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NOD1/NOD2 Upregulation in Fusobacterium Nucleatum Induced
NETosis

Abstract
Subgingival plaque contains a variety of pathogenic bacteria that infect the periodontal tissues.
Polymorphonuclear neutrophils (PMNs) utilize a number of antimicrobial strategies including phagocytosis
and neutrophil extracellular traps (NETs) to defend this microbial challenge. The signaling pathways and
specific molecular mechanisms involved in NET formation are still unresolved. Our preliminary data
demonstrate that F. nucleatum as a model organism for in vitro experiments in activating neutrophils and
inducing NETosis via the upregulation of neutrophil’s Nucleotide oligomerization domain 1 (NOD1) and
NOD2 receptors. However, the pathway by which NOD1 and NOD2 affect NETosis has not been addressed.
Our goal was to elucidate the role of NOD1 and NOD2 receptors in the NET formation after stimulation with
F. nucleatum.

Materials and Methods: We utilized human neutrophils and the HL60 cell line to study NETosis. NETs were
induced via PMA and F. nucleatum; then fluorescence was measured in 3 hours interval using Sytox Orange
assay. Protein arginine deiminase 4 (PAD4), Myeloperoxidase (MPO), and Neutrophil elastase (NE) play a
critical role in NETosis, and their loss leads to a deficiency in NET formation. To delineate the mechanism of
NOD related NET formation we inhibited both NOD1 and NOD2 receptors in neutrophils using their
specific inhibitors followed by stimulation with their specific ligands and PMA. Then we analyzed PAD4
expression using Real-time PCR and a PAD4 enzymatic activity assay. MPO and NE were detected via ELISA
to detect their activity in treated neutrophils.

Results: NETosis was successfully induced with F. nucleatum in a time depended manner. When neutrophils
were treated with NOD1 and NOD2 inhibitors followed by their ligands, we observed a significant down-
regulation of PAD4 gene expression with NOD1 inhibition at transcriptional and translational levels tested by
real-time PCR and PAD4 activity assay, respectively. Furthermore, supernatant ELISA of treated neutrophils
showed a significant increase and decrease of MPO and NE when treated with NOD1/NOD2 ligands and
inhibitors, respectively.

Conclusions: Our data illustrate an important pathway linking the NOD1 and NOD2 receptors with
NETosis when stimulated with F. nucleatum, a key pathogen in periodontal plaque formation. Both NOD1
and NOD2 activity affect MPO and NE production in neutrophils. The downstream events following NOD1
induced NETOsis is related to PAD4 activation.

The consequence of NET formation in periodontitis remains unclear. This will be the first study to elucidate
the role of NOD-like receptors in NETosis and downstream signaling network. Activating or inhibiting NET
formation in the gingiva may have therapeutic potential.
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ABSTRACT 

Subgingival plaque contains a variety of pathogenic bacteria that infect the 

periodontal tissues. Polymorphonuclear neutrophils (PMNs) utilize a number of 

antimicrobial strategies including phagocytosis and neutrophil extracellular traps 

(NETs) to defend this microbial challenge. The signaling pathways and specific 

molecular mechanisms involved in NET formation are still unresolved. Our 

preliminary data demonstrate that F. nucleatum as a model organism for in vitro 

experiments in activating neutrophils and inducing NETosis via the upregulation of 

neutrophil’s Nucleotide oligomerization domain 1 (NOD1) and NOD2 receptors. 

However, the pathway by which NOD1 and NOD2 affect NETosis has not been 

addressed. Our goal was to elucidate the role of NOD1 and NOD2 receptors in the 

NET formation after stimulation with F. nucleatum. 

Materials and Methods: We utilized human neutrophils and the HL60 cell line 

to study NETosis. NETs were induced via PMA and F. nucleatum; then 

fluorescence was measured in 3 hours interval using Sytox Orange assay. Protein 

arginine deiminase 4 (PAD4), Myeloperoxidase (MPO), and Neutrophil elastase 

(NE) play a critical role in NETosis, and their loss leads to a deficiency in NET 

formation. To delineate the mechanism of NOD related NET formation we inhibited 

both NOD1 and NOD2 receptors in neutrophils using their specific inhibitors 

followed by stimulation with their specific ligands and PMA. Then we analyzed 
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PAD4 expression using Real-time PCR and a PAD4 enzymatic activity assay. 

MPO and NE were detected via ELISA to detect their activity in treated neutrophils.  

Results: NETosis was successfully induced with F. nucleatum in a time 

depended manner. When neutrophils were treated with NOD1 and NOD2 inhibitors 

followed by their ligands, we observed a significant down-regulation of PAD4 gene 

expression with NOD1 inhibition at transcriptional and translational levels tested 

by real-time PCR and PAD4 activity assay, respectively. Furthermore, supernatant 

ELISA of treated neutrophils showed a significant increase and decrease of MPO 

and NE when treated with NOD1/NOD2 ligands and inhibitors, respectively.   

Conclusions: Our data illustrate an important pathway linking the NOD1 and 

NOD2 receptors with NETosis when stimulated with F. nucleatum, a key pathogen 

in periodontal plaque formation. Both NOD1 and NOD2 activity affect MPO and 

NE production in neutrophils. The downstream events following NOD1 induced 

NETOsis is related to PAD4 activation.  

The consequence of NET formation in periodontitis remains unclear. This will 

be the first study to elucidate the role of NOD-like receptors in NETosis and 

downstream signaling network. Activating or inhibiting NET formation in the gingiva 

may have therapeutic potential. 
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Chapter 1 : Introduction 

Periodontitis: dynamic host-microbial interaction: 

Periodontitis is an inflammatory disease that affects the tooth supporting structure, 

the periodontium. The Periodontium consists of alveolar bone, cementum, 

periodontal ligaments, and gingiva. Any disturbance to these structures will affect 

tooth function and eventually may lead to tooth loss (Pihlstrom et al., 2005). In 

addition, the non-resolving destruction caused by severe periodontitis had a drastic 

effect on general patient health and is considered to be a risk factor for various 

systemic diseases (Kim and Amar, 2006). In the United States, 46% of adults 

suffer from periodontitis, and of that, 8.9% of them were in advanced/severe stage 

(Eke et al., 2015). 

Oral bacteria in the form of microbial biofilms are the initiating and propagating 

factor in periodontal destruction. It was estimated that dental biofilm contains more 

than 700-500 distinct bacterial species (Griffin et al., 2011; Moore and Moore, 

1994); (Paster et al., 2001; Paster et al., 2006), and several remain 

uncharacterized (Kroes et al., 1999) (Paster et al., 2006). However, the host 

immune system plays a crucial role in the disease progression. It was found that 

tissue damage and destruction was mainly mediated by the host immune system, 

innate immune cells in particular (Taubman et al., 2005; Van Dyke and Serhan, 

2003). Activation of innate immune cells such as Neutrophils will initiate a variety 

of host protective mechanisms such as opsonization, phagocytosis, activation of 
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pro-inflammatory signaling cascades, and apoptosis (Janeway and Medzhitov, 

2002). The dynamic host-microbial interaction will lead to protective mechanism 

activation to prevent pathogen invasion. However, over-activation and excessive 

inflammatory mediator production will also have a destructive effect 

(Hajishengallis, 2015).  

The role of bacteria in periodontal disease: Major periodontal pathogens: 

Oral bacteria consists of a mix of aerobic and anaerobic bacterial species 

(Listgarten et al., 1976).  Among these species, subgingival colonies were found 

to be strongly associated with periodontitis (Haffajee and Socransky, 1994; Holt 

and Ebersole, 2005). Periodontal bacterial complexes were categorized based on 

their colonization order and their association with periodontitis.  The orange and 

red bacterial complexes are considered to be periodontally pathogenic (Socransky 

et al., 1998).   

Bacteria including Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter 

actinomycetemcomitans (A. actinomycetemcomitans) are the major pathogens 

associated with periodontal lesions (Hajishengallis, 2009; Kononen and Muller, 

2014). Porphyromonas gingivalis (P. gingivalis), a strictly anaerobic Gram-

negative rod from the red complex group, is the keystone pathogen in chronic 

periodontitis. The pathogenicity of P. gingivalis depends mainly on manipulating 

and modifying the innate immune response (Hajishengallis, 2009; Sochalska and 

Potempa, 2017). Moreover, the gingipain activity of P. gingivalis plays a role in 
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biofilm-induced cytokine degradation. In fact, our laboratory in vitro study of 

constructed multispecies subgingival plaque showed that around 25% of IL-6, and 

IL-8 degradation occurred immediately and progressively increased upon 

exposure to intact biofilm. On the other hand, IL-1β was more susceptible to 

degradation by the biofilm culture medium components (Guggenheim et al., 2009). 

A. actinomycetemcomitans, an anaerobic Gram-negative  coccobacillus, is the 

key periodontal pathogen in aggressive periodontitis (Kononen and Muller, 2014). 

The production of toxins such as leukotoxin and the cytolethal distending toxins is 

the major virulence factor of A. actinomycetemcomitans. Also, the level of virulence 

and aggressiveness varies within different serotypes of A. 

actinomycetemcomitans, (Kononen and Muller, 2014).  

F. nucleatum, an anaerobic Gram-negative rod from the orange complex group, 

is one of the most predominant pathogens in gingival inflammation that initiates 

periodontal disease (Moore and Moore, 1994). Due to its extensive co-aggregation 

capacity with various bacterial species including P. gingivalis and A. 

actinomycetemcomitans, F. nucleatum plays an integral role in dental plaque 

formation and maturation (Figure1) (Guggenheim et al., 2009; Kolenbrander et al., 

2006; Zijnge et al., 2010). The in vitro strictly anaerobic constructed subgingival 

biofilm was able to adapt to the aerobic atmospheric conditions, matching the 

conditions used to propagate mammalian cells (Guggenheim et al., 2009). F. 

nucleatum in particular had a high ability to adapt and reduce an oxygenated 
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environment, thus supported the growth of various anaerobic microorganisms 

(Diaz et al., 2000; Guggenheim et al., 2009).  

 

Figure 1: Multispecies biofilm structure visualized under confocal laser 
scanning microscopy (CLSM) and transmission electron microscopy (TEM): 
CLSM images of a 64.5 hours cultured 9-species biofilm stained by multiplex FISH 
for (A) V. dispar (purple), C. rectus (blue), F. nucleatum (red), and P. 
intermedia (green), (B) V. dispar (purple), A. naeslundii (red), S. intermedius (green), 
and S. oralis (blue), and (C) V. dispar (purple), T. forsythia (green), P. gingivalis (red), 
and C. rectus (blue). Images are 1-μm-thick transverse (large images), sagittal (right) and 
coronal (bottom) slices at the positions indicated by the fine lines. The length of the bars 
indicates 20 μm. (D) TEM image of a 64.5 hours cultured multispecies biofilm 
demonstrating the predominance of varius cocci or very short rods (S. oralis, S. 
intermedius, V. dispar, P. intermedia) and of the fusiform F. nucleatum cells. Bar = 5 μm 
(Guggenheim et al., 2009). 



 

 

5 

 

The role of the host in periodontal disease: The innate immune response in 

periodontitis: 

 

Neutrophils: 

Neutrophils are the most abundant cells in the innate immune system forming 

about 50% to 70% of circulating leukocytes (Edwards, 2005). They are easily 

identified by their multilobulated nucleus, hence also called polymorphonuclear 

leukocytes (PMNL) (Borregaard and Cowland, 1997). Circulating neutrophils are 

short-lived cells with a half-life ranges from 8-12 hours (Mayadas et al., 2014). 

Neutrophils' rapid turnover mandates a basal rate of production to maintain their 

homeostasis. It has been estimated that bone marrow forms about 1011 

neutrophils per day, and more during infection (Edwards, 2005; Furze and Rankin, 

2008). 

The innate immune system is characterized by a rapid and immediate response 

(Kenneth, 2011). Being the first line of host defense against most infectious 

pathogens, neutrophils play a critical role against extracellular bacterial and fungal 

infections (Borregaard and Cowland, 1997; Mansour and Levitz, 2002; Segal, 

2005; Urban et al., 2006). Recent studies have suggested a novel role of 

neutrophils in both viral and mycobacterial infections (Ramos-Kichik et al., 2009; 

Saitoh et al., 2012).  
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Upon activation, neutrophils perform several tasks including being a pathogen 

killer (Mantovani et al., 2011). Through their phagocytic activity, degranulation, and 

toxic reactive oxygen species (ROS) production, neutrophils kill their target 

microbe (Robinson, 2008; Segal, 2005). ROS generation, also known as 

respiratory burst, cause one of the downsides of prolonged neutrophils activation 

which is surrounding extracellular tissue damage (Robinson, 2008). In the absence 

of inflammatory stimuli, neutrophils undergo programmed apoptosis (Branzk and 

Papayannopoulos, 2013). Also, it was suggested that ROS plays a role in 

neutrophil apoptosis shortly after the phagocytic process is initiated (Circu and Aw, 

2010). Another interesting function that neutrophils perform is the release of 

neutrophil extracellular traps (NETs), a structure that traps and kills microbes 

(Mayadas et al., 2014). 

Neutrophils role in the periodontium: 

Microbes are constantly found in the gingival crevicular fluid and, as a result, a 

large population of recruited leukocytes also exists, with neutrophils being the most 

recruited leukocyte type in gingival and periodontal disease (Delima and Van Dyke, 

2003; Galicia et al., 2009). Recruited neutrophils were also found in the 

periodontium of germ-free mice, suggesting its role in maintaining periodontal 

homeostasis in health (Zenobia et al., 2013). Severe periodontitis was associated 

with situations such as Severe congenital neutropenia, Leukocyte adhesion 

deficiency (LAD) I and II, Chediak–Higashi syndrome, Papillon–Lefevre syndrome 
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(PLS), and the related Haim–Munk syndrome (Nicu and Loos, 2016). Neutropenia 

patients suffer from a constant reduction in neutrophil-production, and orally 

manifest severe periodontitis, ulcerations, and Candida infections (Hajishengallis 

et al., 2016; Nussbaum and Shapira, 2011). Impairment in neutrophil adhesion and 

migration will lead to an increase in extravascular neutrophils, which is known as 

neutrophilia. Neutrophilia patients also suffer from severe periodontitis in both their 

primary and permanent dentition, due to low neutrophils number in the site of 

infection (Hajishengallis and Hajishengallis, 2014). 

On the other hand, excessive activation of neutrophils has a damaging effect 

on the periodontium, leading to severe bone loss. ROS generation by hyper-

responsive neutrophils causes one of the deleterious effects of prolonged 

neutrophil activation, which is surrounding extracellular tissue damage leading to 

severe periodontitis (Matthews et al., 2007; Robinson, 2008). Hyper-functional 

neutrophils were also linked to bone loss in young patients with severe localized 

periodontitis (Kantarci et al., 2003; Ryder, 2010). Although the link between 

neutrophils disorders and severe periodontitis is well established, the underlying 

mechanisms are still to be investigated (Nussbaum and Shapira, 2011).  

Neutrophil extracellular traps (NETs):  

This phenomenon was first discovered in human neutrophils by (Brinkmann et 

al., 2004). The term NETosis (NET-associated cell death) was first introduced by 

(Steinberg and Grinstein, 2007). Subsequent studies showed that other 
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granulocytes such as mast cells, eosinophils, and macrophages could also release 

extracellular traps when activated (Goldmann and Medina, 2012). Animals, 

insects, and plants innate immune system are also capable of extracellular nucleic 

acids trap formation (Altincicek et al., 2008; Palic et al., 2007; Wen et al., 2009). 

Robb et al. revealed that extracellular trap formation is a primordial and ancient 

process that occurs in several invertebrate species, including acoelomates (Robb 

et al., 2014).  

NET is a strategy used by host cells either to prevent or control infections. The 

antimicrobial function of NET is provided by localizing pathogens and exposing 

them to antimicrobial components (Brinkmann et al., 2004; Brinkmann and 

Zychlinsky, 2012) (Remijsen et al., 2011). To date, a variety of bacteria, fungi, 

parasites, and even viruses induce NET formation (Branzk and Papayannopoulos, 

2013; Remijsen et al., 2011). It has been suggested that NETs could enable killing 

of microbes and fungi that are too large to be phagocytosed efficiently (Urban et 

al., 2006). Furthermore, it has been proposed that the balance between apoptosis 

and NETosis may be based on the strength or the presentation of the stimuli 

(Mayadas et al., 2014). 

Moreover, the killing of the pathogen is facilitated by increasing the local 

concentration of antimicrobial components including enzymes, antimicrobial 

peptides, and histones (von Kockritz-Blickwede et al., 2008). In sepsis, more 

bacteria were trapped in NETs rather than phagocytized by neutrophils via TLR4-
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dependent platelet-neutrophil interaction, suggesting its effectiveness in 

controlling the spread of infections (Clark et al., 2007).  

NET structure and morphology: 

NETs are made of de-condensed chromatin bounded to granular proteins. 

Under high-resolution scanning electron microscopy (SEM) these strand-like 

structures consist of fragile, smooth stretches with a diameter of 15 to 17 nm. 

These backbone structures are studded by globular domains that aggregate to 

form a large 50 nm thread. Proteins forming the NETs are derived mainly from 

nuclear components, and some cytoplasmic proteins (Brinkmann et al., 2004). In 

total, about 30 proteins or less were identified to be NET-associated, where most 

originated from granules and few from the nucleus. All three types of neutrophils 

granules were found to be involved in the NET process (Brinkmann and 

Zychlinsky, 2012) The formation of different types of granules in the neutrophils is 

dependent on their maturation stage. Hence, primary granules form first, followed 

by secondary and tertiary granules (Kolaczkowska and Kubes, 2013). Primary 

azurophilic granules include neutrophil elastase, cathepsin G, proteinase 3, 

neutrophil defensins, and myeloperoxidase. Specific secondary granules include 

lactoferrin and tertiary granules contain gelatinase (Kolaczkowska and Kubes, 

2013). In addition, LL37, a cleaved form of cathelicidin, is an antimicrobial protein 

formed in neutrophil’s peroxidase-negative granules have been identified 

(Neumann et al., 2014). NETs also contained multiple histones such as H1, H2A, 
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H2B, H3, and H4. The presence of these histones indicates that nuclear chromatin, 

not mitochondrial, is the major component in NETs. Azurocidin 1, lysozyme C, 

bactericidal permeability-increasing protein, and pentraxin three were also 

recognized to be NET forming proteins (Daigo and Hamakubo, 2012; Jaillon et al., 

2007; Lauth et al., 2009). NET integrity is maintained by their DNA content as NET 

treatment with deoxyribonuclease (DNase) resulted in their degradation. On the 

other hand, protease treatment left the NETs intact, suggesting that proteins are 

not essential in NET structure maintenance and they act mainly as antimicrobials 

(Brinkmann et al., 2004). 

NETosis is morphologically different from apoptosis and programmed necrosis. 

When incubated with Staphylococcus aureus toxins, neutrophils undergo cell 

death with typical necrotic morphology (Figure 2b). In necrosis, neutrophils lose 

their nuclear structure and start chromatin de-condensation. Also, necrotic cells 

cytoplasmic organelles, and both their nuclear and cytoplasmic membranes, 

remain intact (Fuchs et al., 2007). Neutrophils are positively stained by F-actin (a 

cytoskeleton stain) after undergoing necrosis, but not NETosis (Remijsen et al., 

2011). In contrast to apoptosis, NETotic cells do not display “eat-me” signals on 

their plasma membrane surface before rupture. Apoptotic morphological signs 

(Figure 2a) such as cellular membrane blebbing, PS expression, nuclear chromatin 

condensation, and internucleosomal DNA fragmentation is not observed in 

NETosis (Figure 2c). Positive TUNEL stain is a hallmark of apoptotic cell death, 
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but not necrotic or NETotic cell death. This indicates the absence of DNA 

fragmentation in both necrosis and NETosis (Fuchs et al., 2007). 

 

 

Figure 2: Morphological comparison between NETosis, apoptosis and 
programmed necrosis: (a) Neutrophil showing characteristic apoptotic 
morphology, including nuclear condensation and cytoplasmic vacuolization. (b) 
Neutrophils necrosis with intact nuclear envelope and granules, loss of segregation 
into eu- and heterochromatin and of the nuclear lobules. (c) Neutrophils 
undergoing NETosis (Fuchs et al., 2007).  

 

Mechanisms of NETosis: 

When stimulated with either phorbol myristate acetate (PMA), Interleukin 8 (IL-

8), or lipopolysaccharids (LPS), NET formation is induced (Mayadas et al., 2014; 

Remijsen et al., 2011), and neutrophils undergo dramatic morphological changes 

at faster rates when compared to apoptosis (Fuchs et al., 2007). A few minutes 

after activation, neutrophils start to flatten (Figure 3a, e, and i). An hour later their 

nuclei lose their characteristic lobules, followed by chromatin de-condensation with 

an intact nuclear membrane. Concomitantly, a gap forms between the inner and 
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outer nuclear membrane (Figure 3b, f, and j). 2-hours post-stimulation, vesicles 

form in the nuclear membranes, that eventually rupture one hour later. At the same 

time, granular disintegration occurs in the cytoplasm. During these internal 

membrane disruptions, the plasma membrane of activated neutrophil is still intact. 

As a result, granular content will mix with leaked chromatin to form a homogenous 

mass (Figure 3c, g, and k). Finally, cell membrane rupture and the mix are released 

into the extracellular space forming a NET (Figure 3d, h, and l) (Fuchs et al., 2007).  

This slow (3 hours) lytic cell death was thought to be the major mechanism of 

NETosis, but an alternative mechanism that does not involve cell lysis was later 

proposed. Pilsczek et al. stated that in response to Staphylococcus aureus, 

neutrophils uniquely start a rapid (5-60 min) nuclear NET formation without cell 

lysis and cell membrane rupture. Post rapid NET formation neutrophils are still able 

to function as  phagocytic cells before they die (Branzk and Papayannopoulos, 

2013; Pilsczek et al., 2010).  
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Figure 3: Morphological analysis of neutrophil activation leading to NET 
formation: Transmission electron microscopy (a–h) and confocal 
immunomicroscopy (i–l) of neutrophils. Neutrophil were incubated for 180 min 
without stimulation (a, e, and i) or activated with PMA for 60 min (b, f, and j), 120 
min (c, g, and k), or 180 min (d, h, and l) (Fuchs et al., 2007). 

 

It was shown that the production of ROS, followed by protease neutrophil 

elastase (NE), and myeloperoxidase (MPO) release from granules to the nucleus 

is required for NET formation. Fuchs et al. reported that ROS production via the 

NADPH oxidase Nox2 is essential for NET formation. It was found that neutrophils 

from CGD patients, were incapable of NET formation. It is known that CGD 

patients suffer from NADPH oxidase enzyme deficiently and hence they lack ROS 

production. When treated with glucose oxidase (GO) neutrophils regain their ability 
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of NET production (Fuchs et al., 2007). ROS production in neutrophils inactivates 

the caspase function directly or indirectly (through NF-kB activation), leading to the 

blockage of the apoptotic pathway. Moreover, PMA-induced NETosis is not 

affected when neutrophils are treated with pan-caspase inhibitor zVAD-fmk 

(Remijsen et al., 2011). On the other hand, ROS can also stimulate apoptosis via 

caspase activation during complement- or IgG-mediated phagocytosis (Mayadas 

et al., 2014). When ROS triggers NETosis versus apoptosis remains unclear since 

it plays a major role in both. Other investigations showed that NADPH oxidase 

alone is insufficient in triggering NETosis. Increasing intracellular Ca2+ levels 

induces Ca2+ -dependent peptidyl arginine deiminase 4 (PAD4) activity, that leads 

to histone H3 citrullination followed by NET formation (Leshner et al., 2012; Li et 

al., 2010).  

MPO and NE are two of the primary enzymes found abundantly in neutrophils 

azurophilic granules (Papayannopoulos et al., 2010). It has been shown that 

neutrophils of patients with complete MPO deficiency fail to form NETs, indicating 

its importance in NET formation. On the other hand, neutrophils of patients with 

partial MPO deficiency are capable of NET formation, indicate that low levels of 

MPO are sufficient to activate NET formation by some cells (Metzler et al., 2011). 

Treating neutrophils with 4-Aminobenzoic acid hydrazide (ABAH), an MPO 

inhibitor, abrogates NET formation in most neutrophils, and delays its formation in 

remaining cells. The incomplete inhibition of MPO by ABAH explains the NET 

formations in some cells and support the data from MPO-partially deficient 
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neutrophils (Metzler et al., 2011). Chromatin de-condensation was blocked in 

neutrophils when treated with NE inhibitors such as GW311616A (NEi) and serum 

leukocyte protease inhibitor (SLPI), but not with MPO inhibitor (ABAH). 

Interestingly, chromatin de-condensation is promoted by H4 histone degradation 

in an NE-depended manner since MPO does not affect histone degradation. 

Moreover, it has been found that NE translocates first to the nucleus to digest 

nucleosomal histones, followed by MPO translocation to promote chromatin 

relaxation. Although, MPO has little effect on chromatin de-condensation, when 

combined with neutrophil elastase it dramatically enhances the de-condensation 

process in a dose-depended manner (Papayannopoulos et al., 2010).  

Pathogenic role of NETs:  

NET formation has been linked to multiple autoimmune, inflammation, 

coagulation disorders, and cancer metastasis (Branzk and Papayannopoulos, 

2013; Brinkmann and Zychlinsky, 2012; Cools-Lartigue et al., 2013; Knight et al., 

2012). It has been shown that NET formation was abundantly found in the viscous 

sputum of cystic fibrosis patients, and placental microdebris in pre-eclampsia 

patients (Gupta et al., 2007; Marcos et al., 2010). The excessive NET formation 

was also found to induce deep vein thrombosis by acting a scaffold for platelet 

aggregation, and coagulation factor activation (von Bruhl et al., 2012). 

Autoimmune disorders related to NETosis were suggested to be due to excessive 

production of pro-inflammatory molecules, and autoantigens (Knight et al., 2012).  
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NETosis and periodontal disease: 

Subgingival plaque continuously replenish gingival crevice fluid (GCF) with 

multiple bacterial species, making it a rich area full of floating dispersed pathogens 

(Goodson, 2003). Controlling such an environment requires an efficient killing 

mechanism that can target diverse bacterial species and cover a wider surface 

area during its attack. Released NETs are found to be capable of performing such 

a function (Figure 4) (Krautgartner and Vitkov, 2008; Vitkov et al., 2009). 

Studies show that NETs and subgingival dispersed bacteria appears in both 

suppurated and non-suppurated periodontitis, and forms about 78% of GCF. This 

suggests that subgingival bacteria are the triggers of such mechanisms, and 

NETosis play a protective role by preventing bacterial adhesion to the crevicular 

epithelium (Vitkov et al., 2009; Vitkov et al., 2005). Citrullinated histones, one of 

the prerequisites for the initiation of NETosis were found tremendously increased 

in most active crevicular neutrophils (Wang et al., 2009).  

Heavy bacterial invasion of crevicular epithelium in periodontitis, induces 

epithelial apoptosis, and subsequently damaged tissue exfoliation to aid in 

periodontal clearance (Vitkov et al., 2005). In contrast, epithelial tissue in contact 

with NETs shows no such damage. However, this doesn’t preclude its possible 

destructive effect. It was proposed that bacterial resistance of NETosis via the 

production of extracellular DNase in the periodontal pocket, is obstructed by GCF 

outflow. The dilution and repulsion effect of the GCF on the bacterial DNase is an 
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effective means for suppressing this DNase-mediated resistance to the NET 

formation (Vitkov et al., 2009). It is also possible that GCF has the same effect on 

NET proteases and antimicrobial peptides, thus preventing epithelial cell damage.  

Studies showed that the prevalence of periodontitis increases with age (Eke et 

al., 2015; White et al., 2012), and associated with a reduction in NET formation 

(Hazeldine et al., 2014). However, there was no difference in NET production 

between aged periodontal and healthy groups (Hazeldine et al., 2014), suggesting 

age-related reductions in NET formation is independent of its periodontal status 

(White et al., 2016).  

 

 

Figure 4: Extracellular neutrophil traps in periodontitis. (a) Confocal laser‐
scanning microscopy of crevicular exudate samples. Red, propidium iodide; green, 
human neutrophil elastase. (b) Scanning electron microscopy of pocket epithelium 
biopsies showing neutrophil extracellular trap entrapped bacteria, lies on the 
epithelium surface (Vitkov et al., 2009). 
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The entrapment and restriction function of NETs on pathogens, associated with 

antimicrobial components release, suggested that NETosis is a protective 

mechanism that controls infections (Brinkmann et al., 2004; Remijsen et al., 2011). 

Other studies elucidate the dark side of NETosis, and listed the diseases 

associated with its formation (Branzk and Papayannopoulos, 2013; Brinkmann and 

Zychlinsky, 2012; Cools-Lartigue et al., 2013; Gupta et al., 2007; Knight et al., 

2012; Marcos et al., 2010; von Bruhl et al., 2012). Moreover, excessive activation 

of neutrophils has a well-known destructive effect on the periodontium via ROS or 

excessive release of other cytokines and antimicrobial peptides that relate to the 

NET formation (Matthews et al., 2007; Robinson, 2008; Ujiie et al., 2007). 

Based on these data neutrophil NET formation or deficiency failed to explain its 

role in the pathophysiology of periodontal disease. NETosis may start as a 

protective mechanism preventing bacterial penetration and periodontal disease 

initiation. However, NETosis could be a pathogenic feature if produced excessively 

and not cleared efficiently.  

Many types of oral bacteria are known to induce NETosis (Cooper et al., 2013; 

Hirschfeld et al., 2015; Palmer et al., 2016), and among the large group of bacterial 

species colonizing the periodontal flora, the degree of their virulence on the 

periodontal tissue varies tremendously (Paster et al., 2006). Moreover, the 

diversity of the bacterial species between individuals and their host immune 

response (Hajishengallis, 2015; Moore and Moore, 1994; Socransky and Haffajee, 



 

 

19 

1994) illustrates the difficulty in identifying which derive specific immune functions 

such as NETosis, over another. Moreover, little is known of the molecular cascade 

involved in the process of NET formation, concerning oral bacterial stimuli. 

Innate immune recognition of oral pathogens: The role of NOD-like receptors 

(NLR)s:  

Innate immune cell responses are non-specific and rely on the recognition of 

microorganisms through germline-encoded pattern-recognition receptors (PRRs). 

PRRs recognize the pathogen-associated molecular patterns (PAMPs), a constant 

microbial structure essential for their survival (Janeway and Medzhitov, 2002). The 

first identified PRRs were Toll-like receptors (TLRs). TLRs are one of the well-

studied PRRs, due to the cardinal role in identifying a variety of PAMPs. Then other 

PRRs such as C-type lectin receptors, Nod-like receptors (NLRs), and RIG-I-like 

receptors were identified (Benakanakere and Kinane, 2012). 

Nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) 

family is one of the PRRs that sense intracellular microorganisms and trigger a 

series of signaling cascades to activate pro-inflammatory and antimicrobial genes 

culminating in the clearance of microorganisms. There are 23 and 34 NLR genes 

in humans and mice respectively (Franchi et al., 2009). NLRs structure composed 

of three main protein domains:  an amino (N)-terminal domain consisting of 

caspase recruitment domain (CARD) or pyrin domain (PYD), or baculovirus 

inhibitor repeat (BIR) domain; a centrally located nucleotide-binding 
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oligomerization domain (NOD) or (NACHT) that is critical for self-recognition and 

activation; and a (C)-terminal leucine-rich repeats (LRRs) that is involve in PAMPs 

recognition (Correa et al., 2012; Geddes et al., 2009; Strober et al., 2006). Despite 

its critical function in the innate immune response, its role in the neutrophil immune 

response is not fully characterized. 

NOD1/ NOD2 receptors:  

NOD1 and NOD2 were the first receptors of the NLR family to be discovered 

(Figure 5). NOD1 and NOD 2 receptors are successfully upregulated using γ-D-

glutamyl-meso-diaminopimelic acid (iEDAP) and muramyl dipeptide (MDP) 

respectively. iEDAP is found mainly in Gram-negative bacterial peptidoglycan 

(PGN), while MDP is found in nearly all bacterial PGN (Chamaillard et al., 2003b; 

Girardin et al., 2003). NOD1/NOD2 stimulation results in the activation of nuclear 

factor-kB(NF-kB) and mitogen-activated protein kinases (MAPKs), which lead to 

the production of numerous cytokines and chemokine in response to ligand 

stimulation (Correa et al., 2012; Geddes et al., 2009; Strober et al., 2006). NF-kB 

inhibition using (E)-3- [4- methylphenylsulfonyl]-2-propenenitrile (BAY 11-7082) 

and 6- (phenylsulfinyl) tetrazolo[1,5-b] pyridazine (Ro 106-9920), as well as 

Acetylsalicylic acid (ASA) results in marked reduction in NETosis in neutrophils 

(Lapponi et al., 2013). In addition, NOD2 was found to be capable of initiating 

reactive oxygen and nitrogen species production via induction of nitric oxide 

synthase and NADPH oxidases (Lipinski et al., 2009; Sorbara and Philpott, 2011).  

Furthermore, NOD1 and NOD2 receptors were found to be involved in the 



 

 

21 

recognition of periodontal pathogens, indicating its role in periodontitis (Okugawa 

et al., 2010). These findings illustrate the importance of NOD1 and NOD2 in 

periodontitis and their possible role in NETosis. 

 

 

 

Figure 5: NOD1 and NOD 2 protein domains architecture. N-terminal caspase 
activation and recruitment domain (CARD) mediate the protein–protein 
interactions. Centrally located nucleotide-binding domain (NOD) mediate self-
recognition and activation. C-terminal leucine-rich repeats (LRRs) mediate ligand 
recognition. 
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Summery and aims: 

Neutrophils are the most abundant cell type found in the inflamed gingiva of 

periodontitis patients. It plays a crucial role in eliciting an innate immune response 

and eliminating microorganisms by phagocytosis and intracellular killing (Galicia 

et al., 2009; Moutsopoulos et al., 2014).  Neutrophil’s defense mechanisms involve 

the formation of NETs which is considered crucial in entrapping and limiting the 

spread of microorganisms at the site of infection (Brinkmann et al., 2004; 

Brinkmann and Zychlinsky, 2012; Remijsen et al., 2011; Vitkov et al., 2009). 

Periodontal disease is known to be initiated and sustained by common periodontal 

pathogenic bacteria, including F. nucleatum, a gram-negative anaerobe that plays 

a role in oral biofilm maturation (Kolenbrander et al., 1989; Moore and Moore, 

1994). Although many types of bacteria are known to induce NETosis, our 

preliminary data demonstrate that F. nucleatum is optimal for in vitro experiments 

in activating neutrophils and inducing NETosis via the upregulation of neutrophil’s 

NOD1 and NOD2 receptors. NOD-like receptor’s role in NETosis still remains 

unclear. The molecular mechanism of MPO and PAD4 in NETosis is not fully 

understood. PAD4, MPO, and NE play a critical role in NETosis, and their loss 

leads to a deficiency in NET formation (Hemmers et al., 2011; Papayannopoulos 

et al., 2010). However, how they are activated are still under investigation, and the 

role of NOD-like receptors in their activation has never been investigated. We 

hypothesize that NETosis is mediated by NOD-like receptors via PAD4 or 

MPO/NE upregulation.  
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Figure 6: Model summarizing the hypothesized role of NOD1 and NOD2 
receptors in the upregulation of PAD 4 and MPO leading to NET formation. 
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Chapter 2 : Material and Methods 

Neutrophils NET production in vitro: 

Isolation of neutrophils: 

Human blood was collected from healthy donors in 10.0 mL, 18 mg K2 EDTA 

coated Vacutainers (BD Biosciences 366643). To facilitate the study of neutrophils 

response with minimal effect on its activity, Neutrophils were isolated using 

EasySep™ Human Neutrophil Enrichment Kit (STEMCELL Technologies, Inc), an 

immunomagnetic negative selection cell separation method. During isolation 

venous blood was diluted in RPMI 1640 Gibco™ GlutaMAX™, 25 mM HEPES, 

supplemented with 2% fetal bovine serum (FBS; GE Healthcare Life Sciences 

SH30071.03HI). Cells were counted using a hemocytometer and viability (typically 

>98%) was checked by mixing with trypan blue dye (Sigma, T8154). Neutrophils 

were re-suspended at the desired concentrations and used immediately. 

Stimuli used to induce NETs: 

F. nucleatum was used as periodontal pathogen models for in vitro stimulation 

of peripheral neutrophils NETs production. PMA (Sigma P8139) is an established 

stimulus for NETosis were also used as control (Table 1). 

Cultured bacteria were centrifuged at 700 g for 10 min at room temperature. 

The supernatant was discarded, and bacterial pellet was washed with PBS then 

re-suspended in RPMI media. PMA was also diluted in RPMI media. 
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Table 1 List of stimuli used to induce NETosis.  

Bacteria /Other stimulus Strain /Supplier # MOI** / Concentration 

 

Fusobacterium nucleatum * 

 

FDC 364 

 

1:10, 1:100 

Phorbol 12-myristate 13-

acetate (PMA) 

 

Sigma P8139 100 nM  

* bacterial stains were purchased from American Type Culture Collection (Manassas, VA, USA). 

 ** Multiplicity of infection. 

 

Bacterial growth conditions:  

F. nucleatum was grown in Gifu Anaerobic Medium (GAM) broth (Nissui 

Pharmaceutical Co., Tokyo, Japan) under anaerobic conditions (85% N2, 10% 

CO2 and 10% H2; Coy Laboratory) at 37 °C. 

Functional assay (Fluorometric quantification of NET release): 

Cells were suspended in a concentration of 1 × 106 cells/ml in RPMI. Cells were 

seeded in 96-well microplate (BD FalconTM 353219) and allowed to rest for 20 

min in a humidified incubator (37°C, 5% CO2).  SYTOX® Orange (Thermo Fisher 

Scientific, S34861), a cell impermeable nucleic acid stain was added at a 

concentration of 0.2 µM / ml. Then cells were stimulated with F. nucleatum and 

PMA and incubated for 1-4 hours. Fluorescence was quantified at 

excitation/emission wavelengths of 540 /570 nm using Infinite M200 microplate 

reader (Tecan, Mannerdorf, Switzerland) at the time point of 1h, 2h, 3h. 
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Scanning Electron microscope (SEM):  

Cells were seeded onto poly-L-lysine coated 12mm glass coverslips (Corning™ 

354085) and incubated for 30 min at 37°C to allow for cell attachment. Then 

stimulated F. nucleatum and visualized by SEM at different time points to study the 

interaction between the bacteria and the NETs produced.  After stimulation, cells 

were fixed in 4% formaldehyde for 20 minutes, washed once with PBS for 20 

minutes and dehydrated by incubating through a graded solution of ethanol diluted 

in distilled water (20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 100%) for 5 

minutes each. Samples were then transferred to critical point dryer. First samples 

were immersed in 100% ethanol within the critical point drier chamber. Then the 

chamber is slowly filled with liquid CO2 to replace ethanol. When the chamber is 

100% CO2 heat will be applied at 31°C and 1072 psi to evaporate all the liquid 

CO2. The dried sample was then mounted on to Denton Desk II sputter coater for 

gold coating for 90 seconds. Samples were then analyzed using a JOEL JSM-

T330A scanning electron microscope at the Department of Biochemistry, School 

of Dental Medicine, University of Pennsylvania. 

Transmission electron microscopy (TEM): 

Cells were fixed with 2.5% glutaraldehyde for 1h at 4°C, and then post-fixed 

using 1% osmium tetroxide for 1h at 4°C. Cells were dehydrated by incubating in 

ethanol concentration of (50%, 70%, 85%, 95%, 100%, 100%) twice for 5 minutes 

each, followed by propylene oxide (PO) incubation for 3 min twice. Cells were then 
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embedded in Epoxy embedding medium (Sigma 45359) and left to polymerization. 

After polymerization specimens were cut in sections, range from 500 nm - 2 

microns and contrasted with lead citrate. Images were recorded using Hitachi H-

7650 transmission electron microscope in a voltage range from 40 kV - 120 kV 

at Department of Anatomy and Cell Biology, School of Dental Medicine, University 

of Pennsylvania. 

Immunocytochemistry:  

Cells were seeded onto poly-L-lysine coated coverslips and incubated for 30 

min at 37°C to be attached. Cells were challenged with F. nucleatum and PMA. 

Then cells were fixed for 10 minutes with 4% formaldehyde, permeabilized in 0.5% 

Triton X-100 for 2 min. Non-specific blocking was done with 10% Horse serum 

(HS) in PBS for 1 hour at room temperature. Then cells were incubated with 

primary anti-NE antibody (1:100, Abcam ab21595) and anti-Histone H3 antibody ( 

1:400 Abcam ab5103) overnight at 4C; washed three times with PBS; followed by 

Alexa Fluor® 594 or 647 conjugated secondary antibody (Thermo Fisher 

Scientific) incubation for 1 hour at room temperature. Finally, ProLong™ Gold 

Antifade Mountant with DAPI (Thermo Fisher Scientific P36935) was used to stain 

the nuclei and mount the slide. Images were captured by a fluorescence 

microscope (Leica DMi8) with the same exposure time for both the control and the 

experimental group. 
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Cell Death Quantification (ELISA):  

To quantify the death rate after stimulation, first cells were challenged with F. 

nucleatum in the same conditions mentioned previously. After 12 hours of 

stimulation, apoptosis was measured using Cell-death enzyme-linked 

immunosorbent assay (ELISA) kit (Roche Diagnostics). Manufacturer instructions 

were followed. 

Neutrophils Gene expression analysis: 

RNA isolation:  

Cells were then pelleted by centrifugation for 5 minutes at 300 g, the 

supernatant removed, and the cell pellet re-suspended in 1 ml TRIzol reagent per 

sample (Invitrogen, 15596026). The mix is transferred in 1.5 ml Eppendorf tubes 

and placed on a shaker and incubated for 10 min at room temperature.  200 µl of 

Chloroform (C2432 Sigma) were added for each sample, vortexed for 15 sec and 

incubated for 3 min at room temperature. This was centrifuged at 12000 g for 15 

minutes at 4 °C to separate the protein, DNA and RNA layers. Around 500 µl of 

aqueous phase (RNA) were transfer to a new tube. One volume of Isopropyl 

alcohol (Sigma I-9516) were added, mixed and incubate for 10 minutes at room 

temperature. Then centrifuge at 12000 g for 15 minutes at 4 °C to remove the 

supernatant.  Cell pellet was washed by re-suspension with 1 ml of 75% alcohol 

by vortexing. The RNA was again pelleted by centrifugation at 7500 g for 5 minutes 

at 4 °C, the supernatant was carefully removed, and the pellet allowed to air dry 
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for 10 minutes. The RNA was subsequently re-suspended in 30 µl RNase free 

water (preheated to 60 °C), Incubated for 2 minutes, then collected by 

centrifuge.RNA concentration and purity were assessed using a Nanodrop 

spectrophotometer (Thermo Scientific). For mRNA arrays samples were purified 

using QIAGEN RNeasy Mini Cleanup Kit (Thermo Scientific 74104). cDNA was 

synthesized from isolated RNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, CA) for gene expression analysis. 

Screen gene expression using qPCR array: 

At a concentration of 1x106 cells/ ml neutrophils were challenged with F. 

nucleatum (MOI 1:10) for 8 hours. Then qPCR array was used to determine if there 

is specific gene expression that drives F. nucleatum induced NETosis in 

neutrophils.  

Quantitative TaqMan PCR-Array was custom designed to include innate 

immune, apoptosis and GPCR signaling pathways based on previously published 

microarray data by (Kinane et al., 2006). After cDNA conversion, the real-time PCR 

was carried out as per the manufacturer’s instructions (Applied Biosystems, CA).  

The fold increase was calculated as compared to control sample according to 

ΔΔCT method (Livak and Schmittgen, 2001).  

Fold increase data was used to derive heatmap with two-way hierarchical 

clustering using MeV v4.1 software (rows=genes, columns=samples). The color 
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scale indicates relative expression: yellow, above mean; blue, below mean; and 

black, below background. 

Real-time PCR:  

Real-time PCR (RT-PCR) of NOD1, NOD2 expression from F. nucleatum, P. 

gingivalis, A. actinomycetemcomitans challenged cells with and without PMA was 

carried out using TaqMan® Fast Advanced Master Mix (Applied Biosystems) 

following manufacturer instructions. The plate was loaded on to ABI 7500 Real-

Time PCR machine. The negative control will be unconverted RNA and reference 

gene expression GAPDH to normalize the data, using relative quantification 

normalization method (ΔΔCt) (Livak and Schmittgen, 2001). 
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HL60 cells as a model for neutrophils: 

The acute human promyelocytic leukemia HL60 (ATCC® CCL240TM) cell line 

has been used to characterize and study the expression of different antigens and 

functions of myeloid cells. Morphologically, undifferentiated HL- 60 cells resemble 

promyelocytes, but it can be differentiated in vitro to resemble mature neutrophils 

using All-trans-retinoic acid (ATRA), and di-methylsulfoxide (DMSO) (Bohnsack 

and Chang, 1994; Collins, 1987). Therefore, HL60 was used as a model for 

neutrophil NET formation. 

HL60 cell line culture and growth condition:  

HL-60 were cultured in RPMI 1640 Gibco™ GlutaMAX™, 25 mM HEPES, 

supplemented with 10% fetal bovine serum (FBS; GE Healthcare Life Sciences 

SH30071.03HI), 1% penicillin-streptomycin Gibco™ (Life Technologies), 0.05 g/ 

ml Amphotericin B (Life Technologies), 50 M β-Mercaptoethanol. Cells were 

incubated in a humidified incubator (37°C, 5% CO2) and passaged every 2-3 days. 

HL60 cells differentiation:  

Cells were seeded at a concentration of 2x105 cells/ml in culture media. 2 days 

post incubation cells were stimulated to differentiate into neutrophil-like cells by the 

addition of 1.25% DMSO (Sigma D26650) and M ATRA (Sigma R2625). 

Incubated for 3 days. Then cells were washed with PBS and re-suspending at 

1x106 cells/ml for use in subsequent experiments. 
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HL60- Cas9 stable cell line:  

Cells were a kind gift from Ali Zamani at University of Pennsylvania School of 

Medicine. Cells were cultured under the same conditions as HL60. To induce Cas9 

expression 1ug /ml of doxycycline (Sigma D9891) were added to cell media for 48 

hours.  

NOD1 and NOD2 HL60 knock-out: CRISPR/Cas9 system 

To investigate the role of NOD-like receptors in NET formation we used IDT Alt-

R® CRISPR-Cas9 system to generate NOD1 and NOD2 knock-out HL-60 cell lines 

and induce NETosis via F. nucleatum. Cell-death ELISA kit (Roche Diagnostics), 

immunofluorescent staining then was performed to visualize and quantify the effect 

of NOD receptors on the NET formation.  

Clustered regularly interspaced short palindromic repeats (CRISPR) are a 

family of short repetitions of DNA sequences present in many bacteria. 

CRISPR/Cas system is part of prokaryotes adaptive immune system to protect 

against viral attacks. It consists of two main components, a single guide RNA 

(sgRNA) that contain a short protospacer adjacent motif (PAM) to recognizes one 

strand of the target sequence, and a Cas endonuclease enzyme that induces DNA 

double-strand breakage. Together, a targeted cleavage in the DNA strand occurs, 

and nonhomologous end joining (NHEJ) or homologous recombination (HR) repair 

will facilitate gene editing (Ran et al., 2013; Terns and Terns, 2014). The 

CRISPR/Cas system has been modified into programmable endonucleases that 
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facilitate target gene editing. Due to its wide application, high efficiency and 

simplicity in design, the CRISPR/Cas system is a promising tool for genome 

engineering in basic sciences, medicine and biotechnology (Liang et al., 2015; Ran 

et al., 2013).  

Guide sequence identification and selection  

Using the IDT Alt-R Predesigned CRISPR-Cas9 crRNAs search tool, the 

optimal sequence for NOD1 and NOD2 gene targeting were selected (Table 2). 

This tool scans the DNA sequence for CRISPR crRNAs that are 20 nucleotides 

long followed by an NGG PAM sequence required for Cas9 recognition. The tool 

also predicts possible off-target matches. Candidate gRNAs are ranked by the 

accuracy of on-target and off-target activity. After the selection of the optimal 

crRNAs sequence, (crRNA:tracrRNA) complex were prepared in 10 M working 

concentration. 

Table 2Targeting sites chosen for NOD1 and NOD2 crRNAs sequence: 

GENE TARGET SEQUENCE (PAM IS UNDERLINED) 

NOD1 5’ GTGGCCCTCTTCACCTTCGA TGG 3’ 

5’ CACCGGCATCCTCAATGAGC AGG 3’ 

5’ GACGTACCTGGCTCCGACAT CGG 3’  

NOD2  5’ CAATCCATTCGCTTTCACCG TGG 3’ 
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Transfection (electroporation): 

48 hours before transfection cells were activated by adding with 1 g/ ml 

doxycycline.  Then cells were centrifuged at 300 g for 5 min at room temperature, 

washed with PBS and re-suspending at 1x106 cells/ml. Transfection by 

electroporation was done using Amaxa® Cell Line Nucleofector® Kit V (Lonza 

Picturepark). The cell pellet was suspended in a 100 l of solution V, and mixed 

with (crRNA:tracrRNA complex) in a final concentration of 2 M. Then mixed 

solution was transferred to the cuvette and electroporated and transfected using 

the recommended program. 500 l of media with doxycycline (1 g /ml) was added, 

and the whole volume was transferred to 12-well plate. Cell sorting was performed 

24-hours post transfection. 

Colonies selection:  

Semisolid media (ClonaCell™-TCS Medium) were prepared by adding 15 ml of 

liquid media. Sorted cells were diluted to a concentration of 1000 cells/ml. 100 

diluted ul cells were mixed very well with ten mL of prepared Semisolid media.  

Syringe with a 16-gauge needle was used to mix cells to avoid cells loss and 

inaccurate volume dispense. Then left to rest for 15 min to allow the bubble to rise. 

The mixer then transfers into ten com culture plate Dispense the mixture in 10 cm 
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plate. Colonies were collected using 10 l pipet tip, and transfer to 96-well contain 

200 l of media. Both fast and slow growing colonies were collected for screening.  

Knockout cells were single sorted to rule out any mixed colonies. Briefly, cells 

were washed with PBS then were suspended in 500 l of 5% FBS Sorting Buffer. 

Sorting buffer was prepared by adding 1 mM EDTA (Invitrogen 15575), 25 mM 

HEPES (Thermo Fisher 15630), 5 % FBS (GE Healthcare Life Sciences 

SH30071.03HI). The cell suspension was filtered and then sorted in 96-well plate 

using BD Influx cell sorter (BD Biosciences) at the Flow Cytometry and Cell Sorting 

Resource Laboratory, School of Medicine, University of Pennsylvania. 

Confirmation of gene knock-out: 

To validate NOD 1 and NOD2 gene knock-out, Real-time PCR (RT PCR) and 

western blot was performed and compared to control cells.  

Immunoblots:  

Cell extract was prepared on ice by incubating in 1X RIPA buffer (Cell Signaling 

#9806) containing Protease Inhibitor Cocktail (Sigma P8340), Phosphatase 

Inhibitor Cocktail (Sigma P0044). The mix was homogenized using a 30-gauge 

needle. Protein was collected by centrifuging 14,000g for 20 min at 4°C. Bradford 

protein assay used to determine protein concentration (Thermo Fisher 23200). 50 

μg of total protein was denatured using 1X Laemmli sample buffer (Alfa 

AesarJ61337). Samples were loaded into NuPAGE™ 4-12% Bis-Tris Protein Gels, 
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1.5 mm, 15-well (Invitrogen). MagicMark™ XP Western Protein Standard (Thermo 

Fisher LC5603) and Rainbow™ Molecular Weight Marker (GE Healthcare Life 

Sciences RPN800E) were run on each gel.  The separated proteins were 

transferred to Polyvinylidene difluoride membrane (PVDF) (Invitrogen LC2002) 

and blocked in PBS with 0.1% Tween 20 (PBST) and 5% non-fat milk for 1 hour at 

RT. Then membranes were incubated in NOD1 primary antibody (1:1000, Cell 

Signaling #3545) and NOD2 primary antibody (1:500, Santa Cruz SC-56168) in 

blocking buffer overnight at 4°C. Then membranes were washed with PBST and 

incubated with compatible secondary antibodies at 1:2000 dilution in blocking 

buffer: anti-rabbit IgG, HRP-linked Antibody (1:2000, Cell Signaling #7074) or anti-

mouse IgG, HRP-linked Antibody (1:2000, Cell Signaling #7076). Protein signal 

was developed using ECL plusTM Western blotting detection reagent (Amersham 

Biosciences) visualized using Odyssey® Fc Imaging Systems and software (LI-

COR, Lincoln, NE). 
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NOD1 and NOD2 NET related signaling pathway: 

PAD4 gene expression: 

To better understand the role of NOD1 and NOD2 on the neutrophil NET 

formation. Isolated neutrophils were seeded in 6-well plate at a concentration of 

1x106 cells/ ml and left to rest for 20 min before treatment. Cells were pretreated 

with 15 g/ml of NOD 1 inhibitor (ML130, ab142177) and NOD2 inhibitor (GSK717, 

MilliporeSigma) for 2 hours; followed by stimulation with PMA 100nM and their 

specific ligand for 4 hours. 1g/ml C12-iEDAP (InvivoGen) and 10g/ml MDP 

(InvivoGen) was used for NOD1 and NOD2 stimulation, respectively. DMSO in 

control was used as vehicle control.  After 4 hours, cell pellets were collected, and 

total RNA was extracted. For converting RNA to cDNA, we used TaqMan® Fast 

Advanced Master Mix protocol. Using RT-PCR, we investigated the expression of 

NOD1 and NOD2 in neutrophils and compared mRNA expression of IL8 and PAD4 

between different conditions. Furthermore, we will analyze cell lysate for PAD4 

enzyme activity. NE and MPO ELISA of the supernatant were performed to detect 

any changes in their activities in treated neutrophils. 

PAD4 enzyme activity assay:  

Isolated neutrophils were treated under the conditions mentioned previously. 

Cell pellets were collected and lysed.  PAD4 enzymatic activity was monitored in 

4 hours interval using a fluorescence-quenching sensing strategy. PAD4 

substrates TAMRA-(Gly-Arg-Gly-Ala)3 were kindly provided by Prof. David S. 
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Lawrence (University of North Carolina). PAD 4 substrate fluorescence release is 

only observed in the presence of PAD4 and Ca2+ Since deiminase activity of PAD4 

is Ca2+-dependent (Wang et al., 2013).  

The sample was prepared by adding 5.2 mg/ml of protein lysate, 5 μM TAMRA-

(Gly-Arg-Gly-Ala)3, 5 mM DTT (Sigma 3483-12-3), 4% protease inhibitor cocktail 

(Sigma P8340), 110 μM of Evans blue as quencher. Assay was initiated by adding 

10 mM CaCl2 (Wang et al., 2013). Then samples were plated in 96-well microplate 

(BD FalconTM 353219). Fluorescence was quantified at excitation/emission 

wavelengths of 550 /590 nm using Infinite M200 microplate reader (Tecan, 

Mannerdorf, Switzerland) with a temperature setting of 30 °C.  

MPO and NE ELISA: 

The culture supernatant of treated cells was collected by snap freezing with 

liquid nitrogen. One hundred microliters of culture supernatant were used in each 

well without dilution. MPO and NE were measured in triplicate using ELISA 

according to the manufacturer's standard protocol (Duoset R&D Systems, 

DY3174, and DY9167-05). Data acquired using a 96-well plate reader Infinite 

M200 (Tecan, Mannerdorf, Switzerland). 
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Statistics: 

Statistical analysis was done using GraphPad Prism 6.0 (San Diego, CA). Data 

were analyzed with one-way ANOVA followed by Tukey's multiple comparison 

tests. Statistical differences were considered significant at the p < 0.05 level.  
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Chapter 3 : Results 

Quantification of F. nucleatum induced NETs:  

The ability of F. nucleatum to produce NETs was assessed using a nucleic acid 

stain SYTOX® orange. Prior to NET release, the cell membrane is compromised 

and will eventually rupture (Fuchs et al., 2007). By taking advantage of the 

compromised membrane integrity, NETs can be quantified using impermeable 

DNA dyes, such as SYTOX® orange.  

PMA is a well-known inducer of NETs (Gupta et al., 2005).Thus, it was used 

with F. nucleatum in this assay. Cells were induced with F. nucleatum and PMA 

for 4 hours. The fluorometric quantification revealed that F. nucleatum (MOI 1:10) 

were capable of inducing NETs successfully when compared to PMA as positive 

control. NET induction was time depended in a positive manner (Figure 7; p < 

0.0001), a finding confirmed by NET visualization using TEM and SEM (Next 

section). 
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Figure 7: NET release in response to F. nucleatum and PMA challenged 
neutrophils. Freshly isolated neutrophils were challenged with F. nucleatum 
(MOI1:10) or PMA (100nM). NET quantification revealed significant increase in 
NETs when stimulated with F. nucleatum, similar to PMA. Statistical test: One-way 
analysis of variance (ANOVA) followed by Tukey's multiple comparison test (*= p 
< 0.05). Values are mean ± SD.   
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F. nucleatum and neutrophils interaction:  

Analysis of the interaction under scanning and transmission electron 

microscope: 

To allow detailed analysis of the interaction between the bacteria and 

neutrophils, SEM and TEM were performed. Neutrophils were seeded onto poly L 

lysine coated coverslips and stimulated with F. nucleatum at different time point 

with different concentration. When challenged with F. nucleatum (MOI 1:10), 

morphological changes occur, and neutrophils start to flatten (Figure 8a and b) and 

eventually releases NETs. Generally, the NETs presented as thin strand-like 

structures connecting between neutrophils with the bacteria entrapped within 

these strands (Figure 8c). After 8 hours of stimuli, NETosis can be observed at its 

maximum (Figure 9). When challenged with a higher concentration of F. nucleatum 

(MOI 1:100) we found more cell death compared to NET release (Figure 10a b and 

c). Bacterial phagocytosis was also detected via SEM and TEM (Figure 11). 

Suggesting, that both NETosis and phagocytosis could co-occur in a different rate. 

Cell Death ELISA of F. nucleatum challenged neutrophils  

To confirm our observation under SEM cell death ELISA was done to detect 

cytoplasmic histone-associated DNA fragments (H1, H2A, H2B, H3, and H4) 

(Figure 10d). Data showed that F. nucleatum significantly induced histones release 

and cell death when compared to control. 
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Detection of citrullinated histone H3 via Immunohistochemistry   

Citrullination of histone H3 (Cit H3) by PAD4 plays an essential role in chromatin 

de-condensation, and subsequently the release of NETs. Immunohistochemistry 

of Cit H3 was used to detect and visualize NET formation in neutrophils. Staining 

of citrullinated histone H3 in F. nucleatum treated neutrophils indicates that F. 

nucleatum successfully induced chromatin de-condensation via PAD4 activation 

(Figure 12).  
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Figure 8: Scanning electron micrographs of neutrophils stimulated with MOI 
1:10 of F.nucleatum. Typical morphological changes associated with NETosis 
observed (a & b). NETs are presented as strand-like structure connecting cells 
(white arrow) (c).  

  

a 

b

c
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Figure 9: Rapid NET formation upon F. nucleatum stimulation.  Neutrophils 
were stimulated with 1:10 MOI of F. nucleatum for 8h, fixed and observed 
under Scanning Electron microscope (a). Magnified image of F. nucleatum 
trapped by neutrophils (b). 

  

a 

b
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Figure 10: F. nucleatum induce neutrophil cell death. Neutrophils were 
stimulated with 1:100 MOI of F. nucleatum for 12h, fixed and observed under 
SEM (a). Magnified image of F. nucleatum invading a neutrophil (b). After 16 hours 
of stimulation, neutrophils undergo apoptosis and F. nucleatum induced cell death 
(c). Cell-death ELISA showed high cell death rate compared to negative control 
when challenged with F. nucleatum concurring SEM observation. Statistical test: 
One-way ANOVA followed by Tukey's multiple comparison test (*p < 0.05; ns = no 
significant difference). Results are mean ± SD. 

  

a b

c d
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Figure 11: Transmission Electron Microscopic image of F. nucleatum 
challenged neutrophils. TEM showing extension of neutrophils membrane (in 
red) and granules (a) and F. nucleatum inside and outside of a neutrophil (blue) 
(b). Scanning Electron Microscope shows F. nucleatum phagocytosis by a 
neutrophil (blue arrow) (c).  

a 

b

C
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Figure 12: F. nucleatum induces PAD activation and the release of de-
condensed chromatin in neutrophils. Neutrophils were seeded onto poly L 
lysine coated coverslips and incubated for 30 min at 37°C to allow for cell 
attachment. Cells were challenged for 4 hours with F. nucleatum (MOI 1:10) or left 
unstimulated in media and then processed for immunofluorescence. DNA was 
stained with DAPI (blue), and de-condensed chromatin was stained with anti-
Histone H3 (Cit-H3) (pink). F. nucleatum challenged neutrophils demonstrated the 
presence of NETs (white arrow) judged from the presence of citrullinated histone 
H3. De-condensed chromatin was not observed without stimulation (a). Notice the 
staining of citrullinated histone H3 (b) followed by chromatin elongation and NET 
release (c).   

a 

 

b

 

C
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 Upregulation of NOD1 and NOD2 receptors in F. nucleatum challenged 

neutrophils: 

Neutrophils were challenged with F. nucleatum at an MOI 1:10 for 8 hours and 

qPCR was performed on a focused panel of innate immune, apoptosis and GPCR 

related genes (Figure 13). F. nucleatum strongly upregulates NOD1 and NOD2 

expression when compared to other genes pool. More specifically, NOD1 and 

NOD2 expression were 44.8 and 31.8 folds compared to control, respectively. 

Thus, Indicating the link between NOD1 and NOD2 pathways and F. nucleatum 

induce NETosis.  

We measured NOD1 and NOD2 mRNA expression while challenging the cells 

with P. gingivalis, A. actinomycetemcomitans, and F. nucleatum to confirm the link 

between NOD-like receptors and F. nucleatum induced NETosis. RT-qPCR data 

showed that F. nucleatum profoundly upregulates NOD-like receptors in 

comparison with other bacterial strains with and without PMA (Figure 14). 
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Figure 13: qPCR-Array of innate immune, apoptosis and GPCR related 
genes. Neutrophils were challenged with F. nucleatum at MOI:10 for 8 hours. 
Negative control was unchallenged cells in media. (a) represents a heatmap of the 
genes expression. The color scale indicates fold change in expression, yellow for 
up-regulated genes, and blue for down-regulated genes. (b) a Layout of the genes 
shown in heat map and fold changes relative to the control. Numbers are mean 
change in F. nucleatum challenged cells compared to control in two pairs.   

Gene Control F. nucleatum (MOI 1:10)
NOD1 6.4 51.2

NOD2 7.1 38.9

IL18 9.3 16.8
IL12B 11.0 11.2

TNF 3.2 11.1

TREM2 5.8 10.9
PLCB2 4.8 10.1

IL18R1 5.7 10.1
IRAK4 6.2 10.0

TLR8 8.5 9.9
CD86 5.7 9.7
IFNG 8.6 9.2

PLCH2 5.8 9.1

AIFM1 4.3 8.9
CASP8 5.0 8.2

RELA 4.4 7.8

TOLLIP 4.0 7.8
IL6ST 2.7 7.7

VCAM1 12.6 7.5
PLCG2 4.2 7.4

CASP3 3.9 7.3

CHUK 4.7 7.3
TLR4 4.8 7.3

CXCL10 4.2 7.3
TLR5 7.2 7.1

IL1RAP 4.8 6.8

LTBR 4.7 6.5

TLR2 0.7 6.4
IL10RA 1.8 6.0

CD14 0.8 5.9
FAS 5.2 5.9

MYD88 2.3 5.8

CTNNB1 1.8 5.7
IL1R1 4.9 5.7

NLRP3 6.4 5.6

RELB 2.7 5.6
IL6 10.9 5.5

BAX 1.1 5.5

MMP9 -1.3 5.2
CD46 2.7 5.1

IL10 7.4 5.0
SPHK1 3.3 4.9
CASP1 2.9 4.8

IRAK2 3.5 4.5
BID 2.4 4.5

IL6R 2.9 4.4

SOCS3 3.6 4.3
IL8 -3.0 4.2

IRAK1 2.0 4.1

HMOX1 2.8 4.1
TREM1 5.4 4.0

CCL5 -0.1 4.0

NFKB1 3.0 3.8
LY96 4.5 3.8

BCL3 3.0 3.3
SELL 1.9 3.2

PTGS2 7.0 2.4

IL1B 1.4 2.2
IL1A 5.8 1.5

CCL20 7.2 1.4

P13 -0.1 0.6
TLR6 4.1 -0.8

IFNA1 3.6 -1.4
IFNB1 3.5 -1.5
CCL3 0.9 -2.9

CEBPB -0.3 -4.7
TLR7 8.3 -10.9
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Figure 14: RT-qPCR of NOD1 and NOD2 expression in neutrophils after 
challenging them with 33277 P. gingivalis (PG), A. actinomycetemcomitans 
(A.A), and F. nucleatum (FN) with and without PMA.  F. nucleatum significantly 
upregulate NOD1 and NOD2 compared to other groups. Statistical test: One-way 
ANOVA followed by Tukey's multiple comparison test (*p < 0.05). Results are 
mean ± SD. 



 

 

52 

Summary of the F. nucleatum -neutrophils interaction: 

 F. nucleatum (MOI 1:10) successfully induced NETosis.  

 F. nucleatum highly upregulated NOD1 and NOD2 during NET formation  

 NOD1 and NOD2 expression is strongly upregulated by F. nucleatum 

when compared to P. gingivalis and A. actinomycetemcomitans. 
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NOD1 and NOD2 knock-out HL-60 cell lines: validation of the role of NOD1 

and NOD2 receptors in NETosis.  

  

Knocking out NOD1 and NOD2 using CRISPR-Cas9 system 

HL-60 Cas9 stable cell line was treated using 1 g/ml of doxycycline for 48 hours 

to activate Cas9 expression. Western blot was done to confirm Cas9 protein 

induction when compared to control (Figure 15 a). Then cells were transfected with 

(crRNA: tracrRNA) complex via electroporation. 24 hours post-transfection cells 

were cultured in semisolid media. In a week, small colonies started to grow (Figure 

14 b). At day 14, small and large colonies were selected and plated at 96 well plate 

for four days. RNA was extracted using RNAqueous™-Micro Kit (Thermo Fisher 

AM1931). RT-PCR and western blot were performed and confirmed gene knockout 

(Figure 16). Furthermore, selected colonies were single sorted at 96- well plate to 

exclude the possibility of mixed population.  

  



 

 

54 

 

 

Figure 15: (a) Immunoblot from HL-60 Cas9 stable cell line treated with 1 g 
of doxycycline for 48 hours. Cas9 protein (160 kDa) were detected only in 

doxycycline treated cells. Levels of housekeeping protein -Actin (45 kDa) were 
similar between conditions (b) Image represent a single cell colony formation 
cultured in a semisolid media. Cell were seeded in concentration of 1000 
cells/ml. Colonies were selected two weeks post transfection and seeded in 96-
well plate for colonies expansion and genes knockout validation. Bar represents 
100 μm.  

     

Figure 16: HL-60 Knockout confirmation: RT-PCR of knockout cells showed a 
significant reduction in NOD1 and NOD2 expression compared to control cells (a). 
The total protein was subjected to immunoblot to confirm the absence of NOD1 
and NOD2 protein expression compared to control. Levels of housekeeping protein 

-Actin were similar between samples(b). Statistical comparisons are shown by 
horizontal bars with asterisks above them (*p < 0.05) determined by one-way 
ANOVA and Tukey multiple comparison test. Data are expressed as mean ± SD.  
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 Reduction of F. nucleatum induced NET formation in NOD1 and NOD2 

knockout HL60  

Cell death ELISA of F. nucleatum challenged cells showed a significant 

reduction of histone-associated DNA fragments (H1, H2A, H2B, H3, and H4) in the 

cytoplasm of NOD1 Knockout cells. On the other hand, NOD2 Knockout cells 

showed no significant changes (Figure 17).  

Utilizing the fact that NETs  mainly consist of nuclear DNA (Brinkmann et al., 

2004), the fluorescent DNA stain, SYTOX® orange, was used for fluorometric 

quantification of NET release. When compared to control cells NOD1 and NOD2 

knockout HL60 cell line significantly released less NETs when challenged with F. 

nucleatum (MOI 1:10) for 12 hours (Figure 18).  Furthermore, neutrophil elastase 

immunostaining of F. nucleatum challenged cells were performed to compare NET 

formation between NOD1 Knockout HL60 and control (Figure 19). 
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Figure 17: Cell death ELISA of NOD1 and NOD2 knockout HL60 cells: NOD1 
Knockout HL60 cells showed a significant reduction in cytoplasmic histone-
associated DNA fragments (H1, H2A, H2B, H3 and H4) when challenged F. 
nucleatum (MOI1:10) (a), while NOD2 Knockout HL60 cells revealed insignificant 
changes in cell death rate. Statistical test: one-way ANOVA and Tukey multiple 
comparison test (*p < 0.05; ns = no significant difference). Values represent the 
means ± SD. 

a

b
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Figure 18: Quantification of NET release in NOD1 and NOD2 Knockout HL-60 
cell line. Cells were seeded in concentration of (1 x106 cell / ml) with and without 
F. nucleatum (FN) treatment at a MOI 1:10. After 12 hours, NET release were 
quantified using SYTOX® orange DNA stain. We observed a significant increase 
in the release of NET from control HL-60 when exposed to F. nucleatum, while 
both NOD! and NOD2 Knockout HL60 didn’t produced significant NETs when 
compared to untreated group and control treated group. Statistical test: one-way 
ANOVA and Tukey multiple comparison test (*p < 0.05; ns = no significant 
difference). Values are the means ± SD. 

  



 

 

58 

 

 

Figure 19: Neutrophil elastase staining on wild type and NOD-1 knockout 
HL60 cells. NET formation was observed after 12 hour of F. nucleatum 
stimulation.  F. nucleatum successfully induced NET formation in HL60 wild type 
cells (a), whereas NOD-1 knockout HL60 cells formed significantly less NETs(b). 
X20 magnification.  

  

a b
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Summary of the role of NOD1 and NOD2 in HL60 NET formation: 

 By using CRISPR-Cas9 system we successfully knocked out NOD1 and 

NOD2 in HL60 cell line 

 Knocking out NOD1 and NOD2 significantly reduced NETosis in F. 

nucleatum treated HL60 cells. 
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NOD1 and NOD2 NET related pathway: 

To test the role of NOD-like receptors in neutrophils NET formation, we 

investigated the pharmacological inhibition of NOD1/NOD2 before challenging with 

their specific ligands and PMA.  

Cells were pretreated with and without ML130 (NOD1-inhibitor) and GSK717 

(NOD2-inhibitor) for 2 hours, followed by 4 hours stimulation with their specific 

ligand: C12-iEDAP (NOD1-ligand), MDP (NOD2-ligand), and PMA.  

Activation of NOD1, but not NOD2 upregulate PAD4 expression: 

We analyzed NOD1, NOD2 and IL-8 mRNA expression using Real-time PCR. 

Data showed that although C12-iEDAP insignificantly upregulated NOD1 

expression, the IL8 expression, which is downstream of this activation (Jeon et al., 

2012), was upregulated. On the other hand, pretreated cells with ML130 prior to 

C12-iEDAP stimulation had a significant downregulation effect on NOD1 and IL8 

expression (Figure 20). Furthermore, treating cells with MDP significantly 

upregulates NOD2 expression, and GSK717 strongly inhibits NOD2 upregulation. 

IL8 expression with NOD2-inhibitor and/or ligand was also significantly regulated 

(Figure 21). As expected, PMA had no significant effect on either NOD1 or NOD2 

expression. Interestingly, despite the insignificant upregulation of PAD4 with C12-

iEDAP, ML130 had a substantial downregulation effect on PAD4 expression. 
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PAD4 expression of MDP and GSK717 treated cells showed no significant results 

(Figure 22).  
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Figure 20: NOD1 and IL-8 gene expression in neutrophils following NOD1 

inhibitor/ligand treatment. Cells were subjected to (15 g/ml) ML130 (NOD1-

inhibitor) treatment for 2 hours, followed by stimulation with (1 g/ml) C12-iEDAP 
(NOD1-ligand) and PMA (100nM) for 4 hours. Total RNA was isolated for real-time 
PCR. The NOD1 receptor mRNA expression was unchanged upon NOD1-ligand 
challenge but was successfully downregulated when treated with its inhibitor prior 
to ligand stimulation. PMA had no significant effect on NOD1 expression (a). 
Despite the insignificant increase in NOD1 mRNA expression when treated with 
C12-iEDAP, its activity observed by IL8 expression was increased and decreased 
significantly when treated with NOD1 ligand and inhibitor, respectively (b). Results 
are mean ± S.D. Statistical comparisons are determined using one-way ANOVA 
followed by Tukey multiple comparison test. (*p < 0.05; ns = no significant 
difference). 

  

a b
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Figure 21: NOD2 and IL-8 gene expression in neutrophils following NOD2 

inhibitor/ligand treatment. Cells were subjected to GSK717 (15g/ml) a specific 

NOD2-inhibitor treatment for 2 hours, followed by stimulation with (10g/ml) MDP 
(NOD2-ligand) and PMA (100nM) for 4 hours. MDP significantly downregulated 
NOD2 receptor mRNA expression. This rise in expression was successfully 
inhibited when treated with GSK717 before its stimulation. PMA had no significant 
effect on NOD2 expression (a). IL8 expression was significantly upregulated and 
downregulated when treated with NOD2 ligand and inhibitor, respectively (b). 
Results are mean ± S.D. Statistical comparisons are determined using one-way 
ANOVA followed by Tukey multiple comparison test (*p < 0.05). 

  

a b
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Figure 22: PAD4 mRNA expression in neutrophils following NOD1 and NOD2 
inhibitor/ligand treatment. Neutrophils were pretreated with or without (15 µg/ml) 
ML130 and GSK717 for 2 hours before challenging with (1µg/ml) of C12-iEDAP 
and (10µg/ml) MDP for 4 hours, respectively. Changes in PAD4 expression of 
NOD1-ligand treated cells were insignificant but was successfully downregulated 
upon ML130 pretreatment (a). NOD2 ligand/inhibitor treatments had no significant 
effect on PAD4 mRNA expression (b). Statistical test: one-way ANOVA and Tukey 
multiple comparison test (*p < 0.05; ns = no significant difference). 

a b
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Tracing PAD4 enzyme activity as result of NOD1 and NOD2 stimulation.   

We investigated PAD4 enzymatic activity (post-translational modification) with 

and without inhibiting NOD-like receptors using Fluorescence Quenching, a 

fluorescence-based PAD4 activity sensing strategy. In this experiment, we mixed 

cell lysate from each sample with Evans blue, a fluorescence quenching mediator, 

and TAMRA-(Gly-Arg-Gly-Ala)3, a PAD4 specific substrate (Figure 23 a). 

Substrate fluorescence release was monitored in 4 hours interval. We observed a 

significant increase of PAD4 enzymatic activity with C12-iEDAP treated cells. 

Moreover, ML130 significantly decreased the enzymatic activity of NOD1 ligand 

treated cells. MDP had no significant effect on PAD4 activity coinciding with RT-

PCR data (Figure 23b). Thus, illustrating the significant role of NOD1 receptor in 

PAD4 expression at both transcriptional and translational levels. 

NOD1 and NOD2 modulate MPO and NE activity  

MPO and NE enzymes activity in the culture supernatant were detected using 

ELISA. We observed a significant increase and decrease of MPO and NE activity 

when treated with NOD1/NOD2 ligands and inhibitors, respectively. PMA was used 

as positive control (Figure 24). This confirmed that NOD1 and NOD2 up-regulation 

is linked to NET formation via MPO and NE activity. 
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Figure 23: Neutrophils PAD4 activity assay: 

(a) When interacting with negatively charged quencher dye, TAMRA tagged 

PAD4 substrate A forms a non-fluorescent noncovalent complex B. In the 

presence of citrullinated PAD4, the PAD4 substrate become neutral C and 

loses its affinity for the dye, and a fluorescence response is observed (Wang 

et al., 2013) 

(b) Fluorescence change of PAD4 substrate (TAMRA-Gly-Arg-Gly-Ala3) and 

Evans blue quencher pair in neutrophils lysate upon stimulation with NOD1 

and NOD2 ligands, in the presence or absence of inhibitors pretreatment. 

a 

b
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Fluorescence release was monitored in 4 hours interval.  Increased PAD4 

activity were observed only in (1µg/ml) C12-iEDAP treated cells and were 

significantly reduced in (15µg/ml) ML130 pretreated group. 10µg/ml of MDP 

had no significant effect on PAD4 enzyme activity, concurring with RT-PCR 

data. Statistical test: one-way ANOVA and Tukey multiple comparison test 

(*p < 0.05; ns = no significant difference). 
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Figure 24: MPO and NE Enzyme-linked immunosorbent assay of supernatant 
from NOD1/NOD2 ligands and inhibiter treated cells. The negative control was 
supernatant from non-stimulated cells with DMSO (vehicle). The positive control 
was supernatant from PMA-stimulated cells. MPO (a) and NE (b) release were 

b

a 
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significantly induced by (1µg/ml) C12-iEDAP and (10 µg/ml) MDP ligands.  The 
enzymes induction by NOD1 and NOD2 ligands was significantly downregulated 
by pharmacological inhibition with (5µg/ml) ML130 and GSK717, respectively. 
Values represent the mean ± SD. Data were analyzed using on-way ANOVA 
followed by Tukey multiple comparison test. Statistical comparisons are to the 
vehicle (*p < 0.05; ns = no significant difference). 

 

 

Summary of  NOD1 and NOD2 pathways linked to NETosis: 

 NOD1 induced chromatin decondensation via activation PAD4 at a 

transcriptional and translational level. 

 NOD1 and NOD2 affect both MPO and NE by increasing their activity 

when stimulated.  
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Chapter 4 : Discussion and Future Directions 

Discussion: 

Neutrophil extracellular trap (NET) formation is one element in many recently 

discovered innate immune functions that has garnered much appreciation in the 

research community due to its link to various types of pathogenic interactions and 

systemic diseases. NETs consist of webs of DNA which physically trap 

microorganisms and prevent their spread. Neutrophil anti-bacterial granules are 

released attached to the DNA structure and function in degrading entrapped 

microorganisms (Brinkmann et al., 2004). Among these anti-bacterial granules, 

Neutrophils elastase (NE), and myeloperoxidase (MPO) released from granules to 

the nucleus were found to be required for NET formation (Papayannopoulos et al., 

2010). 

Using NE immunostaining of PMA treated neutrophils we observed mixed 

stages of NET formation. In the early stage, we can see NE translocation to the 

nucleus, which was reported to precede MPO translocation followed by chromatin 

de-condensation (Figure 25, blue arrow). In the later stage, the neutrophils nuclei 

lose its characteristic lobules and chromatin de-condensation with the plasma 

membrane of activated neutrophil is still intact (Figure 25, yellow arrow). Finally, 

the cell membrane rupture and the NETs are released into the extracellular space 

as part of the NET structure (Figure 25, white arrow). 
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Figure 25:  Stages in NET formation in PMA treated neutrophils. Cells (1x106 
cells/ml) were seeded in poly L lysin coated coverslip , 30 min later they were 
treated with PMA (100nM) for 4 hours. Immunostaining using NE antibody (red) 
and DAPI (blue) was done to visualize NET formation and localize NE during 
neutrophil stimulation. Different stages of cell activation were detected. Starting 
from early stage of NE translocation to the nucleus (blue arrow) , followed by loss 
of characteristic lobules and chromatin decondensation (yellow arrow), and ending 
by NET release (white arrow). 

 

Periodontitis is one of the most prevalent infectious diseases in humans 

(Pihlstrom et al., 2005). F. nucleatum has a definite role in periodontitis, due to its 

remarkable adhesive and adaptation properties (Diaz et al., 2002). Also, it has an 

essential role in supporting the growth of various bacterial species (Diaz et al., 

2002). F. nucleatum considered one of the most abundant species in the oral cavity 

of healthy and diseased individuals (Guggenheim et al., 2009; Signat et al., 2011). 

Being a bridge bacterium in the interaction between early and late oral colonizing 

bacteria, it is a key pathogen in the development of dental plaque. Thus, it is linked 

to various forms of periodontal diseases starting from mild gingivitis to advanced 
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periodontitis (Guggenheim et al., 2009; Kistler et al., 2013; Zijnge et al., 2010) 

(Kolenbrander et al., 2006). 

Numerous bacterial species have been reported to induce and be trapped by 

NETs, including periodontal pathogens (Brinkmann et al., 2004; Brinkmann and 

Zychlinsky, 2012; Remijsen et al., 2011; Vitkov et al., 2009). F. nucleatum (MOI 

1:10), was also associated with NETs when analyzed under SEM (Figure 8-9). 

NETs were observed as a web-like structure that spans between two neutrophils 

to entrap the bacteria (Figure 8c). In this study F. nucleatum was employed to 

stimulate NET production; as previous work done in our laboratory has 

demonstrated that P. gingivalis induces less NETs. That might be explained by the 

ability of P. gingivalis to manipulate the host innate immune system, thus affecting 

the ability of neutrophil to kill and produce NETs (Guggenheim et al., 2009; 

Hajishengallis, 2009; Sochalska and Potempa, 2017). We observed that using a 

higher concentration of F. nucleatum (MOI1:100) will not only lead to a faster and 

more robust neutrophils activation but also a higher cell death rate than NETosis 

(Figure 10). Moreover, an MOI of 1:10 is more clinically relevant, hence we decided 

to use F. nucleatum at MOI of 1:10 in all our investigations. 

F. nucleatum is one of the largest microbes in the oral cavity. The length of this 

spindle-shaped rod bacteria ranges from 5 to 10 m (Bolstad et al., 1996). It is 

possible that the large size of F. nucleatum is what drives neutrophils to NETosis 

instead of phagocytosis (Urban et al., 2006). It has been suggested that 
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neutrophils when highly primed by cytokines and exposed to opsonized microbes 

they will undergo apoptosis, whereas a weaker stimulus will lead to NETosis 

(Mayadas et al., 2014). F. nucleatum is considered to be less virulent when 

compared to the other red complex pathogen, thus might preferably induce 

neutrophils NETosis.  

While the list of microbes and molecules capable of stimulating NET release is 

increasing, their induced response is not identical. Bacterial-host interaction elects 

different immune responses via a varied group of receptors and cytokines 

(Janeway and Medzhitov, 2002). By using qPCR arrays, custom designed to 

detect innate immune, apoptosis and GPCR signaling pathways, we sought to 

investigate which pathway is mostly related to F. nucleatum induced NETosis. 

Interestingly, our data showed that F. nucleatum upregulates NOD1 (44.8-folds) 

and NOD2 (31.8-fold) when compared to control after 8 hours of stimulation that 

resulted in NET formation (Figure 13). Furthermore, to determine if the 

upregulation of NOD1 and NOD1 receptors can occur with other types of bacterial 

stimulation, we challenged neutrophils with F. nucleatum, P. gingivalis, and A. 

actinomycetemcomitans with and without PMA. We found that between all groups, 

F. nucleatum caused the most significant upregulation with 8.3-folds and 9.4 folds 

rise in NOD1 and NOD2, respectively (Figure 15). NOD1 and NOD2 receptor are 

the first NLRs reported as direct intracellular pattern-recognition receptors (PRRs) 

(Chamaillard et al., 2003a). It has been shown that NLRs are necessary sensors 

of specific PAMPs. However, the mechanism by which NLRs detect the PAMPs 
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remains poorly understood, and it is still unclear if they directly bind to PAMPs, or 

it is only PAMPs that bind to adaptor proteins (Fritz et al., 2006). Given that NOD1 

and NOD2 were significantly increased when challenged with F. nucleatum, we 

further analyzed the role of NOD1 and NOD2 receptors in NETosis. 

HL60 cell line is a well-known model for neutrophils studies (Bohnsack and 

Chang, 1994; Collins, 1987). Using the CRISPR-Cas9 gene editing system we 

developed a NOD1 and NOD2 knockout HL-60 cell line, as a model for our 

experiments. Although HL60 did not provide a robust model for neutrophil activity 

and NET formation, it added to our understanding of the role of NOD receptors in 

a NET release. When challenging NOD1 and NOD2 knockout HL60 with F. 

nucleatum (MOI 1:10), the NET release was significantly reduced when compared 

to control cells (Figure 18). Quantification of histone-associated DNA fragments 

(H1, H2A, H2B, H3, and H4) in the cytoplasm of NOD1 Knockout cells was 

significantly reduced, but NOD2 Knockout cells showed no significant changes 

compared to control. This indicates that NOD1 but not NOD2 is associated with 

histones release (Figure 17). In addition, staining with NE revealed that while F. 

nucleatum successfully induced NET formation in HL60 wild-type cells, NOD-1 

knockout HL60 cells formed significantly fewer NETs. Thus, confirming that NOD1 

and NOD2 receptors play a role in the NET formation, with NOD1 being more 

associated with histone release. Knowing the importance of NOD1 and NOD2 

receptors in NET formation, we further investigate the downstream activation of 
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these receptors and its link to other essential NET related proteins such as PAD4, 

MPO, and NE.  

Peptidyl-arginine deiminase enzymes (PAD4), catalyze protein transformation 

into peptidyl-citrulline in a Ca2+ dependent manner (Leshner et al., 2012). PAD4 

citrullination of histones is essential for chromatin de-condensation as a crucial 

step for NETs formation (Li et al., 2010). Thus, we investigated the link between 

the PAD4 enzyme and NOD-like receptors activation in neutrophils. The detection 

of citrullinated histones indicates the activation of the PAD4 enzyme. F. nucleatum 

(MOI 1:10), successfully induced PAD4 activation and citrullination of histones 

detected by immunostaining of Cit H3 in neutrophils (Figure 12). 

Treating neutrophils with the MDP ligand strongly upregulated NOD2 receptor 

transcription (Figure 21a), while C12-iEDAP ligand was insignificant in NOD1 

upregulation (Figure 20a). Both NOD1 and NOD2 ligands significantly upregulated 

IL8 expression (Figure 20b, 21b), indicating that despite the insignificant 

upregulation of NOD1, its receptor activity was increased. Moreover, each 

bacterial species has a different combination of surface antigens that result in 

variations in stimulation of host cells. The fact that F. nucleatum highly upregulates 

NOD1 in neutrophils (Figure 15) illustrate that there might be a peptide other than 

that present in C12-iEDAP that is more specific to the PGN of F. nucleatum 

resulting in NOD1 activation. 
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 NOD1 specific inhibitor (ML130) significantly downregulate PAD4 activity while 

NOD2 inhibitor (GSK717) had no significant results, confirming that only NOD1 is 

related to histones released via PAD4 activation. These data coincide with our 

finding in HL60 knockout NOD1 and NOD2 histones quantification (Figure 17). 

The citrullination of proteins by PAD enzymes are regulated at a transcriptional, 

translational and activation levels (Rodriguez et al., 2009). To determine whether 

the upregulation or downregulation of PAD4 expression when stimulated with 

NOD1 and NOD2 inhibitors/ ligands has a significant effect on its enzymatic 

activity, we used a fluorescence-based assay that allows for the monitoring of 

PAD4 activity (Wang et al., 2013). We found that PAD4 activity significantly 

increased with NOD1 ligand stimulation. Moreover, this rise in PAD4 activity was 

reduced considerably when pretreated with NOD1 inhibitor. On the other hand, 

NOD2 stimulation and inhibition had no significant effect on PAD4 enzymatic 

activity (Figure 23b). Thus, confirming that NOD1 but not NOD2 regulate PAD4 at 

both transcriptional and translational levels.  

 Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophils 

(Schultz and Kaminker, 1962), and neutrophils completely deficient of MPO failed 

to make NETs (Metzler et al., 2011). Neutrophil elastase (NE) formation occurs 

during the promyelocytic differentiation, then its stored in the azurophilic granules 

for the life of the neutrophils until its activation (Doring, 1994). NE plays a critical 

rule in inducing, and its inhibition will impede chromatin de-condensation and NET 
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release (Papayannopoulos et al., 2010). Based on our knowledge, there are no 

reports on the role of NOD1 and NOD2 receptors on NE and MPO activity in human 

neutrophils. It was reported that NOD1 and NOD2 receptors are essential for 

neutrophil recruitment but do not impair the immune response in NOD1-/-  and 

NOD2-/- mice. Moreover, they stimulated mice neutrophils for 2 hours with 

Litomosoides sigmodontis antigen (LsAg) or LPS and found that NE and MPO 

activity in NOD1-/-  and NOD2-/- mice were comparable to the wild-type and they 

are not functionally impaired (Ajendra et al., 2016).  

 However, in our study, we found that stimulation of NOD1 and NOD2 for 4 

hours with their specific ligands resulted in increased activity of both NE and MPO 

enzymes. Furthermore, inhibition of NOD1 and NOD2 receptors led to a significant 

reduction in NE and MPO release (Figure 24). It is possible that the insignificant 

results obtained from NOD1-/- and NOD2-/- mice were a result of inadequate 

stimulation time (only 2 hours) and that murine neutrophils activity slightly differs 

than human neutrophils. Also, MPO levels in mice neutrophils is only 10–20% that 

of human neutrophils (Kalupov et al., 2009; Noguchi et al., 2000; Rausch and 

Moore, 1975).  
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Conclusion and future directions: 

This is the first study to elucidate the role of NOD-like receptors in NETosis and 

its downstream targets (Figure 26). To our knowledge, the importance of NOD-like 

receptor in chromatin de-condensation and PAD4 activation, and their effect on 

MPO and NE activity have not been addressed previously. I believe that our study 

will set the ground for a novel approach to one of the most controversial functions 

of neutrophils. By understanding the processes that govern NET pathway, we can 

further understand their role in infection and disease.  

Furthermore, studying the pathway of NET formation that is related to both oral 

and systemic health, helps in understanding and targeting the pathways leading to 

NET related diseases. In addition to NET’s role in restricting the spread of infection, 

there is a growing body of evidence that links NETosis and other various systemic 

disorders elucidating the importance of an efficient, non-invasive therapeutic 

modality. A drug therapy that controls the initiation of the NET pathway or the 

clearance of its byproducts could be the future in treating NET related cancer 

metastasis, autoimmune, chronic inflammatory and cardiovascular diseases.  The 

periodontal pocket provides an ideal niche to test such therapeutics given its 

accessibility, its relationship to inflamed tissue and the offending microbal biofilm 

and the body of local delivery experience in this field. 
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Figure 26: Schematic diagram summarizing NET related NOD1 and NOD2 
signaling pathway.  

  

.
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