a scientific inference based, at least in part, 
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on the facts concerning the specific individuals and interventions under test and the 

relative comparability of a target population. However, due to the nature of the science 

involved, I would submit that the results of RCTs in clinical medical science are 

eminently more generalizable, and the scope to be not nearly so narrow, as Cartwright 

seems to suggest. Indeed, I would argue, at least with respect to clinical medical science, 

Cartwright’s statement that “External validity for RCTs is hard to justify” (RCTs 19) 

seems itself to be hard to justify. 

Can the Hierarchical Pyramid of EBM be Justified? 

     I have argued that RCTs and the further studies that they spawn, systematic reviews of 

RCTs and meta-analyses of RCTs, deserve to be given the greatest weight in any system 

evaluating evidence from various types of studies in clinical medical science. The central 

issue in any such scheme, I have argued, is accuracy. An accurate study is one in which 

the investigators actually measure what they believe they are measuring (validity), and 

are measuring it precisely. It is one that is free of bias and confounding. The RCT is the 

best method currently available in clinical medical science for achieving validity in 

experiments on groups of patients. This is so because it is designed as an experiment 

under which the investigators are able to exert maximum control over any potential 

factors that might bias or confound the results. The known factors can be evenly 

distributed by design. Unknown factors can be given the highest probability of being 

evenly distributed by randomization. 

     Observational studies are more prone to biases and confounding because the variables 

under study are not under direct control of the investigators. Cohort studies are believed 

to be less error-prone than case-control studies, since in many instances cohorts can be 
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observed over time and outcomes recorded as they occur, and often potentially biasing 

and confounding factors can be identified and attempts made to control for them in 

analyses. Bias from lack of information is ever present. In case-control studies, case and 

control subjects are usually identified after the disease or other health outcome of interest 

has occurred, and usually at least in part is based on medical records that are often biased 

due to errors or lack of information. Even when subjects fill out questionnaires or are 

personally interviewed, experience has shown that faulty memory is always a concern. 

     Cross-sectional studies have threats to validity that are thought to exceed other 

observational studies since information on exposure and disease status, in addition to 

other factors, is usually not available prior to conduct of the study. Thus methods for 

controlling such factors, such as matching and stratification, are also usually not 

available. Multivariable statistical methods are often used for hypothesis testing, and as 

the blood pressure study among Japanese males by Ueshima et al. described earlier 

demonstrates, important determinants of the outcome variable may not even be measured. 

And, as already noted, there are problems associated with determining whether exposure 

preceded disease, and problems associated with measuring prevalence rather than 

incidence. And, of course, all observational studies suffer from our inability to control for 

unknown factors.  

     Where would the evidence that I have labeled Levels I and II in the studies that led to 

the RCTs in early breast cancer fit in the hierarchy? To determine this, one thing that 

needs to be considered is validity. How comparable are the cases in the reported series to 

their implicit or explicit controls? In the Level I study by Mustakallio, there was no 

comparison group. No analysis was performed, only simple description. Any comparison 



185 
 

 

group would have to be implicit. This is a case series by one investigator and would rate 

relatively low on any validity scale, since we do not know how a truly comparable 

control group would have fared. Level II evidence is a little better, since there is some 

attempt made to recognize possible biases. Nevertheless, the threats to validity are 

numerous since the treatment groups are rarely comparable, and so may perhaps rate 

somewhat better than Level I evidence. 

     Both the Level I and Level II studies are best classed, I believe, as case series, which, 

like case reports, are largely descriptive. Their value lies mostly in their ability to 

generate hypotheses. In this respect they are similar to descriptive statistics in 

epidemiology, where, for example, one might compare the incidence rates of breast 

cancer in Asia to the rates in the U.S., Canada, or Northern Europe, where they are some 

six times higher (Henderson et. al.1023). Hypotheses can then be developed as to why the 

difference is so great, which can then be tested in further studies. Studies in which 

hypotheses are tested are usually referred to as analytic: RCTs, cohort studies, case-

control studies, and many cross-sectional studies in clinical medical science are analytic. 

The Level I and II studies were not analytic, and, like case reports, are at the bottom of 

the hierarchical pyramid. Certainly data of this poor quality are incapable of being 

convincing to the medical community at large, in spite of the opinions expressed by the 

authors of those studies. To convince clinicians in any great number to change from one 

therapy to another requires valid evidence that the new therapy is at least as effective, if 

not more effective, than what it is replacing. This comes from analytic studies, and this is 

the type of evidence that EBM values most highly and strives to obtain. 
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     Adoption or acceptance of any system of evidence appraisal by study type must 

recognize that the relative weights assigned to the various types of study result from a 

generalization. It implies that generally, or in the aggregate, study types higher in the 

hierarchy are more valid than those lower. More precisely, they are probably more valid. 

It does not imply that every RCT, for example, is more valid than every study in a type 

lower in the hierarchy. Each study, RCT or not, must be evaluated on its own merits. As 

Greenhalgh notes, “... not even the most hard-line protagonist of EBM would place a 

sloppy meta-analysis or an RCT that was seriously methodologically flawed above a 

large, well-designed cohort study” (44). Given these considerations, the hierarchy or 

ranking by Greenhalgh above seems eminently justified.      
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Chapter 8  
 
Is Evidence from Randomized Clinical Trials Necessary to Firmly Establish a New 
Therapy? 
 
     It seems to have become generally accepted among the medical community that 

evidence from RCTs is the most convincing type of evidence for establishing a new 

therapy. For many, it would appear that the only reliable evidence for this purpose comes 

from RCTs. Thus Tukey, for example, states, “Many of us are convinced, by what seems 

to me to be very strong evidence, that the only source of reliable evidence about the 

usefulness of almost any sort of therapy or surgical intervention is that obtained from 

well-planned and carefully conducted randomized, and, where possible, double-blind 

clinical trials” (679). And, Cowan writes, “With some exceptions, participation of any 

group of patients in a nonrandomized trial is wholly unjustified and unethical since 

nothing can be learned from it” (10). 

     Greenhalgh has maintained that RCTs are unnecessary when a clearly successful 

intervention for an otherwise fatal condition is discovered (39). But what of the more 

usual case, where it is claimed that based on evidence that at least by some may be 

regarded as preliminary, a new therapy is equivalent to, or superior to, an already 

established therapy for some condition? Must RCT evidence be acquired to establish the 

new therapy? 

     In this section, I will argue that the answer is, at least sometimes, “no,” and illustrate 

this by discussing three examples: extracorporeal membrane oxygenation (ECMO) for 

the treatment of respiratory failure in newborn infants, combination radiation therapy and 

chemotherapy for carcinoma of the anal canal, and multi-drug chemotherapy for 
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disseminated testicular carcinoma. In the ECMO case, although RCTs were done, I will 

argue that they were unnecessary to establish ECMO as superior to currently available 

alternative therapies. This case raised serious ethical issues and has been previously 

discussed by others (see, e.g., Worrall, Evidence and Ethics, and Truog). In the case of 

carcinoma of the anal canal, combined radiation therapy and chemotherapy became 

firmly established over surgery as initial treatment without an RCT being done. Similarly, 

three-drug chemotherapy became firmly established as standard therapy in disseminated 

testicular carcinoma without an RCT.      

ECMO 

     Respiratory failure is one of the major medical problems in newborn infants, and is a 

common cause of death in this age group. Hyaline membrane disease accounts for most 

of the cases; other causes include meconium aspiration syndrome, neonatal sepsis, and 

persistent fetal circulation syndrome (Bartlett et al., Extracorporeal Membrane). 

     Prior to the 1980s, conventional therapy consisted mainly of the use of a tracheal tube 

and mechanical ventilation, with supplemental oxygen. Most infants do well on this 

regimen, but a minority, between five percent and ten percent, fail to respond and die of 

respiratory failure. Another ten percent develop bronchopulmonary dysplasia, a disabling 

lung condition thought to be due to the pressure and oxygen used for treatment. During 

the 1970s and early 1980s, Bartlett and colleagues developed ECMO as an alternative 

therapy for respiratory failure in the newborn. The procedure involves the use of a 

modified heart-lung machine that can support gas exchange for days or even weeks until 

the neonatal lung has recovered. Under local anesthesia, the right atrium is cannulated 

through the right internal jugular vein and blood is passed extracorporeally through 
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tubing connected to a source of oxygen, a membranous lung for gaseous exchange, a heat 

exchanger, a heparin infusion pump, and other supporting elements. The oxygenated 

blood is then passed back into the infant’s aortic arch via a cannula leading from the right 

common carotid artery. This apparatus functionally bypasses the heart and lungs and 

allows the lungs to “rest,” thus preventing bronchopulmonary dysplasia and saving the 

lives of some of these patients.  

     In 1982 Bartlett et al. reported a series of 45 cases of neonatal respiratory distress that 

they had treated during the preceding eight years using ECMO. The patients had been 

referred by neonatology colleagues who identified them as unresponsive to maximal 

therapy with less than a ten percent chance of survival. They were selected from 

approximately 1500 seriously ill infants, and all were receiving 100 percent oxygen with 

mechanical ventilation. Twenty-five of the 45 infants survived (56 percent). The 

investigators considered this experience as part of a phase 1 trial, and believed that a 

prospective controlled randomized “phase 2” trial was needed to better establish ECMO 

as superior to conventional therapy.   

     In 1985 Bartlett and colleagues reported the results of their prospective randomized 

study. Criteria were established to select patients with severe respiratory failure with a 

mortality risk of at least 80 percent. The study design did not employ the more usual RCT 

method where subjects are assigned randomly to experimental and control arms in 

approximately equal proportions, but rather to a “randomized play-the-winner” statistical 

method (Zelen, Play the Winner; Wei and Durham). The procedure is equivalent to the 

following: The treatments are coded A and B and two balls are placed in an urn, one 

labeled A and the other B. For each patient, the assigned treatment is determined by 
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which ball is drawn from the urn. After the first ball is drawn and the indicated treatment 

is administered, the ball is returned to the urn and a new ball is added. If the treatment 

was successful, the new ball carries the same letter; if not, it carries the other letter. When 

ten balls of one type have been added, that treatment is considered the winner. Thus a 

study of this type requires at least ten and at most 19 subjects (Royall 59).  

     The design provided that under the assumption that one treatment was substantially 

better than the other, the probability is very high that the randomized play-the-winner rule 

will select as the winner the treatment that is actually better. For the a priori probability 

that PA ≥ 0.8 and PA− PB > .04, where PA denotes the probability of survival when the 

infant receives the better treatment and PB the corresponding probability when the infant 

receives the poorer treatment, the probability of selection of the best treatment is at least 

0.95. For the probabilities actually thought by the investigators to hold, namely PA = 0.9 

for ECMO and PB = 0.1 for conventional therapy, the probability of selecting the better 

treatment is even greater (Bartlett et al., Extracorporeal Circulation 484-85). 

     Twelve patients entered the study. The first patient was randomly assigned to ECMO 

and survived. The second patient was randomly assigned to conventional therapy and 

died. The next ten patients were assigned to ECMO and survived. At study termination, 

there was one control patient who had died, and 11 ECMO patients, all of which 

survived. They also included in their report that, since study termination, ten additional 

patients who met entry criteria for their study were seen at their institution. Eight were 

treated with ECMO and all survived. Two infants were not treated with ECMO, and both 

died. The authors concluded that based on 19 consecutive successes with ECMO, the 

lower 99% one-sided confidence interval on the survival with ECMO is 78.5. They state, 
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for a one percent significance level, that “... the null hypothesis that the survival 

probability is the same for ECMO as for conventional therapy would be rejected in favor 

of a higher survival probability for ECMO for any specification of a survival probability 

for conventional therapy less than 78.5” (485). Since this survival probability is well 

above that observed in the past for this population when given conventional therapy, the 

investigators concluded that ECMO was statistically superior.  

     Nevertheless, the investigators were aware that their study design was unconventional, 

and they note that although the randomized play-the-winner statistical technique had been 

introduced in 1969, it had not previously been used in a clinical study (480). After all, 

only one patient had been randomized to the control arm. Perhaps anticipating criticism, 

they state, “In retrospect, it would have been better to begin with two or three pairs of 

balls, which would have resulted in more than one control patient” (484).  

     The study was criticized by Ware and Epstein, who argued that “... the results are not 

completely convincing. Why not? Because only one patient received the standard 

therapy, so that the interpretation of the study depends strongly on the belief that eligible 

patients would have experienced poor survival in the absence of [ECMO]” (850). They 

conclude: “Further randomized clinical trials using concurrent controls and addressing 

the ethical aspects of consent, randomization, and optimal care will be difficult but 

remain necessary“ (851). 

     A subsequent RCT was reported in 1989 by O’Rourke et al. Thirty-nine infants were 

enrolled, and the study was designed so that a maximum of four deaths were allowed in 

either the conventional therapy or ECMO group. The first 19 patients were randomly 

assigned to conventional therapy or ECMO. Nine patients received ECMO, and all 
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survived. Ten patients received conventional therapy. Of these, six survived and four 

died. The RCT portion of the study was terminated at this point (phase I). The next 20 

patients were assigned to ECMO (phase II). Of these, 19 survived and one died. The 

study was then terminated. Four deaths had occurred among ten infants given 

conventional therapy, and one death had occurred among the 29 patients given ECMO. 

Statistical analysis of the data by the authors showed that the results represented ECMO 

as the superior therapy (p < .05), which they argued was a conservative estimate of 

efficacy. 

     Pocock drew attention to the paucity of data when the RCT (phase I) was stopped, 

with only 19 patients having been randomized. Many believed that a larger RCT was 

needed, and subsequently a collaborative randomized trial was undertaken in the United 

Kingdom (UK Collaborative ECMO Trial Group). Between 1993 and 1995, 185 neonates 

with severe respiratory failure were enrolled from 55 hospitals. Those randomized to 

ECMO were referred to one of five centers with ECMO facilities. Those randomized to 

conventional therapy continued to receive such therapy at their original hospitals. Ninety-

three of the 185 patients were randomized to ECMO, and 92 were randomized to 

conventional therapy. Recruitment to the trial was stopped early on the advice of the 

independent data-monitoring committee, since the data showed a clear advantage with 

ECMO. Thirty of the 93 neonates that received ECMO died (32%) and 54 of the 92 

infants randomized to conventional therapy died (59%). The relative risk was 0.55 (95% 

CI 0.39-0.77; p=0.0005), which is equivalent to one extra survivor for every three to four 

infants allocated to ECMO. 
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Were the ECMO RCTs Necessary? 

     The ECMO RCTs were, I will argue, unnecessary to establish ECMO as the preferred 

therapy for the class of neonates with respiratory failure that were considered eligible for 

randomization. The reasons involve both ethical and epistemic considerations. 

     Ethical considerations are an important element in the design and conduct of RCTs in 

clinical medical science because RCTs are experiments and the subjects are human 

beings. Any new therapy being advanced involves the belief that it is superior, or at least 

not inferior, to existing therapies before it can ethically be tested, regardless of study 

type. This is true whether the proposed new therapy is being studied, for example, in a 

small group of patients to establish toxicity profiles, or in a larger nonrandomized study 

of the efficacy of the new therapy in comparison with historical controls. Reasonable 

evidence of safety and efficacy must exist to advance a new therapy to the stage of an 

RCT. And as I have argued, and the EBM movement also maintains, RCTs provide the 

best evidence, i.e., the strongest epistemic underpinning, for confirming therapeutic 

hypotheses.  

     Clinical medical science, however, must be distinguished from clinical medical 

practice. The emphasis on the acquisition of sound scientific evidence to undergird 

clinical decision-making, the main thrust of the EBM movement, is relatively recent. As 

noted previously, Worrall (Evidence in Medicine 986) has observed that most current 

medical therapies have not been established with RCT evidence. Goodman notes that 

only about 10 to 25 percent of health care is based on high-quality or gold-standard 

evidence (6), and it is estimated that only about 50 percent of current medical practice is 

evidence-based (McGlynn et al. 2643). Thus, the basis for most medical therapy comes 
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from the experience of clinicians, supported by research of various types short of an 

RCT. 

     Clinicians are ethically charged with administering, or at least recommending, what 

they believe to be the best available therapy for each individual patient. It must also be 

recognized that clinicians have many other ethical obligations, among them to family and 

society in general, in addition to those to the individual patient. But in the ordering of 

ethical obligations, the clinician, qua clinician, is widely regarded as being obligated to 

place primary consideration on the health of the individual patient under his or her care. 

This is promulgated in various codes; for example, in the 1948 Declaration of Geneva of 

the World Medical Association, it is affirmed that, “the health of my patient will be my 

first consideration” (Beauchamp and Childress 441). Schafer notes that, “In his 

traditional role as healer, the physician’s commitment is exclusively to his patient” (720). 

Fried states that, “The traditional concept of the physician’s relation to his patient is one 

of unqualified fidelity to that patient’s health” (50). He calls this the personal care 

concept. And, Pelligrino states, “Surely the first order of responsibility for clinicians must 

remain with the patients they undertake to treat. Here, the moral imperatives are clear: 

competence of the highest order, integrity, compassion” (114).  

     But, arguably, physicians also have an obligation to work to improve the quality of the 

care and treatment that patients on the whole receive. Physician-investigators thus 

generate and participate in various levels of research, and physicians in general are 

encouraged to seek to enroll eligible patients in ongoing studies. Does this mean, 

however, that physicians or physician-investigators should participate in studies, 

including RCTs, in which it is possible, by study design, that at least some patients will 
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receive a therapy that they believe is inferior? Or, might they be ethically obligated not to 

participate?  

     Under the ethical principle that the primary duty of the physician (qua physician) is to 

the health and well-being of his or her individual patient, it would seem that the Bartlett 

et al. (Extracorporeal Circulation) and O’Rourke et al. RCTs were in breach of that 

principle, since the investigators clearly believed that ECMO was superior to 

conventional treatment. That they so believed is suggested by at least two observations: 

the consent process used, and the trial designs that were selected. 

     In order to proceed with the trials, the investigators were obligated to obtain informed 

consent from the parents of the neonates. A frank and honest discussion of the risks and 

benefits of ECMO and conventional therapy would have included the results to date 

observed with those alternatives, particularly what results they (the parents) could expect 

under each alternative. The consent process employed for both RCTs used a 

randomization method advanced by Zelen (New Design), in which eligible patients are 

randomized before consent is sought. Neonates randomized to conventional therapy 

would receive the same treatment anyway, it is reasoned, and thus they are arguably not 

part of the experiment. Thus, consent from these parents need not be obtained. Consent is 

only sought for the “experimental” therapy, in this case, ECMO. Bartlett et al. 

(Extracorporeal Circulation) averred that “...if consent is sought before randomization, 

the distraught family is presented with confusing treatment options which they cannot 

fully understand...” (484). (This when, as previously noted, the investigators believed that 

the true survival probabilities were 90 percent for ECMO and 10 percent for conventional 

therapy.) O’Rourke et al. stated that, “ This [Zelen (New Design)] method was chosen in 
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the belief that discussing the possibility of ECMO therapy with families whose child did 

not ultimately receive ECMO would not benefit those families and would create 

additional emotional distress” (959).  

     Another indication of ethical conflict was the unconventional trial designs that were 

used in the two studies. This was clearly done to minimize the number of infants assigned 

to conventional therapy. Bartlett et al. (Extracorporeal Circulation) justified their “play-

the-winner” design because of their anticipation that “...most ECMO patients would 

survive and most control patients would die, so significance could be reached with a 

modest number of patients,” and because “It was a reasonable approach to the 

scientific/ethical dilemma ... we were compelled to conduct a prospective, randomized 

study, but reluctant to withhold a lifesaving treatment from alternate patients simply to 

meet conventional random assignment technique” (480). O’Rourke et al. rejected a fixed 

sample size design “...because of the potential for a large difference in mortality rates...” 

(962).  

     Thus the investigators were seemingly not in a state of “personal equipoise.” They 

apparently believed that ECMO was superior. But did clinical equipoise exist? Clinical 

equipoise, the existence of uncertainty and disagreement among the expert medical 

community about which treatment is better, is, I argued earlier in relation to the 

mastectomy versus irradiation trials in early breast cancer, what ethically justifies the 

RCT. When the ECMO trials were initiated, was the relevant expert medical community 

in clinical equipoise? In other words, was there sufficient evidence already of ECMO’s 

superiority? 
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     When the trials were begun, it seems difficult to imagine that clinicians involved in 

the care and treatment of moribund infants in respiratory distress that were on 

conventional therapy and not responding, and thus with an expected high mortality rate, 

the very class of infants that were eligible for randomization, did not view ECMO as 

potentially lifesaving and clearly superior to continuing on conventional treatment. 

Indeed, they were referring such cases for ECMO when it was feasible to do so.   

     Most RCTs do not raise ethical concerns among the research subjects or clinicians 

involved. Most reservations are relatively minor and can be satisfactorily resolved at the 

Institutional Review Board (IRB) level of oversight. As Truog notes, “Few criticize the 

RCT that seeks to identify the best antibiotic for treating acute otitis media or the best 

antacid for peptic ulcer disease” (524). 

     The ethical problems surrounding the ECMO RCTs derive from the fact that the 

therapies under consideration are potentially lifesaving. The neonates selected for the 

ECMO trials were judged to have a high mortality risk; for the Bartlett et al. 

Extracorporeal Circulation study it was at least 80 percent, and was estimated to be 

about 75 percent for the O’Rourke et al. study. Data on infants treated with ECMO 

showed about a 75 percent survival rate (Bartlett 140) when the Bartlett et al. 

Extracorporeal Circulation study was initiated, and an ECMO Registry report of 715 

infants treated with ECMO showed an overall 81 percent survival rate when the 

O’Rourke et al. study was undertaken (Toomasian et al. 141). 

     How much evidence of efficacy of a potentially lifesaving therapy must exist for that 

therapy to become the preferred therapy? Is RCT evidence required? As Royall notes, 

“Science desires randomized clinical trials, it does not demand them” (60). And Fried 
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states unequivocally that “...the claims for the RCT have been greatly, indeed 

preposterously overstated. The truth of the matter is that the RCT is one of many ways of 

generating information, of validating hypotheses. The proponents of the RCT, however, 

have elevated what is in theory a frequent (though by no means universal) advantage of 

degree into a gulf as sharp as that between the kosher and the non-kosher” (158). The 

investigators were themselves convinced of the superiority of ECMO. And it appears that 

the parents of infants that were offered a choice between ECMO and conventional 

therapy were equally convinced. In the O’Rourke et al. study, after randomization, all 29 

patients’ parents who were approached for ECMO gave their consent for ECMO. (This 

assumes that parents were fully informed of the risks and benefits of both conventional 

and ECMO therapy). 

     The O’Rourke et al. study led to a debate over the unusual statistical design and the 

ethical questions it raised. This resulted in a rare reprimand of the Boston Children’s 

Hospital’s IRB by the National Institutes of Health (NIH) for failing to ensure that all 

subjects in a clinical trial were informed (Marwick 2420). 

     The RCT carried out in the UK was done because it was believed that ECMO was 

controversial in view of the varying interpretations of the available evidence. The UK 

trial organizers viewed the studies by Bartlett et al. (Extracorporeal Circulation) and 

O’Rourke et al. as inconclusive. Most of the claims about ECMO were based on case 

series and other studies with historical controls, which, although suggesting large 

reductions in mortality, were carried out at a time when neonatal death rates were falling. 

Neonatal ECMO was introduced into the UK in 1989, but some clinicians were reluctant 

to refer potential neonates for ECMO because of concerns that any improved survival 
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from the technique might be offset by an increase in long-term disability. Others were 

concerned about the costs of ECMO, which exceeded those of conventional therapy, 

while questions about its clinical effectiveness and cost-effectiveness persisted. Based on 

these factors, British clinicians agreed to limit neonatal ECMO to use within an RCT. 

     Consent was obtained from the parents of neonates in the usual manner in the UK 

trial, before randomization (Field 1370). Also, a conventional study design was used 

wherein patients were randomized in approximately equal numbers to conventional 

therapy or ECMO. The trial was carried out between 1993 and 1995, well after the results 

of the Bartlett et al. (Extracorporeal Circulation) and O’Rourke et al. RCT results were 

available. Perhaps predictably, the trial was criticized as unnecessary and unethical. 

     For example, Lantos pointed out that by 1993, when the UK trial was initiated, more 

than 7500 neonates had been treated with ECMO in 75 programs in the United States and 

17 programs in other countries (265). He states, “More certainty is always better than less 

certainty, but at some point we need to decide that we are certain enough” (266). Would 

another trial of ECMO to confirm the results of the UK trial be ethical? He says, “I think 

that the data that were available in the early 1990s on the benefits of ECMO were 

convincing...If I was on an ethics review panel, I would not have approved the trial” 

(267-68). In the same vein, he also suggests that since the “default” choice for parents 

with infants eligible for enrollment in the trial was conventional therapy, and the only 

chance to receive ECMO was to enroll in the trial, there was an implicit element of 

coercion in the trial design.      

     Other ethical issues arise when either the conventional or experimental therapy (or 

both) is rapidly evolving (Truog 525-26). In addition to being a potentially lifesaving 
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therapy, during the period of the trials, ECMO was rapidly developing. For example, 

many institutions were switching from veno-arterial to a veno-venous technique utilizing 

the jugular vein for both withdrawing blood and returning it to the body. ECMO 

apparatus not requiring anticoagulants was under development. And, perhaps in response 

to avoiding the cost and complexity of ECMO, improvements in conventional therapy 

were further reducing the mortality rate associated with those therapies. Wung et al. 

reported treating 15 seriously ill neonates in respiratory failure with modifications in 

ventilatory therapy focused on reducing barotrauma. ECMO was not used, and all 

survived. Schapira and Solimano reported two deaths among 13 neonates (a mortality 

rate of 15 percent) with severe respiratory distress due to meconium aspiration syndrome 

treated between 1983 and 1987 that met criteria for ECMO, but were treated with 

conventional therapy. A retrospective review by Dworetz et al. of severely ill neonates 

that met ECMO trial entry criteria but were treated with conventional therapy showed an 

improvement in survival of those treated between 1980-81 and those treated between 

1986-88. One of six patients survived in the earlier period (17 percent), whereas nine of 

ten patients (90 percent) survived in the later period, possibly due to changes in 

ventilatory therapy. Granted that the numbers from these case series were small and the 

results not generalizable, they do indicate that efforts at progress were being made. And, 

in the O’Rourke et al. study, six of the ten infants randomized to conventional therapy 

survived (60 percent), which was higher than expected.    

     RCTs of rapidly evolving therapies pose at least two ethical problems, one related to 

the requirements of RCTs, the other related to relevance. RCTs are usually designed to 

keep the treatments constant, and may take years to complete. Thus, innovations that 
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occur while the study is underway may not be available to study subjects. Patients on 

either the control or experimental arm (or both) may wind up receiving inferior therapy 

compared to similar patients being treated outside the study. Also, the trial itself may 

retard the development of new approaches and technologies, particularly among the 

institutions involved in the study, as study results are awaited.  

     The other problem is relevance. Most consider it to be a fundamental ethical 

requirement that RCTs have the potential to generate useful knowledge. Cowan, for 

example, states that, “...good research design requires that any proposed clinical trial be 

scientifically sound and capable of yielding generalizable data; a study lacking these 

characteristics is inherently unethical” (10). Over the time period of the studies, the 

mortality rate of conventional therapy changed markedly, from 80 percent to perhaps as 

little as ten percent, as noted above. This severely questions the leading assumption of the 

trials: a high (≥ 80 percent) mortality rate in neonates treated with conventional therapy. 

Thus the information generated from such trials may be obsolete and not useful when the 

results become available.  

     If RCTs are not practical to generate evidence on which to base clinical decisions for 

these rapidly evolving therapies, what is the best method to accumulate and evaluate the 

evidence that is being acquired? One suggestion with seeming merit that has been 

advanced is establishment of a prospective observational database (Truog 526; Berry, 

Comment 309-10). For neonates with severe respiratory distress, for example, clinicians 

would treat patients with the methods that they believe to be the most efficacious. No 

restrictions on how patients are treated are imposed. All participating institutions would 

send pertinent patient and treatment information to a central registry. Data on the 
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effectiveness of various interventions would be periodically analyzed. Algorithms would 

be devised to assess outcomes on patients matched for prognostic factors.  

     Truog believes that such a registry would have obviated the need for the O’Rourke et 

al. RCT. The ECMO registry of 715 neonates published in 1988 (Toomasian et al.) 

demonstrated an 81 percent survival with ECMO and indicated that ECMO was 

statistically superior to any other therapy with a survival rate of less than 78 percent. Had 

the registry included similar conventionally treated neonates, it would have shown the 

superiority of ECMO. Possibly, the UK trial could also have been avoided.  

     In view of the foregoing, I believe that the ECMO RCTs were unnecessary, since 

ECMO was clearly a potentially life-saving therapy. The EBM movement also considers 

RCTs for such life-saving treatments to be unnecessary. As previously noted, Greenhalgh 

has so stated (39), and Sackett et al. aver that “...some questions about therapy do not 

require randomised trials (successful interventions for otherwise fatal conditions) or 

cannot wait for the trials to be conducted” (72). Nowhere is the duty of the clinician to his 

or her individual patient stronger than when the patient’s very life is at stake. Here, 

ethical considerations preclude the acquisition of evidence from the admittedly more 

epistemically desirable RCT. As the Physician’s Oath of the World Medical Association 

states: “Concern for the interests of the subject [of research] must always prevail over the 

interests of science and society” (Beauchamp and Childress 441). And similarly, A.B. 

Hill says, “...the ethical obligation always and entirely outweighs the experimental” 

(1047). 
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Carcinoma of the Anal Canal 

     The anal canal is the terminal portion of the digestive tract and ends in association 

with sphincter musculature that control evacuation of the products of digestion. The 

columnar mucosa of the rectum transitions into a squamous histology, and squamous cell 

carcinomas include so-called basaloid, cloacogenic, and epidermoid carcinomas. These 

carcinomas are histologically distinct from the more frequently occurring rectal 

adenocarcinomas (Welton and Raju 344).  

     Until the 1970s the preferred treatment of squamous cell carcinoma of the anal canal 

was primarily surgical. Small tumors could usually be excised successfully without much 

morbidity, but larger tumors, which often invaded the sphincter musculature, required the 

more extensive and morbid abdominal perineal resection. This operation involved an 

intra-abdominal component and a perineal component, and resulted in removal of the 

distal rectum and anus, with closure of the perineal defect and a permanent colostomy. 

Local recurrence rates ranged from 27 percent to 47 percent, and five-year survival rates 

ranged from 40 percent to 70 percent (345).  

     In 1974 Nigro, Vaitkevicius, and Considine reported the use of combined radiation 

therapy and chemotherapy in the form of 5-fluorouracil (5-FU) and Mitomycin C in the 

treatment of anal canal cancer. Three patients were administered the combined therapy as 

part of a planned preoperative program to be followed by abdominal perineal resection. 

The purpose of the preoperative regimen was to improve the local control and cure rates. 

Two patients completed the planned radiation therapy and chemotherapy, and no 

evidence of cancer was found in the surgical specimen obtained after their abdominal 

perineal resections. The third patient completed the radiation therapy and chemotherapy, 
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but refused surgery. There was no evidence of cancer in the patient 14 months after 

treatment. The authors included in their report a woman with metastases to the liver from 

cloacogenic carcinoma from the anal canal treated with the same chemotherapy regimen 

but with a lower radiation dose to the liver. Within a few weeks the enlarged liver had 

shrunk to less than normal size, and there was no evidence of residual disease either by 

biopsy or laparoscopy. The authors did not claim this to be curative, but noted that they 

had not seen such a dramatic response to any therapy for this condition before. 

     By 1976 reports of the use of the “Nigro regimen” (as it later came to be called) began 

to appear (e.g., Newman and Quan), although, except for the less commonly appearing 

smaller tumors, abdominal perineal resection alone was still advocated as definitive 

therapy  (Wilson, Beahrs, and Manson; Golden and Horsley). Newman and Quan, for 

example, reported on three patients with surgically incurable epidermoid carcinoma of 

the anus treated with the Nigro regimen: one died during the course of the therapy, but 

the two others achieved apparent complete resolution of their local tumor: one patient 

was alive and well nearly one and a half years after initiation of therapy, and the other 

underwent abdominal perineal resection after completing the radiation and chemotherapy, 

with no residual carcinoma seen on pathological examination.  

The authors included a fourth patient in their report who had biopsy-proven pulmonary 

metastases treated with 5-FU and Mitomycin C. Six weeks later, a chest radiograph 

showed essentially complete disappearance of the metastatic nodules. The authors 

concluded that their experience suggested that multimodality therapy may increase 

salvage in even locally far-advanced and metastatic epidermoid anal carcinoma. 
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     During this period, improvements in radiation therapy equipment and technique were 

occurring, and some studies were reporting more favorable outcomes for some patients 

when radiation therapy was added to surgery (e.g., Green et al.). And, by 1980, further 

reports on the use of combined modality chemotherapy and radiation therapy were 

appearing that seemed to indicate a potentially major advance in the treatment of anal 

carcinoma. Sischy et al. reported on ten patients with anal carcinoma confined to the 

anorectal area. Four patients received preoperative radiation therapy and chemotherapy 

consisting of Mitomycin C and 5-FU and subsequently underwent abdominal perineal 

resection. None had residual tumor on pathological examination of the surgical specimen. 

The other six patients were treated definitively with the chemotherapy and irradiation 

alone, without surgery. These patients were also found to be free of disease, proved by 

biopsy. They found it impossible to predict the outcome of the treatment by the size of 

the original lesion, which was remarkable since tumor size is usually an important 

predictive factor for tumor response to therapy. They state: “... in instances of squamous 

cell carcinoma of the anus, if the lesion has disappeared completely at the end of 

treatment, adequate biopsies may be taken, and only in those instances in which there is 

residual tumor should abdominoperineal resection be performed. In this way, it is 

possible that a large number of patients with squamous cell carcinomas could be spared 

abdominoperineal resection” (370).  

     Also, in 1980 Cummings et al. reported on six patients referred to the Princess 

Margaret Hospital in Toronto with anal canal cancer treated between May 1978 and 

August 1979 with radical radiation therapy plus 5-FU and Mitomycin C chemotherapy. 

No patients had surgery, and all had complete disappearance of their tumor within two 
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months of completion of therapy. None showed any evidence of late recurrence, and they 

all retained anal continence with good control of bowel function by the anal sphincter 

musculature.  

     The remainder of the 1980s saw further reports appear from several centers using the 

new approach of preoperative 5-FU and Mitomycin C combined with radiation therapy, 

in which surgery was increasingly being reserved for patients that failed the preoperative 

regimen. It became customary to closely monitor patients after the preoperative regimen 

for any sign of recurrence, with biopsies done as needed. Improvements in radiation 

targeting and delivery were also occurring, and by 1993 Cummings editorialized that, 

           The need for a randomized trial in which radical surgery would be  
 compared with radiation therapy or radiation combined with chemotherapy,  
 desirable though it may have been a decade ago, has now passed, and there 
 can be little doubt that radiation-based protocols are at least as effective as 
 surgery in terms of overall survival rates, and enable anorectal function to  
 be preserved... (173).  
 
     The principle of using a combination of chemotherapy and radiation therapy as 

planned definitive therapy, with surgery reserved for the salvage of the minority of 

patients that failed this strategy, had essentially by this time become firmly established as 

preferred therapy without an RCT to test this hypothesis. Further questions arose, 

however, such as whether 5-FU or Mitomycin C, or both, could be omitted without 

compromising outcomes, or whether some other chemotherapy drug, such as cisplatin, 

could be substituted for the more toxic Mitomycin C. These questions were addressed 

with RCTs.  

     For example, to study whether the addition of 5-FU and Mitomycin C chemotherapy 

to irradiation was necessary, an RCT comparing these approaches was carried out by the 

European Organization for Research and Treatment of Cancer Radiotherapy and 
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Gastrointestinal Cooperative Groups. One hundred ten patients from participating cancer 

centers in Israel and seven European countries were randomized to either radiation 

therapy alone or radiation therapy plus 5-FU and Mitomycin C chemotherapy. Results 

showed a significant increase in the complete remission rate from 54 percent for radiation 

therapy alone to 80 percent for radiotherapy combined with 5-FU and Mitomycin C, 

leading to a significant improvement in locoregional control and colostomy-free survival 

(p = .02). The overall survival rate remained similar in both groups, due to the ability of 

surgery to salvage treatment failures (Bartelink et al.).  

     Mitomycin C is considered a relatively toxic chemotherapy drug. In addition to 

causing myelosuppression (lowering of blood counts), it is also known to have 

pulmonary, cardiac, hepatic, and renal toxicities, the latter of which can be life-

threatening. To test the hypothesis that Mitomycin C could be omitted from the 

chemotherapy regimen, an RCT was performed in the U.S. Institutions in the Radiation 

Therapy Oncology Group and the Eastern Cooperative Oncology Group participated. 

Between 1988 and 1991, 310 patients were randomized to receive radiotherapy and 5-FU, 

or radiotherapy, 5-FU, and Mitomycin C. At four years, colostomy rates were lower (p = 

.002), colostomy-free survival was higher (p = .014), and disease-free survival was higher 

(p = .0003) in the group that received Mitomycin C. Toxicity was greater in the 

Mitomycin C group. The authors concluded that notwithstanding the increased toxicity, 

the use of Mitomycin C is justified, particularly in patients with large tumors (Flam et al. 

1996).  

     To test the hypothesis that cisplatin could replace Mitomycin C, a large randomized 

trial with 649 evaluable patients was carried out in the U.S. in which several trial groups 
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participated. The randomization was between radiotherapy, 5-FU, and Mitomycin C 

versus radiotherapy, 5-FU, and cisplatin. Five-year disease-free survival and five-year 

overall survival favored the group receiving Mitomycin C (p = .006 and p = .026, 

respectively). There was a trend toward statistical significance for colostomy-free 

survival (p = .05), the rate of locoregional failure (p = .087), and colostomy failure (p = 

.074). The authors concluded that the combination of 5-FU and Mitomycin C yielded a 

statistically significant, clinically meaningful improvement in disease-free survival and 

overall survival, and has borderline significance for colostomy-free survival, colostomy 

failure, and locoregional failure when compared to 5-FU and cisplatin. They also 

concluded that radiotherapy with 5-FU and Mitomycin C remains the preferred treatment 

for anal canal cancer (Gunderson et al.). 

     When the results of the early studies showing the promise of radiation therapy 

combined with 5-FU and Mitomycin C chemotherapy in the treatment of anal cancer 

were made available, such as those by Nigro et al., Newman and Quan, and others, why 

were one or more RCTs not performed to directly test the new approach against the 

established conventional therapy of abdominal perineal resection? Any answer would 

necessarily be speculative, but one plausible explanation lies in the dramatic, unexpected 

response of this tumor to the new approach, which was completely different from 

responses seen in  the anatomically nearby rectal cancers or in other cancers of epithelial 

origin, such as lung or breast cancer. And, surgery for the salvage of failures of the new 

approach was still available. 
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Carcinoma of the Testis 

     Carcinomas of the testis are mostly of germ cell origin, which are cells that are 

destined to become sperm cells. Histologically, carcinomas of the testis are mostly 

embryonal cell carcinomas, teratocarcinomas, choriocarcinomas, or some combination of 

these cell types. They are a disease of younger men, and are the most common solid 

tumors in men aged 20-34 years of age. The usual presentation is a nodule or painless 

swelling of the testicle. Initial treatment (and diagnosis) is accomplished by surgical 

removal of the affected testis. Unfortunately, in from 60 percent to 70 percent of cases, 

the disease is disseminated when the diagnosis is made. Before the advent of anti-cancer 

chemotherapy drugs, treatment of disseminated testicular carcinoma was largely 

unsuccessful and most patients died of their disease (Richie). 

     Carcinoma of the testis was found early on to be moderately sensitive to some 

chemotherapy drugs. For example, in 1967 Wyatt and McAninch reported a case series of 

ten men with disseminated testicular carcinoma treated with methotrexate. Four achieved 

a complete remission, but none of the other six responded and all six died. In 1975, 

Samuels, Johnson, and Holoye reported a series of 23 patients with disseminated 

testicular carcinoma treated with vinblastine and bleomycin. Nine of the 23 patients 

achieved a complete remission (39 percent) and eight achieved a partial remission (35 

percent).  

     In 1977, Einhorn and Donohue reported a series of 50 patients with disseminated 

testicular carcinoma treated with the three-drug combination of cisplatin, vinblastine, and 

bleomycin. Two patients died within one week of the initiation of chemotherapy, and a 

third patient died two weeks after the start of chemotherapy, all presumably due to 
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massive tumor. All three of these patients had significant respiratory symptoms due to 

massive pulmonary metastases. This left 47 evaluable patients, and this regimen 

produced a complete remission in 35 patients (74 percent) and a partial remission in the 

other 12 (26 percent). Five of the patients with a partial remission became disease-free 

after surgical removal of residual disease, yielding an overall 85 percent disease-free 

status. 

     The three-drug regimen reported by Einhorn and Donohue became the “standard” or 

conventional treatment for disseminated testicular carcinoma. Further studies would be 

RCTs to test modifications of the regimen, for example to reduce toxicity or to improve 

remission and survival rates. In 1981, Einhorn et al. reported that five years after the 

Einhorn and Donohue study, 27 of their original 47 patients (57 percent) remained alive 

and disease-free, with a 19 percent relapse rate. Since the great majority of such patients 

relapse within three years of completing therapy, these 27 patients are presumed to be 

cured. In their report they presented the results of an RCT testing whether the addition of 

doxorubicin to the three-drug regimen improved results compared with the three-drug 

regimen alone, and whether “maintenance therapy,” which is the continuation of some 

chemotherapy beyond the induction of remission, was of value. 

     A total of 184 consecutive patients were randomized to the three-drug regimen or the 

three-drug regimen plus doxorubicin. Those patients that achieved a complete remission 

or disease-free status following resection of residual disease that showed no viable tumor 

were further randomized to no maintenance therapy or maintenance therapy of monthly 

vinblastine for two years. Results showed no statistically significant differences in the 

groups. Thus, the original three-drug regimen remained the standard treatment. The 
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results with the three-drug regimen were replicated in numerous institutions in the U.S., 

Canada, and Europe, as well as cooperative groups (Einhorn et al. 729). 

     Vinblastine produces significant neuromuscular toxicity, and etoposide had shown 

activity against testicular carcinoma in patients that had failed the three-drug regimen. In 

1987, Williams et al. reported the results of an RCT comparing cisplatin and bleomycin 

plus either vinblastine or etoposide in disseminated testicular tumors. Among 244 

patients that were evaluable for a response, 74 percent of those receiving the regimen 

including vinblastine and 83 percent of those receiving the regimen including etoposide 

became disease-free with or without surgery; however, this difference was not 

statistically significant. Survival among the etoposide group was higher (p = .048). In 

addition, the etoposide regimen showed statistically significant less toxicity. The regimen 

of cisplatin, etoposide, and bleomycin became the new standard therapy. 

Summary 

     The common denominator in the above three examples – ECMO, anal canal 

carcinoma, and disseminated testicular carcinoma - is the dramatic improvement in 

outcomes provided by the new therapy compared to what was available before. In these 

cases, an RCT to establish this was arguably unnecessary. Glasziou et al. provide some 

other examples where dramatic effects have established some approaches without an 

RCT. And, as Miller and Joffe point out, evidence of large effect sizes on the basis of 

early clinical studies is one criterion for approval of new oncology drugs by the U.S. 

Food and Drug Administration (479). For example, cisplatin was approved in 1978 for 

the treatment of testicular cancer, following the 1977 report by Einhorn and Donohue that 

established cisplatin, vinblastine, and bleomycin as the new standard therapy in 



212 
 

 
 

disseminated testicular carcinoma. Indeed, in a review of oncology drug approvals 

between 1973 and 2006, of a total of 68 drugs that were approved, 31 were done so on 

the basis of studies that were nonrandomized (Tsimberidou et al. 6243).  

     Thus, when responses occur that are clearly definitive, treatment approaches that have 

not been studied in an RCT can become the new standard approach and be incorporated 

into treatment guidelines by major organizations such as the NCCN and the American 

Cancer Society.   
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