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P2X7 Receptor Primes IL-1β and the NLRP3 Inflammasome in
Astrocytes Subjected to Mechanical Strain

Abstract
Inflammatory responses play a key role in many neural pathologies, with localized signaling from non-immune
cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune
signaling and can link neural insult to chronic inflammation. Stimulation of the NLRP3 inflammasome is a
two-stage process. The priming stage involves upregulation of the biosynthesis of the structural components
while activation results in their assembly into the actual inflammasome complex and subsequent activation.
The priming step can be rate limiting and can connect insult to chronic inflammation but our knowledge of
the signals that regulate NLRP3 inflammasome priming in sterile inflammatory conditions is limited. This
study examined the link between mechanical strain and inflammasome priming in neural systems. Transient
non-ischemic elevation of intraocular pressure (IOP) increased mRNA for inflammasome components IL-1β,
NLRP3, ASC, CASP1 and IL-6 in rat and mouse retinas. The P2X7 receptor was implicated in the in vivo
mechanosensitive priming of IL-1β and IL-6 transcription and translation. In vitro experiments with optic
nerve head astrocytes demonstrated enhanced expression of the IL-1β and IL-6 genes following stretching or
swelling. The increase in IL-1β expression was inhibited by degradation of extracellular ATP with apyrase,
blocking pannexin hemichannels with carbenoxolone, probenecid or 10Panx1 peptide, P2X7 receptor
antagonists (BBG, A839977 or A740003) as well inhibition of the NFκB transcription factor with Bay
11-7082. The swelling-dependent fall in expression of the NFκB inhibitor IκB-α was reduced by treatment of
cells with A839977 and in P2X7 knockout mice. In summary, our data suggest that mechanical trauma to the
retina results in priming of the NLRP3 inflammasome components and upregulated IL-6 expression and
release. This was dependent upon ATP release through pannexin hemichannels and autostimulation of the
P2X7 receptor. Since the P2X7 receptor can also trigger inflammasome activation it appears to have a central
role in linking mechanical strain to neuroinflammation.
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ABSTRACT 

P2X7 receptor primes IL-1β and the NLRP3 inflammasome 

in astrocytes subjected to mechanical strain 

Farraj Albalawi 

Claire H. Mitchell, Ph.D. 

 

Inflammatory responses play a key role in many neural pathologies, with 

localized signaling from non-immune cells making critical contributions. The 

NLRP3 inflammasome is an important component of innate immune signaling 

and can link neural insult to chronic inflammation. Stimulation of the NLRP3 

inflammasome is a two-stage process. The priming stage involves upregulation 

of the biosynthesis of the structural components while activation results in their 

assembly into the actual inflammasome complex and subsequent activation. The 

priming step can be rate limiting and can connect insult to chronic inflammation 

but our knowledge of the signals that regulate NLRP3 inflammasome priming in 

sterile inflammatory conditions is limited. This study examined the link between 

mechanical strain and inflammasome priming in neural systems. Transient non-

ischemic elevation of intraocular pressure (IOP) increased mRNA for 

inflammasome components IL-1β, NLRP3, ASC, CASP1 and IL-6 in rat and 
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mouse retinas. The P2X7 receptor was implicated in the in vivo 

mechanosensitive priming of IL-1β and IL-6 transcription and translation. In vitro 

experiments with optic nerve head astrocytes demonstrated enhanced 

expression of the IL-1β and IL-6 genes following stretching or swelling. The 

increase in IL-1β expression was inhibited by degradation of extracellular ATP 

with apyrase, blocking pannexin hemichannels with carbenoxolone, probenecid 

or 10Panx1 peptide, P2X7 receptor antagonists (BBG, A839977 or A740003) as 

well inhibition of the NFκB transcription factor with Bay 11-7082. The swelling-

dependent fall in expression of the NFκB inhibitor IκB-α was reduced by 

treatment of cells with A839977 and in P2X7 knockout mice. In summary, our 

data suggest that mechanical trauma to the retina results in priming of the 

NLRP3 inflammasome components and upregulated IL-6 expression and 

release. This was dependent upon ATP release through pannexin hemichannels 

and autostimulation of the P2X7 receptor. Since the P2X7 receptor can also 

trigger inflammasome activation it appears to have a central role in linking 

mechanical strain to neuroinflammation.   
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Chapter 1 : Introduction 

Mechanical strain can induce complex pathological changes in many anatomic 

compartment of the body including epithelium, bone, cartilage and neural tissue 

(Corps et al., 2015; Heppner et al., 2015; Le Guen et al., 2016; Xiao et al., 2016). 

These changes can lead to several disorders such as atherosclerosis (Quigley 

and Addicks, 1980), temporomandibular joint (TMJ) disorders (Balaratnasingam 

et al., 2007), periodontal diseases (Liu et al., 2017), traumatic brain injury (TBI) 

(Lau et al., 2006), encephalitis (Kumar et al., 2009) and glaucoma (Sigal and 

Ethier, 2009) amongst others. In several acute and chronic disorders, 

inflammatory signaling is increasingly recognized as contributing to pathology. 

However, the exact mechanism through which mechanical strain leads to 

inflammation is still not fully understood. Thus, we hypothesized that purinergic 

signaling pathways link mechanical strain to inflammatory signaling. In particular, 

the mechanosensitive release of ATP and autostimulation of P2X7 receptors play 

a key role in priming the NLRP3 inflammasome. While these studies were carried 

out in an effort to expand the existing knowledge regarding inflammatory 

signaling in glaucoma, the findings have wider-ranging implications. By 

extension, the results can be used to explain the ability of mechanical strain to 

induce sterile chronic inflammation throughout the body in general and the 

stomatognathic system in particular. 
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“Inflammation is generally defined as a response to infection, tissue injury or 

tissue stress that aims to restore homeostasis” (Tehrani et al., 2014). Microbes 

interact with receptors of the innate immune system to induce an inflammatory 

response that eradicates the microbe and induces protective immunity. On the 

other hand, inflammation triggered by sterile tissue stress or injury aims to repair 

the damaged tissue and adapt to the stress leading to restoration of homeostasis 

(Medzhitov, 2008). Therefore, depending on the trigger, inflammatory responses 

have different physiological purposes and when uncontrolled, potential 

pathological consequences. Several studies have focused on the inflammatory 

response to microbial infection (e.g. (Gianchecchi and Fierabracci, 2015; 

Jimenez-Dalmaroni et al., 2016; Rhee, 2011; Takeda and Akira, 2004), yet less 

is known about the signaling pathway and inflammatory mediators of sterile 

inflammation especially in the central nervous system (CNS). 

Mechanical strain is frequently associated with changes in purinergic 

signaling, with ATP release associated with cell swelling and stretching (Corriden 

and Insel, 2010; Praetorius and Leipziger, 2009). Purinergic signaling has been 

implicated in regulating the production of multiple inflammatory cytokines by a 

variety of cell types. For example, IL-6 has been shown to be regulated by ATP-

mediated activation of purinergic receptors in fibroblasts (Inoue et al., 2007), 

macrophages (Hanley et al., 2004) and microglia (Shieh et al., 2014). IL-1β 

release and inflammasome activation is closely linked to P2X7 receptor 

stimulated by ATP in non-neural cells (Ferrari et al., 2006; Franceschini et al., 
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2015; Gombault et al., 2012). In both cases, the signals leading to IL-6 release or 

inflammasome priming, which is required before IL-1β release, are not well 

understood, particularly in sterile inflammation. Since chronic inflammatory 

conditions in CNS may involve pathways activated by mechanical strain, the goal 

of this study was to determine the mechanism through which mechanical strain 

leads to priming of the inflammasome and enhanced expression of IL-6,  

The master proinflammatory cytokine IL-1β is released after priming, assembly 

and activation of the inflammasome, which is a component of the innate immune 

system. The innate immune system is specialized to perform receptor-mediated 

surveillance for microbial pathogens or tissue injury (Patel et al., 2017). This 

system acts at the front line of the broader immune response by sensing 

pathogen-associated molecular patterns (PAMPs) and danger-associated 

molecular patterns (DAMPs) via pattern-recognition receptors (PRRs). PAMPs 

are associated with external pathogens, while DAMPs are associated with host-

derived molecules, and both can interact with and activate PRRs. The presence 

of DAMPs such as mitochondrial DNA, uric acid, chromatin, ATP and β-amyloid 

have been reported in CNS chronic inflammatory diseases, but their role is still 

unclear (Martinon, 2008; Thundyil and Lim, 2015). PRRs are expressed by 

several immune and non-immune cells, but in the CNS they are primarily 

expressed by astrocytes, microglia and macrophages (Walsh et al., 2014). These 

molecules are either membrane bound or located within the cytoplasm. 

Membrane bound PRRs such as Toll-like receptors (TLRs) sense extracellular or 
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endosomally located signals, while the cytosolic receptors such as Nod-like 

receptors (NLRs) sense intracellular signals and are involved in the assembly of 

the inflammasome (Bezbradica et al., 2017; Walsh et al., 2014). The 

pathogenesis of many sterile chronic inflammatory diseases including glaucoma 

involve the inflammasome (Chi et al., 2015; Chi et al., 2014), but our knowledge 

regarding the mechanism(s) that results in its priming is not well understood 

(Figure 1.1). 

Inflammasome structure: 

The inflammasome concept was initially described in the early 2000’s by 

Tschopp and colleagues when a crucial link between tissue injury, innate 

immune response, and caspase 1-dependent responses was revealed (Martinon 

et al., 2002; Martinon et al., 2000). The inflammasome is a cytosolic multiprotein 

platform that enables the activation of pro-inflammatory caspases, mainly 

caspase 1 (Figure 1.1) (Rathinam et al., 2012). Caspase 1 leads to the 

maturation and release of pro-inflammatory cytokines and therefore to a strong 

inflammatory response against infectious agents and physiological abnormality 

(Man and Kanneganti, 2015). Inflammasome complexes have three main 

components: a cytosolic pattern-recognition receptor, the enzyme caspase 1 and 

an adaptor protein that enables the interaction between the two. The receptor is 

a member of either the NLR family of proteins such as NLRP1, NLRP2 and 

NLRP3 or a member of the pyrin and HIN domain-containing (PYHIN) family of 
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proteins, such as absent in melanoma 2 (AIM2) and interferon-inducible protein 

16 (IFI16) (Man and Kanneganti, 2015). 

The NLRs contain a carboxy-terminal leucine-rich repeat (LRR), nucleotide-

binding domain (NBD) and variable amino-terminal domain that defines several 

NLR subfamilies. There are several inflammasomes subfamilies, but the NLRP3 

inflammasome is most well understood and regulates caspase 1 activation. 

Therefore, our work focused on the NLRP3 inflammasome. The NLRP3 family is 

recognized by its pyrin domain (PYD) in the amino-terminal region. Following 

activation and oligomerization, NLRP3 recruit, via homotypic protein interactions, 

the adaptor ASC (Apoptosis-associated speck-like protein containing a caspase 

activation and recruitment domain), the second component of most 

inflammasomes. ASC, which is composed of a (PYD) and a caspase activation 

and recruitment domain (CARD), acts as an adaptor between the PYD of the 

NLRP3 protein and the CARD of pro-caspase 1, the third component of 

inflammasomes (Figure 1.2) (Agostini et al., 2004). Caspase 1 is produced from 

the 45 kDa pro-caspase in the cytoplasm. Pro-caspase 1 is constitutively 

expressed, but requires post-translational processing to form active 20 and 10 

kDa forms of caspase 1 (Ho et al., 2014). Activation of caspase-1 occurs 

following assembly and activation of the NLRP3 inflammasome, and 

subsequently leads to proteolytic activation of IL-1β and IL-18 within the 

inflammasome protein complex.   
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Figure 1.1 Inflammasome priming and activation. 

NLRP3 inflammasome requires 2 signals to prime and activate, resulting in 
activation of caspase 1 and subsequent maturation and release of IL-1β. A 
priming signal, traditionally ascribed to a TLR activates the NFNB dependent 
transcription of pro-IL-1β and in some cases NLRP3 and IL-18. The second 
signal involves the activation of the inflammasome. The P2X7 receptor is a 
common trigger for the second step, with stimulation by extracellular ATP 
triggering potassium ion (K+) efflux. Modified from (Choi and Ryter, 2014) 
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A. NLRP3 Inflammasome components B. Domains structure 

Figure 1.2 NLRP3 Inflammasome components. 

A. The assembled NLRP3 inflammasome forms a wheel-like structure that has 
3 components; the receptor NLRP3 protein, the adaptor protein ASC and the 
enzyme caspase 1. Modified from (Hansson and Klareskog, 2011). 
B. The receptor NLRP3 protein has a sensory component formed by the 
carboxy-terminal leucine-rich repeat (LRR). Oligomerization of NLRP3 is 
mediated by the nucleotide-binding domain (NBD). The pyrin domain (PYD) of 
the receptor NLRP3 mediates protein–protein interactions between (PYD) of 
the adaptor ASC. The caspase activation and recruitment domain (CARD) 
mediate the protein–protein interactions of ASC with pro-caspase 1, which 
also contains a (CARD). The recruitment of pro-caspase 1 into the 
inflammasome induces cleavage of the pro-caspase1 into active subunits. 
Modified from (Walsh et al., 2014). 
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Inflammasome priming and activation: 

In immune cells, the NLRP3 inflammasome signaling pathway is described as 

a two-step process that uses two signals (Figure 1.1). The first step is priming, 

which increases the level of the pro-IL-1β to suitable levels (Johansson, 1988), 

and in some cases NLRP3 at the transcriptional and translational level 

(Bauernfeind et al., 2009; Halle et al., 2008; Mariathasan et al., 2006). The 

second step, activation, is much better understood. Basically, a signal triggers 

the oligomerization and formation of the wheel-like inflammasome structure 

(Figure 1.2) (Broz, 2015). This process is induced by a wide range of stimuli 

including bacterial toxins, prokaryotic mRNA, crystalline materials, protein 

aggregates, Ca2+ influx, mitochondrial reactive oxygen species (ROS), 

mitochondrial DNA (mtDNA), ATP and efflux of K+ through the P2X7 purinergic 

receptor (Bernier, 2012; Karmakar et al., 2016; Man and Kanneganti, 2015; 

Mariathasan et al., 2006; Petrilli et al., 2007). The final outcome of NLRP3 

inflammasome assembly is the proteolytic cleavage of cytosolic inactive pro-IL-

1β and pro-IL-18 into the mature inflammatory cytokines IL-1β and IL-18 by the 

activated caspase 1 (Lamkanfi and Dixit, 2012; Martinon et al., 2002). The fact 

that various stimuli lead to NLRP3 activation suggests that it acts as a general 

sensor of cellular damage or stress (Figure 1.1). 

In immune cells such as macrophages, priming of the NLRP3 inflammasome 

can be accomplished by activation of receptors that signal via MyD88 (myeloid 
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differentiation factor 88) and TRIF (TIR-domain-containing adapter-inducing 

interferon-β) or other NFκB activating pathways, including TLRs, Interleukin- 1 

receptors (IL-1R), tumor necrosis factor receptor (TNFR) and Nucleotide-binding 

oligomerization domain-containing protein 2 (NOD2)(Deguine and Barton, 2014). 

In several species, the expression of both IL-1β and NLRP3 is transcriptionally 

regulated (Broz et al., 2010) and thought to prime the inflammasome before it is 

activated by a second stimulus. TLR4 ligands, such as lipopolysaccharide (LPS), 

are commonly used to study priming of the NLRP3 inflammasome and 

upregulate IL-1β and NLRP3 expression (Bezbradica et al., 2017). Many sterile 

chronic inflammatory diseases involve inflammasome activation. However, our 

knowledge concerning the mechanism that leads to its’ priming in the absence of 

signals associated with microbial pathogens is limited. Non-immune cells such as 

neurons and astrocytes have been shown to be involved in immunologic 

reactions and to release inflammatory cytokines (Choi et al., 2014; Lim et al., 

2016). Thus, their inflammasome priming may have a different signaling pathway 

relative to that of immune cells. Unraveling the priming process in these cells will 

therefore have significant implications regarding our understanding of sterile 

chronic inflammation. 

When the inflammasome is primed and activated the final products are mature 

IL-1β and IL-18. IL-1β is a part of IL-1 family, which is a central player in the 

inflammatory cascade. IL-1 has two isoforms, IL-1α and IL-1β, which both bind to 

the same receptors and are biologically active (Hattori and Gouaux, 2012). IL-1β 
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is produced as 31 kDa precursors within the cell; this precursor form remains 

within the cell and cleaved to its mature active form through the action of the 

active caspase 1 from the NLRP3 inflammasome. IL-1β is only active once it is 

cleaved to its 17 kDa mature form. IL-1β has been the focus of numerous studies 

due to its highly pro-inflammatory effect, especially in humans (Dinarello, 2011). 

and has been implicated in a variety of CNS pathologies including stroke, 

traumatic brain injury and spinal cord injury (Walsh et al., 2014).  

IL-18 is also a member of the IL-1 family and can mediate inflammatory 

reactions and the host response to infection (Dinarello, 2002, 2007). Unlike IL-1β, 

IL-18 is constitutively produced as a precursor protein in several cell types 

(Dinarello, 2007). Pro-IL-18 is cleaved by caspase 1 to form mature active IL-18, 

which is released along with mature IL-1β. LPS signaling can prime IL-18 above 

baseline levels, but another stimulus is needed to activate the inflammasome and 

lead to the release. While IL-1β priming is crucial for its processing and release, 

the role of IL-18 priming is not well understood, perhaps related to its constitutive 

expression (Dinarello, 2007; Ferrari et al., 2006). 

The biological activities of IL-1β, IL-18 and pyroptosis are largely beneficial to 

the host during an infection. IL-1β and IL-18 have a wide range of effects on their 

target cells via induction of distinct signal transduction pathways. IL-1β activates 

NFκB, resulting in upregulation of several gene products in the inflammatory 

process, such as, IL-6, cyclooxygenase-2 (COX-2), chemokines, and cellular 
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adhesion molecules (Arulkumaran et al., 2011; Dinarello, 2002). IL-18 induces 

enhanced production of interferon gamma (IFN-J) and upregulates IL-6, and IL-8 

through activation mitogen-activated protein kinase (MAPK) pathway (Lee et al., 

2004). In synergy with cells of the immune system the beneficial result is 

eradication of the microbial pathogen. However, IL-1β and IL-18 induced by 

endogenous danger signals can also trigger sterile inflammation, a risk factor for 

the development of autoinflammatory and neuroinflammatory disorders and 

metabolic diseases (Man and Kanneganti, 2015). This priming signal can be the 

rate-limiting step in inflammatory responses and may connect the initial insult to 

situations of sterile chronic inflammation associated with traumatic brain injuries 

and glaucoma. 

While the NLRP3 inflammasome proteolytically cleaves IL-1β and IL-18, IL-6 

release does not necessarily require inflammasome activation. This pleiotropic 

cytokine belongs to the IL-6 family and interacts with cells through either 

glycoprotein 130 (gp 130) (Heinrich et al., 2003) or the soluble IL-6 receptor 

(Chalaris et al., 2007). Janus Kinase (JAK), signal transducers and activators of 

transcription (STAT) and the MAPK cascade, are all known to be activated by IL-

6. These molecules and pathway mediate several physiological and pathological 

conditions in the CNS (Scheller et al., 2014; Tsakiri et al., 2008). IL-6 

upregulation has been confirmed in multiple neuroinflammatory conditions, 

including traumatic brain injury (TBI) and spinal cord injury, with levels of IL-6 

correlating with pathological progression of the conditions (Guptarak et al., 2013; 
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Kumar et al., 2015; Yang et al., 2013). In addition, IL-6 has been detected in 

patients with chronic glaucoma and in a glaucoma model with IOP elevation 

(Chen et al., 1999; Johnson et al., 2011; Zenkel et al., 2010).  

While IL-6 is traditionally known as a proinflammatory cytokine, it can also 

induce neurogenesis and protect neural cells after damage (Erta et al., 2012; 

Penkowa et al., 2003). IL-6 increases both the number and length of neuronal 

processes from isolated retinal ganglion cells (Chidlow et al., 2012) protects 

retinal ganglion cells from pressure-induced cell death in vitro (Sappington et al., 

2006). While these observations suggest IL-6 has an important role in response 

to increased pressure, the signaling mechanisms linking the mechanical strain to 

the IL-6 response are not well understood. 

Mechanical strain and inflammation: 

Mechanical strain can be translated into important physiological signals, but 

overstimulation of these pathways can induce complex pathological changes to 

neural tissue via inflammation (Corps et al., 2015; Heppner et al., 2015). For 

example, stretching neurons in a model of traumatic brain injury leads to 

apoptosis (Lau et al., 2006). In encephalitis, which involves elevated intracranial 

pressure (Kaushik et al., 2012; Kumar et al., 2009) the inflammatory reaction is 

mediated by the inflammasome and IL-1β (Tamai et al., 2017). Similarly, in 

glaucoma, increased intraocular pressure (IOP) produces complex mechanical 

deformations that contribute to glaucomatous optic neuropathy (Sigal and Ethier, 
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2009). The pathological changes in glaucoma occur in what is usually considered 

a sterile environment. As such, glaucoma provides an ideal model to examine the 

relationship between strain, purines, and inflammasome priming in neural tissue. 

Previous work suggests that the NLRP1/NLRP3 inflammasomes and production 

of IL-1β play a critical role in cell death in mouse models of acute glaucoma with 

high levels of IOP that induce ischemia (Chi et al., 2015; Chi et al., 2014). While 

this indicates a possible link between mechanical strain and inflammasome 

involvement in neuronal inflammation, the model makes it difficult to separate the 

complex effects of ischemia from those due to mechanical strain resulting from 

more modest IOP elevations representative of most forms of glaucoma.  

 “Glaucoma is the second most common cause of blindness” (Resnikoff et al., 

2004), affecting approximately 80 million people worldwide (Plantinga et al., 

2013). It is a group of ocular disorders sharing a characteristic neuropathy of the 

optic nerve, with the most common risk factor being an elevation of the IOP. The 

elevation in IOP is most commonly associated with a block in the drainage of 

aqueous humor through the trabecular meshwork. Since the eye is a relatively 

closed system, this increased resistance to drainage leads to an increase in IOP 

(Casson et al., 2012). In patients with glaucoma and in experimental glaucoma 

models where IOP is elevated, an inflammatory response including activation of 

the complement system and upregulation of TNF-α (Plantinga et al., 2013) and 

IL-6 (Johnson et al., 2011; Lu et al., 2017), occurs at early stages of disease 

progression. The physical strains produced by IOP elevation are focused at the 
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optic nerve head (ONH) and in particular at the region of the lamina cribrosa 

(Bellezza et al., 2003; Burgoyne, 2011; Sigal and Ethier, 2009). The optic nerve 

head astrocytes that reside here have been identified as a critical intermediary in 

the pathogenesis of glaucoma (Hernandez 2000; Downs et al. 2008). 

Astrocytes are star-shaped glial cells that are the most abundant cell type in 

the ONH and most parts of the brain. (Nedergaard et al., 2003; Tehrani et al., 

2014). Astrocytes are in contact with neurons and provide both metabolic and 

structural support to neurons as part of normal physiology (Plantinga et al., 

2013). In addition, they can regulate synaptic transmission and can also release 

gliotransmitters such as glutamate and ATP (Hamilton and Attwell, 2010). 

Neuronal stress or injury can trigger a coordinated multicellular inflammatory 

response that involves astrocytes as well as neurons and other CNS cells 

(Liddelow and Barres, 2017). Astrocytes can undergo reactive hypertrophy of the 

cell body and processes in response to these stimuli (Sofroniew, 2009). These 

morphological changes are associated with changes in cytoskeletal proteins, 

such as glial fibrillary acidic protein (GFAP) and actin (Ho et al., 2014). Recent 

studies have shown that various insults to the CNS can elicit dissimilar reactive 

astrocyte types each exhibiting distinct properties (Liddelow and Barres, 2017).  

Axons in the ONH receive mechanical and biochemical support from 

astrocytes that envelop axon bundles with their processes (Morrison et al., 2011). 

Astrocytes are emerging as central mediators of mechanical strain and the ability 
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of astrocytes to release ATP upon stretch or swelling has implications for 

neuronal signaling in various regions. (Bennett et al., 2012; Darby et al., 2003; 

Halassa et al.,2009; Ostrow and Sachs, 2005; Perez-Ortiz et al., 2008). 

Astrocytes are mechanosensitive to stretch (Beckel et al., 2014) and optic nerve 

head astrocytes are particularly well situated to examine the signals induced by 

these forces. Elevated pressure in a closed system leads to a stretch of cells and 

their membranes (Landsman et al., 1995). As glaucomatous eyes have both an 

increase in baseline IOP and an increased magnitude of the daily IOP 

fluctuations (Gao et al., 2012), optic nerve head astrocytes are subjected to 

considerable mechanical stretch. Astrocytes from patients showed morphological 

changes before marked loss of retinal ganglion cells (Lye-Barthel et al., 2013). 

They have also been identified as contributing to the inflammatory response in 

the glaucomatous eye (Johnson and Morrison, 2009) and have been implicated 

in the damage to retinal ganglion cells in chronic glaucoma (Hernandez et al., 

2008; Morgan, 2000). Currently, the progression towards blindness can be 

delayed mainly by reducing the IOP (Scemes et al., 2009). Therefore, 

understanding how mechanical strain in the ONH is translated into inflammatory 

signals by astrocytes is a major challenge in glaucoma research. Accumulating 

evidence implicates a central role for purinergic signaling through ATP. 

Purinergic signaling:  

Throughout the body, mechanical strain triggers the release of the transmitter 

adenosine triphosphate (ATP) from both neural and non-neural cell types 
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(Burnstock, 1999; Grygorczyk et al., 2013). ATP was originally recognized as the 

main metabolic fuel for cells. Burnstock subsequently identified ATP as 

a neurotransmitter in nerves of the peripheral and central nervous systems 

(Burnstock, 1972, 2009). Later, the discovery of purinergic receptors 

demonstrated that ATP mediates autocrine and paracrine signaling actions via 

receptors located on the plasma membrane (Burnstock, 1980, 2012, 2014). At 

least one form of purinergic receptors is found on nearly every cell in the body. 

The receptors are excited by ATP released into the extracellular space or 

degraded into adenosine by ecto-ATPases.  

Extracellular ATP is a possible candidate to link the elevated IOP in glaucoma 

to inflammatory signaling in the retina and optic nerve. ATP is found to be 

released with shear stress, stretch and swelling of the cells. The released ATP 

has been postulated act as a “messenger” to induce cellular responses to 

mechanical strain (Burnstock, 1999; Mitchell, 2001). It has been shown that 

release of ATP can result in various physiological and pathological responses 

such as cell death, volume regulation, pain, inflammatory responses and 

neuroprotective signals (Lazarowski et al., 2003; Lu et al., 2015). Elevated 

extracellular ATP was confirmed in mouse, primate and rat models of chronic 

IOP elevation (Lu et al., 2015) and detected in the eyes of humans with chronic 

glaucoma (Li et al., 2011) illustrating a clear link between increased IOP and 

excessive ATP release in the retina. 

http://www.sciencedirect.com/topics/page/Neurotransmitters
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In astrocytes, ATP can be released by multiple pathways. Amongst these are 

lytic release through a compromised plasma membrane as a part of programmed 

cell death (Dahl, 2015), vesicular release by exocytosis (Silinsky, 1975) or 

transport down an electrochemical gradient through ion channels such as 

connexin hemichannels, pannexin hemichannels, maxi-anion channels and 

CALMH1 channels (Cotrina et al., 1998; Iglesias et al., 2009; Liu et al., 2008; 

Taruno et al., 2013). In astrocytes isolated from the optic nerve head, moderate 

strain from stretch or swelling leads to a release of ATP through pannexin 

hemichannels (Beckel et al., 2014). Expression of pannexin 1 is increased in vitro 

by cell stretch and in vivo in a model of chronic intraocular pressure (IOP) 

elevation, implicating ATP release in response to sustained mechanical strain.  

Pannexin hemichannels include pannexin 1, 2 and 3 that are expressed in 

both vertebrates and invertebrates (Panchin et al., 2000). Pannexins belong to 

the family of mammalian gap junction proteins which include the connexin 

channels in vertebrates and innexin channels in invertebrates. Despite the 

difference in the amino acid sequence between the pannexin and connexin 

hemichannels, they both have similar membrane topology: four transmembrane 

domains (TMDs) with two extracellular loops with intracellular N and C termini 

(Scemes et al., 2009). However, pannexin proteins have only two extracellular 

cysteines and are extensively glycosylated on their second extracellular loop at 

Asn254, preventing gap junction formation, while connexins have conserved 

cysteine residues on their extracellular loops (Boassa et al., 2007; Boassa et al., 
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2008; Scemes et al., 2009). Pannexin 1 can conduct molecules up to 1 kDa in 

size across the plasma membrane. As ATP and UTP are 507 and 484 daltons, 

respectively, they can permeate the channel (Chekeni et al., 2010). 

Pannexin hemichannels are mechanosensitive and can be opened by 

application of negative pressure applied via a patch pipette (Bao et al., 2004). 

This channel property could be the basis for the observed swelling-induced ATP 

release in response to hypotonic stress in airway epithelial cells (Ransford et al., 

2009). In addition, swelling has been shown to activate pannexins in several cell 

types, including neurons (Xia et al., 2012b) and astrocytes (Beckel et al., 2014). 

Therefore, investigating the role of pannexins in inflammasome priming that 

accompanies the mechanosensitive release of ATP is justified.  

Extracellular ATP can induce physiological responses by binding to P2 

purinergic receptors of which there are two major groups; ionotropic P2X 

receptors and metabotropic P2Y receptors (Burnstock, 2004). P2X receptors are 

found only in eukaryotes and are expressed throughout the human body 

including the nervous, cardiovascular and immune systems. P2X receptors are 

implicated in a wide range of physiological processes such as synaptic 

transmission, muscle contraction, taste and inflammation (Burnstock and 

Kennedy, 2011; Hattori and Gouaux, 2012; Surprenant and North, 2009). 

Multiple P2X family subunits have been identified which form functional ligand-

gated ion channels as homo- and/or hetero-oligomeric protein complexes 
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(Sperlagh et al., 2006). Within the P2X receptor family, P2X7 receptors are 

known to have key physiological and pathological functions in the CNS because 

of their widespread involvement in neuroinflammatory diseases (Sperlagh et al., 

2006).  

The ATP-gated P2X7 receptor is a homotrimeric, non-selective cation channel. 

The basic structure of the P2X7 receptor exhibits two transmembrane domains 

(TM1, TM2), a large, glycosylated, cysteine-rich extracellular loop, a short 

intracellular N- terminal domain and an intracellular C-terminal domain which is 

longer than that of other P2X receptor subunits (Jiang et al., 2013; Sperlagh and 

Illes, 2014). Pharmacologically, P2X7 receptors have a low sensitivity for ATP. 

Unlike other members of the P2X receptor family, P2X7 receptors require 

submillimolar to millimolar concentrations of ATP for activation. This is far greater 

than the micromolar concentration required for other P2X receptors (EC50 of 

ATP for P2X7 receptor = 2-4 mM and for other P2X receptors = 1–10 μM) 

(Rodrigues et al., 2015 ; Soares-Bezerra et al., 2015). Moreover, they have a 

higher affinity for 4-benzoyl-benzoyl-ATP (BzATP) than ATP (Klapperstuck et al., 

2001 ; Young et al., 2007). While the requirement for a high concentration of ATP 

can limit activation, ATP release from pannexin hemichannels has been 

proposed as a pathway for physiologic activation; if the pannexin channel is 

adjacent to the P2X7 receptor, a release of fewer ATP molecules is required to 

achieve the concentration necessary to activate the P2X7 receptor (Poornima et 

al., 2012; Silverman et al., 2009). 

http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0820
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0900
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0580
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0580
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib1075
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Stimulation of the P2X7 receptor by endogenous agonist ATP enables the 

efflux of K+ and the influx of Ca2+, Na+, resulting in membrane depolarization. 

This, in turn, can modulate multiple signaling pathways and alter the rate of 

neurotransmitter release. Over-activation of P2X7 receptors can lead to 

membrane blebbing and apoptotic or necrotic cell death (Bellezza et al., 2003; 

Burgoyne, 2011; Pelegrin and Surprenant, 2006; Perregaux and Gabel, 1994; 

Tsukimoto et al., 2006; Virginio et al., 1999). The role of the P2X7 receptor in 

mediating apoptosis makes it a major target for therapeutic intervention for 

neuroprotection and peripheral diseases. In addition, the P2X7 receptor is well 

known for its ability to activate the NLRP3 inflammasome following the efflux of 

K+ through its opened pore (Mariathasan et al., 2006; Petrilli et al., 2007). This 

leads to IL-1β release from macrophages, microglia, dendritic cells 

and monocytes primed by LPS (Ferrari et al., 2006; Mingam et al., 

2008; Pizzirani et al., 2007 ; Takenouchi et al., 2009). However, it is currently 

unclear if the P2X7 receptor also plays a role in priming the inflammasome. This 

is crucially important as priming is often the rate-limiting step in chronic sterile 

inflammation.  

http://www.sciencedirect.com/topics/page/Macrophages
http://www.sciencedirect.com/topics/page/Microglia
http://www.sciencedirect.com/topics/page/Monocyte
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0390
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0675
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0675
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0790
http://proxy.library.upenn.edu:2067/science/article/pii/S156816371530026X#bib0975
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Hypothesis 

The NLRP3 inflammasome is a key component of the localized innate immune 

system, leading to the cleavage and release of pro-inflammatory cytokines 

(Rathinam et al., 2012). This cytoplasmic oligoprotein complex has been 

implicated in neural disorders associated with mechanical strain or elevated 

pressure (Walsh et al., 2014) including traumatic brain injury, encephalitis, and 

glaucoma (Chi et al., 2015; Kaushik et al., 2012; Liu et al., 2013). We 

hypothesized that, mechanical strain induced by IOP triggers release of 

ATP through pannexin 1 hemichannels on optic nerve head astrocytes, 

leading to autostimulation of the P2X7 receptors and priming of the NLRP3 

inflammasome. Studies in this thesis have identified a novel role for the P2X7 

receptor in priming the inflammasome. Thus, this represents and alternative 

mechanism to the Toll-like receptor pathways traditionally associated with this 

process. The demonstration that mechanosensitive ATP release and 

inflammasome priming occur in optic nerve head astrocytes may help delineate 

the events that link mechanical strain to inflammatory signaling in glaucoma as 

well as provide a paradigm for neuroinflammation that occurs in response to 

other general types of mechanical strain in the nervous system (Figure 1.3).   
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Figure 1.3 Hypothesized model 

Model summarizing the hypothesized role of the P2X7 receptor in the priming 
of inflammasome genes after mechanical strain. Membrane stretch leads to 
ATP release through pannexin hemichannels. The resulting extracellular ATP 
can autostimulate P2X7 receptors leading to NFκB activation and 
transcriptional elevation of IL-1β and NLRP3 in optic nerve head astrocytes. 
Swelling may also activate inflammasome genes through additional pathways. 
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Introduction 

Mechanical trauma can induce complex pathological changes to neural tissue 

via inflammation (Corps et al., 2015; Heppner et al., 2015). While recruitment of 

immune cells to the injured region can contribute, localized inflammatory 

signaling between glia and neurons can also initiate or enhance inflammatory 

damage. The NLRP3 inflammasome is a key component of the localized innate 

immune system, leading to the cleavage and release of pro-inflammatory 

cytokines (Rathinam et al., 2012), and it has been implicated in neural disorders 

associated with mechanical strain or elevated pressure (Walsh et al., 2014), 

including traumatic brain injury, encephalitis, and glaucoma (Chi et al., 2015; 

Kaushik et al., 2012; Liu et al., 2013). 

The involvement of the NLRP3 inflammasome is a two-step process. In the 

first stage, referred to as the priming step, expression of inflammasome 

components such as pro-IL-1β and NLRP3 is increased at the transcriptional and 

translational level (Mariathasan et al., 2006; Patel et al., 2017). This priming 

stage can be the rate-limiting step in inflammatory responses and may connect 

the initial insult to chronic inflammation. During the second stage, inflammasome 

components are assembled and activated, turning on caspase 1 which 

subsequently catalyzes the maturation of cytokines IL-1β and IL-18 (Stutz et al., 

2009). This later step has been linked to efflux of K+ through the P2X7 purinergic 

receptor (Bernier, 2012; Karmakar et al., 2016; Mariathasan et al., 2006; Petrilli 

et al., 2007), even for activation associated with lysosomal rupture (Zode et al., 
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2011), and can be mimicked by the K+ ionophore nigericin (Zode et al., 2015). 

While activation of the NLRP3 inflammasome has been the subject of intense 

investigation (e.g. (Freeman and Ting, 2016; Guo et al., 2015; Yilmaz and Lee, 

2015), the signals leading to inflammasome priming are less well understood. 

Standard models attribute priming to microbial molecules or other toll-like 

receptor agonists that are rarely detected in sterile neural environments.  

The central role of aberrant purinergic signaling in the neuropathology 

triggered by mechanical strain has been outlined for the retina (Mitchell et al., 

2009). In astrocytes isolated from the optic nerve head, moderate strain leads to 

a release of ATP through pannexin hemichannels (Beckel et al., 2014). This 

released ATP then autostimulates P2X7 receptors on these astrocytes to 

regulate cytoplasmic Ca2+ and other physiological responses. Expression of 

pannexins is increased in vitro by cell stretch and in vivo in a model of chronic 

intraocular pressure (IOP) elevation, consistent with a role for ATP release in the 

neural response to sustained mechanical strain. Elevated extracellular ATP was 

confirmed in primate, rat, and mouse models of chronic IOP elevation (Lu et al., 

2015) and detected in the eyes of humans with chronic glaucoma (Li et al., 

2011).  

This study asks whether extracellular ATP release through pannexins and 

autostimulation of the P2X7 receptor are involved in the priming of the NLRP3 

inflammasome. The data are consistent with a role for the P2X7 receptor in 
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priming IL-1β and NLRP3 in retina following activation of NFκB in optic nerve 

head astrocytes. This identifies a new pathway for priming the inflammasome in 

sterile neural environments subject to mechanical strain.  
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Materials and Methods: 

Animal care and use: All procedures were performed in strict accordance with 

the National Research Council’s “Guide for the Care and Use of Laboratory 

Animals” and were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee (IACUC). All animals were housed in 

temperature-controlled rooms on a 12:12 light:dark cycle with food and water ad 

libitum. Long–Evans and Sprague Dawley rats (Harlan Laboratories/Envigo, 

Fredrick, MD), and mice (C57BL/6J wildtype and P2X7-/-) of both sexes were 

utilized. Both the wildtype C57BL/6J and the P2X7-/- B6.129P2-P2rx7tm1Gab/J 

Pfizer mice were from Jackson Laboratories (Bar Harbor, ME). Tg-MyocY437H 

mice provide a model of chronic glaucoma and were received as a gift from Val 

Sheffield (Lu et al., 2015).  

Model of moderate temporally-controlled intraocular pressure elevation: The 

IOP was elevated in adult Sprague-Dawley rats as previously reported (Lu et al., 

2017) based on the Control Elevation of IOP (CEI) protocol developed by John 

Morrison and colleagues (Morrison et al., 2010; Morrison et al., 2014). This 

procedure enables the effects of increased pressure to be separated from cell 

death to focus specifically on the consequences of mechanical strain. Pressures 

were selected so that retinal blood flow was maintained and ischemia avoided; 

studies suggest this protocol leads to minimal loss of neurons, and allows the 

separation of pressure and cell death (Crowston et al., 2015; Lu et al., 2017). 
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This model was therefore chosen to investigate the mechanosensitive priming of 

the inflammasome in neural tissue in vivo.  

After receiving 2 mg/kg meloxicam, rats were deeply anesthetized with 1.5% 

isoflurane or intraperitoneal injection of ketamine (80 mg/kg) and xylazine (10 

mg/kg). After administration of proparacaine (0.5%) and tropicamide (0.5-1%), 

one eye was cannulated with a 27-gauge shielded wing needle (Becton 

Dickinson, NJ) inserted into the anterior chamber, connected to a 20ml syringe 

filled with sterile phosphate buffered saline (PBS). IOP was increased to 50-60 

mmHg by elevating the reservoir to the appropriate height; blood flow through the 

retina was maintained throughout to avoid ischemic complications. The 

contralateral eye without cannulation served as a normotensive control. After 4 

hrs, pressure was returned to normal, the needle removed and 0.3% gentamicin 

ointment or 0.5% erythromycin applied to the cornea. Rats were sacrificed 22 hrs 

later and the retina, including the optic nerve head material, was dissected. 

Experiments on mice were performed using procedures similar to those 

described elsewhere (Crowston et al., 2015). Mice were anesthetized with 1.5% 

isoflurane, and IOP was increased to 60 mmHg for 4 hours; pressure was then 

returned to normal, the needle (33-gauge) removed and 0.5% erythromycin 

applied to the cornea. Mice were either sacrificed 22 hrs later or immediately 

(depending on the experiment), and the retina, including the optic nerve head 

material, was dissected. In some experiments mice were sacrificed immediately 

after the pressure was returned to normal (Figure 2.1).   
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A. The anterior segment of the eye from an anesthetized Sprague Dawley 
rat was cannulated with a 27 gauge needle. IOP was increased to 60 
mmHg for 4 hrs without signs of ischemia by raising the reservoir 
connected to the cannulating needle. B. Schematic of experimental time 
course. IOP was elevated to 60 mmHg for 4 hours, and then pressure 
was returned to normal. Mice and rats were sacrificed immediately or 22 
hrs later and the retina, including the optic nerve head material, was 
dissected.  

 

 

 

 

  

A. Rat eye with IOP elevated B. Schematic time course 

Figure 2.1 Model of moderate temporally-controlled intraocular pressure 

elevation (CEI): 
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Chronic glaucoma model: The Tg-Myoc mouse provides a model of chronic 

glaucoma and was generated and initially characterized by Sheffield and 

colleagues. A colony was established at the University of Pennsylvania. Tg-

MyocY437H mice were bred with C56BL/6N mice and the offspring were genotyped 

to identify those with the human transgene. Human Tg-MYOCY437H mutant 

myocilin expressed in the trabecular meshwork led to ER stress, IOP elevation, 

and loss of ganglion cell axons. IOP measured from genotyped littermates 

indicated a significant elevation in IOP of Tg-Myoc mice (15.5 ± 0.5 mmHg vs. 

12.2 ± 1.0 in WT controls, N=3, P=0.043), consistent with previous reports (Lu et 

al., 2015).  

Intravitreous injection: Intravitreal injections were performed in rat eyes under 

a dissecting microscope using a micropipette connected to a microsyringe 

(Drummond Scientific Co., Broomall, PA) as described elsewhere (Hu et al., 

2010). A glass pipette filled with P2X7 receptor antagonist Brilliant Blue G (BBG, 

0.8%) dissolved in saline was passed through the superior nasal region of sclera 

into the vitreous cavity, ~1 mm from the limbus, with a total volume of 5 µl 

injected over a 30 sec time period. The antagonist was delivered 1-3 days before 

IOP elevation. C57BL/6J wild type mice were injected with either P2X7 receptor 

agonist Bz-ATP (2 µl, 250 µM) or sterile saline.  

Astrocyte cell culture: Primary rat optic nerve head astrocyte cultures were 

grown based on a protocol modified from Mandal et al. (Mandal et al., 2009). The 
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optic nerve proximal to the sclera, defined as the optic nerve head, was obtained 

from rat pups PD3-5 of both genders. This optic nerve head tissue was digested 

for 1 h using 0.25% trypsin (Invitrogen), with periodic trituration to create a cell 

suspension. Cells were washed once with Dulbecco’s modified Eagle’s medium 

(DMEM)/F12 containing 10% of fetal bovine serum (FBS), re-suspended in 

DMEM/F12, 10% FBS, 1% penicillin/streptomycin, and 25 ng/mL epidermal 

growth factor (#E4127, Sigma-Aldrich), plated on 35mm culture dishes and 

grown at 37˚C, 5.5% CO2. Cultures were found to contain >99% astrocytes, as 

defined by glial fibrillary acidic protein (GFAP) immunofluorescence staining. 

Cells were generally at passages 2 to 5 when used. Mouse optic nerve head 

astrocyte tissue was collected from 3-month-old animals, due to the limited 

material from the neonatal mice. C57BL/6J and P2X7-/- mice of both genders 

were prepared similarly to the rat protocol, but the optic nerve head tissue was 

digested for only 35 min using 0.25% trypsin (Invitrogen). 

Swelling isolated astrocytes: Rat and mouse optic nerve head astrocytes were 

subcultured onto plastic 6-well plates and grown until confluent. Cells were 

incubated in 2ml of control isotonic solution containing (in mM) 105 NaCl, 5 KCl, 

4 NaHEPES, 6 HEPES acid, 1.3 CaCl2, 5 glucose, 5 NaHCO3, 60 mannitol and 

0.25 MgCl2 pH 7.4) or in 30% hypotonic solution for 4 hours in the tissue culture 

incubator. Cells were pretreated with inhibitors Bay 11-7082 (4µM) Brilliant Blue 

G (BBG, 10 μM), A839977 (50 nM, Tocris Bioscience), A740003 (5 μM, Tocris 

Bioscience), carbenoxolone (10µM, #C4790), Probenecid (1mM, #P8761) or 
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10Panx1 and scrambled peptide (100µM, #3348 and #3708, Tocris Bioscience) 

for 1 hr before adding test solutions. RNA was extracted immediately after the 4 

hrs treatment.  

In vitro stretch experiments: Isolated rat optic nerve head astrocytes were 

plated on 6 well plates with 0.05 mm silicone substrates coated with collagen 1 

(Flexcell biaxial six-well plate #BF-3001C, Flexcell International Corp.) for 6-7 

days until confluent. After replacing medium with isotonic solution, cells were 

exposed to mechanical cyclic tensile strain of 16% at 0.3 Hz for 4hrs in the tissue 

culture incubator using a vacuum provided by the Flexcell FX-5000 Tension 

System (Figure 2.2) (Flexcell International Corp.). Control cells were cultured and 

grown under the same conditions on similar plates and kept in the same 

incubator without mechanical stretching. RNA was extracted immediately after 

stretch.   
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RNA isolation: RNA was extracted from astrocytes plated on six well plates or 

whole retina including the optic nerve head by homogenizing in 1 ml TRIzol 

reagent per sample (#15596026, Invitrogen). Samples were sonicated for 10 sec 

on ice, then 200µl Chloroform was added to each sample, vortexed for 15 sec 

and incubated for 5 min at room temperature. The samples were centrifuged at 

1200g at 4˚C for 10 min then the upper aqueous solution (around 400-450µl) was 

transferred to a new 1.5 ml tube. One volume of 70% ethanol was added to the 

 

A. Sample well 
from the control 
condition 

A. Diagram of the silicon membrane in control condition (No stretch). 
B. Diagram of the silicon membrane in stretch condition. In these 

experiments astrocytes were exposed to cyclic tensile strain of 16% at 
0.3 Hz for 4hrs. Modified from (Flexcell, 2011) 

B. Sample well with 
stretch  

Figure 2.2 Stretching wells of the Flexcell FX-5000 Tension System 
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solution, and the mix was transferred to an RNeasy spin column with a silica 

membrane placed in a 2 ml collection tube RNeasy mini kit (#79254, Qiagen, 

Inc., MD, USA). After adding the solution to the spin column, manufacturer 

instructions were followed. Samples were treated with RNase free DNase set. 

(#79254 Qiagen, Inc., MD, USA) to remove the remaining DNA. At the final step, 

RNA was eluted with 30µl RNase free water. RNA concentration and purity were 

assessed using a Nanodrop spectrophotometer (Thermo Scientific). 

Quantitative PCR: cDNA was synthesized from 1µg of total RNA per reaction 

using the High Capacity cDNA Reverse Transcription Kit (#4368814, Applied 

Biosystems) at 25 °C for 10 min, 37 °C for 120 min and terminated at 85 °C for 5 

min. The Quantitative Polymerase Chain Reaction (qPCR) was performed using 

SYBR Green and the 7300 RealTimePCR system (Applied Biosystems Corp.), 

starting with 50°C for 2 min and 95°C for 10 min, followed by 40 cycles at 95°C 

for 15 sec and 60°C for 1 min, and concluding with 15 sec at 95°C, 60°C for 1 

min and 95°C for 15 sec to ensure a single product on melting curves; 0.5µl of 

cDNA was used per well, except for in vitro analysis of IL-1β in which 1.0 µl was 

used. GAPDH expression did not differ between control and experimental 

groups. To control for genomic DNA contamination, in addition to the DNase 

treatment during the RNA isolation, PCR was also performed on samples from 

reverse transcriptase reactions in without the enzyme. Any product from these 

samples indicated a DNA contamination and results were excluded. All 

experiments were performed in triplicate and data were analyzed using the delta-
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delta Ct approach. As ΔCt= CtTarget - CtGAPDH, ΔΔCt= ΔCtexperiment - ΔCtControl and, 

relative expression (RQ) = 2-ΔΔCt. Primers used are described in Table 2-1. 

For the PCR gel used in genotyping, RNA was extracted from confluent wild 

type and P2X7-/- mouse optic nerve head astrocytes and converted to cDNA as 

above. The PCR amplification reaction included 10µl REDExtract-N-Amp PCR 

Reaction mixture (# XNATS, Sigma-Aldrich) with 4 µl of the cDNA, 2 µl H2O and 

2µl of the P2X7 receptor primer (10µM) (Table 2.1). cDNA was denatured at 

94°C for 3 min, followed by 35 PCR cycles. Each consisted of three steps: 94°C 

for 45 sec, 65°C for 1 min, and 72°C for 1 min. Final extension was set at 72°C 

for 10 min. PCR products were detected by 1% (w/v) agarose gels using 100bp 

DNA Ladder (#15628-019, Invitrogen). 

Immunocytochemistry: Astrocytes were grown to 80% of confluence, fixed with 

4% formaldehyde for 20 min at 25˚C, permeabilized with 0.1% Triton X-100 (Bio-

Rad, USA) for 15 min then blocked with 20% Superblock (ThermoFisher 

Scientific Inc) in PBS with 0.1% Tween 20 (Bio-Rad, USA) (PBS/T) for 1 hour. 

Coverslips were incubated with anti-GFAP monoclonal antibody (#MABH360, 

1:250: Chemicon Int.) overnight at 4˚C, followed by donkey anti-mouse IgG 

Alexa-Fluor 488 for 60 min (#A21202, 1:500; Invitrogen). For pannexin 1, cells 

were incubated with goat polyclonal (#ab124131, 1:200, Abcam), followed by 

rabbit anti-goat 594 nm. For P2X7 receptor staining, cells were incubated 

overnight with rabbit polyclonal (#APR-008, 1:100, Alomone), followed by donkey 
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anti-rabbit IgG Alexa Flour 488 for 1 hour (#A21206, 1:500, Invitrogen). Cells 

were incubated with Alexa Fluor 568 Phalloidin (#A12380, 1:100; Invitrogen) for 

15 min. After incubation with DAPI (#D9542, Sigma-Aldrich) for 10 min, 

coverslips were washed and mounted using SlowFade Gold Anti-fade Media 

(Invitrogen). Images were acquired using a Nikon Eclipse microscope (Nikon, 

USA) and ImagePro software (MediaCybernetics). ImageJ was used to subtract 

background, modify intensity and combine pseudocolored images, with parallel 

processing for all images. Mouse astrocytes were stained with the anti-GFAP 

monoclonal antibody used for rat cells.  

For retinal sections, mice were transcardially perfused with 4% formaldehyde 

in PBS. After enucleation, eyes were fixed with 4% formaldehyde overnight then 

incubated in 30% sucrose for 2 h. Eyes were embedded in OCT compound 

(Tissue-Tek #62550-1), cryosectioned at 9 µm and mounted on Colorfrost Plus 

slides (ThermoFisher # 9991001). Sections were fixed with 4% formaldehyde for 

10 min, permeabilized with 0.1% Triton-X-100 for 10 min, then blocked with 20% 

Superblock with PBS/T plus 10% donkey serum. Sections were incubated in 

5µg/ml IL-1β primary antibody (goat polyclonal antibody #AF-401-NA R&D 

systems, Lot# NP2715111) and anti-GFAP monoclonal antibody (#MABH360, 

1:250: Chemicon Int.) overnight at 4°C, followed by secondary donkey anti-goat 

Alexa555-conjugated antibody (# A21432) and donkey anti-mouse IgG Alexa-

Fluor 488 for 60 min (# A21432, #A21202, 1:500; Invitrogen). Images were 

obtained as described above.  
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Immunoblots: Whole retinas or astrocytes grown on 6 well plates were washed 

twice with cold PBS and lysed in RIPA buffer containing 50 mM Tris-HCl, 150 

mM NaCl, protease inhibitor cocktail (Complete; Roche Diagnostics, Germany), 

1% Triton X-100, 0.1% SDS, and 10% glycerol. Sonicated samples were 

centrifuged (14,000g, 10 min, 4°C) and quantified using a BCA Protein Assay 

(Pierce/ThermoFisher). 10 to 20 μg of protein was loaded into each lane of 4–

15% Mini-PROTEAN® TGX™ Gel, 10 well, 50 µl (#4561084, Bio-Rad, USA). 

Precision Plus Protein™ Dual Color Standards molecular weight ladder 

(#1610374, Bio-Rad, USA) was run on each gel. After separation, proteins were 

transferred onto Polyvinylidene difluoride membrane (PVDF) and blocked in PBS 

with 0.1% Tween 20 (PBS/T) and 5% non-fat milk for 60 minutes at RT. PVDF 

membranes were incubated overnight at 4°C with primary antibodies in PBS/T + 

1% non-fat milk. Primary antibodies used were 0.25µg/ml IL-1β goat polyclonal 

antibody (#AF-401-NA R&D systems, Lot# NP2715111) and IκBα rabbit 

polyclonal antibody (#9242, 1:1000; Cell Signaling). PVDF membranes were 

washed with PBS/T, then incubated with corresponding secondary antibodies at 

1:5000 dilution in PBST + 1% non-fat milk: donkey anti-goat IgG-HRP (1:5000; 

sc-2020, Santa Cruz Biotechnology) or Rabbit IgG, HRP-linked whole AB from 

donkey (1:5000, #NA934, amersham Bioscience Corp.). Blots were developed 

using a chemiluminescence detection kit (ECL detection system; Amersham 

Biosciences Corp.) and visualized with the ImageQuant LAS 4100 imager and 

Image Quant software (GE Healthcare Lifesciences). 
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ATP measurement: Rat astrocytes were grown to confluence into white-

walled, clear-bottom 96-well plates (#3610, Corning Inc.). The border wells were 

avoided and treatments were randomized across the plate (Figure 2.3). Growth 

medium was replaced with isotonic solution and cells were allowed to recover for 

30 min at 37°C before measurements were taken. A bioluminescent 

luciferin/luciferase assay was used to measure ATP levels (Reigada et al., 2005). 

The ATP mix Luciferin/Luciferase (#FLAAM, Sigma-Aldrich) was stored frozen as 

a stock solution with 450 μl of control solution/50 μl of dH2O per vial and diluted 

20-fold in isotonic solution. Each well contained 20 μl of the assay with 50 μl 

isotonic base and 30 μl of either isotonic, dH2O, dH2O with Apyrase (1U/ml, 

A6535; Sigma-Aldrich) or 10µM carbenoxolone to achieve 30% hypotonic. 

Isotonic solution was removed from the cells, and prepared mixes were added to 

the cells carefully. ATP was then quantified using the Luminoskan Ascent 

luminometer (ThermoFisher), integrating over 200 ms and sampling in 

succession every 10 s for 18 min at 25°C. The ATP released was calculated at 

the different time points indicated in the results with the use of a standard curve 

to transform the arbitrary light units to an ATP concentration, then normalized to 

mean levels for isotonic solution.   
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Data Analysis: Data are reported as mean ± SEM. Analysis was performed in 

a masked fashion whenever possible. Statistical analysis used a 1-way ANOVA 

with post-hoc Holm-Sidak (all pairway) method, student t-test, or paired t-test 

when appropriate. Analyses were performed using Systat Software Inc. (San 

Jose, CA). Sample size was predicted by power analysis, and numbers take into 

account a 15% failure rate in animal experiments. Sample sizes are consistent 

with those reported in similar studies and provide sufficient power to detect 

A. Randomization of groups B. ATP measurement 
design 

A. Layout of 96-well plates. The treatment groups were randomized 
across the plate and the borders wells were avoided 

B. Each well contained 20 μl of the assay, with 50 μl of isotonic base and 
30 μl of either isotonic, dH2O, dH2O with Apyrase or 10µM 
carbenoxolone added to achieve 30% hypotonic.  

Figure 2.3 ATP measurements 
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changes. When data were not normally distributed analysis were performed on 

ranks. Results with p<0.05 were considered significant. 

 

 

Table 2-1 Primers used for qPCR of NLRP3 Inflammasome-related genes 

Gene Name 
GenBank 
Accession 

Forward Primer (5' to 3') Reverse Primer (5' to 3') Size (bp) 

Rat IL-1β 1 NM_031512.2 GGGATTTTGTCGTTGCTTGT CTGTGACTCGTGGGATGATG 211 

Rat IL-1β 2 NM_031512.2 CACCTCTCAAGCAGAGCACAG 
GGGTTCCATGGTGAAGTCAA
C 83 

Rat NLRP3 NM_001191642 CCATGAGCTCCCTTAAGCTG TTGCACAGGATCTTGCAGAC 283 

Rat CASP1 NM_012762 TATGGAAAAGGCACGAGACC CAGCTGATGGACCTGACTGA 137 

Rat ASC NM_172322.1 CCCATAGACCTCACTGATAAAC AGAGCATCCAGCAA ACCA 260 

Rat IL-18 NM_019165.1 GGACTGGCTGTGACCCTATC TGTCCTGGCACACGTTTCTG 152 

Mouse IL-1β 
1 

NM_008361.4 GAAGATGGAAAAACGGTTTG GTACCAGTTGGGGAACTCTG
C 

85 

Mouse IL-1β 
2 

NM_008361.4 
CAAGCTTCCTTGTGCAAGTGT
CTG 

AGGACAGCCCAGGTCAAAG
GTT 

161 

Mouse 
NLRP3 NM_145827.3 

AGAGCCTACAGTTGGGTGAAA
TG 

CCACGCCTACCAGGAAATCT
C 116 

Mouse 
CASP1 NM_009807.2 TGGTCTTGTGACTTGGAGGA TGGCTTCTTATTGGCACGAT 172 

Mouse ASC NM_023258.4 GGAGTCGTATGGCTTGGAGC CGTCCACTTCTGTGACCCTG 204 

Mouse IL-18 NM_008360.1 CAGTGAACCCCAGACCAGAC TGTTGTGTCCTGGAACACGT 212 

Mouse 
P2X7R 

NM_001284402
.1 

TGGAACCCAAGCCGACGTTGA CTCGGGCTGTCCCCGGACTT 250 

Mouse Bax NM_007527.3 TGCAGAGGATGATTGCTGAC GATCAGCTCGGGCACTTTAG 154 

GAPDH NM_017008 TCACCACCATGGAGAAGGC GCTAAGCAGTTGGTGGTGCA 195 
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Results: 
Priming of inflammasome genes after elevation of IOP 

We first examined whether mechanical strain primed inflammasome 

components in vivo. IOP was unilaterally elevated in rats to between 50-60 

mmHg for 4 hrs using a variant of the Controlled Elevation of IOP (CEI) 

procedure. RNA was extracted from the retina of treated and contralateral control 

eyes soon after return of IOP to baseline, and qPCR was used to compare 

expression of genes associated with the NLRP3 inflammasome. There was a 

significant elevation in the expression of mRNA for IL-1β, NLRP3, Interleukin-1 

converting enzyme/caspase1 gene (CASP1) and Apoptosis-Associated Speck-

Like Protein Containing CARD (ASC), but not in expression of cytokine IL-18 

(Figure 2.4.A).  

The procedure was also performed in mice to determine whether the response 

occurred across species. In material extracted immediately after IOP was 

returned to baseline, IL-1β was elevated moderately (Figure S 2.1.A). Expression 

was substantially increased in material extracted 22 hrs after IOP returned to 

baseline, with IL-1β, NLRP3, CASP1, and ASC levels elevated significantly 

(Figure 2.4.B). The increased expression was greatest for IL-1β, with mRNA 

levels increasing over 80-fold. At neither time point did the CEI procedure elevate 

message for the pro-apoptotic marker BAX (Figure S 2.1.B), consistent with the 

lack of cell death found previously with this procedure (Crowston et al., 2015). 
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Expression was also examined in retinas from Tg-MyocY437H mice; these mice 

had a sustained, moderate elevation in IOP of 15.5 ± 0.5 mmHg, as compared to 

12.2 ± 1.0 in wildtype controls at 14-18 months, similar to the IOP difference 

measured previously at 8 months (Lu et al., 2015). Expression of IL-1β mRNA 

was increased in retinas from Tg-MyocY437H mice compared to littermate controls 

(Figure S 2.1.C), but the rise in NLRP3 or CASP1 was not significant. 

Inflammasome priming at protein level 

Given that the elevation of IL-1β was substantially greater than that of other 

inflammasome components, further efforts were focused on this cytokine. 

Immunoblots were performed to probe for pro-IL-1β protein to confirm the mRNA 

results. Expression of 31kDa pro-IL-1β protein was significantly elevated in 

mouse eyes when examined 22 hrs after IOP elevation (Figure 2.5.A, B). 

Immunohistochemistry was used to localize the rise in IL-1β induced by IOP 

elevation. Staining for IL-1β was low under control conditions, but increased 

substantially in eyes exposed to IOP elevation (Figure 2.5.C, Figure S 2.2). The 

increased staining was greatest in the nerve fiber bundle of the retina and 

throughout the optic nerve. Closer inspection of the staining pattern in the optic 

nerve head showed increased expression of IL-1β in bands through the optic 

nerve head that colocalized with GFAP, suggesting IL-1β expression was 

increased in optic nerve head astrocytes.  
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P2X7 receptor is involved in IL-1β priming in vivo 

We hypothesized that the increased expression of IL-1β following IOP 

elevation might relate to the release of ATP and autostimulation of P2X7 

receptors found in optic nerve head astrocytes exposed to mechanical strain 

(Beckel et al., 2014). This possibility was supported by recent findings implicating 

the P2X7 receptor in the mechanosensitive upregulation of cytokines IL-3 (Lim et 

al., 2016) and IL-6 (Lu et al., 2017) in the retina. To determine if the P2X7 

receptor was involved in IOP-sensitive priming of IL-1β, the P2X7 receptor 

antagonist BBG (0.8%) was injected intravitreally 1-3 days before the IOP rise, 

then retinas were collected 22 hrs after the IOP returned to baseline. 

Pretreatment with BBG prevented the upregulation of IL-1β mRNA triggered by 

IOP elevation (Figure 2.6.A). 

P2X7 receptor involvement was examined further by evaluating IL-1β mRNA 

levels in P2X7-/-mice. Elevation of IOP significantly increased IL-1β mRNA levels 

in control C57BL/6J mouse eyes, but not P2X7-/- mice (Figure 2.6.B). A similar 

reduction was observed in levels of NLRP3 in tissue from the P2X7-/- mice 

(Figure 2.6.C). P2X7 receptor stimulation was itself sufficient to increase IL-1β 

expression; the P2X7 agonist BzATP was injected intravitreally in C57BL/6J mice 

with sterile saline injected into the contralateral eye as a control. Retinas 

collected 1 day after the injections showed that BzATP significantly increased the 

expression of IL-1β (Figure 2.6.D). The effect of BzATP on other inflammasome 
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genes was much smaller (Figure 2.6.D). Together, the data suggested the P2X7 

receptor primes IL-1β in response to mechanical strain in vivo. 

Mechanical strain primes inflammasome genes in isolated astrocytes 

The optic nerve head has been identified as a focal center of mechanical 

strain that accompanies IOP elevation (Burgoyne et al., 2005; Downs et al., 

2008), with optic nerve head astrocytes involved in several signaling pathways 

implicated in glaucomatous pathology (Hernandez, 2000; Morgan, 2000; Tehrani 

et al., 2016). Mild stretch to optic nerve head astrocytes leads to a release of 

ATP and autostimulation of P2X7 receptors (Beckel et al., 2014), and the 

immunohistochemical staining in (Figure 2.5.C) indicated an increase in IL-1β in 

optic nerve head astrocytes. As such, the mechanosensitive priming of IL-1β and 

the contribution of the P2X7 receptor to this priming was examined further in 

isolated optic nerve head astrocytes.  

Primary rat optic nerve head astrocytes were plated on a silicon sheet and 

subjected to 16% strain at 0.3 Hz for 4 hrs. Cells subjected to this stretch 

protocol looked identical to controls cells on a macroscopic level, with very 

similar patterns of F-actin staining (Figure 2.7.A). The level of IL-1β mRNA was 

significantly increased in stretched cells (Figure 2.7.B). Expression of IL-1β was 

also elevated by applying strain to the cells by swelling in a 30% hypotonic 

solution (Figure 2.7.C). The rise in other inflammasome genes induced by 
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swelling astrocytes was variable, with small increases in NLRP3, ASC and IL-18, 

but not CASP1 (Figure S 2.3.A).  

ATP release through pannexin channels required for mechanosensitive priming 

of IL-1β in astrocytes 

The measurements of IL-1β mRNA from optic nerve head astrocytes in vitro 

allowed further investigation of the mechanisms linking mechanical strain to IL-1β 

upregulation. First, the ability of astrocytes to release ATP when swollen, and of 

the soluble ectoATPase apyrase to prevent the extracellular elevation in ATP 

was confirmed (Figure 2.8.A, B). The ability of apyrase to prevent the swelling-

induced rise in IL-1β expression supported a role for extracellular ATP in this 

pathway (Figure 2.8.C).  

Previous work suggests that pannexin hemichannels are a conduit for the 

mechanosensitive release of ATP from these cells (Beckel et al., 2014). 

Carbenoxolone is reported to be relatively specific for pannexin channels at 10 

µM (Bruzzone et al., 2005), and this concentration led to a moderate, but 

significant reduction in the swelling-induced release of ATP (Figure 2.8.D). This 

concentration of carbenoxolone reduced the rise in IL-1β mRNA expression by a 

similar amount (Figure 2.8.E). The swelling-induced rise in IL-1β was also 

blocked by probenecid and the peptide blocker 10Panx1, while the scrambled 

peptide control had no effect on expression (Figure 2.8.F). The expression of 
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pannexin 1 in these astrocytes (Figure 2.8.G), combined with the reduction by 

three pannexin blockers, implicated pannexins in the IL-1β response.  

 

P2X7 receptor necessary and sufficient for mechanosensitive priming of IL-1β in 

vitro 

ATP released after swelling can autostimulate astrocytes, with P2X7 

antagonists blocking the rise in cytoplasmic Ca2+ induced by swelling (Beckel et 

al., 2014). To determine whether this autostimulation contributed to the priming of 

IL-1β, the effect of P2X7 antagonists on the swelling-dependent rise in IL-1β was 

examined. The expression of the P2X7 receptor in astrocytes was confirmed 

using immunocytochemistry (Figure 2.9.A). Three P2X7 antagonists, BBG, 

A839977, and A740003, significantly prevented the mechanosensitive IL-1β 

priming in optic nerve astrocytes (Figure 2.9.B). To support this pharmacological 

identification of the P2X7 receptor, experiments were pursued on astrocytes 

isolated from C57Bl/6J mice and P2X7-/- mice. PCR confirmed the absence of the 

P2X7 receptor message in astrocytes obtained from knockout mice while 

immunocytochemistry supported the absence of P2X7 protein (Figure S 2.4.A, 

B). The increased in expression of IL-1β mRNA after 4 hrs of swelling was 

significantly lower in astrocytes from the P2X7-/- mice as compared to the 

C57BL/6J mice (Figure 2.9.C). Treatment of astrocytes with the P2X7 receptor 

agonist BzATP was sufficient to upregulate IL-1β mRNA (Figure 2.9.D). Similar 
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results were found with NLRP3; the response was reduced in astrocytes from 

P2X7-/- mice (Figure S 2.4.C), while addition of BzATP induced a significant, 

albeit small, rise in NLRP3 (Figure S 2.4.D).  

NFκB is involved in priming of NLRP3 and IL-1β after mechanical strain  

 While many different transcription factors could be involved in the 

upregulation of IL-1β, we focused on the contribution of NFκB, as it is linked to 

the transcription of inflammasome genes including IL-1β (Cogswell et al., 1994) 

and can be activated by P2X7 stimulation (Liu et al., 2011). The NFκB inhibitor 

Bay 11-7082 prevented the swelling-induced upregulation of IL-1β in rat 

astrocytes (Figure 2.10.A). Upregulation of NLRP3 was similarly blocked by Bay 

11-7082 (Figure 2.10.B). While neither swelling nor Bay 11-7082 had any effect 

on expression of CASP1 (Figure 2.10.C). 

To confirm a role for NFκB in the transcriptional changes, levels of nuclear 

factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) 

in extracts from control and swollen astrocytes from C57BL/6J were probed with 

immunoblots. Reduction in Iκbα levels correspond to activation of NFκB (Finco 

and Baldwin, 1995). Swelling reduced levels Iκbα in astrocytes from control mice, 

but not in cells from P2X7-/- mice (Figure 2.11.A). Quantification showed the 

reduction in Iκbα induced by swelling was significantly less in astrocytes from 

P2X7-/- mice (Figure 2.11.B). The P2X7 receptor antagonist A839977 also 
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reduced the ability of swelling to activate IκBα (Figure 2.11.C,D), supporting a 

role for the P2X7 receptor in the swelling-dependent activation of NFκB.   
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Discussion: 

This study suggests that mechanical strain can increase expression of 

certain components of the NLRP3 inflammasome in neural tissue and identifies a 

role for ATP release and the P2X7 receptor in this priming. The cytokine IL-1β 

was linked through this pathway most strongly, with supportive evidence for 

upregulation of NLRP3. Given that priming is the initial step in NLRP3 

inflammasome involvement, this study implicates a role for the P2X7 receptor in 

linking mechanical strain to innate immune responses in neural tissues.  

Role of purinergic signaling 

Evidence linking the P2X7 receptor with priming of IL-1β comes from in vivo 

and in vitro assays of mRNA and protein. The P2X7 antagonist BBG prevented 

the rise in IL-1β expression in vivo in rat retinas exposed to a transient rise in 

IOP. The rise in IL-1β following transient IOP increase was significantly less in 

P2X7-/- mice as compared to control, while the rise in IL-1β expression following 

intravitreal injection of P2X7 agonist BzATP suggests receptor stimulation is 

sufficient to increase IL-1β expression.  

In vitro work using isolated astrocytes provides additional support and 

implicates the P2X7 receptor more specifically, with the use of more selective 

antagonists A839977 and A740003 (Honore et al., 2009; Honore et al., 2006), in 

addition to BBG. The pressure-induced rise in IL-1β expression was prevented 

by these agents and was not present in P2X7-/- mice, while the P2X7 agonist 
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BzATP was sufficient to elevate IL-1β. Together, the combined evidence from 

pharmacological and genetic methods, and in both isolated astrocytes and whole 

retina, strongly implicate a role for the P2X7 receptor in priming of IL-1β. The 

identification of a P2X7 receptor contributions in both rats and mice suggests 

receptor involvement may be widespread, particularly given the differences in the 

receptor across these species (Donnelly-Roberts et al., 2009b).  

Involvement of extracellular ATP in IL-1β priming was supported by the 

ability of the soluble ectoATPase apyrase to block gene upregulation. The ability 

of pannexin channel blockers carbenoxolone, probenecid and the 10Panx1 

peptide to prevent a rise in IL-1β strongly implicates the release of ATP through 

the hemichannel in priming, as these drugs inhibited the ATP release induced by 

astrocyte swelling (Beckel et al., 2014). Overall, these studies suggest a model in 

which mechanical strain leads to release of ATP through pannexin 

hemichannels, autostimulation of the P2X7 receptor and subsequent priming of 

IL-1β (Figure 1.3).  

Transcription factors and gene variation  

The transcription factor NFκB was implicated in the upregulation of IL-1β and 

NLRP3 in astrocytes. Increased expression of both genes in swollen astrocytes 

was blocked by NFκB antagonist Bay 11-7082. The P2X7 receptor was 

implicated by data showing the swelling-dependent decreased in NFκB inhibitor 

Iκbα was reduced in astrocytes from P2X7-/- mice and by the P2X7 receptor 
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antagonist A839977. Elevation of hydrostatic pressure leads to translocation of 

NFκB to the nucleus in retinal astrocytes (Sappington and Calkins, 2006), while 

NFκB regulates transcription of NLRP3 and IL-1β in other cells (Boaru et al., 

2015; Cogswell et al., 1994; Lawrence, 2009). The P2X7 receptor has been 

shown to activate NFκB through contact with MyD88 in HEK cells (Liu et al., 

2011). This makes the activation of NFκB by P2X7 receptor a likely route to 

connect mechanical strain with increased expression of IL-1β and NLRP3. While 

the residual activation in astrocytes from P2X7-/- mice may reflect the 

involvement of other pathways, the presence of P2X7 splice variants may 

provide additional possibilities (Valentin et al., 2009).  

 The increase in IL-1β in response to mechanical strain was particularly 

consistent, observed both in rat and mouse in vivo models, and in cultured 

astrocytes from rat and mouse tissues; the increase in the 31 kDa pro-form in 

immunoblots confirmed this on a protein level. While expression of NLRP3, 

CASP1, ASC and IL-18 were all increased by some model of mechanical strain, 

the effects in these genes were less consistent. Some of this variation may have 

been time-dependent, as the expression of most genes was substantially larger 

in mouse retina 22 hrs after IOP elevation was returned to baseline. The diverse 

responses to swelling and stretching were not unexpected given that IL-1β, IL-18, 

NLRP3, CASP1, and ASC are all regulated by a different combination of 

transcription factors. Regardless, the priming of IL-1β and NLRP3 may be rate 

limiting in inflammasome activation as CASP1 and IL-18 are constitutively 
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expressed in monocytes and epithelial cells (Dinarello, 2007; Thornberry et al., 

1992). 

Contribution of astrocytes  

The P2X7 receptor was implicated in priming IL-1β in both in vivo 

experiments, where material from the entire retina was analyzed, and during the 

in vitro experiments using isolated optic nerve head astrocytes. These optic 

nerve head astrocytes make up a small proportion of retinal material, however, 

and increased staining for IL-1β in various parts of the retina after elevated IOP 

suggests additional cell types may contribute to the retinal response. For 

example, our staining was consistent with increased expression in Muller glial 

cells. Neuronal involvement is also likely; the increased staining above is 

supported by recent results showing increased IL-1β expression in isolated 

retinal ganglion cells exposed to stretch (Lim et al., 2016); these neurons release 

ATP and autostimulate their P2X7 receptors, suggesting a parallel pathway may 

be involved (Xia et al., 2012b). However, the optic nerve head is a focal center of 

mechanical strain in the glaucomatous eye (Burgoyne et al., 2005), and 

astrocytes from patients showed morphological changes before marked loss of 

retinal ganglion cells (Lye-Barthel et al., 2013). The astrocytes express 

mechanosensitive channels (Choi et al., 2015) and contribute to the inflammatory 

response in glaucomatous eye (Johnson and Morrison, 2009). As such, the 

identification of the P2X7 receptor linking mechanical strain to inflammasome 

priming in optic nerve head astrocytes is particularly relevant.  
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ATP as endogenous trigger linking mechanical strain to inflammation in neural 
tissues 

Inflammation has emerged as a critical component of chronic 

neurodegeneration, with the NLRP3 inflammasome a major contributor (Freeman 

and Ting, 2016). While priming of the NLRP3 inflammasome traditionally has 

been attributed to stimulation of toll-like receptors (Patel et al., 2017), these 

receptors are primarily activated by pathogens, and the endogenous triggers 

linking neural insult to inflammasome priming are largely unknown.  

Our identification of the P2X7 receptor as a trigger for NLRP3 inflammasome 

priming in the retina builds on evidence linking mechanical strain to aberrant 

purinergic signaling in the retina and allows this endogenous trigger to be placed 

in a physiological context. Extracellular ATP is elevated after increased IOP in 

bovine, mouse, rat, primate and human samples (Lu et al., 2015; Reigada et al., 

2008; Zhang et al., 2007). Stimulation of P2X7 receptors can damage retinal 

ganglion cells in vitro and in vivo (Hu et al., 2010; Zhang et al., 2005), and ATP 

release through pannexin hemichannels following mechanical strain can 

autostimulate P2X7 receptors on optic nerve head astrocytes (Beckel et al., 

2014). As pannexin hemichannels are upregulated by prolonged stretch in vitro 

and in vivo, this provides a source of the sustained extracellular ATP found in the 

chronic glaucoma models. The present study suggests this may also provide a 

mechanism for chronic priming of inflammasome genes.  
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The P2X7 receptor is traditionally known for its ability to activate the NLRP3 

inflammasome following the efflux of K+ through the open channel (Katsnelson et 

al., 2015). The present study identifies a novel role for the P2X7 receptor in the 

priming of IL-1β and NLRP3. The ability of one receptor to mediate both steps of 

inflammasome involvement identifies a potentially central role for purinergic 

signaling in the link between mechanical strain and innate inflammation in neural 

tissues. Future studies focused on the contributions of the P2X7 receptor to 

inflammasome activation following its role in priming will clarify how this “double 

punch” impacts the inflammatory state of the retina. 

 

Portions of this work have previously been presented in abstract form 

(Albalawi et al., 2016; Lu et al., 2013; Mitchell et al., 2016; Mitchell et al., 2017)  
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Figures 

Figure 2.4 Increased expression of inflammasome-associated genes in rat retina 

after controlled elevation of IOP (CEI). 

A. RNA was extracted from the retina soon after IOP returned to baseline 
following an elevation to 50-60 mmHg for 4 hrs. The IOP rise led to 
increased expression of IL-1β (*p=0.004, n=10), NLRP3 (*p=0.045, n=10), 
CASP1 (*p=0.014, n=10), and ASC (*p=0.008, n=5) as compared to 
contralateral control eye. There was no detectable rise in IL-18 (n=5). 

B. Mouse retina exposed to CEI showed increased expression of IL-1β 
(*p=0.049, n=5), NLRP3 (*p=0<0.001, n=3), CASP1 (*p =0.021, n=3) and 
ASC (*p=0.029, n=4), but not IL-18 (n=4). Note the scale difference for IL-
1β. RNA from retina (including the optic nerve head material) was 
extracted 22 hrs after returning IOP to baseline from an elevation to 60 
mmHg for 4 hrs. 
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Figure 2.5 Elevation of IL-1β at the protein level 

A. Representative immunoblots from mouse whole retina lysates probed for 
pro-IL-1β, at the expected 31 kDa size. Protein levels increased in eyes 
subject to controlled elevation of IOP (CEI) to 60 mmHg for 4 hrs and 
sacrificed 22 hrs after IOP returned to baseline, as compared to the 
contralateral non-pressurized control eye. Levels of housekeeping protein 
GAPDH (37 kDa) were similar between conditions.  
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B. Summary of relative protein expression in response to IOP elevation, as 
quantified with densitometry and normalized to GAPDH levels (*p=0.006, 
n=5).  

C. Immunohistochemistry sections of mouse retina stained for IL-1β (red), 
GFAP (green) and with the nuclear stain DAPI (blue). The top row shows 
representative images from the non-pressurized eye, while the bottom row 
is from a contralateral eye exposed to the CEI procedure as in panel “A”. 
Increased staining for IL-1β was apparent in the nerve fiber layer, optic 
nerve and to a lesser extent throughout the retina (left). Higher 
magnification of the boxed area shows horizontal bands stained for IL-1β 
throughout the optic nerve head (center). These bands colocalize with 
GFAP (right), consistent with optic nerve head astrocytes (representative 
images from 3 animals).  
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Figure 2.6 Involvement of the P2X7 receptor in inflammasome priming in vivo 

A. The pressure-dependent rise in IL-1β mRNA in rat retinas exposed to 
moderate elevation of IOP (CEI) was not present following injection of the 
P2X7 antagonist BBG. Data are expressed as relative gene expression in the 
non-pressurized (Control) vs pressurized retina for eyes injected with 0.8% 
BBG (CEI + BBG) or saline (CEI) 1-3 days before the elevation of IOP to 50 
mmHg for 4 hrs (n=4-5. *p<0.05 vs. saline pressurized).  

B. In C57BL/6J mice, the CEI procedure increased retina levels of IL-1β mRNA 
relative to contralateral untreated eyes (*p=0.018). In P2X7 knockout mice, 
the elevation in IOP did not significantly (NS) increase levels of IL-1β. Levels 
of IL-1β mRNA in pressurized eyes of P2X7 knockout mice were significantly 
less than in wildtype pressurized eyes (**p=0.036). Data are expressed as 
gene expression of untreated eyes (Control) relative to pressurized eyes 
(CEI). Retina including optic nerve head was extracted 22 hrs after returning 
IOP to baseline from an elevation to 60 mmHg for 4 hrs (n=4). 

C. Similarly, the levels of NLRP3 mRNA relative to paired untreated eyes is 
upregulated in C57BL/6J mice (*p<0.01). In P2X7 knockout mice, the 
elevation in IOP did not significantly increase levels of NLRP3. Levels of 
NLRP3 mRNA from P2X7 knockout mice pressurized eyes were significantly 
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less than in wildtype pressurized eyes (**p<0.01). Data are expressed as 
gene expression of pressurized eyes (CEI) relative to untreated eyes 
(Control). Retina including optic nerve head was extracted 22 hrs after 
returning IOP to baseline from an elevation to 60 mmHg for 4 hrs. n=4 in all 
cases. 

D. Intravitreal injection of P2X7 agonist BzATP was sufficient to increase levels 
IL-1β, NLRP3 and CASP1 mRNA in mouse retina when extracted 24 hrs after 
injection. Data are expressed as relative gene expression of contralateral 
non-injected eye (Control) vs injected eye (BzATP; *p<0.01, n=3 in all cases).  
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Figure 2.7 Mechanical strain primes IL-1β in optic nerve head astrocytes 

A. Astrocytes plated on silicon substrates and fixed after 4 hrs in control 
conditions (left, Control) or after 16% cyclical strain at 0.3 Hz (right, 
Stretch). Staining for actin with Phalloidin (red) showed no obvious 
changes to the cytoskeleton.  

B. Application of 16% cyclical strain for 4 hrs increased expression of IL-1β 
mRNA (n=5, *p<0.03).  

C. Astrocytes exposed to moderate swelling induced by 30% hypotonicity 
(Swell) showed increased expression of IL-1β mRNA relative to untreated 
cells maintained in isotonic solution (Control; n=3, *p=0.009).  
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Figure 2.8 ATP release through pannexin channels required for mechano-

sensitive priming of IL-1β in astrocytes 

A. Swelling rat astrocytes in hypotonic solution led to a release of ATP into 
the extracellular medium, as detected by the luciferin/luciferase assay. 
The ATP hydrolase apyrase (1U/ml) substantially reduced the response. 
Symbols represent mean ±SEM, n=10.  

B. Quantification of extracellular ATP levels 18 min after exposure to 
solutions (*Control vs Swell or Swell+apyrase, p<0.05, ** Swell vs Swell + 
Apyrase, p<0.05, n=10).  

C. Swelling astrocytes in the presence of apyrase also prevented the rise in 
IL-1β mRNA (*p=0.02 Swell vs Control, **p=0.03 Swell vs Swell+Apyrase, 
n=3) 

D. The swelling-induced release of ATP was inhibited by pannexin channel 
blocker carbenoxolone (CBX, 10µM, *p<0.05, Control vs Swell or 
Swell+CBX, **p<0.05 Swell vs Swell+CBX, n=20, normalized to swell).  

E. The swelling-induced rise in IL-1β mRNA was also inhibited by 10 µM 
carbenoxolone (*p<0.05, Control vs Swell or Swell+CBX, **p<0.05 Swell 
vs Swell+CBX, n=7, normalized to swell from 2 experiments). 

F. Pannexin blocker probenecid (Prob, 1 mM) reduced the swelling-induced 
rise of IL-1β in astrocytes (p=0.029). The peptide blocker 10Panx1 (100µM) 
reduced the expression of IL-1β as compared to the scrambled peptide 
control (10Panx1scr, *p=0.003). Swelling alone raised IL-1β (p=0.03, n=3 
for all). No significate difference between control, probenecid and 10Panx1. 

G. Left: Astrocytes stained for pannexin 1 (green), actin (red) and DAPI 
(blue). Right: No signal was detected in the absence of pannexin 1 
antibody. 

 
Figure is located on following page. 
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Figure 2.8. 
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Figure 2.9 P2X7 receptor involved in priming of IL-1β in astrocytes 

A. Immunocytochemistry showing expression of the P2X7 in cultured optic 
nerve head astrocytes (left). No signal was detected in the absence of the 
primary antibody (right).  

B. The swelling-induced rise in IL-1β mRNA was inhibited by P2X7 
antagonists BBG (10 μM), A839977 (50 nM) and A740003 (5 μM). Cells 
were pretreated with drugs for 1 hr before swelling (*p<0.001 Swell vs. 
control, **p<0.001 Swell vs. Swell+drugs, n=4). 

C. The swelling-induced rise in IL-1β was reduced in astrocytes from P2X7-/- 
mice as compared to C57BL/6J mice. Data are expressed relative to the 
matched control group (*p<0.01, ** p=0.026, n=6). 

D. Application of BzATP (400 µM) for 4 hrs increased IL-1β expression 
(*p<0.01, n=7,).   
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Figure 2.10 NFκB is involved in inflammasome priming after mechanical strain 

A. NFκB inhibitor Bay11-7082 (Bay11, 4µM) prevented IL-1β upregulation in 
rat astrocytes. Bay11-7082 was present for 1 hr before and during the 4 hr 
swelling (*p<0.001 Control vs Swell, **p<0.001, Swell vs Swell+Bay11; 
n=4, from 2 experiments). 

B. The NFκB inhibitor Bay 11-7082 (Bay11, 4µM) reduced NLRP3 mRNA 
upregulation in swollen rat astrocytes. Bay11-7082 was present for 1 hr 
before and during the 4 hr swelling. (*p<0.001 Control vs Swell, **p≤0.001 
Swell vs Swell+Bay11; n=4, from 2 experiments) 

C. Neither swelling nor Bay 11-7082 had any effect on expression of CASP1.  
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Figure 2.11 P2X7 receptor is involved in NFκB activation after mechanical strain. 

A. Representative immunoblots from mouse optic nerve head astrocyte 
lysates from control C57BL/6J and P2X7-/- mice probed for IκB-α (39 kDa) 
and housekeeping protein β-actin (42 kDa). Expression of IκB-α was 
reduced following 4 hrs of swelling in control astrocytes, consistent with 
the activation of NFκb. 

B. Summary of relative IκB-α protein expression from experiments illustrated 
in panel B quantified with densitometry. The effect of swelling on IκB-α 
was significantly less in astrocytes from P2X7-/- mice (*p<0.001 Swell vs. 
Control C57BL/6J, *p=0.011 Swell vs. Control P2X7-/-, **p=0.038 Swell 
C57BL/6J vs Swell P2X7-/-; n=3). 

C. Representative immunoblots from mouse optic nerve head astrocyte 
lysates from control mice probed for IκB-α (39 kDa) and housekeeping 
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protein β-actin (42 kDa). The reduction in IκB-α triggered by swelling was 
reduced in the presence of P2X7 antagonist A839977 (100 nM). 

D. Mean densitometry values for IκB-α protein expression from immunoblots 
like those in panel “D”. (*p=0.002, **p=0.043; n=6 from 2 experiments)  
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Supplemental figures 

 

Figure S 2.1. 

A. Expression of genes obtained from mouse retinas (including the optic 
nerve head material) immediately after a 4 hr elevation of IOP to 60 
mmHg as compared to levels in the contralateral unpressurized eye. 
Expression of IL-1β (*p=0.006, n=6) CASP1 (*p = 0.002, n=6), and IL-18 
rose modestly (*p = 0.038), n=4) while expression of NLRP3 and ASC did 
not change.  

B. The CEI procedure did not increase the apoptosis regulator BAX at the 
mRNA level immediately after the transient elevation of IOP to 60 mmHg 
for 4 hrs or if allowed to rest for 22hrs before extraction (n=3). 
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C. In retina obtained from 14-18-month-old Tg-MyocY437H mice (Tg-Myoc), IL-
1β mRNA expression was greater than in controls (*p=0.02, n=3). Neither 
the rise in NLRP3 nor CASP1 were significant (n=3).  
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Figure S 2.2 

Representative negative controls for the immunohistochemistry of mouse retina 
treated with the goat IgG then the secondary donkey anti-goat Alexa555-
conjugated and donkey anti-mouse IgG Alexa-Fluor 488 in parallel to the 
immunostaining in Figure 2.5.C. ImageJ was used to modify intensity and 
combine pseudocolored images, with parallel processing for all images in Figure 
2.5 and S.2.2 Scale bar = 20µm. 
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Figure S 2.3 

1. A-D. Astrocytes exposed to moderate swelling induced by 30% 
hypotonicity (Swell) showed increased expression, relative to untreated 
cells (Control), of mRNA for NLRP3 (A), ASC (C) and (D) IL-18, but 
swelling had no effect on CASP1 expression (B); n=3 and *p≤0.009 in all 
cases. 

2. E-H. Astrocytes stretched by 16% (Strain) showed greater expression, 
relative to unstretched cells (Control), of, CASP1, and IL-18, whereas 
expression of NLRP and ASC was smaller with stretching. N=5 and 
*P<0.03 in all cases.  
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Figure S 2.4 

A. PCR of astrocytes obtained from P2X7 knockout and C57BL/6J mice 
confirmed the absence of the expected 246 bp band in cells from the 
knockout animals. 

B. Immunohistochemistry showing staining for P2X7 in astrocytes cultured 
from control C57BL6J mice but not from P2X7-/- mice. 

C. The swelling-dependent rise in NLRP3 expression was significantly 
reduced in astrocytes from P2X7 -/- mice (n=6, *p=0.04) 

D. The P2X7 receptor agonist BzATP (400 µM) led to a slight increase in 
NLRP3 but not CASP1 (n=7, *p<0.01). 
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The work in this chapter started before I joined Dr. Mitchell’s lab. However, I was 

involved in the in vivo rat and mouse experiments and the in vitro astrocytes 

experiments. This chapter formed the foundation of my main work in chapter 2. 

This work was originally published in J Neurochemistry. 2017 May (Lu et al., 

2017), It is reprinted here with some modification to the figures. Experiments in 

Figures 1 and 4 in the published paper were performed by the other authors, 

therefore they will be excluded from the figure section in this chapter but will still 

be in the text and referred to the paper in the appendix.  

A copy of the published paper is included in the Appendix with all figures, and at 

10.1111/jnc.13998. 
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Abstract: 

Background: Mechanical strain in neural tissues can lead to the upregulation 

and release of multiple cytokines including IL-6. In the retina, the 

mechanosensitive release of ATP can autostimulate P2X7 receptors on both 

retinal ganglion cell neurons and optic nerve head astrocytes. Here we asked 

whether the purinergic signaling contributed to the IL-6 response to increased 

intraocular pressure (IOP) in vivo, and stretch or swelling in vitro. Methods: Rat 

and mice eyes were exposed to non-ischemic elevations in IOP to 50-60 mmHg 

for 4 hrs. A PCR array was used to screen cytokine changes, with quantitative 

(q)PCR used to confirm mRNA elevations and immunoblots used for protein 

levels. P2X7 antagonist Brilliant Blue G (BBG) and agonist BzATP were injected 

intravitreally. ELISA was used to quantify IL-6 release from optic nerve head 

astrocytes or retinal ganglion cells. Receptor identity was confirmed 

pharmacologically and in P2X7-/- mice Results: Acute elevation of IOP altered 

retinal expression of multiple cytokine genes. Elevation of IL-6 was greatest, with 

expression of IL1m, IL24, Tnf, Csf1 and Lif also increased more than two-fold, 

while Tnfsf11, Gdf9 and Tnfsf4 were reduced. qPCR confirmed the rise in IL-6 

and extracellular ATP marker ENTPD1, but not pro-apoptotic genes. Intravitreal 

injection of P2X7 receptor antagonist BBG prevented the pressure-dependent 

rise in IL-6 mRNA and protein in the rat retina, while injection of P2X7 receptor 

agonist BzATP was sufficient to elevate IL-6 expression. IOP elevation increased 

IL-6 in wild type but not P2X7 receptor knockout mice. Application of mechanical 
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strain to isolated optic nerve head astrocytes increased IL-6 levels. This 

response was mimicked by agonist BzATP, but blocked by antagonists BBG and 

A839977. Stretch or BzATP led to IL-6 release from both astrocytes and isolated 

retinal ganglion cells. Conclusions: The mechanosensitive upregulation and 

release of cytokine IL-6 from the retina involves the P2X7 receptor, with both 

astrocytes and neurons contributing to the response.   
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Graphical abstract 

 

Up-regulation of IL-6 by mechanical strain involves pannexin-mediated ATP 
release and autostimulation of P2X7 receptors. Increased expression of IL-6 
mRNA and protein in the retina following transient increase in intraocular 
pressure in vivo, and instretched/swollen optic nerve head astrocytes was 
blocked by P2X7 receptor antagonists. Stretch or P2X7 receptor stimulation 
raised calcium and released IL-6 from astrocytes and retinal ganglion cell 
neurons.  
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Introduction 

Mechanical strain to neurological tissues frequently leads to both inflammatory 

and protective responses (Corps et al., 2015). The cytokine interleukin 6 (IL-6) is 

of particular relevance as it can mediate pathological or protective actions in 

neural systems depending on context (Erta et al., 2012). IL-6 can lead to 

neuroinflammation after traumatic brain injury (TBI) and cerebrospinal fluid levels 

of IL-6 correlate with pathological progression after TBI (Kumar et al., 2015; Yang 

et al., 2013). However, IL-6 can also induce neurogenesis and protect neural 

cells after damage (Erta et al., 2012; Penkowa et al., 2003). A better 

understanding of the pathways linking mechanical strain to IL-6 may help 

determine the mechanism for the shift of IL-6 from detrimental to protective 

actions.  

The purinergic system has been implicated in regulation of IL-6 in several cell 

types including fibroblasts (Inoue et al., 2007), skeletal muscle cells (Bustamante 

et al., 2014), macrophages (Hanley et al., 2004) and microglia (Shieh et al., 

2014). Purinergic signaling is particularly sensitive to mechanical strain, with ATP 

release accompanying increases in shear stress, stretch, and swelling (Corriden 

and Insel, 2010; Praetorius and Leipziger, 2009). In neural tissue, ATP can be 

released through pannexin hemichannels in response to mechanical strain 

(Iglesias et al., 2009; Xia et al., 2012b). The release of ATP and stimulation of 

the P2X7 receptor is closely linked with inflammatory responses in non-neural 

cell types (Gombault et al., 2012), leading to inflammasome activation and IL-1β 
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release (Ferrari et al., 2006; Franceschini et al., 2015). Of particular relevance is 

the priming and release of IL-6 in microglial cells in response to stimulation of the 

P2X7 receptor (Shieh et al., 2014).  

The retina provides an ideal model with which to examine the relationship 

between strain, purines and IL-6 in neural tissue. Mechanical strain is 

experienced by neurons and glial cells in the retina when the intraocular pressure 

(IOP) rises during glaucoma (Downs, 2015; Sigal and Ethier, 2009). Retinal 

ganglion cells are the most susceptible to neuropathological changes and death 

in response to elevated IOP, while the focal point for mechanical strain is the 

optic nerve head, with optic nerve head astrocytes identified as a critical 

intermediary (Downs et al., 2008; Hernandez, 2000).  

Perturbed purinergic signaling is implicated in response to glaucoma and 

elevated IOP. For example, human patients with both acute and chronic 

glaucoma have elevated levels of extracellular ATP in ocular fluids (Li et al., 

2011; Zhang et al., 2007). Primate, rat and mouse models of sustained IOP 

elevation show elevated extracellular ATP (Lu et al., 2015). These models also 

demonstrated increased expression of the ectoATPase NTPDase1, previously 

identified to act as a marker for sustained elevation of extracellular ATP (Lu et 

al., 2007). The pressure-dependent ATP release from retina is inhibited by 

blockers of pannexin hemichannels and not linked to lactase dehydrogenase, 

suggesting it is a physiological response (Reigada et al., 2008). Both optic nerve 
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head astrocytes (Beckel et al., 2014) and retinal ganglion cells (Xia et al., 2012a) 

release ATP through pannexin hemichannels when subjected to mechanical 

strain. This released ATP can autostimulate the P2X7 receptor in both cell types.  

Alterations in cytokine IL-6 have also been recognized as an important 

response to elevated IOP. Levels of IL-6 have been detected in the aqueous 

humor of patients with chronic glaucoma (Chen et al., 1999; Zenkel et al., 2010). 

In the hypertonic saline model of chronic IOP elevation, IL-6 was the most 

upregulated gene in the optic nerve head tissue (Johnson et al., 2011), while IL-6 

was also elevated following transient elevation of IOP (Cepurna et al., 2008). 

Several observations suggest IL-6 confers protection to retinal ganglion cells; 

exposure of isolated ganglion cells to high hydrostatic pressure in vitro led to 

apoptotic death that was attenuated by addition of recombinant IL-6 (Sappington 

et al., 2006), and IL-6 increased both the number and the length of neurites 

sprouting from isolated retinal ganglion cells (Chidlow et al., 2012). While these 

observations suggest IL-6 has an important role in the response to increased 

pressure, the signaling mechanisms linking the mechanical strain to the IL-6 

response are largely unknown. 

Given the link between mechanical strain, ATP release and P2X7 receptor 

autostimulation in the retina, the connection between the purinergic signaling and 

IL-6 activation, and evidence implicating IL-6 in glaucoma, this study was based 

on the hypothesis that mechanosensitive stimulation of the P2X7 receptor was 
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involved in the IL-6 response to elevated IOP in the retina. To distinguish 

between responses due to elevated IOP and those due to cell death, an in vivo 

model of acute but non-ischemic IOP elevation was employed as studies indicate 

it is generally not lethal to retinal neurons (Abbott et al., 2014; Crowston et al., 

2015). Isolated optic nerve head astrocytes and retinal ganglion cells were also 

utilized to investigate the response in more mechanistic detail in vitro.  
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Methods 

Animals: All experiments protocols were approved by the Institutional Animal 

Care and Use Committee of the University of Pennsylvania. The P2X7 knockout 

(P2X7-/-) mice originally generated from Pfizer (B6.129P2-P2rx7tm1Gab/J), 

along with age matched 9 month-old C57Bl6J wild type controls were obtained 

from Jackson Laboratories (Bar Harbor, ME). Sprague-Dawley and Long-Evans 

rats were obtained from Harlan Laboratories (Fredrick, MD). Mice and rats of 

both sexes were utilized. 

Model of moderate temporally-controlled IOP elevation: Acute elevation of IOP 

experiments were performed using adult Sprague-Dawley rats based on the 

Control Elevation of IOP (CEI) protocol developed by John Morrison and 

colleagues (Morrison et al., 2010; Morrison et al., 2014). Adult rats were given a 

prior dose of 2 mg/kg meloxicam and then deeply anesthetized with 

intraperitoneal injection of ketamine (80 mg/kg) and xylazine (10 mg/kg). 

Proparacaine (1%) was added to the ocular surface and one drop of Tropicamide 

(1%) was administered into each eye for pupil dilation. Once anesthesia had 

taken effect, one eye was cannulated with a 27 gauge shielded wing needle 

(Becton Dickinson, NJ) inserted into the anterior chamber and connected to a 20 

ml syringe filled with sterile phosphate buffered saline (PBS). IOP was increased 

to 50 mmHg by positioning the syringe at the appropriate height (68cm H2O), 

while the contralateral eye without cannulation served as a normotensive control. 

During the initial development of the model, IOP was calibrated with a TonoLab 

https://www.jax.org/strain/005576
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tonometer (Colonial Medical Supply, VT) at the beginning and end of the 

elevation of the reservoir. As IOP was found to be remarkably consistent both 

throughout the 4 hrs of elevation and between animals, it was usually just 

measured at the end of the 4 hr period during experiments to avoid excessive 

force on the needle tip inside the eye. The retina was carefully observed under 

an operating microscope to ensure that blood flow through the retinal vessels 

was maintained. After 4 hrs IOP elevation, pressure was returned to normal, the 

needle was removed and 0.3-0.5% gentamycin ointment or erythromycin (0.5%) 

was applied to the cornea. Animals were sacrificed 20 hrs (i.e. 1 day) or 5 days 

later and the retina, including the optic nerve head material, was dissected. 

Experiments were also performed on mice using procedures similar to those 

used for rat with parallels to those described by Crowston and colleagues 

(Crowston et al., 2015). Mice were given a prior dose of meloxicam and then 

anesthetized with 1.5% isofluorane. IOP was increased to 50-60 mmHg for 4 

hours. Mice were sacrificed immediately after the pressure was returned to 

baseline, or 20 hrs later. The contralateral eye without cannulation served as a 

normotensive control. 

PCR Array: Expression of mRNA for 84 rat interferons, cytokines and 

interleukins in the retina was determined using the Rat Common Cytokine RT2 

Profiler™ PCR Array (#PARN-021A, SABiosciences Corp., Frederick, MD). 

Samples were processed according to the manufacturer’s protocol. In brief, total 
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RNA was isolated from the control and pressurized retinas using Trizol and 

RNeasy mini kit (Qiagen, Inc.), and RNA was quantified from optical density and 

purity determined (Nanodrop, Thermo Scientific, Inc.). Total RNA (1 μg) was 

reverse transcribed using genomic DNA elimination and RT2 First Strand kit (#C-

03, SABiosciences Inc.). Comparison of the relative expression of cytokine 

genes were performed using the PCR array on an ABI 7300 Real-Time PCR 

System (Applied Biosystems, Foster City, CA). Lactate dehydrogenase A, 

Ribosomal genes L13A, hypoxanthine phosphoribosyltransferase 1 (HP1), and 

beta actin (Actb) were used as housekeeping genes and were all stable in retina 

from eyes with control and elevated IOP. Data were analyzed with the 

SABiosciences Web-Based PCR Array Data Analysis, where p values were 

calculated based on a Student’s t-test of the replicate 2−ΔΔCt values for each gene 

in the control group and experimental groups. 

Quantitative PCR: RNA was processed as above. Quantitative PCR (qPCR) 

was carried out using Power SYBR Green master mix with primer pair 

sequences shown in Table 3-1, using the 7300 Real-Time PCR System. Data 

were analyzed using the delta-delta CT approach, with results expressed as fold 

change in gene expression in eyes with elevated IOP versus control samples 

(2−ΔΔCt) using an unpaired t-test as described recently (Karmakar et al., 2015). 

Intravitreous injection: Intravitreal injections were performed as described (Hu 

et al., 2010) under a dissecting microscope with a micropipette connected to a 
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microsyringe (Drummond Scientific Co., Broomall, PA). The glass pipette filled 

with drug was passed through the superior nasal region of sclera into the vitreous 

cavity at a point approximately 1 mm from the limbus. The total volume injected 

was 5 µl over a 30 sec time period. P2X7 receptor antagonist Brilliant Blue G 

(BBG, 0.8%) was dissolved in sterile saline and injected 1-3 days before IOP 

elevation. To examine the effects of P2X7 stimulation, Long Evans rats were 

injected with either 2 µl 250 µM P2X7 receptor agonist Bz-ATP or sterile saline. 

Rats were sacrificed and the retina dissected, with total RNA isolated from the 

retina and processed as described above.  

Immunoblots: Immunoblots were processed as described (Guha et al., 2013). 

In brief, whole retinas were washed twice with cold PBS and lysed in RIPA buffer 

containing 50 mM Tris-HCl, 150 mM NaCl, protease inhibitor cocktail (Complete; 

Roche Diagnostics, Germany), 1% Triton X-100, 0.1% SDS, and 10% glycerol. 

Samples were sonicated and cleared by centrifugation (10,000g) for 10 min at 

4°C, with protein concentrations determined using a BCA Protein Assay 

(Pierce/ThermoFisher). Protein was separated using conventional SDS-PAGE, 

and processed using standard immunoblot protocols (Karmakar et al., 2015). 

Blots were incubated with a monoclonal antibody to rat IL-6 overnight at 4°C 

(1:1000 R&D Systems, # MAB5061), followed by incubation with anti-mouse IgG 

conjugated to horseradish peroxidase (1:5000; Amersham Biosciences Corp., 

Arlington Heights, IL) at room temperature for 1 hr. and developed by 

chemiluminescence detection (ECL detection system; Amersham Biosciences 
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Corp.). The ImageQuant LAS 4100 imager and Image Quant software (Both GE 

Healthcare Lifesciences) were used to detect and quantify the intensity of the 

specific bands. Western blots were performed 3-4 times each.  

Optic nerve head astrocytes: Primary rat optic nerve head astrocyte cultures 

were grown as described (Beckel et al., 2014) based upon a protocol modified 

from Mandal et. al. (Mandal et. al., 2009). The optic nerve head tissue proximal 

to the sclera in rat pups up to postnatal day 5 was digested for 1 hr in 0.25% 

trypsin. Cells were grown in medium comprised of Dulbecco’s minimal essential 

medium/F12, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 

25ng/ml epidermal growth factor (EGF) and used up to passage 5. Cell 

identification was performed with GFAP immunostaining as described (Beckel et 

al., 2014). For stretch experiments, astrocytes were seeded on a silicon 

substrate (Silastic, Specialty Manufacturing, Saginaw, MI), bathed in isotonic 

solution (in mM; 105 NaCl, 5 KCl, 4 NaHEPES, 6 HEPES acid, 1.3 CaCl2, 5 

glucose, 5 NaHCO3, 60 mannitol and 0.25 MgCl2 pH 7.4). Cells were subjected 

to a 5% equibiaxial strain at 0.3 Hz for 2 min using a specially designed 

pneumatic piston as described (Beckel et al., 2014; Winston et al., 1989). Cells 

were exposed to 30% hypotonic solution (isotonic solution diluted with dH2O) for 

swelling experiments with Brilliant Blue G (BBG, Sigma Corp.), A839977 

(Tocris/BioTechne) or BzATP (Sigma Corp.) for 4 hrs at 37°C before RNA was 

extracted as detailed above. Samples of the extracellular media were taken 

before and after stretch or BzATP and stored at -80°C. The release of IL-6 from 
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astrocytes was then measured by Rat IL-6 Quantikine@ ELISA kit (#R6000B, 

R&D systems) following manufacturer’s instructions, with data acquired using a 

96-well plate reader SpectraMax M5 (Molecular Devices).  

IL-6 release from isolated retinal ganglion cells: Isolation of retinal ganglion 

cells was performed using the immunopanning procedure as described (Xia et 

al., 2012b; Zhang et al., 2010). Isolated RGCs were seeded onto 0.1% poly-L-

lysine (Peptides International) and 1 µg/mL laminin coated coverslips or elastic 

silicone sheeting in stretch chambers and cultured at 37oC with 5% CO2. 

Attached cells were bathed in 750Pl of isotonic solution including 100 µM of the 

ectoATPase inhibitor βγ methylene ATP, and stretched by application of 20 

mmHg of pressure resulting in a 4.1% deformation strain (see (Xia et al., 2012a) 

for detail). Pressure inside the stretch chamber was increased to 20 mmHg for 4 

min, returned to 0 mmHg for 1 min and the cycle repeated three times for a total 

duration of 15 min. Immediately following stretch, a 250 µL sample of the 

extracellular solution was collected from the center of the stretch chamber. 

Stretch did not induce release of lactose dehydrogenase. IL-6 levels were 

determined with the rat antibody cytokine array following manufacturer’s 

instructions (R&D Systems), as described in detail in a recent publication (Lim et 

al., 2016). In brief, IL-6 levels were quantified by incubating the membrane in 

Streptavidin-HRP followed by chemiluminescent detection reagents (GE 

Healthcare). The production of light corresponding to levels of bound cytokine 

was determined with ImageQuant LAS4000 and the intensity of each spot was 
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measured using ImageQuant TL analysis software (all GE Healthcare). Results 

represent 4 independent trials of stretch or BzATP experiments, each performed 

in duplicate. 

Data analysis and study design: Data are reported as mean ± standard error 

of the mean. Statistical analysis used a 1-way ANOVA with appropriate post-hoc 

test, or a paired Student’s t- test when comparing eyes from the same animal. 

Results with p<0.05 were considered significant. When data were not distributed 

normally, analysis on ranks was performed. All statistical analysis was performed 

using SigmaStat software (Systat Software Inc.). The number of experimental 

repeats was determined in part by sample size calculations and power analysis. 

Data within two standard deviations of the mean was included unless 

accompanied by signs of animal distress or unexpected deviation. Analysis was 

performed in a masked fashion where appropriate. 

Table 3-1 Primers used for qPCR of IL-6 study 

  

Gene Name GenBank Accession Forward Primer (5' to 3') Reverse Primer (5' to 3') Size(bp)
Anxa3 NM_012823 ATCCGGAAAGCAATCAAAGG CCATGACATGCTCAAAGTGG 174
Bax NM_017059 TGCCAGCAAACTGGTGCT ACCCAACCACCCTGGTCTT 129
Cfos NM_022197 CCTGTGAGCAGTCAGAGAAGG CGGAAGAGGTGAGGACTGG 194

CyclinD1 NM_171992 CCCACGATTTCATCGAACACT GATCATCCGCAAACATGCA 77
ATF3 NM_012912 CGAAGACTGGAGCAAAATGATG CAGGTTAGCAAAATCCTCAAACAC 123
IL-6 NM_012589 CTCCGCAAGAGACTTCCAG GGTCTGTTGTGGGTGGTATC 119

P2X4R NM_031594 GCAAGACGTTCTTCCACCCTATACA TCCATACGCTCACACTGTATAAGCC 137
P2X5R NM_080780 GACATCCAGGAGACACTTAGCTTCG CAGCAAGAGCTGAACTGCACAAGTC 230
P2X7R NM_019256 TAATGCCTCAGCCTAGTGCCTTTGG CTGCTGCTCCAGAGGGCTCAAGTTC 107
P2Y1R NM_012800 GCAGCTTCCACTGCCAAAGGCTAAT ATTGTAAAGCTTCAAGATCTGGCAG 172
P2Y2R NM_017255 AGCAGCTCAGTCAGGTGTCAGTTCA TCAGGTGGCGTTGCCTTAGATACGA 214
P2Y4R NM_031680 ATAGCTGTCTTGATCCAGTGCTCTA AGCAGCAGGGTTACAATCGATCTCC 215
P2Y6R NM_057124 TAGGTCCTGGAATAGCACTGCAAAT AAAGTCTTGGCAAATGGATGGGAAT 171
A1AR NM_017155 AGCCTGGATGTCTTCCTTGTATGGA TAGACATAGGGACCTCCTTGAGAAC 121
A3AR NM_012896 GAGCTTCTCTCATTCAATTCTGTGG CCTAGGGATCCTTCAACGCAGGTTC 183

GAPDH NM_017008 CCATGGAGAAGGCTGGGG CAAAGTTGTCATGGATGACC 195

Table 1. Primers used for quantitative real time PCR
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Results 
Pressure-dependent elevation in message for IL-6  

Initial experiments to screen for cytokine pathways activated in vivo by 

transient elevations in IOP were determined using a cytokine PCR Array. IOP in 

one eye of a rat was raised to 50 mmHg for 4 hrs. Although this is considerably 

above the baseline IOP levels of 12.8 mmHg in the conscious Sprague-Dawley 

rat (Cabrera et al., 1999), this increase did not prevent blood flow through the 

retinal vessels. Similar transient rises in IOP have been found to induce minimal 

permanent damage (Abbott et al., 2014; Crowston et al., 2015; Morrison et al., 

2010; Zhi et al., 2012). qPCR analysis indicated no rise in pro-apoptotic genes, 

although expression of the early stress-response ATF3 was increased, 

consistent with findings in the hypertonic saline model (Guo et al., 2011) 

(Appendix. Fig S1).  

To obtain an objective measure of the cytokine response to transient pressure 

elevation, retinal gene levels were examined 20 hrs after IOP returned to 

baseline using a cytokine PCR array. Analysis showed 9 genes with a >2-fold 

change in expression levels between the pressurized and control rat retina 

(Appendix. Fig 1A and B). IL-6 showed the greatest rise, with a 29- fold increase. 

IL1m, IL24, Tnf, Csf1 and Lif were also elevated more than two-fold. Three 

genes, Tnfsf11, Gdf9 and Tnfsf4, were down-regulated more than two-fold.  
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Given that IL-6 was the gene altered most using the cytokine gene array, 

results were confirmed using traditional qPCR. IL-6 was elevated 16.9 fold in 

eyes with increased IOP as compared with contralateral eyes (Appendix. Fig 1C). 

This substantial increase measured using qPCR strongly supported the result 

from the PCR array suggesting that expression of IL-6 was increased in retinas 

exposed to transient elevations in IOP.  

Purines and IL-6 expression in vivo 

As purinergic signaling has been repeatedly implicated in retinal cells exposed 

to elevated IOP (Reigada et al., 2008; Sanderson et al., 2014), expression of 

gene ENTPD1 was examined. ENTPD1 codes for the ectoATDPase NTPDase1, 

which was previously identified as a possible marker for a sustained rises in 

extracellular ATP, with increased levels of the gene ENTPD1 and protein for 

NTPDase1 triggered by sustained exposure to ATP (Lu et al., 2007). Levels of 

NTPDase1 were elevated in parallel to extracellular ATP concentrations in rat, 

mouse and primate models of chronic IOP elevation (Karmakar et al., 2015). In 

material from rat retinas obtained both 1 and 5 days after transient IOP elevation, 

ENTPD1 was upregulated (Figure 3.1.A), suggesting levels of extracellular ATP 

were elevated. after moderate IOP elevation.  

A considerable body of past work implicates autostimulation of the P2X7 

receptor following the mechanosensitive release of ATP in the retina (Beckel et 

al., 2014; Reigada et al., 2008; Xia et al., 2012b; Zhang et al., 2006), and recent 
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work demonstrates P2X7 receptor stimulation leads to IL-3 responses in isolated 

retinal ganglion cells (Lim et al., 2016). As stimulation of P2X7 receptors by ATP 

has been associated with the upregulation of IL-6 in microglia cells (Shieh et al., 

2014), the role of the P2X7 receptor in mediating the pressure-dependent rise in 

IL-6 was examined.  

Initial involvement of the P2X7 receptor as determined using antagonist 

Brilliant Blue G. While BBG can act at other P2X receptors (Bo et al. 2003), it is 

well tolerated in the eye (Totan et al., 2014). In addition, the blue color of the 

compound enabled the retinal distribution of the antagonist to be more accurately 

determined (Figure 3.1.B); material from the targeted retina was preferentially 

analyzed. The pressure-dependent increase in IL-6 mRNA was blocked by 

intravitreal injection of 0.8% BBG 1-3 days before the IOP rise (Figure 3.1.C). 

Levels were compared to the rise seen in pressurized eyes injected with only 

saline, to control for any injection artifact. Immunoblots confirmed that IL-6 

protein was also increased in the retina following a rise in pressure (Figure 

3.1.D). Changes in protein level paralleled those of mRNA, with IOP rise leading 

to an increase in IL-6 protein that was prevented by BBG (Figure 3.1.E).  

To determine whether stimulation of the P2X7 receptor was sufficient to trigger 

upregulation of IL-6, agonist BzATP was injected intravitreally (2 µl, 250 µM) with 

sterile saline injected into the contralateral eye and levels of IL-6 mRNA present 

in the retina 24 hrs later were determined. Retinal IL-6 expression was increased 
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4-fold by the P2X7 receptor agonist BzATP in the absence of any changes in IOP 

(Figure 3.1.F).  

Involvement of purines in the response to elevated IOP was further probed by 

examining expression of certain receptors. Receptor genes P2RX7 and 

ADORA3, coding for the adenosine A3 receptor, were elevated in many retinas 

examined after 1 day, but considerable variation meant the rises were not 

significant (Appendix. Fig S2). Genes P2RX4 and P2RY6 for purinergic receptors 

were increased 1 day, but not 5 days after IOP elevation. While the precise 

contribution of these receptors remains to be determined, their increased 

expression is consistent for mechanosensitive purinergic signaling.  

Pressure-dependent upregulation of IL-6 absent in P2X7 knockout mice:  

Further confirmation of the role of the P2X7 receptor in the pressure-

dependent rise in IL-6 was provided with P2X7 knockout mice. Elevating the IOP 

of wild-type C57Bl6J mouse eyes to 60 mmHg for 4 hrs led to a rise in IL-6 levels 

analogous to that observed in the rat eye (Figure 3.1.G). In mice missing the 

P2X7 gene, however, this rise in IOP did not significantly change IL-6 levels 

(Figure 3.1.H). This supported the pharmacological identification, while also 

demonstrating the response occurred in multiple species.  

IL-6 upregulation and release from optic nerve head astrocytes: 
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In vitro experiments from isolated cells were pursued to enable identification of 

specific cell types and better control of pharmacological manipulation. Optic 

nerve head astrocytes undergo multiple changes in response to the mechanical 

strain in glaucoma (Hernandez, 2000). As we have previously found that stretch 

of these astrocytes leads to the release of ATP through pannexin hemichannels 

and subsequent autostimulation of P2X7 receptors (Beckel et al., 2014), the 

mechanosensitive response of IL-6 in these astrocytes and the contribution of the 

P2X7 receptor was examined. 

Isolated rat optic nerve head astrocytes expressed GFAP, confirming the 

identity of the cultured cells ( Figure 3.2.A). Astrocytes were plated on a silicone 

substrate and subjected to a 5% equilateral strain at 0.3 Hz for 4 hrs, followed by 

a 20-hr break before RNA was extracted to increase parallels to in vivo 

experiments. Levels of IL-6 mRNA were increased 2-fold in stretched astrocytes 

as compared to controls ( Figure 3.2.B). Unstretched astrocytes exposed to 50 

µM BzATP for 4 hrs also demonstrated a 2-fold rise in IL-6, suggesting the P2X7 

receptor was sufficient to trigger the rise in IL-6 mRNA expression ( Figure 3.2.C) 

as found in vivo. An analogous rise in IL-6 was produced by swelling astrocytes 

with a 30% hypotonic solution for 4 hrs ( Figure 3.2.D); this rise in IL-6 mRNA 

was prevented by P2X7 receptor antagonists BBG and A839977 ( Figure 3.2D).  

To confirm the contribution of the P2X7 receptor, the rise in IL-6 expression in 

optic nerve head astrocytes isolated from C57Bl6J mice and P2X7 knockout 
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mice was compared. Swelling cells from wildtype mice induced a significant 

increase in IL-6 expression ( Figure 3.2.E). In contrast, astrocytes isolated from 

P2X7-/- mice showed a drop in the IL-6 expression with swelling. 

IL-6 released from optic nerve head astrocytes   

While the ability of P2X7 receptors to trigger the upregulation of IL-6 mRNA in 

vivo and in vitro implied an increased involvement of the cytokine, the ability of 

the receptor to trigger release of IL-6 was also tested. Measurement of IL-6 

levels in the bath surrounding the astrocytes using an ELISA assay 

demonstrated that the cytokine was released into the bath after stretch ( Figure 

3.2.F). Exposure of astrocytes to agonist BzATP also led to a substantial release 

of IL-6 ( Figure 3.2.G). Cytokine release in many cell types is mediated by 

increases in intracellular calcium; for example, the release of IL-6 from spinal 

cord astrocytes is calcium dependent (Codeluppi et al., 2014). To confirm optic 

nerve head astrocytes experience a rise in calcium upon swelling, levels were 

monitored with indicator Fura-2. The rise in calcium was rapid and reversible ( 

Figure 3.2.H). To determine whether this response was dependent upon 

autostimulation of the P2X7 receptor, the ability of BBG to antagonize this rise 

was examined. Pretreatment of astrocytes with blocker BBG eliminated the rise 

in calcium, implicating autostimulation of the P2X7 receptor, and consistent with 

a role for calcium in the release.  

IL-6 released from isolated retinal ganglion cells: 
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Although the above experiments clearly indicate that mechanical strain and 

stimulation of the P2X7 receptor can lead to release of IL-6 from optic nerve 

head astrocytes, immunostaining indicated that retinal ganglion cells expressed 

high levels of IL-6 (Appendix. Fig 4A). The staining pattern was particulate, 

consistent with IL-6 stored in vesicles. As such, the ability of retinal ganglion cells 

to release IL-6 was tested. As ganglion cells in situ are intertwined with various 

other cell types, a two-step immunopanning procedure was used to isolate retinal 

ganglion cells (Appendix. Fig 4B); previous analysis indicates that >98% of cells 

obtained in this way are ganglion cells (Zhang et al., 2006). The purified cells 

were plated on a silicone substrate and, once attached, a 4.1% deformation 

strain was applied to stretch the cells for 4 min. Cells were then returned to 

baseline for 1 min, with the stretch cycle repeated 2 more times. There was a 

significant increase in extracellular levels of IL-6 released into the bath after this 

stretch period (Appendix. Fig 4C). Analogous trials indicate that stimulation of the 

P2X7 receptor with BzATP also released IL-6 from isolated retinal ganglion cells 

(Appendix. Fig 4D). Attempts to process RNA from these isolated ganglion cells 

were unsuccessful, precluding examination of IL-6 expression. However, 

application of BzATP led to a rapid increase in intracellular calcium in isolated 

retinal ganglion cells (Appendix. Fig 4E); the response was rapid, reversible and 

repeatable.  
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Discussion 

The signaling pathways linking mechanical strain to inflammation play an 

important role in the cellular response to stress. The current study implicates the 

P2X7 receptor for extracellular ATP in the mechanosensitive upregulation of 

cytokine IL-6 in the retina. In vivo data demonstrate IL-6 mRNA was substantially 

upregulated after a transient elevation of IOP in the rat retina, with the P2X7 

receptor antagonist BBG preventing the upregulation of both IL-6 mRNA and IL-6 

protein in retinal tissue. The transient rise in IOP increased IL-6 expression in the 

retina of wildtype mice but not in P2X7 knockout mice, further implicating the 

P2X7 receptor and demonstrating the effect was not species dependent. In 

isolated optic nerve head astrocytes, IL-6 expression was increased by stretch, 

swelling and directly by the P2X7 agonist BzATP. The swelling- induced rise in 

IL-6 in astrocytes was prevented by two different P2X7 antagonists. In addition, 

both astrocytes and retinal ganglion cell released IL-6 in response to agonist 

BzATP or to mild stretch. Together these data identify a role for the P2X7 

receptor in the mechanosensitive IL-6 response of neurons and astrocytes in the 

retina.  

Signaling pathways linking mechanical strain to IL-6  

The intracellular signaling pathways linking mechanical strain to the IL-6 

response can be at least partially described by integrating previous findings with 

the results of the current study. Increased pressure in the whole retina, or 
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mechanical strain to either optic nerve head astrocytes or retinal ganglion cells 

leads to ATP release through pannexin hemichannels (Beckel et al., 2014; 

Reigada et al., 2008; Xia et al., 2012b). Release from astrocytes is partially 

dependent on Rho kinase, consistent with a mechanosensor like TRPV4 as in 

other ocular cells (Jo et al., 2015; Shahidullah et al., 2012). In both astrocytes 

and retinal ganglion cells, the released ATP autostimulated P2X7 receptors on 

the same cell type.  

The present study clearly implicates the P2X7 receptor in the IL-6 response to 

mechanical strain. The P2X7 antagonist BBG prevented the rise in IL-6 

expression in vivo, while BBG and a second antagonist A839977 prevented the 

rise in astrocytes. In addition, agonist BzATP emulated the effects of mechanical 

strain both in vivo and in vitro. Although BzATP and BBG can act at other P2 

receptors (Bo et al., 2003; Wildman et al., 2003), A839977 is more selective 

(Honore et al., 2009). In addition, the reduced IL-6 response in P2X7-/- mice in 

vivo, and in optic nerve head astrocytes isolated from the P2X7-/- mice, 

implicated the P2X7 receptor in linking the mechanical strain to the IL-6 

response. The retinal response resembles that in cultured microglia, where the 

P2X7 receptor triggers IL-6 mRNA upregulation and release of the cytokine 

(Shieh et al., 2014). 

While the use of agonists, antagonists and knockout mice together imply the 

P2X7 receptor makes a substantial contribution to the mechanosensitive IL-6 
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response, a contribution from other P2 receptors cannot be ruled out in the 

present study, and other P2 receptors have been linked to IL-6 (Inoue et al., 

2007; Kawano et al., 2015; Shigemoto-Mogami et al., 2001). A study of the same 

P2X7-/- mice used here found that while most of the peritoneal rise in IL-6 

accompanying ATP injection was eliminated in the knockout mice, the residual 

response may have reflected action of additional receptors, with P2Y receptors 

suggested as a possible source (Solle et al., 2001). The increased expression of 

the P2Y6 receptor in retinas exposed to transient pressure elevation is 

interesting, but as the agonist for this receptor is UDP, and ATP itself has little 

affinity, activation of this receptor by ATP released after elevated pressure is 

likely to be complex (Communi et al., 1996; Satrawaha et al., 2011). It is also not 

clear whether the response is direct or reflects a secondary response to IL-1β 

release, as IL-1β can lead to upregulation of IL-6 expression (Cadman et al., 

1994). Experiments are currently underway to determine whether stimulation of 

the P2X7 receptor leads to IL-1β release.  

In addition to the upregulation of IL-6 message and protein levels, mechanical 

strain and the P2X7 receptor also triggered a rapid release of IL-6 from 

astrocytes and retinal ganglion cells. The P2X7 receptor is a ligand gated non-

selective cation channel, and its stimulation raises intracellular calcium in both 

astrocytes and retinal ganglion cells (Beckel et al., 2014; Xia et al., 2012b). The 

vesicular release of IL-6 from spinal cord is calcium-dependent (Codeluppi et al., 

2014), and the time course of the IL-6 release above implies the signaling 
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mechanisms are distinct from those involved in transcriptional upregulation. 

While the increased expression of IL-6 would provide more IL-6 for release upon 

later stimulation, this complex positive feedback pathway was not investigated in 

the present study.  

Separating mechanical strain from cell death and the P2X7 receptor 

The data here indicate that P2X7 receptor was involved in the increase in IL-6 

after a transient non-ischemic elevation in IOP. We used this model because it 

was reported to induce little cell death (Abbott et al., 2014; Crowston et al., 2015; 

Morrison et al., 2010; Morrison et al., 2014), and enabled us to distinguish 

between responses resulting from mechanical strain and those due to cell death; 

the lack of response in genes ANAX3, BAX or CCND1, associated with apoptosis 

or extreme stress, suggest this distinction was largely achieved. In a variant of 

the rat model in which IOP was raised to 50 mmHg for 8 h, there was no 

substantial RGC loss or decreases in axon transport (Abbott et al., 2014). 

Elevation of mouse IOP to 50 mmHg for 30 min led to a transient reduction in the 

photopic negative response (PhNR), attributed largely to retinal ganglion cell 

function, although the number of ganglion cells was not reduced when examined 

7 days later (Chrysostomou and Crowston, 2013; Crowston et al., 2015). 

Presumably the maintenance of retinal blood flow prevents the retinal ganglion 

cells loss associated with more ischemic models (Zhi et al., 2012). Overall this 

suggests that the robust IL-6 response, and the stimulation of the P2X7 receptor 

which precedes it, are distinct from cell death.  
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Relevant cell types  

Our in vivo experiments identified elevated IL-6 mRNA and IL-6 protein using 

material from the entire retina. The optic nerve head is the focus of the 

mechanical forces induced upon elevation of IOP (Downs, 2015), and the in vitro 

experiments clearly demonstrate a rise in IL-6 expression in optic nerve head 

astrocytes, consistent with previous findings of a large rise in optic nerve head IL-

6 in response to IOP elevation (Johnson et al., 2011). However, the optic nerve 

head tissue is a minor component of the retina and it is likely that other cell types 

contribute to the rise in IL-6 expression found in the whole tissue. While the 

restricted levels of cell material in panned retinal ganglion cells precluded reliable 

molecular analysis of IL-6 levels in this study, the cells are also likely to 

contribute. The increased expression of IL-6 1 day after IOP elevation using the 

laser photocoagulation model co-localized with amyloid precursor protein, a 

marker of fast axonal transport, and suggested the axonal transport of IL-6 

synthesized in retinal ganglion cells was impeded with increased IOP (Chidlow et 

al., 2012). This may relate to a more recent study in which IL-6 increased with 

age in the proximal optic nerve of DBA mice, and correlated with the loss of 

axonal transport (Wilson et al., 2015). The predicted involvement of microglial 

cells here is complex; cultured retinal microglia released IL-6 when subjected to 

hydrostatic pressure increase (Sappington et al., 2006), while activated microglial 

cells were observed in vivo only one week after elevation of IOP but not at earlier 

time points (Kezic et al., 2013). Future experiments are needed to understand 
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the role of microglial cells given their responsiveness to extracellular ATP 

(Franke et al., 2007).  

Physiological implications: 

While the results from the present study clearly demonstrate a role for the 

P2X7 receptor in the upregulation and release of IL-6, the physiological 

implications will depend upon the cell types involved, the conditions that lead to 

the response, and whether the resulting IL-6 mediates protective or detrimental 

effects. IL-6 signaling is complex; although IL-6 is traditionally described as a 

“pro-inflammatory” cytokine, it can be both protective and pathological in neural 

tissues (Spooren et al., 2011). Expression of IL-6 in cortical astrocytes confers 

protection from focal injury in neural tissue (Penkowa et al., 2003). In the retina, 

several groups have identified protective actions by IL-6 and suggested it is an 

early protective response. The death of retinal ganglion cells following increased 

hydrostatic pressure was prevented by IL-6 (Sappington et al., 2006), and IL-6 

enhanced neurogenesis in retinal ganglion cells (Chidlow et al., 2012). If IL-6 

represents an early response to protect neurons, then the present study 

suggests that the mechanosensitive release of ATP through pannexin 

hemichannels and autostimulation of P2X7 receptors that lead to the increased 

IL-6 response may also be protective, at least in young healthy tissue. This would 

add to the increasing recognition of the P2X7 receptor as more than just a “death 

receptor” in neural tissues. 
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Figures 

 

Figure 3.1 Involvement of ATP and P2X7 receptor in IL-6 elevation in vivo 

A. Expression of ectoATPase gene ENTPD1 was elevated 1 day after 
increase in IOP to 50 mmHg for 4 hrs (Pressure, *p=0.033, N=10). 
ENTPD1 remained elevated 5 days after the procedure (*p=0.004, N=8). 

B. The distribution of P2X7 antagonist Brilliant Blue G (BBG) in the retina 1 
day after intravitreal injection. The staining pattern suggests distribution of 
BBG through the vitreal cavity to the retina was restricted. A similar 
staining pattern remained in retinas examined 6 days after injection. 

C. The pressure-dependent rise in IL-6 mRNA was substantially decreased 
following injection of BBG. Data are expressed as relative gene 
expression in the pressurized vs non-pressurized retina for eyes injected 
with 0.8% BBG or saline 1-3 days before the moderate elevation of IOP to 
50 mmHg for 4 hrs. N=6-9. *p<0.004 saline pressurized vs. non-
pressurized; *p<0.013 saline pressurized vs. BBG pressurized. 
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D. Representative immunoblots from whole retina lysates probed for IL-6 (22 
kDa) and housekeeping protein GAPDH (GAP, 37 kDa). Expression of IL-6 is 
greater in the eye subject to the moderate IOP increase (Pr) treated with 
saline as compared to the contralateral non-pressurized control eye, but 
this pressure-dependent increase is reduced after injection with BBG. 

E. Summary of relative protein expression from experiments illustrated in C 
quantified with densitometry; N=4-5. * p<0.001 saline pressurized vs. non-
pressurized; *p<0.035 saline pressurized vs. BBG pressurized 

F. P2X7 receptor agonist BzATP was sufficient to increase levels of IL-6 
mRNA in the retina 1 day after intravitreally injection (250 µM, 2 µl per 
eye), N=5, *p=0.021. 

G. In wildtype C57Bl6J mice, transient elevation of IOP to 60 mmHg for 4 hrs 
(Pressure) raised retina levels of IL-6 mRNA. N=7, *p<0.001. 

H. In P2X7 knockout mice, the same elevation in IOP did not significantly 
increase levels of IL-6. N=6.   
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 Figure 3.2 IL-6 response in astrocytes 

A. Cultured rat optic nerve head astrocytes stained for GFAP (green) and 
DAPI (blue). Bar=20 µm. 

B. Increased expression of IL-6 mRNA in stretched astrocytes; cells were 
subject to a 5% equilateral strain at 0.3 Hz for 4 hrs, followed by a 20 hr 
break before extraction of RNA. N=8-9, *p=0.011. 

C. IL-6 expression was increased in astrocytes exposed to 50 µM BzATP for 
4 hrs. N=5, *p=0.008. 
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D. Expression of IL-6 was also increased in cells exposed to moderate 
swelling induced by 30% hypotonicity for 4 hrs. However, this rise in 
expression was inhibited by P2X7 receptor antagonists BBG (50 µM) or 
A839977 (A83; 10 µM). Cells were pretreated with antagonists in isotonic 
solution for 1 hr. before swelling. N=4 * p<0.001 Swell vs. Control, 
*p<0.001 Swell vs. swell+BBG, *p<0.001 Swell vs. swell+A839977. 

E. Cell swelling in 30% hypotonic solution induced rise in IL-6 mRNA was 
observed in optic nerve head astrocytes from C57Bl6J mice (N=6, * 
p=0.006), but swelling in astrocytes isolated from P2X7-/- mice actually 
reduced IL-6 expression (p=0.043, N=6). 

F. The concentration of IL-6 in the bath surrounding astrocytes was higher 
after exposing cells to stretch (* p=0.036, N=7). 

G. Levels of IL-6 in the bath were also increased after exposure of astrocytes 
to 50 µM BzATP for 30 min (* p=0.011, N=6, paired t-test for F and G). 

H. Swelling of astrocytes by hypotonic solution rapidly raised intracellular 
calcium, as indicated by the ratio of light excited at 340 nm vs 380 nm in 
cells loaded with indicator Fura-2. In the presence of 100µM BBG, no rise 
in cell calcium was observed. Symbols represent mean ±SEM, N=16.  
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Chapter 4 :  

Discussion and Future Directions 

The signaling pathways linking mechanical strain to inflammation play an 

important role in the cellular response to stress. In glaucoma, which is the 

second most common cause of blindness worldwide (Resnikoff et al., 2004), IOP 

elevation is one of the most common risk factors (Casson et al., 2012). IOP 

elevation causes mechanical strain with forces particularly focused on the optic 

nerve head (Bellezza et al., 2003; Burgoyne, 2011; Sigal and Ethier, 2009), 

where astrocytes reside and are affected by strain (Hernandez et al., 2008). 

Several studies have shown that IOP elevation in glaucoma models leads to 

morphological and structural changes to the ONH (Burgoyne, 2011; Burgoyne et 

al., 1995; Downs, 2015; Yang et al., 2009), along with signs of inflammation 

including upregulation of TNFD and activation of the complement system 

(Plantinga et al., 2013). However, the pathological changes in glaucoma and 

several other chronic inflammatory disorders are not well understood. In 

glaucoma, the pathological changes continue for years, eventually leading to 

neuronal death and blindness. The results of this study suggest a novel 

explanation to link mechanical strain with inflammatory signaling.  

Understanding how mechanical strain in the optic nerve head is translated to 

pathological changes in retinal ganglion cells is a major challenge in glaucoma 
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research. The goal of this thesis was to identify a pathway for inflammasome 

priming and IL-6 in response to mechanical strain in the context of sterile 

inflammation. A better understanding of the cellular and molecular events 

involved in the process could lead to the development of more effective treatment 

options for glaucoma patients. Moreover, these findings could potentially be 

relevant to responses to mechanical in other tissue compartments including 

dentally-related structures. 

The work presented in this thesis supports a critical role for purinergic 

signaling activated by mechanical strain in the inflammation accompanying 

glaucoma. We presented evidence that pro-IL-1β and IL-6 mRNA and protein are 

significantly upregulated in a non-ischemic glaucoma model with IOP elevation. 

In addition, this work demonstrated that mechanical strain leads to ATP release 

from pannexin hemichannels that autostimulate the P2X7 receptor, and the P2X7 

receptor was found to be necessary and sufficient to upregulate IL-1β and IL-6 

expression. We also found that swelling astrocytes activated the transcription 

factor NFNB, which is known to upregulate expression of the genes encoding IL-6 

and IL-1β (Cogswell et al., 1994; Korcok et al., 2004; Rego et al., 2011; Yu et al., 

2009). 

The function and the regulation of cytokines are complex. IL-1β is a pro-

inflammatory cytokine and contributes to signaling pathways involved in cell 

death (Dinarello, 2002). IL-1β also contributes to retinal ganglion cell toxicity in 
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an ischemia model (Yoneda et al., 2001). IL-6 is traditionally described as a 

proinflammatory cytokine, but it can also be protective to neuronal tissue 

(Penkowa et al., 2003; Spooren et al., 2011). The presence of both neurotoxic 

and neuroprotective effects following cytokine responses by the P2X7 receptor 

stresses the complexity of the signaling system and emphasized the need for 

caution when interpreting ultimate outcomes of receptor stimulation. For 

example, ocular hypertension studies showed that the rise in IL-6 expression is 

transient, whereas IL-1β expression increases with sustained IOP elevation, 

suggesting that the IL-1β/IL-6 ratio influences RGC health in chronic glaucoma 

(Chidlow et al., 2012). Therefore, evaluating the effect of IL-1β and IL-6 on the 

health of RGC at different time points and at different concentrations is needed to 

properly understand their role in diseases. 

Although the work reported in chapters 2 and 3 investigated the role of P2X7 

receptor in priming IL-1β and IL-6 in parallel, both cytokines can produce a wide 

range of signaling that can positively or negatively affect the other. IL-1β mainly 

binds to the IL-1 receptor, which can activate NFκB, c-Jun N-terminal kinases 

(JNK) and MAPK pathways, resulting in changes in genes including IL-6, COX-2, 

IL-8 and MKP-1(Arulkumaran et al., 2011; Dinarello, 2002; Weber et al., 2010). In 

fact, IL-1β upregulates IL-6 in cultured cortical neurons and astrocytes 

(Benveniste et al., 1990; Ringheim et al., 1995; Tsakiri et al., 2008). IL-6 bound 

to its receptor can interact with Glycoprotein 130 (gp130), resulting in activation 

of the JAK/STAT signal transduction pathway and regulation of gene expression 
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(Ivashkiv and Hu, 2003; Leonard and O'Shea, 1998). It is thus possible that IL-1β 

and IL-6 can modulate the expression of each other after stretch; further 

investigation of their interactions in response to mechanical strain is needed. IL-1 

receptor antagonists, IL-1β knockout mice, and IL-1β antibody can be tested to 

determine whether the release of IL-1β modulates IL-6. In addition, IL-6 knockout 

mice, which are commercially available, can be tested to identify the role of IL-6 

in regulating inflammasome priming.  

Glaucoma model: 

Understanding the mechanisms that underlie glaucomatous changes in the 

optic nerve is essential for developing a treatment for glaucoma. This involves 

identifying how elevated IOP leads to axonal injury and retinal ganglion cell 

death. Because the ONH is a likely site of axonal injury (Burgoyne et al., 2005; 

Downs et al., 2008), an ideal animal model that separates the effect of cell death 

from the effect of elevated IOP is needed. The CEI model used here provides a 

high degree of control over IOP elevation over an extended period of time without 

major damage to the retina or the optic nerve. Although a small but significant 

reduction in ganglion cell activity occurred using a variant where IOP was 

elevated to 60mm Hg for 8 hr (Morrison et al., 2016), the loss of permanent 

damage after only 4 hr elevation (Crowston et al., 2015) supports our conclusion 

that there is little damage in our hands. As such, we feel this allow the effects of 

elevated IOP and cell death to be adequately separated. Our findings are 

supported by use of a genetically induced outflow obstruction model (Tg-
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MyocY437H mice), in addition to the CEI protocol used in two different species. 

This approach enabled us to explore specific mechanisms while also 

demonstrating that the response is not restricted to a single species. This is 

especially important, given the considerable differences in the P2X7 receptor 

sequence in mice and rats (Donnelly-Roberts et al., 2009a). 

The role of purinergic signaling: 

In Chapter 2 we showed the involvement of extracellular ATP in IL-1β priming, 

based on the ability of apyrase, which hydrolyzes ATP, to block gene 

upregulation. We think ATP release is unlikely to be due to cell lysis, since 

previous work in our lab confirmed the lack of cell death with swell and stretch 

using Lactose dehydrogenase (LDH) cytotoxicity assay (Beckel et al., 2014). As 

this reaction showed no sign of cellular rupture and release of the cytoplasmic 

enzyme into the bath, the mechanosensitive release of ATP was deemed to be 

physiological. 

To confirm a role of pannexin hemichannels in the priming of cytokines that 

followed mechanosensitive activation of astrocytes, we used three different 

pannexin antagonists to enhance specificity. Carbenoxolone partially blocked the 

release of ATP with a consistent reduction of IL-1β mRNA after the swell. While 

the 10µM concentration produced only a partial block, specificity over other 

channels is higher at this concentration (Beckel et al., 2014; Xia et al., 2012b). 

Therefore, we also tested probenecid and 10Panx1 peptide. Probenecid is known 
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to act on an organic anion transporter, and also has been shown to affect ATP 

release (van Aubel et al., 2002). Several pharmacological results suggest that it 

inhibits the nonvesicular release of ATP, with pannexin1 being a prominent target 

of the molecule (Dahl et al., 2013; Qiu et al., 2011). In addition, probenecid at 

1mM inhibits currents mediated by pannexin1 channels but not connexins 

(Silverman et al., 2008). 10Panx1 is a mimetic inhibitory peptide that blocks the 

first extracellular loop of pannexin1 and has been shown to significantly inhibit 

channel currents, dye uptake and ATP released by pannexin1 in multiple cell 

types (Pelegrin and Surprenant, 2007; Seminario-Vidal et al., 2011). However, 

this peptide also shows nonspecific targets such NMDA receptor and Cx46 

hemichannels (Lohman and Isakson, 2014). Although none of the individual 

drugs are specific for pannexins, the inhibition we observed with all three 

compounds strongly implicates pannexins as the conduit for ATP release. 

The Pannexin hemichannel family has three members designated pannexin 1, 

2, and 3. Pannexin 2 can form functional homomeric pores at high voltage in 

Xenopus oocytes (Penuela et al., 2013). The ability of pannexin 3 to form a 

homomeric functional single membrane pore is still controversial and 

electrophysiological evidence has yet to be reported (Penuela et al., 2013). On 

the other hand, pannexin 1 channels can be activated to form pores by 

mechanical stimulation, caspase cleavage, cytoplasmic Ca2 +, membrane 

depolarization, extracellular ATP and K+ (Bao et al., 2004; Silverman et al., 

2009). In contrast to the situation with pannexin 2 and 3, the ability of pannexin 1 
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to act as a pathway for ATP release and enable communication with the 

extracellular environment is well established (Dahl, 2015; Pelegrin and 

Surprenant, 2006). Although we did not directly attempt to identify the specific 

member of the pannexin family involved in the phenomena described in this 

thesis, our data are consistent with a role of Pannexin 1 in ATP release after 

mechanical strain.  

The reduction in IL-1β we found with pannexin 1 inhibitors is consistent with 

the altered ATP release from these cells with the inhibitors (Beckel et al., 2014), 

and the reduction of ATP in cortical astrocytes from pannexin 1 knockout mice 

(Suadicani et al., 2012). Determining whether the remaining ATP release in 

astrocytes in this study reflects a contribution from pannexin 2 or other channels 

will require more experiments. Previous attempts to silence pannexin 1 with 

siRNA led to the upregulation of other pannexins and connexin proteins in the 

Mitchell lab, so this approach was avoided. In addition, we attempted to 

investigate this issue in conditional GFAP-Cre: Panx1f/f mice but encountered 

technical difficulties. Additional methods such as using CRISPR/Cas 9 to 

knockout pannexin 1 could be used to confirm the mechanosensitive role of this 

channel specifically. 

Evidence linking the P2X7 receptor with IL-6 and IL-1β priming comes from in 

vivo and in vitro assays of mRNA and protein. The small in vitro upregulation of 

IL-1β in astrocytes from P2X7-/- mice (Figure 2.9) may reflect the involvement of 
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other pathways; however, the presence of P2X7 splice variants provides an 

alternate explanation (Valentin et al., 2009). While the use of agonists, 

antagonists and knockout mice together imply the P2X7 receptor makes a 

substantial contribution to the mechanosensitive IL-1β and IL-6 responses, a 

contribution from other P2 receptors cannot be ruled out in the present study. 

However, the role of different splice variants could be investigated by developing 

a P2X7 receptor knock out mice utilizing CRISPR/Cas 9 to target multiple exons.  

Contribution of astrocytes: 

The involvement of the astrocytes in IL-6 upregulation and release and IL-1β 

priming was outlined in the experiments in Chapter 2 and 3. The immunostaining 

(Figure 2.5.C) does not exclude the possibility of the involvement of other cells, 

such as Muller glial cells, neurons and microglia. However, astrocytes are 

located at the optic nerve head, where the mechanical strain produced by IOP 

elevation is focused and showed morphological changes in patients with 

glaucoma (Burgoyne, 2011; Hernandez, 2000; Lye-Barthel et al., 2013; Sigal and 

Ethier, 2009). Furthermore, astrocytes are known to express mechanosensitive 

channels (Choi et al., 2015) and contribute to the inflammatory response in 

glaucomatous eyes (Johnson and Morrison, 2009). As such, the identification of 

the P2X7 receptor linking mechanical strain to inflammasome priming in optic 

nerve head astrocytes is particularly relevant.  
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In addition, astrocytes are in contact with neurons and provide both metabolic 

and structural support to neurons as part of normal physiology (Plantinga, 

Joosten et al. 2013). They can undergo morphological changes in response to 

mechanical stress, including redistribution of cytoskeletal proteins (Ho et al., 

2014). Evaluating these changes in optic nerve head astrocytes can confirm their 

role in the pathological process in glaucoma. This can be achieved by: (1) 

measuring the length of filamentous actin (F-actin) after staining to determine 

whether or not there are changes in the cytoskeleton and (2) comparing the ratio 

of F-actin to the global actin (G-actin) on immunoblots of cell lysates. 

 To further confirm the role of the astrocyte P2X7 receptor in IL-1β changes, a 

cell-specific knockout is needed. Developing P2X7 receptor floxed mice then 

breeding them with the GFAP-Cre mice, to produce a conditional P2X7 receptor 

knockout in astrocytes will allow an extensive and accurate measurement of the 

role of P2X7 receptor astrocytes in glaucoma. 

 Microglial cells are present in the retina, where they are a potent source of IL-

1β and have a crucial role in mediating inflammation. Therefore, in future studies 

it will be important to determine if the P2X7 receptor contributes to the 

inflammasome response in retinal microglia and whether the response is 

mechanosensitive. To directly address these possibilities, Cx3cr1CreER mice 

can be bred with floxed P2X7 receptor knock-out mice to generate microglial 

specific knockouts. Additionally, in vitro stretching experiments using retinal 
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microglial cells can be conducted to identify the pathways linking mechanical 

stretch to IL-6 and inflammasome priming and activation in this important cell 

type. 

Gene expression: 

Elevated IOP and mechanical strain differentially affected the expression of 

numerous genes. The increase in IL-1β and IL-6 in response to mechanical strain 

was particularly consistent in contrast to the somewhat inconsistent enhanced 

expression observed for NLRP3, CASP1, ASC and IL-18 The relative variability 

in gene expression may have been time-dependent, as the expression of most 

genes was substantially larger in the mouse retina 22 hrs after IOP elevation was 

returned to baseline. Interestingly, the magnitude of upregulation of these genes 

reflects the nature of their function. For example, when IL-1β is released it binds 

to the IL-1 receptor in a 1:1 ratio. Therefore, a significant upregulation of IL-1β 

production is needed to induce a vigorous inflammatory reaction. On the other 

hand, NLRP3 and caspase 1 are catalysts for the production of the mature 

cytokines such that relatively small increase in their production has a dramatic 

impact on the induction of an inflammatory response. Given that IL-1β, IL-18, 

NLRP3, CASP1, and ASC are all regulated by different combinations of 

transcription factors, the diverse responses to swelling and stretching were not 

unexpected. In addition, CASP1 and IL-18 are constitutively expressed in 

monocytes and epithelial cells (Dinarello, 2007; Thornberry et al., 1992), making 

a moderate increase in expression proportionally less impactful.  
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NLRP3 mRNA was upregulated in vivo after IOP elevation and, to a lesser 

extent, after BzATP injection. In vitro BzATP treatment also upregulated the 

expression of NLRP3. However, P2X7 receptor and pannexin 1 antagonists, as 

well as apyrase, were not able to block this upregulation. This indicates the 

presence of additional mechanisms, in addition to P2X7 receptor, and confirms 

the complexity of the priming regulation of the NLRP3 (Juliana et al., 2012; 

Schroder et al., 2012). Additional studies including a NLRP3-luciferase reporter 

assay and investigating additional factors, such as calcium signaling, would 

provide more information about NLRP3 priming.  

Calcium can be involved in the signaling transduction that leads to 

transcriptional upregulation of IL-6 and the inflammasome genes. This 

upregulation could be relevant to the ability of calcium to activate the 

transcription factor NFNB (Lilienbaum and Israel, 2003). The P2X7 receptor is 

known to increase intracellular calcium in both astrocytes and retinal ganglion 

cells (Beckel et al., 2014; Xia et al., 2012b). In our work, swelling of astrocytes by 

hypotonic solution rapidly raised intracellular calcium, but in the presence of BBG 

no rise in cell calcium or cytokine increase was observed. Swelling and stretch 

experiments in calcium free solutions could shed light on the role of calcium 

influx through P2X7 receptor in inflammasome priming.  

 

Sensing the stress: 
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Conversion ofmechanical stimuli into biological responses is involved in 

activity number of physiologic processes including blood flow, pain, touch, 

hearing and mastication (Chalfie, 2009). While our results showed a clear role for 

pannexin hemichannels in connecting mechanical strain to ATP release, they do 

not identify the first sensor of mechanical stress. Recent findings suggest that 

Piezo cation channels are likely sensors of mechanical strain in the cell 

membrane (Coste et al., 2010). The Piezo family consists of Piezo1 and 2 (also 

known as Fam38A and Fam38B, respectively), that are localized to the optic 

nerve head astrocytes (Choi et al., 2015). Our work focused on the signaling 

pathways downstream of these channels. Thus future studies investigating their 

role in priming the inflammasome might explain some of the variability in 

expression of certain genes in response to mechanical stretch. 

In this work, we specifically focused on the role of the P2X7 receptor on the 

priming of IL-1β, as this was less well understood relative to receptor’s role in 

activation of the inflammasome. Future studies focused on the contributions of 

the P2X7 receptor to inflammasome activation following its role in priming will 

clarify how the inflammasome with the double signals impacts the inflammatory 

state of the retina. Available assays can detect the activation of caspase 1 based 

on detection of cleavage of substrate such as YVAD-AFC by the active enzyme, 

which can be quantified using a fluorometer. Also, evaluation of the signaling 

transduction of P2X7 receptor activated by BzATP/mechanical strain may identify 
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a possible mechanism of regulating the inflammasome, and thus of treating 

glaucoma. 

Finally, the findings of this thesis outlined a novel pathway, in which 

mechanical strain leads to extracellular ATP release through pannexin 1 

hemichannels, which autostimulates the P2X7 receptors involved in the priming 

of the NLRP3 inflammasome and IL-6 mRNA and protein upregulation. These 

findings have a considerable relevance to our understanding of how mechanical 

strain leads to chronic inflammation throughout the body. In the dental field, TMJ 

disorders and orthodontic induced apical root resorption are inflammatory 

disorders in sterile conditions linked to mechanical strain, and thus are relevant 

to this work. In addition, occlusal trauma resulting from excessive forces being 

applied on the teeth can accelerate the progression of the bone loss in the 

presence of active periodontitis (Lindhe and Svanberg, 1974). This could be due 

to the inflammatory signals affecting the periodontal ligament in response to 

mechanical stimulation. A recent study conducted in human periodontal ligament 

cells has illustrated a contribution of Pannexin 1, ATP and P2X7 receptor in IL-1β 

production in response to compressive loading (Kanjanamekanant et al., 2014). 

These findings are consistent with our results and indicate a relevant pathway in 

the dental structures. Utilizing the knowledge and tools that I have learned during 

this work I hope to expand these findings to connect mechanical strain to 

inflammatory signaling in dental fields in the future.  
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Chapter 5 : Appendix 

Effects of Lidocaine and Articaine on Neuronal Survival and Recovery 
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Departments of 1Anatomy and Cell Biology, 2Orthodontics and 3Oral & 

Maxillofacial Surgery/Pharmacology. University of Pennsylvania School of Dental 

Medicine, Philadelphia, PA, 19104 Departments of 4Physiology and 
5Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA 19104 

 

 

As a dentist, I was interested in doing a side project directly related to the dental 

field. Therefore, I was involved in the work of this chapter in collaboration with Dr. 

Hersh as part of a project funded by the Rabinowitz award. In this chapter, we 

compared the SH-SY5Y (neuroblastoma cell line) survival and functional 

impairment after they were treated with the two most commonly used local dental 

anesthesia (Lidocaine and Articaine). Even though is chapter may be different 

from the main work, neuronal death with these drugs may involve pathways 

regulated by caspases. 

This chapter has been accepted for publication in Anesthesia Progress 

Journal. 2017 June. 
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Abstract: 

The local anesthetics lidocaine and articaine are among the most widely used 

drugs in the dentist’s arsenal, relieving pain by blocking voltage dependent Na+ 

channels and thus preventing transmission of the pain signal. Given reports of 

infrequent but prolonged paresthesias with 4% articaine, we compared their 

neurotoxicity and functional impairment by screening cultured neural SH-SY5Y 

cells with formulations used in patients (2% lidocaine + 1:100,000 epinephrine or 

4% articaine + 1:100,000 epinephrine), and with pure formulations of the drugs. 

Voltage-dependent sodium channels Na(v)1.2 and Na(v)1.7 were expressed in 

SH-SY5Y cells. To test the effects on viability, cells were exposed to drugs for 5 

min and, after washing, cells were treated with the ratiometric Live/Dead assay. 

Articaine had no effect on the survival of SH-SY5Y cells while lidocaine only 

produced a significant reduction when used as pure powder. To determine 

reversibility of blockage, wells were exposed to drugs for 5 min, returned for 

medium for 30 min, and the calcium elevation induced by depolarizing cells with 

a high potassium solution was measured using calcium indicator Fura-2. High 

potassium raised calcium in control SH-SY5Y cells and those treated with 

articaine, but lidocaine treatment significantly reduced the response. In 

conclusion, articaine does not damage neural cells more than lidocaine in this in 

vitro model. While this does not question the safety of lidocaine used clinically, it 

does suggest that articaine is no more neurotoxic, at least in the in vitro setting.  
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Introduction: 

The development of safe and effective local anesthetic agents is possibly the 

most important advance in providing pain control in dental practice (Moore and 

Hersh, 2010). The agents currently available in dentistry are extremely safe and 

fulfill most of the characteristics of an ideal local anesthetic. These agents can be 

administered with minimal tissue irritation or likelihood of inducing allergic 

reactions. A variety of agents are available that provide rapid onset and adequate 

duration of surgical anesthesia that is completely reversible, and systemic toxicity 

is rarely reported; these events invariably being the result of overdoses in young 

children (Goodson and Moore, 1983; Hersh et al., 1991).  

Two percent lidocaine with 1:100,000 epinephrine is the most widely used 

local anesthetic in the United States,(Moore and Hersh, 2010) while in Canada 

and several European countries articaine with 1:100,000 epinephrine has 

supplanted lidocaine as the most frequently employed local anesthetic agent 

(Haas and Lennon, 1995). 4% articaine with 1:100,000 epinephrine provides 

more profound infiltration anesthesia than does 2% lidocaine with 1:100,000 

epinephrine;(Snoeck, 2012) while it is not as clear if 4% articaine with 1:100,000 

epinephrine is superior in anesthetic efficacy compared to 2% lidocaine with 

1:100,000 epinephrine with regards to mandibular block anesthesia, a recent 

meta-analysis revealed the superiority of the former when this injection technique 

is employed (Brandt et al., 2011). A large prospective safety study of 1325 

individuals revealed no difference in systemic or local toxicity between 4% 
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articaine with 1:100,000 epinephrine and 2% lidocaine with 1:100,000 

epinephrine (Malamed et al., 2001). However while relatively rare in occurrence, 

retrospective studies and case reports have associated the use of 4% articaine 

with 1:100,000 epinephrine with a higher incidences of paresthesia following 

mandibular block injections than 2% lidocaine with 1:100,000 epinephrine 

(Garisto et al., 2010; Haas and Lennon, 1995). An additional study reported that 

articaine was shown to contribute to more than a 20-fold increase in reported 

paresthesia compared with all other local anesthetics combined (Hillerup and 

Jensen, 2006). Nonsurgical cases of paresthesia in dentistry are almost 

exclusively related to inferior alveolar nerve block injection and appear to affect 

the lingual nerve more frequently than the inferior alveolar nerve.4,9 Available 

data indicate that 85%–94% of such cases resolve spontaneously within 8 

weeks; however, about two-thirds of those who do not recover quickly may never 

fully recover (Pogrel, 2007). 

This study asked whether articaine was more neurotoxic than lidocaine at 

levels used clinically, and whether the channel block was more sustained with 

articaine than lidocaine. In contrast to our predictions, we found lidocaine both 

more toxic and with a greater residual block to cellular responsiveness.   
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Methods: 

Drugs: Clinically relevant formulations of lidocaine (2% Xylocaine, Dentsply 

Pharmaceutical) and articaine (4% Septocaine, Septadont) were used (both with 

1:100,000 epinephrine). Drugs were delivered from the cartridges at full strength 

or diluted 1:3 and 1:9. with DMEM/Ham F12 medium (1:1). According to the 

accompanying literature, each mL of the solution in the Xylocaine cartridge 

contained lidocaine hydrochloride (20mg), epinephrine bitartrate (as base, 

0.01mg), NaCl (6.5mg), potassium metabisulfite (1.2mg), Edetate Disodium 

(EDTA) (0.25mg). Each mL of the solution in the Septocaine cartridge contained 

articaine hydrochloride (40mg), epinephrine tartrate (0.018mg) corresponding in 

epinephrine base to (0.01mg), NaCl (1.6mg), sodium metabisulfite (0.5mg). 

Additional experiments were performed with pure powdered lidocaine (RBI, #L-

102) and articaine (obtained from Septodont Inc.) to test for the effects of these 

additional constituents, particularly EDTA. Drugs were dissolved in DMEM/Ham 

F12 medium and concentrations were chosen so that the maximum levels were 

approximately the same for drugs in powder and cartridge formulations.  

Cell culture: The SH-SY5Y neuroblastoma cell line was used to examine the 

effects of the two drugs on cell survival. Cells were maintained in DMEM/Ham 

F12 medium (1:1), 10% fetal bovine serum (FBS), 1% penicillin /streptomycin 

and 1% amphotericin B (Fungizone®). In some experiments, wells were coated 

with poly-L-lysine (Peptides International, UKK-0356). Cells were grown for a 

minimum of 5 days. Initial experiments were performed on differentiated SH-
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SY5Y cells induced by reducing FBS to 1%, adding 10 µM retinoic acid 1 and 3 

days after plating, and then brain-derived neurotrophic factor (25ng/ml) in a 

serum-free medium 4-5 days later. While this led to a more neural phenotype and 

increased expression of sodium channels described below, the reduced cell 

attachment complicated their use in assays. Although the use of ratiometric 

assays enabled measurement of viability and calcium levels independent of cell 

number, experiments reported here were performed on undifferentiated cells to 

maximize accurate evaluation.  

PCR: Confluent plates of SH-SY5Y cells were homogenized in 1 ml TRIzol 

(Invitrogen Corp.) and total RNA was purified using RNeasy mini kit (Qiagen, Inc. 

#79254, Gaithersburg, MD). cDNA was synthesized from 500ng of total RNA per 

reaction using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems #4368814). qPCR was performed using SYBR Green and the 7300 

RealTimePCR system (Invitrogen Corp.) as described (Guha et al., 2013). 

Primers used were Na(v)1.2: F: TGATGGTGATGTGTTTGTG, R: 

TCTCTGTCTTGTTATAGGCACTG, 109 base pairs; Na(v)1.7: 

F:AGACCTCTCTTTCCATGTAGATTAC, R: TGTAACTGCCTTTCTGTATTGTTG, 

129 base pairs. Primers were designed from published sequences (Vetter et al., 

2012). 

LiveDead Assay: The Live/Dead Assay (ThermoFisher #L3224) was used to 

determine cell viability. Cells grown in 96-well plates were washed and incubated 

with 10µl ethidium homodimer-1 (EthD-1) and 5 µl calcein–AM in 5 ml medium 
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for 30 min at 25 °C. A positive control was applied by adding 70% methanol for 5 

min. After washing, cells were imaged with a microplate fluorometer (Fluoroskan 

Ascent; Labsystems, Franklin, MA). Calcein (Live) was excited at 488 nm and 

emitted at 560 nm to indicate healthy cells with functioning esterases to cleave 

the AM bond and render the dye fluorescent. EthD-1 was excited at 544nm (em 

590nm) to quantify cells with compromised plasma membranes. The ratio of light 

excited at 488nm to 544nm provides an index of cell viability independent of cell 

number. For images, cells were exposed to full strength lidocaine or articaine for 

5 min, washed with medium, then to 3µl of 1 mM Calcein AM (ThermoFisher 

Scientific #C31100MP) mixed with 2µl ethidium homodimer (ThermoFisher 

Scientific #L7013) for 20 min at room temperature before washing then imaged 

on a Nikon Eclipse E600 (Nikon USA, Melville, NY) at ex460-500 Chroma filter 

for live cells and ex530-550 Chroma filter for dead cells. Images were captured 

with a Nikon DS-Fi1 camera and processed with ImageJ software (Schindelin et 

al., 2015), with parallel modifications performed to all images.  

Cytoplasmic Ca2+ measurement: Neuronal activity was determined by examining 

the influx of Ca2+ upon depolarization. The Goldman/Hodgkin/Katz equation 

predicts a shift in membrane potential from -71 mV to -20 mV when cells are 

exposed to the high-K solution; this is raised above the threshold for activation of 

the voltage-dependent Na+ channels, and thus an action potential is expected. 

This is predicted to induce an influx of Ca2+ through voltage-dependent channels, 

which was measured with the dye Fura-2. Calcium levels were measured from 
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SH-SY5Y cells grown in 96-well plates the dye Fura-2 as described (Reigada et 

al., 2005) Basically, Fura-2 AM (ThermoFisher Scientific, #F1201) was loaded by 

incubating wells for 30 min with 5 μM Fura-2 AM and 0.02% pluronic acid. After 

washing, 90 μl of isotonic control solution contain 5 mM KCl and 120 mM NaCl 

was added and the ratio of light excited at 340/380 nm emitted >510 nm was 

determined in the microplate fluorometer. A baseline reading was obtained for 5 

min, after which a high K+ solution was injected through the fluorimeter to give a 

final concentration of 50 mM KCl and 75 mM NaCl.  

Statistical analysis: Data are reported as mean ± SEM. Analysis was performed 

in a masked fashion whenever possible. Statistical analysis on the Live/Dead 

assay was performed using a Kruskal-Wallis one-way analysis on ranks with 

Dunn’s post-hoc test versus control. Analysis of the calcium response was 

performed using a Student’s t-test. Both sets of analysis were performed using 

Systat Software Inc. (San Jose, CA). Results with p<0.05 were considered 

significant.  
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Results: 

The SH-SY5Y cells used in this study expressed the voltage-dependent 

sodium channels Na(v)1.2 and Na(v)1.7, predicted to be targeted by the drugs 

(Figure 5.1.A). To determine whether lidocaine or articaine were neurotoxic, SH-

SY5Y cells were exposed to drugs for 5 min. Each drug was obtained directly 

from the cartridge used to treat patients and employed at full strength or diluted 

in cell medium 1:3 or 1:9. After washing, cells were exposed to the Live/Dead 

assay for 30 min, and the relative levels of green and red fluorescence were 

quantified (Figure 5.1.B). Neither articaine nor lidocaine had a significant effect 

on cell viability at any concentration when obtained from the cartridge (Figure 

5.1.C), although 2% lidocaine increased the ratio of dead to live cells 

substantially.  

As cells displayed some signs of detachment in preliminary trials, several 

steps were taken to minimize this effect. The use of ratiometric assays meant 

that cell survival measures were independent of cell numbers, and 

undifferentiated cells survived manipulations more robustly, with poly-L-lysine 

coating the substrate increasing this further. Of note was the presence of 0.7 mM 

of calcium/magnesium chelator EDTA. While this level of EDTA was less than 

that used experimentally to detach cells (1-10 mM) there was some concern that 

the presence of EDTA in the lidocaine but not articaine formulations could 

influence the outcome. To control for this, the effect of adding 0.7 mM EDTA on 
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cell adherence was examined directly; there was no increase in cell detachment 

with EDTA, however.  

The cell viability experiments were confirmed with pure lidocaine and articaine 

from powder to avoid influence from secondary components like EDTA or 

epinephrine. Concentrations were chosen so that the highest level of lidocaine 

and articaine from powder equaled the full-strength drug from the cartridge. 

While there was no effect of purified articaine at any concentration, 74 mM of 

purified lidocaine significantly increased the percentage of dead cells to 55% 

(Figure 5.1.D).  

Delayed neuronal recovery  

Given reports of delayed local anesthetic recovery with articaine, experiments 

were designed to determine whether treatment with either anesthetic led to a 

delayed recovery from nerve block by examining the response to depolarization 

30 min after treatment with drugs. Specifically, the Ca2+ influx to depolarizing 

cells with high (50 mM) K+ solution was measured. Raising the level of 

extracellular K+ from 5 mM to 50 mM was calculated to raise the membrane 

potential from -71 mV to -20mV, above the threshold to activation of the voltage-

dependent Na(v)1.2 and Na(v)1.7 channels (Catterall et al., 2005). Cellular Ca2+ 

was used as a proxy for membrane potential as the ratiometric output of Ca2+-

sensor Fura-2 was very sensitive and provided reading independent of cell 

number.  
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Baseline levels of cytoplasmic Ca2+ were not affected by exposure to 2% 

lidocaine or 4% articaine 30 min previously (Figure 5.2.A). However, cells treated 

with lidocaine displayed a significantly reduced responsiveness to depolarization 

as compared with controls (Figure 5.2.B), while the effect of articaine was not 

significant.   
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Discussion: 

In the current study, the use of the ratiometric Live/Dead assay to determine 

cell viability suggests that articaine was no more likely to kill cultured neuronal 

SY-SY5Y cells than lidocaine. However, solutions made with pure lidocaine from 

powder lead to a small but significant increase in neuronal death. In addition, 

results obtained with the ratiometric Ca2+ indicator Fura-2 imply that articaine 

does not produce a more sustained blockage of neural response in vitro than 

lidocaine. Lidocaine treatment led to a reduced cell responsiveness 30 min after 

drugs were washed off. While these findings are the opposite of what was 

predicted based upon the proposed enhancement of paresthesia by articaine in 

the clinical setting,(Haas and Lennon, 1995) data from the two different assays in 

the present study support the conclusion that articaine does not directly lead to 

neuronal damage in vitro. The findings agree with a report suggesting lidocaine 

had a lower LD50 than articaine (Malet et al., 2015). This published data was 

based on the production of glycolytic production of NADPH, and is thus a 

simplistic measure of total metabolic activity. The combined use of the Live/Dead 

and Fura-2 assays in the present study provide a more accurate measure of cell 

stress that is independent of the number of cells.  

While the use of drugs directly from the injection cartridges provides relevance 

to the clinical condition, we felt it was important to verify the results using the 

purified forms of the drugs. This was particularly true of the lidocaine, as 

inclusion of EDTA may have interacted with cells and complicated interpretation. 
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While there was a trend towards decreased cell viability in experiments where 

lidocaine from the cartridge was used at full strength, cell death was only 

significant with the powder form. Given that lidocaine is considered a very safe 

drug clinically, it is likely that this level of significance in the powder form of the 

drug does not translate to the clinic.  

While both lidocaine and articaine are thought to produce a reversible block of 

the voltage-dependent Na+ channels associated with the transmission of dental 

pain, several reports link articaine with sustained paresthesia (Haas and Lennon, 

1995; Pedlar, 2003). However, the current study found that neural 

responsiveness was reduced in SH-SY5Y cells 30 min after cells were exposed 

to lidocaine, but not articaine. Of course, the measure of cellular responsiveness 

used here, based on Ca2+ rise, provided an indirect measure of Na+ channel 

activity, and may reflect effects of lidocaine downstream from the Na+ channel. 

The similar baseline levels in cells pretreated with lidocaine, articaine and control 

solution suggests there is not an overall change in Ca2+ regulation in the cells. As 

exposure to high levels of KCl is expected to depolarize the cells similarly, the 

reduced rise in intracellular Ca2+ is predicted to reflect a difference in the 

activation of the voltage-dependent Na+ channels needed to depolarize the cells 

into the range of Ca2+ channel activation. While precise site of action cannot be 

determined without direct inspection of the ionic currents, the parallel findings 

with the two assays imply articaine is not impacting the cells.  
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Although the results of the current study suggest articaine is no more 

disruptive than lidocaine to neural cells, there are several other mechanisms that 

could underlie differential rates of paresthesia reported in the literature. For 

example, the low overall occurrence suggests that genetic polymorphisms in the 

ionic channels may contribute, as polymorphisms in Na(v)1.7 result in a range of 

pain phenotypes (Drenth and Waxman, 2007). A cell culture model such as the 

one employed in these experiments does not account for rare genetic differences 

in sodium channel sensitivity to potential neurotoxic agents. The actual 

magnitude of the problem with articaine is also somewhat unclear, because 

unfortunately clinicians typically only file FDA Medwatch reports when there is a 

fear of litigation. In addition to genetic polymorphisms, local anesthetic 

neurotoxicity may also be concentration related. As neither articaine in the pure 

form, nor articaine from the clinical cartridge led to issues in the present study, it 

is unlikely that additives increase neurotoxicity.  

In summary, articaine did not produce a prolonged block of neuronal 

responsiveness, or an increased toxicity, as compared to lidocaine in SH-SY5Y 

cells. The use of ratiometric assays to determine viability and Ca2+ levels 

strengthen the conclusions. It should be stressed that numerous studies have 

found lidocaine to be remarkably safe in a clinical setting (Moore and Hersh, 

2010). The findings of the present refer specifically to SH-SY5Y cells in an in 

vitro setting and should not be taken to imply there is any additional concern with 

the use of lidocaine in patients. The corollary that articaine does not produce a 
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prolonged loss of responsiveness or cell death as compared to lidocaine under 

these reductionist conditions, is perhaps the most relevant conclusion.  

Portions of this work were previously presented in abstract form.19 
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Figures 

 

Figure 5.1 Effects of lidocaine and articaine on viability of SH-SY5Y cells 

A. Expression of Na(V) in SH-SY5Y cells. PCR gel showing cells expressed 
mRNA for both Na(V)1.2 and Na(V)1.7. Gels show bands of expected size 
from three cell preparations. “-1.2” and “-1.7” indicate lanes where reverse 
transcriptase was omitted from the mix for Na(V)1.2 and Na(V)1.7, 
respectively. Bars are 100 base pairs. 
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B. Example of images of SH-SY5Y cells loaded with the Live/Dead assay in 
response to various conditions; Cells treated for 5 min with 4% articaine, 
or 2% lidocaine (both from the cartridge), washed, then loaded with the 
Live/Dead dye. Positive control of cells treated with 70% ethanol are 
shown on the top left, while untreated cells are shown on the right. Green 
– calcein indicating healthy cells, Red - ethidium homodimer indicating 
compromised cells. Bar = 100 µM.  

C. Quantification of Live/Dead levels from SH-SY5Y cells treated with 
lidocaine + 1:100000 epinephrine or articaine + 1:100000 epinephrine 
from the cartridges used clinically. The reduced viability observed using 
lidocaine at full strength was not significant (Kruskal-Wallis one-way 
analysis on ranks with Dunn’s post-hoc test). Articaine did not lead to cell 
death at any strength. Numbers along the abscissa axis indicate the % of 
drug, with 2% lidocaine and 4% articaine the full strength from the 
cartridge. Numbers along the ordinate represent the ratio of light excited at 
488 nm vs 544 nm, normalized to the mean control for each set. * p<0.001 
methanol vs. saline; n=10.  

D. Quantification of the Live/Dead levels from SH-SY5Y cells treated with 
pure Lidocaine or Articaine. Lidocaine increased the number of dead cells 
when used in pure powdered form at the highest concentration, while pure 
articaine did not alter cell survival. Numbers along the abscissa indicate 
the concentration in mM, with the highest levels of both drugs equal to the 
maximum level with the cartridge. Numbers along the ordinate represent 
the Live/Dead ratio normalized as in C. * p<0.001 (methanol and 74 mM 
lidocaine), n=18.   



 

 

135 

Figure 5.2 Neuronal responsiveness 

impaired by previous lidocaine treatment. 

A. Typical baseline cytoplasmic Ca2+ 
levels in SH-SY5Y cells. 

 

B. Mean levels of Ca2+ under baseline 
conditions (B, 5 mM K+) and after 
exposure to 50 mM K+ (HK) in cells 
exposed to 2% lidocaine, 4% articaine or 
control solution 30 min before 
measurements were made. Baseline 
Ca2+ levels show no significant difference 
between the three treatment groups. 
While depolarization with the high K+ 
solution significantly raised cellular Ca2+ 
levels in the control cells (* p=0.004) and 
those previously exposed to articaine 
(**p=0.031), the response in cells 
previously exposed to 2% lidocaine was 
not significant, Student’s t-test, n=15.  
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Abstract
Mechanical strain in neural tissues can lead to the up-
regulation and release of multiple cytokines including inter-
leukin 6 (IL-6). In the retina, the mechanosensitive release of
ATP can autostimulate P2X7 receptors on both retinal
ganglion cell neurons and optic nerve head astrocytes. Here,
we asked whether the purinergic signaling contributed to the
IL-6 response to increased intraocular pressure (IOP) in vivo,
and stretch or swelling in vitro. Rat and mouse eyes were
exposed to non-ischemic elevations in IOP to 50–60 mmHg
for 4 h. A PCR array was used to screen cytokine changes,
with quantitative (q)PCR used to confirm mRNA elevations
and immunoblots used for protein levels. P2X7 antagonist
Brilliant Blue G (BBG) and agonist (4-benzoyl-benzoyl)-ATP
(BzATP) were injected intravitreally. ELISA was used to
quantify IL-6 release from optic nerve head astrocytes or
retinal ganglion cells. Receptor identity was confirmed phar-
macologically and in P2X7!/! mice, acute elevation of IOP
altered retinal expression of multiple cytokine genes. Eleva-
tion of IL-6 was greatest, with expression of IL1rn, IL24, Tnf,

Csf1, and Lif also increased more than twofold, while
expression of Tnfsf11, Gdf9, and Tnfsf4 were reduced.
qPCR confirmed the rise in IL-6 and extracellular ATP marker
ENTPD1, but not pro-apoptotic genes. Intravitreal injection of
P2X7 receptor antagonist BBG prevented the pressure-
dependent rise in IL-6 mRNA and protein in the rat retina,
while injection of P2X7 receptor agonist BzATP was sufficient
to elevate IL-6 expression. IOP elevation increased IL-6 in
wild-type but not P2X7R knockout mice. Application of
mechanical strain to isolated optic nerve head astrocytes
increased IL-6 levels. This response was mimicked by agonist
BzATP, but blocked by antagonists BBG and A839977.
Stretch or BzATP led to IL-6 release from both astrocytes
and isolated retinal ganglion cells. The mechanosensitive up-
regulation and release of cytokine IL-6 from the retina involves
the P2X7 receptor, with both astrocytes and neurons con-
tributing to the response.
Keywords: astrocytes, cytokines, IOP, mechanical strain,
P2X7, retina.
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Mechanical strain to neurological tissues frequently leads to
both inflammatory and protective responses (Corps et al.
2015). The cytokine interleukin 6 (IL-6) is of particular
relevance as it can mediate pathological or protective actions
in neural systems depending on context (Erta et al. 2012).
IL-6 can lead to neuroinflammation after traumatic brain
injury (TBI) and cerebrospinal fluid levels of IL-6 correlate
with pathological progression after TBI (Yang et al. 2013;
Kumar et al. 2015). However, IL-6 can also induce neuro-
genesis and protect neural cells after damage (Penkowa et al.
2003; Erta et al. 2012). A better understanding of the
pathways linking mechanical strain to IL-6 may help
determine the mechanism for the shift of IL-6 from
detrimental to protective actions.
The purinergic system has been implicated in regulation

of IL-6 in several cell types including fibroblasts (Inoue
et al. 2007), skeletal muscle cells (Bustamante et al. 2014),
macrophages (Hanley et al. 2004), and microglia (Shieh
et al. 2014). Purinergic signaling is particularly sensitive to
mechanical strain, with ATP release accompanying
increases in shear stress, stretch, and swelling (Praetorius
and Leipziger 2009; Corriden and Insel 2010). In neural
tissue, ATP can be released through pannexin hemichannels
in response to mechanical strain (Iglesias et al. 2009; Xia
et al. 2012). The release of ATP and stimulation of the
P2X7 receptor is closely linked with inflammatory
responses in non-neural cell types (Gombault et al. 2012),
leading to inflammasome activation and IL-1b release
(Ferrari et al. 2006; Franceschini et al. 2015). Of particular
relevance is the priming and release of IL-6 in microglial
cells in response to stimulation of the P2X7 receptor (Shieh
et al. 2014).
The retina provides an ideal model with which to examine

the relationship between strain, purines, and IL-6 in neural
tissue. Mechanical strain is experienced by neurons and glial
cells in the retina when the intraocular pressure (IOP) rises
during glaucoma (Sigal and Ethier 2009; Downs 2015).
Retinal ganglion cells are the most susceptible to neu-
ropathological changes and death in response to elevated
IOP, while the focal point for mechanical strain is the optic
nerve head, with optic nerve head astrocytes identified as a
critical intermediary (Hernandez 2000; Downs et al. 2008).
Perturbed purinergic signaling is implicated in response to

glaucoma and elevated IOP. For example, human patients
with both acute and chronic glaucoma have elevated levels
of extracellular ATP in ocular fluids (Zhang et al. 2007; Li
et al. 2011). Primate, rat and mouse models of sustained
IOP elevation show elevated extracellular ATP (Lu et al.
2015). These models also demonstrated increased expression
of the ectoATPase ectonucleoside triphosphate diphospho-
hydrolase-1 (NTPDase1), previously identified to act as a
marker for sustained elevation of extracellular ATP (Lu
et al. 2007). The pressure-dependent ATP release from
retina is inhibited by blockers of pannexin hemichannels and

not linked to lactase dehydrogenase, suggesting it is a
physiological response (Reigada et al. 2008). Both optic
nerve head astrocytes (Beckel et al. 2014) and retinal
ganglion cells (Xia et al. 2012) release ATP through
pannexin hemichannels when subjected to mechanical strain.
This released ATP can autostimulate the P2X7 receptor in
both cell types.
Alterations in cytokine IL-6 have also been recognized as

an important response to elevated IOP. Levels of IL-6 have
been detected in the aqueous humor of patients with chronic
glaucoma (Chen et al. 1999; Zenkel et al. 2010). In the
hypertonic saline model of chronic IOP elevation, IL-6 was
the most up-regulated gene in the optic nerve head tissue
(Johnson et al. 2011), while IL-6 was also elevated following
transient elevation of IOP (Cepurna et al. 2008). Several
observations suggest IL-6 confers protection to retinal
ganglion cells; exposure of isolated ganglion cells to high
hydrostatic pressure in vitro led to apoptotic death that was
attenuated by addition of recombinant IL-6 (Sappington
et al. 2006), and IL-6 increased both the number and the
length of neurites sprouting from isolated retinal ganglion
cells (Chidlow et al. 2012). While these observations suggest
IL-6 has an important role in the response to increased
pressure, the signaling mechanisms linking the mechanical
strain to the IL-6 response are largely unknown.
Given the link between mechanical strain, ATP release,

and P2X7 receptor autostimulation in the retina, the
connection between the purinergic signaling and IL-6
activation, and evidence implicating IL-6 in glaucoma, this
study was based on the hypothesis that mechanosensitive
stimulation of the P2X7 receptor was involved in the IL-6
response to elevated IOP in the retina. To distinguish
between responses as a result of elevated IOP and those
because of cell death, an in vivo model of acute but non-
ischemic IOP elevation was employed as studies indicate it is
generally not lethal to retinal neurons (Abbott et al. 2014;
Crowston et al. 2015). Isolated optic nerve head astrocytes
and retinal ganglion cells were also utilized to investigate the
response in more mechanistic detail in vitro.

Methods

Animals

All experimental protocols were approved by the Institutional
Animal Care and Use Committee of the University of Pennsylvania.
The P2X7 knockout (P2X7!/!) mice originally generated from
Pfizer (B6.129P2-P2rx7tm1Gab/J), along with age-matched 9-
month-old C57Bl6J wild-type controls were obtained from Jackson
Laboratories (Bar Harbor, ME USA). Sprague-Dawley and Long-
Evans rats were obtained from Harlan Laboratories (Fredrick, MD,
USA). Mice and rats of both sexes were utilized.

Model of moderate temporally controlled IOP elevation

Acute elevation of IOP experiments were performed using adult
Sprague-Dawley rats based on the control elevation of IOP
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protocol developed by John Morrison and colleagues (Morrison
et al. 2010, 2014). Adult rats were given a prior dose of 2 mg/kg
meloxicam and then deeply anesthetized with intraperitoneal
injection of ketamine (80 mg/kg) and xylazine (10 mg/kg).
Proparacaine (1%) was added to the ocular surface and one drop
of Tropicamide (1%) was administered into each eye for pupil
dilation. Once anesthesia had taken effect, one eye was cannulated
with a 27 gauge shielded wing needle (Becton-Dickinson, Franklin
Lakes, NJ, USA) inserted into the anterior chamber and connected
to a 20 mL syringe filled with sterile phosphate-buffered saline.
IOP was increased to 50 mmHg by positioning the syringe at the
appropriate height (68 cm H2O) while the contralateral eye without
cannulation served as a normotensive control. During the initial
development of the model, IOP was calibrated with a TonoLab
tonometer (Colonial Medical Supply, Windham, NH, USA) at the
beginning and end of the elevation of the reservoir. As IOP was
found to be remarkably consistent both throughout the 4 h of
elevation and between animals, it was usually just measured at the
end of the 4 h period during experiments to avoid excessive force
on the needle tip inside the eye. The retina was carefully observed
under an operating microscope to ensure that blood flow through
the retinal vessels was maintained. After 4 h IOP elevation,
pressure was returned to normal, the needle was removed and 0.3–
1% gentamycin ointment or erythromycin (0.5%) was applied to
the cornea. Animals were killed 20 h (i.e., 1 day) or 5 days later
and the retina, including the optic nerve head material, was
dissected.

Experiments were also performed on mice using procedures
similar to those used for rat with parallels to those described by
Crowston and colleagues (Crowston et al. 2015). Mice were given a
prior dose of meloxicam and then anesthetized with 1.5% isoflu-
orane. IOP was increased to 50–60 mmHg for 4 h. Mice were killed
immediately after the pressure was returned to baseline, or 20 h
later. The contralateral eye without cannulation served as a
normotensive control.

PCR array

Expression of mRNA for 84 rat interferons, cytokines, and
interleukins in the retina was determined using the Rat Common
Cytokine RT2 ProfilerTM PCR Array (#PARN-021A; SABiosciences
Corp., Frederick, MD, USA). Samples were processed according to
the manufacturer’s protocol. In brief, total RNA was isolated from
the control and pressurized retinas using Trizol and RNeasy mini kit
(Qiagen, Valencia, CA, USA), and RNA was quantified from optical
density and purity determined (Nanodrop; Thermo Scientific, Inc.,
Wilmington, DE, USA). Total RNA (1 lg) was reverse transcribed
using genomic DNA elimination and RT2 First Strand kit (#C-03;
SABiosciences Inc.). Comparison of the relative expression of
cytokine genes were performed using the PCR array on an ABI 7300
Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). Lactate dehydrogenase A, Ribosomal genes L13A, hypoxan-
thine phosphoribosyltransferase 1, and beta actin (Actb) were used as
housekeeping genes and were all stable in retina from eyes with
control and elevated IOP. Data were analyzed with the SABio-
sciences Web-Based PCR Array Data Analysis, where p values were
calculated based on a Student’s t-test of the replicate 2!DDCt values
for each gene in the control group and experimental groups.

Quantitative PCR

RNA was processed as above. Quantitative PCR (qPCR) was carried
out using Power SYBR Green master mix with primer pair
sequences shown in Table 1, using the 7300 Real-Time PCR
System. Data were analyzed using the delta-delta CT approach, with
results expressed as fold change in gene expression in eyes
with elevated IOP versus control samples (2!DDCt) using an
unpaired t-test as described recently (Lu et al. 2015).

Intravitreous injection

Intravitreal injections were performed as described (Hu et al. 2010)
under a dissecting microscope with a micropipette connected to a

Table 1 Primers used for quantitative real time PCR

Gene
Name

GenBank
Accession Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’)

Size
(bp)

Anxa3 NM_012823 ATCCGGAAAGCAATCAAAGG CCATGACATGCTCAAAGTGG 174
Bax NM_017059 TGCCAGCAAACTGGTGCT ACCCAACCACCCTGGTCTT 129
Cfos NM_022197 CCTGTGAGCAGTCAGAGAAGG CGGAAGAGGTGAGGACTGG 194
CyclinD1 NM_171992 CCCACGATTTCATCGAACACT GATCATCCGCAAACATGCA 77
ATF3 NM_012912 CGAAGACTGGAGCAAAATGATG CAGGTTAGCAAAATCCTCAAACAC 123
IL-6 NM_012589 CTCCGCAAGAGACTTCCAG GGTCTGTTGTGGGTGGTATC 119
P2X4R NM_031594 GCAAGACGTTCTTCCACCCTATACA TCCATACGCTCACACTGTATAAGCC 137
P2X5R NM_080780 GACATCCAGGAGACACTTAGCTTCG CAGCAAGAGCTGAACTGCACAAGTC 230
P2X7R NM_019256 TAATGCCTCAGCCTAGTGCCTTTGG CTGCTGCTCCAGAGGGCTCAAGTTC 107
P2Y1R NM_012800 GCAGCTTCCACTGCCAAAGGCTAAT ATTGTAAAGCTTCAAGATCTGGCAG 172
P2Y2R NM_017255 AGCAGCTCAGTCAGGTGTCAGTTCA TCAGGTGGCGTTGCCTTAGATACGA 214
P2Y4R NM_031680 ATAGCTGTCTTGATCCAGTGCTCTA AGCAGCAGGGTTACAATCGATCTCC 215
P2Y6R NM_057124 TAGGTCCTGGAATAGCACTGCAAAT AAAGTCTTGGCAAATGGATGGGAAT 171
A1AR NM_017155 AGCCTGGATGTCTTCCTTGTATGGA TAGACATAGGGACCTCCTTGAGAAC 121
A3AR NM_012896 GAGCTTCTCTCATTCAATTCTGTGG CCTAGGGATCCTTCAACGCAGGTTC 183
GAPDH NM_017008 CCATGGAGAAGGCTGGGG CAAAGTTGTCATGGATGACC 195
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microsyringe (Drummond Scientific Co., Broomall, PA, USA). The
glass pipette filled with drug was passed through the superior nasal
region of sclera into the vitreous cavity at a point approximately
1 mm from the limbus. The total volume injected was 5 lL over a
30 s time period. P2X7 receptor antagonist Brilliant Blue G (BBG,
0.8%) was dissolved in sterile saline and injected 1–3 days before
IOP elevation. To examine the effects of P2X7 stimulation, Long-
Evans rats were injected with either 2 lL of 250 lM P2X7 receptor
agonist BzATP or sterile saline. Rats were killed and the retina
dissected, with total RNA isolated from the retina and processed as
described above.

Immunoblots

Immunoblots were processed as described (Guha et al. 2013). In
brief, whole retinas were washed twice with cold phosphate-
buffered saline and lysed in radioimmunoprecipitation assay buffer
containing 50 mM Tris-HCl, 150 mM NaCl, protease inhibitor
cocktail (Complete; Roche Diagnostics, Mannheim, Germany), 1%
Triton X-100, 0.1% sodium dodecyl sulfate, and 10% glycerol.
Samples were sonicated and cleared by centrifugation (10 000 g)
for 10 min at 4°C, with protein concentrations determined using a
bicinchoninic acid Protein Assay (Pierce, Rockford, IL, USA/
ThermoFisher). Protein was separated using conventional sodium
dodecyl sulfate–polyacrylamide gel electrophoresis, and processed
using standard immunoblot protocols (Lu et al. 2015). Blots were
incubated with a monoclonal antibody to rat IL-6 overnight at 4°C
(1 : 1000; R & D Systems, Minneapolis, MN, USA, # MAB5061),
followed by incubation with anti-mouse IgG conjugated to horse-
radish peroxidase (1 : 5000; Amersham Biosciences Corp., Arling-
ton Heights, IL, USA) at 23!C for 1 h and developed by
chemiluminescence detection (ECL detection system; Amersham
Biosciences Corp.). The ImageQuant LAS 4100 imager and Image
Quant software (Both GE Healthcare Lifesciences, Pittsburgh, PA,
USA) were used to detect and quantify the intensity of the specific
bands. Western blots were performed 3–4 times each.

Optic nerve head astrocytes

Primary rat optic nerve head astrocyte cultures were grown as
described (Beckel et al. 2014) based upon a protocol modified from
Mandal et al. (2009). The optic nerve head tissue proximal to the
sclera in rat pups up to post-natal day 5 was digested for 1 h in 0.25%
trypsin. Cells were grown in medium comprised of Dulbecco’s
minimal essential medium/F12, 10% fetal bovine serum, 1%
penicillin/streptomycin, and 25 ng/mL epidermal growth factor and
used up to passage 5. Cell identification was performed with glial
fibrillary acidic protein immunostaining as described (Beckel et al.
2014). For stretch experiments, astrocytes were seeded on a silicon
substrate (Silastic; Specialty Manufacturing, Saginaw, MI, USA),
bathed in isotonic solution (in mM; 105 NaCl, 5 KCl, 4 NaHEPES, 6
HEPES acid, 1.3 CaCl2, 5 glucose, 5 NaHCO3, 60 mannitol, and 0.25
MgCl2 pH 7.4). Cells were subjected to a 5% equibiaxial strain at
0.3 Hz for 2 min using a specially designed pneumatic piston as
described (Winston et al. 1989; Beckel et al. 2014). Cells were
exposed to 30% hypotonic solution (isotonic solution diluted with
dH2O) for swelling experiments with BBG (Sigma, St Louis, MO,
USA), A839977 (Tocris/BioTechne) or (4-benzoyl-benzoyl)-ATP
(BzATP) (Sigma Corp.) for 4 h at 37°C before RNAwas extracted as
detailed above. Samples of the extracellular media were taken before

and after stretch or BzATP and stored at !80°C. The release of IL-6
from astrocytes was then measured by Rat IL-6 Quantikine@ ELISA
kit (#R6000B;R&DSystems) followingmanufacturer’s instructions,
with data acquired using a 96-well plate reader SpectraMax M5
(Molecular Devices, Palo Alto, CA, USA).

IL-6 release from isolated retinal ganglion cells

Isolation of retinal ganglion cells was performed using the
immunopanning procedure as described (Zhang et al. 2010; Xia
et al. 2012). Isolated retinal ganglion cells were seeded onto 0.1%
poly-L-lysine (Peptides International, Louisville, Kentucky, USA)
and 1 lg/mL laminin coated coverslips or elastic silicone sheeting
in stretch chambers and cultured at 37°C with 5% CO2. Attached
cells were bathed in 750 lL of isotonic solution including 100 lM
of the ectoATPase inhibitor bc methylene ATP, and stretched by
application of 20 mmHg of pressure resulting in a 4.1% deformation
strain (see Xia et al. 2012 for detail). Pressure inside the stretch
chamber was increased to 20 mmHg for 4 min, returned to 0 mmHg
for 1 min and the cycle repeated three times for a total duration of
15 min. Immediately following stretch, a 250 lL sample of the
extracellular solution was collected from the center of the stretch
chamber. Stretch did not induce release of lactose dehydrogenase.
IL-6 levels were determined with the rat antibody cytokine array
following manufacturer’s instructions (R & D Systems), as
described in detail in a recent publication (Lim et al. 2016). In
brief, IL-6 levels were quantified by incubating the membrane in
Streptavidin-horseradish peroxidase followed by chemiluminescent
detection reagents (GE Healthcare). The production of light
corresponding to levels of bound cytokine was determined with
ImageQuant LAS4000 and the intensity of each spot was measured
using ImageQuant TL analysis software (all GE Healthcare). Results
represent four independent trials of stretch or BzATP experiments,
each performed in duplicate.

Data analysis and study design

Data are reported as mean " standard error of the mean. Statistical
analysis used a one-way ANOVA with appropriate post hoc test, or a
paired Student’s t-test when comparing eyes from the same animal.
Results with p < 0.05 were considered significant. When data were
not distributed normally, analysis on ranks was performed. All
statistical analysis was performed using SigmaStat software (Systat
Software Inc., San Jose, CA, USA). The number of experimental
repeats was determined in part by sample size calculations and
power analysis. Data within two standard deviations of the mean
were included unless accompanied by signs of animal distress or
unexpected deviation. Analysis was performed in a masked fashion
where appropriate.

Results

Pressure-dependent elevation in message for IL-6
Initial experiments to screen for cytokine pathways acti-
vated in vivo by transient elevations in IOP were
determined using a cytokine PCR Array. IOP in one eye
of a rat was raised to 50 mmHg for 4 h. Although this is
considerably above the baseline IOP levels of 12.8 mmHg
in the conscious Sprague–Dawley rat (Cabrera et al. 1999),
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this increase did not prevent blood flow through the retinal
vessels. Similar transient rises in IOP have been found to
induce minimal permanent damage (Zhi et al. 2012; Abbott
et al. 2014; Crowston et al. 2015). qPCR analysis indi-
cated no rise in pro-apoptotic genes, although expression of
the early stress-response ATF3 was increased, consistent
with findings in the hypertonic saline model (Guo et al.
2011) (Figure S1).
To obtain an objective measure of the cytokine response to

transient pressure elevation, retinal gene levels were exam-
ined 20 h after IOP returned to baseline using a cytokine
PCR array. Analysis showed nine genes with a > 2-fold
change in expression levels between the pressurized and
control rat retina (Fig. 1a and b). IL-6 showed the greatest
rise, with a 29-fold increase. IL1rn, IL24, Tnf, Csf1, and Lif
were also elevated more than twofold. Three genes, Tnfsf11,
Gdf9, and Tnfsf4, were down-regulated more than twofold.
Given that IL-6 was the gene altered most using the

cytokine gene array, results were confirmed using traditional
qPCR. IL-6 was elevated 16.9-fold in eyes with increased
IOP as compared with contralateral eyes (Fig. 1c). This
substantial increase measured using qPCR strongly sup-
ported the result from the PCR array suggesting that
expression of IL-6 was increased in retinas exposed to
transient elevations in IOP.

Purines and IL-6 expression in vivo
As purinergic signaling has been repeatedly implicated in
retinal cells exposed to elevated IOP (Reigada et al. 2008;
Sanderson et al. 2014), expression of gene ENTPD1 was
examined. ENTPD1 codes for the ectoATDPase NTPDase1,
which was previously identified as a possible marker for
sustained rises in extracellular ATP (Lu et al. 2007).
Increased levels of the gene ENTPD1 and protein for
NTPDase1 were triggered by sustained exposure to ATP.
Levels of NTPDase1 protein were elevated in parallel to
extracellular ATP concentrations in rat, mouse, and primate

models of chronic IOP elevation (Lu et al. 2015). In material
from rat retinas obtained both 1 and 5 days after transient
IOP elevation, ENTPD1 was up-regulated (Fig. 2a), sug-
gesting levels of extracellular ATP were elevated after
moderate IOP elevation.
A considerable body of past work implicates autostim-

ulation of the P2X7 receptor following the mechanosensi-
tive release of ATP in the retina (Zhang et al. 2006;
Reigada et al. 2008; Xia et al. 2012; Beckel et al. 2014),
and recent work demonstrates P2X7 receptor stimulation
leads to IL-3 responses in isolated retinal ganglion cells
(Lim et al. 2016). As stimulation of P2X7 receptors by
ATP has been associated with the up-regulation of IL-6 in
microglia cells (Shieh et al. 2014), the role of the P2X7
receptor in mediating the pressure-dependent rise in IL-6
was examined.
Initial involvement of the P2X7 receptor was determined

using antagonist BBG. While BBG can act at other P2X
receptors (Bo et al. 2003), it is well tolerated in the eye
(Totan et al. 2014). In addition, the blue color of the
compound enabled the retinal distribution of the antagonist to
be more accurately determined (Fig. 2b); material from the
targeted retina was preferentially analyzed. The pressure-
dependent increase in IL-6 mRNA was blocked by intrav-
itreal injection of 0.8% BBG 1–3 days before the IOP rise
(Fig. 2c). Levels were compared to the rise seen in
pressurized eyes injected with only saline, to control for
any injection artifact. Immunoblots confirmed that IL-6
protein was also increased in the retina following a rise in
pressure (Fig. 2d). Changes in protein level paralleled those
of mRNA, with IOP rise leading to an increase in IL-6
protein that was prevented by BBG (Fig. 2e).
To determine whether stimulation of the P2X7 receptor

was sufficient to trigger up-regulation of IL-6, agonist
BzATP was injected intravitreally (2 lL, 250 lM) with
sterile saline injected into the contralateral eye and levels of
IL-6 mRNA present in the retina 24 h later were determined.

Fig. 1 Changes in expression of cytokine genes 24 h after moderate
intraocular pressure (IOP) elevation. Changes in cytokine gene
expression 24 h after IOP was elevated to 50 mm Hg for 4 h (20 h
after pressure returned to baseline). (a) Heat map of fold changes in
gene expression in pressurized eye compared to control. Red
indicates up-regulation, while green symbolizes down-regulation

(b) Layout of 84 genes shown in heat map and fold changes relative
to the control retina. Numbers are mean change in pressurized eye
compared to control in two pairs. Genes were evaluated based on the
criteria of at least a twofold up- or down-regulation compared to control.
(c) Increased expression of IL-6 in pressurized retinas confirmed using
qPCR. N = 9, *p < 0.001.
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Retinal IL-6 expression was increased fourfold by the P2X7
receptor agonist BzATP in the absence of any changes in
IOP (Fig. 2f).
Involvement of purines in the response to elevated IOP

was further probed by examining expression of certain
receptors. Receptor genes P2RX7 and ADORA3, coding for
the adenosine A3 receptor, were elevated in many retinas

examined after 1 day, but considerable variation meant the
rises were not significant (Figure S2). Genes P2RX4 and
P2RY6 for purinergic receptors were increased 1 day, but not
5 days after IOP elevation. While the precise contribution of
these receptors remains to be determined, their increased
expression is consistent for mechanosensitive purinergic
signaling.

Fig. 2 Involvement of ATP and P2X7 receptor in IL-6 elevation in vivo.
(a) Expression of ectoATPase gene ENTPD1 was elevated 1 day after
increase in intraocular pressure (IOP) to 50 mmHg for 4 h (Pressure,
*p = 0.033, N = 10). ENTPD1 remained elevated 5 days after the
procedure (*p = 0.004, N = 8). (b) The distribution of P2X7 antagonist
Brilliant Blue G (BBG) in the retina 1 day after intravitreal injection. The
staining pattern suggests distribution of BBG through the vitreal cavity
to the retina was restricted. A similar staining pattern remained in
retinas examined 6 days after injection. (c) The pressure-dependent
rise in IL-6 mRNA was substantially decreased following injection of
BBG. Data are expressed as relative gene expression in the pressur-
ized versus non-pressurized retina for eyes injected with 0.8% BBG or
saline 1–3 days before the moderate elevation of IOP to 50 mmHg for
4 h. N = 6–9. *p < 0.004 saline pressurized versus non-pressurized;
*p < 0.013 saline pressurized versus BBG pressurized. (d)

Representative immunoblots from whole retina lysates probed for IL-
6 (22 kDa) and housekeeping protein GAPDH (GAP, 37 kDa).
Expression of IL-6 is greater in the eye subject to the moderate IOP
increase (Pr) treated with saline as compared to the contralateral non-
pressurized control eye, but this pressure-dependent increase is
reduced after injection with BBG. (e) Summary of relative protein
expression from experiments illustrated in C quantified with densito-
metry; N = 4–5. *p < 0.001 saline pressurized versus non-pressur-
ized; *p < 0.035 saline pressurized versus BBG pressurized. (f)
P2X7R agonist BzATP was sufficient to increase levels of IL-6 mRNA
in the retina 1 day after intravitreally injection (250 lM, 2 lL per eye),
N = 5, *p = 0.021. (g) In wild-type C57Bl6J mice, transient elevation of
IOP to 60 mmHg for 4 h (Pressure) raised retina levels of IL-6 mRNA.
N = 7, *p < 0.001. (h) In P2X7 knockout mice, the same elevation in
IOP did not significantly increase levels of IL-6. N = 6.
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Pressure-dependent up-regulation of IL-6 absent in P2X7
knockout mice
Further confirmation of the role of the P2X7 receptor in the
pressure-dependent rise in IL-6 was provided with P2X7
knockout mice. Elevating the IOP of wild-type C57Bl6J
mouse eyes to 60 mmHg for 4 h led to a rise in IL-6 levels
analogous to that observed in the rat eye (Fig. 2g). In mice
missing the P2X7 gene, however, this rise in IOP did not
significantly change IL-6 levels (Fig. 2h). This supported the
pharmacological identification, while also demonstrating the
response occurred in multiple species.

IL-6 up-regulation and release from optic nerve head
astrocytes
In vitro experiments from isolated cells were pursued to
enable identification of specific cell types and better control
of pharmacological manipulation. Optic nerve head astro-
cytes undergo multiple changes in response to the mechan-
ical strain in glaucoma (Hernandez 2000). As we have
previously found that stretch of these astrocytes leads to the
release of ATP through pannexin hemichannels and subse-
quent autostimulation of P2X7 receptors (Beckel et al.
2014), the mechanosensitive response of IL-6 in these
astrocytes and the contribution of the P2X7 receptor was
examined.
Isolated rat optic nerve head astrocytes expressed glial

fibrillary acidic protein, confirming the identity of the
cultured cells (Fig. 3a). Astrocytes were plated on a silicone
substrate and subjected to a 5% equilateral strain at 0.3 Hz
for 4 h, followed by a 20 h break before RNA was extracted
to increase parallels to in vivo experiments. Levels of IL-6
mRNA were increased twofold in stretched astrocytes as
compared to controls (Fig. 3b). Unstretched astrocytes
exposed to 50 lM BzATP for 4 h also demonstrated a
twofold rise in IL-6, suggesting the P2X7 receptor was
sufficient to trigger the rise in IL-6 mRNA expression
(Fig. 3c) as found in vivo. An analogous rise in IL-6 was
produced by swelling astrocytes with a 30% hypotonic
solution for 4 h (Fig. 3d); this rise in IL-6 mRNA was
prevented by P2X7 receptor antagonists BBG and A839977
(Fig. 3d).
To confirm the contribution of the P2X7 receptor, the rise

in IL-6 expression in optic nerve head astrocytes isolated
from C57Bl6J mice and P2X7 knockout mice was compared.
Swelling cells from wild-type mice induced a significant
increase in IL-6 expression (Fig. 3e). In contrast, astrocytes
isolated from P2X7!/! mice showed a drop in the IL-6
expression with swelling.

IL-6 released from optic nerve head astrocytes
While the ability of P2X7 receptors to trigger the up-
regulation of IL-6 mRNA in vivo and in vitro implied an
increased involvement of the cytokine, the ability of the
receptor to trigger release of IL-6 was also tested.

Measurement of IL-6 levels in the bath surrounding the
astrocytes using an ELISA assay demonstrated that the
cytokine was released into the bath after stretch (Fig. 3f).
Exposure of astrocytes to agonist BzATP also led to a
substantial release of IL-6 (Fig. 3g). Cytokine release in
many cell types is mediated by increases in intracellular
calcium; for example, the release of IL-6 from spinal cord
astrocytes is calcium dependent (Codeluppi et al. 2014). To
confirm optic nerve head astrocytes experience a rise in
calcium upon swelling, levels were monitored with indica-
tor Fura-2. The rise in calcium was rapid and reversible
(Fig. 3h). To determine whether this response was depen-
dent upon autostimulation of the P2X7 receptor, the ability
of BBG to antagonize this rise was examined. Pre-
treatment of astrocytes with blocker BBG eliminated the
rise in calcium, implicating autostimulation of the P2X7
receptor, and consistent with a role for calcium in the
release.

IL-6 released from isolated retinal ganglion cells
Although the above experiments clearly indicate that
mechanical strain and stimulation of the P2X7 receptor can
lead to release of IL-6 from optic nerve head astrocytes,
immunostaining indicated that retinal ganglion cells
expressed high levels of IL-6 (Fig. 4a). The staining pattern
was particulate, consistent with IL-6 stored in vesicles. As
such, the ability of retinal ganglion cells to release IL-6 was
tested. As ganglion cells in situ are intertwined with various
other cell types, a two-step immunopanning procedure was
used to isolate retinal ganglion cells (Fig. 4b); previous
analysis indicates that > 98% of cells obtained in this way
are ganglion cells (Zhang et al. 2006). The purified cells
were plated on a silicone substrate and, once attached, a 4.1%
deformation strain was applied to stretch the cells for 4 min.
Cells were then returned to baseline for 1 min, with the
stretch cycle repeated two more times. There was a
significant increase in extracellular levels of IL-6 released
into the bath after this stretch period (Fig. 4c). Analogous
trials indicate that stimulation of the P2X7 receptor with
BzATP also released IL-6 from isolated retinal ganglion cells
(Fig. 4d). Attempts to process RNA from these isolated
ganglion cells were unsuccessful, precluding examination of
IL-6 expression. However, application of BzATP led to a
rapid increase in intracellular calcium in isolated retinal
ganglion cells (Fig. 4e); the response was rapid, reversible,
and repeatable.

Discussion

The signaling pathways linking mechanical strain to inflam-
mation play an important role in the cellular response to
stress. This study implicates the P2X7 receptor for extracel-
lular ATP in the mechanosensitive up-regulation of cytokine
IL-6 in the retina. In vivo data demonstrate IL-6 mRNA was
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substantially up-regulated after a transient elevation of IOP in
the rat retina, with the P2X7 receptor antagonist BBG
preventing the up-regulation of both IL-6 mRNA and IL-6
protein in retinal tissue. The transient rise in IOP increased
IL-6 expression in the retina of wild-type mice but not in
P2X7 knockout mice, further implicating the P2X7 receptor
and demonstrating the effect was not species dependent. In
isolated optic nerve head astrocytes, IL-6 expression was

increased by stretch, swelling, and directly by the P2X7
agonist BzATP. The swelling induced rise in IL-6 in
astrocytes was prevented by two different P2X7 antagonists.
In addition, both astrocytes and retinal ganglion cell released
IL-6 in response to agonist BzATP or to mild stretch.
Together, these data identify a role for the P2X7 receptor in
the mechanosensitive IL-6 response of neurons and astro-
cytes in the retina.

Fig. 3 IL-6 response in astrocytes. (a) Cultured rat optic nerve head
astrocytes stained for glial fibrillary acidic protein (green) and DAPI
(blue). Bar = 20 lm. (b) Increased expression of IL-6 mRNA in
stretched astrocytes; cells were subject to a 5% equilateral strain at
0.3 Hz for 4 h, followed by a 20 h break before extraction of RNA.
N = 8–9, *p = 0.011. (c) IL-6 expression was increased in astrocytes
exposed to 50 lM BzATP for 4 h. N = 5, *p = 0.008. (d) Expression of
IL-6 was also increased in cells exposed to moderate swelling induced
by 30% hypotonicity for 4 h. However, this rise in expression was
inhibited by P2X7R antagonists Coomassie Brilliant Blue G (BBG)
(50 lM) or A839977 (A83; 10 lM). Cells were pre-treated with
antagonists in isotonic solution for 1 h before swelling. N = 4
*p < 0.001 Swell versus Control, *p < 0.001 Swell versus swell+BBG,

*p < 0.001 Swell versus swell+A839977. (e) Cell swelling in 30%
hypotonic solution-induced rise in IL-6 mRNA was observed in optic
nerve head astrocytes from C57Bl6J mice (N = 6, *p = 0.006), but
swelling in astrocytes isolated from P2X7!/! mice actually reduced IL-
6 expression (*p = 0.043, N = 6). (f) The concentration of IL-6 in the
bath surrounding astrocytes was higher after exposing cells to stretch
(*p = 0.036, N = 7). (g) Levels of IL-6 in the bath were also increased
after exposure of astrocytes to 50 lM BzATP for 30 min (*p = 0.011,
N = 6, paired t-test for f and g). (h) Swelling of astrocytes by hypotonic
solution rapidly raised intracellular calcium, as indicated by the ratio of
light excited at 340 nm versus 380 nm in cells loaded with indicator
Fura-2. In the presence of 100 lM BBG, no rise in cell calcium was
observed. Symbols represent mean " SEM, N = 16.
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Signaling pathways linking mechanical strain to IL-6
The intracellular signaling pathways linking mechanical
strain to the IL-6 response can be at least partially described

by integrating previous findings with the results of this study
(see also the Graphical Abstract). Increased pressure in the
whole retina, or mechanical strain to either optic nerve head
astrocytes or retinal ganglion cells leads to ATP release
through pannexin hemi-channels (Reigada et al. 2008; Xia
et al. 2012; Beckel et al. 2014). Release from astrocytes is
partially dependent on Rho kinase, consistent with a
mechanosensor-like TRPV4 as in other ocular cells
(Shahidullah et al. 2012; Jo et al. 2015). In both astrocytes
and retinal ganglion cells, the released ATP autostimulated
P2X7 receptors on the same cell type.
This study clearly implicates the P2X7 receptor in the IL-6

response to mechanical strain. The P2X7 antagonist BBG
prevented the rise in IL-6 expression in vivo, while BBG and
a second antagonist A839977 prevented the rise in astro-
cytes. In addition, agonist BzATP emulated the effects of
mechanical strain both in vivo and in vitro. Although BzATP
and BBG can act at other P2 receptors (Bo et al. 2003;
Wildman et al. 2003), A839977 is more selective (Honore
et al. 2009). In addition, the reduced IL-6 response in
P2X7!/! mice in vivo, and in optic nerve head astrocytes
isolated from the P2X7!/! mice, implicated the P2X7
receptor in linking the mechanical strain to the IL-6 response.
The retinal response resembles that in cultured microglia,
where the P2X7 receptor triggers IL-6 mRNA up-regulation
and release of the cytokine (Shieh et al. 2014).
While the use of agonists, antagonists, and knockout mice

together imply the P2X7 receptor makes a substantial
contribution to the mechanosensitive IL-6 response, a
contribution from other P2 receptors cannot be ruled out in
this study, and other P2 receptors have been linked to IL-6
(Shigemoto-Mogami et al. 2001; Inoue et al. 2007; Kawano
et al. 2015). A study of the same P2X7!/! mice used here
found that while most of the peritoneal rise in IL-6
accompanying ATP injection was eliminated in the knockout
mice, the residual response may have reflected action of
additional receptors, with P2Y receptors suggested as a
possible source (Solle et al. 2001). The increased expression
of the P2Y6 receptor in retinas exposed to transient pressure
elevation in Figure S2 is interesting, but as the agonist for
this receptor is UDP, and ATP itself has little affinity,
activation of this receptor by ATP released after elevated
pressure is likely to be complex (Communi et al. 1996;
Satrawaha et al. 2011). It is also not clear whether the
response is direct or reflects a secondary response to IL-1b
release, as IL-1b can lead to up-regulation of IL-6 expression
(Cadman et al. 1994). Experiments are currently underway
to determine whether stimulation of the P2X7 receptor leads
to IL-1b release.
In addition to the up-regulation of IL-6 message and

protein levels, mechanical strain and the P2X7 receptor also
triggered a rapid release of IL-6 from astrocytes and retinal
ganglion cells. The P2X7 receptor is a ligand gated non-
selective cation channel, and its stimulation raises

Fig. 4 IL-6 release from isolated retinal ganglion cells. (a) Retinal
section stained for IL-6 indicating expression of the cytokine in the
ganglion cell layer (GCL). IPL: inner plexiform layer, OPL: outer
plexiform layer. Bar = 50 lm. (b) Retinal ganglion cells isolated with the
two-step immunopanning procedure. The comparison of the phase
contrast image (top) with the fluorescence image (ex 360 nM)
indicates that the cells are labeled with Fluorogold (FG) transported
from the superior colliculus, confirming their ganglion cell identity. Cells
used for cytokine measurements were unlabeled and plated at a much
higher density. (c) Application of a 4.1% deformation strain to stretch
isolated RGCs attached to a silicone substrate increased the level of
IL-6 detected in the bath. N = 8, *p = 0.022. (d) Levels of IL-6 in the
bath surrounding isolated RGCs increased in cells exposed to 50 lM
of P2X7R agonist BzATP. N = 8, *p = 0.006 paired t-test for (c) and
(d). (e) Application of 50 lM BzATP for 15 s led to a repeatable and
reversible rise in intracellular calcium in isolated retinal ganglion cells.
Each bar represents the time of BzATP application.
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intracellular calcium in both astrocytes and retinal ganglion
cells (Xia et al. 2012; Beckel et al. 2014). The vesicular
release of IL-6 from spinal cord is calcium dependent
(Codeluppi et al. 2014), and the time course of the IL-6
release above implies the signaling mechanisms are distinct
from those involved in transcriptional up-regulation. While
the increased expression of IL-6 would provide more IL-6 for
release upon later stimulation, this complex positive feed-
back pathway was not investigated in this study.

Separating mechanical strain from cell death and the P2X7
receptor
The data here indicate that P2X7 receptor was involved in the
increase in IL-6 after a transient non-ischemic elevation in
IOP. We used this model because it was reported to induce
little cell death (Morrison et al. 2010, 2014; Abbott et al.
2014; Crowston et al. 2015). This enabled us to distinguish
between responses resulting from mechanical strain and
those because of cell death; the lack of response in genes
ANAX3, BAX or CCND1, associated with apoptosis or
extreme stress, suggest this distinction was largely achieved.
In a variant of the rat model in which IOP was raised to
50 mmHg for 8 h, there was no substantial retinal ganglion
cell loss or decreases in axon transport (Abbott et al. 2014).
Elevation of mouse IOP to 50 mmHg for 30 min led to a
transient reduction in the photopic negative response
(PhNR), attributed largely to retinal ganglion cell function,
although the number of ganglion cells was not reduced when
examined 7 days later (Chrysostomou and Crowston 2013;
Crowston et al. 2015). Presumably, the maintenance of
retinal blood flow prevents the retinal ganglion cells loss
associated with more ischemic models (Zhi et al. 2012).
Overall this suggests that the robust IL-6 response, and the
stimulation of the P2X7 receptor which precedes it, are
distinct from cell death.

Relevant cell types
Our in vivo experiments identified elevated IL-6 mRNA and
IL-6 protein using material from the entire retina. The optic
nerve head is the focus of the mechanical forces induced
upon elevation of IOP (Downs 2015), and the in vitro
experiments clearly demonstrate a rise in IL-6 expression in
optic nerve head astrocytes, consistent with previous
findings of a large rise in optic nerve head IL-6 in response
to IOP elevation (Johnson et al. 2011). However, the optic
nerve head tissue is a minor component of the retina and it
is likely that other cell types contribute to the rise in IL-6
expression found in the whole tissue. While the restricted
levels of cell material in panned retinal ganglion cells
precluded reliable molecular analysis of IL-6 levels in this
study, the cells are also likely to contribute. The increased
expression of IL-6 1 day after IOP elevation using the laser
photocoagulation model co-localized with amyloid precursor
protein, a marker of fast axonal transport, and suggested the

axonal transport of IL-6 synthesized in retinal ganglion cells
was impeded with increased IOP (Chidlow et al. 2012).
This may relate to a more recent study in which IL-6
increased with age in the proximal optic nerve of DBA
mice, and correlated with the loss of axonal transport
(Wilson et al. 2015). The predicted involvement of micro-
glial cells here is complex; cultured retinal microglia
released IL-6 when subjected to hydrostatic pressure in-
crease (Sappington et al. 2006), while activated microglial
cells were observed in vivo only 1 week after elevation of
IOP but not at earlier time points (Kezic et al. 2013). Future
experiments are needed to understand the role of microglial
cells given their responsiveness to extracellular ATP (Franke
et al. 2007).

Physiological implications
While the results from this study clearly demonstrate a role
for the P2X7 receptor in the up-regulation and release of IL-
6, the physiological implications will depend upon the cell
types involved, the conditions that lead to the response, and
whether the resulting IL-6 mediates protective or detrimental
effects. IL-6 signaling is complex; although IL-6 is tradi-
tionally described as a ‘pro-inflammatory’ cytokine, it can be
both protective and pathological in neural tissues (Spooren
et al. 2011). Expression of IL-6 in cortical astrocytes confers
protection from focal injury in neural tissue (Penkowa et al.
2003). In the retina, several groups have identified protective
actions by IL-6 and suggested it is an early protective
response. The death of retinal ganglion cells following
increased hydrostatic pressure was prevented by IL-6
(Sappington et al. 2006), and IL-6 enhanced neurogenesis
in retinal ganglion cells (Chidlow et al. 2012). If IL-6
represents an early response to protect neurons, then this
study suggests that the mechanosensitive release of ATP
through pannexin hemichannels and autostimulation of P2X7
receptors that lead to the increased IL-6 response may also be
protective, at least in young healthy tissue. This would add to
the increasing recognition of the P2X7 receptor as more than
just a ‘death receptor’ in neural tissues.

Conclusion

In conclusion, this study demonstrates a role for the P2X7
receptor in linking mechanical strain to up-regulation and
release of cytokine IL-6 in the retina. Involvement of the
P2X7 receptor was demonstrated both in vivo and in vitro in
astrocytes and neurons. As IL-6 has many protective effects
in the retina, this study may consequently identify a
beneficial role of the P2X7 receptor in neural tissues. Given
the emerging relationship between cytokines and mechanical
strain in TBI, this study suggests further investigation of the
P2X7 receptor in TBI is warranted.
Portions of this work have appeared in abstract form (Lim

et al. 2011; Lu et al. 2011, 2013).
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Figure S2. Changes in expression of purine genes 1 day and 5 days after CEI 
to 50 mm Hg for 4 hours.

A. Levels of purinergic genes P2RX4 (p=0.017) and P2RY6 (p=0.001) were
elevated 1 day after the moderate elevation of IOP
B. Neither remained elevated 5 days after the procedure .
N=9-10 for retinas examined 1 day after IOP elevation and 6-8 for 5 days.
It should ne noted that the response  of the P2Y6 receptor may be compli-
cated by the presence of multiple transcription sites.



 

 

137 

 

REFERENCES 

 

Abbott, C.J., Choe, T.E., Lusardi, T.A., Burgoyne, C.F., Wang, L., and Fortune, 
B. (2014). Evaluation of retinal nerve fiber layer thickness and axonal transport 1 
and 2 weeks after 8 hours of acute intraocular pressure elevation in rats. Invest 
Ophthalmol Vis Sci 55, 674-687. 

Agostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., and 
Tschopp, J. (2004). NALP3 forms an IL-1beta-processing inflammasome with 
increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319-
325. 

Albalawi, F., Lu, W., Lim, J., and Mitchell, C.H. (2016). The Role of P2X7R in 
Priming the NLRP3 Inflammasome after Mechanical Strain. The FASEB Journal 
30, 745.744. 

Arulkumaran, N., Unwin, R.J., and Tam, F.W. (2011). A potential therapeutic role 
for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory 
diseases. Expert Opin Investig Drugs 20, 897-915. 

Balaratnasingam, C., Morgan, W.H., Bass, L., Matich, G., Cringle, S.J., and Yu, 
D.Y. (2007). Axonal transport and cytoskeletal changes in the laminar regions 
after elevated intraocular pressure. Invest Ophthalmol Vis Sci 48, 3632-3644. 

Bao, L., Locovei, S., and Dahl, G. (2004). Pannexin membrane channels are 
mechanosensitive conduits for ATP. FEBS Lett 572, 65-68. 

Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, 
D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. (2009). 
Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors 
license NLRP3 inflammasome activation by regulating NLRP3 expression. 
Journal of immunology (Baltimore, Md: 1950) 183, 787-791. 

Beckel, J.M., Argall, A.J., Lim, J.C., Xia, J., Lu, W., Coffey, E.E., Macarak, E.J., 
Shahidullah, M., Delamere, N.A., Zode, G.S., et al. (2014). Mechanosensitive 
release of adenosine 5'-triphosphate through pannexin channels and 
mechanosensitive upregulation of pannexin channels in optic nerve head 



 

 

138 

astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62, 
1486-1501. 

Bellezza, A.J., Rintalan, C.J., Thompson, H.W., Downs, J.C., Hart, R.T., and 
Burgoyne, C.F. (2003). Anterior scleral canal geometry in pressurised (IOP 10) 
and non-pressurised (IOP 0) normal monkey eyes. The British journal of 
ophthalmology 87, 1284-1290. 

Benveniste, E.N., Sparacio, S.M., Norris, J.G., Grenett, H.E., and Fuller, G.M. 
(1990). Induction and regulation of interleukin-6 gene expression in rat 
astrocytes. J Neuroimmunol 30, 201-212. 

Bernier, L.P. (2012). Purinergic regulation of inflammasome activation after 
central nervous system injury. J Gen Physiol 140, 571-575. 

Bezbradica, J.S., Coll, R.C., and Schroder, K. (2017). Sterile signals generate 
weaker and delayed macrophage NLRP3 inflammasome responses relative to 
microbial signals. Cell Mol Immunol 14, 118-126. 

Bo, X., Jiang, L.H., Wilson, H.L., Kim, M., Burnstock, G., Surprenant, A., and 
North, R.A. (2003). Pharmacological and biophysical properties of the human 
P2X5 receptor. Molecular pharmacology 63, 1407-1416. 

Boaru, S.G., Borkham-Kamphorst, E., Van de Leur, E., Lehnen, E., Liedtke, C., 
and Weiskirchen, R. (2015). NLRP3 inflammasome expression is driven by NF-
kappaB in cultured hepatocytes. Biochem Biophys Res Commun 458, 700-706. 

Boassa, D., Ambrosi, C., Qiu, F., Dahl, G., Gaietta, G., and Sosinsky, G. (2007). 
Pannexin1 channels contain a glycosylation site that targets the hexamer to the 
plasma membrane. J Biol Chem 282, 31733-31743. 

Boassa, D., Qiu, F., Dahl, G., and Sosinsky, G. (2008). Trafficking dynamics of 
glycosylated pannexin 1 proteins. Cell communication & adhesion 15, 119-132. 

Brandt, R.G., Anderson, P.F., McDonald, N.J., Sohn, W., and Peters, M.C. 
(2011). The pulpal anesthetic efficacy of articaine versus lidocaine in dentistry: a 
meta-analysis. J Am Dent Assoc 142, 493-504. 

Broz, P. (2015). Inflammasome assembly: The wheels are turning. Cell Res 25, 
1277-1278. 

Broz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V.M., and Monack, 
D.M. (2010). Redundant roles for inflammasome receptors NLRP3 and NLRC4 in 
host defense against Salmonella. J Exp Med 207, 1745-1755. 



 

 

139 

Bruzzone, R., Barbe, M.T., Jakob, N.J., and Monyer, H. (2005). Pharmacological 
properties of homomeric and heteromeric pannexin hemichannels expressed in 
Xenopus oocytes. J Neurochem 92, 1033-1043. 

Burgoyne, C.F. (2011). A biomechanical paradigm for axonal insult within the 
optic nerve head in aging and glaucoma. Experimental eye research 93, 120-
132. 

Burgoyne, C.F., Downs, J.C., Bellezza, A.J., Suh, J.K., and Hart, R.T. (2005). 
The optic nerve head as a biomechanical structure: a new paradigm for 
understanding the role of IOP-related stress and strain in the pathophysiology of 
glaucomatous optic nerve head damage. Prog Retin Eye Res 24, 39-73. 

Burgoyne, C.F., Quigley, H.A., Thompson, H.W., Vitale, S., and Varma, R. 
(1995). Early changes in optic disc compliance and surface position in 
experimental glaucoma. Ophthalmology 102, 1800-1809. 

Burnstock, G. (1972). Purinergic nerves. Pharmacol Rev 24, 509-581. 

Burnstock, G. (1980). Purinergic nerves and receptors. Prog Biochem Pharmacol 
16, 141-154. 

Burnstock, G. (1999). Release of vasoactive substances from endothelial cells by 
shear stress and purinergic mechanosensory transduction. J Anat 194 ( Pt 3), 
335-342. 

Burnstock, G. (2004). Introduction: P2 receptors. Current topics in medicinal 
chemistry 4, 793-803. 

Burnstock, G. (2009). Purinergic cotransmission. Exp Physiol 94, 20-24. 

Burnstock, G. (2012). Discovery of purinergic signalling, the initial resistance and 
current explosion of interest. Br J Pharmacol 167, 238-255. 

Burnstock, G. (2014). Purinergic signalling: from discovery to current 
developments. Exp Physiol 99, 16-34. 

Burnstock, G., and Kennedy, C. (2011). P2X receptors in health and disease. 
Adv Pharmacol 61, 333-372. 

Bustamante, M., Fernandez-Verdejo, R., Jaimovich, E., and Buvinic, S. (2014). 
Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by 
activating Ca(2+) signals and an IL-6 autocrine loop. American journal of 
physiology Endocrinology and metabolism 306, E869-882. 



 

 

140 

Cabrera, C.L., Wagner, L.A., Schork, M.A., Bohr, D.F., and Cohan, B.E. (1999). 
Intraocular pressure measurement in the conscious rat. Acta Ophthalmol Scand 
77, 33-36. 

Cadman, E.D., Naugles, D.D., and Lee, C.M. (1994). cAMP is not involved in 
interleukin-1-induced interleukin-6 release from human astrocytoma cells. 
Neurosci Lett 178, 251-254. 

Casson, R.J., Chidlow, G., Wood, J.P., Crowston, J.G., and Goldberg, I. (2012). 
Definition of glaucoma: clinical and experimental concepts. Clinical & 
experimental ophthalmology 40, 341-349. 

Catterall, W.A., Goldin, A.L., and Waxman, S.G. (2005). International Union of 
Pharmacology. XLVII. Nomenclature and structure-function relationships of 
voltage-gated sodium channels. Pharmacol Rev 57, 397-409. 

Cepurna, W.O., Guo, Y., Doser, T.A., Dyck, J.A., Johnson, E.C., and Morrison, 
J.C. (2008). An interval of controlled intraocular pressure elevation alters optic 
nerve head gene expression without compromising retinal perfusion. Invest 
Ophthalmol Vis Sci 49, ARVO E-Abstract 3695. 

Chalaris, A., Rabe, B., Paliga, K., Lange, H., Laskay, T., Fielding, C.A., Jones, 
S.A., Rose-John, S., and Scheller, J. (2007). Apoptosis is a natural stimulus of 
IL6R shedding and contributes to the proinflammatory trans-signaling function of 
neutrophils. Blood 110, 1748-1755. 

Chalfie, M. (2009). Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 
10, 44-52. 

Chekeni, F.B., Elliott, M.R., Sandilos, J.K., Walk, S.F., Kinchen, J.M., 
Lazarowski, E.R., Armstrong, A.J., Penuela, S., Laird, D.W., Salvesen, G.S., et 
al. (2010). Pannexin 1 channels mediate 'find-me' signal release and membrane 
permeability during apoptosis. Nature 467, 863-867. 

Chen, K.H., Wu, C.C., Roy, S., Lee, S.M., and Liu, J.H. (1999). Increased 
interleukin-6 in aqueous humor of neovascular glaucoma. Investigative 
ophthalmology & visual science 40, 2627-2632. 

Chi, W., Chen, H., Li, F., Zhu, Y., Yin, W., and Zhuo, Y. (2015). HMGB1 
promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-kappaB 
pathway in acute glaucoma. J Neuroinflammation 12, 137. 

Chi, W., Li, F., Chen, H., Wang, Y., Zhu, Y., Yang, X., Zhu, J., Wu, F., Ouyang, 
H., Ge, J., et al. (2014). Caspase-8 promotes NLRP1/NLRP3 inflammasome 



 

 

141 

activation and IL-1beta production in acute glaucoma. Proceedings of the 
National Academy of Sciences of the United States of America 111, 11181-
11186. 

Chidlow, G., Wood, J.P., Ebneter, A., and Casson, R.J. (2012). Interleukin-6 is 
an efficacious marker of axonal transport disruption during experimental 
glaucoma and stimulates neuritogenesis in cultured retinal ganglion cells. 
Neurobiology of disease 48, 568-581. 

Choi, A.J., and Ryter, S.W. (2014). Inflammasomes: molecular regulation and 
implications for metabolic and cognitive diseases. Mol Cells 37, 441-448. 

Choi, H.J., Sun, D., and Jakobs, T.C. (2015). Astrocytes in the optic nerve head 
express putative mechanosensitive channels. Mol Vis 21, 749-766. 

Choi, S.S., Lee, H.J., Lim, I., Satoh, J., and Kim, S.U. (2014). Human astrocytes: 
secretome profiles of cytokines and chemokines. PLoS One 9, e92325. 

Chrysostomou, V., and Crowston, J.G. (2013). The photopic negative response 
of the mouse electroretinogram: reduction by acute elevation of intraocular 
pressure. Investigative ophthalmology & visual science 54, 4691-4697. 

Codeluppi, S., Fernandez-Zafra, T., Sandor, K., Kjell, J., Liu, Q., Abrams, M., 
Olson, L., Gray, N.S., Svensson, C.I., and Uhlen, P. (2014). Interleukin-6 
secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium 
signaling. PloS one 9, e92649. 

Cogswell, J.P., Godlevski, M.M., Wisely, G.B., Clay, W.C., Leesnitzer, L.M., 
Ways, J.P., and Gray, J.G. (1994). NF-kappa B regulates IL-1 beta transcription 
through a consensus NF-kappa B binding site and a nonconsensus CRE-like 
site. Journal of immunology 153, 712-723. 

Communi, D., Parmentier, M., and Boeynaems, J.M. (1996). Cloning, functional 
expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys 
Res Commun 222, 303-308. 

Corps, K.N., Roth, T.L., and McGavern, D.B. (2015). Inflammation and 
neuroprotection in traumatic brain injury. JAMA Neurol 72, 355-362. 

Corriden, R., and Insel, P.A. (2010). Basal release of ATP: an autocrine-
paracrine mechanism for cell regulation. Science signaling 3, re1. 



 

 

142 

Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, 
A.E., and Patapoutian, A. (2010). Piezo1 and Piezo2 are essential components 
of distinct mechanically activated cation channels. Science 330, 55-60. 

Cotrina, M.L., Lin, J.H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., 
Kang, J., Naus, C.C., and Nedergaard, M. (1998). Connexins regulate calcium 
signaling by controlling ATP release. Proceedings of the National Academy of 
Sciences of the United States of America 95, 15735-15740. 

Crowston, J.G., Kong, Y.X., Trounce, I.A., Dang, T.M., Fahy, E.T., Bui, B.V., 
Morrison, J.C., and Chrysostomou, V. (2015). An acute intraocular pressure 
challenge to assess retinal ganglion cell injury and recovery in the mouse. 
Experimental eye research 141, 3-8. 

Dahl, G. (2015). ATP release through pannexon channels. Philos Trans R Soc 
Lond B Biol Sci 370. 

Dahl, G., Qiu, F., and Wang, J. (2013). The bizarre pharmacology of the ATP 
release channel pannexin1. Neuropharmacology 75, 583-593. 

Deguine, J., and Barton, G.M. (2014). MyD88: a central player in innate immune 
signaling. F1000Prime Rep 6, 97. 

Dinarello, C.A. (2002). The IL-1 family and inflammatory diseases. Clin Exp 
Rheumatol 20, S1-13. 

Dinarello, C.A. (2007). Interleukin-18 and the pathogenesis of inflammatory 
diseases. Seminars in nephrology 27, 98-114. 

Dinarello, C.A. (2011). A clinical perspective of IL-1beta as the gatekeeper of 
inflammation. European journal of immunology 41, 1203-1217. 

Donnelly-Roberts, D.L., Namovic, M.T., Han, P., and Jarvis, M.F. (2009a). 
Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, 
rat and human P2X7 receptors. Br J Pharmacol 157, 1203-1214. 

Donnelly-Roberts, D.L., Namovic, M.T., Han, P., and Jarvis, M.F. (2009b). 
Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, 
rat and human P2X7 receptors. British Journal of Pharmacology 157, 1203-1214. 

Downs, J.C. (2015). Optic nerve head biomechanics in aging and disease. 
Experimental eye research 133, 19-29. 



 

 

143 

Downs, J.C., Roberts, M.D., and Burgoyne, C.F. (2008). Mechanical environment 
of the optic nerve head in glaucoma. Optom Vis Sci 85, 425-435. 

Drenth, J.P., and Waxman, S.G. (2007). Mutations in sodium-channel gene 
SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 117, 
3603-3609. 

Erta, M., Quintana, A., and Hidalgo, J. (2012). Interleukin-6, a major cytokine in 
the central nervous system. International journal of biological sciences 8, 1254-
1266. 

Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R.M., Curti, A., Idzko, M., Panther, 
E., and Di Virgilio, F. (2006). The P2X7 receptor: a key player in IL-1 processing 
and release. J Immunol 176, 3877-3883. 

Finco, T.S., and Baldwin, A.S. (1995). Mechanistic aspects of NF-κB regulation: 
The emerging role of phosphorylation and proteolysis. Immunity 3, 263-272. 

Flexcell (2011). BioFlex Culture Plate. 

Franceschini, A., Capece, M., Chiozzi, P., Falzoni, S., Sanz, J.M., Sarti, A.C., 
Bonora, M., Pinton, P., and Di Virgilio, F. (2015). The P2X7 receptor directly 
interacts with the NLRP3 inflammasome scaffold protein. FASEB journal : official 
publication of the Federation of American Societies for Experimental Biology 29, 
2450-2461. 

Franke, H., Schepper, C., Illes, P., and Krügel, U. (2007). Involvement of P2X 
and P2Y receptors in microglial activation in vivo. Purinergic signalling 3, 435-
445. 

Freeman, L.C., and Ting, J.P. (2016). The pathogenic role of the inflammasome 
in neurodegenerative diseases. J Neurochem 136 Suppl 1, 29-38. 

Garisto, G.A., Gaffen, A.S., Lawrence, H.P., Tenenbaum, H.C., and Haas, D.A. 
(2010). Occurrence of paresthesia after dental local anesthetic administration in 
the United States. J Am Dent Assoc 141, 836-844. 

Gianchecchi, E., and Fierabracci, A. (2015). Gene/environment interactions in 
the pathogenesis of autoimmunity: new insights on the role of Toll-like receptors. 
Autoimmun Rev 14, 971-983. 

Gombault, A., Baron, L., and Couillin, I. (2012). ATP release and purinergic 
signaling in NLRP3 inflammasome activation. Frontiers in immunology 3, 414. 



 

 

144 

Goodson, J.M., and Moore, P.A. (1983). Life-threatening reactions after 
pedodontic sedation: an assessment of narcotic, local anesthetic, and antiemetic 
drug interaction. J Am Dent Assoc 107, 239-245. 

Grygorczyk, R., Furuya, K., and Sokabe, M. (2013). Imaging and characterization 
of stretch-induced ATP release from alveolar A549 cells. The Journal of 
physiology 591, 1195-1215. 

Guha, S., Baltazar, G.C., Coffey, E.E., Tu, L.A., Lim, J.C., Beckel, J.M., Patel, S., 
Eysteinsson, T., Lu, W., O'Brien-Jenkins, A., et al. (2013). Lysosomal 
alkalinization, lipid oxidation, and reduced phagosome clearance triggered by 
activation of the P2X7 receptor. FASEB journal : official publication of the 
Federation of American Societies for Experimental Biology 27, 4500-4509  

Guo, H., Callaway, J.B., and Ting, J.P. (2015). Inflammasomes: mechanism of 
action, role in disease, and therapeutics. Nat Med 21, 677-687. 

Guo, Y., Johnson, E.C., Cepurna, W.O., Dyck, J.A., Doser, T., and Morrison, J.C. 
(2011). Early gene expression changes in the retinal ganglion cell layer of a rat 
glaucoma model. Investigative ophthalmology & visual science 52, 1460-1473. 

Guptarak, J., Wanchoo, S., Durham-Lee, J., Wu, Y., Zivadinovic, D., Paulucci-
Holthauzen, A., and Nesic, O. (2013). Inhibition of IL-6 signaling: A novel 
therapeutic approach to treating spinal cord injury pain. Pain 154, 1115-1128. 

Haas, D.A., and Lennon, D. (1995). A 21 year retrospective study of reports of 
paresthesia following local anesthetic administration. J Can Dent Assoc 61, 319-
320, 323-316, 329-330. 

Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., 
Fitzgerald, K.A., Latz, E., Moore, K.J., and Golenbock, D.T. (2008). The NALP3 
inflammasome is involved in the innate immune response to amyloid-beta. 
Nature immunology 9, 857-865. 

Hamilton, N.B., and Attwell, D. (2010). Do astrocytes really exocytose 
neurotransmitters? Nat Rev Neurosci 11, 227-238. 

Hanley, P.J., Musset, B., Renigunta, V., Limberg, S.H., Dalpke, A.H., Sus, R., 
Heeg, K.M., Preisig-Muller, R., and Daut, J. (2004). Extracellular ATP induces 
oscillations of intracellular Ca2+ and membrane potential and promotes 
transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A 101, 9479-9484. 

Hansson, G.K., and Klareskog, L. (2011). Pulling down the plug on 
atherosclerosis: cooling down the inflammasome. Nat Med 17, 790-791. 



 

 

145 

Hattori, M., and Gouaux, E. (2012). Molecular mechanism of ATP binding and ion 
channel activation in P2X receptors. Nature 485, 207-212. 

Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Muller-Newen, G., and 
Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its 
regulation. Biochem J 374, 1-20. 

Heppner, F.L., Ransohoff, R.M., and Becher, B. (2015). Immune attack: the role 
of inflammation in Alzheimer disease. Nat Rev Neurosci 16, 358-372. 

Hernandez, M.R. (2000). The optic nerve head in glaucoma: role of astrocytes in 
tissue remodeling. Prog Retin Eye Res 19, 297-321. 

Hernandez, M.R., Miao, H., and Lukas, T. (2008). Astrocytes in glaucomatous 
optic neuropathy. Progress in brain research 173, 353-373. 

Hersh, E.V., Helpin, M.L., and Evans, O.B. (1991). Local anesthetic mortality: 
report of case. ASDC journal of dentistry for children 58, 489-491. 

Hillerup, S., and Jensen, R. (2006). Nerve injury caused by mandibular block 
analgesia. International journal of oral and maxillofacial surgery 35, 437-443. 

Ho, K.W., Lambert, W.S., and Calkins, D.J. (2014). Activation of the TRPV1 
cation channel contributes to stress-induced astrocyte migration. Glia 62, 1435-
1451. 

Honore, P., Donnelly-Roberts, D., Namovic, M., Zhong, C., Wade, C., Chandran, 
P., Zhu, C., Carroll, W., Perez-Medrano, A., Iwakura, Y., et al. (2009). The 
antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is 
lost in IL-1alphabeta knockout mice. Behav Brain Res 204, 77-81. 

Honore, P., Donnelly-Roberts, D., Namovic, M.T., Hsieh, G., Zhu, C.Z., Mikusa, 
J.P., Hernandez, G., Zhong, C., Gauvin, D.M., Chandran, P., et al. (2006). A-
740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-
dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 
receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J 
Pharmacol Exp Ther 319, 1376-1385. 

Hu, H., Lu, W., Zhang, M., Zhang, X., Argall, A.J., Patel, S., Lee, G.E., Kim, Y.C., 
Jacobson, K.A., Laties, A.M., et al. (2010). Stimulation of the P2X7 receptor kills 
rat retinal ganglion cells in vivo. Experimental eye research 91, 425-432 PMCID 
2941978. 



 

 

146 

Iglesias, R., Dahl, G., Qiu, F., Spray, D.C., and Scemes, E. (2009). Pannexin 1: 
the molecular substrate of astrocyte "hemichannels". J Neurosci 29, 7092-7097. 

Inoue, K., Hosoi, J., and Denda, M. (2007). Extracellular ATP has stimulatory 
effects on the expression and release of IL-6 via purinergic receptors in normal 
human epidermal keratinocytes. The Journal of investigative dermatology 127, 
362-371. 

Ivashkiv, L.B., and Hu, X. (2003). The JAK/STAT pathway in rheumatoid arthritis: 
pathogenic or protective? Arthritis Rheum 48, 2092-2096. 

Jiang, L.H., Baldwin, J.M., Roger, S., and Baldwin, S.A. (2013). Insights into the 
Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and 
Contributions in Diseases, Revealed by Structural Modeling and Single 
Nucleotide Polymorphisms. Front Pharmacol 4, 55. 

Jimenez-Dalmaroni, M.J., Gerswhin, M.E., and Adamopoulos, I.E. (2016). The 
critical role of toll-like receptors--From microbial recognition to autoimmunity: A 
comprehensive review. Autoimmun Rev 15, 1-8. 

Jo, A.O., Ryskamp, D.A., Phuong, T.T., Verkman, A.S., Yarishkin, O., MacAulay, 
N., and Krizaj, D. (2015). TRPV4 and AQP4 Channels Synergistically Regulate 
Cell Volume and Calcium Homeostasis in Retinal Muller Glia. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 35, 13525-
13537. 

Johansson, J.O. (1988). Inhibition and recovery of retrograde axoplasmic 
transport in rat optic nerve during and after elevated IOP in vivo. Experimental 
eye research 46, 223-227. 

Johnson, E.C., Doser, T.A., Cepurna, W.O., Dyck, J.A., Jia, L., Guo, Y., Lambert, 
W.S., and Morrison, J.C. (2011). Cell proliferation and interleukin-6-type cytokine 
signaling are implicated by gene expression responses in early optic nerve head 
injury in rat glaucoma. Invest Ophthalmol Vis Sci 52, 504-518. 

Johnson, E.C., and Morrison, J.C. (2009). Friend or foe? Resolving the impact of 
glial responses in glaucoma. J Glaucoma 18, 341-353. 

Juliana, C., Fernandes-Alnemri, T., Kang, S., Farias, A., Qin, F., and Alnemri, 
E.S. (2012). Non-transcriptional priming and deubiquitination regulate NLRP3 
inflammasome activation. J Biol Chem 287, 36617-36622. 



 

 

147 

Kanjanamekanant, K., Luckprom, P., and Pavasant, P. (2014). P2X7 receptor-
Pannexin1 interaction mediates stress-induced interleukin-1 beta expression in 
human periodontal ligament cells. J Periodontal Res 49, 595-602. 

Karmakar, M., Katsnelson, M., Malak, H.A., Greene, N.G., Howell, S.J., Hise, 
A.G., Camilli, A., Kadioglu, A., Dubyak, G.R., and Pearlman, E. (2015). 
Neutrophil IL-1beta processing induced by pneumolysin is mediated by the 
NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ 
efflux. In Journal of immunology, pp. 1763-1775. 

Karmakar, M., Katsnelson, M.A., Dubyak, G.R., and Pearlman, E. (2016). 
Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1beta 
secretion in response to ATP. Nature communications 7, 10555. 

Katsnelson, M.A., Rucker, L.G., Russo, H.M., and Dubyak, G.R. (2015). K+ efflux 
agonists induce NLRP3 inflammasome activation independently of Ca2+ 
signaling. Journal of immunology 194, 3937-3952. 

Kaushik, D.K., Gupta, M., Kumawat, K.L., and Basu, A. (2012). NLRP3 
inflammasome: key mediator of neuroinflammation in murine Japanese 
encephalitis. PLoS One 7, e32270. 

Kawano, A., Kadomatsu, R., Ono, M., Kojima, S., Tsukimoto, M., and Sakamoto, 
H. (2015). Autocrine Regulation of UVA-Induced IL-6 Production via Release of 
ATP and Activation of P2Y Receptors. PloS one 10, e0127919. 

Kezic, J.M., Chrysostomou, V., Trounce, I.A., McMenamin, P.G., and Crowston, 
J.G. (2013). Effect of anterior chamber cannulation and acute IOP elevation on 
retinal macrophages in the adult mouse. Investigative ophthalmology & visual 
science 54, 3028-3036. 

Korcok, J., Raimundo, L.N., Ke, H.Z., Sims, S.M., and Dixon, S.J. (2004). 
Extracellular nucleotides act through P2X7 receptors to activate NF-kappa B in 
osteoclasts. J Bone Min Res 19, 642-651. 

Kumar, G., Kalita, J., and Misra, U.K. (2009). Raised intracranial pressure in 
acute viral encephalitis. Clin Neurol Neurosurg 111, 399-406. 

Kumar, R.G., Diamond, M.L., Boles, J.A., Berger, R.P., Tisherman, S.A., 
Kochanek, P.M., and Wagner, A.K. (2015). Acute CSF interleukin-6 trajectories 
after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain, 
behavior, and immunity 45, 253-262. 



 

 

148 

Lamkanfi, M., and Dixit, V.M. (2012). Inflammasomes and their roles in health 
and disease. Annu Rev Cell Dev Biol 28, 137-161. 

Lau, A., Arundine, M., Sun, H.S., Jones, M., and Tymianski, M. (2006). Inhibition 
of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J 
Neurosci 26, 11540-11553. 

Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in inflammation. 
Cold Spring Harb Perspect Biol 1, a001651. 

Lazarowski, E.R., Boucher, R.C., and Harden, T.K. (2003). Mechanisms of 
release of nucleotides and integration of their action as P2X- and P2Y-receptor 
activating molecules. Mol Pharmacol 64, 785-795. 

Le Guen, M., Grassin-Delyle, S., Naline, E., Buenestado, A., Brollo, M., 
Longchampt, E., Kleinmann, P., Devillier, P., and Faisy, C. (2016). The impact of 
low-frequency, low-force cyclic stretching of human bronchi on airway 
responsiveness. Respir Res 17, 151. 

Lee, J.K., Kim, S.H., Lewis, E.C., Azam, T., Reznikov, L.L., and Dinarello, C.A. 
(2004). Differences in signaling pathways by IL-1beta and IL-18. Proceedings of 
the National Academy of Sciences of the United States of America 101, 8815-
8820. 

Leonard, W.J., and O'Shea, J.J. (1998). Jaks and STATs: biological implications. 
Annu Rev Immunol 16, 293-322. 

Li, A., Zhang, X., Zheng, D., Ge, J., Laties, A.M., and Mitchell, C.H. (2011). 
Sustained elevation of extracellular ATP in aqueous humor from humans with 
primary chronic angle-closure glaucoma. Experimental eye research 93, 528-533 
PMID:21745471 PMC23374644. 

Liddelow, S.A., and Barres, B.A. (2017). Reactive Astrocytes: Production, 
Function, and Therapeutic Potential. Immunity 46, 957-967. 

Lilienbaum, A., and Israel, A. (2003). From calcium to NF-kappa B signaling 
pathways in neurons. Mol Cell Biol 23, 2680-2698. 

Lim, J.C., Lu, W., Beckel, J.M., and Mitchell, C.H. (2016). Neuronal Release of 
Cytokine IL-3 Triggered by Mechanosensitive Autostimulation of the P2X7 
Receptor Is Neuroprotective. Front Cell Neurosci 10, 270. 



 

 

149 

Lindhe, J., and Svanberg, G. (1974). Influence of trauma from occlusion on 
progression of experimental periodontitis in the beagle dog. J Clin Periodontol 1, 
3-14. 

Liu, H.D., Li, W., Chen, Z.R., Hu, Y.C., Zhang, D.D., Shen, W., Zhou, M.L., Zhu, 
L., and Hang, C.H. (2013). Expression of the NLRP3 inflammasome in cerebral 
cortex after traumatic brain injury in a rat model. Neurochemical research 38, 
2072-2083. 

Liu, H.T., Toychiev, A.H., Takahashi, N., Sabirov, R.Z., and Okada, Y. (2008). 
Maxi-anion channel as a candidate pathway for osmosensitive ATP release from 
mouse astrocytes in primary culture. Cell Res 18, 558-565. 

Liu, J., Li, Q., Liu, S., Gao, J., Qin, W., Song, Y., and Jin, Z. (2017). Periodontal 
Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to 
Static Mechanical Strain. Stem Cells Int 2017, 1380851. 

Liu, Y., Xiao, Y., and Li, Z. (2011). P2X7 receptor positively regulates MyD88-
dependent NF-kappaB activation. Cytokine 55, 229-236. 

Lohman, A.W., and Isakson, B.E. (2014). Differentiating connexin hemichannels 
and pannexin channels in cellular ATP release. FEBS Lett 588, 1379-1388. 

Lu, W., Albalawi, F., Lim, J.C., Beckel, J.M., and Mitchell, C.H. (2017). The P2X7 
receptor links mechanical strain to cytokine IL-6 upregulation and release in 
neurons and astrocytes. J Neurochem. 

Lu, W., Beckel, J., Lim, J., Zode, G., Sheffield, V., Laties, A., and Mitchell, C. 
(2013). Elevation of IOP triggers responses from cytokines IL-6 and IL-1{beta}; 
involvement of both optic nerve head astrocytes and retinal ganglion cells. Invest 
Ophthalmol Vis Sci 54, 784-. 

Lu, W., Hu, H., Sevigny, J., Gabelt, B.T., Kaufman, P.L., Johnson, E.C., 
Morrison, J.C., Zode, G.S., Sheffield, V.C., Zhang, X., et al. (2015). Rat, mouse, 
and primate models of chronic glaucoma show sustained elevation of 
extracellular ATP and altered purinergic signaling in the posterior eye. Invest 
Ophthalmol Vis Sci 56, 3075-3083. 

Lu, W., Reigada, D., Sevigny, J., and Mitchell, C.H. (2007). Stimulation of the 
P2Y1 receptor up-regulates nucleoside-triphosphate diphosphohydrolase-1 in 
human retinal pigment epithelial cells. The Journal of pharmacology and 
experimental therapeutics 323, 157-164. 



 

 

150 

Lye-Barthel, M., Sun, D., and Jakobs, T.C. (2013). Morphology of astrocytes in a 
glaucomatous optic nerve. Invest Ophthalmol Vis Sci 54, 909-917. 

Malamed, S.F., Gagnon, S., and Leblanc, D. (2001). Articaine hydrochloride: a 
study of the safety of a new amide local anesthetic. J Am Dent Assoc 132, 177-
185. 

Malet, A., Faure, M.O., Deletage, N., Pereira, B., Haas, J., and Lambert, G. 
(2015). The comparative cytotoxic effects of different local anesthetics on a 
human neuroblastoma cell line. Anesthesia and analgesia 120, 589-596. 

Man, S.M., and Kanneganti, T.D. (2015). Regulation of inflammasome activation. 
Immunol Rev 265, 6-21. 

Mandal, A., Shahidullah, M., Delamere, N.A., and Teran, M.A. (2009). Elevated 
hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve 
head astrocytes. American journal of physiologyCell physiology 297, C111-120. 

Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-
Girma, M., Lee, W.P., Weinrauch, Y., Monack, D.M., and Dixit, V.M. (2006). 
Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 
440, 228-232. 

Martinon, F. (2008). Detection of immune danger signals by NALP3. J Leukoc 
Biol 83, 507-511. 

Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular 
platform triggering activation of inflammatory caspases and processing of proIL-
beta. Molecular cell 10, 417-426. 

Martinon, F., Holler, N., Richard, C., and Tschopp, J. (2000). Activation of a pro-
apoptotic amplification loop through inhibition of NF-kappaB-dependent survival 
signals by caspase-mediated inactivation of RIP. FEBS Lett 468, 134-136. 

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 
428-435. 

Mitchell, C.H. (2001). Release of ATP by a human retinal pigment epithelial cell 
line: potential for autocrine stimulation through subretinal space. J Physiol 534, 
193-202. 

Mitchell, C.H., Albalawi, F., Lim, J., and Lu, W.N. (2016). Priming of the NLRP3 
inflammasome in optic nerve head astrocytes by mechanical strain and 



 

 

151 

stimulation of the P2X7 receptor. Investigative Ophthalmology & Visual Science 
57, 2. 

Mitchell, C.H., Albalawi, F., and Lu, W. (2017). Increased IOP primes the NLRP3 
inflammasome and increases IL-1β levels. Investigative Ophthalmology & Visual 
Science 58, 851 Abstract. 

Mitchell, C.H., Lu, W., Hu, H., Zhang, X., Reigada, D., and Zhang, M. (2009). The 
P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced 
damage and protection by a shifting purinergic balance. Purinergic Signal 5, 241-
249  

Moore, P.A., and Hersh, E.V. (2010). Local anesthetics: pharmacology and 
toxicity. Dental clinics of North America 54, 587-599. 

Morgan, J.E. (2000). Optic nerve head structure in glaucoma: astrocytes as 
mediators of axonal damage. Eye (Lond) 14 ( Pt 3B), 437-444. 

Morrison, J.C., Cepurna, W.O., Doser, T.A., Dyck, J.A., and Johnson, E.C. 
(2010). A short interval of controlled elevation of IOP (CEI) reproduces early 
chronic glaucoma model optic nerve head (ONH) gene expression responses. 
Investigative ophthalmology & visual science 51, 5216. ARVO E-Abstract. 

Morrison, J.C., Cepurna, W.O., Tehrani, S., Choe, T.E., Jayaram, H., Lozano, 
D.C., Fortune, B., and Johnson, E.C. (2016). A Period of Controlled Elevation of 
IOP (CEI) Produces the Specific Gene Expression Responses and Focal Injury 
Pattern of Experimental Rat Glaucoma. Invest Ophthalmol Vis Sci 57, 6700-
6711. 

Morrison, J.C., Cepurna Ying Guo, W.O., and Johnson, E.C. (2011). 
Pathophysiology of human glaucomatous optic nerve damage: insights from 
rodent models of glaucoma. Experimental eye research 93, 156-164. 

Morrison, J.C., Choe, T.E., Cepurna, W.O., and Johnson, E.C. (2014). Optic 
nerve head (ONH) gene expression responses to elevated intraocular pressure 
(IOP), anesthesia and anterior chamber cannulation in the CEI (Controlled 
Elevation of IOP) model of IOP-induced optic nerve injury. Investigative 
ophthalmology & visual science 55, 2402. ARVO E-Abstract. 

Nedergaard, M., Ransom, B., and Goldman, S.A. (2003). New roles for 
astrocytes: redefining the functional architecture of the brain. Trends in 
neurosciences 26, 523-530. 



 

 

152 

Panchin, Y., Kelmanson, I., Matz, M., Lukyanov, K., Usman, N., and Lukyanov, 
S. (2000). A ubiquitous family of putative gap junction molecules. Current 
biology : CB 10, R473-474. 

Patel, M.N., Carroll, R.G., Galvan-Pena, S., Mills, E.L., Olden, R., Triantafilou, 
M., Wolf, A.I., Bryant, C.E., Triantafilou, K., and Masters, S.L. (2017). 
Inflammasome Priming in Sterile Inflammatory Disease. Trends Mol Med 23, 
165-180. 

Pedlar, J. (2003). Prolonged paraesthesia. Br Dent J 195, 119. 

Pelegrin, P., and Surprenant, A. (2006). Pannexin-1 mediates large pore 
formation and interleukin-1beta release by the ATP-gated P2X7 receptor. The 
EMBO journal 25, 5071-5082. 

Pelegrin, P., and Surprenant, A. (2007). Pannexin-1 couples to maitotoxin- and 
nigericin-induced interleukin-1beta release through a dye uptake-independent 
pathway. J Biol Chem 282, 2386-2394. 

Penkowa, M., Giralt, M., Lago, N., Camats, J., Carrasco, J., Hernandez, J., 
Molinero, A., Campbell, I.L., and Hidalgo, J. (2003). Astrocyte-targeted 
expression of IL-6 protects the CNS against a focal brain injury. Exp Neurol 181, 
130-148. 

Penuela, S., Gehi, R., and Laird, D.W. (2013). The biochemistry and function of 
pannexin channels. Biochim Biophys Acta 1828, 15-22. 

Perregaux, D., and Gabel, C.A. (1994). Interleukin-1 beta maturation and release 
in response to ATP and nigericin. Evidence that potassium depletion mediated by 
these agents is a necessary and common feature of their activity. J Biol Chem 
269, 15195-15203. 

Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. 
(2007). Activation of the NALP3 inflammasome is triggered by low intracellular 
potassium concentration. Cell death and differentiation 14, 1583-1589. 

Plantinga, T.S., Joosten, L.A., and Netea, M.G. (2013). Assessment of 
inflammasome activation in primary human immune cells. Methods in molecular 
biology 1040, 29-39. 

Pogrel, M.A. (2007). Permanent nerve damage from inferior alveolar nerve 
blocks--an update to include articaine. Journal of the California Dental 
Association 35, 271-273. 



 

 

153 

Poornima, V., Madhupriya, M., Kootar, S., Sujatha, G., Kumar, A., and Bera, A.K. 
(2012). P2X7 receptor-pannexin 1 hemichannel association: effect of 
extracellular calcium on membrane permeabilization. J Mol Neurosci 46, 585-
594. 

Praetorius, H.A., and Leipziger, J. (2009). ATP release from non-excitable cells. 
Purinergic signalling 5, 433-446. 

Qiu, F., Wang, J., Spray, D.C., Scemes, E., and Dahl, G. (2011). Two non-
vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Lett 
585, 3430-3435. 

Quigley, H.A., and Addicks, E.M. (1980). Chronic experimental glaucoma in 
primates. I. Production of elevated intraocular pressure by anterior chamber 
injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci 19, 126-
136. 

Ransford, G.A., Fregien, N., Qiu, F., Dahl, G., Conner, G.E., and Salathe, M. 
(2009). Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir 
Cell Mol Biol 41, 525-534. 

Rathinam, V.A., Vanaja, S.K., and Fitzgerald, K.A. (2012). Regulation of 
inflammasome signaling. Nature immunology 13, 333-342. 

Rego, D., Kumar, A., Nilchi, L., Wright, K., Huang, S., and Kozlowski, M. (2011). 
IL-6 production is positively regulated by two distinct Src homology domain 2-
containing tyrosine phosphatase-1 (SHP-1)-dependent CCAAT/enhancer-binding 
protein beta and NF-kappa B Pathways J Immunol 186, 5443-5456. 

Reigada, D., Lu, W., Zhang, M., and Mitchell, C.H. (2008). Elevated pressure 
triggers a physiological release of ATP from the retina: Possible role for pannexin 
hemichannels. Neuroscience 157, 396-404 PMID:18822352 PMC12692262  

Reigada, D., Lu, W., Zhang, X., Friedman, C., Pendrak, K., McGlinn, A., Stone, 
R.A., Laties, A.M., and Mitchell, C.H. (2005). Degradation of extracellular ATP by 
the retinal pigment epithelium. American journal of physiology Cell physiology 
289, C617-624. 

Resnikoff, S., Pascolini, D., Etya'ale, D., Kocur, I., Pararajasegaram, R., 
Pokharel, G.P., and Mariotti, S.P. (2004). Global data on visual impairment in the 
year 2002. Bulletin of the World Health Organization 82, 844-851. 



 

 

154 

Rhee, S.H. (2011). Basic and translational understandings of microbial 
recognition by toll-like receptors in the intestine. J Neurogastroenterol Motil 17, 
28-34. 

Ringheim, G.E., Burgher, K.L., and Heroux, J.A. (1995). Interleukin-6 mRNA 
expression by cortical neurons in culture: evidence for neuronal sources of 
interleukin-6 production in the brain. J Neuroimmunol 63, 113-123. 

Sanderson, J., Dartt, D.A., Trinkaus-Randall, V., Pintor, J., Civan, M.M., 
Delamere, N.A., Fletcher, E.L., Salt, T.E., Grosche, A., and Mitchell, C.H. (2014). 
Purines in the eye: recent evidence for the physiological and pathological role of 
purines in the RPE, retinal neurons, astrocytes, Muller cells, lens, trabecular 
meshwork, cornea and lacrimal gland. Experimental eye research 127, 270-279. 

Sappington, R.M., and Calkins, D.J. (2006). Pressure-induced regulation of IL-6 
in retinal glial cells: involvement of the ubiquitin/proteasome pathway and 
NFkappaB. Investigative ophthalmology & visual science 47, 3860-3869. 

Sappington, R.M., Chan, M., and Calkins, D.J. (2006). Interleukin-6 protects 
retinal ganglion cells from pressure-induced death. Invest Ophthalmol Vis Sci 47, 
2932-2942. 

Satrawaha, S., Wongkhantee, S., Pavasant, P., and Sumrejkanchanakij, P. 
(2011). Pressure induces interleukin-6 expression via the P2Y6 receptor in 
human dental pulp cells. Arch Oral Biol 56, 1230-1237. 

Scemes, E., Spray, D.C., and Meda, P. (2009). Connexins, pannexins, innexins: 
novel roles of "hemi-channels". Pflugers Archiv : European journal of physiology 
457, 1207-1226. 

Scheller, J., Garbers, C., and Rose-John, S. (2014). Interleukin-6: from basic 
biology to selective blockade of pro-inflammatory activities. Seminars in 
immunology 26, 2-12. 

Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W. (2015). The ImageJ 
ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev 82, 
518-529. 

Schroder, K., Sagulenko, V., Zamoshnikova, A., Richards, A.A., Cridland, J.A., 
Irvine, K.M., Stacey, K.J., and Sweet, M.J. (2012). Acute lipopolysaccharide 
priming boosts inflammasome activation independently of inflammasome sensor 
induction. Immunobiology 217, 1325-1329. 



 

 

155 

Seminario-Vidal, L., Okada, S.F., Sesma, J.I., Kreda, S.M., van Heusden, C.A., 
Zhu, Y., Jones, L.C., O'Neal, W.K., Penuela, S., Laird, D.W., et al. (2011). Rho 
signaling regulates pannexin 1-mediated ATP release from airway epithelia. J 
Biol Chem 286, 26277-26286. 

Shahidullah, M., Mandal, A., and Delamere, N.A. (2012). TRPV4 in porcine lens 
epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase 
activity. American journal of physiology Cell physiology 302, C1751-1761. 

Shieh, C.H., Heinrich, A., Serchov, T., van Calker, D., and Biber, K. (2014). 
P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-
alpha in cultured mouse microglia. Glia 62, 592-607. 

Shigemoto-Mogami, Y., Koizumi, S., Tsuda, M., Ohsawa, K., Kohsaka, S., and 
Inoue, K. (2001). Mechanisms underlying extracellular ATP-evoked interleukin-6 
release in mouse microglial cell line, MG-5. Journal of neurochemistry 78, 1339-
1349. 

Sigal, I.A., and Ethier, C.R. (2009). Biomechanics of the optic nerve head. 
Experimental eye research 88, 799-807. 

Silinsky, E.M. (1975). On the association between transmitter secretion and the 
release of adenine nucleotides from mammalian motor nerve terminals. J Physiol 
247, 145-162. 

Silverman, W., Locovei, S., and Dahl, G. (2008). Probenecid, a gout remedy, 
inhibits pannexin 1 channels. American journal of physiology Cell physiology 295, 
C761-767. 

Silverman, W.R., de Rivero Vaccari, J.P., Locovei, S., Qiu, F., Carlsson, S.K., 
Scemes, E., Keane, R.W., and Dahl, G. (2009). The pannexin 1 channel 
activates the inflammasome in neurons and astrocytes. J Biol Chem 284, 18143-
18151. 

Snoeck, M. (2012). Articaine: a review of its use for local and regional 
anesthesia. Local and regional anesthesia 5, 23-33. 

Sofroniew, M.V. (2009). Molecular dissection of reactive astrogliosis and glial 
scar formation. Trends in neurosciences 32, 638-647. 

Solle, M., Labasi, J., Perregaux, D.G., Stam, E., Petrushova, N., Koller, B.H., 
Griffiths, R.J., and Gabel, C.A. (2001). Altered cytokine production in mice 
lacking P2X(7) receptors. The Journal of biological chemistry 276, 125-132. 



 

 

156 

Sperlagh, B., and Illes, P. (2014). P2X7 receptor: an emerging target in central 
nervous system diseases. Trends Pharmacol Sci 35, 537-547. 

Sperlagh, B., Vizi, E.S., Wirkner, K., and Illes, P. (2006). P2X7 receptors in the 
nervous system. Progress in neurobiology 78, 327-346. 

Spooren, A., Kolmus, K., Laureys, G., Clinckers, R., De Keyser, J., Haegeman, 
G., and Gerlo, S. (2011). Interleukin-6, a mental cytokine. Brain Res Rev 67, 
157-183. 

Stutz, A., Golenbock, D.T., and Latz, E. (2009). Inflammasomes: too big to miss. 
J Clin Invest 119, 3502-3511. 

Suadicani, S.O., Iglesias, R., Wang, J., Dahl, G., Spray, D.C., and Scemes, E. 
(2012). ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. 
Glia 60, 1106-1116. 

Surprenant, A., and North, R.A. (2009). Signaling at purinergic P2X receptors. 
Annual review of physiology 71, 333-359. 

Takeda, K., and Akira, S. (2004). Microbial recognition by Toll-like receptors. J 
Dermatol Sci 34, 73-82. 

Tamai, M., Kobayashi, N., Shimada, K., Oka, N., Takahashi, M., Tanuma, A., 
Tanemoto, T., Namba, H., Saito, Y., Wada, Y., et al. (2017). Increased 
interleukin-1beta and basic fibroblast growth factor levels in the cerebrospinal 
fluid during human herpesvirus-6B (HHV-6B) encephalitis. Biochem Biophys Res 
Commun 486, 706-711. 

Taruno, A., Vingtdeux, V., Ohmoto, M., Ma, Z., Dvoryanchikov, G., Li, A., Adrien, 
L., Zhao, H., Leung, S., Abernethy, M., et al. (2013). CALHM1 ion channel 
mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 
495, 223-226. 

Tehrani, S., Davis, L., Cepurna, W.O., Choe, T.E., Lozano, D.C., Monfared, A., 
Cooper, L., Cheng, J., Johnson, E.C., and Morrison, J.C. (2016). Astrocyte 
Structural and Molecular Response to Elevated Intraocular Pressure Occurs 
Rapidly and Precedes Axonal Tubulin Rearrangement within the Optic Nerve 
Head in a Rat Model. PLoS One 11, e0167364. 

Tehrani, S., Johnson, E.C., Cepurna, W.O., and Morrison, J.C. (2014). Astrocyte 
processes label for filamentous actin and reorient early within the optic nerve 
head in a rat glaucoma model. Invest Ophthalmol Vis Sci 55, 6945-6952. 



 

 

157 

Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., 
Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al. 
(1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta 
processing in monocytes. Nature 356, 768-774. 

Thundyil, J., and Lim, K.L. (2015). DAMPs and neurodegeneration. Ageing Res 
Rev 24, 17-28. 

Totan, Y., Guler, E., and Dervisogullari, M.S. (2014). Brilliant Blue G assisted 
epiretinal membrane surgery. Scientific reports 4, 3956. 

Tsakiri, N., Kimber, I., Rothwell, N.J., and Pinteaux, E. (2008). Mechanisms of 
interleukin-6 synthesis and release induced by interleukin-1 and cell 
depolarisation in neurones. Mol Cell Neurosci 37, 110-118. 

Tsukimoto, M., Maehata, M., Harada, H., Ikari, A., Takagi, K., and Degawa, M. 
(2006). P2X7 receptor-dependent cell death is modulated during murine T cell 
maturation and mediated by dual signaling pathways. Journal of immunology 
(Baltimore, Md: 1950) 177, 2842-2850. 

Valentin, J.L., Lopez, D., Hernandez, R., Mijangos, C., and Saalwachter, K. 
(2009). Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton 
Low-Field NMR Spectroscopy. Macromolecules 42, 263-272. 

van Aubel, R.A., Smeets, P.H., Peters, J.G., Bindels, R.J., and Russel, F.G. 
(2002). The MRP4/ABCC4 gene encodes a novel apical organic anion 
transporter in human kidney proximal tubules: putative efflux pump for urinary 
cAMP and cGMP. J Am Soc Nephrol 13, 595-603. 

Vetter, I., Mozar, C.A., Durek, T., Wingerd, J.S., Alewood, P.F., Christie, M.J., 
and Lewis, R.J. (2012). Characterisation of Na(v) types endogenously expressed 
in human SH-SY5Y neuroblastoma cells. Biochemical pharmacology 83, 1562-
1571. 

Virginio, C., MacKenzie, A., North, R.A., and Surprenant, A. (1999). Kinetics of 
cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 
receptor. The Journal of physiology 519 Pt 2, 335-346. 

Walsh, J.G., Muruve, D.A., and Power, C. (2014). Inflammasomes in the CNS. 
Nat Rev Neurosci 15, 84-97. 

Weber, A., Wasiliew, P., and Kracht, M. (2010). Interleukin-1 (IL-1) pathway. Sci 
Signal 3, cm1. 



 

 

158 

Wildman, S.S., Unwin, R.J., and King, B.F. (2003). Extended pharmacological 
profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular 
H+ and Zn2+ ions. British journal of pharmacology 140, 1177-1186. 

Wilson, G.N., Inman, D.M., Dengler Crish, C.M., Smith, M.A., and Crish, S.D. 
(2015). Early pro-inflammatory cytokine elevations in the DBA/2J mouse model 
of glaucoma. Journal of neuroinflammation 12, 176. 

Winston, F.K., Macarak, E.J., Gorfien, S.F., and Thibault, L.E. (1989). A system 
to reproduce and quantify the biomechanical environment of the cell. J Appl 
Physiol 67, 397-405. 

Xia, J., Lim, J.C., Lu, W., Beckel, J.M., Macarak, E.J., Laties, A.M., and Mitchell, 
C.H. (2012a). Neurons respond directly to mechanical deformation with 
pannexin-mediated ATP release and autostimulation of P2X7 receptors. The 
Journal of physiology 590, 2285-2304. 

Xia, J., Lim, J.C., Lu, W., Beckel, J.M., Macarak, E.J., Laties, A.M., and Mitchell, 
C.H. (2012b). Neurons respond directly to mechanical deformation with 
pannexin-mediated ATP release and autostimulation of P2X7 receptors. The 
Journal of physiology 590, 2285-2304. 

Xiao, L., Xu, H.G., Wang, H., Liu, P., Liu, C., Shen, X., Zhang, T., and Xu, Y.M. 
(2016). Intermittent Cyclic Mechanical Tension Promotes Degeneration of 
Endplate Cartilage via the Nuclear Factor-kappaB Signaling Pathway: an in Vivo 
Study. Orthop Surg 8, 393-399. 

Yang, H., Downs, J.C., and Burgoyne, C.F. (2009). Physiologic intereye 
differences in monkey optic nerve head architecture and their relation to changes 
in early experimental glaucoma. Invest Ophthalmol Vis Sci 50, 224-234. 

Yang, S.H., Gangidine, M., Pritts, T.A., Goodman, M.D., and Lentsch, A.B. 
(2013). Interleukin 6 mediates neuroinflammation and motor coordination deficits 
after mild traumatic brain injury and brief hypoxia in mice. Shock 40, 471-475. 

Yilmaz, O., and Lee, K.L. (2015). The inflammasome and danger molecule 
signaling: at the crossroads of inflammation and pathogen persistence in the oral 
cavity. Periodontol 2000 69, 83-95. 

Yoneda, S., Tanihara, H., Kido, N., Honda, Y., Goto, W., Hara, H., and Miyawaki, 
N. (2001). Interleukin-1beta mediates ischemic injury in the rat retina. 
Experimental eye research 73, 661-667. 



 

 

159 

Yu, J., Sheung, N., Soliman, E.M., Spirli, C., and Dranoff, J.A. (2009). 
Transcriptional regulation of IL-6 in bile duct epithelia by extracellular ATP. 
American journal of physiology Gastrointestinal and liver physiology 296, G563-
571. 

Zenkel, M., Lewczuk, P., Junemann, A., Kruse, F.E., Naumann, G.O., and 
Schlotzer-Schrehardt, U. (2010). Proinflammatory cytokines are involved in the 
initiation of the abnormal matrix process in pseudoexfoliation 
syndrome/glaucoma. Am J Pathol 176, 2868-2879. 

Zhang, M., Hu, H., Zhang, X., Lu, W., Lim, J., Eysteinsson, T., Jacobson, K.A., 
Laties, A.M., and Mitchell, C.H. (2010). The A3 adenosine receptor attenuates 
the calcium rise triggered by NMDA receptors in retinal ganglion cells. 
Neurochem Int 56, 35-41. 

Zhang, X., Li, A., Ge, J., Reigada, D., Laties, A.M., and Mitchell, C.H. (2007). 
Acute increase of intraocular pressure releases ATP into the anterior chamber. 
Experimental eye research 85, 637-643. 

Zhang, X., Zhang, M., Laties, A.M., and Mitchell, C.H. (2005). Stimulation of 
P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest Ophthalmol 
Vis Sci 46, 2183-2191. 

Zhang, X., Zhang, M., Laties, A.M., and Mitchell, C.H. (2006). Balance of purines 
may determine life or death of retinal ganglion cells as A3 adenosine receptors 
prevent loss following P2X7 receptor stimulation. Journal of neurochemistry 98, 
566-575  

Zhi, Z., Cepurna, W.O., Johnson, E.C., Morrison, J.C., and Wang, R.K. (2012). 
Impact of intraocular pressure on changes of blood flow in the retina, choroid, 
and optic nerve head in rats investigated by optical microangiography. 
Biomedical optics express 3, 2220-2233. 

Zode, G.S., Kuehn, M.H., Nishimura, D.Y., Searby, C.C., Mohan, K., Grozdanic, 
S.D., Bugge, K., Anderson, M.G., Clark, A.F., Stone, E.M., et al. (2011). 
Reduction of ER stress via a chemical chaperone prevents disease phenotypes 
in a mouse model of primary open angle glaucoma. J Clin Invest 121, 3542-
3553. 

Zode, G.S., Kuehn, M.H., Nishimura, D.Y., Searby, C.C., Mohan, K., Grozdanic, 
S.D., Bugge, K., Anderson, M.G., Clark, A.F., Stone, E.M., et al. (2015). 
Reduction of ER stress via a chemical chaperone prevents disease phenotypes 
in a mouse model of primary open angle glaucoma. J Clin Invest 125, 3303. 



 

 

160 

 


	University of Pennsylvania
	ScholarlyCommons
	8-4-2017

	P2X7 Receptor Primes IL-1β and the NLRP3 Inflammasome in Astrocytes Subjected to Mechanical Strain
	Farraj S. Albalawi
	Wennan Lu
	Jonarhan M. Beckel
	Jason C. Lim
	Stuart A. McCaughey
	See next page for additional authors
	Recommended Citation

	P2X7 Receptor Primes IL-1β and the NLRP3 Inflammasome in Astrocytes Subjected to Mechanical Strain
	Abstract
	Degree Type
	Degree Name
	Primary Advisor
	Keywords
	Subject Categories
	Author


	ACKNOWLEDGMENT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	LIST OF ABBREVIATIONS
	Chapter 1 : Introduction
	Inflammasome structure:
	Inflammasome priming and activation:
	Mechanical strain and inflammation:
	Purinergic signaling:
	Hypothesis

	Chapter 2 : The P2X7 receptor primes IL-1β and the NLRP3 inflammasome in astrocytes exposed to mechanical strain
	Introduction
	Materials and Methods:
	Results:
	Priming of inflammasome genes after elevation of IOP
	Inflammasome priming at protein level
	P2X7 receptor is involved in IL-1β priming in vivo
	Mechanical strain primes inflammasome genes in isolated astrocytes
	ATP release through pannexin channels required for mechanosensitive priming of IL-1β in astrocytes
	P2X7 receptor necessary and sufficient for mechanosensitive priming of IL-1β in vitro
	NFκB is involved in priming of NLRP3 and IL-1β after mechanical strain

	Discussion:
	Figures
	Figure 2.4 Increased expression of inflammasome-associated genes in rat retina after controlled elevation of IOP (CEI).
	Figure 2.5 Elevation of IL-1β at the protein level
	Figure 2.6 Involvement of the P2X7 receptor in inflammasome priming in vivo
	Figure 2.7 Mechanical strain primes IL-1β in optic nerve head astrocytes
	Figure 2.8 ATP release through pannexin channels required for mechano-sensitive priming of IL-1β in astrocytes
	Figure 2.9 P2X7 receptor involved in priming of IL-1β in astrocytes
	Figure 2.10 NFκB is involved in inflammasome priming after mechanical strain
	Figure 2.11 P2X7 receptor is involved in NFκB activation after mechanical strain.

	Supplemental figures
	Figure S 2.1.
	Figure S 2.2
	Figure S 2.3
	Figure S 2.4


	Figure 2.1 Model of moderate temporally-controlled intraocular pressure elevation (CEI):
	Figure 2.2 Stretching wells of the Flexcell FX-5000 Tension System
	Figure 2.3 ATP measurements
	Chapter 3 : The P2X7 receptor links mechanical strain to cytokine IL-6 upregulation and release in neurons and astrocytes
	Abstract:
	Graphical abstract
	Introduction
	Methods
	Results
	Pressure-dependent elevation in message for IL-6
	Purines and IL-6 expression in vivo
	Pressure-dependent upregulation of IL-6 absent in P2X7 knockout mice:
	IL-6 upregulation and release from optic nerve head astrocytes:
	IL-6 released from optic nerve head astrocytes
	IL-6 released from isolated retinal ganglion cells:

	Discussion
	Signaling pathways linking mechanical strain to IL-6
	Separating mechanical strain from cell death and the P2X7 receptor
	Relevant cell types
	Physiological implications:

	Figures
	Figure 3.1 Involvement of ATP and P2X7 receptor in IL-6 elevation in vivo
	Figure 3.2 IL-6 response in astrocytes


	Chapter 4 :
	Discussion and Future Directions
	Glaucoma model:
	The role of purinergic signaling:
	Contribution of astrocytes:
	Gene expression:
	Sensing the stress:

	Chapter 5 : Appendix
	Effects of Lidocaine and Articaine on Neuronal Survival and Recovery
	Abstract:
	Introduction:
	Methods:
	Results:
	Discussion:
	Figures
	Figure 5.1 Effects of lidocaine and articaine on viability of SH-SY5Y cells
	Figure 5.2 Neuronal responsiveness impaired by previous lidocaine treatment.


	The P2X7 receptor links mechanical strain to cytokine IL-6 upregulation and release in neurons and astrocytes
	REFERENCES

