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ABSTRACT 

Rebecca J. Bartlett Ellis 

 

 

IN VITRO COMPARISON OF GASTRIC ASPIRATE METHODS AND FEEDING 

TUBE PROPERTIES ON THE QUANTITY AND RELIABILITY OF OBTAINED 

ASPIRATE VOLUME 

 

Gastric residual volume (GRV) is a clinical assessment to evaluate gastric 

emptying and enteral feeding tolerance. Factors such as the tube size, tube material, tube 

port configuration, placement of the tube in the gastric fluid, the amount of fluid and 

person completing the assessment may influence the accuracy of residual volume 

assessment. Little attention has been paid to assessing the accuracy of GRV measurement 

when the actual volume being aspirated is known, and no studies have compared the 

accuracy in obtaining RV using the three different techniques reported in the literature 

that are used to obtain aspirate in practice (syringe, suction, and gravity drainage).  

This in vitro study evaluated three different methods for aspirating feeding 

formula through two different tube sizes (10 Fr [small] and 18 Fr [large]), tube    

materials (polyvinyl chloride and polyurethane), using four levels of nursing experience 

(student, novice, experienced and expert) blinded to the five fixed fluid volumes of 

feeding formula in a simulated stomach, to determine if the RV can be accurately 

obtained. The study design consisted of a 3x2x2x4x5 completely randomized factorial 

ANOVA (with a total of 240 cells) and 479 RV assessments were made by the four  

nurse participants.  



 

vii 

 

All three methods (syringe, suction and gravity) used to aspirate RV did not 

perform substantially well in aspirating fluid, and on average, the methods were able to 

aspirate about 50% of the volume available. The syringe and suction techniques were 

comparable and produced higher proportions of RVs, although the interrater reliability of 

RV assessment was better with the syringe method. The gravity technique generally 

performed poorly. Overall, the polyvinyl chloride material and smaller tubes were 

associated with higher RV assessments. 

RV assessment is a variable assessment and the three methods did not perform 

well in this in vitro study. These findings should be further explored and confirmed using 

larger samples. This knowledge will be important in establishing the best technique for 

assessing RV to maximize EN delivery in practice and will contribute to future research 

to test strategies to optimize EN intake in critically ill patients.  

 

 

      Marsha L. Ellett, PhD, RN, Chair
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CHAPTER ONE 

INTRODUCTION 

Enteral nutrition (EN) delivery in critical illness is a common intervention as early 

initiation within the first 72 hours of critical illness reduces complications compared with 

parenteral nutrition or no nutritional support. Impaired gastrointestinal (GI) motility and 

delayed gastric emptying (gastroparesis) are common in critical illness, and the greater 

the severity of illness the more likely a patient is to experience delayed gastric emptying 

(McClave, Marsano, & Lukan, 2002b). Impaired gastric emptying increases gastric 

retention of EN and GI secretions as the frequency of contractions is decreased often 

leading to EN intolerance (Dive, Moulart, Jonard, Jamart, & Mahieu, 1994). Patients in 

the intensive care unit (ICU) are periodically evaluated for EN intolerance by aspirating 

stomach contents, including fed feeding formula, from the feeding tube. Any amount of 

fluid that remains in the stomach from the feeding, along with stomach secretions, is 

known as gastric residual volume (GRV). Although assessing GRV volume results in 

brief cessations of tube feedings, elevated GRV volume results in cessation of tube 

feedings for variable lengths of time, in which case the patient does not receive their 

prescribed caloric intake. The reliability of GRV volume assessment may be influenced 

by a number of factors such as tube size, tube material, the nurse performing the 

assessment, the volume available to aspirate, the method used to aspirate GRV, and 

placement of the tube in the gastric fluid pool.  

McClave and co-investigators (1992) state that the measurement of GRV volume 

provides somewhat of a quantitative representation of gastric motility and gastric 
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emptying although these investigators believe the assessment is neither valid or reliable 

as a measure of gastric emptying nor as a measure to predict pulmonary aspiration. 

While EN in critically ill is associated with positive patient outcomes, aspiration 

of large volumes of GRV is a feared complication. Nursing textbooks recommend that 

GRV between 200 mL and 500 mL should raise awareness and concern for aspiration, 

based on “The North American Summit on Aspiration in the Critically Ill Patient: 

Consensus Statement” (McClave et al., 2002a). Other guidelines indicate similar GRV 

threshold volumes, but feedings should not be held for GRVs less than 500 mL as 

patients who have EN held because of GRV do not receive their prescribed nutrition 

(McClave et al., 2009). There is no agreement, however, as to what volume of GRV 

represents delayed gastric emptying. Healthcare researchers and clinicians recognize the 

importance of providing EN within the first 24–48 hours after admission to the ICU 

(Doig, Heighes, Simpson, Sweetman, & Davies, 2009); however, research evidence is 

inconsistent in how to best assess GRV and how to interpret GRV in the provision of EN. 

Investigators have studied a variety of threshold volumes to establish criteria for 

withholding EN when GRV is high, ranging from 50 mL up to 500 mL. One survey 

identified “high” GRVs ranged from 50 mL up to 400 mL (Marshall & West, 2006). 

Other investigators have suggested eliminating GRV measurement and attempted to 

establish that patients do not experience more adverse complications such as vomiting or 

ventilator associated pneumonia (Poulard et al., 2010) when GRV measurement is not 

used. These studies have been conducted in multiple sites across the world using a variety 

of protocols from clinical practice and a variety of different types of feeding tubes, with 

varying port configuration and varying methods for aspirating contents. Some sites use a 
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50 mL–60 mL syringe to aspirate GRV for measuring intolerance, while others use 

suction or gravity drainage. The lack of evidence with regard to the validity and 

reliability of GRV assessment may be influenced by several factors such as syringe size, 

tube caliber, tube material, and position of the tube in the gastric fluid pool when 

measurements are made. The controversy in establishing an efficacious GRV threshold 

for tolerance may partially be explained by these factors as well as variation in the 

measurement technique used to assess GRV (Metheny, Stewart, Neuetzel, Oliver, & 

Clouse, 2005).  

Statement of the Problem 

If GRV measurement will be retained as a measure of EN intolerance, then tube 

size, port configuration, and the material of which the tube is constructed needs to be 

further studied to determine how these factors might affect the accuracy of GRV 

measurements as well as the method used to obtain the aspirate. While these 

considerations have been studied, little attention has been paid to assessing the accuracy 

of GRV measurement when the actual volume being aspirated is known, and no studies 

have compared the accuracy in obtaining GRV using the three different techniques 

reported in the literature that are used to obtain aspirate in practice. Tube diameter and 

port configuration have been shown in vivo to be important variables in the measurement 

of GRV (Metheny et al., 2005). In addition, while aspirating stomach contents with a  

50 mL–60 mL syringe is the most commonly reported and recommended practice for 

assessing GRV, a few other studies report using intermittent wall suction and gravity 

drainage as alternate methods for assessing GRV. The research conducted to date has 

been in vivo where the precise GRVs are unknown, and the method for aspirating and 
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assessing the GRVs are varied. Thus, it is important to explore the effect of feeding tube 

properties and methods for accurately measuring the assessment of residual volumes 

(RVs) in vitro to establish the scientific basis for measuring GRV before attempting to 

identify a specific GRV threshold for application in clinical practice. 

Purpose of the Study 

The purpose of this study was to evaluate how three methods for aspirating 

feeding formula (syringe, suction, and gravity), in conjunction with a variety of 

nasogastric (NG) tubes, in vitro, affect the proportion of aspirate that can be assessed to 

determine if GRV assessments can be accurately obtained.  

Research Questions 

This study addressed the following research questions: 

1. Which technique for pulling on the syringe plunger (fast, intermittent, and 

slow) yields the largest quantity of RV in the assessment of aspirate? 

2. Can the slow and intermittent syringe pull techniques be used 

interchangeably? 

3. How do methods for aspirating GRV (syringe, suction and gravity), tube 

size (10 Fr and 18 Fr), tube material (polyvinyl chloride [PVC] and 

polyurethane), experience of the nurse (student, novice, experienced, and 

expert) and total volume available (50 mL, 150 mL, 300 mL, 500 mL, and 

600 mL) influence the amount of aspirated feeding formula in an in vitro 

experimental trial? 

4. What is the effect of tube size, tube material, and level of nurse experience 

on the proportion of assessed RV? 
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5. What is the effect of the four feeding tubes evaluated in this study and the 

level of nurse experience on the proportion of aspirated RV? 

6. Is one method for aspirating RV (syringe, suction, or gravity) better than 

another in assessing the proportion of aspirated RV? 

7. Is one tube better than another tube within each of the three methods 

(syringe, suction, and gravity) in assessing the proportion of aspirated RV? 

8. What is the effect of volume on the proportion of aspirated RV? 

9. How well does RV assessment identify measurements that would be 

considered intolerant to EN in practice? 

10. Is there evidence of interrater reliability in RV assessment across the level 

of nurse experience when the nurses are treated as raters? 

Definition of Terms 

There are a number of terms that are important to clarify. These conceptual 

definitions and operational definitions are added for clarity and will be used throughout 

this study. 

GRV—Volume of fluid removed from the stomach of patients receiving tube 

feedings. Measured in practice as an indicator of how well the stomach in emptying. 

GRV is measured in mL. 

In vitro—In vitro is the experimental environment outside the living body. For the 

purpose of this study in vitro refers to experiments conducted in a laboratory to simulate 

the human stomach.  

In vivo—In vivo is the environment inside the human body. For the purpose of 

this study, in vivo refers to invasive studies conducted on human subjects. 
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RV—The volume of fluid removed from the in vitro simulated stomach using 

either a syringe attached to the NG tube, suction connected to the end of the NG tube or 

drainage by gravity by connecting a drainage tube to the NG tube, measured in mLs.  

Nurse rater—This is the nurse participant in this study representing one of the 

levels of practice experience.  

Nursing student—A nursing student is a beginning nursing student who has 

completed a basic skills course with competency in NG tube management.  

Novice nurse—A novice nurse is a nurse with less than three years of practice 

experience as a registered nurse in an intensive care setting. 

Experienced nurse—An experienced nurse is defined as a nurse with more than 

three years of practice experience in an intensive care setting.  

Expert nurse—An expert nurse is defined as a nurse with expertise in EN delivery 

either as a nutrition support nurse and/or a nurse who has published in the nutrition/EN 

literature. 
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

The review of literature for this study focuses on three areas: (a) normal GI 

anatomy and physiology; (b) gastric motility, gastric emptying, and GRV assessment in 

patients with critical illness; and (c) the variables and techniques that affect the ability to 

accurately measure GRV. These variables include feeding tube properties (tube size, 

material, and port configuration), the position of the tube in the fluid pool as well as the 

variation in techniques reported in the literature to evaluate GRV. This last section will 

include a review of the literature that surrounds the value of GRV in assessing a patient’s 

tolerance to EN.  

Normal GI Anatomy and Physiology of the Stomach 

An understanding of the normal GI anatomy and physiology is important because 

EN is provided via the GI tract and any dysfunction of the GI tract may delay gastric 

emptying and therefore increase GRV. The GI tract serves to supply the body with 

nutrients and fluid through digestion and absorption, remove waste through excretion, 

and provide host defense through intestinal bacteria and an intricate lymphoid system 

(Barrett, 2006). The anatomical structure of the GI tract that supports these functions 

consists of a long hollow muscular structure that runs from the mouth to the anus. The 

main portions of the GI tract include the esophagus, stomach, duodenum, jejunum, ileum, 

and colon. Accessory organs are connected to the GI tract to aid in the storage and 

secretion of enzymes necessary for digestion and absorption of nutrients. GI function 

relies on exogenous food and fluid to provide the body with nutrients; to facilitate 

nutrient intake, the GI tract requires functional secretory and motility abilities along the 
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length of the tract. The anatomy and physiology relevant to understanding EN delivery is 

discussed in the following section. 

GI Anatomy Relevant to Food Intake 

Food normally enters the GI tract through the oral cavity of the mouth where 

chewing with the teeth helps to mechanically reduce the size of the food and saliva coats 

the surface of the food to help with swallowing. The food bolus is then moved from the 

oral cavity to the esophagus before entering the stomach. The esophagus is separated 

from the stomach by the esophageal sphincter that is controlled by neurogenic and 

hormonal factors as well as the diaphragm (Barrett, 2006). The pressure in the lower 

portion of the esophagus is higher than the pressure of the stomach to prevent reflux of 

stomach contents back into the esophagus. Once the food crosses the lower esophageal 

sphincter, it empties into the stomach. In EN, the NG tube is inserted via the nare into the 

stomach where it delivers EN. 

Anatomy of the Stomach 

The stomach is a J-shaped pouch located in the left side of the upper portion of 

the abdominal cavity that serves mainly as a reservoir for a meal and controls the rate of 

delivery of the meal to the lower intestines for absorption. The stomach consists of four 

sections (cardia, fundus, body [corpus], and pylorus) based on cellular differentiation, 

secretory function, and motility.  

The proximal/orad region is differentiated in function, from the distal/caudad by 

its ability of accommodation (Weisbrodt, 2001). The proximal stomach is able to 

accommodate food and act as a reservoir through receptive relaxation, a vagally mediated 

reflex that functions to control the transfer of food from the proximal to the distal portion 
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of the stomach (Vanden Berghe, Janssen, Kindt, Vos, & Tack, 2009). Control 

mechanisms for gastric accommodation are not fully understood; however, based on 

several animal and human studies, the mechanoreceptors in the gastric wall are thought to 

allow for gastric accommodation via vagovagal reflex pathways. Based on Currò, Ipavec, 

and Preziosi’s review of the literature (2008), the neurotransmitters thought to be 

responsible for relaxation appear to be nitric oxide and vasoactive intestinal polypeptide. 

The distal portion of the stomach is involved in the mixing of the intragastric juices and 

the food bolus to create chyme. Both the proximal and distal areas of the stomach are 

responsible for gastric motility.  

Physiology of the Stomach 

 Myoelectrical activity and gastric innervation. The GI tract is regulated by 

external control through the autonomic nervous system as well as through an intrinsic 

system known as the enteric nervous system. The enteric nervous system consists of two 

plexuses: the submucosal and the myenteric. Neurons from these plexuses innervate the 

GI tract from the esophagus to the anus (Tortora & Derrickson, 2008). The neurons 

consist of motor neurons, interneurons and sensory neurons (Tortora & Derrickson, 

2008). The muscularis mucosa is innervated by a plexus of nerve cell bodies known as 

the submucosal plexus. Sensory neurons are located in the mucosal epithelium and 

function as chemoreceptors and stretch receptors in response to luminal contents, such as 

gastric secretions and EN delivery (Tortora & Derrickson, 2008).  

 The wall of the GI tract consists of four layers. The deepest layer that lines the 

lumen of the GI tract is the mucosa, followed by the submucosa, muscularis mucosa, and 

the outer most layer, the serosa. The muscularis portion contains the smooth muscle 
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layers, the longitudinal and circular layers that modulate gut motility. The longitudinal 

and circular muscle layers are supplied by the motor neurons of the myenteric plexus that 

work to control the motility of the muscularis. These layers act to reduce the diameter of 

the GI tract during contraction of the smooth muscle through interneurons to provide the 

motility patterns necessary for gut motility.  

Gastric motility. GI motility is controlled by neural and humoral influences 

(Chapman, Nguyen, & Fraser, 2007). The three primary motor functions of the GI tract 

are to mix and propel food particles to allow for absorption of nutrition, clean the GI tract 

of residual food and bacteria and enable mass movement (Ukleja, 2010). The motor 

activity of the GI tract is differentiated by the fasting and fed states and is influenced by 

an electrical rhythm known as the migrating motor complex (MMC). The MMC serves to 

sweep the GI tract of food residue and bacteria in the interdigestive period, which is why 

it is known as the “housekeeper” (Appleyard, 2010; Johnson, 2001). The MMC is 

initiated with gastric emptying either in the stomach or duodenum, migrates along the GI 

tract from the small intestines to the distal ileum and takes approximately 1.5–2 hours to 

span the small bowel (Miedema et al., 2002; Miedema, Schwab, Burgess, Simmons, & 

Metzler, 2001). The MMC can be divided into three phases: phase I, motor quiescence; 

phase II, intermittent activity; and phase III, maximal motor activity propagated by slow 

wave frequencies (Bornstein, Furness, Kunzee, & Bertrand, 2002). In healthy individuals, 

the MMC is abolished and replaced by random motor activity when feeding is delivered 

into the stomach or small bowel (Miedema et al., 2001). 

There are three types of contractions that function to mix and propel food boluses 

in the gut; these include rhythmic phasic contractions, ultra propulsive contractions and 
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tone (Schuster, Crowell, & Kock, 2002). When these propulsions are slowed, motility 

does not propel food and fluid forward into the GI tract and can lead to gastric retention. 

The smooth muscle activity of the stomach is affected by an underlying rhythm of slow 

waves that occurs as regular oscillations in the membrane potential, originating from 

specialized groups of cells known as the interstitial cells of Cajal (Chapman et al., 2007). 

The interstitial cells of Cajal provides a pathway for electrical transmission of slow 

waves and serves as the pacemaker for the GI tract as slow waves determine the 

frequency of smooth muscle contractions (Fruhwald, Holzer, & Metzler, 2007). The 

smooth muscle cells have a coupled arrangement, leading to simultaneous and 

synchronous circular muscle slow waves. Neural and humoral inputs dictate whether the 

fluctuations in resting membrane potential lead to initiation of mechanical contraction 

(Chapman et al., 2007). Electrical coupling results from gap junctions that have a low 

resistance to cell to cell excitation (Schuster et al., 2002; Weisbrodt, 2001). Propulsion of 

contractions and the regulation of ingested mixing depends upon the frequency, 

amplitude, duration, and direction of propagating contractions (Schuster et al., 2002). 

Slow waves result in higher frequency cell propagation in the proximal cell to the most 

distal cell. Thus the slow waves move circumferentially giving an appearance of a ring 

like contraction moving superiorly to distally in the stomach (Schuster et al., 2002).  

When food enters the stomach, the proximal stomach experiences slow sustained 

contractions, that last 1–6 minutes (Appleyard, 2010). The stomach distends in response 

to food intake, and then the proximal stomach forces the contents to the distal stomach. 

The contractions in the distal stomach are more powerful forcing the contents against the 

pylorus. The pylorus only allows a small amount of fluid to enter the duodenum at a time, 
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so the majority of the contents are sent backwards into the stomach; this serves to mix the 

chyme with digestive enzymes. The pyloric sphincter is under the influence of 

neurohormonal regulation to allow a maximum delivery rate of 2–3 kcal/min that 

regulates the transfer of chyme to the duodenum (Brener, Hendrix, & McHugh, 1983). 

The transfer of food from the stomach to the duodenum (gastric emptying) is a complex 

process influenced by a series of negative feedback loops to be discussed later.  

Normal gastric volume. The adult GI tract may produce approximately five to 

six liters of gastric secretions daily that are reabsorbed in the lower GI tract with about  

50 mL excreted in the feces (Edwards & Metheny, 2000). It has been estimated that in the 

normally fed adult, a volume of 188 mL per hour is present in the stomach, when the 

estimated daily salivary output of 1,500 mL is combined with 3,000 mL of gastric 

secretions (Lin & Van Citters, 1997). Normal GI motility allows peristaltic activity to 

move secretions and semi-digested food particles in a caudal direction into the duodenum 

at a rate that allows for intestinal absorption. The amount of fluid present in the stomach 

depends on the amount being instilled into the stomach, the volume of gastric and 

salivary secretions and the emptying of the stomach into the duodenum. The empty 

human stomach may have a volume as small as 50 mL and at full capacity, the stomach 

can accommodate up to 1.5 liter of food (Appleyard, 2010). Despite the ability to 

accommodate large volumes of food/fluid, the stomach experiences little change in 

intragastric pressure. The stomach undergoes receptive relaxation, a vagally mediated 

process that allows the volume to increase in the stomach without raising intraluminal 

pressure. 
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Normal gastric emptying results in coordination of contractions between the 

stomach, pylorus and proximal small intestine (Johnson, 2001). The movement of chyme 

out of the stomach (gastric emptying) occurs gradually over time. The rate of gastric 

emptying differs between liquids and solids, with liquids emptying faster than solids 

(Appleyard, 2010). When gastric motility is optimal, gastric emptying occurs in a linear 

fashion. The stomach is the smallest during fasting conditions and even under fasting 

conditions, the healthy individual may have residual fluid present in the stomach. 

McClave et al. (1992) reported that in healthy volunteers, 90% of the time RV were less 

than 10 mL when obtained with a 60-mL leur lock syringe in fasting conditions. In 

comparison, they also found in their critical care patients (n = 10), medical patients  

(n = 8), and healthy volunteers (n = 20), fasting RVs ranged from 10 mL to 100 mL 

(McClave et al., 1992); however, this volume may increase more when dysmotility is 

present which presumably can be aspirated to assess for how much volume is present in 

the stomach. 

Normal gastric emptying. Multiple factors influence the GI emptying rate. 

Gastric emptying is impacted by intestinal absorption and a variety of negative feedback 

loops from the GI tract to the stomach. One of these negative feedback loops occurs when 

cholecystokinin (CCK) is secreted by I cells in the duodenum and proximal jejenum. In 

this response, CCK helps absorption in the small intestine and also facilitates pancreatic 

secretions that catalyze digestion of fat, protein and carbohydrate (Asai, 2007); however, 

this also reduces gastric emptying into the duodenum. Other hormones having an 

inhibitory effect on gastric emptying include amylin, glucagon and glucagon like  

peptide-1 that are released when food enters the proximal intestine (Ukleja, 2010).  
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Gastric motility and gastric emptying in critical illness. In the critically ill 

patient, GI dysfunction spans all parts of the GI tract to include the esophagus, proximal 

and distal stomach and the intestines that may impair EN delivery (Chapman et al., 

2007). Motility disturbances can lead to delayed gastric emptying and prolonged small 

intestinal emptying, impeding EN delivery and affecting anywhere from 45%–80% of 

critically ill patients (Heyland, Tougas, King, & Cook, 1996; Montejo, 1999; Ritz et al., 

2001, Tarling et al., 1997). Patients at risk for delayed gastric motility include patients 

with diabetes, recent trauma, burns or surgery, sepsis, electrolyte abnormalities, and those 

receiving medications such as narcotic analgesics (Chapman et al., 2007; Edwards & 

Metheny, 2000); this represents a majority of those cared for in an ICU. Other motility 

disturbances seen in the critically ill may be related to shock, inflammatory cytokines, 

electrolyte abnormalities, hyperglycemia, medications, and disease (Ukleja, 2010).  

Röhm, Boldt, and Piper (2009) described the pathophysiological disturbances and 

clinical systems associated with motility disturbances spanning the entire GI tract. 

Reduction in the frequency and amplitude of contractions in the esophagus are associated 

with regurgitation, and low or absent pressure in the lower esophageal sphincter is 

associated with reflux of gastric contents. In the stomach increased pyloric activity and 

antral hypomotility are associated with higher GRVs and gastroparesis (Röhm et al., 

2009). Motility disturbances have been described in the critically ill patient that appears 

to effect antral contractions and loss of phase III gastric activity possibly influenced by 

sedation (Dive, Foret, Jamart, Bulpa, & Installé, 2000). The fundus of the stomach may 

also be affected (Fraser & Bryant, 2010). The loss of interstitial cells of Cajal may be 

etiologically responsible for some human GI motility disorders, and interstitial cells of 
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Cajal may also be diminished in response to inflammation (Sanders, 2006). In post-aortic 

surgery patients, the origin of migrating motor complex patterns in the duodenum results 

in prolonged small bowel transit leading to longer times for defection (Miedema et al., 

2002). Inhibitory hormone secretions might be responsible for motility disturbances. 

Nguyen and colleagues (2007a) demonstrated that plasma CCK levels increase in critical 

illness and the CCK levels were higher in critically ill patients with feeding intolerance  

(n = 14) compared with those feeding tolerant (n = 9 critically ill; n = 28 healthy subjects,  

p < .01), although the cause or mechanism is not fully understood. Asai (2007) 

hypothesizes that the increasing concentration of CCK might act to limit food intake. The 

exact mechanisms underlying delayed gastric motility in critically ill patients are not 

known, and the ability to measure and evaluate gastric motility and emptying in these 

patients is difficult.  

GRV Assessment in Critical Illness 

Clinicians assess GRV at regular intervals to help monitor feeding tolerance in an 

attempt to prevent aspiration of stomach contents. The assumption guiding the use of 

GRV is that a high GRV represents delayed gastric emptying; however, this relationship 

is weak (Zaloga, 2005). There are multiple factors that may effect this relationship 

including feeding tube properties (tube size, material, and port configuration), and the 

position of the tube in the fluid pool. The most common approach to remove aspirate is to 

use a syringe, but a few studies have reported using suction and draining the stomach 

contents by gravity. These factors will be discussed along with other methods available to 

assess gastric emptying.  
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The most frequently reported assessment to evaluate gastric emptying and 

tolerance of EN in the critically ill patient is the measurement of gastric aspirate, also 

known as GRV. The gastric aspirate contains a mixture of saliva, gastric secretions and 

residual feeding formula and possibly duodenal reflux. The assessment technique can 

generally be easily performed at the bedside. The American Society for Parenteral and 

Enteral Nutrition’s (A.S.P.E.N.) “Enteral Nutrition Practice Recommendations” indicate 

that GRV should be assessed every four hours in critically ill adult patients (McClave  

et al., 2009). The timing of the assessment varies and may occur every four to eight hours 

depending on patient tolerance and assessment findings (Edwards & Metheny, 2000; 

Guenter, Ericson, & Jones, 1997). GRVs tend to be higher in the first 72 hours after EN 

initiation so investigators suggest that it might be appropriate to stop checking GRVs, if 

the GRVs are low in the first 48–72 hours of successful feedings (Johnson, 2009). 

The most common method to aspirate stomach contents is to stop the infusion of 

EN and assess gastric aspirate with a syringe. When checking GRV, 20 mL of air is first 

injected into the tube via the syringe to clear the tube of any secretions and to move the 

ports away from the mucosal folds (Metheny, Reed, Worseck, & Clark, 1993). Metheny 

and colleagues reported that the 30 mL syringe was important in the air injection process 

as manufacturers of the small bore tubes suggested this syringe size to prevent rupture of 

the tubes from the amount of force applied. Using this technique, in 93.8% of attempts, 

researchers were able to withdraw aspirate from tubes in volumes sufficient to check the 

pH of the aspirates. A 50 mL–60 mL syringe is indicated to prevent tube collapse in 

aspirating residuals (Kirby, DeLegge, & Fleming, 1995), but some references support 

using a 30 mL syringe to aspirate stomach contents (Pullen, 2004; Zaloga, 2005). 
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Variables and Factors that Affect the Ability to Accurately Measure GRV 

Tube Sizes 

Part of the variability in the measurement of GRV might be explained by 

differences in the type of tubes and the port configuration of the tubes. Most often tubes 

sized 12 Fr and smaller are considered small bore, while larger than a size 12 Fr is a large 

bore tube (Lord, 1997; Metheny et al., 2005). While these sizes refer to the outer 

diameter of the tube, the internal diameters of the small bore tubes are much smaller 

ranging from 3 F to 8.5 F (Lord, 1997). The diameter of the tube may affect the quantity 

of aspirate (Metheny, 2006); small-diameter (bore) tubes may underestimate GRV 

(Metheny et al., 2005).  

While feeding tube sizes range in various Fr sizes, representing variation in lumen 

size, there is intra-tube variation that may influence the flow rate and thus the rate of 

speed with which the fluid can be aspirated within and across feeding tube sizes. Fluid 

dynamics or the study of fluids in motion may inform what occurs during the aspiration 

of fluids through a feeding tube and explain the effect of pulling on the syringe to aspirate 

fluids. Tube lumen sizes, variation and duration of the pulling on the syringe plunger 

might affect whether the clinician is successful in aspirating contents. Longer tubes and 

larger internal diameters may require more force in order to successfully aspirate contents 

from the proximal end of the tube. However, it is unknown how much force needs to be 

applied to the plunger over what period of time to aspirate a known volume of fluid.  

Tube Materials 

 Nursing textbooks at least over the last 30 years have advocated GRV 

measurement. Investigators began reporting difficulty in obtaining aspirates in the 1980s 
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after commercially available feeding tubes were made in smaller bore sizes to prevent 

skin complications from the tubes. Prior to that time, the larger tubes were associated 

with problems like tissue irritation and esophageal sphincter incompetence (Rassias,  

Ball, & Corwin, 1998), so more pliable tubes were introduced to the market. These new 

smaller bore tubes were made of silicone rubber and polyurethane but had reports of 

difficulty in aspirating from the tube because the tube material was so pliable. The larger 

tubes were made of plastic, like PVC and did not tend to collapse. Small bore tubes are 

better for providing EN as they minimize discomfort to the patient and do not 

compromise the lower esophageal sphincter to the extent of larger bore tubes (Metheny, 

2006).  

There is concern that small-bore tubes are associated with clogging and 

collapsibility during the aspiration of GRVs (Crocker, Krey, & Steffee, 1981; McClave & 

Snider, 2002; Metheny, Spies, Eisenburg, Messer, & Hanson, 1988); these complications 

would interrupt tube feedings. O’Meara et al. (2008) found that GRVs from both small 

bore tubes and orogastric decompression tubes led to feeding interruptions for a mean of 

495 minutes CI [354.67, 636.30] or 8 hours and 15 minutes across the 10-day study 

period, although the biggest reason for feeding interruptions in this study was related to 

the small bore tubes being either clogged or absent. In a descriptive pilot study, nurses 

self-reported that they were successful 45% of the time in trying to aspirate at least 5 mL 

of fluid from small-bore (8 Fr) tubes made of silicone and polyurethane while they were 

able to aspirate fluid 79% of the time from large bore tubes made of PVC (Metheny et al., 

1988).  
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Measured GRVs may be greater in larger feeding tubes due to the material of the 

tube being stronger, but it also may be related to the diameter of the tube. Metheny and 

colleagues (2005) addressed these concerns in their study comparing the gastric contents 

obtained from small and large diameter tubes concurrently positioned in the stomachs of 

62 critically ill patients and found that mean volume of aspirate was two times higher 

from larger tubes (14 Fr–18 Fr) compared to smaller diameter tubes (10 Fr). In this study, 

GRVs were aspirated from the smaller bore tube then returned to the stomach and 

aspirated from the larger bore tubes. The 10 Fr tube used in this study was constructed 

from polyurethane with 3 oval ports concentrically located 4 cm above the distal end of 

the tube. The large diameter PVC tubes used in this study both had five ports on one side 

and six on the other side, and the ports spanned 7 cm from the distal end of the tube. 

Metheny and investigators (2005) reported that the GRVs were about 1.5 times greater  

(p < .001) in 14 Fr and 18 Fr sump tubes as compared with smaller 10 Fr tubes. The 

larger bore tubes yielded significantly higher volumes of aspirate; thus, there is the 

potential that smaller-diameter tubes underestimate the actual volume of gastric contents. 

This was the first published study that explored differences in tube properties on the 

amount of GRV obtained; however, this study was conducted in vivo, and there was no 

way to know the true volume of gastric contents in the stomach at the time of aspiration. 

Thus, it is unknown what true effect the tube size and tube properties played in the 

aspiration of gastric contents.  

Tube Port Configuration 

 Feeding tube measurement of GRV may be difficult because the tube ports may 

be above the gastric fluid pool or it may be that little fluid actually is present in the 
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stomach. When GRV is assessed with a syringe, the syringe connected to the proximal 

end of the feeding tube removes air from the tube, creating a partial vacuum within it. 

This negative air pressure allows the fluid to be aspirated up through the tube. In order 

for the fluid in the gastric pool to be pulled into the feeding tube, the air in the feeding 

tube must be removed first and then the fluid will be drawn upwards. As the syringe 

removes air from the tube, the pressure above the gastric pool within the tube is reduced. 

The greater air pressure outside the tube pushes the gastric pool contents up the tube. 

However, the ability to aspirate fluids is based on all of the following factors:  

 location of the ports in the gastric pool, 

 placement of the ports on the tube in relation to the gastric pool, and 

 coiling/noncoiling of the tube with regard to factors 1 and 2.  

These factors that influence the ability to aspirate fluid from the feeding tube were 

demonstrated in a preliminary laboratory study (Bartlett Ellis, 2011) conducted by the  

co-investigator to apply the principles of physics. In this experiment, a 10 Fr salem sump 

tube, with 11 circumferentially placed ports, was submerged in a quart of water; each port 

was aligned across from another on either side of the radiopaque line from the distal end 

and the most proximal port was positioned directly on the radiopaque line. In the first part 

of this experiment, all of the ports were submerged completely in the water. A 60 mL 

syringe was connected to the proximal end of the tube and the plunger was pulled in 

order to aspirate fluids. Once the air was removed from the tube, the water flowed freely 

into the syringe. Following this experiment, the tube was pulled back in the container of 

water to expose one port to the air, while keeping the remaining ports submerged in 

water. The syringe plunger was pulled again; however, only air could be aspirated from 
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the tube even though 10 of the 11 ports were submerged in the water. In the last 

experiment, the tube was submerged in the water; however, the natural coiling of the tube 

was allowed in which the middle and proximal ports (n = 7) were under water and the 

most distal ports stuck up out of the fluid pool. In this design, when the syringe plunger 

was pulled, fluid was aspirated into the syringe chamber.  

These experiments demonstrate that increasing the number of ports on the tube 

does not increase the probability of aspirating fluids; however, increasing the number of 

ports may increase the likelihood of the ports coming in contact with the fluid pool 

(Metheny et al., 2005), although the ability to utilize the port to aspirate fluid relies on the 

relationship between the port and the air in the proximal portion of the tube. The 

increased probability only occurs when the more proximal ports on the tube are in direct 

contact with the fluid pool. Smaller bore tubes are more likely to migrate from their 

position within the stomach or occlude (de Aguilar-Nascimento & Kudsk, 2007), limiting 

the ability to aspirate contents consistently from the same location in the stomach. 

Additionally, weighting of the tube, in which the distal end of the tube is pulled in a 

downward direction, may not be effective in improving the likelihood of aspirating 

contents as all of the proximal ports from the fluid pool up the tube must be submerged in 

order to aspirate the fluid pool in which the tube lies (Bartlett Ellis, 2011; McClave & 

Snider, 2002; Metheny, Reed, Worseck, & Clark, 1993).  

Nursing Practice 

 The assessment of GRV may be influenced by the consistency and reliability 

across the nurses performing the assessment. To date, there are no known studies that 

have assessed interrater reliability in performing GRV assessment across nurses and level 
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of experience. However, studies have reported a lack of standardization in the protocols 

and decisions made while aspirating GRV. Metheny et al. (1988) collected data from 

nurses to investigate the reliability of GRV assessment using a syringe method by asking 

the nurses their perception of adequacy in obtaining GRV using large and small bore 

tubes. Practice experience was not considered in this investigation, nor was interrater 

reliability in the assessment of GRV. In this descriptive study, nurses reported that they 

were able to adequately assess GRV 90% of the time using the larger bore tubes 

compared with on adequate assessments 48% of the time using an 8 Fr sized tube.  

Two more recent investigations have explored variability in nursing practice, but 

the focus of these studies was on how often nurses checked GRV, frequency of 

physicians orders to assess GRV and documentation and decisions related to holding 

GRV for high volumes (Ahmad, Le, Kaitha, Morton, & Ali, 2012; Bollineni & Minocha, 

2011). Again, these studies did not address practice experience. Given that there is a wide 

variety of nurse practice experience ranging from the student nurse to the expert nurse, 

these factors should be considered as well as to how they might affect the assessment of 

GRV. Specifically, nursing experience and interrater reliability with regard to the 

variability in GRV assessments related to nursing experience is unknown.  

Fluid Properties 

The physical properties of the fluid present in the stomach may influence how 

much GRV can be aspirated. The thicker the fluid, also known as viscosity, the more 

difficult it becomes to aspirate through a tube. In physics, the viscosity of the fluid and 

the radius of the tube through which it flows influence the laminar flow of fluid. The 

influence of the radius of the tube on fluid flow is described in Poiseuille’s law. 
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Poiseulle’s law states that the laminar flow rate of an incompressible fluid along a pipe is 

proportional to the pipe’s radius to the fourth power (Cutnell & Johnson, 2009; Tipler & 

Mosca, 2008). The force necessary to aspirate fluids from the distal end of the tube, 

known as pressure 2 (p2), up to the connected syringe, known as pressure 1 (p1), is equal 

to the difference in pressures at the ends of the tube (p1- p2) that can be found by using 

Poiseuille’s law. Applying Poiseuille’s Law, we find that the amount of fluid volume 

flow will quadruple when the tube radius is doubled, such as might occur at about the  

50 cm mark on the tube. 

Poiseuille’s law indicates that a fluid with viscosity η, flowing through a pipe, or 

in this case a tube, with radius R and length L will have a flow rate Q given  

by: 

Poiseuille’s law is valid if the fluid flow remains laminar. To understand the 

physical properties of laminar flow, the fluid in the feeding tube can be thought of as thin 

horizontal layers, each with uniformly changing velocities that move together, known as 

laminar flow. Laminar flow is smooth and the fluid forms layers that remain together as it 

flows. If the layers of fluid break up, the fluid becomes turbulent. Turbulence can occur 

when fluid flows at high speeds. Laminar flow can be determined experimentally using 

Reynold’s number (Re), which is defined as the ratio of the inertia force on an element of 

fluid to the viscous force. Flows with large Reynolds numbers, especially with high 

velocity and/or low viscosity, tend to be turbulent; whereas, fluids with high viscosity 

and/or low velocities have low Re numbers and tend to be laminar. If Re is less than 

2000, the fluid is flowing in laminar flow and the fluid flow will be predictable, 
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indicating that the pressure of the fluid can be determined using Poiseuille’s law  

(Cutnell & Johnson, 2009; Tipler & Mosca, 2008). 

Fluid viscosity. Feeding formula viscosity at room temperature varies by product. 

Thin liquids range from 1–50 centiPoise (cP; a standard unit of measure for viscosity; 

Abbott Nutrition, 2009) to nectar-like consistency 51–350 cP. Viscosity decreases with 

higher temperatures and increases when pH decreases (Hofsteter & Allen, 1992). 

Viscosity is important because it changes the velocity with which fluid moves, such as 

the fluid that is aspirated from a feeding tube. Studies have investigated viscosity and 

flow rate through gravity drainage. In a study comparing three polyurethane tubes with 

different calibers (8, 10, and 12 Fr) and one nasojejuneal tube, Casas-Augustench and 

Salas-Salvado (2009) demonstrated that higher viscosity formulas took longer to infuse 

by gravity drainage in vitro and the larger the tube caliber the faster the flow. In these 

studies, viscosity was measured using a viscometer; however, formula manufacturers do 

not report a quantitative measure of viscosity. Manufacturers report a qualitative 

description of the formula consistency.  

Volume flow rate. In physics, the volume flow rate is inversely proportional to 

viscosity of the fluid and higher viscosity fluids do not flow as readily as lower viscosity 

fluids (Cutnell & Johnson, 2009). The viscous fluid flow has a slower velocity at the 

surface of the inner tube wall where the speed of the fluid is zero, and it increases to a 

maximum along the center axis of the tube (Cutnell & Johnson, 2009). The more viscous 

the fluid, the larger the force is needed to move the fluid. The amount of force required to 

move the fluid with constant velocity depends on the following factors: 
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 Larger areas A, require larger forces, where the force is proportional to the 

contact area (F ∞ A). 

 Greater speeds require larger forces; the force is proportional to the speed  

(F ∞ v). 

 The larger the distance y, the smaller the force required to achieve a given 

speed.  

 The force is inversely proportional to the perpendicular distance between 

the top fluid layer and bottom fluid layer (F ∞ Av / y). 

 The larger the viscosity of the fluid, the larger the force that needs to be 

applied. 

Thus the force needed to move a layer of viscous fluid with constant velocity can 

be described as the magnitude of the tangential force F required to move a fluid layer at a 

constant speed v, when the layer has an area A and is located at a perpendicular distance y 

from an immobile surface, given in the equation:  

 

Methods Used for Aspirating GRVs 

 There are three methods identified in the literature that are used in practice to 

assess GRV: (a) syringe method, (b) suction method, and (c,) gravity drainage method. 

Each of the methods is described separately along with the relevant literature.  

Syringe Method Technique 

The use of a syringe to aspirate GRV is a blind method, meaning that the actual 

volume of GRV present is unknown. In order to draw up residual into the tube, negative 

pressure is applied by pulling back on the plunger of the syringe. A hard quick pull is 

unlikely to yield any residual and often when this is done in practice, the nurse 
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determines no residual is present. A hard quick pull may cause the tube to collapse. The 

ability to withdraw fluid from the tube may be time intensive. The technique used to 

aspirate GRV using a syringe influences the amount of aspirate obtainable. In response to 

Metheny and colleagues (2008), one practicing nurse noted that a slow and gentle 

aspiration with reinstallation each time vacuum lock was felt was more effective in 

obtaining aspirate compared with a quick hard pull on the syringe plunger (Stambovsky, 

2009). Metheny responded that a steady slow method was used for aspirating residuals in 

her studies.  

Suction Method Technique 

While the syringe method is the most common method for assessing GRV, there a 

few reports that described using suction. Zaloga (2005), reported that he informally 

studied the accuracy of assessing GRV using the syringe method for aspirating contents 

compared with continuous suction in small bore feeding tubes (10 Fr) versus the standard 

feeding tube (16 Fr) using a 30 mL syringe and a small sample of eight patients per 

feeding tube size group. These aspirates were measured then re-instilled and suctioned at 

a continuous rate for five minutes was applied while the patient was rolled from side to 

side. Zaloga did not report the amount of suction (mm Hg) nor the procedure for using 

suction. The results of this study demonstrated that neither tube (10 Fr 108 ± 35 mL 

versus 16 Fr 137 ± 20 mL) was very accurate in measurement when compared with the 

continuous suction for five minutes (10 Fr 165 ± 27 mL versus 16 Fr 156 ± 28 mL). This 

difference suggests that suction might remove more aspirate than the syringe technique. 

Zaloga concluded that the aspirations were underestimated with the syringe technique 

when using a 30 mL syringe. Additionally, this same author also indicated that he had 
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experience with nurses in Washington who used continuous suction to assess GRVs 

rather than the syringe technique. In this practice setting, nurses attached a suction 

canister to the feeding tube and aspirated contents slowly over 15 minutes (McClave & 

Snider, 2002). There were no details reported about suction pressure settings used in this 

procedure.  

Gravity Drainage Method Technique 

The most recent randomized controlled trial comparing the effects of an increased 

GRV limit on the adequacy of EN intake and frequency of complications reported using 

two different methods for assessing GRVs, the traditional syringe method and gravity 

drainage. This multicenter study was conducted in 28 ICUs in Spain (Montejo et al., 

2010). In this study, critically ill ventilated adult patients were randomized to either a 200 

mL (n = 165) threshold or a 500 mL (n = 157) threshold to determine feeding intolerance. 

GRV was measured in varying intervals, starting with every six hours the first day, then 

every eight hours the second day, and then daily after the second day if the patient was 

tolerating feedings. Two different methods for GRV measurement were used, based on 

the routine practice of the investigating centers. The first method used a gravity drainage 

system for 10 minutes and the second method used a 50 mL syringe to aspirate GRV 

directly from the tube. No attempt was made to control for patient position at the time of 

the GRV; however, patients were managed in the semi-recumbent position ranging from 

35–40 degrees. There was no significant difference in the methods used to obtain GRV in 

the two threshold groups (200 mL and 500 mL), and the effect of the two methods used 

on the amount of GRV obtained was not reported. Tube diameters reported in this study 

included less than 8 Fr, 8 Fr, 10 Fr, 12 Fr, and greater than 12 Fr, although there was no 
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significant difference in the tube caliber between the two study groups. Patients in the 

200 mL threshold group had higher frequencies of GI complications due to high GRVs; 

whereas the first week, the mean GRV was higher in the 500 mL threshold group. There 

was no difference in patient outcomes between the two groups (ICU mortality p =.28, 

hospital mortality p = .53), and there was no significant difference in vomiting, 

regurgitation, aspiration or ventilator-associated pneumonia. While there were no 

significant differences reported in the GRVs obtained from the two different methods, 

these two methods are worthy of exploring more to determine if the method for aspirating 

GRV affects the accuracy of the GRV assessment. 

The results from these few studies suggest that suctioning the stomach may 

produce greater volumes of tube aspirates compared with the syringe technique. 

However, these results have not been validated nor have similar findings been reported 

elsewhere. Additionally, the effect of gravity drainage on the volume of aspirates 

obtained is unknown as well. The frequent monitoring of tolerance is critical to prevent 

complications, so it is important to study methods that might facilitate better assessment 

of GRV and ultimately patient tolerance of EN.  

Methods for Assessing Gastric Emptying 

Alternative methods to evaluate gastric emptying are available. Each of these 

methods will be described and the feasibility of applying these techniques to the 

monitoring of EN in the ICU will be discussed.  

Scintigraphy 

The gold standard for assessment of gastric emptying is scintigraphy that records 

gastric emptying by a gamma-scintillation camera following ingestion of an isotope 
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labeled test meal (Moreira & McQuiggan, 2009). The results of this study are generally 

reported as the time required to empty half of the isotope (T½). Gastric emptying 

scintigraphy provides a more accurate picture of gastric emptying when done on an 

empty stomach and is often performed in the morning following fasting (Maurer, 

Parkman, Knight, & Fisher, 2002). There are significant limitations with scintigraphy that 

prevent its frequent use. First, this is a very costly procedure that uses sophisticated 

equipment and specially trained personnel; therefore, it has limited use in frequent 

assessment of gastric emptying such as the assessments required in critically ill patients. 

Additionally, because there is significant delayed gastric emptying in the critically ill, the 

half emptying times may be time intensive and not feasible to report. Nguyen et al. 

(2008) used scintigraphy to assess gastric emptying in critically ill patients and were 

unable to report emptying time because 9 of the 28 patients did not reach T½ during the 

four-hour study period. In addition, this procedure exposes the patient to ionizing 

radiation, so it should not be performed repeatedly and requires the patient be transported 

out of the ICU. This test is more useful for diagnostic purposes on a limited basis and 

should be reserved for functional bowel problems. Therefore, it probably is the least 

likely method to have clinical usefulness in assessing for EN tube feeding tolerance at the 

bedside.  

Paracetamol Absorption Test 

Paracetamol has been used to assess gastric emptying because paracetamol is 

absorbed in the duodenum. Paracetamol can be detected in blood plasma; therefore, it can 

be used as an indirect marker of gastric emptying. This test requires a dose of 1–2 g of 

paracetamol be diluted in water and administered through the feeding tube. The tube is 
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then clamped and blood draws are performed at regular intervals. The results are plotted 

as the area under the paracetamol concentration curve. This test is limited in the ICU 

because it has the potential for hepatoxicity so it should not be used in patients with 

hepatic dysfunction or in malnutrished patients (Moreira & McQuiggan, 2009) and 

because it requires the tube to be clamped and feedings withheld, it reduces the patient’s 

EN intake. The paracetamol absorption test has been studied in the critically ill. 

Landzinski, Kiser, Fish, Wishmeyer, and MacLaren (2008) studied two groups of 

critically ill patients to compare their gastric empting rates using paracetamol emptying 

curves. This heterogeneous population of medical, surgical and neurological patients 

were selected based on whether they were tolerant (feeding rate supplying 75% of 

calories, and 24 hour cumulative GRV less than 120 mL) compared with those who were 

labeled intolerant, defined as a single GRV greater than 150 mL within a 24-hour period. 

All patients in this study had a 10 Fr tube. These patients had already been receiving EN 

for up to three days when they were enrolled in the study. The intolerant group had 

significantly higher cumulative GRVs in the 24 hours prior to starting the paracetamol 

(620.6 ± 233.6 mL) compared with the tolerant group (55.6 ± 55.9 mL). This study found 

that those in the intolerant group, noted by elevated GRVs, despite being within their 

target caloric intake range, also had significantly slower gastric emptying rates. With the 

use of prokinetic therapy, the emptying rates aligned more with the tolerant group.  

Tarling and colleagues (1997) also used the paracetamol absorption test in 

medical and surgical patients (n = 27) to assess gastric emptying. These investigators 

used a gastric tonometer to assess the gastric mucosal pH (pHi), a marker of splanchnic 

blood flow and perfusion of the gastric mucosa. This study did not find a correlation 
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between GRV and gastric emptying times nor a correlation between pHi and the 

APACHE II score for the 24 hours prior to the study. The authors suggest that the study 

sample was relatively uncomplicated with regard to the severity of illness, such that they 

were unlikely to have experienced gut hypoperfusion. The APACHE score on admission 

was used to calculate a rate of death score. The rate of death was associated with faster 

gastric emptying times, but the APACHE score calculated in the 24 hours prior to the 

study was not related to gastric emptying rate. The authors suggested that this difference 

may have been a result of various medication therapies, received in the 24 hours prior 

rather than related to physiological factors. If this is the case, medication therapies 

warrant further investigation and may be a possible explanation for the varying GRVs 

found in the study.  

Stable Isotope Breath Test 

The stable isotope breath test is a relatively new test that uses stable isotopes and 

does not expose the patient to irradiation. 
13

C-octanoic acid is a medium chain fatty acid 

that can be rapidly absorbed in the duodenum and is metabolized by the liver. This 

process was originally reported by Ghoos et al. in 1993 (Galmiche, Delbende, Perri, & 

Andriulli, 1998). The process of oxidation releases CO2 that can be measured in the 

breath using isotope ratio mass spectrometry. A gastric emptying coefficient is calculated 

for the gastric emptying rate based on the appearance and disappearance of the isotope, 

and gastric half emptying time is determined using the area under the 
13

CO2 curve. Ritz 

and co-investigators (2001) defined delayed gastric emptying as T50 of more than 140 

minutes and/or gastric emptying coefficient of less than 3.2.  
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The
 13

C-octanoic acid breath test has been evaluated in clinical studies in critically 

ill patients. Published studies have examined gastric emptying in critically ill patients and 

have used the 
13

C-octanoic acid breath test as a measure of gastric emptying and motility. 

Ritz and co-investigators (2001) used this technique to evaluate the prevalence of delayed 

gastric emptying in 20 mechanically ventilated ICU patients compared with 22 healthy 

volunteers. In their study, feedings were placed on hold four hours prior to the test meal 

that consisted of 100 mL of liquid formula (Ensure
®
) labeled with the isotope. The 

researchers did not find that the test interfered with patient care except for the times the 

feedings were placed on hold to perform the test. Using the gastric emptying coefficient, 

critical care patients in this study were found to have slower gastric emptying 3.58  

(3.18–3.79) compared with the healthy volunteers 2.93 (2.17–3.39; p < .008). Gastric half 

emptying time 155 minutes (130–220 minutes) versus 133 minutes (120–145 minutes).  

Chapman et al. (2005) used the 
13

C-octanoic acid breath test to evaluate the 

relationship between gastric emptying and gastric motility and to describe  

antro-pyloro-duodenal motility during fasting and in response to nutrient infusion to both 

the stomach and duodenum in critically ill patients. In their study, 15 mechanically 

ventilated ICU patients and 10 healthy volunteers were evaluated with the breath test 

using the same techniques for infusion used by Ritz and investigators (2001). Based on 

observations made during this study, critically ill patient have less antral MMC activity, 

and nutrient intake did not inhibit fasting motility. These results demonstrate that 

critically ill patients do experience delayed gastric emptying. Another study evaluated the 

13
C-octanoic acid breath test against the scintigraphy in 25 mechanically ventilated 

patients as well as 14 healthy subjects. There was good correlation between the breath 
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test and scintigraphy in both the critically ill patients and the healthy volunteers at 120 

minutes (r = 0.57 healthy; r = 0.56 patients; p ≤ .002) 

Chapman et al. (2011) compared the breath test with scintigraphy in 25 

mechanically ventilated patients and 14 healthy volunteers and found a correlation 

between the two tests. However, as with many of the techniques used in acute care, the 

metabolic state of the patient in critical care may influence the values of the breath test. 

The exhaled CO2 used in this measure depends on the blood bicarbonate system so it may 

not adequately assess gastric emptying (Moreira & McQuiggan, 2009). This test has been 

compared with scintigraphy and may have clinical usefulness and reliability for assessing 

gastric emptying. This method is also non-invasive, safe to perform and has promise in 

measuring gastric emptying for both liquids and solids.  

Nguyen and co-investigators (2007b) used the 
13

C-octanoic acid breath test 

technique for the measurement of gastric emptying in critically ill patients. Feedings were 

placed on hold for four hours in this study, and then 100 mL of 
13

C-octanoate (100 

mg/mL) added to 100 mL of Ensure
®
 was instilled into the feeding tube, similar to the 

technique used by Ritz and investigators (2001). Prior to the test, all stomach contents 

were aspirated and then discarded. Results showed that 60% of the patients had delayed 

gastric emptying; however, because the authors aspirated prior enteral feedings, they 

altered the pH balance of the stomach. Additionally, the Ensure
®
 altered the feeding 

content that the patient had been receiving. Although this study demonstrated delayed 

gastric emptying in the critically ill, mechanically ventilated patient, the methods 

employed were not consistent with standards of practice.  
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Refractometry 

Refractometry is a method for measuring gastric contents with a handheld device 

that measures the bending of light in degrees as it passes between two substances with 

different densities (Chang, McClave, Hsieh, & Chao, 2007), such that the density of a 

solution increases proportionally to the refractive index (light bending). The 

refractometry method is able to determine concentrations of feeding formula and 

differentiate it from gastric and salivary secretions from an equation and value known as 

the Brix value. This technique, like GRV assessment, requires stomach contents to be 

aspirated. The Brix value is a calculation of the total soluble in a solute, in this case 

formula and gastric and salivary secretions that correspond to molar fractions associated 

with the mixture components (Chang, McClave, Lee, & Chao, 2004). This means that the 

Brix value and the refractometer can differentiate concentrations of fluid from one 

another to determine how much formula is present in a solution compared with gastric 

contents. The theory behind this procedure is that the higher the concentration of the 

formula, the more likely there may delayed gastric emptying. Chang and investigators 

(2007) evaluated refractometry and Brix value calculations both in vitro and in vivo to 

evaluate concentrations of formula during EN using a hand-held refractometer. Chang 

and colleagues’ method was able to identify how much GRV was present in the stomach 

using simple calculations and does not require large volumes of GRV to complete the 

assessment; only one mL of stomach content is required to perform the test and calculate 

the Brix value to obtain concentrations and predict the actual volume. This approach to 

assessing gastric emptying has not been validated with scintigraphy.  
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Ultrasound 

 Ultrasound (US) is a non-invasive technique that has been used to assess gastric 

emptying by taking cross sectional scans of the stomach and calculating the gastric 

volume. The US is usually completed after a fast to obtain a baseline scan. A test meal is 

then administered and several sequential scans every 5–10 minutes are completed to 

derive calculations for the half emptying time of the gastric volume.  

 Bateman and Whittingham (1982) first US used with 10 enrolled volunteer 

participants and performed several cross sectional scans. Scans were obtained at regular 

intervals (5, 10, 15, 20, 30, and 40 minutes) following administration of 500 mL of 

orange cordial at 37 degrees Celsius following an overnight fast. The half emptying times 

followed a log-linear relationship. Holt, Cervantes, Wallace, and Wilkinson (1986) first 

compared US with the gold-standard scintigraphy when they simultaneously performed 

both the scintigraphy and US in 14 subjects every 15 minutes over one hour. These 

investigators found a significant correlation for the T½ emptying time between the US 

and SCT (r = .84, p < .05).  

In a prospective observational study, Perlas, Chan, Lupu, Mitsakakis, and Hanbidge 

(2009) studied the feasibility of using portable US for assessing gastric content and 

volume by describing the appearance of the US images over all portions of the stomach 

before and after ingesting standardized volumes of fluid and solids. In this study the 

antral cross sectional images were the best measure of gastric volume, and the images  
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approximated a linear relationship when up to 300 mL was present in the antrum and the 

images were taken in the right lateral decubitus position.  

 Irvine, Tougas, Lappalainen, and Bathurst (1993) demonstrated good interobserver 

agreement with the use of US in their study of 20 healthy volunteers undergoing US 

imaging following ingestion of a liquid meal. Scans were performed at 10-minute 

intervals for up to one hour. In this study, two observers simultaneously evaluated nine 

subjects. The US evaluations in this study demonstrated strong correlations between the 

two sets of measurements (r = .83) with good intraobserver concordance between two 

observers (ICC = .625), indicating US may be reproducible in measuring gastric 

emptying; however, intrasubject measurement variability was poor in the nine subjects 

evaluated (r = 0.585), reflecting day-to-day variation. This variation across days suggests 

US is a better indicator of a patient’s current gastric empting state versus being able to 

predict future emptying properties.  

The US is non-invasive and readily accessible in clinical practice, however studies 

addressing the validity of US in assessing gastric empting in the critically ill have not 

been conducted. Furthermore, the multiple scans may not be easily performed in the 

critical care setting without significant caloric intake loss while feedings would be placed 

on hold.  

SmartPill 

The SmartPill
®
 is a motility capsule with wireless transmitting capability that is 

used to assess gastric emptying. The SmartPill
®

 was introduced in the United States in 

2006 and is made of a polyurethane body (Rauch, Krueger, Turan, Roewer, & Sessler, 

2009). The gastric emptying capsule is an easy procedure that can be performed in the 
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office setting to calculate transit time of the entire GI system (SmartPill, 2009). The 

SmartPill
®
 is capable of monitoring pH, pressures and temperature as it moves through 

the GI tract. The SmartPill
®
 has been evaluated and correlated with scintigraphy 

measurement. Kuo et al. (2008) used simultaneous measurements with the SmartPill
®
 and 

scintigraphy in 77 healthy individuals and 48 adults with gastroparesis to compare the 

two measures. The four-hour measure between the capsule emptying time and the 

scintigraphy emptying time was significantly correlated r = .73, CI [.61, .82], and the 

capsule was able to discriminate well between those who were healthy and those with 

gastroparesis. The investigators created two groups, those who had gastroparesis defined 

by the gastric emptying four hours after administration of the test meal and those with 

normal emptying. Any amount of meal remaining greater than 10% of the volume was 

considered as delayed emptying. Sensitivity and specificity analyses were performed to 

compare how well the SmartPill
®
 and the scintigraphy performed in gastroparesis. 

Sensitivity refers to the proportion of cases identified by the test as gastroparetic when 

they truly had gastroparesis. Specificity refers to the tests ability to identify someone with 

normal emptying times, given they really are classified as normal. The SmartPill
®
 had a 

sensitivity of .65 and specificity of .87, which was comparable to the scintigraphy results 

(sensitivity .44 and specificity .93). While the capsule demonstrates promise as an 

alternative method for evaluating gastric emptying, the capsule also must be swallowed, 

which presents a problem for the critically ill patient population. One case report has 

been published by Rauch et al. (2009), who developed a method to deploy the capsule, in 

eight critically ill patients who were sedated and receiving mechanical ventilation and 

suspected of gastroparesis. These investigators were able to safely deploy the capsule 



 

38 

using endoscopic equipment; however, no data were reported to indicate if the device was 

able to capture necessary data to perform gastric emptying studies in the critically ill 

patient.  

Summary of the Literature 

Despite the ability of scintigraphy, breath tests and paracetamol absorption tests to 

detect delayed gastric emptying problems in critically ill patients, they are impractical in 

routine clinical practice. These tests all require feedings to be put on hold and test meals 

inconsistent with the feeding formula properties to be administered. These measures are 

practical to identify those with delayed gastric emptying; however, it is known that 

critically ill patients are at risk for delayed gastric emptying because of the nature of their 

illness. Bedside assessment methods need to be able to be performed frequently and 

easily with little disruption to the continuous feeding of EN. For this reason, the current 

method of GRV is the best method available; however, there is opportunity to evaluate 

the method of obtaining the GRV and selecting the most accurate measurement 

technique.  

Studies suggest that clinicians are able to obtain greater RVs from larger feeding 

tubes compared with smaller feeding tubes. Furthermore, smaller bore feeding tubes are 

thought to be more collapsible during aspiration leading to smaller residual amounts. The 

position of the tube in the gastric pool may also influence the amount of aspirate that is 

obtained. All studies that have suggested these properties have been performed in vivo 

where it is not possible to visualize the impact of tube size and aspiration techniques on 

various tube properties and lumen sizes. The techniques used to aspirate residual vary in 

practice and there is some evidence to suggest that suction may be better in small and 
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large bore tubes in assessing GRV (Zaloga, 2005), although this has not been evaluated 

when the actual volume of contents is known. Because there is a potential for variation in 

the technique used to aspirate with a syringe, this will be explored in this research study. 

Specifically interrater agreement has not been evaluated. While there is one published 

study (McClave et al., 1992) that has analyzed the reliability of GRV assessment with a 

syringe as compared to physical examination findings and radiological interpretation, 

there is no published literature that has assessed the reliability of the various methods of 

aspirating stomach contents or studies which have assessed inter-rater reliability for each 

method of assessment.  

In addition to tube properties in the aspiration of gastric contents, there are three 

techniques that have been reported in the literature for assessing gastric aspirates, these 

include syringe aspiration, drainage to gravity and drainage to suction although none of 

these methods have been compared to determine the reliability in the amount of GRV 

obtained. This study will serve to identify if GRV assessment can be accurately performed in 

vitro and compare the three techniques identified in the literature (syringe, suction, 

gravity) to determine which method, if any, can be used to assess GRV. 
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CHAPTER THREE 

MATERIALS AND METHODS 

This study was conducted in two phases. In Phase I, three different techniques for 

pulling on the syringe plunger were evaluated in vitro using a force measurement test 

system to measure force variation across the techniques and the total proportion of 

feeding formula that could be aspirated with 100 mL available fluid. In Phase II, the 

syringe technique from Phase I that performed best in aspirating contents was assessed 

along with the continuous suction and gravity drainage approaches to assess each of the 

research questions. Phase I methods and results will be discussed first, followed by the 

methods and findings from Phase II. 

Phase I Materials and Methods 

The aim of Phase I was to evaluate three different techniques for pulling on the 

syringe (fast, intermittent, and slow) in the assessment of RV to determine which 

technique yielded the largest quantity of fluid volume to assess RV. The syringe pull 

technique that produced the largest quantities on average in Phase I was then used in 

Phase II of this study. The three different syringe pull techniques were evaluated across 

four types of feeding tubes with the distal ports of the feeding tubes submerged or 

partially submerged in two different types of fluid to determine which technique yields 

the greatest amount of RV for assessment of RV.  

Sample and Setting 

Phase I of the study was conducted in a metrology laboratory on the campus of a 

regional academic center. The laboratory is a controlled environment maintained at an 

average temperature (19.99° Celsius) and 31% humidity during Phase I. For this 
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component of the study, 117 RV measurements were made. Seventy-two of the 

measurements were made with all of the oval ports of the distal end of the tube 

completely submerged and 36 of the measurements made with the most distal port 

exposed to air, while all the other more proximal ports were submerged. Additionally, 

nine measurements were made with only the most proximal oval port exposed to air for 

illustration purposes; these data were not included in the analysis. 

In the in vitro Phase I of this study, a 60 mL straight tipped syringe (Monoject) 

was attached to a feeding tube and clamped into a vertical position within a force 

measurement test system (Starrett; Figure 1). The force measurement test system allows a 

machine to use push/pull forces on a syringe while simultaneously recording the force 

required to move the plunger through the syringe barrel over the duration of the 

pull/push.  
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Figure 1. Photograph demonstrating 60 mL straight tipped syringe attached to a feeding 

tube. The photograph demonstrates a 60 mL straight tipped syringe attached to a feeding 

tube then clamped into a vertical position within a force measurement test system force 

measurement system with syringe. 

The force measurement system allowed the syringe plunger to be pulled by the 

machine, while controlling the velocity of the plunger during the assessment of RVs. In 

this experiment, the distal end of the feeding tube was placed in a canister filled with  
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100 mL of fluid. Two different fluids were used in this study: (a) 100 mL of Ensure
®
 

High Protein Shake and (b) 100 mL of tap water. The force measurement system pulled 

on the syringe plunger until the investigator observed air in the feeding tube and no 

additional fluid could be drawn up into the tube. In all attempts, this required the force 

measurement system to pull on the syringe plunger two complete pulls, as the syringe 

only holds a maximum of 60 mL at a time. In this study, the force of the pull was 

recorded along with the RV that could be drawn up in the syringe at the three speeds of 

pull on the plunger.  

Techniques for Pulling on Syringe Plunger 

The force measurement system was used to set and control three different 

techniques for pulling on the syringe plunger of a 60 mL syringe. The syringe plunger 

was pulled upwards by the force measurement system until the plunger reached 3.3 

inches on the barrel. This same distance was set as the stopping point for all 

measurements performed in Phase I. The force measurement system recorded the 

continuous force required to move the syringe plunger upwards during the aspiration of 

fluid in each assessment. 

The first technique consisted of a fast pull on the syringe plunger. The force 

measurement system was set to pull the syringe plunger at a constant speed of 40 inches 

per minute. The second technique evaluated was a slow steady pull on the plunger, with 

the force measurement system set to pull the plunger at a constant speed of 10 inches per 

minute. The third technique consisted of an intermittent pull on the syringe plunger, with 

a slow pull, 10 inches per minute and then a pause occurring every 1.1 inches up on the 

syringe barrel. In all three techniques, the force measurement system pulled on the 
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syringe plunger until the plunger was pulled 3.3 inches up on the barrel and then all 

measurements ceased. 

Once the syringe plunger reached 3.3 inches, the distal end of the feeding tube 

was placed in a measurement beaker and the force syringe system was used to push the 

fluid from the syringe into the measurement beaker. The distal end of the feeding tube 

was placed back into the canister containing the fluid and subsequent pulls were made on 

the syringe plunger until only air was pulled into the syringe, indicative that all the fluid 

had been aspirated. Measurements were repeated three times for each of the syringe pull 

techniques to determine if the technique was reproducible. 

RV Assessment 

RV was calculated by taking the difference between the actual volume available 

(100 mL) and the amount of fluid drawn up in each of the syringe pulls, with each full 

assessment requiring two pulls on the syringe plunger. The first volume drawn up in the 

syringe was subtracted from 100 mL. The remaining amount was then used as the total 

volume available in the second assessment. The volume assessed on the second pull was 

then added to the first volume and divided by the total amount available at the start, less 

the amount assess on the first assessment. The calculation of RV for Phase I follows:  

 

Feeding Tubes Used in Study 

Four NG feeding tubes with two different calibers (10 Fr and 18 Fr) were used in 

both phases of this study. Two polyurethane NG tubes (10 Fr and 18 Fr Maxter) and two 

PVC tubes (10 Fr and 18 Fr Rusch) were each used. All tubes were the same length (120 

cm), with four oval ports located on the distal tip of the tube (see Figure 1). These tubes 
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were chosen purposefully to control for the number of distal ports and length of the 

feeding tube, however the placement of the ports on the distal end of the tubes are 

different as depicted in Table 1. The PVC tubes have oval ports located in a concentric 

fashion while the polyurethane tubes have oval ports each aligned on one side of the tube. 

Table 1 

Characteristics of Feeding Tubes Tested 

Fr Size Tube Type Length (cm) Distribution of holes
a
 

10 Polyurethane (Maxter) 120 Linear 

18 Polyurethane (Maxter) 120 Linear 

10 PVC (Rusch) 120 Concentric 

18 PVC (Rusch) 120 Concentric 

a
Each tube had four holes. 

Fluid and Viscosity Measurement 

Viscosity was measured for each type of fluid used in this study (Ensure
®
, water, 

and quarter-strength Ensure
®

). The Ensure
®
 and tap water used in this study were both 

kept at room temperature in the laboratory for at least 18 hours prior to measurements. 

Water was also included as a test fluid to provide confidence in the testing procedure. 

Viscosity was determined using a falling ball viscometer. The manufacturer’s estimate of 

viscosity for the Ensure
®
 high protein drink was between 0 cP and 50 cP (Abbott 

Nutrition, 2009). Based on that information and the range data for each size of tube given 

previously, the Gilmont size 2 tube was chosen to perform the viscosity measurements. A 

quarter-inch diameter stainless steel ball was used for the analysis. Approximate K values 

for each size of available viscosimeter tube as well as the approximate range of viscosity 

for each tube are shown in Table 2. 
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Table 2 

Viscosimeter Tube Sizes Based on Viscosity 

 

 

 

 
a
Range in cP. 

To compute the density of the Ensure
®
 high protein drink, a beaker, and scale 

were employed. Table 3 presents data presents data for both water and Ensure
®
, using 

water as a calibration/check standard for the measurement. 

Table 3 

Fluid Characteristics 

Liquid Volume (mL) Mass (gms) Density (gms/mL) 

Water 100 99.2 0.99 

Ensure 100 103.85 1.04 

To compute the absolute viscosity, the size 2 tube was filled with each type of 

fluid in separate measurements. The tube was marked with an upper line and a lower line. 

A stainless ball was dropped into the fluid and the time it took for the ball to cross 

between the first and second mark was measured with a stop watch. The ball drop time 

was measured three times and the average of the three measurements was used to 

calculate the absolute viscosity (measured in cP) for each type of fluid using the 

following equation: 

  

Gilmont Size No Approx K Stainless Steel
a
  

1 0.3 1 to 10 

2 3.3 10 to 100 

3 35 100 to 1000 
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Absolute Viscosity  

Where:  μ = absolute viscosity in cP 

  K = viscosimeter constant 

  ρt = density of ball (8.02 grams/ml for stainless steel) 

  ρ = density of liquid (grams/ml) 

  t = time of descent (minutes) 

The results of the viscosity assessments are shown in Table 4. Viscosity is measured 

using absolute viscosity and measured in centipoise units.  

Table 4 

Viscosity Measurements of Fluid 

Liquid Time (secs) Time (mins) Absolute Viscosity (cP) 

Water 2.9 0.048 1.11 

Ensure
®

 31.0 0.517 11.91 

Diluted Ensure
®

 4.2 0.070 1.61 

The full strength Ensure
®

 had the highest viscosity measurement. The  

quarter-strength Ensure
®
 used in Phase II had viscosity similar to that of water alone, 

although it was slightly more viscous than the water.  

Data Analysis Phase I 

All analyses were performed using SPSS, version 20.0. Categorical level 

variables were described using counts and frequencies (%) and continuous level variables 

were expressed with measures of central tendency (mean, median) and variability 

(standard deviation, range). A one-way ANOVA was used to compare the RV across the 

three syringe pull techniques. Exploratory descriptive statistics were run including means, 

medians, standard deviations, and interquartile ranges with plots for the amount of fluid 
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aspirated by tube type, location of the distal ports in the fluid, type of fluid and the force 

technique. Assumptions for the appropriateness of using parametric statistical methods 

were examined using the Kolmogorov-Smirnov test. RV is expressed as a proportion. 

Alpha was set to 0.05 in all analyses.  

A Bland-Altman analysis using the 95% limits of agreement method was used to 

compare agreement between any non-significant differences in syringe pull technique in 

Phase I and Phase II of the study. The Bland-Altman analysis is useful in comparing two 

different measurement methods to determine if the methods can be used interchangeably 

and is more appropriate for this purpose than correlation coefficients (Bland & Altman, 

1990). A mean bias of +/- 1.96 SD was used as the range of agreement and 17% mL was 

set a priori as the clinically acceptable difference for determining bias between the RV 

assessment methods. This value is derived from 500 mL as the recommended cut off 

value for symptomatic intolerance divided by 3000 mL the typical gastric secretions 

secreted by the typical stomach daily (McClave & Snider, 2002). At this criterion, if the 

precision exceeds this value, then the proposed superior method would be an 

unacceptable alternative to the baseline one.  

Phase I Results 

In Phase I, a total of 108 in vitro RV measurements were analyzed to compare the 

fast, intermittent, and slow syringe pull techniques to determine which syringe pull 

technique produces the greatest amount of RV. Additionally, four different feeding tubes 

and two different fluids were used to assess the viscosity effect on the amount of RV with 

the placement of the distal end of the feeding tube in varying depths of fluid.  
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Comparisons were made on the proportion of RVs assessed across the syringe 

pull techniques and tube type with the tube tip placement of the distal ports in varying 

depths of fluid. Three measurements were made for each tube type with the most 

proximal ports of the feeding tube placed in Ensure
®
. Three measurements were also 

made for each tube type with all the distal ports submerged in water as well. The 

distribution of mean RV assessed from each syringe pull technique is depicted in Table 5. 

Table 5 

Phase I Distribution of RV Measurements 

Location of Ports in Fluid N Slow M (SD) Intermittent M (SD) Fast M (SD) 

All Submerged 24 0.69 (0.28) 0.71 (0.24) 0.55 (0.26) 

Proximal Submerged 12 0.64 (0.13) 0.66 (0.09) 0.58 (0.20) 

Distal Submerged 3 0.00 0.00 0.00 

The distribution of RVs for each type of fluid viscosity within each of the syringe 

pull techniques is shown in Table 6. The intermittent technique produced the greatest 

amount of RV 0.69 ± 0.20 mL (Range 0.14–0.98 mL) compared with the slow  

0.66 ± 0.24 mL (Range 0.08–1.00 mL) and fast techniques 0.56 ± 0.24 mL (Range  

0.09–0.91 mL).  
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Table 6 

Distribution of RV (mL) by Syringe Pull Method and Fluid Viscosity 

Note. Values reported are Means (SD). 
a
Poly is an abbreviated form for polyurethane.  

Research Question 1 

Which technique for pulling on the syringe plunger (fast, intermittent, and slow) 

yields the largest quantity of RV in the assessment of aspirate?  

A one-way ANOVA was used to compare the three syringe pull techniques (fast, 

intermittent, and slow) after confirming homogeneity of variances with Levene’s test  

Tube  Slow Intermittent Fast 

  Water Formula    Water Formula     Water Formula    

10 Fr 

Poly
a
 

Tube 

Submerged 

(n = 3) 

0.93 

(0.09) 

0.47 

(0.19) 

0.95 

(0.01) 

0.63 

(0.05) 

0.61 

(0.01) 

0.46 

(0.23) 

Proximal 

Submerged 

(n = 3) 

 0.69 

(0.14) 

 0.74 

(0.04) 

 0.71 

(0.05) 

 

18 Fr 

Poly
a
 

Tube 

Submerged 

(n = 3) 

0.98 

(0.02) 

0.18 

(0.11) 

9.0.1 

(0.07) 

0.28 

(0.13) 

0.90 

(0.01) 

0.25 

(0.26) 

Proximal 

Submerged 

(n = 3) 

 0.57 

(0.03) 

 0.63 

(0.03) 

 0.50 

(0.02) 

10 Fr 

PVC 

Tube 

Submerged 

(n = 3) 

0.78 

(0.05) 

0.66 

(0.07) 

0.74 

(0.07) 

0.75 

(0.12) 

0.83 

(0.02) 

0.44 

(0.24) 

Proximal 

Submerged 

(n = 3) 

 0.65 

(0.26) 

 0.71 

(0.02) 

 0.77 

(0.18) 

 

18 Fr 

PVC 

Tube 

Submerged 

(n = 3) 

0.90 

(0.06) 

0.50 

(0.01) 

0.97 

(0.01) 

0.47 

(0.04) 

0.70 

(0.01) 

0.26 

(0.01) 

Proximal 

Submerged 

(n = 3) 

 0.64 

(0.02) 

 0.54 

(0.07) 

 0.35 

(0.15) 



 

51 

(p = .326). The ANOVA showed significant differences in the assessment of RV across 

the three syringe pull techniques F(2, 105) = 3.218, p = .044 as shown in Figure 2. 

. 

 

Figure 2. Comparison of syringe pull techniques on percent of aspirated RV showed 

significant differences. 

Post hoc tests using bonferroni comparisons revealed significant differences 

between the intermittent syringe pull technique and the fast syringe pull technique  

(α = .02); the intermittent and slow pull techniques were not significantly different from 

each other (p = 1.00). While there was no difference in these techniques, the intermittent 

technique had lower variability (Range 0.14–0.98 mL) in the assessed volumes compared 

with the slow technique (Range 0.08–1.00 mL). The variability in the amount of assessed 

RV across methods remained significant in the one-way ANOVA, F(2, 33) = 6.8,  

p =.003) in the lower viscous fluid (water), however, there were no significant differences 
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F(2, 69) = 2.6, p =.08) between the three pull methods in the higher viscous fluid 

(Ensure
®
). 

Research Question 2 

Can the slow and intermittent syringe pull techniques be used interchangeably? 

To assess for consistency in RV and determine if the two syringe pull techniques 

could be used interchangeably, scatterplots, correlation coefficient (r) and 95% CIs were 

assessed to compare the agreement between the intermittent pull and slow syringe pull 

techniques (n = 36 pairs). The scatterplot (Figure 3) shows some agreement in the 

positive direction for both methods, the Pearson Product-moment correlation was  

r = .827, p < .001. The Bland-Altman was used to further assess the bias in this 

relationship to determine both the magnitude and direction of the bias.  

 

Figure 3. Scatterplot comparing intermittent to slow pull techniques. The scatterplot 

comparing intermittent to slow pull techniques shows some agreement. 
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The Bland-Altman analysis indicates that the 95% limits of agreement between 

the intermittent pull and slow pull techniques ranged from -0.22 to 0.29 percent of the 

total fluid volume. The bias for each of the paired measurement points varied from -0.23 

to 0.29, across all 36 pairs of measurements and the average mean difference was .0314. 

95% of the differences in the bias in the sample are expected to be between the upper 

limit of 0.29 and the lower limit of -0.22 (see Figure 4). The confidence limit of .51% 

exceeds the a priori criterion of 0.17, indicating that the intermittent method produced a 

larger volume of RV, the repeatability of assessment is not consistent and thus the two 

methods cannot be considered equivalent and used interchangeably.  

 

Figure 4. Bland Altman plot of differences comparing the intermittent to slow pull 

technique ranged from -0.22 to 0.29 percent of the total fluid volume. 

The plot of difference against means, demonstrates that the difference between the 

two techniques becomes similar at higher levels. Thus it is unlikely, p <. 05, that 
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measurement made using the slow and intermittent methods, on the same individuals, 

would differ by more than 50%. This difference becomes particularly meaningful with 

larger available volumes of total available volume. In the cases where a large volume 

aspirate is anticipated, the intermittent syringe pull technique should be used as it 

produces the larger amount of RV.  

The two methods for pulling on the syringe plunger, slow and intermittent pull 

techniques did not provide similar measurements of RV. The difference between 

measurement agreements is such that there is a level of disagreement includes clinically 

meaningful discrepancies. As such, the intermittent syringe pull technique was selected 

for use in Phase II of this study.  

Phase II Methods 

Phase II of this study consisted of a completely crossed randomized factorial 

design to evaluate in vitro three different methods (syringe, suction, and gravity) for 

aspirating feeding formula by nurses (n = 4) through two types of feeding tubes  

(10 Fr and 18 Fr tubes) made of two types of material (PVC and polyurethane) with five 

available volumes (50 mL, 150 mL, 300 mL, 500 mL, and 600 mL) to determine the 

proportion of the actual amount of aspirate that could be obtained within each method 

used to assess GRV. 

Study Design 

Design of the study conforms to a completely balanced randomized complete 

block design with two replications within each block. The blocking factor in this study is 

the method (syringe suction and gravity) with factors to include: two tube sizes (10 F and 

18 F), two tube materials (PVC and polyurethane), four levels of nurse experience 
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(student, novice, experienced, and expert) and five volumes of formula (50 mL, 150 mL, 

300 mL, 500 mL, and 600 mL).  

Setting 

This study was conducted in the simulation laboratory at the university’s school 

of nursing. The nursing laboratory is set up to simulate the acute care environment. In 

this study, the stomach was simulated using a clear feeding bag secured in a metal claw 

clamped to a chemistry ring stand. An additional clamp was placed at the top of the ring 

stand pole and the feeding tube was secured in the upper most clamp, while the end of the 

feeding tube was placed into the feeding bag simulated stomach containing feeding 

formula for each level of fluid assessed in this study (50 mL, 150 mL, 300 mL, 500 mL, 

and 600 mL). All of the ports at the end of the feeding tube were submerged in the fluid 

prior to setting up the ring stand for each measurement. All feeding tubes in the study 

were placed in the top clamp at the 55 cm mark. The feeding tube was secured to the ring 

stand in the upright position to simulate patient positioning with the head of the bed at 90 

degrees, the recommended patient position to prevent ventilator associated pneumonia 

(Kattelmann et al., 2006).  

The simulated stomach and ring stand were then placed inside a box to shield the 

content of the simulated stomach from the nurses during all assessments. The nurses were 

blinded to the amount of fluid in each assessment and had no knowledge of the volumes 

used in this study. The simulation room used in this study is equipped with a portable 

suction machine and canister (MODEL) that was used in the study for both the suction 

and gravity methods.  
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Protection of Human Subjects 

 This study was reviewed and approved (Appendix A) by the Indiana University 

Institutional Review Board (IRB) prior to implementation. This study met the criteria of 

exempt research as described in the Federal regulations at 45 CFR 46.101(b), 

paragraph(s) (2) as determined by the IRB. As such, there was no requirement for an 

informed consent; however, participants were provided with study information sheet 

(Appendix B) for exempt research approved by the IRB. Participation in this study was 

voluntary and participants had the right to choose not to participate in the study at any 

time. 

Study Sample 

Four nurses were recruited to participate in this study who met the study inclusion 

criteria. Participants were recruited from through the regional university’s school of 

nursing.  

Inclusion and Exclusion Criteria 

Inclusion criteria. Participants were included in the study after agreeing to 

voluntarily participate in the study. Each participant was provided an IRB-approved 

description of the study (Appendix B). Participants were included in the study if they met 

the practice requirements required by the study design. The practice requirements 

consisted of the following: 

1. A nursing student (a beginning nursing student) who had completed a 

basic skills course with competency in NG tube management.  

2. A novice nurse with less than three years of practice experience as a 

registered nurse in an ICU setting.  
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3. An experienced nurse with more than three years of practice experience in 

an ICU setting.  

4. An expert nurse with expertise in EN delivery either as a nutrition support 

nurse and/or a nurse who has published in the nutrition/EN literature.  

The first person, meeting inclusion criteria for a specific experience level, who 

volunteered to participate in the study, was selected for each of the four experience 

levels.  

Exclusion criteria. Participants were excluded from the study if their experience 

level represented an experience level that was already enrolled in the study.  

Phase II Procedure 

Once the nurse raters were enrolled in the study, each participant was oriented to 

the simulation laboratory and the methods used in this study to aspirate RV by the student 

co-investigator. The nurse raters were shown each of the three methods (syringe, suction, 

and gravity) for removing (aspirating) feeding formula through the feeding tubes, allowed 

to ask questions then try each method prior to data collection.  

The syringe technique, continuous suction and gravity drainage methods were 

used by the nurse raters to collect and measure the amount of feeding formula that they 

were able to aspirate from each of the feeding tubes used in this study. The same four 

types of tubes used in Phase I were also used in Phase II.  

 10 Fr polyurethane tube 

 10 Fr PVC tube 

 18 Fr polyurethane tube 

 18 Fr PVC tube 
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All of the tubes used in this study were the same length with the same number of 

ports over the end of the distal end of the feeding tube.  

Random assignment of the nurse rater to each of the treatment conditions 

(method, tube size, and feeding formula volume) was performed using the Web-based 

Research Randomizer (http://www.randomizer.org/) program. 

At the beginning of each assessment, the nurse rater assessed the position of the 

feeding tube at the top of the ring stand clamp and documented the marking from the 

feeding tube, indicating length of tube inserted, on the data collection form. The nurse 

was told prior to each assessment which method would be used for that assessment. The 

nurse was blinded to the simulated stomach and the amount of feeding formula available 

to aspirate for each assessment.  

Prior to each assessment, the nurse drew up 30 mL of air into the syringe, 

connected the syringe to the proximal end of the feeding tube and instilled the 30 mL of 

air into the tube, just as s/he would do in practice. Participants then used assigned method 

(syringe, suction, and gravity) to draw up and remove feeding formula through the tube.  

Once the feeding formula was aspirated through the feeding tube using the 

assigned method, the collected formula was placed in a graduated cylinder by the nurse 

rater, measured, and documented on the case report form.  

The nurse raters completed this procedure for each of the different sizes and 

materials of tubes across each level of volume with two repetitions completed at 

independent times according to the randomization.  
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Each nurse made 120 measurements across the three methods. Participants were 

not permitted to spend more than eight consecutive hours in the laboratory on a given day 

to prevent fatigue.  

Description of Methods for Assessing RV 

Syringe technique method. The nurse raters drew up 30 mL of air into the 

syringe and connected the syringe to the proximal end of the feeding tube. After instilling 

the 30 mL of air into the tube, they then manually aspirated the contents by pulling on the 

syringe plunger using a slow intermittent syringe pull technique, pausing briefly at each 

20 mL mark on the syringe barrel. Syringe contents were then emptied into a graduated 

cylinder and the nurse would repeat the process until he/she was unable to aspirate 

additional feeding formula. All contents removed from the syringe were measured by the 

nurse and recorded on the data collection form.  

Suction technique method. After instilling the 30 mL of air into the feeding tube 

using the syringe, the nurse rater connected the feeding tube to the vacuum pump suction 

set at 20 mmHg continuous suction. Continuous suction ran for no more than five 

minutes or until air was seen in the tubing suggesting that all the simulated stomach 

contents had been removed. If there was a continuous flow of fluid coming through the 

tube at the five-minute mark, the suction was turned off and the fluid was allowed to flow 

until no additional formula flowed through the tubing. All contents collected in the 

suction canister were then emptied by the participant into the graduated cylinder, 

measured and recorded on the data collection form.  

Gravity technique method. The gravity technique method also started by 

injecting 30 mL of air through the feeding tube. The suction tubing was then connected to 
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the proximal end of the feeding tube and the vacuum pump suction (20 mmHg) was used 

to prime the tube. Once the nurse rater saw the feeding formula in the tubing and 

presumed the fluid to be below the level of the simulated stomach, the nurse rater turned 

off the suction and allowed the feeding formula to drain by gravity. The suction canister 

and vacuum pump sat floor level to allow drainage. Drainage was allowed to flow freely 

until no additional formula flowed through the tubing. The aspirated volume was then 

emptied in a graduated cylinder, measured and documented on the data collection form 

by the nurse rater.  

Description of Feeding Formula 

The formula used to fill the simulated stomachs consisted of quarter-strength 

Ensure
®
 formula (Abbott Nutrition, 2009). The viscosity of this formula was 1.61 cP. All 

formula was kept at room temperature and mixed with tap water at a ratio of one part 

formula to four parts water throughout the study. This formula concentration was mixed 

as needed, prior to each assessment to prevent separation of the formula.  
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CHAPTER FOUR 

DATA ANALYSIS 

This chapter presents the data analysis for the research questions three through ten 

that were evaluated in Phase II of this study. Question 3 of this research study served as 

the overall research for which the study was designed. The design consisted of a total of 

240 cells with all factors considered fixed.  

Research Question 3 

How do methods for aspirating GRV (syringe, suction, and gravity), tube size  

(10 Fr and 18 Fr), tube material (PVC and polyurethane), experience of the nurse 

(student, novice, experienced, and expert) and total volume available (50 mL, 150 mL, 

300 mL, 500 mL, and 600 mL) influence the amount of aspirated feeding formula in an in 

vitro experimental trial? 

In research Question 3, the proportion of aspirated RV serves as the dependent 

variable, with higher values representing a greater amount of assessed RV. The five 

independent variables factorially combined are: three levels of methods (syringe suction 

and gravity), two tube sizes (10 F and 18 F), two tube materials (PVC and polyurethane), 

four levels of nurse experience (student, novice, experienced, and expert) and five 

volumes of formula (50 mL, 150 mL, 300 mL, 500 mL, and 600 mL). Because the three 

methods used in practice to assess RV (syringe, suction, and gravity) would not be used 

in combination with each other, each of the three methods was evaluated separately 

(syringe, suction, and gravity). A 2x2x4x5 analysis of variance (ANOVA) provides a test 

of the effects of tube size, tube material experience of the nurse, and levels of volume 

available to aspirate.  
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Analyses were performed using GLM with 4-way interactions assessed, using 

Type II Sum of Squares to account for unequal n. Assumptions of normality, 

homogeneity of variance, and heteroscedasticity are questionable so interpretations are 

made with caution. ANOVA was used to examine the interaction effects starting with the 

highest level of interactions and proceeding as appropriate. Three-way interactions with 

tube sizes, tube material, level of nurse experience and five fixed volumes were assessed 

by method (syringe, suction, and gravity) for significance, alpha = .05. 

Power Analysis 

A priori power analysis, based on the proposed design for a 3x2x2x4x5 Balanced 

Completely Randomized Factorial ANOVA (with a total of 240 cells), indicated that 

adequate power of 90% could be obtained for all effects using two independent complete 

repetitions per cell for a total n = 480 (see Appendix C). With the proposed sample size 

of 480, the proposed simple effects analysis for the 5-way interaction was planned to 

detect effects sizes of f = .27 at 1-β = .85 and   / 5= .01. 

Due to an unequal number of RV assessments in the cells, the Type II sum of 

squares method was used. This method gives equal priority to main effects and the 

sample sizes reflect the importance of the cells (Tabachnick & Fidell, 2007). Equalizing 

cells sizes by random deletion of cases is not a favorable approach in this study given the 

relatively small sample size within each cell. Therefore the Type II sum of squares was 

determined to be the most suitable approach for dealing with the unequal cell sizes.  

 There were not any specific a priori questions developed for post hoc 

comparisons, but planned comparisons were to be performed for any significant 

interactions. Given the exploratory nature of this research and the potential to identify 
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areas for future research, post hoc analyses using Bonferroni , α / number of comparisons, 

were performed to identify any significant of differences among the factors.  

Evaluation of Assumptions 

Prior to analysis, the study variables were examined for accuracy of data entry, 

missing values and fit between the variables distribution and the assumptions of 

multivariate analysis. Each variable in the study was examined separately. Two cases 

were found to have included a volume available of 600 mL rather than 500 mL, thus 

creating an unbalanced design. This was corrected in the data, which resulted in three 

repetitions within in two cells. There was only one repetition in the cell for the 500 mL 

volume for syringe method using a 10 Fr polyurethane tube, by the experienced nurse 

rater and one repetition for the novice nurse for the 500 mL volume for suction using an 

18 Fr PVC tube.  

Data were assessed for outliers and one significant outlier was noted. The 

Mahalanobis distance (X
2
 distribution, p < .001, with 1 df) was used to assess for outliers. 

Descriptive statistics were run to assess for univariate outliers among the feeding tubes 

and the level of nurse experience on the dependent variable, proportion of aspirated RV. 

Negative skew is evident in these variables, with significant skew noted for the student 

nurse using the syringe method and a 10 Fr polyurethane tube (skew statistic = -2.12) and 

the expert nurse using the suction method and the18 Fr polyurethane tube (skew  

statistic = -2.02). The log transformation (plus one because many values were zero) was 

explored, along with the inverse and arcsine transformations; however, there was no 

improvement in the skew and the data were left untransformed. Leverage values were 

assessed and no significant outliers were noted. While none of the cases were considered 
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outliers based on Mahalanobis, one of the cases was further examined and determined to 

be an outlier. Specifically, it was believed that the assessment of 0 mL of RV when there 

was 600 mL available to aspirate was a true measurement error and that the suction was 

not properly connected. This one case was deleted leaving 479 cases for analysis. 

Independence of nurse experience in the assessment of RVs was demonstrated by 

comparing the studentized residuals against the order of the repetitions performed by the 

nurse raters and as there was no relationship evident, independence of measures was 

assumed. Furthermore, paired t tests were performed on the assessed RVs for each level 

of nurse experience to determine if there were differences between the repetitions. There 

was no difference in the repetitions and therefore level of nurse experience was only 

modeled as a between subjects factor and not assessed for within level of nurse 

experience differences.  

Homogeneity of Variance was assessed formally using Levene’s test of equality 

of error variances. Because of the small sample size and not enough degrees of freedom, 

Levene’s test was not able to be calculated for the 2x2x4x5 ANOVA used to evaluate 

Question 3. Homogeneity of variance was not confirmed therefore the results of the 

between subjects analysis are provided to identify factors that may be significant in 

explaining variability of the DV; however, because of the risk for Type I error, post hoc 

comparisons are interpreted with caution. The volume factor had non-constant variance 

and therefore after running the 2x2x4x5 between subjects ANOVA, the model was 

reduced to a 2x2x4 ANOVA, eliminating volume as a factor. This was addressed in 

research Question 4. 
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Research Question 4 

What is the effect of tube size, tube material, and level of nurse experience on the 

proportion of assessed RV? 

Research Question 4 was posed because the volume factor contained significant 

heterogeneity of variance; therefore, it was removed as a factor and a reduced model 

containing tube size, tube material, and level of nurse experience was performed in 

addition to the model discussed previously using a 2x2x4 ANOVA. The results of the 

2x2x4 ANOVA assessing for variability in the proportion of aspirated RV by tube size, 

tube material, and level of nurse experience, are provided along with a separate one-way 

ANOVA with Brown-Forsyth corrections used to explore the effects of volume on the 

proportion of aspirated RV. Levene’s was considered significant at α = .01.  

Research Question 5 

What is the effect of the four feeding tubes evaluated in this study and the level of 

nurse experience on the proportion of aspirated RV? 

Because in practice, the tube material is not separate from the tube size, it is 

important to explore the effects of these combined factors as well as to evaluate how they 

influence the proportion of aspirated RV separately. There were four feeding tubes 

evaluated in this study. A 4x4 ANOVA was performed to evaluate the effect of the four 

feeding tubes (10 Fr polyurethane tube, 10 Fr PVC tube, 18 Fr polyurethane tube, 18 Fr 

PVC tube) and the levels of nurse experience on the proportion of aspirated RV for each 

of the three methods (syringe, suction, and gravity) factorially combined. Analyses were  
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performed using GLM with 2-way interactions assessed, using Type II Sum of Squares to 

account for unequal n. Homogeneity of variance was assumed in this model, with 

Levene’s test for homogeneity of variance, p = .01. 

Research Question 6 

Is one method for aspirating RV (syringe, suction, and gravity) better than another 

in assessing RV? 

Research Question 6 was evaluated using a one-way ANOVA. The dependent 

variable was the proportion of RV and the methods used to assess RV were compared 

with each other (syringe, suction, and gravity). The Brown-Forsyth statistic was used 

interpret significant results where homogeneity of variance was not assumed. Significant 

results were followed up with post hoc tests using Games-Howell.  

Research Question 7 

Is one tube better than another tube within each of the three methods (syringe, 

suction, and gravity) in assessing the proportion of aspirated RV? 

Research Question 7 was evaluated with a one-way ANOVA to evaluate the 

effect of the four feeding tubes used in this study on the variability in the proportion of 

aspirated RV within each of the methods used to aspirate RV (syringe, suction, and 

gravity). The Brown-Forsyth statistic was used interpret significant results where 

homogeneity of variance was not assumed. Significant results were followed up with post 

hoc tests using Games-Howell.  
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Research Question 8 

What is the effect of volume of the proportion of aspirated RV? 

Research Question 8 was evaluated with a one-way ANOVA to evaluate the 

effect of volume on the variability in the proportion of aspirated RV within each of the 

methods used to aspirate RV (syringe, suction, and gravity). The Brown-Forsyth statistic 

was used interpret significant results where homogeneity of variance was not assumed. 

Significant results were followed up with post hoc tests using Games-Howell.  

Research Question 9 

How well does RV assessment identify measurements that would be considered 

intolerant to EN in practice? 

Sensitivity and specificity analyses were performed to determine the validity and 

accuracy of RV assessments to address Question 9 in this study. An overall sensitivity 

and specificity analysis was performed across all three methods and then the same 

analyses were performed for each of the three methods (syringe, suction, and gravity). 

Sensitivity refers to a tests ability to correctly identify those who have a disease and in 

this study sensitivity refers to the RV assessments ability to correctly identify RV 

assessments that in practice would be considered feeding tube intolerance (volumes 

greater than or equal to 500 mL). Specificity is the ability of a test to correctly identify 

individuals who do not have a disease and in this study; specificity is used to identify RV 

volumes less than 500 mL when the available volume was less than 500 mL.  

Sensitivity and specificity are helpful in selecting appropriate diagnostic tests, but 

they cannot be used to estimate probability of a disease or condition in individual 

patients; likelihood ratios (LR) combine the sensitivity and specificity of a test and are 
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more clinically meaningful because they can be used to calculate the probability of 

disease for individual patients (Akobeng, 2007). LR for a positive test (LR+) is the 

probability of individuals with a disease having a positive test divided by the probability 

on an individual without the disease having a positive test. The LR for a negative test 

(LR-) is the probability that an individual with the disease having a negative test divided 

by the probability that an individual without the disease has a negative test. When a LR- 

is less than one, there is less chance that a negative test will occur in those with the 

disease. In this study, LR- values less than one suggest that there is a lesser likelihood of 

a person with intolerance having an RV assessment that would be of a lower value (less 

than 500 mLs). LRs were calculated using a weighted formula (Lowry, 2012) based on 

the prevalence of volumes consistent with intolerance in this study, calculated as follows:  

Likelihood Ration Negative [weighted for prevalence] 

 

Research Question 10 

Is there evidence of interrater reliability in RV assessment across the level of 

nurse experience when the nurses are treated as raters? 

To assess consistency in nurse assessments, intraclass correlations (ICCs) were 

calculated to evaluate interrater agreement and calculated as an index of rater 

consistency. Two different types of ICC were calculated following methods described by 

Shrout and Fleiss (1979) and Spence Laschinger (1992); formulas are provided later in 

this section. In the first calculation, raters were treated as if they were randomly sampled 

from the population and this ICC provides a reliability estimate of interrater agreement 

where the ICC can be considered as a measure of reliability of whether or not raters can 
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be considered interchangeable, denoted by ICC (2, 4) where two represents the ICC for 

agreement and four represents the number of raters included in the calculation. The 

second ICC estimated in this study considers the raters as fixed and applies to the 

reliability of only the raters studied in the design. The ICC for interrater consistency is 

denoted as ICC (3, 4) where three represents the consistency model and four again 

represents the number of raters. Due to the limited sample size (n = 4) of raters, external 

validity is limited, and thus the generalizability to all other raters in each of the four 

experience categories.  

The calculation of the ICC when raters are considered randomly sampled is 

estimated by: 

The calculation of the ICC when raters are considered fixed and is a measure of 

consistency is estimated by:  

Where: k = number of raters 

 n = number of persons 

 MS P = mean square persons  

 MS E = total MS – MS P - MSR obtained from the two-way ANOVA 

 MSR = mean square raters 

 MS E = total MS – MS P - MSR 

The F values were obtained from the two-way ANOVA and used to construct 

confidence intervals using the methods described by Shrout and Fleiss (1979) and Steiger 

(2004). ω
2

partial provide an estimate of the ICC and can provide an estimate of the ICC for 

the nurse experience, if nurse experience were considered random rather than fixed (The 
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fixed values in the design actually cover the entire range of nurse experience). ICCs were 

considered acceptable if they were 0.75 or greater (Shrout & Fleiss, 1979).  
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CHAPTER FIVE 

PHASE II RESULTS 

This chapter presents the results of the data analysis and a summary of findings 

for each research question addressed in Phase II; research Questions 3 through 10. The 

overall main research question, main effects, and any significant interactions are 

discussed. 

Sample Description 

Four nurses participated in this study, representing the practice experience levels 

of student, novice, experienced, and expert nurse. The four nurses each completed a total 

of 120 RV measurements, with 40 measurements for each method (syringe, suction, and 

gravity). Within each method, each nurse assessed RVs with a PVC tube (20 

measurements) and a polyurethane tube (20 measurements). The tube sizes consisted of 

10 Fr (20 measurements) and 18 Fr (20 measurements) and each volume of fluid was 

assessed twice using the combination of all of these factors.  

Description of RV  

There were 479 RV assessments analyzed in this study comprising two repetitions 

of measurements across the levels of each factor evaluated in this study (method, tube 

size, tube material, and volumes) by the four nurse participants. The two repetition 

groups were partitioned based on the order in which the combination of the factors were 

evaluated and then compared with each other. An initial screening of the data found two 

cases where the planned available volume in the in vitro experiment were inappropriately 

used, such that in two cases where the volume should have been 500 mL, there was 

actually 600 mL available. As a result, there were unequal cell sizes. This discrepancy 
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resulted in one less observation for the suction method: syringe (n = 160), suction  

(n = 159), and gravity drainage (n = 160).  

There were 120 RV measurements made by each nurse. The mean proportion 

assessed RV across all methods was 0.56 mL (SD 0.36 mL) with assessed RVs varying 

from 0 to over 1.00. In 10 cases, the RVs assessed by the nurses were higher than the 

amount that was available to aspirate (greater than 100% total volume available). This 

difference could be related to measurement error in reading the amount of fluid in the 

graduated cylinder or because the formula pooled in the lid and tubing of the suction 

canister and may have caused these discrepancies.  

Descriptive statistics were used to compare the three methods used to aspirate RV 

and the proportion of assessed RV by level of nurse rater experience, tube type, tube 

material, and volumes available to aspirate. All three methods used to aspirate RV did not 

perform substantially well in aspirating residual simulated stomach contents, and on 

average, the methods were only able to aspirate about 50% of the volume available. 

Across the three methods, 19% (n = 92) of the time, RV assessments produced 

5% or less of the total volume present in the simulated stomach. Across the three methods 

used to aspirate RV in this study, 17% (82/479) of the assessments produced no volume 

(0 mL). These findings of 0 mLs were similar within each of the methods; syringe 

method, 18% (29/160); suction method, 11% (18/159); and gravity method, 22% 

(35/160). Across all three methods evaluated to assess RV, the gravity technique 

produced lower aspirated RVs (0.47 mL ± 0.37 mL) compared with the syringe  

(0.57 mL ± 0.36 mL) and suction techniques (0.63 mL ± 0.34 mL). The gravity method 
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had lower aspirated volumes across the tube sizes and tube materials as depicted in  

Table 7.  

Table 7 

Proportion of RVs Measured in Milliliters by Method 

Factor Syringe Suction Gravity F P 

Nurse Experience      

   Student 0.64 (0.34) 0.66 (0.33) 0.49 (0.38) 2.97 .050 

   Novice 0.45 (0.36) 0.58 (0.32) 0.49 (0.35) 1.53 .200 

   Experienced 0.57 (0.38) 0.59 (0.35) 0.37 (0.36) 4.40 .010 

   Expert 0.60 (0.34) 0.69 (0.34) 0.53 (0.40) 1.80 .170 

Tube Size      

   10 Fr 0.64 (0.39) 0.65(0.34) 0.48(0.38) 5.16 .006 

   18 Fr 0.49 (0.32) 0.62(0.33) 0.46(0.37) 4.61 .010 

Tube Material      

   Polyurethane 0.49 (0.36) 0.56 (0.35) 0.39 (0.35) 5.01 .007 

   PVC 0.65 (0.35) 0.69 (0.33) 0.55 (0.38) 3.72 .026 

Volume      

   50 mL 0.25 (0.39) 0.38 (0.39) 0.26 (0.36) 1.09 .342 

   150 mL 0.52 (0.39) 0.61 (0.33) 0.36 (0.40) 3.58 .032 

300 mL 0.62 (0.31) 0.71 (0.29) 0.59 (0.34) 1.27 .286 

500 mL 0.72 (0.23) 0.77 (0.30) 0.64 (0.30) 1.82 .167 

600 mL 0.73 (0.23) 0.67 (0.27) 0.49 (0.33) 6.50 .002
a
 

Total 0.57 (0.36) 0.63 (0.34) 0.47 (0.37) 8.27 <. 001 

a
Brown-Forsythe adjustment. 

There were 239 measurements made with the 10 Fr tube size and 240 

measurements made with the 18 Fr tube size. The smaller 10 Fr Tubes produced higher 

mean volumes (0.59 mL ± 0.37 mL) compared with the larger 18 Fr tubes  

(0.52 mL ± 0.35 mL) across all three methods and within each method, the 10 Fr tube 

continued to produce the larger quantities of RV. The polyurethane tubes  

(0.48 mL ± 0.36 mL) produced smaller RV assessment quantities compared with the 
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PVC (0.63 mL ± 0.35 mL) tubes across the three methods and similarly within each 

technique.  

In assessing the average amount of aspirated RV within each level of fluid, the 

smaller quantities of available volume (50 mL) had lower amounts of assessed RV.  

Table 8 shows the distribution of RVs for this study expressed as counts and frequencies 

across the volumes available to aspirate. Figure 5 shows the distribution of volume by 

method used to aspirate the RV. The quantity of the RVs increased as the amount of 

available volume increased across the three methods.  

Table 8 

Frequencies of Assessed RV 

Percent Aspirated 50 mL 150 mL 300 mL 500 mL 600 mL 

 N = 96 N = 96 N = 96 N = 94 N = 97 

= 0% 46 (48 %)  18 (19%)   9 (9 %)   3 (3 %)   6 (6 %) 

≤ 5% 47 (49 %) 24 (25 %)   9 (9 %)   4 (4 %)   8 (8 %) 

≤ 25% 59 (61 %) 32 (33%) 15 (16 %)   6 (6 %) 13 (13 %) 

≤ 50% 74 (77 %) 50 (52 %) 34 (35 %) 24 (26 %) 29 (3 %) 

≤ 75% 76 (79 %) 61 (64 %) 56 (58 %) 45 (48 %) 53 (55 %) 

≤ 90% 83 (86 %) 77 (80 %) 71 (74 %) 74 (79 %) 80 (82 %) 
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Figure 5. Proportion of assessed RV level of volume by method. 

Results of Research Questions in Phase II 

Research Question 3 

How do methods for aspirating GRV (syringe, suction and gravity), tube size  

(10 Fr and 18 Fr), tube material (PVC and polyurethane), experience of the nurse 

(student, novice, experienced, and expert) and total volume available (50 mL, 150 mL, 

300 mL, 500 mL, and 600 mL) influence the amount of aspirated feeding formula in an 

in-vitro experimental trial? 

To address research question three, a 2x2x4x5 between subjects analysis of 

variance (ANOVA) was performed on the proportion of aspirated RV for each method 

used to aspirate RV. The ANOVA model results are presented for each method used to 

aspirate RV. Significant main effects and interactions are presented for each of the 
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methods used to aspirate RV separately. Variability explained by the model for each 

method of assessing RV is presented as well.  

Syringe method 2x2x4x5 results. Within the syringe method, for the 2x2x4x5 

ANOVA, proportion of aspirated RV significantly varied by tube size F(1, 159) = 9.77,  

p = .002, tube material F(1, 159) = 11.88, p = .001, level of nurse experience  

F(3, 159) = 3.06, p = .033 and volume F(4, 159) = 14.78, p < .001. The marginal means 

displayed in Table 9 with 95% confidence intervals show that the 10 Fr tube produced 

higher aspirated RVs and the 18 Fr tube had lower aspirated RVs, although this 

difference was not significant, p = .54. The PVC tube produced greater aspirated RVs 

than the polyurethane tubes which was found to be significantly different using pairwise 

comparisons, F(1, 80) = 11.83, p = .001, 95% CI [.07, .25]. The expert and the student 

nurse had similar RV assessments and produced higher proportions of RVs followed by 

the experienced nurse and lastly the novice nurse. Multiple comparisons demonstrated 

significant differences between the student and the novice nurse on assessed RVs,  

F(3, 80) = 8.23, p = .03, 95% CI [0.01, 0.36]; all the other levels of nurses were not 

significantly different on the amount of assessed RV using the syringe technique.  

Pairwise comparisons to explore the differences in the proportion of aspirated RV 

across volumes demonstrated that the 50 mL volume was significantly different from 

each of the other volumes evaluated in this study, p < .001. The difference between the 

proportion of assessed RV with the 50 mL and the 150 mL, 300 mL, 500 mL, and  

600 mL volumes ranged from 27 % difference to as much as 48 % difference in the 

assessed RV.  
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The 150 mL also was significantly different from other volumes evaluated in this 

study, but the differences were seen with the higher 500 mL and 600 mL volumes. There 

was variation between the 150 mL volume and the 500 mL volume such that there were 

greater proportions of aspirated RV in the 500 mL volume, F(1, 159) = 6.89, p = .01. 

This was similar when comparing the 150 mL volume with the 600 mL volume,  

F(1, 159) = 8.52, p = .005. Using the estimated means for these volumes, both the  

500 mL and 600 mL volumes had aspirated RVs approximately 20% higher than when 

there was only 150 mL available to aspirate.  

Table 9 

Estimated Means for Factors Evaluated in the ANOVA Model for Syringe Method 

Factors Mean (SE) 95 % CI 

Tube Size 

   10 Fr  

   18 Fr 

 

0.64 (0.03) 

0.49 (0.03) 

 

[0.57, 0.70] 

[0.43, 0.56] 

Tube Material 

   Poly 

   PVC 

 

0.49 (0.03) 

0.65 (0.03) 

 

[0.42, 0.55] 

[0.58, 0.71] 

Nurse Experience 

   Student 

   Novice 

   Experienced 

   Expert 

 

0.64 (0.05) 

0.46 (0.05) 

0.57 (0.05) 

0.60 (0.05) 

 

[0.55, 0.73] 

[0.36, 0.55] 

[0.47, 0.66] 

[0.51, 0.69] 

Volume 

   50 mL 

  150 mL 

  300 mL 

  500 mL 

  600 mL 

 

0.25 (0.05) 

0.52 (0.05) 

0.62 (0.05) 

0.72 (0.05) 

0.73(0.05) 

 

[0.14, 0.35] 

[0.42, 0.62] 

[0.52, 0.72] 

[0.61, 0.82] 

[0.63, 0.83] 

There was a significant interaction present between tube size and level of nurse 

experience, F(3, 159) = 2.78, p = .05; however, tube size by level of nurse experience 
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interaction effect was the only significant two-way interaction. Again the relationship 

between the assessed RV and this interaction was weak (η
2
 = .003). Estimated means and 

95% confidence intervals for the interaction effects are shown in Table 10. All levels of 

nurse experience had greater assessed RVs using the 10 Fr tube; however, the 

experienced nurse produced almost equivalent RV assessments using both tubes. 

Pairwise comparisons found significant differences between the student and each of the 

other practice levels using the 10 Fr tube, p < .001: novice F(3, 80) = 7.08; experienced 

F(3, 80) = 41.75; expert F(3, 80) = 5.91. Figure 6 is helpful in demonstrating the 

differences between the tube size and the levels of nurse experience. 

 
Figure 6. Interaction of nurse experience with tube size. 

Using the η
2
 as a measure of effect size, the interaction between tube size and 

level of nurse experience was very weak and accounted for only 3% of the variability in 

proportion of aspirated RV. Relatively weak effects were found for tube size (η
2 

=
 
.04), 
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tube material (η
2
 = .05) and level of nurse experience (η

2
 = .04). However, volume had a 

large effect and accounted for 24% (η
2 

= .24) of the variability in the proportion of 

aspirated RV. Overall, the full 2x2x4x5 ANOVA accounted for 67% of the variance in 

the proportion of assessed RV using the syringe method to perform RV assessments  

(R
2
 Squared = .671; Adjusted R

2
 = .346).  

Table 10 

Estimated Means for Significant Interactions in Syringe Method 

Tube size Nurse 

Experience 

Mean Std. 

Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

10 Fr Student 0.77 0.07 0.64 0.90 

 

Novice 0.60 0.07 0.47 0.73 

Experienced 0.57 0.07 0.44 0.70 

Expert 0.61 0.07 0.48 0.74 

18 Fr Student 0.51 0.07 0.38 0.64 

 

Novice 0.31 0.07 0.18 0.44 

Experienced 0.56 0.07 0.43 0.69 

Expert 0.59 0.07 0.46 0.72 

 

Suction method 2x2x4x5 results. Within the suction method, evaluated by the 

2x2x4x5 ANOVA, RV varied significantly with the tube material F(1, 158) = 7.14,  

p = .009, η
2
 = .04 and volume F(4, 158) = 7.31, p < . 001, η

2
 = .16. The estimated means 

and confidence intervals for all effects are shown in Table 11. The main effects for nurse 

experience and tube size were not significant nor were the higher order effects 

significant. The PVC tube produced larger aspirated RVs compared with the 

polyurethane tube. This difference between the PVC and polyurethane tubes was 

statistically significant using post hoc comparison with Bonferroni adjustment  

F(1, 79) = 6.90, p = .01. Pairwise comparisons were also performed to evaluate 
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significant differences within the volumes on the proportion of aspirated RV. When RV 

was assessed using a total volume available of 50 mL volumes, the percentage of 

assessed RV was significantly less than when there were 150 mL (p = .004),  

300 mL (p = .001), 500 mL (p < .001), and 600 mL (p = .001) volumes available to 

aspirate. The difference in the percent of aspirated RV when there was only 50 mL 

available compared across the other volumes ranged from 23% to 32 % more aspirated 

RV with the 150 mL and greater volumes using the estimated means for each volume. 

Volume was a medium to large effect accounting for 16% of the variability in the 

proportion of the aspirated RV, while tube material had a small effect. Overall, this 

2x2x4x5 ANOVA model explained 56% of the variance in assessed RV (R
2
 = .56; 

Adjusted R
2
 = .119). 

Table 11 

Estimated Means for Factors Evaluated in the ANOVA Model for Suction Method 

Factors Mean (SE) 95 % CI 

Tube Size 

   10 Fr  

   18 Fr 

 

0.65 (.04) 

0.62 (.04) 

 

[0.58, 0.72] 

[0.54, 0.69] 

Tube Material 

   Poly 

   PVC 

 

0.56 (.04) 

0.70 (.04) 

 

[0.49, 0.63] 

[0.62, 0.77] 

Table continued 
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Nurse Experience 

   Student 

   Novice 

   Experienced 

   Expert 

 

0.64 (0.05) 

0.58 (0.05) 

0.59 (0.05) 

0.71 (0.05) 

 

[0.54, 0.74] 

[0.48, 0.68] 

[0.49, 0.69] 

[0.61, 0.81] 

Volume 

   50 mL 

  150 mL 

  300 mL 

  500 mL 

  600 mL 

 

0.38 (0.06) 

0.61 (0.06) 

0.71 (0.06) 

0.75 (0.06) 

0.70 (0.06) 

 

[0.26, 0.49] 

[0.50, 0.72] 

[0.60, 0.82] 

[0.64, 0.87] 

[0.59, 0.82] 

Gravity method 2x2x4x5 results. Using the gravity method to aspirate RVs, 

evaluated with the 2x2x4x5 ANOVA, the proportion of aspirated RV significantly varied 

by tube material F(1, 159) = 10.603, p = .002, η
2
 = .05, and volume F(1, 159) = 7.99,  

p < .001, η
2
 = .14. The estimated means and confidence intervals for all factors are 

summarized in Table 12. No statistically significant main effects for level of nurse 

experience and tube size were found.  

The main effect for tube material was explored using pairwise comparisons. The 

PVC tubes produced greater proportions of assessed RV compared with the polyurethane 

tubes, F(1, 80) = 10.603, p = .002. Using the estimated means to make comparisons, the 

PVC tube produced 16% more RV than the polyurethane tube (.55 mL versus .39 mL).  

For the significant main effect of volume on the proportion of aspirated RV, 

pairwise comparisons were used to assess for which volumes of fluid were significantly 

different from one another. The 50 mL volume was significantly different from the  

300 mL, 500 mL, and 600 mL volumes. The 150 mL volume was significantly different 

from the 300 mL, 500 mL, and 500 mL volumes. Using the gravity technique, the 

proportion of aspirated RV from 600 mL volume was actually less than the proportions of 
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aspirated RV from both the 300 mL and 500 mL. This is evident in Table 12 comparing 

the mean aspirated RVs for volume.  

Table 12 

Estimated Means for Factors Evaluated in the ANOVA Model for Gravity Method 

Factors Mean (SE) 95 % CI 

Tube Size 

   10 Fr  

   18 Fr 

 

0.48 (0.04) 

0.46 (0.04) 

 

[0.41, 0.55] 

[0.39, 0.53] 

Tube Material 

   Poly 

   PVC 

 

0.39 (0.04) 

0.55 (0.04) 

 

[0.32, 0.46] 

[0.48, 0.62] 

Nurse Experience 

   Student 

   Novice 

   Experienced 

   Expert 

 

0.49 (0.05) 

0.49 (0.05) 

0.37 (0.05) 

0.53 (0.05) 

 

[0.39, 0.58] 

[0.39, 0.59] 

[0.27, 0.47] 

[0.43, 0.63] 

Volume 

   50 mL 

  150 mL 

  300 mL 

  500 mL 

  600 mL 

 

0.26 (0.06) 

0.36 (0.06) 

0.59 (0.06) 

0.64 (0.06) 

0.49 (0.06) 

 

[0.15, 0.37] 

[0.25, 0.48] 

[0.48, 0.70] 

[0.53, 0.75] 

[0.38, 0.60] 

There was a significant interaction between tube size, level of nurse experience 

and volume, F(12, 159) = 1.97, p = .04, η
2
 = .11. This was the only significant interaction 

evident in the model and explained 11 % of the variability in the proportion of  

aspirated RV. 

Figure 7 demonstrates the differences in the proportion of RV for tube sizes and 

level of nurse experience across the volumes for the gravity method.  

Contrasts for tube size by level of nurse experience and volumes found significant 

differences existed with the 10 Fr tubes in the 500 mL volumes for both the novice nurse, 
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where equal variances are not assumed, t (12.47) = 3.17, p = .008 and the expert nurse  

t (9.42) = 3.16, p = .01. Additionally there were differences in the proportion of aspirated 

RV noted with the student using the 18 Fr sized tube, equal variances not assumed,  

t (9.65) = 5.39, p < .001. Overall, this model, using the gravity method to aspirate RV 

accounted for 64% of the variance in proportion of aspirated RV (R
2
 = .64,  

Adjusted R
2
 = .29).
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Figure 7. Estimated means for level of nurse experience, tube size, and volumes using gravity drainage method. 

 

 

8
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Summary of Research Question 3 

The three separate 2x2x4x5 ANOVAs for the syringe, suction, and gravity 

methods each had significant main effects for tube material and volume. Across all three 

methods, the PVC tube produced greater proportions of RV. The other similarity across 

the methods was that the smaller 50 mL volume of fluid had lower assessed proportions 

of RV. Across the syringe and suction methods, the proportion of assessed RV increased 

linearly with larger available volumes of fluid. This occurred also in the gravity method 

until the 600 mL volume when the assessed proportion’s decreased. The syringe method 

was the only method that had a significant main effect for the level of nurse experience 

and the student nurse generally was better at aspirating RV. In the syringe method, the 

smaller sized 10 Fr tubes were associated with larger proportions of assessed RV.  

Research Question 4 

What is the effect of tube size, tube material and level of nurse experience on the 

proportion of assessed RV? 

The ANOVA model results are presented for each method used to aspirate RV 

(syringe, suction, and gravity). Significant main effects and interactions are presented for 

each of the methods used to aspirate RV separately. Variability explained by the model 

for each method of assessing RV is presented as well.  

Syringe method 2x2x4 results. A 2x2x4 ANOVA showed a significant effect 

main effect for tube size, F(1, 159) = 7.12, p = .008 and main effect for tube material  

F(1, 159) = 8.66, p = .004 on the proportion of aspirated RV using the syringe method. 

However, both of these factors had relatively small effects on the variability in the 

proportion of aspirated RV (tube size, η
2
 = .04; tube material, η

2
= .05). There was no 
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significant main effect for the level of the nurse experience, nor were there any 

significant interactions. The full model accounted for 18% of the variability in the 

proportion of aspirated RV (R
2
 = .18, adjusted R

2
 = .10). The estimated grand mean for 

the full model produced 0.57( SE 0.03) proportion of the aspirated RV, 95% CI [.51, .62]. 

Table 13 demonstrates the estimated means and confidence intervals for the significant 

main effects for the syringe technique along with the results of the suction and gravity 

ANOVA models. Pairwise comparisons for tube size found the 10 Fr tube was associated 

with higher RVs F(1, 144) = 7.12, p = .008. Comparing tube materials, the PVC tubes 

produced significantly different proportions of aspirated RV compared with the 

polyurethane tubes F(1, 144) = 8.66, p = .004.  

Suction method 2x2x4 results. Evaluating the 2x2x4 ANOVA for effect on the 

proportion of aspirated RV for the suction method, only the main effect of tube material 

was significant F(1, 158) = 6.40, p = .012. The full model accounted for 11% of the 

variability in the proportion of aspirated RV (R
2
 = .11, Adjusted R

2
 = .01). The estimated 

grand mean for the full model produced .63 (SE .03) proportion of the aspirated RV,  

95% CI [.58, .68]. Tube material had a relatively small effect on the proportion of 

aspirated RV (η
2
 = .04). Pairwise comparisons demonstrated that the PVC tube 

performed significantly better compared with the polyurethane tube F(1, 143) = 6.26,  

p = .01. 

Gravity method 2x2x4 results. Evaluating the 2x2x4 ANOVA for effects on the 

proportion of aspirated RV for the gravity method, only the main effect of tube material 

was significant F(1, 159) = 7.90, p = .006. Tube material had a small effect on the 

proportion of aspirated RV (η
2
 = .05). The full model accounted for 14% of the 
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variability in the proportion of aspirated RV (R
2
 = .14, Adjusted R

2
 = .45). The estimated 

grand mean for the full model produced 0.47 mLs (SE0 .03) proportion of the aspirated 

RV, 95% CI [.41, .53]. Pairwise comparisons found the PVC tube to produce the larger 

proportions of aspirated RV F(1, 144) = 7.90, p = .006. 

Table 13 

Significant Main Effects and Estimated Mean Proportions of Aspirated RV  

Syringe Method Mean (SE) 95 % CI 

   Tube size   

      10 Fr 0.64 (0.04)
a
 [0.56, 0.71] 

      18 Fr 0.49 (0.04) [0.42, 0.57] 

   Tube Material   

      Polyurethane 0.49 (0.04) [0.41, 0.56] 

      PVC 0.65 (0.04)
a
 [0.57 - 0.72] 

Suction Method   

   Tube material 
  

      Polyurethane 0.56 (0.04) [0.49, 0.64] 

      PVC 0.70 (0. 04) [0.62, 0.77] 

Gravity Method   

   Tube material 
  

      Polyurethane 0.39 (0.04) [0.31, 0.47] 

     PVC 0.55 (0. 04)
a
 [0.47, 0.63] 

a
Significant at p < .025 

Summary of Research Question 4 

The three separate 2x2x4x5 ANOVA’s for the syringe, suction, and gravity 

methods each had significant main effects for tube material. In each method, the PVC  
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tube was associated with higher assessed proportions of RV. In the syringe method, tube 

size also had a significant main effect. The 10 Fr sized tube was associated with higher 

assessed RVs. 

Research Question 5 

What is the effect of the four feeding tubes evaluated in this study and the level of 

the nurse experience on the proportion of aspirated RV? 

The 4x4 ANOVA model results are presented for each method used to aspirate 

RV. All three methods used to assess RV (syringe, suction, and gravity) had only 

significant main effects for tubes. There were no significant interactions between the 

feeding tubes used to assess RV and the level of nurse experience. Each method is 

described separately using post hoc comparisons to identify which levels were 

significantly different. Variability explained by the model for each method of assessing 

RV is presented as well.  

Syringe method 4x4 ANOVA model. In the syringe method, the four tubes had a 

significant main effect, F(3, 159) = 5.45, p = .001. The four tubes had a moderate effect 

on the proportion of aspirated volume, η
2
 = .09. Post hoc comparisons found significant 

differences between the 10 Fr PVC tubes and the 18 Fr polyurethane tubes, p = .001, 

where the 10 Fr PVC was able to aspirate a greater proportion of RV. The other tubes in 

the study did not produce significantly different proportions of aspirated RV. The 

estimated mean proportion of aspirated RV for this 4x4 model was 0.57 mL (SE 0.03), 

95% CI [0.51, 0.62]. Overall, this model explained 18% of the variability in the 

proportion of aspirated RV (Adjusted R
2
 = .10). 
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Suction method 4x4 ANOVA model. In the suction method, the four tubes had a 

significant main effect, F(3, 159) = 2.63, p = .05. The four tubes had a small effect on the 

proportion of aspirated volume, η
2
 = .05. Post hoc comparisons did not yield any 

significant differences between the tubes. The estimated mean proportion of aspirated RV 

for this 4x4 model was 0.63 mLs (SE 0.03), 95% CI [0.58, 0.68]. Overall, this model 

explained 11% of the variability in the proportion of aspirated RV (Adjusted R
2
 = .01). 

Gravity method 4x4 ANOVA model. In the gravity method, the four tubes had a 

significant main effect, F(3, 159) = 2.73, p = .05. The four tubes had a small effect on the 

proportion of aspirated volume, η
2
= .05 using the suction technique. Post hoc 

comparisons did not yield any significant differences between the tubes. The estimated 

mean proportion of aspirated RV for this 4x4 model was .47 mL (SE 0.03),  

CI [0.41, 0.53]. Overall, this model explained 13% of the variability in the proportion of 

aspirated RV (Adjusted R
2
 = .04). 

Summary of Research Question 5 

The three separate 4x4 ANOVAs for the syringe, suction,n and gravity methods 

each had significant main effects for the tubes used to assess RV. In the syringe method, 

the 10 Fr PVC tube performed better than the 18 Fr, but there were not any differences 

among the other tubes evaluated in the study. Although the suction and gravity methods 

had a significant main effect for the tubes, one tube was not any better than another 

within those methods.  
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Research Question 6 

Is one method for aspirating RV (syringe versus suction versus gravity) better 

than any other method? 

A one-way ANOVA comparing the three methods on the proportion of aspirated 

RV was performed and significant differences were noted between the three methods, 

F(4, 278) = 8.28, p < .001. Post hoc tests using Bonferroni, demonstrated significant 

differences between the suction and gravity methods, t = 0.40, p < .001, CI [0.05, 0.27]; 

however, the syringe and suction methods were not significantly different from one 

another in their effect on aspirating RVs, p = .23. Pairwise comparisons were used to 

determine if either the syringe or suction methods were better methods, but there was no 

difference demonstrated, t (476) = -1.63, p = .11. 

Research Question 7 

Is one tube better than another tube within each of the three methods used to 

aspirate RV? 

A one-way ANOVA was used to evaluate the effect of the four feeding tubes used 

in this study on the variability in the proportion of aspirated RV within each of the 

methods used to aspirate RV (syringe, suction, and gravity). Post hoc comparisons were 

used and any significant differences were further explored with pairwise contrasts. Only 

the syringe method had significant differences noted in the tubes on the proportion of 

aspirated RV with the Brown-Forsythe, F(3, 147.97) = 5.31, p = .002. Post hoc 

comparisons with Games-Howell found significant differences between the 10 Fr PVC  
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tube and the 18 Fr PVC tube, p < .001. Pairwise contrasts were used and the 10 Fr PVC 

tube was slightly significantly better performing in the ability to aspirate larger 

proportions of RV on average, t (78.00) = 2.45, p = .017.  

Research Question 8 

What is the effect of volume on the proportion of aspirated RV? 

Syringe method. A one-way ANOVA showed a significant effect of volume on 

the proportion of aspirated RV, F(4, 139.35) = 7.53, p < .001. Levene’s test for 

homogeneity of variance was significant therefore the Brown-Forsyth statistic was 

utilized with post hoc tests using Games-Howell. Post hoc tests demonstrated a 

significant difference between the 50 mL of volume with the 300 mL, 500 mL, and  

600 mLs of volume (50 mL versus 300 mL, p = .003; 50 mL versus 500 mL, p < . 001;  

50 mL versus 600 mL, p < . 002). Pairwise comparisons were used to evaluate 

differences in volumes that are considered in practice to represent tolerance of EN 

feeding (50 mL, 150 mL, and 300 mL) and with volumes in practice that would be 

considered indicative of feeding intolerance (500 mL and 600 mL) to assess if there are 

differences on the proportion of assessed RV. There were significant differences between 

the low volumes and the high volumes on the proportion of assessed RV using the 

syringe method t (149.21) = 5.59, p < .000, variances not assumed to be equal. Additional 

contrasts assessed for differences between 300 mL versus 500 mL volumes and 600 mLs, 

combined, and there was no significant differences found between these volumes,  

t (47.94) = 1.72, p = .09. 

Suction. A one-way ANOVA showed a significant effect of volume on the 

proportion of aspirated RV, F(4, 139.35) = 7.53, p <. 001. Levene’s test for homogeneity 
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of variance was significant therefore the Brown-Forsyth statistic was utilized with  

post hoc tests provided using Games-Howell. Significant differences were noted between 

the 50 mL of volume and the 300 mL, 500 mL, and 600 mL of volume (50 mL versus 

300 mL, p = .003; 50 mL versus 500 mL, p <. 001; 50 mL versus 600 mL, p =. 002). 

Planned contrasts were used to compare for differences in volumes that are considered in 

practice to represent tolerance of EN feeding (50 mL, 150 mL, and 300 mL) with 

volumes in practice that would be considered indicative of feeding intolerance (500 mL 

and 600 mL) to assess if there are differences on the proportion of assessed RV. There 

were significant differences between the low volumes and the high volumes on the 

proportion of assessed RV using the suction method t (140.25) = 3.37, p = .001, variances 

not assumed to be equal. Additional contrasts assessed for differences between 300 mL 

versus 500 mL volumes and 600 mLs and there was no significant differences found 

between these volumes, t (58.45) = 0.33, p = .743. 

Gravity. A one-way ANOVA showed a significant effect of volume on the 

proportion of aspirated RV, F(4, 159) = 6.46, p <. 001, with equal variances assumed. 

Post hoc comparisons demonstrated a significant difference between the 50 mL of 

volume with the 300 mL and 500 mL (50 mL versus 300 mL, p = .004; 50 mL versus  

500 mL, p <. 001; 50 mL versus 600 mL, p =. 002). Planned contrasts were used to 

compare for differences in volumes that are considered in practice to represent tolerance 

of EN feeding (50 mL, 150 mL, and 300 mL) with volumes in practice that would be 

considered indicative of feeding intolerance (500 mL and 600 mL) to assess if there are 

differences on the proportion of assess RV. There were significant differences between 

the low volumes and the high volumes on the proportion of assessed RV using the 
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suction method t (14.03) = 2.91, p = .004, variances not assumed to be equal. Additional 

contrasts assessed for differences between 300 mL versus 500 mL volumes and 600 mLs, 

and there was no significant differences found between these volumes, t (58.35) = - 0.33, 

p = .72. 

Summary of Research Question 8 

 Across all three methods used to aspirate RV, the smallest volume, 50 mL, had 

significantly smaller proportions of assessed RV compared to the larger volumes of  

500 mLs and 600 mLs. When the fixed volumes evaluated in this study were 300 mL or 

less, the proportion of aspirated RVs was less than when the volumes were 500 mLs and  

600 mLs, but there were not differences between the 300 mL volume and the larger 

volumes. While larger amounts of volume are associated with larger assessments, there is 

no difference in the proportions of assessed volumes when the volume available is  

300 mL, 500 mL, and 600 mL. At these volume levels, an increase of 300 mL (the 

difference from the 300 mL and the 600 mL) does not yield significantly higher 

assessments, suggesting great variability in all three methods used to aspirate RV.  

Research Question 9 

How well does RV assessment identify measurements that would be considered 

intolerant to EN in practice? 

For the purpose of this study, the threshold volume to define intolerance consisted 

of volumes that were 500 mL or greater. Any volume less than 500 mL was considered 

tolerant. The frequencies for RV assessments made that would be considered tolerant 

versus intolerant and when the RV assessment was large enough to be consistent with 

those volumes are shown in Table 14. 
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Table 14 

Frequencies of RV Assessments Considered to Be Intolerant Versus Intolerant 

RV Assessment Amount Consistent 

with Intolerance 

Amount Inconsistent 

with Intolerance 

RV Assessment Positive 53 0 

RV Assessment Negative 138 288 

Sensitivity and specificity analyses were performed to determine the validity and 

accuracy of RV assessment. Overall the three methods had a sensitivity of 0.28,  

95% CI [0.22, 0.35] and specificity of 1.00, 95% CI [0.98, 1.00]. The specificity is high 

in this study and would be in practice as the definition of intolerance is based on having 

high RVs greater than 500 mL. It is impossible to aspirate a RV greater than 500 mL 

when there is less than 500 mL available. Because this was a controlled experiment the 

positive predictive values are not reported because they do not provide useful 

interpretations. The three methods are compared in Table 15. The suction method was the 

most sensitive to identifying volumes consistent with EN intolerance, although the 

syringe method was fairly similar. 

Overall, the probability of assessing a RV that would indicate intolerance was 

11% or 53/479 times. Given the number of volumes that were greater than 500 mL  

(n = 191), the likelihood of obtaining a RV that would be assessed as tolerant (< 500 mL) 

was 72% (n = 138), when in reality the amount that was available to be aspirated was not 

actually aspirated, which is consistent with the low sensitivity findings.  
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Table 15 

Prevalence of Feeding Tube Intolerance, Sensitivity, and Specificity for Each Method 

Variable Syringe Suction  Gravity 

Prevalence 0.40 0.40 0.40 

Sensitivity 0.31 0.38 0.14 

Specificity 1 1 1 

In the syringe method, the mean proportion of assessed RVs was 0.46 mLs when 

made in volumes less than 500 mLs. This finding was similar in the suction method 

where the LR- value was 0.41. Put another way, individuals who have their RV assessed 

with the syringe method and suction methods that are tolerating their EN are about twice 

as likely to have low RVs than individuals who are intolerant. The weighted LR- for the 

gravity method was 0.57, indicating the probability of aspirating lower RVs when the 

volume is less than 500 L is 1¾ times those with higher volumes of RV suggestive of 

intolerance.  

Summary of Research Question 9 

The syringe, suction and gravity techniques have low overall sensitivity in 

identifying assessments that would be considered intolerant to EN evaluated in this study. 

While assessed volumes may not be helpful in identifying intolerance, the assessed 

volumes in this study were fair indicators of tolerance. The syringe and suction 

techniques were more sensitive measures to identifying intolerance and performed better 

than the gravity technique.  
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Research Question 10 

Is there evidence of interrater reliability in RV assessment across the level of 

nurse experience when the nurses are treated as raters? 

A two-way ANOVA was used to obtain the ICCs to assess for absolute 

agreement, ICC (2, 4), and consistency, ICC (3, 4), in assessed RVs made by the nurses 

in this study to determine reliability. First, ICCs were constructed across the three 

methods used in the study to assess RV, for absolute agreement ICC (2, 4) and 

consistency ICC (3, 4) in the actual assessed volumes between the four levels of nurse 

experience where the nurse was considered a rater. Then, ICCs using both the absolute 

agreement and consistency calculations were constructed for each of the three methods 

(syringe, suction and gravity) for assessing RV used in this study.  

Summary of Research Question 10 

Overall, there was low interrater agreement across the three methods, ICC = .67, 

CI [.59, .74]. This ICC indicates that assessing RV using any of the three methods, the 

nurses are not interchangeable, meaning that there are differences across nurse raters. In 

terms of interrater consistency across the methods, the consistency was not acceptable, 

ICC = .67, 95% CI [.60, .74]. This indicates the four raters used in this study were 

inconsistent in the amount of their RV assessments not taking into consideration the type 

of method used for assessing RV.  

The results of the reliability statistics for each method (syringe, suction, and 

gravity) used to assess for RV are depicted in Table 16. The only method that had an 

acceptable ICC (2, 4) was the syringe method. Using the syringe method, level of nurse 

experience is interchangeable and there is agreement in the amount of assessed RV; 
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however this is still questionable because the lower limit of the confidence interval in less 

than the acceptable criteria for agreement suggested by Shrout and Fleiss (1979) of at 

least .75. In terms of evaluating reliability between the fixed factors of level of nurse 

experience evaluated in this study, the syringe method used to aspirate RV also had an 

acceptable level of reliability, F(3, 155) = 3.19, p = .03. The inconsistencies and poor 

agreement in assessed RVs between the suction, F(3, 151) = 1.81, p = .15 and gravity, 

F(3, 159) = 4.33, p = .006 indicates that the raters have different effects in using these 

methods, although the suction method has ICC values that on the upper end of the 

confidence limits, indicate acceptable agreement and consistency.  

Table 16 

Nurse Rater Consistency and Agreement of RV Assessments by Method 

ICC Syringe Suction Gravity 

ICC (2, 4)
a
 .80 [.70, .88] .73 [.61, .84] .45 [.29, .62] 

ICC (3, 4)
b
 .81 [.71, .88] .74 [.62, .84] .47 [.31, .63] 

a
The calculation of interrater agreement using four raters. 

b
The calculation of interrater 

consistency using four raters.  

Summary of Research Question 10 

Interrater agreement and consistency were evaluated to determine if there was 

evidence of interrater reliability in the assessment of RV using the syringe, suction and 

gravity techniques. There was greater consistency and agreement between the four raters 

using the syringe method. The suction method had levels of agreement and consistency 

that were approaching an acceptable level but there was greater variation between the 

raters using the suction method. The gravity method had unacceptable reliability, 

although the proportion of aspirated RV was consistent among the raters.  
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Chapter Six will summarize the findings of this study. Based on the study findings 

and discussion, implications for practice are discussed. Study limitations and 

recommendations for future research are presented. 
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CHAPTER SIX 

DISCUSSION AND CONCLUSIONS 

This chapter discusses the study findings, implications for practice and limitations 

of the study. Additionally, recommendations for future research are presented.  

Discussion of Study Findings 

This study evaluated the variation across tube size, tube material, and level of 

nurse experience in five levels of volume using three different methods to aspirate RV. 

This study sought to evaluate the influence of several factors that have been identified in 

practice and research to influence the assessment of GRV. This study builds on the body 

of evidence about RV measurement and explored many of the factors that have been 

questioned as influencing the ability to obtain an accurate GRV. Because this study was 

performed in vitro, it was also possible to determine how often RV measurements were 

consistent with the amount of volume that was available to be aspirated in the simulated 

stomach. This study found that overall; the amount of RV that can be aspirated in vitro is 

only about 50% of the volume available. With smaller volumes in the simulated stomach, 

the smaller the RVs, and in many cases, no RV could be aspirated, even across the levels 

of volumes studied.  

Methods 

The gravity method produced significantly lower RVs compared with the syringe 

and suction techniques. Furthermore, although the amount of time that it took for the 

nurses to assess each method was not studied directly, the gravity measurements took 

longer to complete than the syringe and suction methods. This was particularly true for 

the smaller 10 Fr tubes, which may make the gravity technique a poor method for 
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practice because it would lead to extended times that feeding would be held. The amount 

of time that it takes to assess GRV in practice has been reported as 5.25 minutes on 

average which can translate into about $2.2 million dollars in just nursing time alone for 

only100 patients assessed every four hours in all fifty states over one year (Parrish & 

McClave, 2008). Not only is GRV assessment costly for nursing care, in terms of patient 

care, the time that feedings are put on hold to perform this assessment is approximately 

30 minutes per day, which reduces the patient’s prescribed caloric intake. 

There was no difference between the syringe and suction methods evaluated in 

this study, and both underestimated the amount of content present in the simulated 

stomach by 40% to as much as 100%. These findings support those of a study that 

evaluated the syringe and suction techniques across a small 10 Fr tube and larger 16 Fr 

tube in critically ill patients (Zaloga, 2005).  

Tube Sizes 

The smaller sized 10 Fr tube produced larger RVs compared with the larger 18 Fr 

tube, but the tube material and viscosity of the fluid influence the amount of RV, as does 

the person performing the assessment. This study did assess the effect of viscosity in the 

first phase of this study and found that larger volumes could be aspirated with the lower 

viscous fluid. These results are contrary to Metheny et al.’s findings (2005) that found in 

small and large bore tubes concurrently placed, that the smaller tubes produced over 

twice the amount of GRV compared with larger tubes. In all cases studied by Metheny  

et al., the 10 Fr tube was the first tube used to perform GRVs followed by a flush of 

water before the next GRV assessment from the large tube. The flush over water likely 

had less viscosity than what was in the stomach and, therefore, changed the overall 
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viscosity of the stomach contents for the large bore assessment, potentially leading to the 

ability to aspirate larger volumes of fluid. In Phase I of this study, the assessments made 

with water as the fluid, which is less viscous, produced larger RVs compared with the 

more viscous feeding formula. Therefore, in Metheny et al.’s study, the larger aspirated 

RVs obtained with the larger tubes were likely the effect of viscosity changes in the fluid 

in the stomach. These changes in the fluid viscosity could have resulted from adding a 

flush of water to the already fed formula and gastric juices present in the stomach, thus 

diluting the fluid and altering the viscosity to a thinner fluid. 

Level of Nurse Experience 

In this study, level of nurse experience varied in the proportion of aspirated RV. 

The student nurse was associated with larger aspirated RVs. This is one factor that has 

not been explored in research. The variation in assessment across the level of nurse 

experience may be an important factor. It is likely that the student nurse was more 

cautious in performing assessments, not having had any practice experience to rely upon. 

However, because this study used only one nurse per level of experience, it is unknown if 

there would be variation within each of the levels of practice experience; specifically, 

whether the sample size within each level of nurse experience would yield similar results.  

Placement of Tube in Fluid Pool 

While viscosity may play a role in the ability to aspirate sufficient quantities of 

RV, the placement of the tube within the fluid is more likely to influence the ability to 

aspirate the stomach contents and even when the most distal end of the tube is submerged 

in the fluid, if the most proximal port(s) are not in fluid, it is impossible to obtain any 

aspirate. This is evident in the data from Phase I compared with the data from Phase II. 



 

102 

There were more assessments in Phase II with 0 mL of measured volume when the tube 

was not controlled for in terms of placement within the fluid pool. There were also more 

assessments of 0 mL in the low quantity volumes of 50 mL and 150 mL, but in Phase I, 

when small volumes were used, there were not any assessments of 0 mL except when the 

most proximal port was exposed to air above the level of the fluid. In Phase II, prior to 

each assessment, the nurses injected 30 mL of air into the tube before aspirating RV. This 

practice may have displaced the tube from the fluid pool leading to small RV 

assessments. Because the placement of the tube in the fluid cannot be controlled for in 

practice, these study results and the mounting in vivo evidence provide increasing 

evidence that assessing GRVs in practice is unreliable. Furthermore, using arbitrary 

cutoff thresholds for which to hold nutrition support using an unreliable assessment 

technique appears to be questionable practice for which more research is needed.  

Implications for Nursing Practice 

The practice of assessing GRV is based on the assumption that aspiration occurs 

from gastric contents entering the lungs; however, it is known that aspiration of 

oropharyngeal secretion occurs with equal frequency (Huxley, Viroslav, Gray, & Pierce, 

1978). While the most recent clinical practice guidelines call for higher GRVs (up to 500 

mL) to increase caloric intake, there is controversy in the healthcare literature as to the 

relationship between GRV assessment and intolerance, and in particular, the relationship 

between GRV and aspiration. The largest concern with aspiration is the development of 

pneumonia; however, GRVs do not correlate with incidence of pneumonia, aspiration or 

regurgitation events and have not been well correlated with measures of gastric emptying. 

GRV may be helpful in identifying increasing risk for intolerance that can be considered 
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in the evaluation for determining a patient’s risk for aspiration. Lowering the GRV 

threshold has not been shown to be helpful in reducing the incidence of pneumonia 

(McClave et al., 2005).  

If GRV is retained in practice, the syringe and suction methods are the two better 

methods based on the factors in this study. However, given the many interruptions in a 

busy critical care unit, the suction method could place the patient at risk for prolonged 

cessation of feedings, especially if the nurse gets pulled away from the bedside for 

extended time periods. Because continuous suction was used in this study, this is 

something, if used in practice should be closely monitored to prevent any adverse events 

such as prolonged suction time, electrolyte imbalances and stomach wall lining damage. 

Overall, the results of this study demonstrate there was high variance in the proportion of 

actual volume obtained across all combinations of methods, and the obtained volume in 

all combinations underestimated the actual volume by half in 3% to 77% of the time in 

this experiment. These results invalidate the use of GRV as a measure of actual volume in 

all of these methods. In addition the variability in the obtained volume makes improving 

the prediction of actual volume by regression on the amount obtained, untenable. The 

results of this study demonstrate that the assessment of RV is a variable procedure and 

becomes even more variable when considering the number of factors that can influence a 

valid and reliable assessment.  

Limitations 

Because the design and analysis contained only fixed effects, inferences can only 

be drawn for the factors and levels of the factors used in this study. Additionally, 

although there was sufficient power and significance for the 2x2x4x5 model for each 
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method, there is risk of Type I error because of possible heterogeneity of variance due to 

the small cell size. The reduced models and separate analysis with adjustments where 

homogeneity was not assumed helped to strengthen the statistical conclusion validity that 

was difficult to justify with the full model. However, the assessment of RV is a highly 

variable procedure and therefore, that may be the main factor to consider in explaining 

the amount of heterogeneity seen in the data. Furthermore, the significant number of 

assessments that were unable to produce an assessment of RV were unanticipated and led 

to some of the heterogeneity and skewness in the data. This problem was not one 

necessarily limited to the design of this controlled experiment, but a problem that is likely 

often encountered in clinical practice.  

Within each cell of this design, there were only two assessments made which may 

have led to the variance observed. The level of nurse experience was limited to only one 

subject per level of nurse experience, so there is only within subject variability that could 

be examined and not within level of nurse experience variance. This is a limitation of this 

study and a factor that should be explored in future research by increasing the number of 

subjects within each of the level of nurse experience to determine if subjects in the 

various levels of nurse experience have the same variability across all the factors 

evaluated in this study. 

Additionally, because of the difference in the tube port configuration in the 

polyurethane and PVC tubes, conclusions about the PVC material are limited. 

Specifically, it is unknown if the difference in the proportion of aspirated RV is due to  
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the tube material or because the PVC tube ports are concentrically placed around the 

distal tip of the tube rather than in a linear placement as with the polyurethane tube. This 

variation in the tube port configuration should be explored further.  

Future Research 

 Future research should focus on incorporating alternative methods for assessing 

enteral tube feeding tolerance as well as consideration for the effects that were found to 

be significant in the assessment of RV. As discussed previously refractometry is a 

method that can be used to predict the amount of GRV that may be present in the 

stomach by calculation the Brix index that is derived for concentrations of feeding 

formula present in the stomach. Bedside refractometry, using the Brix index may have 

clinical utility and deserves to be further explored. A majority of the research to date has 

been produced by physicians, and nurses have not studied many of the proposed 

techniques. The refractometry and Brix index needs validation with the gold standard 

scintigraphy, but there is potential that this technique could be beneficial in identifying 

the quantity of GRV present in the stomach. If refractometry can be considered as an 

alternative to the scintigraphy in assessing gastric emptying, then this method could be 

used in future research studies to assess how much volume is present in the stomach. 

Once a reliable tool is identified, then further research studies can be designed to identify 

a threshold volume that could be specific and sensitive to volumes that place the patient 

at risk for other complications such as aspiration of feeding content. One limitation in the 

current assessment of GRV is that an accurate assessment may rely on the placement of 

the tube tip in a large gastric pool; the refractometry with Brix index may provide 

accurate assessments and does not rely on the tube being placed in the gastric pool, as the 
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test only requires one mL of fluid. Refractometry with the Brix index, along with RV 

assessment, and consideration for the types of tubes used for assessment and strong 

physical assessment skills may have clinical utility developing in a nurse driven protocol 

for assessing intolerance and clinical decision-making based on the many factors.  

Significance of Study 

Aspiration is the most feared complication of EN because there is concern that 

stomach contents will be aspirated into the respiratory tree leading to distress or 

pneumonia. GRV is used to monitor patient tolerance of the EN, and decisions are made 

to interrupt feedings based on GRV measurements and concern for a patient’s risk for 

aspiration. Marshall and West (2006) found that 65.4% of nurses identified increased 

GRV measurements as the reason for delaying enteral tube feedings, and Elpern, Stutz, 

Peterson, Gurka, and Skipper (2004) found that GI intolerance (high GRVs, nausea, and 

vomiting) accounts for 21% of feeding interruptions. However, withholding feeding due 

to elevated GRV has its own negative consequences. In a multicenter study in France, 

researchers found that when GRV is measured in practice, patients (n = 203) experience a 

38% increase in the risk of having a lower intake of calories compared to their prescribed 

calories (Quenot et al., 2010). Mean daily intake of < 50% of recommended EN is 

associated with hospital mortality (Singh, Gupta, Aggarwal, Agarwal, & Jindal, 2009). In 

some instances, patients receive only approximately 50% of their prescribed calories 

(O’Meara et al., 2008).  

While GRV measurement may interfere with EN delivery, it is an important 

assessment along with physical examination that helps clinicians determine feeding 

tolerance. While a single elevated GRV may not be a predictor of complications, it may 
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be a signal that the patient is experiencing increasing intolerance due to reduced gastric 

motility and stomach emptying. An accurate measure of GRV will help clinicians make 

the best decisions for enteral feeding. A threshold value at which a GRV places a patient 

at risk for aspiration or other complications is unknown. This may be related to a lack of 

evidence to support the best practice of how to obtain GRV accurately and reliably. 

Specifically, it is uncertain if GRV can be accurately measured and which of these three 

methods (syringe, suction, gravity) is the most accurate for assessing GRV. An in vitro 

study is needed to evaluate how much of the actual available volume of fluid can be 

aspirated and determine if there is a difference in the amount that can be aspirated based 

on the assessment method and feeding tube characteristics. This knowledge will be 

important in establishing the best technique for assessing GRV to maximize nutritional 

intake in practice and will contribute to future research to test strategies to optimize EN 

intake in critically ill patients.  

Contribution to the Science of Nursing 

Research is needed to explore the effect of methods used in aspirating GRVs and 

tube properties effects on the ability to accurately measure GRVs before a threshold 

volume for GRVs and feeding tolerance can be established for clinical practice. This in 

vitro study focused on many of the variables that have been attributed to variation in the 

assessment and reliability of GRV. This study demonstrated great variation in the 

assessment of RV in vitro, which validates many of the concerns about the validity of the 

procedure suggested in practice, and provides evidence that other methods to assess 

patient’s tolerance of tube feedings should be explored in future research studies. The 
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results of this study will be used to guide future research and develop a program of study 

in EN delivery and tolerance of enteral tube feedings for critically ill patients.  
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APPENDIX A 

INSTITUTIONAL REVIEW BOARD APPROVAL AND EXEMPTION 
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APPENDIX B 

STUDY INFORMATION SHEET 
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APPENDIX C 

A PRIORI POWER ANALYSIS 

Table C1 

Expected Mean Squares for Fixed Effects Analysis of Variance 

Effect df EMS Denominator 

Method A 2 160*varA + var within MS Within 

Material B 1 240*varB +var within MS Within 

AB 2 80*varAB +var within MS Within 

Size C 1 240*varB +var within MS Within 

AC 2 80*varAC + var within MS Within 

BC 1 120*varBC +var within MS Within 

ABC 2 40*varABC +var within MS Within 

Nurses D 3 120*varD +var within MS Within 

AD 6 40*varAD +var within MS Within 

BD 3  60*varBD +var within MS Within 

ABD 6 20*varD +var within MS Within 

CD 3 60*varCD +var within MS Within 

ACD 6 20*varACD +var within MS Within 

BCD 3 30*varBCD +var within MS Within 

ABCD 6 10*varABCD +var within MS Within 

Volumes E  4 96*varE +var within MS Within 

AE 8 32*varAB +var within MS Within 

BE 4 48*varBE +var within MS Within 

ABE 8 16*varABE +var within MS Within 

CE 4 48*varCE +var within MS Within 

ACE 8 16*varACE +var within MS Within 

BCE 4 24*varBCE +var within MS Within 

ABCE 8 8*varABCE +var within MS Within 

DE 12 24*varDE+var within MS Within 

ADE 24 8*varADE +var within MS Within 

BDE 12 12*varBDE +var within MS Within 

ABDE 24 4*varABDE +var within MS Within 

CDE 12 12*varCDE +var within MS Within 

ACDE 24 4*varABDE +var within MS Within 

BCDE 12 6*varBCDE +var within MS Within 

ABCDE 24 2*varABCDE +var within MS Within 

within 2*120=240 var within  

Note. In the outputted EMS table from the ωFace program, Lenth uses the shorthand 

notation, var, to designate the “treatment effects term” in the EMSs regardless of whether 

the treatment is specified as random or fixed (e.g., varAB) in the model inputted in 

πFace. As can be seen from the EMSs in the table, the expectations are for a fixed effect 

ANOVA.  
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The primary effects of interest and the ones that require the largest sample size to 

achieve a power of .90 are the ABCDE interaction and the ACDE and ABDE interactions 

with 24 df. 

 

Figure C1. Highest order interactions with sample of 480 cases. For the highest order 

interactions (24 df), an a priori analysis for sample size in GPower, showed that a sample 

size of 480 cases (two independent reps per cell) would yield a power of .90 for an effect 

of size f = .25, at alpha = .05. 
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Figure C2. BCDE interaction and other interactions. The BCDE interaction and other 

interactions with dfs = 12, showed that a sample size of 480 (two independent reps per 

cell) would yield a power of .90 for an effect of size f =.22, at alpha = .05. 

 

 

Figure C3. The ABCD interaction with dfs = 8. The ABCD interaction and other 

interactions with dfs = 8, showed that a sample size of 480 (two independent reps per 

cell) would yield a power of .90 for an effect of size f = .202, at alpha = .05. 
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The proposed sample size of 480 was also shown to be adequate using the Lenth’s 

πFace program. The πFace program for sample size is based on the estimates of the 

“standard deviation” for each effect (e.g., SD(a*b). Figure C4 shows the size of the 

SD(effect) that can be detected for each effect in the Anova Table (fixed effects) with the 

proposed sample of 480 at a 90% power with alpha = .05. The SD(within) (σerror) was 

estimated in the power analysis as 20, based on a pilot study and also on previous 

published data. 
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Figure C4. Size of the SD(effect) that can be detected for each effect in the Anova Table (fixed effects).

1
1
8
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The relationship between the effect sizes in the Gpower program and the SDs in 

the Lenth program is as follows: 

In GPower the effect size, is f. For each effect, f can be estimated as  

feffect = √(dfeffect / N)(Feffect-1) or as f effect =√(krσ
2

effect / Nσ
2

error), where r is the number of 

replications and k is the product of the levels of the effects not in the effect being 

estimated (as given by the multipliers for the var(effect) in the EMS table). (For example, 

one can see in the EMS Table (Figure C4) for the ABCE effect, k*r = 4*2=8, where r =2 

replications and k = 4 is the number of levels in the D factor.) 

The equivalence of the two methods of determining sample size and power. 

The SD(effect)s in the πFace program are given because they estimate the actual 

values in the EMSs that one might expect to detect with the proposed sample size. One 

can check the equivalence of the two methods, using the equation,  

f effect =√(krσ
2

effect / Nσ
2

error), to solve for the σeffect outputted in the πFace Power Table 

when given the f effect outputted from the GPower Program. Specifically, 

σeffect = √(Nf 
2

effectσ
2

e /rk) where r = 2 replications and k = the product of the levels of the 

factors not in the effect (as given by the multipliers for the var (effect) in the EMS table). 

For example, for the 5-way interaction, ABCDE, feffect is estimated as .25 by Gpower and 

this yields an estimate of σeffect = √(480*.25
2
*20

2 
/2) =√250 = 15.811,a value within 

round off error of the estimated of SD of 15.83 for the detectable 5-way interaction 

(SD(ABCDE) in ωFace for power =.90, alpha=.05 and N=480. 

One can equivalently specify the effect size as the familiar eta-squared η
2
,  

η
2
 = f

2 
/ (1 + f

2
), and conversely when solved for f, f = √(η

2
 / (1 − η

2
)). An unbiased 



 

120 

estimate of effect also related to f, is partial omega squared:  

ω
2
partial

, 
ω

2
 partial .  

One can equivalently specify the effect size as the familiar eta-squared η
2
,  

η
2
 = f

2
/ (1 + f

2
), and conversely when solved for f, f = √(η

2
 / (1 − η

2
)). An unbiased 

estimate of effect also related to f, is partial omega squared:  

ω
2
partial

, 
ω

2
 partial  

 

 

  

 2
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effect effect error

effect error
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 
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