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The Role of Specific Integrase Strand Transfer Inhibitors (INSTIs) in the
Alteration of Oligodendrocyte Maturation and Myelination in Hand

Abstract
Currently, thirty-seven million people are infected with human immunodeficiency virus-1 (HIV-1)
worldwide. Thankfully, the development of combined antiretroviral therapy (cART) regimens has decreased
mortality and significantly improved the overall quality of life for these patients. However, approximately half
of all patients clinically manifest with HIV-associated neurocognitive disorder (HAND), a spectrum of
cognitive, motor, and behavioral abnormalities which histologically present as non-specific gliosis,
synaptodendritc damage and loss of white matter and myelin. Furthermore, the severity of white matter
damage correlates with the length of ART duration. However, almost no studies have been performed to
determine how the myelin sheath or the oligodendrocytes that synthesize the sheath are damaged. Thus, we
hypothesized that the administration of ART contributed in part to the myelin loss in the CNS of HIV-
positive patients. Previously, we have reported that the protease inhibitor class of ART drugs hampered the in
vitrodifferentiation of oligodendrocytes. Given that the new US guidelines for treating HIV patients
recommends anew class of drugs, the integrasestrand transferinhibitors(INSTIs)as front-line therapy, we
examined if two specific INSTIs, Elvitegravir (EVG) and raltegravir (RAL), altered the survival and/or
maturation of developing oligodendrocytes in vitroand in vivo. We found that treatment of oligodendrocyte
precursor cells (OPCs) with EVG, but not RAL, during differentiation reduced the number of cells positive
for immature oligodendrocyte marker galactosylceramide (GalC) and mature oligodendrocyte marker myelin
basic protein (MBP) in vitro, as well as the synthesis of myelin proteins. However, neither EVG or RAL
induced cell loss or apoptosis, as determined by cell counts and TUNEL assays, suggesting that EVG does not
affect OPC viability but instead, inhibits differentiation. EVG-induced oligodendrocyte differentiation deficits
could be reversed by pre-treating the cells with a drug that pharmacologically inhibits the phosphorylation of
eukaryotic initiation factor 2α(eIF2α) throughthe cellular integrated stress response (ISR). Finally, in
vivo,mice receiving EVG/COBI failed to remyelinate the corpus callosum during the three week recovery
period following demyelination, after cuprizone treatment. Although EVG/COBI treatment by itself did not
cause overt white matter loss in this brain region. Our study demonstrates that EVG, but not RAL, inhibits
oligodendrocyte precursor cell differentiation both in vitroand in vivo. Furthermore, EVG may be inhibiting
oligodendrocyte precursor cell differentiation though activation of the ISR. Also, we found thatthe effects of
EVG on oligodendrocyte differentiation could be attenuated in vitroby inhibiting the ISR. These studies
suggest that ART may contribute to cognitive impairment by inhibiting renewal and replacement of
oligodendrocytes in adults or development of oligodendrocytes in children. Further, our results suggest an
ISR inhibitor might attenuate the negative effect of EVG on the maturation of oligodendrocytes. Our findings
also suggest that development of less toxic ART compounds and adjunctive therapies are needed to minimize
the side effects of ART on the CNS.
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ABSTRACT: 

Currently, thirty-seven million people are infected with human 

immunodeficiency virus-1 (HIV-1) worldwide. Thankfully, the development of 

combined antiretroviral therapy (cART) regimens has decreased mortality and 

significantly improved the overall quality of life for these patients. However, 

approximately half of all patients clinically manifest with HIV-associated 

neurocognitive disorder (HAND), a spectrum of cognitive, motor, and 

behavioral abnormalities which histologically present as non-specific gliosis, 

synaptodendritc damage and loss of white matter and myelin. Furthermore, 

the severity of white matter damage correlates with the length of ART 

duration. However, almost no studies have been performed to determine how 

the myelin sheath or the oligodendrocytes that synthesize the sheath are 

damaged. Thus, we hypothesized that the administration of ART contributed 

in part to the myelin loss in the CNS of HIV-positive patients. Previously, we 

have reported that the protease inhibitor class of ART drugs hampered the in 

vitro differentiation of oligodendrocytes. Given that the new US guidelines for 

treating HIV patients recommends a new class of drugs, the integrase strand 

transfer inhibitors (INSTIs) as front-line therapy, we examined if two specific 

INSTIs, Elvitegravir (EVG) and raltegravir (RAL), altered the survival and/or 

maturation of developing oligodendrocytes in vitro and in vivo. We found that 

treatment of oligodendrocyte precursor cells (OPCs) with EVG, but not RAL, 

during differentiation reduced the number of cells positive for immature 

oligodendrocyte marker galactosylceramide (GalC) and mature 

oligodendrocyte marker myelin basic protein (MBP) in vitro, as well as the 

synthesis of myelin proteins. However, neither EVG or RAL induced cell loss 
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or apoptosis, as determined by cell counts and TUNEL assays, suggesting 

that EVG does not affect OPC viability but instead, inhibits differentiation. 

EVG-induced oligodendrocyte differentiation deficits could be reversed by pre-

treating the cells with a drug that pharmacologically inhibits the 

phosphorylation of eukaryotic initiation factor 2 α (eIF2α) through the cellular 

integrated stress response (ISR). Finally, in vivo, mice receiving EVG/COBI 

failed to remyelinate the corpus callosum during the three week recovery 

period following demyelination, after cuprizone treatment. Although 

EVG/COBI treatment by itself did not cause overt white matter loss in this 

brain region. Our study demonstrates that EVG, but not RAL, inhibits 

oligodendrocyte precursor cell differentiation both in vitro and in vivo. 

Furthermore, EVG may be inhibiting oligodendrocyte precursor cell 

differentiation though activation of the ISR. Also, we found that the effects of 

EVG on oligodendrocyte differentiation could be attenuated in vitro by 

inhibiting the ISR. These studies suggest that ART may contribute to cognitive 

impairment by inhibiting renewal and replacement of oligodendrocytes in 

adults or development of oligodendrocytes in children. Further, our results 

suggest an ISR inhibitor might attenuate the negative effect of EVG on the 

maturation of oligodendrocytes. Our findings also suggest that development of 

less toxic ART compounds and adjunctive therapies are needed to minimize 

the side effects of ART on the CNS. 
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CHAPTER 1: Introduction 

1.1 Overview: 

Since the isolation of Human Immunodeficiency virus (HIV) three decades 

ago, research has revealed many aspects of this virus including the 

interaction with host cells and other pathogenic mechanisms. HIV is a 

lentivirus within the family of retroviridae, it’s a single strand RNA virus 

which has two types, HIV-1 and HIV-2 [1]. Like other retroviruses HIV-1 

virions contain two copies of a single-stranded RNA genome, which is 

reversely transcribed to double-stranded DNA by the viral reverse 

transcriptase enzyme. This double-stranded DNA fragment is subsequently 

integrated into the host genome by the viral integrase enzyme [2]. Although 

HIV-induced abnormalities do not manifest in the CNS until the later stages of 

infection, there is evidence to support early entry of virus into the CNS in HIV-

1 positive patients [3]. However, the major impact of HIV on neuronal cells 

likely occurs indirectly through release of excitotoxic substances from HIV 

infected macrophages [4-7]. A major manifestation of HIV in the CNS is HIV 

associated neurocognitive disorder (HAND) [8]. The development of 

combined antiretroviral therapy (cART) transformed the HIV infection from a 

lethal disease into a chronic illness managed by medication [9]. cART is a 

combination of antiretroviral compounds that target different points in the viral 

life cycle and fall into several categories: 

1. Nucleoside reverse transcriptase inhibitors (NRTIs)  

2. Non-nucleoside reverse transcriptase inhibitors (NNRTIs)  

3. Protease inhibitors (PIs)  

4. Integrase inhibitors (INSTIs)  
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5. Fusion inhibitors (FIs)  

6. Chemokine receptor antagonists (CCR5 antagonists) 

It has been found that using multiple classes of ART is more effective at viral 

suppression compared with treatment using a single class [10]. Despite viral 

suppression with cART, about 50% of HIV-positive patients still suffer from 

HAND. Previously, our lab showed that using ritonavir (RIT) (a protease 

inhibitor) had a negative effect on the differentiation of oligodendrocytes 

suggesting that RIT contributed to the loss of white matter in HAND [11]. One 

of the prominent cellular stress responses associated with ART treatment is 

ER stress, generated from the accumulation of unfolded proteins inside the 

lumen of ER, which is a candidate for the major underlying mechanism for 

much of the damage observed in the CNS of patients with HAND receiving 

ART in their treatment for HIV [12]. Another potential factor that contributes to 

the neurological damage in HAND is through disturbance of lipid balance in 

the oligodendrocytes in patients using RIT as part of their cART regimen [13]. 

We hypothesized that different classes of cART compounds activate different 

cellular stress pathways in oligodendrocytes. Attenuating these stresses could 

have a therapeutic impact and could ameliorate negative effects of cART 

drugs on oligodendrocytes. 

 

1.2 HIV-Associated Neurocognitive Disorder (HAND) 

According to the latest statistics from the world health organization (WHO), 

thirty-seven million people are infected with human immunodeficiency virus-1 

(HIV-1) worldwide[14]. Approximately half of all HIV-positive patients clinically 

present with a neurological manifestation called HIV-associated 
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neurocognitive disorder (HAND), a spectrum of cognitive, motor, and 

behavioral abnormalities associated with white matter loss [8]. HIV enters the 

brain within the first two weeks of infection [15]. Several mechanisms have 

been proposed in the literature to explain how HIV infects the CNS. One 

theory holds that the virus can infect the endothelial layer of the blood brain 

barrier (BBB) and damaging the endothelial layer by the virus results in easier 

access of the virus to the CNS [16]. Another theory suggests that the HIV 

disrupts the lipid rafts in the cell membrane of the endothelial layer of BBB 

which is an important portal into the CNS [17]. Lastly, the most widely 

accepted theory is the “Trojan horse” theory, through which HIV-1 infected 

monocytes pass through the BBB leading to subsequent viral release and 

propagation in the CNS with the pool of infected macrophages spreading HIV 

infection inside the brain [18]. In the CNS, the virus can infect macrophages, 

microglia, and a small proportion of astrocytes. However, HIV-1 has not been 

known to elicit any direct effects on neurons or oligodendrocytes [19-21]. Two 

proposed mechanisms explain the effects of the HIV on the neuronal cells, the 

first proposed mechanism is through direct injury from HIV proteins (e.g. 

gp120, Tat, and Vpr) released from infected macrophages and microglia 

which interact with receptors on neurons. The second proposed mechanism is 

the “bystander effect” hypothesis, which suggests that the damage occurs due 

to the release of cytotoxic molecules including reactive oxygen species, nitric 

oxide, glutamate, and pro-inflammatory cytokines and chemokines from the 

infected immune cells in the CNS, leading to neuronal damage and 

dysfunction [7]. Both direct viral protein effects and indirect bystander effects 

of HIV have been documented in the literature and result in HIV-mediated 
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neuronal toxicity in HAND patients [22]. HAND severity is clinically divided into 

three categories based on two specific factors: patient neurocognitive status 

and patient functional status. Based off of these two criteria, patients can be 

diagnosed as having Asymptomatic Neurocognitive Impairment (ANI), Mild 

Neurocognitive Disorder (MND), or HIV Associated Dementia (HAD). HAD is 

considered the most severe form of HAND (Table1) [8]. 

 Neurocognitive Status  Functional Status 

Asymptomatic 

Neurocognitive 

Impairment (ANI) 

1 SD below mean, 2 

cognitive domains 

No impairment in 

activities of daily living 

Mild Neurocognitive 

Disorder (MND) 

1 SD below mean, 2 

cognitive domains 

Impairment in activities 

of daily living 

HIV Associated 

Dementia (HAD) 

2 SD below mean, 2 

cognitive domains 

Marked impairment in 

activities of daily living 

Table 1: Categories of HIV associated neurocognitive disorder HAND. 
Neurocognitive status included test of at least five domains such as language, 
attention-formation processing and simple motor skills. The functional status 
is usually evaluated by self-report.  

  

HAD incidence significantly decreased during the post-cART era [8, 23]. 

Currently, CD4+ T-lymphocyte cell counts are no longer a marker for HAND 

severity. Instead, cerebrospinal fluid (CSF) analysis and neuroimaging 

techniques can be utilized to detect pathological changes in the CNS. This 

has proven especially useful for patients with accelerated progression of 

dementia. Before the cART era, approximately 25% of HAND positive patients 

had the severe form of HAND (HAD) with neuronal death observed in the 
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frontal lobes, hippocampus, and basal ganglia [24]. Since cART introduction 

in the mid 1990s, an extensive clinical investigation has revealed a dramatic 

reduction in the prevalence of HAD (specifically, to only 2% of HIV-1 positive 

patients). However, the milder forms of HAND became more predominant, 

with a shift from pre-cART subcortical pathology to cortical manifestations with 

cART. It is also interesting to note that the percent of HIV-1 patients with 

HAND remains unchanged from the pre-ART to the post-ART eras [25-29].  

CNS damage in the post-cART era has been attributed to multiple factors 

such as irreversible brain impairment prior to cART initiation, poor CNS 

penetrance of several ART drugs, and inadequate viral elimination from CNS. 

More importantly, ART drugs themselves have been shown to have 

deleterious effects on the CNS [7, 11, 12, 30, 31].  

 

1.3 Antiretroviral Therapy:  

Prior to 1990s, HIV-1 antiretroviral drugs were administered as a 

monotherapy, but due to the error-prone reverse transcription process during 

viral replication, HIV is highly susceptible to mutations. However, in the late 

1990s, the standard of care changed such that several ART drugs could be 

administered with a lower pill burden to combat HIV-1, which became known 

as combined antiretroviral therapy (cART) to overcome the high mutation rate 

of HIV [32]. This multiple-hit approach targets the virus at several different 

biological processes to control viral replication, and to transform HIV-1 

infection from a lethal illness into a chronic, yet manageable disorder [33-35]. 

It is important that after cART initiation, treatment should not be interrupted. 

ART cessation has been associated with opportunistic infections and further 
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immune system compromise [36]. ART has no therapeutic effect on 

previously infected cells, but it prevents further HIV-1 infection of new target 

cells with high efficacy [37]. ART drugs have been designed to 

simultaneously target the virus at one of the five stages of the HIV-1 life cycle, 

viral entry, reverse transcription, viral DNA integration into the host genome, 

transcription, virus assembly/production, and proteases [32, 38]. The multiple 

classes of ART suppress the virus in different ways (Figure 1); the entry 

inhibitor class interferes with viral entrance into the host cell. It works by 

inhibiting virus attachment to the CD4 receptor, and co-receptor CC-

chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) which 

is necessary for fusion of the virus to the target cell membrane [39]. The 

Nucleoside reverse transcriptase inhibitors (NRTIs) mimic endogenous 

deoxyribonucleotides and are characterized by having high affinity for the 

virus reverse transcriptase enzyme, which facilitates incorporation into the 

viral DNA strand during synthesis [40]. Non-nucleoside reverse transcriptase 

inhibitors (NNRTIs), unlike NRTIs, disrupt the enzymatic activity of the viral 

reverse transcriptase [41]. Integrase strand transfer inhibitors (INSTIs) are 

one of the more recently-developed classes of antiretrovirals. These drugs 

inhibit the HIV-1 integrase enzyme, which is important for viral DNA 

integration into the cell genome. Specific drugs in this class include 

Elvitegravir (EVG) and Raltegravir (RAL). Integrase inhibitors bind to cofactors 

of the viral integrase enzyme that are important for interaction with the host 

DNA resulting in blocking the insertion of the virus into the host genome [42]. 

The protease inhibitor (PI) class has a high affinity for the HIV protease active 
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site. Inhibiting this enzyme prevents HIV maturation and subsequent viral 

budding (Figure 1) [43]. 

 

 

Figure 1: Classes of ART; Treatment of HIV infected patients is usually a 
combination of these classes that aim at suppressing the life cycle of the virus 
at different points.  
 
These drugs are usually prescribed with pharmacokinetic boosters, such as 

the P450 inhibitors Cobicistat (COBI) or RIT [44]. Both COBI and RIT are 

potent inhibitors of the cytochrome P450 isoenzyme and achieve the desired 

goal of boosting plasma drug concentrations, but COBI is more selective than 

RIT to P450 [45, 46]. A proposed cause for the persistence of the viral effects 

in the CNS is limited penetration of ART into CNS because of the presence of 

BBB. For this reason, a proposed method to eliminate viral reservoirs is to 

apply therapies with ART that would reach therapeutic concentrations in the 
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CNS tissue of infected patients [47]. To address the issue of ART penetration 

into the CNS, a CNS penetration effectiveness (CPE) score was developed 

based on 1) Chemical properties of the drug, 2) Concentration of the drug in 

CSF, and 3) Effectiveness of the drug to reduce the viral load in CSF [48]. 

One of the examples for that is EVG, a small lipophilic molecule that has been 

characterized to have a high CPE score [9, 49]. Still CPE scores do not 

completely correlate with CNS neurological functions, since several ART 

drugs with high CPE were associated with worse neurocognitive performance 

[50]. Our knowledge of the effects of CPE scores on neurological outcomes in 

human patients is limited due to technical and ethical limitations. Moreover, 

other factors are not included when evaluating the CPE such as drug and 

alcohol abuse, co-infections, and, most importantly, the integrity of BBB [51, 

52]. Toxic effects of ART in the CNS have not been studied thoroughly, 

however with the periphery as an indicator it is likely that ARV drugs have the 

capacity to contribute to neuronal damage and manifestations of HAND.  

 

1.4 The Integrated Stress Response (ISR) 

One of the protective cellular mechanisms in response to different stressors is 

the activation of a common adaptive pathway termed the integrated stress 

response (ISR). Extracellular and intracellular stressors such as hypoxia, 

amino acid deprivation, glucose deprivation, viral infection, or the 

accumulation of unfolded proteins in the ER can activate this pathway [53]. 

The pathway is initiated by one of four protein sensors in unstressed cells. 

These four proteins are PKR-like ER kinase (PERK), double-stranded RNA-

dependent protein kinase (PKR), heme-regulated eIF2α kinase (HRI), and 
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general control nonderepressible 2 (GCN2) (Figure 2) [53, 54]. The common 

point where these kinases converge to activate ISR is the phosphorylation of 

eukaryotic translation initiation factor 2 subunit alpha (eIF2α) on serine 51 

[55]. Each of these kinases are activated by different stressors. PERK can be 

activated by accumulation of unfolded proteins in the lumen of ER, 

perturbations in calcium homeostasis, or changes in cellular energy or redox 

status [56]. There are two models of activation of PERK through ER stress. 

The classical model is through the accumulation of incompletely folded or 

unfolded proteins in the lumen of ER leading to dissociation of GRP78 from 

PERK leading to activation and autophosphorylation [57, 58]. However, 

another model suggests that PERK is activated directly by binding of unfolded 

proteins to its luminal domain [56]. GCN2 becomes activated in response to 

amino acid deprivation [59]. PKR is activated mainly by double strand RNA 

viruses [60, 61]. Unlike other kinases, stressors like ER stress, oxidative 

stress, growth factor deprivation and bacterial infection can also activate PKR 

kinase in a dsRNA-independent manner [62]. HRI is activated upon heme 

deprivation leading to dimerization and autophosphorylation of its kinase 

domain [63]. In the ISR, restoring normal cellular function is performed by 

dephosphorylating eIF2α, which is accomplished by protein phosphatase 1 

(PP1), PPP1R15A (known as GADD34), or PPP1R15B (known as CReP). 

CReP operates under resting-state conditions to maintain a low level of eIF2α 

phosphorylation, unlike GADD34. GADD34 expression is induced at later 

stages of the ISR, acting as part of an important negative feedback loop to 

restore normal protein synthesis once the stress has been resolved (Figure 2) 

[64, 65].  
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Figure 2: Integrated Stress Response (ISR): ISR is a common pathway 
activated for adaptation to various intrinsic and extrinsic stressors. These 
stressors activate one of four kinases which are PKR-like ER kinase (PERK), 
double-stranded RNA-dependent protein kinase (PKR), heme-regulated 
eIF2α kinase (HRI), and general control nonderepressible 2 (GCN2). The 
common point where these kinases converge to activate ISR is the 
phosphorylation of eukaryotic translation initiation factor 2 (eIF2α). Cellular 
normal function will be restored upon dephosphorylating eIF2α and in case of 
persistence of the stress, ATF4 will mediate cell death through activation of 
CHOP. 

 
1.4a ISR Activation by ART Drugs 

ART has improved the quality of life of HIV-positive patients and transformed 

HIV from a mortal disease into a chronic disease. However, a large number of 

studies show that ART contributes to other conditions such as HAND, 

dyslipidemia and other disorders [11, 66, 67]. A few previously published 

studies show that different classes of ART are responsible for activation of 

different stress pathways in neural cells. RIT from the PI class inhibits the 

differentiation of oligodendrocytes through an as yet unidentified pathway[11] 

and lopinavir and EVG are toxic to neurons [12]. Another study performed on 

primary neurons showed that EVG treatment decreased the maturation and 



 

 

25 

elongation of neuronal processes and activated the ISR, as assessed by 

measuring the levels of phosphorylated eIF2α. Most notably, the effects from 

EVG treatment were significantly reduced after pharmacologically blocking 

eIF2α phosphorylation with a drug called TRANS-ISRIB.[12] However, the 

literature on the effects of HIV ART on the different stress pathways in the 

CNS is incomplete. 

 

1.5 White matter pathologies in HAND 

During HIV-1 infection/HAND, white matter changes compromised structural 

integrity and volume of corpus callosum, internal capsule, superior 

longitudinal fasciculus, superior corona radiata, as well as reduction in overall 

blood flow to white matter. Cognitive impairment was positively correlated with 

white matter injury, but not to the viral load [11, 68-73]. Furthermore, a recent 

transcriptome analysis identified genes which remain dysregulated in HAND-

afflicted individuals on ART including important myelin genes such as myelin-

associated oligodendrocyte basic protein, myelin transcription factor 1, and 

myelin basic protein [74]. One of the earlier treatment regimens for HIV (which 

is still part of the World Health Organization treatment guidelines) includes 

RIT and lopinavir [14]. Treatment with these protease inhibitors caused a 

reduction in the maturation and differentiation of OPCs in vitro and RIT 

treatment reduced myelin protein expression in vivo [11, 75]. The new 

guidelines for patients with HIV infection include a more recently-introduced 

class of drugs called integrase strand transfer inhibitors (INSTIs) which inhibit 

the integrase enzyme encoded by the virus to integrate its genome into the 

host cell DNA, which is an essential process for HIV replication [9, 44]. Here, 
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we test two different INSTIs: EVG and RAL, and their effects on OPC survival 

and differentiation in vitro using primary rat cortical cell culture model, and the 

effects of EVG combined with P450 inhibitor, cobicistat, to examine the effect 

of the drug on the myelination of oligodendrocytes in a cuprizone mouse 

model [76, 77].  

 

1.6 Sterol regulatory element-binding protein (SREBP) pathway 

The myelin in mammals is synthesized by two types of cells, oligodendrocytes 

in the CNS and Schwann cells in the peripheral nervous system (PNS) and is 

a lipid rich and multilamellar structure. Beside providing nutrition and support, 

oligodendrocytes and Schwann cells play a major role in insulating the nerve 

axon to improve electrical conductivity. Myelin plays a major role in higher 

brain function and a reduction in the myelin production is associated with 

diseases such as multiple sclerosis (MS) [78]. The plasma membrane of 

oligodendrocytes differs from other cells due to the presence of a high lipid 

content in its membrane [79]. During myelination, oligodendrocytes generate 

tremendous amount of lipids in a short period of time [80]. Unlike other cells, 

the protein to lipid ratio is 1 to 186 due to the compact function of the most 

abundant proteins in myelin MBP and PLP [81]. Quantitively, the most 

abundant lipids in myelin are cholesterol and fatty acids. The cholesterol 

provides the stability to myelin through regulating permeability and fluidity of 

the membrane, the rate of cholesterol synthesis appears to couple with the 

speed of myelin membrane biogenesis [82]. Knocking out fatty acid synthesis 

in mice is embryonically lethal, and resulted in reduced thickness of the 

myelin wrapping of nerve axons [83, 84]. The intracellular levels of both 
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cholesterol and fatty acids are precisely controlled through a feedback system 

facilitated by a family of transcription factors called sterol regulatory element-

binding proteins (SREBPs) which are members of the basic helix-loop-helix-

leucine zipper (bHLH-Zip) transcription factor family. SREBPs are found as 

inactive precursors bound to the ER membrane. A reduction in cholesterol 

and fatty acids results in activation of SREBPs through their translocation 

from the ER membrane to the Golgi apparatus where they are cleaved by site 

1 protease (S1P) and site 2 protease (S2P). S1P cleaves SREBPs in the 

luminal loop between the two membrane-spanning sequences, whereas S2P 

cleaves the NH2-terminal bHLH-Zip domain of SREBPs, releasing the mature 

forms. The mature NH2-terminal domain then translocates to the nucleus to 

activate genes controlling lipid synthesis. In contrast, excess of lipids will 

result in SREBP inactivation to inhibit the accumulation of the lipids in the cell 

[85]. Cholesterol synthesis is controlled by two intracellular sensors; Insig and 

Scap. In case of cholesterol depletion, Insig-1 dissociates from Scap and is 

degraded by proteasomes, whereas the Scap/SREBP complex exits the ER 

and is transported to the Golgi apparatus where it is cleaved by both S1P and 

S2P and the active domain transfers into the nucleus to restore the 

cholesterol levels in the cell [86]. After sufficient production of cholesterol Insig 

binds to Scap forming Insig/Scap complex in the ER [87]. In sterol and fatty 

acid depleted cells, Insig is ubiquitinated by gp78. Ubiquitin regulatory X 

domain-containing protein 8 (Ubxd8) recruits the ATPase p97 to Insig leading 

to degradation of Insig by proteasomes, whereas this action is inhibited by the 

presence of unsaturated fatty acids and sterols [88]. Excess lipids in the body 

is a risk factor for developing disorders such as atherosclerosis which is a life 
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threatening disease, which results from lipid accumulation in the 

subendothelial matrix [89, 90]. An increase in the synthesis of fatty acids in 

the tissue is also associated with improper brain development besides other 

tissue dysfunctions [91]. 

 

1.7 Oligodendrocytes in HAND: 

Oligodendrocytes are one of the four glial cells in the CNS, accounting for 5-

8% of all glial cells [92]. Oligodendrocytes develop prenatally and early in 

postnatal life, and during development. Neural progenitor cells (NPCs) give 

rise to neurons and glial cells. However, oligodendrocytes are derived from 

oligodendrocyte precursor cells (OPCs). The three main stages of 

oligodendrocyte differentiation are: oligodendrocyte precursor cells (OPCs), 

immature oligodendrocytes, and mature oligodendrocytes [93]. 

Oligodendrocytes are generated from OPCs and mature in a stage-specific 

process, allowing for assessment using stage specific antigens. As they 

differentiate, they start expressing markers such as A2B5, NG2 and PDGF-A. 

As they transition into the immature stage, they express GalC and start to 

extend their processes to adopt the morphology of the mature phase which is 

characterized by the presence of PLP and MBP proteins (Figure 3) [94]. 

Ultimately, these proteins will form the myelin sheath as part of the 

oligodendrocyte plasma membrane. OPC founder cells arise from the 

ventricular region early during development as a result of local signaling by 

factors including sonic hedgehog. The immature oligodendrocyte is suggested 

to be highly migratory, and the final matching between oligodendrocytes and 

nerve axons happens due to combination of local regulation of cell 
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proliferation and differentiation [95]. The wrapping of multiple nerve axons by 

a solitary oligodendrocyte is a heavily synchronized event. Oligodendrocytes 

do not wrap different nerve axons at different time points. Rather, it is done 

within a short period of time, typically within 12 to 18 hours [96]. In the CNS, a 

single oligodendrocyte can produce as many as forty segments on multiple 

axons. The main elements of myelin in the oligodendrocytes are lipids, which 

account for at least 70% of dry weight, which is considered to be twice as 

concentrated as other plasma membranes.  

Myelin’s main function is to insulate the nerve axons to increase the 

electrical resistance in the cell membrane and decrease membrane 

capacitance to ensure fast conduction of electrical impulses [97, 98]. The 

myelin sheath also supplies nutrition and support for nerve axons[95]. Re-

myelination or myelin repair of the nerve axons enables restoration of 

saltatory conduction, and a return of normal function lost during demyelination 

[92, 99]. Remyelination of the nerve axons after injury is not performed by 

mature oligodendrocytes, but rather by the OPCs distributed throughout the 

CNS.  

Oligodendrocytes are thought to be not directly infected by HIV. Similar 

to neurons, oligodendrocytes lack the CD4 receptor required for HIV entry, 

suggesting that in these two populations indirect injury results from infected 

cells in the CNS [100]. The synaptodendritc injury in HAND is largely 

mediated by infected and activated microglia and astrocytes. In culture, HIV-1 

Tat caused death of immature oligodendrocytes, while more mature OLs 

remained alive with dysregulated myelin protein and morphology [101]. In 

humans, the transcriptome analysis showed an alteration in oligodendrocyte 
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specific genes following HIV-infection in HAND patients, this alteration 

remained even after suppression of the virus with ART [74]. Our studies 

demonstrate that selected ART drugs inhibit oligodendrocyte precursor cell 

differentiation, suggesting that it might contribute to the development of 

HAND. In vitro we were able to rescue the differentiation of oligodendrocytes 

from the effects of one ART drug. Our findings also suggest that development 

of less toxic ART compounds and adjunctive therapies are needed to 

minimize the side effects of ART in the CNS. 

 

 

Figure 3: Progression of oligodendrocyte lineage from OPCs to mature cells;  
specific markers found at different stages of maturation of oligodendrocytes 
during their development. Monitoring these markers, using specific antibodies, 
allows for studies to be performed evaluating maturation from oligodendrocyte 
precursor cells to immature and mature oligodendrocytes.  
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CHAPTER 2: The role of specific Integrase Strand 

Transfer Inhibitors (INSTIs) in modulating oligodendrocyte maturation 

and myelination in HAND 

2.1 Abstract 

Despite effective viral suppression through combined antiretroviral (ARV) 

therapies (cART), approximately half of HIV-positive individuals present with 

HIV-associated neurocognitive disorder (HAND), a spectrum of cognitive, 

motor, and behavioral disturbances. Clinical manifestations of HAND include 

non-specific gliosis, synaptodendritic damage, and myelin loss. Studies of 

cART-treated patient brains have shown persistent myelin abnormalities 

including the thinning of the corpus callosum, and decreased myelin protein 

mRNAs. The myelin membrane, produced by oligodendrocytes, is critical for 

rapid action potentials and axonal maintenance; thus, myelin loss can 

contribute to neurocognitive dysfunction. We have previously shown that ART 

compounds from the protease inhibitor (PI) class, ritonavir, attenuated 

maturation of oligodendrocytes, in vitro and in vivo. Current guidelines for 

cART regimens recommend a new class of ART compounds, the integrase 

strand transfer inhibitors (INSTIs). We hypothesized that INSTIs also alter 

maturation and/or survival of oligodendrocytes, contributing to the myelin loss 

seen in HAND patients. To address this question, we induced differentiation of 

primary rat oligodendrocyte progenitor cells in the presence or absence of 

therapeutically relevant concentrations of INSTIs elvitegravir and raltegravir.  

We found that INSTI raltegravir had no effect, while elvitegravir treatment 

resulted in a dose-dependent reduction in mature oligodendrocytes after three 

days. In vivo daily administration of elvitegravir to adult mice in the three 
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weeks following cuprizone-induced demyelination, resulted in reduced 

remyelination compared with cuprizone treated animals permitted to recover 

or treated with the vehicle. Elvitegravir treatment resulted in activation of the 

integrated stress response (ISR) in both our in vitro model of oligodendrocyte 

development and our in vivo model of remyelination. Blocking ISR with the 

inhibitor, Trans-ISRIB, rescued oligodendrocyte maturation in the presence of 

elvitegravir in vitro. These studies suggest that elvitegravir inhibits the 

maturation of oligodendrocyte precursor cells and subsequent myelination by 

oligodendrocytes. 

 

Significance Statement 

HIV-associated neurocognitive disorder (HAND) represents a spectrum of 

cognitive, motor, and behavioral disturbances that occur in approximately 

50% of HIV-positive individuals, regardless of the consistent administration of 

combined antiretroviral (ARV) therapies (cART). The etiology and 

pathogenesis of HAND are currently unknown; however, soluble factors from 

HIV-infected macrophages/microglia and potentially cART themselves may 

play a role. Herein, we show that maturing oligodendrocytes treated with a 

front line ART compound, elvitegravir, are inhibited from differentiating into 

immature and mature oligodendrocytes. In vivo administration of elvitegravir 

to mice recovering from cuprizone-induced demyelination leads to attenuation 

of remyelination. We also show that elvitegravir treatment induces the 

integrated stress response (ISR) in oligodendrocytes in vitro and in vivo. 

Further, pretreatment with an ISR inhibitor, trans-ISRIB, prior to elvitegravir 

treatment, rescued maturation attenuation induced by elvitegravir in vitro. 
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2.2 Introduction 

Despite effective viral suppression by combined antiretroviral (ARV) therapy 

(cART), approximately 50% of HIV-positive patients present with a broad 

spectrum of cognitive, motor, and behavioral disturbances collectively termed 

HIV-associated neurocognitive disorder (HAND) [8, 102-104]. Due to the high 

mutation rate during HIV replication, cART is designed to target multiple 

processes in the replication cycle of the virus to reduce drug resistance [105]. 

The newest class of ART compounds, the integrase strand transfer inhibitors 

(INSTIs), inhibits the function of the virally-encoded HIV integrase enzyme 

which mediates integration of the reverse transcribed viral DNA into the host 

cell genome [44, 105]. Current front-line cART regimes include two 

compounds from the nucleoside reverse transcriptase (NRTI) class and one 

from the INSTI class, making these compounds clinically relevant to study 

[14]. In the post cART era, HAND neuropathogenesis includes persistent 

microgliosis, astrogliosis, dendritic damage, neuronal, loss, synaptic loss and 

white matter abnormalities [8, 106, 107]. White matter changes include 

dramatic thinning of the corpus callosum and loss of structural integrity and 

volume of frontal white matter [68, 70, 72, 108]. Notably, the severity of 

cognitive impairment correlates with the amount of white matter damage 

[109]. Furthermore, a recent transcriptome analysis identified myelin-

associated oligodendrocyte basic protein, myelin transcription factor 1, and 

myelin basic protein (MBP) as being reduced in patients with HAND 

regardless of cART [110]. In the CNS, oligodendrocytes are non-neuronal 

cells that produce white matter or myelin; this mostly lipid-based membrane is 
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critical for the rapid transmission of action potentials, metabolic support, and 

prevention of axonal degeneration [111-113].  

Even with growing evidence of persistent myelin abnormalities in HAND 

individuals, the mechanism underlying these observed changes remains 

unclear [102, 107, 114]. cART suppresses viral replication to undetectable 

levels in the periphery; however, inflammation and viral reservoirs persist in 

the CNS [106, 115-117]. Additionally, ART compounds themselves may 

contribute to the pathogenesis of HAND [107]. ART-induced toxicity has been 

shown in primary rat cortical neurons [12, 31, 118].The integrated stress 

response (ISR) was identified as a mediator of ART-induced neurotoxicity by 

a subset of these compounds.  Further, ISR activation has been observed in 

neurons and astrocytes of HAND patients [12, 31, 118]. The ISR is 

cytoprotective and activated in response to extrinsic and intrinsic stressors 

such as viral infections, and accumulation of unfolded proteins in the 

endoplasmic reticulum (ER), respectively; however, if the stress is left 

unsolved this ultimately leads to cell death [53, 119, 120]. Furthermore, our 

group has previously reported that ART compounds ritonavir and lopinavir, 

inhibit oligodendrocyte maturation, in vitro; ritonavir also inhibited myelin 

protein production, in vivo [11]. We hypothesized that new frontline ART 

compounds from the INSTI class, elvitegravir (EVG) and raltegravir (RAL), will 

also affect oligodendrocyte maturation and/or survival, contributing to the 

myelin abnormalities observed in HAND patients. Here, we examine INSTIs, 

EVG and RAL, on primary rat oligodendrocyte precursor cell (OPC) 

maturation and survival using a well-established in vitro model [94, 119]. 

Moreover, we test the effect of EVG on remyelination following cuprizone-
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induced [77, 121, 122]. Finally, we show that the ISR mediates the effects of 

EVG in our in vitro oligodendrocyte maturation model. Our results support a 

role for INSTI, EVG, in myelin abnormalities seen in HAND patients and 

provides the first evidence to suggest the ISR as a mediating pathway that 

could be therapeutically relevant to these patients. 

 

2.3 Materials and Methods 

Chemicals and Reagents. The following antibodies used in this study were 

purchased from the indicated vendors: GeneTex (Irvine, CA): Aspartoacylase 

(ASPA; Cat# RRID: ); Wako (Osaka, Japan): ionized calcium binding adaptor 

molecule 1 (IBA1; Cat#  RRID: ); Invitrogen (Carlsbad, CA):  phospho-

eukaryotic initiation factor 2 alpha (p-eIF2α; Cat# 44-728G RRID: 

AB_1500038); Cell Signaling Technology (Beverly, MA): eukaryotic initiation 

factor 2 alpha (eIF2α; Cat# RRID:), phospho-eukaryotic initiation factor 2 

alpha (p-eIF2α; Cat# RRID:); BD Biosciences (San Jose, CA): platelet derived 

growth factor receptor alpha (PDGFRα, Ca# 556002 RRID: AB_396286); 

Sigma Aldrich (St. Louis, MO): alpha-tubulin (α-tubulin; Cat# T5168 RRID: 

AB_477579); Millipore (Temecula, CA): glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH; Cat# MAB374 RRID: AB_2107445), neural/glia 

antigen 2 (NG2, Ca# AB5320 RRID: AB_11213678);  BioLegend (San Diego, 

CA): myelin basic protein (MBP; Cat# 808401 RRID: AB_2564741); 

Proteintech (Rosemont, IL): activating transcription factor 4 (ATF4; Cat# 

10835-1-AP RRID: AB_2058600), lamin B1 (Ca# 12987-1-AP RRID: 

AB_213690). Additional antibodies were: galactocerebroside (GalC) mouse 

hybridoma supernatant (GalC H8H9) (Ranscht et al., 1982), myelin basic 
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protein (MBP, rat hybridoma supernatant) and glial fibrillary acidic protein 

(GFAP) (kind gifts of Dr. Virginia Lee, University of Pennsylvania, 

Philadelphia, PA). The following chemical reagents used in the study were 

purchase from the indicated vendors: Sigma Aldrich (St. Louis, MO): poly-D-

lysine (PDL), biotin, dimethyl sulfoxide (DMSO), Triton X-100, Fast Green 

FCF, insulin, protease inhibitor cocktail, thyroxine (T4), lithium carbonate, 

luxol fast blue, cuprizone, bovine serum albumin (BSA); Alfa Aesar 

(Lancashire, United Kingdom): cresyl violet; Jackson Immunoresearch 

Laboratories (West Grove, PA): FITC-conjugated goat anti-mouse IgG3, 

rhodamine-conjugated goat anti-rat IgG; LiCOR (Lincoln, NE): Odyssey goat 

anti-mouse IRdye 800CW, goat anti-mouse IRdye 680RD, goat anti-rat IRdye 

800CW, goat anti-rat IRdye 680RD, goat anti- rabbit IRdye 800CW, goat anti-

rabbit IRdye 680RD; Toronto Chemicals (Toronto, Canada): elvitegravir; 

ASTA Tech (Bristol, MD): cobicistat; Invitrogen (Carlsbad, CA): 4%– 12% Bis-

Tris gradient gels, deoxyribonuclease 1 (DNase). R&D Systems (Minneapolis, 

MN): basic fibroblast growth factor (bFGF), platelet-derived growth factor-AA 

(PDGF-AA); PeproTech Inc. (Rocky Hill, NJ): neurotrophin-3 (NT3); Thermo 

Fisher Scientific (Waltham, MA): trypsin, B27 supplement, 

penicillin/streptomycin, Hank’s balanced salt solution (HBSS), neurobasal 

medium, Dulbecco’s modified Eagle’s medium and Ham’s F12 (DMEM/F12); 

Roche Diagnostics (Basel, Switzerland): biotin-16- dUTP; Vector Laboratories 

(Burlingame, CA): vectashield with 4',6-diamidino-2-phenylindole (DAPI); 

Biorad (Hercules, CA): precision plus protein kaleidoscope, tween-20, 

nitrocellulose membrane; Denville Scientific Inc. (Saint-Laurent, QC): HyBlot 

CL autoradiography film; Millipore (Temecula, CA): polyvinylidene fluoride 
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(PVDF) membrane. Tocris Bioscience (Bristol, UK): trans-ISRIB. Lonza 

(Walkersville, MD): L-glutamine.  

 

Preparation of primary rat oligodendrocyte precursor cell cultures. All 

experiments were performed in accordance with the guidelines set forth by 

The Children's Hospital of Philadelphia and The University of Pennsylvania 

Institutional Animal Care and Use Committees. Primary rat oligodendrocytes 

precursor cells (OPCs) were isolated from brains of postnatal day 1 Sprague 

Dawley rats (Charles River Laboratories, Wilmington, MA RRID: 

RGD_737891) and plated on T75 flasks [11]. We purified the OPCs using the 

“shake-off” method [123]. Briefly, once OPCs reached confluency on T75 

flasks, they were rotated on an orbital shaker set to 250 rpm and incubated 

overnight at 37°C. The following day, cells were filtered using a 20-µM nylon 

net (Merck Millipore, Darmstadt, Germany), followed by centrifugation at 1500 

rpm for 5 min at 4°C. The supernatant was discarded, and the pellet was 

resuspended in neurobasal medium (5 mL), then incubated in a 

bacteriological petri dish for 15 min at 37°C and 5% CO2. The supernatant is 

collected and centrifuged at 1500 rpm for 5 min at 4°C. The pellet was 

resuspended in growth media consisting of neurobasal media with B27 and 

growth factors: PDGF (2 ng/mL), NT3 (1 ng/mL) and FGF (10 ng/mL) and 

plated on 24-well plates with coverslips or 10 cm petri dishes. 

 

Drug Treatments. Primary rats OPCs were grown in 24-well plates with 

coverslips or 10 cm petri dishes, for immunocytochemistry and immunoblot, 

respectively, until they reached about 70% confluency. To differentiate the 
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cells into mature oligodendrocytes, growth medium was replaced with 

differentiation media consisting of 50% DMEM, 50% Ham’s F12, Pen/Strep, 2 

mM glutamine, 50 µg/mL transferrin, 5 µg/mL putrescine, 3 ng/mL 

progesterone, 2.6 ng/mL selenium, 12.5 µg/mL insulin, 0.5 µg/mL T4, 0.3% 

glucose, and 10 ng/mL biotin. Simultaneously, the cells were treated with 

vehicle (DMSO), raltegravir (300 nM, 3.0 µM or 10 µM), elvitegravir (350 nM, 

3.5 µM or 10 µM) or cobicistat (150 nM, 1.5 µM, 4 µM) for 72 hours, to allow 

differentiation to occur, before staining or protein collection [124]. Even though 

cobicistat is not active as an ARV, we examined the effect of cobicistat on 

oligodendrocyte maturation, in vitro, as it was used in our in vivo experiments 

to enhance administered elvitegravir concentrations. Pretreatments with 

Trans-ISRIB (5 µM) were 1 hour prior to elvitegravir (3.5 µM or 10 µM) 

treatment.  

 

Immunofluorescence. Primary OPC cultures were prepared and stained as 

follows: coverslips were removed from wells and rinsed with PBS; then they 

were incubated with primary antibody for immature oligodendrocyte marker, 

GalC, diluted 1:4 in DMEM/12, for 30 min at room temperature. Coverslips 

were rinsed with PBS and incubated coverslips in FITC-conjugated goat anti-

mouse secondary antibody, diluted at 1:200 in DMEM/F12, for 30 min at room 

temperature. Cells were fixed using 4% paraformaldehyde for 10 min then 

rinsed with PBS before incubation with a blocking/permeabilization solution 

containing 0.5% BSA and 0.1% Triton X-100 in PBS for 30 min. Cells were 

incubated in primary antibody for mature oligodendrocyte marker, MBP rat 

hybridoma supernatant, diluted 1:1 in PBS, for 30 min at room temperature. 
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Following a rinse with PBS, cells were incubated with rhodamine-conjugated 

goat anti-rat secondary antibody, diluted at 1:200 in PBS, for 30 min at room 

temperature. Cells were mounted on slides with vectashield mounting media 

containing DAPI (Vector Laboratories, Burlingame, CA). Cells were imaged 

using a Keyence BZ-X-700 digital fluorescent microscope (Keyence 

Corporation, Itasca, IL) affixed with UV, FITC, Cy3 and Cy5 filters. Images 

captured at 40x magnification were hand counted to quantify the number of 

immature and mature oligodendrocytes. Specifically, the number of immature 

and mature oligodendrocytes, identified as cells expressing GalC and MBP, 

respectively, was averaged across a total of 20 fields/coverslip with 2-4 

coverslips/treatment condition for each biological replicate.  

 

TUNEL Assay. To assess cells committed to apoptotic cell death, a TUNEL 

staining protocol, adapted from Gavrieli et al was used (Gavrieli et al., 1992). 

Cells were fixed with ice cold methanol for 10 min, washed with PBS, and 

permeabilized with 0.1% Triton X-100 and 0.5% BSA in PBS for 30 min. 

Positive control coverslips were generated during this time by incubating in 

DN buffer (30 mM Trizma base pH 7.2, 140 mM sodium cacodylate, 4 mM 

magnesium chloride, and 0.1 mM dithiothreitol) for 2 min, followed by DNase 

(1:200) in DN buffer for 10 min. All coverslips were washed with PBS, then 

placed in TDT buffer (30 mM Trizma base pH 7.2, 140 mM sodium 

cacodylate, 1 mM cobalt chloride) for 2 min. Cells were incubated for 1 hour at 

37°C with TdT and biotin-UTP in TDT buffer (6 uL of each in 1 mL TDT 

buffer). After a subsequent PBS wash, cells were placed in TB buffer for 15 

min (300 mM sodium chloride, 30 mM sodium citrate) and then a 2% BSA 
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solution for 30 min. Finally, cells were incubated with rhodamine-conjugated 

streptavidin for 20 min before a final PBS wash and mounting on slides with 

vectashield containing DAPI. Visualization and counting were performed as 

previously described [125]. 

 

RNA extraction and qPCR. The expression of MBP in oligodendrocyte 

cultures was quantified using quantitative reverse transcription polymerase 

chain reaction (RT-PCR). OPC cultures were grown on 100-mm dishes and 

harvested after 72-hour EVG treatment. RNA was extracted with Trizol, and 

RNA (5 μg) was converted to cDNA by the Invitrogen Superscript First-strand 

kit. Quantitative PCR was performed using Power SYBR Green, as previously 

described (Jensen et al., 2015). Samples were measured in triplicate for each 

experiment from 3 biological replicates (n = 3). Data were normalized using 

protein kinase gene 1 and analyzed according to the ΔΔCT method. Primer 

pairs obtained from Integrated DNA Technologies (Coralville, IA) for each 

gene are listed in Table 2. 

 

MBP Forward for rat 5’- TGA AAA CCC AGT AGT CCA C-3’ 

MBP Reversed for rat  5’- GGA TTA AGA GAG GGT CGT C-3’ 

PLP Forward for rat 5’-TAG GAC ATC CCG ACA AGT-3’ 

PLP Reversed for rat 5’-AAA CAG GTG GAA GGT CAT T-3’ 

Table2: Primers used for qPCR for MBP and PLP gene 

 

Immunoblotting. Whole cell extracts of primary rat oligodendrocyte cultures 

were prepared with cold cell lysis buffer (25 mM Tris (pH 7.4), 10 mM EDTA, 
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10% SDS, 1% Triton X-100, 150 mM NaCl containing protease and 

phosphatase inhibitor cocktails (PIs; Roche Diagnostics) followed by 

sonication and centrifugation at 10,000 rpm at 4°C for 30 min. Protein 

concentrations were determined by spectrophotometer ND-1000 from Thermo 

Fisher Scientific (Waltham, MA). Protein (7-20 µg) was loaded into each lane 

of 4% to 12% Bis-Tris gradient gels for separation. A broad-spectrum 

molecular weight ladder was run on each gel. After separation, proteins were 

transferred onto Immobilon-FL or nitrocellulose membranes and blocked in 

5% milk for 30 minutes at room temperature. Membranes were incubated 

overnight at 4°C with primary antibodies in TBST + 5% BSA. Primary 

antibodies to the following antigens were used: MBP (SMI-99, 1:1000 

dilution),  α-tubulin (1:10000 dilution), ATF4 (1:1000 dilution), pEIF2α (1:1000 

dilution, Cell Signaling), tEIF2α (1:1000 dilution),  Lamin B1 (1:1000 dilution) 

and GAPDH (1:60,000 dilution). Following three washes in TBST, membranes 

were incubated with corresponding antigen specific fluorescent probe-

conjugated secondary antibodies (1:10000 dilution) in TBST + 5% BSA. 

Membranes were visualized using an Odyssey Infrared Imaging System 

(LiCOR) or by film. Densitometric analysis of band intensities was conducted 

using the Odyssey Infrared Imaging System or by Fiji (NIH RRID: 

SCR_002285). All bands were normalized to the loading control, specified in 

each experiment.  

 

Nuclear/Cytoplasmic Fractionation. For examination of activating transcription 

factor 4 (ATF4) nuclear cytoplasmic fractionation was performed. Briefly, 3-4 

petri dishes of primary rat OPCs were stimulated to differentiate and treated 
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with vehicle (DMSO), EVG (3.5 µM) or positive control, thapsigargin (THAP, 

500 nM). After 24 hours, cells were rinsed thoroughly with PBS and incubated 

at 4°C on a shaker (150 rpm) in the presence of cytoplasmic buffer (250 µL, 

10 mmol/L HEPES, pH 7.9, 10 mmol/L KCL, 10 mmol/L EDTA, 1 mmol/L 

dithiothreitol, and 10% NP-40, supplemented with protease inhibitors) for 10 

min. Extracts were centrifuged at 12600 rpm for 3 mins, and cytoplasmic 

supernatants were collected. The pellets were washed with cytoplasmic buffer 

(500 µL) and centrifuged again at 12600 rpm for 3 min. The pellets were then 

resuspended in nuclear buffer (100 µL, 20 mmol/L HEPES, pH 7.9, 400 

mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L dithiothreitol, and 10% glycerol, 

supplemented with protease inhibitors) and incubated on an orbital shaker 

(200 rpm) at 4°C for 3 hours. Every 30 min the samples were vortexed at the 

highest setting for 10 sec. The nuclear supernatants were collected following 

centrifugation at 12600 rpm for 5 mins. All pellets were retained for potential 

analysis. Protein concentrations were determined the same as whole cell 

extracts (see above).  

 

Cuprizone Model and In-vivo Drug Treatments. All experiments were 

performed following the guidelines set by Children’s Hospital of Philadelphia 

Institutional Animal Care and Use Committee (IACUC) and University of 

Pennsylvania Institutional Animal Care and Use Committees.  Six to eight 

week old C57BL/6 female mice were used for the cuprizone demyelination 

model (Jackson Laboratories, PA). Mice were divided into two groups: control 

and cuprizone-treated. Each group was then divided further into untreated, 

vehicle (DMSO)-treated, EVG/COBI-treated, with 10 female mice in the 
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untreated group and 5 per group in the rest. Control mice received normal 

powdered food for five weeks, while the cuprizone-treated mice received 

0.25% cuprizone in their powdered food for five weeks. Both groups received 

normal food pellets during the last 3 weeks of the experiment. After 5 weeks 

of cuprizone feeding, 5 mice from each group, control and cuprizone were 

perfused, had brains removed and prepared for frozen section (see below) to 

determine to extent of the cuprizone lesion. At the same time point, other mice 

were implanted with IV cannula into the jugular vein and treated once daily 

with DMSO and/or EVG/COBI for the 3 week recovery period. For the 

implantation of the cannulas, sustained release buprenorphine (0.5-1.0 

mg/kg) was administered at subcutaneous injection before the start of 

surgery.  A ketamine/xylazine cocktail (80 and 12 mg/kg, respectively) was 

used to anesthetize the mice. A silastic IV cannula (CamCaths, Cambridge, 

UK) was inserted into the jugular vein, sutured in place using PERMA-HAND 

silk suture, (Ethicon Inc., Somerville, NJ) and mounted on the back of the 

mouse using a mesh back-mount. Over the course of the 3 week recovery 

period, mice were injected daily through the cannula with vehicle (DMSO) 

(5%), or EVG/COBI (65 mg/kg, diluted in DMSO).  

 

Immunohistochemistry. Following the 5 weeks cuprizone or control feeding 

period and the extra 3 weeks DMSO or EVG/COBI injections, mice were 

terminally anaesthetized with a ketamine/xylazine cocktail and intracardially 

perfused with cold PBS and cold 4% paraformaldehyde (PFA, pH 7.4). Whole 

brains were isolated, post-fixed in 4% PFA for 2 hours and then cryoprotected 

with 30% sucrose in PBS for at least 24 hours. Serial coronal tissue sections 
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were cut at 12μm on a cryostat (Leica Microsystems, Exton, PA) throughout 

the entire corpus callosum, collecting three sections per slide[124, 126].  

Mouse coronal tissue sections were stained as follows: we used ASPA (1:500 

dilution) for labeling mature oligodendrocytes, NG2 (1:200 dilution) for labeling 

of OPCs, GFAP (1:1 dilution) for labeling astrocytes and IBA1 (1:500 dilution) 

for labeling microglia. All primary antibodies were diluted in GFAP in Feltri 

block (20% FBS, 80% PBS, 0.02% BSA, 0.001% Triton X-100, 0.02% NaN3) 

and incubated overnight at 4°C.  Following a PBS wash, slides were 

incubated for 30 mins at room temperature in rhodamine red-conjugated, goat 

anti-rabbit antibody (1:200 dilution, diluted in PBS) to visualize ASAP, FITC-

conjugated, goat anti-rabbit antibody (1:200 dilution, diluted in feltri block) to 

visualize NG2, Cy5-conjugated, goat anti-rat antibody (1:200 dilution, diluted 

in PBS) to visualize GFAP, and FITC-conjugated, goat anti-rabbit antibody 

(1:200 dilution, diluted in feltri block) to visualize IBA1.  

For pEIF2α staining, we used a tyramide amplification system (Perkin Elmer) 

following overnight incubation at 4°C with the primary antibody (1:3000 

dilution, diluted in Feltri block, Invitrogen). Following a PBS wash, slides were 

incubated in biotin-conjugated, secondary antibody (1:600 dilution) for 30 

mins at room temperature and then incubated in Fluorescein (DTAF)-

conjugated Streptavidin (1:200 dilution, diluted in PBS) for 30 mins at room 

temperature (Jackson ImmunoResearch Laboratories). All slides were 

mounted in Vectashield with DAPI (Jackson ImmunoResearch Laboratories).  

To count cells from frozen sections, brains from at least three mice were used 

per variable. Digital images were taken at 20 X magnification from sections at 
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the level of the anterior part of the corpus callosum, counting five 150 m X 

150 m regions of interest per section, at least two sections per animal.  

 

Luxol fast blue (LFB) staining. Mouse brain section slides were stained with 

0.1% LFB, 0.1% Cresyl echt violet, and 0.05% lithium carbonate. The slices 

were dipped in 95% ethyl alcohol then incubated in LFB for 16-18 hours, 

followed by incubation in 95% alcohol for 2 minutes. The slides were then 

immersed in lithium carbonate solutions for another 2 minutes, followed by 

immersion in 70% ethyl alcohol for 30 sec. The slides were dipped quickly in 

water, and then incubated in Cresyl echt violt for 11 minutes at 56ºC. Finally, 

the slides were dipped in quick succession in 95% ethyl alcohol and xylene 

and then sealed with plastic covers using paramount.  

 

Statistical analysis. For all rat cell culture experiments, primary OPC cultures 

prepared from each litter represents an independent biological replicate, and 

were treated with vehicle or drug in the indicated combinations. An untreated 

condition (UT) was also included within each biological replicate, and all 

results were normalized to this UT value. Repeated measures analysis of 

variance (ANOVA) was used to analyze these data to account for inherent 

correlations present within a single biological replicate. Data were analyzed 

using Graphpad Prism statistical software (version 7.0; RRID: SCR_002798) 

and were graphically presented as fold change or percent total from UT +/- 

standard error of the mean (SEM), with the UT condition represented by a 

dotted line.  
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2.4 Results 

Elvitegravir reduces the number of immature and mature 

oligodendrocytes in vitro. Previously, our group has shown that ART 

compounds of the PI class, ritonavir and lopinavir, inhibit the maturation of 

oligodendrocytes, in vitro [11]. Using our well-established culture model [119], 

we examined whether INSTIs, elvitegravir (EVG) and raltegravir (RAL), 

inhibited oligodendrocyte maturation. EVG and RAL concentrations were 

based on reported plasma and cerebrospinal fluid (CSF) levels in humans, as 

measurements in human brain parenchyma have not been performed [127-

129].  

Clinically, EVG, is administered with cobicistat (COBI) because it is an 

inhibitor of cytochrome p450 enzymes in the liver, which metabolize EVG [44, 

129]. Thus, by combining EVG with COBI, lower concentrations of EVG can 

be given to patients, to reduce side effects, while still achieving therapeutically 

relevant concentrations of EVG in the body. Even though COBI is not active 

as an ARV, we examined the effect of COBI on oligodendrocyte maturation as 

it is administered with EVG in patients. Briefly, OPCs were placed in 

differentiation media and treated with therapeutically relevant concentrations 

of EVG (350 nM, 3.5 µM, 10 µM), RAL (300 nM, 3 µM, 10 µM), or COBI (150 

nM, 1.5 µM, 4 µM). After 72 hours, cultures were stained for transiently-

expressed lineage specific proteins: GalC and MBP for immature and mature 

oligodendrocytes, respectively [130-133]. Representative images of drug-

treated oligodendrocytes after 72 hours of differentiation showed dose-

dependent decreases in differentiation in EVG-treated cultures compared with 
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vehicle-treated cultures, but not RAL- or COBI-treated cultures (Figure 4A). 

GalC-positive and MBP-positive cell counts demonstrated a dose-dependent 

decrease of differentiation into immature and mature oligodendrocytes, 

respectively, in EVG-treated cultures compared with vehicle-treated cultures, 

but not following RAL or COBI treatment (Figure 4B,C). This effect is 

mediated at the transcriptional level since our qPCR result showed a dose 

dependent reduction in MBP mRNA in cells treated with EVG (Figure.5)  

Elvitegravir does not induce cell loss or apoptosis. In order to determine 

whether the decreased numbers of immature and mature oligodendrocytes 

observed following EVG treatment were due to inhibition of OPC maturation 

and not cell loss or apoptosis, we examined whether OPCs were dying  by 

four measures, 1) numbers of DAPI-positive cell counts, 2) A2B5-positive cell 

numbers and 3) number of terminal UTP Nick end labeling (TUNEL) assay 

positive cells, which stains double-stranded DNA breaks, an early step in 

apoptotic cell death, and 4) number of cells staining for propidium iodide, a 

DNA intercalating agent that only passes through the membrane of necrotic 

cells, thus labeling nuclei of dying cells. After 72 hours of maturation, the 

number of DAPI- A2B5- positive cells did not change following EVG, RAL or 

COBI treatment (Figure 6A,B). Additionally, there was no increase in TUNEL-

positive cells nor cells labeled with propidium iodide following EVG treatment 

(Figure 6C,D). DNase was used as a positive control for the TUNEL assay 

(Figure 6D). Together, these results suggest that EVG inhibits 

oligodendrocyte maturation in a dose-dependent fashion. 
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Elvitegravir treatment inhibits myelin protein production. Given that EVG-

treated cultures contained fewer GalC- and MBP-positive cells, as compared 

with vehicle control, we next examined whether this effect resulted in 

decrease myelin protein levels. The cultures were treated as previously for 72 

hours, protein was collected and processed for immunoblot analysis. The two 

doses of EVG (3.5 µM and 10 µM) resulted in a significant decrease in MBP 

levels when compared with vehicle (Figure 7A). In contrast, neither RAL nor 

COBI significantly altered MBP levels (Figure 7B,C). These data match that of 

the immunofluorescence results in Figure 4, with a large decrease in MBP-

positive cells and MBP protein levels observed at 3.5 µM and 10 µM 

concentrations of EVG. 

Elvitegravir-mediated inhibition of oligodendrocyte maturation is 

reversible. To determine if the effects of EVG were permanent, or if cells 

were capable of myelin protein production and localization once the drug was 

removed, we placed OPCs in differentiation media in the presence of 3.5 µM 

and 10 µM EVG and allowed 72 hours for maturation. At this time-point, a 

subset of cultures were washed and placed in drug-free differentiation media 

for an additional 24 hours. Cultures that underwent the drug washout period 

were stained for the same oligodendrocyte markers previously described and 

compared with cultures that did not undergo drug washout but were exposed 

to the same EVG treatments for 72 hours. As shown in Figure 4, 72 hour 

treatment with 3.5 µM EVG resulted in fewer GalC- and MBP-positive 

compared with vehicle; this effect was completely reversed after the removal 

of EVG (Figure 8B,C). Similarly, drug washout for 24 hours resulted in the 

reversal of reduced MBP expression levels following treatment with 3.5 µM 
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EVG as detected by immunoblotting (Figure 8D, E). In contrast, 24 hours after 

removal of the 10 µM concentration of EVG, the number of GalC- and MBP-

positive cells remained reduced (Figure 8B,C). Similarly, drug washout for 24 

hours did not rescue the reduction in MBP expression levels following 10 µM 

EVG treatment (Figure 8D,E).  

Administration of elvitegravir during recovery from cuprizone-induced 

demyelination inhibits remyelination. The process of remyelination occurs 

when mature oligodendrocytes regenerate new myelin sheaths around axons 

of neurons in the CNS [111, 134]. Remyelination can restore conduction 

properties to axons leading to restoration of neurological function [111, 134]. 

There is persistent myelin abnormalities seen in HAND patients, regardless of 

the administration of cART [108-110]. In order to examine the effect of EVG, 

on remyelination, we used a widely implemented toxin-induced demyelination 

model. The copper chelator, cuprizone (bis-cyclohexanone-oxaldihydrazone), 

is combined into the feed of mice for five weeks, and targets mature 

oligodendrocytes to die [77, 121, 122], creating a consistent demyelination 

best seen in the corpus callosum, the largest white matter tract in the mouse 

brain [77, 121, 122]. In addition, this demyelination is accompanied by the 

accumulation of microglia and astrocytes [77]. Removal of cuprizone from the 

feed permits remyelination over the course of three weeks [77, 121, 122] 

During the three-week recovery period following cuprizone-induced 

demyelination. EVG/COBI was injected at a dose found to result in similar 

plasma levels as those reported in human patients [135, 136]. In a separate 

experiment, we compared two routes of administration of the drug: IV 
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(Intravascular) or IP (Intraperitoneal). Plasma levels resulting from IV injection 

were closer to the human plasma level (Table 3) [135].  

 

Treatment 
Route of 

administration 
Time point 

Average Plasma 

Conc. in µg/ml 

 

N# 

DMSO IP 5 hours 0 2 

EVG/COBI IP 5 hours 5.35 1 

DMSO IV 5 hours 0 3 

EVG/COBI IV 5 hours 13.47 2 

DMSO IP 7 days 0 2 

EVG/COBI IP 7 days 0.19 2 

DMSO IV 7 days 0 3 

EVG/COBI IV 7 days 0.845 2 

Table 3: A comparison between IP and IV route of adminstration: mice were 
treated with the vehicle (DMSO) with or without EVG/COBI daily for 7 days. 
Plasma samples were taken 5 hours after the injection of drug on day 1 and 7 
and analyzed by mass spectometry.  

EVG was administered daily via IV jugular vein cannula; COBI was co-

administered with EVG in order to boost EVG concentrations, while control 

animals received the vehicle, DMSO (Figure 9). After 5 weeks of cuprizone 

feeding or at the end of the three-week recovery period, brains were 

processed for frozen sections and luxol fast blue (LFB) staining was used to 

label myelin (Figure 9). The cuprizone-treated mice showed the characteristic 
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decrease in myelin in the center of the corpus callosum following 5 weeks of 

cuprizone ingestion and the expected complete remyelination after three 

weeks recovery (Figure 9). However, mice treated with EVG and COBI during 

recovery from cuprizone had significantly less myelin compared with mice that 

remained untreated during the 3 week recovery or mice treated with DMSO 

during the recovery from cuprizone exposure (Figure 9). Interestingly, there 

were no gross changes in myelin in the corpus callosum in EVG/COBI-

injected mice in the absence of cuprizone when compared with all other 

control groups (Figure 9).  

To further confirm the effect of EVG on remyelination, we stained mouse 

sections from all experimental groups for the mature oligodendrocyte marker, 

ASPA [137, 138]. As expected, there were significantly fewer ASPA positive 

cells in the 5 week cuprizone-exposed mice compared with control mice; after 

the three-week recovery period, the number of ASPA positive cells in 

cuprizone exposed mice permitted to recover for 3 weeks were no different 

from control levels (Figure 10). In contrast, there were fewer ASPA positive 

cells in the corups callosum of mice treated with EVG/COBI following the 3 

week recovery from cuprizone exposure compared with control mice, DMSO-

injected cuprizone recovery mice, or untreated cuprizone recovery mice 

(Figure 10). These data are consistent with LFB data shown in Figure 5 and 

suggest that EVG inhibits remyelination of the corpus callosum.  

While the precise mechanisms of cuprizone-mediated demyelination are 

unclear, several studies have demonstrated that anti-inflammatory agents can 

attenuate cuprizone-induced damage to the corpus callosum and prevent 
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demyelination [139]. To determine whether astrogliosis and/or microgliosis 

persist during EVG/COBI treatment during recovery from cuprizone treatment, 

we measured the effect of EVG on the inflammatory environment during 

remyelination. We stained mouse sections for astrocytes and microglia using 

GFAP and IBA1, respectively (Figure 11). We observed an increase in GFAP 

and IBA1 fluorescent intensity in 5 week cuprizone-treated mice which 

subsequently decreased to the levels of control mice after three weeks of 

recovery. However, in the EVG/COBI-injected cuprizone recovery mice GFAP 

and IBA1 fluorescent intensity were still increased when compared with 

untreated cuprizone recovery and DMSO-injected cuprizone recovery mice 

(Figure 11).  

Our data suggest that EVG inhibits differentiation of OPCs into mature 

oligodendrocytes in vitro. If the same were occurring in vivo, we would expect 

an increase in OPCs or immature oligodendrocytes in the corpus callosum of 

cuprizone-treated mice receiving EVG/COBI during recovery. To determine 

whether OPCs were increased in the corpus callosum of mice given 

EVG/COBI during the 3 week recovery from cuprizone, we stained mouse 

sections for NG2. Consistent with previous results, we observed an increase 

in the NG2 fluorescent intensity in 5 week cuprizone-treated mice [140]; 

however, the increase in NG2 positive was reversed to the level of untreated 

mice after three weeks of recovery. In contrast, in the EVG/COBI-injected 

cuprizone recovery mice, NG2 fluorescent intensity was still increased when 

compared with untreated cuprizone recovery and DMSO-injected cuprizone 

recovery mice (Figure 12).  
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The integrated stress response (ISR) partially mediates elvitegravir-

driven inhibition of oligodendrocyte maturation, in vitro. Previous studies 

have shown that EVG induces neuronal damage via induction of the ISR [12]. 

ISR induction is known to halt oligodendrocyte differentation [141]. To 

determine whether EVG is affecting OPC maturation via ISR induction, , we 

examined whether ISR inhibitor, trans-ISRIB, alleviated the observed EVG-

induced OPC maturation defect in vitro [142]. Representative images show 

that cultures pretreated with trans-ISRIB one hour prior to EVG (3.5 µM) 

treatment had increased immature and mature oligodendrocytes, identified as 

GalC- and MBP-positive cells, compared with cultures not pretreated with 

ISRIB (Figure 13A). These observations were confirmed by counting the 

number of GalC positive immature and MBP  positive mature 

oligodendrocytes in cultures pretreated with trans-ISRIB as compared with 

cultures not pretreated with trans-ISRIB (Figure 13B,C). Examination of MBP 

protein expression levels in which cultures were pretreated with ISRIB 

demonstrated maintenance of MBP protein levels compared with cultures not 

pretreated with trans-ISRIB (Figure 13D,F). Notably, cultures pretreated with 

trans-ISRIB prior to EVG (10 µM) treatment, resulted in immature and mature 

oligodendrocyte numbers and expression of MBP comparable to cultures not 

pretreated with trans-ISRIB (Figure 13).  

2.5 Discussion 

The introduction of cART has changed the landscape of HIV/AIDS, viral 

suppression results in fewer patients progressing to AIDS and expansion of 

the lifespan of HIV-positive individuals. However, given the persistence of 
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HAND despite of cART administration, a better understanding of cART side 

effects is necessary as patients now remain on cART regime for the entirety 

of their increased lifespans. Specifically, the new class of INSTIs require close 

examination as their use worldwide continues to grow.  

In the present study, we investigated the effects of front line ARV class 

INSTIs, EVG and RAL, on oligodendrocyte maturation and myelination. 

Maturation and myelination inhibition was induced only by EVG. Furthermore, 

our in vitro and in vivo studies showed EVG activated ISR in 

oligodendrocytes. Pharmacological attenuation of the ISR with trans-ISRIB, 

protected against EVG-induced oligodendrocyte maturation inhibition, in vitro. 

Despite being in the same class of ARV agents, EVG caused dose-dependent 

inhibition of oligodendrocyte maturation whereas RAL did not. This within-

class difference was dramatic as EVG at 3.5 µM and 10 µM induced a 50% 

and 95% decrease in GalC- and MBP-positive cells, respectively, whereas 

RAL, at similar doses and time course, had no effect. Moreover, the 

immunoblot results corroborated the immunocytochemistry as MBP 

expression was dramatically decreased with 3.5 µM and 10 µM EVG 

treatment whereas RAL had no effect. These data provide novel, compelling 

evidence for EVG-induced oligodendrocyte maturation defects. Furthermore, 

these data add to previous studies showing similar differential effects of 

INSTIs, EVG and RAL, in vitro, albeit in neurons [12, 143]. Importantly, our 

observations regarding EVG and RAL highlight critical differences in the 

effects on oligodendrocyte maturation within each ARV class. These studies 

could be helpful to clinicians when deciding which ARV drug to administer, 
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especially in younger patients that are still developing myelin and might be on 

cART for decades. 

We utilized the cuprizone demyelination model in order to examine the effects 

of EVG on remyelination in vivo. Cuprizone-induced demyelination is widely 

utilized to study demyelination/remyelination not caused directly by 

inflammation, as it leads to the specific degeneration of oligodendrocytes in 

the corpus callosum [77, 121, 122]. Using this model to demyelinate the 

corpus callosum, we showed that daily administration of EVG/COBI during the 

3-week recovery period, following cuprizone ingestion, resulted in diminished 

remyelination and decreased mature oligodendrocytes via LFB staining and 

ASPA positive cell counts, respectively plus an increase in the NG2 positive 

OPCs which correspond with the in vitro finding in which EVG/COBI 

prevented OPCs from maturation. Notably, there was no change in LFB 

staining and ASPA positive cell counts in control mice injected daily with 

EVG/COBI suggesting that EVG induces inhibition of differentiation in OPCs, 

but has no affect on already mature oligodendrocytes. There are limitations to 

these data as there could be some additive affect of cuprizone, itself, in 

EVG/COBI-injected cuprizone recovery mice. Thus, these data need to be 

interpreted thoughtfully as cuprizone-induced demyelination does not reiterate 

the white matter loss and abnormalities observed in HAND patients. This 

findings highlights the need for mouse models of HIV infection that 

recapitulate HIV persistence in the ART era as well as the myelin irregularities 

observed in HAND patients [144, 145].  
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An additional concern about the relevance of these findings is whether the 

doses of these observed effects with EVG are comparable to the doses 

observed in patients. Doses were selected to cover a wide range of 

concentrations relevant to the plasma and CSF concentrations observed in 

patients [44, 129, 146]. It is still unclear how these doses relate to levels of 

ARV drugs present in the brain parenchyma and some studies have shown 

that CSF drug concentrations may not accurately reflect this concentration 

[147]. As there is a focus on improving CNS penetration of ARV agents, it will 

become even more important to understand the potential side effects of such 

drugs at higher concentrations.  

In addition to characterizing the effects of EVG and RAL on oligodendrocyte 

maturation, we identified a potential mechanism that mediates this effect. We 

have previously shown evidence for ISR activation in neurons and astrocytes 

of HAND patients as well as in neurons in culture treated with different 

classes of ARV compounds[12, 31, 118, 148]. Furthermore, there is evidence 

for ISR activation in oligodendrocytes in other neuroinflammatory disease 

models such as multiple sclerosis [120, 149, 150]. Since there are multiple 

kinases by which to activate ISR, we examined the convergent upstream 

product, pEIF2α. The effects of ISR inhibitor, trans-ISRIB, were dose specific 

as well. Trans-ISRIB, mediated oligodendrocyte maturation rescue in cultures 

pretreated with trans-ISRIB, prior to EVG (3.5 µM) treatment whereas 

pretreatment with trans-ISRIB, prior to EVG (10 µM) did not result in rescue of 

oligodendrocyte maturation. The effect of EVG at 3.5 µM was reversible, as 

cells matured following drug removal, with GalC- and MBP-positive cells and 

MBP protein expression resembling controls after 24 hours. However, the 
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effect of EVG at 10 µM was not reversible. Taken together, these data 

suggest the cellular stress induced in oligodendrocyte in response to 10 µM 

EVG treatment is distinct from 3.5 µM EVG and ultimately the cell may be 

targeted for death rather than survival, although it is possible that there is 

more than one mechanism that mediates the differentiation defect of EVG on 

maturing OPCs. Neither dose of EVG led to detected increase in apoptotic 

cell death, identified as TUNEL-positive cells. However, after 72 hours 

treatment with EVG (10 µM) there was a small decrease in cell viability, 

identified as cells positive for propidium iodide which suggests necrotic cell 

death.  

In summary, these data add to a growing body of evidence that suggest a role 

for cART-mediated persistence of HAND. Specifically, these data support a 

role for cART-mediated persistence of white matter abnormalities observed in 

HAND individuals. Furthermore, we implicate the ISR as a potential 

contributing pathway in EVG-induced oligodendrocyte maturation defects. In 

addition to the development of new therapeutics with fewer deleterious side 

effects, we must consider adjunctive therapies designed to alleviate neuronal 

dysfunction and preservation of myelin formation and maintenance. 
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2.6 Figures:  
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Figure 4: INSTI EVG inhibits oligodendrocyte differentiation, whereas RAL 
does not. Primary rat cells (OPCs) plated on coverslip were put into 
differentiation media and treated with vehicle (DMSO), EVG (350nM, 3.5µM, 
and 10µM), RAL (300nM, 3µM, and 10µM), COBI (150nM, 1.5µM, and 4µM). 
After 72 hours, cells were fixed and stained with antibody to myelin basic 
protein (MBP), antibody to galactocerebroside (GalC), and DAPI as shown. A) 
There was a dose dependent reduction in GalC positive cells in the cells 
treated with EVG. B) Quantification of the GalC positive oligodendrocytes; 
significant dose dependent reduction in the GalC positive cells was observed 
in the EVG treated cells but not RAL nor COBI. C) Quantification of the MBP 
positive oligodendrocytes; significant dose dependent reduction in the MBP 
positive cells was observed in the EVG treated cells but not RAL nor COBI. 
Graphic represent fold changes in MBP and GalC, N=3, one-way ANOVA, # 
P<0.0001.  
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Figure 5: Effect of elvitegravir on MBP mRNA expression. Primary rat cells 
(OPCs) were put into differentiation media and treated with vehicle (DMSO) 
without or with elvitegravir at different dosages (3.5µM, and 10µM). A 
significant dose dependent reduction of mRNA expression level was identified 
at both 3.5µM and 10µM.  One way ANOVA, N=3, # P<0.0001  
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Figure 6: Antiretrovirals do not alter oligodendrocyte precursor cell (OPC) 
number nor induce apoptosis. Terminal deoxynucleotidyl transferase (TdT) 
dUTP Nick-End Labeling (TUNEL Assay), cell viability using propidium Iodide, 
and cell counts using A2B5 and DAPI stains were used to determine if the 
drugs cause a decrease in the overall number of oligodendrocyte lineage 
cells. None of the used drugs causes a significant decrease in cell number or 
an increase in apoptosis. One way ANOVA, N=3, #P<0.0001. 
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Figure 7: EVG but not COBI or RAL reduces MBP expression levels 
inoligodendrocytes. Primary rat cells (OPCs) were put into differentiation 
media and treated with vehicle (DMSO), EVG (350nM, 3.5µM, and 10µM), 
RAL (300nM, 3µM, and 10µM), COBI (150nM, 1.5µM, and 4µM). After 72 
hours, cell lysates were collected in order to measure protein expression. A) 
Quantification of MBP protein level for OPCs treated with elvitegravir. MBP 
expression level in untreated cells were compared to cells treated with DMSO 
with or without EVG at different doses (350nm, 3.5µM, and 10µM). Dose 
dependent decreases in the MBP protein levels were observed at 3.5µM and 
10µM, B) Quantification of MBP protein level of OPCs treated with RAL. MBP 
expression levels in untreated cells were compared to OPCs treated with 
DMSO with or without RAL at different doses (300nM, 3µM, and 10µM). No 
significant reduction was observed in the MBP protein level. C) Quantification 
of MBP protein level of OPCs treated with COBI. MBP expression levels in 
untreated cells were compared to OPCs treated with DMSO with or without 
cobicistat at different doses (150nM, 1.5µM, and 4µM). No significant 
reduction was observed in the MBP protein level. One way ANOVA, N=3, # 
P<0.0001  
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Figure 8: EVG inhibition of differentiation is reversible. A) Oligodendrocyte 
precursor cells (OPCs) were treated with vehicle (DMSO) and/or EVG (3.5µM, 
10µM) at the time of differentiation. After 72 hours, the washout group 
received new differentiation mediµM without EVG and was allowed to further 
mature for 24 hours. The cells were fixed and stained for GalC, MBP and 
DAPI. The inhibitory effect of EVG effects on GalC and MBP expression was 
reversible at 3.5µM but not 10µM. B) MBP protein level; (OPCs) were treated 
with vehicle (DMSO) and/or EVG (3.5µM, 10µM) at the time of differentiation. 
After 72 hours, the washout group received new differentiation medium 
without elvitegravir and was allowed to further mature for 24 hours. MBP 
levels were increased following washout in cells treated with 3.5µM 
elvitegravir but not 10µM. One-way ANOVA, N=3, one-way repeated 
measures ANOVA, @ P =0.002, & P<0.0001. 
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Figure 9: EVG inhibits remyelination in the cuprizone model of 
demyelination/remyelination. Six to eight week old C57BL/6 female mice were 
divided into two groups. The 1st group received control diet throughout the 
whole experiment, the 2nd group received 0.25% cuprizone in their diet for the 
1st 5 weeks of the experiment then control diet without cuprizone for a three 
week recovery period. Within each of these groups, subgroups were as 
follows: mice euthanized at 5 weeks to see the lesion, mice with or without 
cuprizone for 5 weeks and no other additives at the 8 week time point, mice 
given the vehicle DMSO for the 3 week recovery period, mice given 
elvitegravir/cobicistat in DMSO for the 3 week recovery period. Luxol Fast 
Blue (LFB) staining was performed on cryopreserved brain sections at the 
level of the corpus callosum.The lesion in the corpus callosum is clearly 
visible in the 5 week cuprizone group as compared with controls. This lesion 
is remyelinated after three weeks. However, the group of mice that were fed 
cuprizone and then received EVG/COBI during the 3 weeks recovery 
continued to exhibit a lack of myelin when compared to the other group. Semi-
quantification of demyelination by blind examiner scoring (3= intact myelin 
and 0=complete demyelination).[140, 151] . One way ANOVA, N=5, @ CUPZ 
ART compared to 5 Week CTL p = < 0.0001, & Cupz ART Compared to 8 
Weeks CTL p = < 0.0001, # Cupz ART compared to CTL DMSO p = < 0.0001, 
% Cupz ART compared to CUPZ UT p = < 0.0001, *CUPZ art compared to 
CUPZ DMSO p = < 0.0001 
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Figure 10: ASPA positive oligodendrocytes remain decreased in animals after 
3 weeks of EVG treatment during recovery from cuprizone intoxication as 
compared with cuprizone-only treated animals. Six to eight week old C57BL/6 
female mice were divided into two groups. The 1st group received control diet 
throughout the whole experiment, the 2nd group received 0.25% cuprizone in 
their diet for the 1st 5 weeks of the experiment then control diet without 
cuprizone for a three week recovery period. Within each of these groups, 
subgroups were as follows: mice euthanized at 5 weeks to see the lesion, 
mice with or without cuprizone for 5 weeks and no other additives at the 8 
week time point, mice given the vehicle DMSO for the 3 week recovery 
period, mice given elvitegravir/cobicistat in DMSO for the 3 week recovery. 
Cryosections of mouse brain at the level of the corpus callosum were stained 
with antibody to ASPA which labels oligodendrocyte cell bodies. The number 
of the ASPA positive cells were normalized to DAPI positive cells. There were 
no significant differences between the group of mice received normal diet plus 
EVG with the group of mice received normal diet or normal diet plus vehicle. 
The group of mice received cuprizone in their diet followed by EVG during the 
recovery period showed a significant reduction in the number of ASPA 
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positive cells when compared to mice had cuprizone in their diet then normal 
diet or normal diet plus vehicle during the recovery period. One way ANOVA, 
N=3, & Cupz ART Compared to CTL UT p = < 0.0001, # Cupz ART compared 
to CTL DMSO p = < 0.0001, % Cupz ART compared to CUPZ UT p = < 
0.0001, * CUPZ art compared to CUPZ DMSO p = < 0.0001 
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Figure 11: EVG treated mice have glial activation in the corpus callosum. Six 
to eight week old C57BL/6 female mice were divided into two groups. The 1st 
group received control diet throughout the whole experiment, the 2nd group 
received 0.25% cuprizone in their diet for the 1st five weeks of the experiment 
then control diet without cuprizone for a three week recovery period. Within 
each of these groups, subgroups were as follows: mice euthanized at 5 weeks 
to see the lesion, mice with or without cuprizone for 5 weeks and no other 
additives at the 8 week time point, mice given the vehicle DMSO for the 3 
week recovery period, mice given EVG/COBI in DMSO for the 3 week 
recovery. (A) Labeling for astrocytes (GFAP) and microglia (IBA1) shows an 
increase in both in the 5 week cupiraozne group and the group treated with 
EVG/COBI during the recovery period. (B) This was analyzed by intergrated 
intensity measurements. N=5, one-way ANOVA, for GFAB; @CUPZ ART 
compared to 5 Week CTL p = 0.004, & Cupz ART Compared to CTL 8 Weeks 
CTL p = < 0.0001, #Cupz ART compared to CTL DMSO p = 0.0003, %Cupz 
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ART compared to CUPZ UT p = 0.0036, * CUPZ art compared to CUPZ 
DMSO p = 0.0001. For IBA1; @Cupz ART Compared to CTL 5 wks, p = 
0.0003, & Cupz ART Compared to 8 weeks CTL p = 0.0002, # Cupz ART 
Compared to CTL DMSO p = 0.0001, %Cupz ART Compared to CUPZ UT p 
= 0.0037, *Cupz ART Compared to CUPZ DMSO p = 0.0057 
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Figure 12: EVG treated mice shows an increase in NG2 positive OPCs in the 
corpus callosum. Six to eight-week-old C57BL/6 female mice were divided 
into two groups. The 1st group received control diet throughout the whole 
experiment, the 2nd group received 0.25% cuprizone in their diet for the 1st five 
weeks of the experiment then control diet without cuprizone for a 3 weeks 
recovery period. Within each of these groups, subgroups were as follows: 
mice euthanized at 5 weeks to see the lesion, mice with or without cuprizone 
for 5 weeks and no other additives at the 8 weeks, mice given the vehicle 
DMSO for the 3 weeks recovery period, mice given EVG/COBI in DMSO for 
the 3 weeks recovery. An integrated intensity shows a sustained increase in 
the NG2 positive OPCs in the EVG/COBI-injected cuprizone recovery mice 
compared with untreated cuprizone recovery and DMSO-injected cuprizone 
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recovery mice. ANOVA, N=3, one-way ANOVA, @ EVG/COBI injected 
cuprizone compared to 5 weeks control P<0.0001, & EVG/COBI injected 
cuprizone compared to control DMSO P=0.0002, # EVG/COBI injected 
cuprizone compared to control injected EVG/COBI P<0.0001, % EVG/COBI 
injected cuprizone compared to DMSO injected cuprizone P<0.0001, * 
EVG/COBI injected cuprizone compared to 8 weeks recovery P<0.0001. 
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Figure 13: An eIF2α inhibitor (TRANS-ISRIB) rescued oligodendrocytes 
maturation in cells treated with EVG in-vitro. Primary rat cells (OPCs) plated 
on coverslip were put into differentiation medium and treated with vehicle 
(DMSO), Elvitegravir 3.5µM with or without TRANS-ISRIB. After 72 hours in 
differentiation medium, cells were fixed and stained with antibodies to GalC 
and MBP as well as DAPI as shown in A). B) Significant increase in the 
number of GalC positive cells was noted when cells were treated with 
elvitegravir plus TRANS-ISRIB at 3.5µM compared to cells treated with 
elvitegravir without TRANS-ISRIB. C) Significant increase in the number of 
the MBP positive cells was noted when cells were treated with elvitegravir at 
3.5µM when compared to cells treated with elvitegravir without TRANS-ISRIB. 
D) TRANS-ISRIB rescued MBP protein levels in cell treated with elvitegravir 
at 3.5µM, the result was normalized to loading control and to the untreated 
group, one-way repeated measures ANOVA, N=3, one way ANOVA, # P 
<0.05.  
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CHAPTER3: Effects of HIV anti-retroviral drugs on oligodendrocyte 

differentiation via the SREBP1 pathway: 

3.1 Abstract: 

Despite effective viral suppression and decreased mortality rate through 

combined antiretroviral therapy (cART), approximately half of HIV-positive 

patients on ART have HIV-associated neurocognitive disorder (HAND). A 

consistent finding revealed in studies of antiretroviral-treated HIV-positive 

patients is persistent white matter and myelin abnormalities. Myelin is the 

plasma membrane of oligodendrocytes and is crucial for rapid signal 

transduction and axonal maintenance of central nervous system (CNS) axons. 

A reduction in the amount of myelin contributes to neurocognitive dysfunction. 

Our lab has shown that differentiation of oligodendrocyte precursor cells 

(OPCs) is negatively affected by ART, but the mechanism behind this is still 

not clear. In this study we focused on RIT, a protease inhibitor used in 

conjunction with other drugs to improve pharmacokinetics of the compound. In 

the plasma, it increases the levels of both triglycerides and cholesterol due to 

increasing both fatty acid and cholesterol synthesis in the adipose tissue of 

the liver by activating a master lipid metabolism gene: the sterol regulatory 

element-binding protein (SREBP). Additionally, it has been shown that 

SREBP1 plays a major role in differentiation of oligodendrocytes and inhibiting 

SREBP activation results in a significant reduction in the number of mature 

oligodendrocytes in a differentiation paradigm in vitro. We hypothesize that 

changes in oligodendrocyte maturation due to RIT, are regulated by the 

SREBP1 pathway. We investigated both SREBP1 and three lipid enzymes in 

oligodendrocytes treated with RIT using an in-vitro model of primary 
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oligodendrocyte precursor cells from rats to understand the mechanism by 

which RIT inhibits oligodendrocyte differentiation. Our data show that 

treatment of oligodendrocyte progenitor cells in culture with RIT at the point of 

differentiation increased protein levels of SREBP1 and increased protein 

levels of Fatty Acid Synthase, a precursor for palmitate synthesis. Mass 

Spectometry of cell lysates reveals an increase in both newly made 

cholesterol and newly made palmitate in the RIT treated cells. These findings 

suggest that SREBP pathway is important regulator for oligodendrocyte 

maturation and that disruption of their activity may affect oligodendrocytes 

maturation myelination. 

 

3.2 Introduction: 

Cerebral white matter consists largely of densely packed oligodendrocytes 

that myelinate the neuronal axons. Oligodendrocytes are one of four glial cells 

present in CNS and form 5-8% of the total glial cells in the CNS[92]. These 

cells produce myelin, the lipid sheath that wraps and insulates axons and 

serves to increase the conductivity of the electrical impulses. The myelin 

membrane is apoprximately 70% lipid and during maturation and myelination, 

oligodendrocytes elaborate tremendous amounts of cellular membrane highly 

enriched in lipids. In addition, multiple proteins specific for myelin such as 

proteolipid protein (PLP) and myelin basic protein (MBP) are also generated 

and have their specific locations among the lipids in the myelin membrane 

[152]. One of the regulators of lipid metabolism in cells is Sterol Regulatory 

Element-binding Proteins (SREBPs) family (Figure 14). SREBPs are basic 

helix-loop-helix-leucine zipper transcription factors. The SREBP family is a 
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master regulator of cellular lipid metabolism, composed of three subgroups,  

SREBP1a, SREBP1c and SREBP2. In general, SREBP1a is important 

activator of all SREBP genes, involving synthesis of cholesterol, fatty acids, 

and triglycerides. While, SREBP1c is required for fatty acid synthesis and 

SREBP2 governs expression of enzymes that regulate synthesis of 

cholesterol. SREBP proteins are synthesized in the endoplasmic reticulum as 

a precursor protein. Various stimuli such as the cellular concentration of sterol 

regulate the cleavage of the membrane-bound precursor to be released as 

the mature nuclear form. The SREBP cleavage activating protein (SCAP), 

another ER membrane-embedded protein binds to SREBP at low 

concentration of cholesterol and transports it to Golgi apparatus. However, 

when cholesterol levels are high, oxysterol-binding Insigs (Insulin induced 

gene) induce a tight interaction with cholesterol-binding SCAP and prevent 

movement of the SREBP/SCAP complex to the Golgi blocking SREBP 

processing and activity [153, 154]. We have previously shown that SREBP is 

important for the differentiation of oligodendrocytes from the precursor stage 

to the mature stage and inhibition of SREBP transport to the nucleus inhibited 

process extension and expression of MBP [11, 85]. We hypothesize that 

oligodendrocytes treated with RIT induce SREBP expression leading to 

increased levels of cholesterol and fatty acids in these cells[155] and this 

impalance in cholesterol and fatty acids, in turn, inhibits differentiation of 

oligodendrocytes.  
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3.3 Material and Methods: 

All experiments were performed following the guidelines set by Children’s 

Hospital of Philadelphia Institutional Animal Care and Use Committee 

(IACUC) and University of Pennsylvania Institutional Animal Care and Use 

Committees. 

Chemical Reagents: 

Mouse monoclonal anti-α-tubulin antibody (T5168), biotin, dimethyl sulfoxide 

(DMSO), fast green FCF, insulin, protease inhibitor cocktail, thyroxine (T4) 

from (Sigma Aldrich, St. Louis, MO). (Jackson Immunoresearch Laboratories, 

West Grove, PA): FITC- conjugated goat anti-mouse IgG3, Rhodamine-

conjugated goat anti-rat IgG. (LiCOR, Lincoln, NE): Odyssey goat antimouse 

IRdye 800CW, goat antimouse IRdye 680RD, goat antirat IRdye 800CW, goat 

antirat IRdye 680RD, goat anti- rabbit IRdye 800CW, and goat antirabbit 

IRdye 680RD were from (Jackson Immunoresearch Laboratories, West 

Grove, PA). (Chemicon International, Temecula, CA) provided mouse 

monoclonal anti- glyceraldehyde 3-phosphate dehydrogenase antibody 

(GAPDH, MAB374). (Covance Laboratories, Conshohocken, PA) provided 

mouse monoclonal anti-MBP (SMI-99). B27 supplement, 4%– 12% Bis-Tris 

gradient gels, Dulbecco’s modified Eagle’s medium (DMEM), DMEM/F12, 

deoxyribonuclease 1 (DNase), Ham’s F12, L-glutamine, Hank’s balanced salt 

solution, neurobasal medium, and penicillin/streptomycin were from Life 

Technologies (Carlsbad, CA). (R&D Systems, Minneapolis, MN) was the 

source of basic fibroblast growth fac- tor (bFGF) and platelet-derived growth 

factor -AA (PDGF-AA). (Roche Diagnostics, Basel, Switzerland) supplied 

biotin-16- dUTP. Vectashield with 4',6-diamidino-2-phenylindole (DAPI) was 
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from (Vector Laboratories, Burlingame, CA). anti-galactocerebroside mouse 

hybridoma supernatant (GalC H8H9), [131] anti-GFAP mouse hybridoma 

supernatant, anti-MBP rat hybridoma supernatant (gift of Virginia Lee, 

University of Pennsylvania, Philadelphia, PA). SREBP1, and HMGCR from 

(Santa Cruz Biotechnology, Dallas, TX), FASN and ACC from (Cell signaling, 

Danvers, MA). 

 

Primary cerebral cortex oligodendrocytes cultures 

Primary oligodendrocytes precursor cells (OPCs) were collected from post-

natal day 1 rats (Sprague Dawley rats, Charles River Laboratories, Malvern, 

PA) with modification of the previously published techniques.[119] To purify 

the oligodendrocytes cultures, a shake-off technique was performed at 7-8th 

day following the prep. For the shake-off procedure,  T75 flasks were placed 

in the shaker incubator at 250 rpm overnight. The following day, cells were 

filtered through 20µM nylon filter (Merck Millipore, Darmstadt, Germany), 

followed by 5 minute centrifugation at 1500 rpm. The supernatant was 

discarded and the pellet resuspended into 5ml of neurobasal medium and 

incubated in bacteriological petri dish for 15 minutes at 37C and 5% CO2, 

then centrifuged  again at 1500rpm for 5 minutes to collect the medium, and 

the pellets are placed into growth medium. After purification, OPCs were 

grown using neurobasal medium with B27 with the addition of growth factors 

including bFGF, PDGF-AA, and neurotrophin-3 (NT3) till reach 70-75% 

confluency. TO differentiate the OPCs ot mature oligodendrocytes,  growth 

factors were removed and thyroid hormone was added  
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Western Blot: 

Whole cell extracts used to determine the level of the protein of interest, cells 

were harvested in cold 25 mM Tris (pH 7.4), 1 mM EDTA, 1% SDS, 1% Triton 

X-100, 150 mM NaCl containing protease and phosphatase inhibitor cocktails 

(PIs; Roche Diagnostics), sonicated and then centrifuged 30 min at 15,000 

rpm. Protein concentration were determined by absorbance using 

spectrophotometer ND-1000 from Thermo Scientfic (Philadelphia, PA). Ten 

micrograms of protein were loaded into each lane in the gel. A broad-

spectrum molecular weight ladder (Precision Plus Protein, CA) was run on 

each gel. After separation, proteins were transferred onto Millipore Immobilon-

FL membranes and blocked in PBS with 0.1% Tween-20 (PBST) and 5% milk 

for 20 minutes at 4 °C. Membranes were incubated overnight at 4 °C with 

primary antibodies in PBST + 5% milk. Primary antibodies to the following 

antigens were used: MBP (SMI-99, dilution 1:1000), p-eIF2α (1:1000), total 

eIF2α (1:1000). Loading controls were obtained by using α-tubulin (1:1000 

dilution). Membranes were visualized using an Odyssey Infrared Imaging 

System (LiCOR).  

 

Mass Spectrometry:  

Oligodendrocytes primary rat cells were treated for 1 hour and 7 hours with 3 

µM RIT or the vehicle DMSO with sodium A Acetate (1-13 C 99%) for labeling 

at concentration of 1000µM,[156]. The samples were processed at Smilow 

Center of the University of Pennsylvania.  
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Statistical analysis: 

All data are expressed as mean with SEM. Data were analyzed with Prism 8 

(GraphPad Software). Differences between groups were assessed using one-

way ANOVA (Unpaired).  

3.4 Results: 

RIT is a member of the protease inhibitor class of antiretroviral drugs. It acts 

on the late stage of viral replication resulting in an immature virus that can’t 

infect intact cells [157]. RIT is among the oldest antiretroviral drugs, but 

remains in use today as a booster to enhance the pharmacokinetics of other 

antiretroviral drugs due to its inhibition of cytochrome P450 in the liver and 

intestine[14, 158-160]. Interestingly, individuals on RIT showed a decrease in 

HDL (High density lipoprotein), cholesterol level and an increase in total 

cholesterol level, LDL (Low density lipoprotein), and triglyceride levels [161]. 

We have previously shown a decrease in the number of differentiated 

oligodendrocytes and myelin proteins when oligodenodrocyte precursor cells 

(OPCs) were treated with RIT during a differentiation paradigm, but the 

mechanism behind this effect is still unknown[11]. We placed oligodendrocyte 

progenitor cells in differentiation medium with or without RIT and performed 

western blotting for SREBP1c protein after 72 hours. Our results show that 

the amount of the SREBP1c protein expression is elevated when OPCs were 

treated with 3µM RIT for 2 hours and 24 hours (Figure 15). 

We measured levels of three key enzymes in the lipid synthetic pathway, fatty 

acid synthase (FASN), acetyl co-A carboxylase (ACC) and 3-hydroxy-3-

methyl-glutaryl-coenzyme A reductase (HMGCR). We saw a significant 
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increase in the protein expression level of FASN at 24 and 72 hours in RIT 

treated cells compared with vehicle treated OPCs, but no significant 

difference was noticed for HMGCR or ACC (Figure 16). We then measured 

the accumulation and de novo synthesis of palmitate and cholestrol using 

mass spectrometer. The palmitate is an intermediate compound in the 

synthesis pathway of many sterols . Our results show around 50% increase in 

the newly synthesized cholesterol and palmitate in OPCs treated with 3µM 

RIT in concert with differentiation medium for 72 hours, and labeled with 13C 

acetat for the last 24 hours (Figure 17).  

 

3.5 Discussion: 

SREBPs are important regulators for cellular lipogenesis and lipid 

homeostasis but their role in oligodendrocyte myelination is not well-

understood. We have previously shown that treatment of oligodendrocyte 

progenitor cells with the protease inhibitor RIT resulted in an inhibition of 

differentiation but we did not identify a mechanism. It is known that RIT 

increases sterol synthesis by increasing SREBP1 expression in the liver and 

adipose tissue and sinc the myelin membrane is 70% lipid, we hypothesized 

that SREBP1 might also be increased in oligodendrocytes upon RIT 

treatment. The present study suggests that SREBP levels can be 

dysregulated when oligodendrocyte differentiation is decreased. Since 

generation of the myelin membrane with proper placement of lipids and 

proteins is necessary for process extension, it is possible that the alterations 

in balanced lipids in oligodendrocyte membranes caused by RIT resulted in a 

reduction in the total number of differentiated cells. The preservation of proper 
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cell membrane fluidity is important for diffusion of membrane components 

including different lipids and proteins and is necessary for the dynamics and 

function of membrane proteins. The alteration in lipid synthesis was identified 

on the level of the transcription factor SREBP1, in a key enzyme necessary 

for synthesis of the lipids and in the end product lipids themselves suggesting 

that an excess of SREBP1 caused by RIT treatment resulted in an alteration 

in the cells membrane normal dynamics and functions [162]. Our lab 

published previously that inhibiting SREBPs protein through S1P inhibitor 

resulted in a significant reduction in the maturation in the oligodendrocytes 

maturation [13]. Our current study suggests that a balanced amount of 

SREBP is required for normal maturation of oligodendrocytes. In conclusion, 

we show that SREBPs could play an important role in oligodendrocyte 

maturation and myelination. Inhibition or induction of SREBP may prevent 

process extension, and cellular maturation. All these effects may contribute to 

impaired myelin packing in the membrane.  
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3.6 Figures  

 

Figure14: Lipid enzymes in oligodendrocytes. reduction or elevation in the 
lipids enzyme in oligodendrocytes will result in disruption in the harmony in 
the process of cell membrane extensions.  
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Figure 15: SREBP1 expression is increased at 2 and 24 hours after ritonavir 
treatment. Western blot measuring SREBP1 protein level at three different 
time intervals, 2hours, 6hours and 24hours shows a significant increase in 
SREBP1 level in the group treated with Ritonavir at 2 and 24 hours when 
compared to the group treated with vehicle (DMSO). N=3, One Way ANOVA, 
* P<0.05, **P<0.001  
 



 

 

84 

Figure 16: Ritonavir treatment of OPCs significantly ncreased expression of 
FASN but not ACC or HMGCoAR. Western blot measuring lipid enzymes in 
differentiated oligodendrocyte precursor cells; A) a significant increase in the 
FASN protein level when treated with Ritonavir at both 24 and 72 hours 
compared to OPCs treated with vehicle (DMSO), B,C) there were no 
significant difference at protein level of both ACC or HMG Co-A when treated 
with Ritonavir compared to OPCs treated with vehicle. N=3, One Way 
ANOVA, * P<0.05, **P<0.001 
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Figure 17: Ritonavir increased levels of newly synthesized palmitate and 
cholesterol. OPCs treated with DMSO (vehicle) with or without 3µM of 
ritonavir for three days, 13C acetate was added to the differentiation media for 
the last 24 hours of treatment. Both newly-made palmitate and cholesterol are 
increased in cells labeled with acetate compared to DMSO-treated or 
untreated groups.N=3, * P<0.05,** P<0.01  
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CHAPTER 4: Discussion and Future Directions 

ART plays a major role in the attenuation of viral replication and boosts 

immune system recovery, but still we see that treatment results in adverse 

side effects, including cellular impairments which may contribute to the 

continued incidence and progression of HAND [25, 29, 32, 163-166]. We 

anticipate that some classes of ART drugs are involved in inhibiting the 

differentiation of oligodendrocytes using one or multiple pathways. The 

rationale for testing the effect of EVG on the maturation and differentiation of 

oligodendrocytes was for several reasons. First, EVG is currently part of the 

front line therapy for treating HIV adults according to the latest 

recommendation from both the World Health Organization (WHO) and USA 

guidelines [9, 14]. Second, last year we reported that EVG was toxic to 

neurons in primary neuroglial cultures as determined by measuring the 

Microtubular Associated Protein 2 (MAP2) [12]. This neurotoxic effect of EVG 

was associated with an elevation in the level of phosphorylated eIF2α and 

could be reversed by an inhibitor of phosphorylated eIF2α translation 

attenuation [12]. Human studies show persistent white matter damage in 

patients with HAND, despite effective reduction of viral load in plasma. 

Furthermore, the white matter loss is associated with the duration of both the 

infection and duration of the cART. Additionally, transcriptome analysis shows 

alteration in myelin genes following HIV infection which continued to be 

dysregulated in patients who display viral suppression via cART but were 

diagnosed with HAND [11, 70, 74]. All of these findings lead us to question if 

EVG affects the ability of oligodendrocyte precursor cells to differentiation into 

mature oligodendrocytes. Since the literature lacked information on this 
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subject we started our investigation on the effect of the EVG on  myelination 

and maturation of oligodendrocytes and its role in the development of HAND.  

EVG is commercially available in two different combinations. The first 

combination from Genvoya pharmaceutical company includes; EVG 150mg, 

COBI 150mg, Emtricitabine (ETC) 200mg, and Tenofovir Alafenamide (TAF) 

10mg.  The second choice is from Stribild pharmaceutical company EVG 

150mg, COBI 150mg, ETC 200mg, and Tenofovir Disoproxil Fumarate (TDF) 

300mg [9, 167]. The dose used in our in vitro studies was based on Cmax 

plasma concentrations in patients [44]. Our lowest in vitro dose was one tenth 

of that, the middle dose was equal to the Cmax plasma concentration and the 

highest dose was equal to three times the Cmax plasma concentration [129, 

168]. For the in vivo model, we used mass spectrometry to compare plasma 

levels from mice treated with EVG/COBI to plasma levels in treated patients 

and found mouse plasma levels comparable with those reported  in human 

plasma (Table 4) [135].  

 

 Time point Average Plasma Conc. in 

µg/ml 

C max 4 hours 1.96 

C min 4 days 0.370 

 
Table 4: EVG Plasma concentration in human; EVG pharmacokinetic 
parameters following administration of EVG/COBI , the plasma concentrations 
were obatained using mass spectrometry from human after administration of 
the drug orally (PO). N=10 [135].  
 

These studies investigating the effects of EVG in-vitro and in-vivo provide new 

and compelling evidence that EVG negatively impacts oligodendrocytes 
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maturation. EVG impairs OPC maturation both in-vitro and in-vivo. Using 

stage-specific markers, EVG but not RAL inhibited the maturation of OPCs 

and significantly reduced the expression of MBP. This effect is mediated at 

the transcriptional level since our qPCR result showed a dose dependent 

reduction in MBP mRNA in cells treated with EVG. Interestingly, the effects of 

EVG are reversible at 3.5µM but not at 10µM, despite minimal cell loss at 

either dose. Many reasons may contribute to this observation, such as failure 

to remove all the EVG during the washout step or the need for a longer 

recovery time.  

We were able to rescue OPC differentiation from the effects of EVG in vitro 

using an inhibitor of eIF2α phosphorylation translation attenuation, similar to 

our observations on the effects of EVG in neurons. Next, we looked at a 

protective cellular pathway called the integrated stress response ISR. This 

pathway can be activated due to a number of cellular stressors that result in 

the activation of one of four kinases resulting in phosphorylation of the eIF2α 

and global translation attenuation. In order to reverse the activation of the ISR 

we used a small molecule called TRANS-ISRIB to inhibit the global translation 

attenuation of eIF2α phosphorylatio with a dose shown to be protective in 

neurons [12, 169]. We found that pretreating the oligodendrocytes 1 hour prior 

to the treating the cells with different doses of EVG, and we found that it could 

protect the cells at 3.5µM but not at 10µM. More work is needed to 

understand the mechanisms by which 10µM EVG prevents OPC 

differentiation into mature oligodendrocytes.  

To examine the effect of EVG in vivo, we used the cuprizone (bis-

cyclohexanone-oxaldihydrazone) model, which is a neurotoxicant used as 
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model to study the demyelination and remyelination in the CNS. Cuprizone is 

a copper chelator that induces demyelination after 5 weeks of feeding (0.25% 

cuprizone mixed with normal powder food). By the end of the 5th week, gross 

demyelination will be observed especially in the corpus callosum (CC) with a 

concomitant increase in astrogliosis and microgliosis. A compensatory 

increase in oligodendrocyte progenitor cells will also be seen in the CC. 

Switching back to normal diet will result in remyelination of the CC, showing 

that cuprizone has a reversible effect in vivo [77, 140, 170]. In our experiment, 

we used COBI as a booster for EVG, and we tested the effect of the 

EVG/COBI by delivering the drug using IV cannula to the jugular vein after the 

5th week of cuprizone administration to mice. To observe the effect of the drug 

on mature oligodendrocytes (in the mice receiving normal diet) and on 

immature oligodendrocytes (in the mice receiving cuprizone) and to determine 

if EVG/COBI will interfere with the normal remyelination process during the 

recovery period after cuprizone-induced demyelination. At the 5th week, we 

inserted IV cannulas for the administration of the drug and switched the mice 

back into a normal diet without cuprizone. We found that EVG/COBI 

attenuated normal remyelination, resulting in similar numbers of 

oligodendendrocytes and myelin as the group that received cuprizone in their 

diet for 5 weeks. The group of mice receiving cuprizone and EVG/COBI also 

showed an increase in GFAP positive cells, IBA1 positive cells, and NG2 

positive cells as shown in Figures 11 and 12. These findings suggest an anti-

inflammatory agent might protect the oligodendrocytes from the effects of 

EVG in vivo. This study gives an insight into what might be happening to 

oligodendrocytes in rodent models, suggesting that white matter pathologies 

seen in HAND may be a result from the combined effects of cART and HIV. 

Also, since we did not see a change in myelination when EVG/COBI was 

administered to control animals who had not received cuprizone, EVG/COBI 

may have an effect on the developing oligodednrocytes but not on the mature 
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oligodendrocytes, implying that EVG affects the normal turn over of new 

oligodendrocytes and/or remyelination after an insult. This project has a great 

importance in adding knowladge and clinical value for treating HIV patients 

with the EVG. In our analysis of the in vivo effects of Elvitegravir, we observed 

changes in myelin staining and immunofluorescence of other proteins in the 

CNS using immunohistochemistry [140, 172, 173]; however, due to limitations 

in isolation of the corpus callosum for immunoblot analysis, we were unable to 

validate our changes using a biochemical approach. Immunohistochemistry is 

widely used in basic research and for aiding in clinical diagnosis of many 

neurodegenerative diseases, the data obtained from these experiments is 

only semi-quantitative  [174]. In an attempt to minimize subjectivity in our 

results, we have followed standard and published methods and techniques to 

support our interpretations [140, 172, 173]. Specifically, we used a masked 

observer to assign scores for myelin staining  intensity combined with a 

computerized, automated image analysis  to minimize human bias and error 

in the interpretation of the data.  

 
Elvitegravir is not the only ART compound that causes white matter 

pathologies, we have simultaneously been investigating the mechanism of 

RIT mediated effects on OPC maturation. We began our studies investiagting 

the effect of RIT on the maturation of oligodendrocytes because we had 

observed previously that RIT attenuated maturation of oligodendrocyte in vitro 

but the mechanism remained undetermined [11]. Further, guidelines from 

WHO urge that all infected children younger than 3 years old be treated with 

RIT in combination with lopinavir as first line of treatment, which is a critical 

period for myelination [14, 171]. The dose used in my studies was qual three 

times the physiological concentration in the human plasma level [11]. Lipid is 

a major component of myelin and any disruption in the normal balance of 
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lipids in oligodendrocytes will result in disruption of the normal development of  

oligodendrocytes from the precursor stage into the mature form. Previosuly 

our lab published inhibiting the SREBP from entering the nucleus by using 

S1P inhibitor caused a significant reduction in the number of differentiated 

oligodendrocytes [13]. So we tested the effect of RIT on SREBP protein 

expression in vitro. Unexpectedly, we found that SREBP protein expression 

was increased along with the lipid enzyme FASN, both of  which are 

responsible for the production of fatty acids. To confirm that the increase in 

the enzymes translated into an increase in the product, we examined the 

levels of palmitate and cholestoral using mass spectrometry and we found an 

increase of 50-60% in both the total mass of the newly synthesized palmitate 

and cholesterol in response to RIT. One explanation for this phenomenon 

could be that RIT changes the fluidity and stiffness of the oligodendrocyte 

membrane leading to a reduction in the differentiation of the oligodendrocytes. 

There may be other mechanisms at the play but this is one way in which RIT 

may contribute to the observations. More attention should be given to this 

drug especially given its recommended use for treating HIV children at critical 

age for myelination. In conclusion, even though ART improved the mortality 

and morbidity rate and overall the quality of life of HIV patients, more studies 

are needed to evaluate the effect of ART given to HIV-patients in CNS in 

general and the maturation process oligodendrocytes in particular. 

 

Future direction: 

I would like to proceed working on the effects of EVG on oligodendrocyte 

myelination, in the recommended treatment combinations: 1) EVG, COBI, 



 

 

92 

ETC, and TAF or 2) EVG, COBI, ETC, and TDF. The working novel model 

that we have developed using infusion of ART following cuprizone-induced 

demyelination will provide insight into the effects of compounds during the 

development of oligodendrocytes druing ART treatment, suggesting that this 

model could be used for evaluating the development of oligodendrocytes in 

pediatric models, during the normal turnover of the oligodendrocyte, or during 

injury. To reverse the effects of EVG on oligodendrocyte maturation and 

myelination, the literature suggests that the HIV viral protein, Tat, binds to the 

NMDA receptor, leading to a disruption of cytoplasmic Ca2+ homeostasis. 

Therefore, we could try blocking the effects of EVG by using an NMDA 

receptor inhibitor such as MK801[101]. Also, we demonstated previously that 

oligodendrocytes could be rescued from the effect of EVG at a 3.5 µM dose, 

but not at the 10 µM dose using eIF2α inhibitor TRANS-ISRIB in vitro. 

Therefore we could try attenuating the effect of EVG using TRANS-ISRIB in 

vivo [175]. Next, I would like to test the contribution of ART in HAND in the 

context of behavioral changes, brain anatomy assessed by radiographic 

images in the animal model. All of these tests will give us more understanding 

of the role of the ART in HAND.  

For the role of SREBP, it is known that the majority of ART drugs cause a 

disturbance in lipid homeostasis in the liver [66], but limited literature has 

examined the effect of these drugs on oligodendrocytes despite the major role 

of lipids in the function of oligodendroctyes. Studying the effect of ARV on 

SREBP in  oligodendrocytes will give us a great insight into the mechanism of 

development of HAND in HIV-positive patients.  
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Finally, I would like to use my experience in dentistry and to study the 

myelinated nerve axons inside the tooth pulp, since it is part of the body and 

linked to the CNS. Unlike other organs, the teeth are compactly innervated by 

primary sensory neurons found in the trigeminal ganglion, the two main nerve 

fibers in the teeth are A-fibers (δ- β) and C-fibers, the A fibers end in the inner 

one third of the dentin layer and the fibers located mainly in the pulp 

tissue[176, 177]. Unlike A fibers, C fibers are not myelinated and transmit the 

signals at much slower rate compared with  A fibers[178]. Schwann cells 

myelinate the nerve axon in the Peripheral Nervous System (PNS), it has 

similar action to the oligodendrocytes in the CNS in saltatory conduction, but 

they have a different development and assembly of myelin, plus they do not 

have a cytoplasmic projection and can myelinate only one neuron axon[179]. 

Currently, the most common side effect from HIV in the PNS is peripheral 

neuropathy plus other complication, and ART did not decrease these side 

effects[180]. Comparing number of surfaces with caries between HIV-positive 

patients and un-infected patients shows that HIV patients have significantly 

higher number of carious surface.[181]. The mechanism behind this remains 

poorly understood and I would like to examine the difference between myelin 

proteins inside the teeth and examine the impact of HIV and ART on nerve 

fibers in the oral cavity.  
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