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Abstract. 

P53 is considered one of the most important defense proteins against cancer. 

Although the p53 mutation is associated with many cancers, its mutation is never found in 

Kaposi’s sarcoma (KS), raising a possibility that functional p53 may play a role in KS 

development. To assess the role of p53 in Kaposi’s sarcoma tumor, shRNA-mediated gene 

silencing was used to knockdown p53 expression. We examined Kaposi’s sarcoma-associated 

herpesvirus (KSHV)-infected periodontal ligaments stem cells (PDLSC) for osteogenic 

differentiation and endothelial angiogenesis, and we observed noticeable decreases in osteogenic 

differentiation and angiogenesis when p53 expression was knocked down in KSHV-infected 

PDLSCs by p53 specific shRNA. The results suggest that p53 plays an essential role in sarcoma 

development of KSHV infected mesenchymal stem cells. 
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Introduction. 
 

Kaposi’s sarcoma (KS) is the most common malignancy associated with HIV infection. About 

20% of AIDS patients develop KS, and most cases (60%) manifest as oral lesions. Oral KS is 

often the first presenting sign of AIDS and the most common intraoral KS sites are palate and 

gingiva1. With the development of AIDS-KS, KS lesions progress to the skin and internal 

organs, including the lungs and gastrointestinal tract. KS has proven to be a malignant, 

progressive and fatal disease, which contributes greatly to the morbidity and mortality of AIDS. 

In addition, it was found that patients with KS in their oral mucosa had a higher risk of death 

than those with KS appearing only on the skin. Patients with oral KS generally have a less than 

10% 5-year survival rate 2. Despite its dramatic decrease in frequency since the advent of highly 

active antiretroviral therapy (HAART), KS remains the most common AIDS-associated cancer in 

the United States. In addition to this AIDS-associated (epidemic) form, other epidemiological 

forms of KS include the classic (sporadic), African (endemic), and immunosuppression-

associated (iatrogenic) forms 3. Microscopically, KS Tumors comprise proliferating spindle-

shaped KS cells with abnormal neoangiogenesis and abundant inflammatory infiltrate. The origin 

of the spindle-shaped KS cells lineage remains elusive. Based on initial immunohistochemistry 

studies as well as recent gene expression profiles, the most widely accepted theory is that KS 

cells may derive from the endothelial cell lineage 4. KS cells express panendothelial marker 

CD31, CD34 and Factor VIII. However, KS cells are poorly differentiated and also express other 

markers such as smooth muscle markers, macrophage markers and mesenchymal markers, 

suggesting that KS cells do not faithfully represent endothelial cell lineage 5. There is currently 

no definitive cure for KS. For classic KS, classic cancer therapies are generally used to treat  
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patients, which include surgical excision and radiation therapy for patients with a few lesions in a 

limited area and chemotherapy for patients with extensive or recurrent KS 1. 

Kaposi’s sarcoma-associated herpesvirus (KSHV), also named human herpesvirus 8 (HHV-

8), has been proven to be an etiologic agent of Kaposi’s sarcoma. Irrespective of the source or 

clinical subtype (i.e., classic, AIDS-associated, African endemic, and iatrogenic KS), almost 

100% of KS lesions are found to carry KSHV. KSHV is also unequivocally associated with two 

B-cell-associated lymphoproliferative disorders, namely, primary effusion lymphoma (PEL) and 

the plasma cell variant of multicentric Castleman’s disease (MCD)1 3. 

Oral Mesenchymal stem cells (MSCs) have been identified as a population of hierarchical 

postnatal stem cells with the potential to self-renew and differentiate into osteoblast, 

chondrocytes, adipocytes, cardiomyocytes, myoblasts and neural cells6 7. MSCs are capable of 

generating mineralized tissues in vivo8 and organizing host tissue to collaboratively form 

bone/marrow organ-like structures and to re-establish normal tissue homeostasis9. MSC-

mediated tissue regeneration is a promising approach for developing new clinical treatments. In 

addition to their tissue regeneration capacity, MSCs interplay with various immune cells and 

possess an immunomodulatory function that leads to successful therapies for a variety of 

immune diseases10 11. The oral cavity contains a variety of distinctive MSC populations, 

including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), apical 

papilla stem cells, dental follicle stem cells, and gingiva/mucosa-derived mesenchymal stem 

cells (GMSCs)12 13 14 15 16 17. These MSCs show significantly increased proliferation and self-

renewal capacities compared to bone marrow MSCs, which may be associated with their neural 

crest origin18 19 20 21. Among  
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these MSCs, only GMSCs in gingiva and PDLCs in periodontal ligaments have the potential to 

directly interact with oral cavity saliva, microbiota, and virus. There is increased chance that 

KHSV contacts and transfects GMSCs and PDLSCs in the oral cavity22. MSCs are found in solid 

tumors stroma which migrate to the tumor site, then they form part of the microenvironment 

affecting tumor survival and angiogenesis mechanism of tumor development 23. Recently, Yuan 

Lab and others showed that oral MSCs can be efficiently infected by KSHV and latent infection 

can be established in the cells. KSHV infection of oral MSCs promoted cell differentiation that 

led to morphological changes and enhanced capacities of adipogenesis, osteogenesis and 

angiogenesis. Further study provided evidences supporting the hypothesis that KSHV–infected 

oral MSCs can be the progenitor of KS malignant cells and mesenchymal-to-endothelial 

transition (MEndT) driven by KSHV infection contributes to the development of KS 24(Yuan lab 

unpublished data). 

p53 or so called “guardian of the genome” plays a pivotal role in maintaining the genetic 

stability and in regulating cell differentiation particularly cell proliferation and apoptosis 25 26. 

p53 also called “tumor suppressor gene”, is activated upon certain signals such as DNA damage 

and stresses, and p53 subsequently acts by arresting cell cycle or inducing apoptosis to help 

preserving cellular integrity and function. In about 30% of human cancer 27, the p53 gene is 

frequently mutated or inactivated28 such as in melanoma, lymphoma and leukemia 29. Whereas in 

KSHV tumors the opposite has been reported “tumors express functional p53” supported by the 

hypothesis that KHSV has encoded proteins. These proteins have an inhibitory function against 

p5330 like ORF50, K10, K10.5 ORF22, ORF25, ORF37, ORF64, ORF68, ORF72, ORF74 and 

K14 31. 
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Recent studies indicate diversity in the p53 functions and it is mostly related to the cell type. 

Some suggest that p53 induce cell differentiation and in others suppression. In MSCs, p53 acts as 

a master regulator of proliferation and differentiation 28 , and its absence or malfunction will 

increase the proliferation and differentiation rate to osteocyte in case of osteogenesis 28. 

Additionally, p53 effectively limits angiogenesis differentiation in many different ways such as 

inhibition of proangiogenic factors, increase the production of endogenous angiogenesis 

inhibitors and interference with angiogenesis mediators. Thus, inactivation of p53 will switch to 

angiogenic phenotype which represents in aggressive vascular tumors32 33. 

In this work, we analyzed the role of p53 in the osteogenesis and angiogenesis differentiation of 

Kaposi’s sarcoma herpesvirus infected mesenchymal cells by comparing KSHV infected MSC 

with wild type p53 (WT) or p53 knockdown (KD). We observed that the knocking down of p53 

in MSCs will inhibit the osteogenesis rate and angiogenesis ability. Therefore, we hypothesized 

that p53 plays a pivotal role in the differentiation of KHSV-infected MSC, a crucial step toward 

KS development.  

Methods and materials 

Cells.  

The periodontal ligament stem cell line (PDLSC) were kindly provided by professor Song tao 

Shi [ Investigation of multipotent postnatal stem cells from human periodontal ligament]. The 

cells were cultured in alpha Minimum Essential Medium (αMEM) (Invitrogen) containing 10% 

FBS (BD Clontech), 100 U/ml penicillin/100 µ g/ml streptomycin (Invitrogen), 2 mM L – 



 

 7 

 

glutamine, 100 mM nonessential amino acid, and 550 µM 2-ME (Sigma-Aldrich), and cultured 

at 37°C in a humidified tissue culture incubator with 5% CO2 and 95% O2. For maintenance 

cultures, cells were passaged every 2-3 days with 0.05% Trypsin /4mM EDTA and seeded at 3-

4.5 x 103 per cm2 in 100-mm T75 flasks.  

Human embryonic kidney (HEK) 293T cells were obtained from ATCC. 293T was cultured in 

Dulbecco modified Eagle medium(DMEM) supplemented with 10% FBS, 2mM L-glutamine, 

and antibiotics. Ecoli stain GS1783 containing BAC16 which carries the entire KSHV genome, 

was obtained from Shou-Jiang Gao at the University of Texas at San Antonio. 

 iSLK cells known for their ability to harbor rKSHV.iSLK cells were cultured in the presence of 

1 µg/ml puromycin and 250 µg/ml G418. BAC16 and its derivatives were introduced into iSLK 

cells via Fugene HD transfection. GFP confirms iSLK-BAC transfection success31.  iSLK cells 

induced using 1ug/ml doxycycline and 1 mM sodium butyrate, were then harvested 5 days. 

KSHV genomic DNA was quantified by real-time PCR on a Roche LightCycler instrument 34. 

shRNA-mediated gene silencing technique.  

Mission shRNA gene sets against human TP53 were purchased from Sigma-Aldrich. This 

shRNA system is a lentiviral vector-based RNA interference library against annotated human 

genes, which generates siRNAs in cells and mediates gene-specific RNA interference for 

extended periods of time. The TP53 set consists of two individual shRNA lentiviral vectors in 

pLKO.1-puro plasmids against different target sites of TP53 mRNA (with clone ID NM_000546. 

for convenience sake referred as p53 shRNA clone #s 55). Each of the shRNA vectors and the 

control vector were used to prepare lentiviral stocks by cotransfecting HEK 293T cells with the  
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shRNA vector and two packaging vectors (pHR=8.2DR and pCMV-VSV-G) at a ratio of 4:2:1, 

respectively. Three days post-transfection, the culture media that contained shRNA retroviruses 

were harvested, centrifuged (500 g for 10 min at 4°C), and filtered through a 0.45-m-pore-size 

filter to ensure removal of any nonadherent cells. PDL cells were transduced with the shRNA-

encoding lentivirus stocks in the presence of Polybrene (8 microgram/ml). Transduced cells were 

selected with puromycin (2 microgram/ml) for a week. Efficacies of these shRNAs in 

knockdown of the respective protein were assayed by Western blotting with specific antibodies. 

Western blotting.  

Cells were lysed with ice-cold lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 30 mM 

NaF, 5 mM EDTA, 10% glycerol, 40 mM glycerophosphate, 1 mM phenylmethylsulfonyl 

fluoride [PMSF], 1% Nonidet P-40, 1 mM sodium orthovanadate) supplemented with protease 

inhibitor cocktail (Roche). The cell lysates were homogenized and centrifuged at 13,000 rpm for 

5 min at 4°C. The whole-cell extract was resolved by SDS-polyacrylamide gel electrophoresis 

and transferred to nitrocellulose membranes. The membranes were blocked in 5% dried milk in 1 

phosphate-buffered saline (PBS) and then incubated with diluted primary p53 rabbit antibodies 

(Cell Signaling Technology) and left overnight at 4°C. Anti-rabbit immunoglobulin G antibodies 

conjugated to horseradish peroxidase (Cell Signaling Technology) were used as the secondary 

antibodies. An enhanced chemiluminescence system (Cell Signaling Technology) was used for 

detection of antibody-antigen complexes. Following this, we repeated some steps for beta actin 

incubating the membrane with primary anti-beta actin antibody (genetex) overnight and 

secondary goat anti mouse antibody (scbt). 
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Transfection of KSHV and PDL cells. 

PDL Cells were seeded in 24-well plates about 4-6 ×104 cells per well, we made sure the cells 

were 90% cell confluency in the infection day. The next day, final 4 µg/mL polybrene added to 

the virus/medium and incubate for 5 min. Remove the medium of the cells, add the 

virus/medium to the cells (500ul/each well). Spin the cells at 2,500rpm for 1h at room 

temperature. Then the plate placed in 37 ℃ incubator for 1h. Replaced the virus/medium with 

virus-free medium and took the plates into 37 ℃ incubator.  

2-3 days following we changed the medium. We used 3 plates at different time point 1-2-3 

weeks for evaluation purpose. 

Osteogenic Differentiation.  

MSCs were cultured under osteogenic culture condition, containing 2 mM beta-

glycerophosphate (sigma-Aldrich), 100 microM L-ascorbic acid 2-phosphate (Wako),and 10 nM 

dexamethasone (Sigma-Aldrich) in the growth medium .After 2-3 weeks induction , 1% Alizarin 

Red S (Sigma-Aldrich) staining was performed to detect matrix mineralization . 

Matrigel tube formation assay.  

48-well plates were coated with Matrigel (BD) (100 µl/well) and incubated at 37ºC for 1h to 

allow gelation to occur. KSHV-infected PDLSCs suspended in 200µl a-MEM were added to the 

top of the gel in the presence or absence of p53 inhibitor. Then the cells were incubated at 37°C 

with 5% CO2 for 4-8 h, and images of tube formation were captured using a ZEISS fluorescence 

microscope. 
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Results.  

Evaluation of the role of p53 in KSHV infected-MSC osteogenesis differentiation 

Our study identified the need of P53 in the KSHV infected periodontal ligament mesenchymal 

cells to differentiate and develop Kaposi’s sarcoma. Recent evidences suggested that the initial 

target cells for KSHV infection could be progenitor cells such as mesenchymal stem cells 

(MSCs) and mesenchymal-to-endothelial transition (MEndT) may account for sarcomagensis of 

KS. Therefore, we explored the role of p53 in oral periodontal ligament mesenchymal stem cells 

as target by KSHV and tested the potentials of KSHV-infected oral MSCs in two different 

lineage differentiation.  It was demonstrated in Yuan Lab that KSHV-infection efficiently 

promote differentiation of several lineages including osteogenic, adipogenic and endothelial 

differentiation (Yuan Lab unpublished data). Using p53 specific shRNA-mediated knock down 

procedure, we first examined the effect of p53 on the ability of oral PDLSCs to differentiate into 

osteoblasts.  

To assess whether this P53 is essentially required for KSHV-PDLSCs differentiation, we 

attempted to knockdown P53 expression in PDLSCs through a short-hairpin RNA (shRNA)-

based approach and examined the effects on PDLSCs differentiation and evaluate KHSV DNA 

replication. Mission shRNA gene set against P53 were purchased from Sigma-Aldrich. After 

introduction into PDLSCs by lentiviral transduction, the expression of the target protein was 

evaluated by Western blotting (Fig. 1).  
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We used UV light at dose 20 J/m for 2 seconds to effectively induce p53 before Western blot. 

P53 shRNA was found to successfully downregulate the expression of p53 in comparison to the 

control as shown in Figure.1. After confirming that p53 was effectively knocked down (KD), the 

p53 shRNA-expressed PDLSCs and control PDLSCS were infected with KHSV. Mock-infected 

PDLSCs were also prepared as controls. KSHV-  and mock-infected PDLSCs were grown in the 

induced medium MSCOIM for two weeks. Starting from the 3rd day after infection, the medium 

was changed every 2-3 days using induction medium MSCOIM and some other plates with the 

regular medium for comparison purpose.  

Osteogenesis of MSCs was assayed by Alzarin Red staining and results showed positive nodule 

formation (indicating calcium accumulation in vitro) in PDLSCs was greatly enhanced with 

KHSV infected PDLSCs that has functional p53 in the presence of osteo-inductive condition 

whereas in the KHSV infected PDLSCs with knocked down P53 shows low rate osteogenesis 

and was detachable from the surface within 3 weeks. We used a quantification measure Image J 

to compare the relative amount as ratio of calcium deposition between the samples which also 

indicate high rate of osteogenesis seen in KSHV infected PDLSCs with wild type p53. 

Furthermore, calcium deposition was significantly reduced in both KSHV-infected and mock-

infected PDLSCs where p53 expression was silenced by shRNAs, suggesting that p53 is required 

for osteogenic differentiation of oral MSCs. 
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P53 and KSHV-PDLC proliferation 

 

Moreover, during the process of growing KSHV- and mock-infected PDLSCs, we noticed that 

there was an increased and accelerated proliferation of the KHSV-infected PDLSCs in 

comparison to mock-infected cells, confirming the fact that KHSV infection enhances 

differentiation of oral MSCS. In addition, PDLSCs with control shRNA (wild type P53) show 

the most intense differentiation among all the samples , suggesting that KSHV promotes stronger 

osteogenic differentiation of oral MSCs in the presence of p53 (table 1). 

 

Table 1: Comparison between KHSV- and mock infected PDLSCS once with p53 and other with 

knockdown the expression of p53, showing that KSHV promotes stronger osteogenic 

differentiation of oral MSCs in the presence of p53. 
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Evaluation of the role of p53 in KSHV infected-MSC angiogenesis differentiation 

KS is a vascular tumor and abnormal angiogenesis is the hallmark of the malignancy. 

Angiogenesis is a multi-step process involving endothelial cell activation, proliferation, 

differentiation, migration, and formation of vascular structure. It have been shown that KSHV 

infection of oral mesenchymal stem cells (MSCs) confers the cells with certain KS features 

including angiogenic, invasive and transformation phenotypes 32. In our lab, we also 

demonstrated that KSHV-infected PDLSCs exhibit highly increased angiogenesis activity as 

showed in an in vitro Matrigel tubulogenesis assay (unpublished data of Yuan and Shi Labs). 

Thus, we would investigate whether p53 is crucial for KSHV-induced angiogenesis in PDLSCs 

and if knockdown of p53 expression or inhibition of p53 activity block the KSHV-mediated 

angiogenesis of PDLSCs. P53 shRNA was introduced into PDLSCs by lentiviral transduction. 

After one week drug selection, transduced cells were infected with KSHV at multiplicity of 

infection (MOI) of 50 (viral genomic DNA equivalent). Ninety-six hours post-infection, an in 

vitro Matrigel tubulogenesis assay was performed to assess the ability of KSHV-infected oral 

MSCs in formation of capillary-like tubules and the effect of p53 knockdown on this process. As 

shown in Fig. 3A, KSHV-infected PDLSCs can form capillary-like tubules that represent the 

later stage of angiogenesis, while tight cell junction was not formed in the p53-knowndown 

PDLSCs. The results suggest that a differentiation from KSHV-infected MSCs to endothelial 

lineage (such as angioblast) take place and this process is p53-dependent. 

In addition, we also examined the importance of p53 in angiogenesis activity of KSHV-

infected MSCs by using a pharmacological inhibitor of p53. A wide range of concentration of  
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Pifithrin was added in the Matrigel tubulogenesis assay and the effect of the p53 inhibitor on the 

ability of KSHV-infected oral MSCs in formation of capillary-like tubules was examined. As 

shown in Fig. 3B, the tubule formation was obviously blocked starting at 10 m M. The result 

showed that in consistent with shRNA knockdown experiment, inhibition of p53 by its specific 

inhibitor dramatically block KSHV-induced angiogenesis. Taken together, our result suggests 

that KSHV infection promotes differentiation of oral MSCs that may lead to KS development 

and this process is p53-dependent. 

 

Discussion. 

Kaposi’s sarcoma (KS) is a serious disease, especially for HIV-infected population. 

Currently there is no cure for KS and other KSHV-associated malignancies. Little is known 

about the nature of the target cells of KSHV infection in oropharynx. The multifocal nature of 

KS tumor suggests that KSHV infects progenitor cells with proliferation and differentiation 

potentials and drives differentiation of the cells to KS spindle cells. The proliferation and self-

renewal nature of MSCs and the observation that KSHV infection of oral MSCs promoted cell 

differentiation that led to morphological changes and enhanced capacities of adipogenesis, 

osteogenesis and angiogenesis provide a theoretic support for the hypothesis that KSHV-infected 

oral MSCs could be the cellular origin of KS in oral cavity. The transformation of KS 

progenitors, such as KSHV-infected MSCs, to KS malignant cells undergoes a mesenchymal-to-

endothelial transition (MEndT) process . A study on gene expression profiling of KSHV-infected 

oral MSCs revealed how KSHV infection reprograms the infected MSCs which includes  
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activation of a number of genes that contribute to MEndT and have been identified as KS 

expression signature genes previously (Yuan Lab unpublished data).  

The role of p53 as the “guardian of the genome” in regulation of cell proliferation, 

apoptosis and tumor suppression has been well established, but its involvement in MSC 

differentiation has not been extensively explored. The role of p53 in MSC differentiation and 

tumorigenesis is elusive and contentious. A study by Molchadsky et al. suggests that as a general 

regulator, p53 facilitates differentiation of MSC in cell fate dependent manner37. Huang and 

colleagues isolated bone marrow-derived mesenchymal stem cells (BMSCs) from p53 wild type 

(WT) and knock out (KO) mice and demonstarted that loss of p53 pushes BMSCs toward pre-

osteoblast differentiation. The best explanation as indicated by many study is that p53 indirectly 

represses the expression of Runx2 by activating the microRNA-34 family, which suppresses the 

translation of Runx2.  Higher levels of Runx2 account for faster osteogenic differentiation40. Our 

study indicated that in KSHV-infected oral MSCs, p53 is required for multi-lineage 

differentiation, suggesting its role in MEndT that leads to KS development. This finding may 

provide an explanation that although p53 loss or mutation are frequently seen in many forms of 

tumors, but is never seen in KS lesion. 

Formation of abundant irregular blood vessels is a hallmark of KS. Previous studies have 

reported that KSHV infection increased the angiogenic property in oral MSCs. KSHV infection 

can drive oral MSC into endothelial lineage differentiation and promote neoangiogenesis, a 

crucial pathogenic feature of KS. Our work has shown that KSHV-infected PDLSCs are capable 

to well form blood vessels which represent angiogenic differentiation in the presence of p53 

protein, while the differentiation is remarkably inhibited in the p53-knowndown PDLSCs. This  
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suggests that the differentiation from KSHV-infected MSCs to endothelial lineage is p53-

dependent. 

Given that p53 functions as an tumor suppressor, how does KSHV-infected KS precursor 

cells use p53 to promote differentiation, but avoid its anti-oncogenic activity in order to develop 

malignancy. It has been reported that KSHV encodes several proteins that show to inhibit p53 

activity and apoptosis 31  38  39. Accordingly, this fact confirms that wild p53 express in KSHV 

associated tumors. It is assumed that p53 is initially needed by KSHV for cell differentiation but 

gradually inhibits p53 mediated apoptosis function allowing production of virus particles and 

thereby facilitate viral oncogenesis. This notion is interesting but needs to be further studied for 

better understanding. 

Future studies are required to understand in details the role of p53 in KHSV infected MSCs 

differentiation and its contribution to Kaposi sarcoma development. Furthermore, the studies will 

help in developing new strategy in molecular target therapy for KS.  
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Figures 

 

Fig. 1. Effects of p53 knockdown by short-hairpin (shRNA)-mediated silencing. An shRNA 

lentivirus which targets p53 shRNA (NM_000546.X-1095S1C1,-427s1c1-; Sigma-Aldrich), 

along with a nontargeting control shRNA lentivirus, was transduced into PDL cells. Intracellular 

levels of p53 (top), -actin (bottom) proteins were determined by Western blot analysis.  
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Fig. 2.  Osteogenesis differentiation of KHSV-infected PDLSCs after 2 weeks of induction 

media. KSHV-PDLSCs with control shRNA (wild type p53) (top left) show higher osteogenic 

differentiation in compared to the cells with p53 knockdown (top right). The p53-dependent 

differentiation was also observed in the mock-infected PDLSCs (bottom left and right). 
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Fig. 3. p53-dependent angiogenesis of KSHV-infected PDLSCs demonstrated by Matrigel tube 

formation assays. (A) KSHV-infected PDLSCs were transduced by p53-specific shRNA or 

control shRNA lentiviruses. Cells were subjected to Matrigel tube formation assays as described 

in Material and Methods. (B) KSHV-infected PDLSCs were treated with p53 inhibitor Pifithrin 

ain a wide range of concentration. The effect of Pifithrin a on angiogenesis of KSHV-PDLSCs 

were evaluated by a Matrigel tube formation assay. 
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