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ABSTRACT

Marrey, Mallikharjun. M.S.M.E., Purdue University, August 2019. A Framework for
Optimizing Process Parameters in Powder Bed Fusion (PBF) Process Using Artificial
Neural Network (ANN). Major Professor: Hazim El-Mounayri

Powder bed fusion (PBF) process is a metal additive manufacturing process, which

can build parts with any complexity from a wide range of metallic materials. Research

in the PBF process predominantly focuses on the impact of a few parameters on the

ultimate properties of the printed part. The lack of a systematic approach to opti-

mizing the process parameters for a better performance of given material results in a

sub-optimal process limiting the potential of application. This process needs a com-

prehensive study of all the influential parameters and their impact on the mechanical

and microstructural properties of a fabricated part. Furthermore, there is a need

to develop a quantitative system for mapping the material properties and process

parameters with the ultimate quality of the fabricated part to achieve improvement

in the manufacturing cycle as well as the quality of the final part produced by the

PBF process. To address the aforementioned challenges, this research proposes a

framework to optimize the process for 316L stainless steel material. This framework

characterizes the influence of process parameters on the microstructure and mechani-

cal properties of the fabricated part using a series of experiments. These experiments

study the significance of process parameters and their variance as well as study the

microstructure and mechanical properties of fabricated parts by conducting tensile,

impact, hardness, surface roughness, and densification tests, and ultimately obtain

the optimum range of parameters. This would result in a more complete understand-

ing of the correlation between process parameters and part quality. Furthermore, the

data acquired from the experiments is employed to develop an intelligent parame-

ter suggestion multi-layer feedforward (FF) back propagation (BP) artificial neural
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network (ANN). This network estimates the fabrication time and suggests the pa-

rameter setting accordingly to the user/manufacturers desired charecteristics of the

end-product. Further, research is in progress to evaluate the framework for assemblies

and complex part designs and incorporate the results in the network for achieving

process repeatability and consistency.
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1. INTRODUCTION

1.1 Background

PBF process is the most widely used additive manufacturing technology for metal

printing and functional parts [1]. A wide range of metallic powder can be used as raw

material for this process [2]. As with any other additive technology, PBF fabricates

parts directly from 3D CAD data (STL file) and eliminates the use of expensive

tooling [3, 4]. STL file of the part is sliced into many layers with respect to the layer

thickness and a laser beam sinters/melts each layer. Selective laser melting (SLM)

and selective laser sintering (SLS) are the main two PBF processes. Unlike the SLM

process where the powder is completely melted down to form a homogeneous part,

the SLS process partially melts the material (sinters the powder) layer-by-layer at the

molecular level [5]. The schematic diagram in Figure 1.1. shows the overall process

of the PBF process [6]. The PBF machine typically consists of a supply station

for the metal powder and a sintering/melting unit. A laser selectively sinters/melts

the powder with respect to the layer geometry along a prescribed pattern. After

sintering/melting of a layer, the powder-bed moves downward a distance equals to

the thickness of a layer and a recoater arm or a roller transfers the material powder

from the dispenser platform to the powder-bed. The same process continues until the

fabrication of the last layer [7].

Due to the ability of the PBF process to produce homogeneous parts with high

strength alloys and free-form geometry [4], it has found applications in various sectors

such as aerospace, defense, automotive, medical, etc. [8-10] . The aerospace industry

widely employs the PBF process because of advantages such as the ability to produce

complex parts (optimized designs, which are difficult to manufacture with traditional

techniques) and functional assemblies with a significant reduction in fabrication time



2

Figure 1.1. A schematic diagram of direct metal laser sintering (DMLS) process [6]

[8, 11]. A wide range of metals such as alloys of aluminum, cobalt chrome, copper-

based, nickel-based, titanium, tool steels, and stainless steels are excellent materials

for the aerospace industry, which are offering a significant cost and weight reduction

[12, 13]. Automotive industry benefits from the PBF processes as well. In this

industry, employment of topology optimization lets the designers to optimize and

substitute the traditional design of Continuously Variable Transmission (CVT) [14,

15] with more weight effective complex geometry [10]. However, the new designs can

be fabricated only by the PBF processes.

The PBF process has been employed in various industries however the potential

is still limited due to some process drawbacks. To overcome these drawbacks, the

research nowadays is concentrated on the impact of few parameters on the ultimate

properties of printed parts [1, 5, 11, 16-21]. The ultimate objective is to develop

a control system which maps manufacturing process, material properties, and the
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ultimate quality of a fabricated part together. Such system will optimize the process

parameters ultimately. Fulfilling this objective needs a comprehensive study on all the

influential parameters with their significance on the mechanical and microstructural

properties of a fabricated part. Furthermore, it needs to develop a quantitative system

for mapping material property and process parameters to achieve improvement in the

manufacturing cycle and quality control of the parts produced by the PBF process.

More than fifty parameters exist and have an influence on the ultimate quality

of the product [22-24]. Scholars classify the process parameters into different groups

[23-25]. In one approach, Malekipour et al. [24, 25] classified the parameters into

three main categories. The first category is pre-processed parameters including envi-

ronmental conditions such as an inert gas, oxygen level, ambient temperature, powder

specifications, and machine capabilities/limitations. The second category is the con-

trollable parameters, which include process parameters, namely, laser specifications

and scan strategy, and few manufacturing specifications such as layer thickness. The

last category includes the post-processed parameters, which quantify the ultimate

quality of the fabricated part such as the yield strength, fatigue resistance, etc. [25].

Van Elsen [26] named some of the important parameters in each classification. He

mentioned that the powder specifications and deposition include morphology, the sur-

face roughness of the generated grains, particle size distribution, and the deposition

system of powder on to the bed. The laser specifications include spot size, wavelength,

peak power, mode of the laser, and laser pulse length. The process parameters include

part placement, scan strategy, build direction, laser power, scan speed, scan strategy,

layer thickness, preheating temperature, hatch distance, and energy density [26].

The aforementioned parameters influence the process and the fabrication cost [23].

For instance, the process utilizes Argon instead of Helium as an environment for Ti-

6Al-4V because Helium is 3 to 4 times more expensive than Argon [26]. However,

previous literature shows that among all the factors affecting the PBF process, few

parameters, namely, laser power, scan speed, hatch spacing, layer thickness, beam
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diameter, and preheating temperature have a tremendous impact on mechanical effi-

ciency, economy, and ultimate quality of the entire PBF process [5, 9, 21, 27].

Although PBF technology has significantly developed and is employed in differ-

ent industries, many challenges are still to be addressed. These challenges hinder

the process repeatability, consistency, and stability of the process. Literature review

(Chapter 2) shows that several research works have studied the influence of process

parameters on quality for different materials and machines; however, it has proven

very difficult to control all aspects of the process or evaluate the collective influence

of all the parameters on the properties of a fabricated part. Scholars focused on iden-

tifying the influence of few process parameters, predominantly laser specifications,

on the surface quality or selective mechanical properties of the printed part; lim-

ited research works studied the correlation between the parameters and the ultimate

properties of the printed part. However, there is a lack of a consistent system consid-

ering/optimizing all the controllable parameters and mapping the process, material,

and parameters onto the ultimate properties of the fabricated parts. Furthermore,

Optimizing the machine setting by controlling the parameters is a prerequisite for a

near flawless fabrication process.

The ultimate quality of a fabricated part predominantly depends upon control-

lable process parameters such as laser specifications and scan pattern. This work

focuses on laser specifications namely, laser power, scan speed, and hatch space as

well as layer thickness. The ultimate contribution of this work is to examine the

effect of a set of parameters instead of the effect of their individual impact on the

selected properties of a fabricated part. This will help to develop an offline control

system, which lets vendors/customers choose the desirable process specifications such

as mechanical properties versus fabrication time. The combination of this work with

the recommended real-time control system in our research group [28] for controlling

the thermal aspects of different printing patterns, will help to fill the existing gap

for development of a comprehensive standardized control system. Such system will

map all the contributing and controllable process parameters and material specifica-
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tions onto the ultimate quality of fabricated parts. Furthermore, manufacturers can

employ this system to ensure full compliance with the customer’s demands.

This work proposes a two-phase framework (Figure 3.1) towards development of

the first stage of the comprehensive control system, namely, optimization of set of

process parameters. This framework which was recently published in [29], designed

to pursue the objectives of this study. These objectives are first, to obtain a working

range of volumetric energy density (VED) for the first phase using mathematical mod-

elling and then conducting sensitivity analysis to identify which parameters affect the

VED the most in the obtained range. Second, to determine the optimal range of the

VED and the way that laser power and scan speed affect the microstructure, densifi-

cation, and mechanical properties of a fabricated part. Third, to optimize laser power,

scan speed, hatch spacing and beam diameter for fabricating a part within the VED

with maximum density range obtained from phase-I for obtaining better ultimate

quality; and finally, to develop an intelligent neural network for modeling the process

by creating a correlation function between the process parameters and ultimate prop-

erties of the fabricated parts. This function helps in suggesting the optimized process

parameters in order to fabricate parts in accordance with the users desired require-

ments, namely, mechanical properties, microstructure, fabrication time, dimensional

accuracy, and surface roughness.

1.2 Motivation and problem statement

With the evolution of Industry 4.0, the application of advanced manufacturing

technologies integrating with information management technologies for the creation

of a smart manufacturing process plays an important role aiming to create smart

factories by integrating the physical world and the cyber world to achieve economic

competitiveness [30]. With the increasing necessity for mass customization, predictive

modelling and for optimizing the part design to increase the mechanical properties

and to reduce the weight of the parts, non-traditional manufacturing techniques like
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AM has become key technologies for manufacturing. Figure 1.2 shows the schematic

of smart factories with the implementation of industry 4.0. Exclusively, for manu-

facturing of metal components, metal additive manufacturing has proven the ability

to manufacture free-form complex parts with better mechanical properties compared

to traditional manufacturing. The increasing demand and interest in the application

of AM in various industries such as aerospace, defense and biomedical, has led to

significant research in standardizing the AM process. Although there are still some

challenges which need to be addressed for making the process standardized. There

are more than 50 process parameters that influence the ultimate part quality but

among all those parameters, there are few controllable parameters which have a sig-

nificant effect on the part quality [24, 25]. These parameters lead to the formation

of in-process defects such as porosity and lack-of-fusion which in turn lead to sub-

stantial changes in the mechanical properties of the manufactured part [31]. Without

controlling these parameters, the full potential of AM cannot be utilized. The under-

standing and recognition of the influence of process parameters on the process defects

and the mechanical properties can leverage the predictive modelling and control of

the process. This objective can be achieved by studying the process, material, de-

fects and properties and mapping them together. Achieving this objective provides

a complete understanding of the defects formation leading to predictive modelling of

process parameters for obtaining the desired properties of the manufactured part and

sequentially in standardizing the process. To date, scholars have been studying the

effect of individual process parameters on the selected mechanical properties lacking

in developing a system which considers a set of process parameters and studies their

significance on microstructure, densification, surface roughness, fabrication time and

mechanical properties. The major challenges/gaps existing in the current literature

are lack of standardized system, inadequate information of effect of beam diameter

on the quality properties, lacking consistency in results obtained by scholars for the

same material, and most importantly lacking a predictive model for intelligent pro-

cess parameter selection which can make the AM process smart. Chapter 2 provides
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more insight into these challenges and gaps.This research work proposes a framework

for studying the influence of process parameters on multiple properties of the man-

ufactured part for optimizing the process parameters to obtain the ultimate quality

of the part and develops an artificial neural network by training a back-propagating

algorithm consequently in developing a predictive model of the process.

Figure 1.2. Schematic of general properties required in Industry 4.0 [30]

1.3 Research objectives

In the era of Industry 4.0, predictive modelling is a major notion for achieving

smart manufacturing in the virtual world. For predictive modelling a process, a

comprehensive interpretation of the process parameters, defects, and ultimate quality

of the manufactured part is vital. Literature review (Chapter 2) shows that PBF
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process lacks a practical system mapping process, material, defects and property

and by governing the process parameters, defect generation and mechanical property

anomalies can be avoided or significantly controlled. This research addresses the

aforementioned challenges by achieving the following objectives.

• Proposing a framework for optimizing the PBF process.

• Understanding the influence of laser power (LS) and scan speed (SS) on the

porosity and density and optimizing the LS, SS and volumetric energy density

(VED) for achieving maximum density.

• Studying the influence of LP, SS, hatch spacing (HS), beam diameter (BD) on

mechanical properties, surface roughness, dimensional accuracy and fabrication

time and optimizing these parameters within the optimal range of energy density

obtained from phase 1.

• Creating a mapping between process, parameters and ultimate properties of the

manufactured part.

• Developing a feed forward back-propagating artificial neural network for pre-

dictive modelling of process parameter and build-time estimations.

1.4 Thesis outline

Chapter 1 introduces the PBF process, challenges, current gaps in the literature,

potential areas to address with motivation and problem statement and the proposed

framework. The research objectives address the mentioned challenges and achieve-

ments of this research work. In chapter 2, the significance of each process parameters

on ultimate properties of the manufactured part is demonstrated in detail and the clas-

sification of common in-process defects and post-process defects with the approaches

to avoid or significantly control is presented along with the detailed explanation about

the existing challenges and gaps. To achieve the objectives of this work, chapter 3
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proposes and implements the framework. In this chapter, the methodology of imple-

menting the framework is explained in two phases. In phase 1, preliminary design

of experiments (DOE) was conducted to optimize LP, SS and VED for achieving

maximum density and uniform pore distribution. In phase 2, a comprehensive study

on LP, SS, HS and BD and their influence on mechanical properties, surface rough-

ness, dimensional accuracy, warpage and fabrication time are conducted. Analysis of

variance (ANOVA) is conducted and chapter 4 presents the results obtained by im-

plementing the framework. In chapter 4, the correlation between process parameters

and quality properties is explained and optimum process parameters for obtaining

ultimate part quality will be explicated. Chapter 5 presents the different types of

algorithms and the development of ANN for predictive modelling incorporating the

results from chapter 4. The testing of the developed ANN model and the efficiency

with future expansion will be demonstrated in this chapter. Finally, chapter 5 pro-

vides the limitations, ongoing research, future work directions and conclusion.
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2. LITERATURE REVIEW

With the increasing application of metal AM, quality control has become crucial for

obtaining reliance on the adoption into mass production. As detailed in chapter 1,

multiple parameters have a significant effect on the ultimate quality of the manufac-

tured part and lead to defect formation if not controlled. In this chapter, we describe

the significance of each parameter and their influence on defect generation along with

a detailed description of the different defects generated during the PBF process is also

provided. Also, the current gaps and challenges in the existing literature is elucidated.

2.1 Process parameters and their significance on ultimate properties in

the metal additive manufacturing process

2.1.1 Introduction

PBF process has the ability to fabricate free-form complex parts with better ul-

timate properties. However, the desired quality of the part is inevitably affected by

process parameter conditions, as a result leads to the formation of defects during the

process. Malekipour et al. [25] classified the process parameters into three groups

namely pre-processed parameters, controllable parameters and post-processed param-

eters. Figure 2.1 shows the classification of the parameters. From this classification,

in this section, the influence of controllable parameters (LP, SS, HS, LT, build pre-

heating) and pre-processed parameters (BD) and their effect of the defect formation

is elucidated in detail.
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Figure 2.1. Classification of process parameters [22]

2.1.2 Laser power

The effect of laser power on the energy applied can significantly change the for-

mation of the effective melt pool. LP is directly related to the energy applied. Wide

range of LP setting options are available with the current PBF technology, but ex-

tensive work has been conducted in the range of 0W - 400W. With higher laser

power, a high amount of energy is applied leading to vaporization of powder ma-

terial trapping gas bubbles and formation of gas induced pores in the next layers.
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With a decrease in LP, insufficient melting of powder occurs causing the formation

of lack of fusion (LOF) pores. Also, with less energy application, the depth of laser

penetration decreases causing insufficient melting of powder layer and fusing layers

together forming cracks between layers [32]. There is an operating window where the

LP values have to be adjusted to avoid defects such as balling, keyhole formation and

LOF as shown in Figure 2.2. Scholars investigated the influence of different parame-

ters related to volumetric energy density on density, geometrical characteristics and

mechanical properties of single-track and complete builds and found that the most

influential process parameter on the stated properties was LP followed by LT and SS

[33, 34]. Also, build rate is directly related to the laser power input. With a laser

power input of 380W, 72% increase in build rate is observed compared to the 100W

laser power input [35] in PBF process. Ultimately, increasing LP up to a certain limit

will result in bigger melt pools, a stronger bond between layers, lower porosity and

better mechanical properties [36].

Figure 2.2. Laser power and scan speed operating window [80]
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2.1.3 Scan speed

Scan speed of laser beam is another important factor which has a crucial effect on

the build time, mechanical properties, surface roughness, and crack generation [37].

Faster scan speeds will reduce the build time. However, at higher SSs, the laser will

not have enough time to completely melt/sinter the powder material. To maintain

the melt pool consistency at higher SSs, increasing LP or decreasing HS to maintain

the same VED will improve the sintering/melting process.

Figure 2.3. Density of 316L SS pillars; LP 150W-400W [38]

The density of the fabricated part is also dependent on the scan speed correlating

with VED. At lower laser power working range (<200W), the density of the part

drops rapidly with the change in SS fixing the LP constant[38] as shown in Figure

2.3 eventually limiting the range of possible variations of SSs at lower LPs. Due to
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melt pool instability at higher SSs, melt splashes occur leading to the formation of

micrometer-scaled balling effect on the sintered/melted surface [39] eventually leading

to porosity. Also, higher SSs and higher LPs drives to insufficient melting of powder

tending to the formation of LOF pores and layers causing crack generation and de-

creased mechanical properties [37, 40]. Hence, the influence of SS has to be carefully

examined for each material along with LP to avoid in-process defect formation.

2.1.4 Layer thickness

Adjusting LT can significantly impact the build rate of the process however, if

the layer is too thick, as a result of decreased laser penetration, the melt pool depth

decreases and the sufficient bond between two successive layers may not be created

leading to the formation of balling. At high LT, microspheres will form on the surface

which may retard the deposition of the next successive powder layer or even make

the entire process fail. So, uniform powder LT deposition has to be maintained for

the entire process. For a thick powder layer, high LP and low SS should be employed

for successfully creating the effective melt pool. Significant research has been carried

out to study and optimize the effect of LT on the overall process. Typical LT em-

ployed in the literature ranges from 0.02mm to 0.1mm. Due to similar microstructure

and metallurgical bonding at the LT between 0.02mm-0.04mm, there is no obvious

difference/impact of LT on mechanical properties of the fabricated part, but the LT

plays an important role on the surface roughness (SR) [41]. At LT >0.05mm, higher

plasticity and lower strength properties are observed compared to the LT at 0.03mm

*. In this research study, LT was fixed to 0.02mm considering the previous literature

works for obtaining the ultimate quality of the fabricated part.

2.1.5 Hatch space

Hatch space (HS) is the distance between two successive laser tracks on the pow-

der layer as the laser passes. Increasing the HS, the overlap between tracks decreases
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resulting in insufficient melting/sintering of the powder material leaving some un-

melted/unsintered and forming LOF defects. Decreasing the HS increases the over-

lap and can result in burning of the edge of laser track. Also, HS significantly effects

the VED applied. HS has to be adjusted to an optimal value allowing the required

overlap for sufficient bonding as shown in Figure 2.4 between laser tracks and main-

taining the VED required according to LP and SS requirements. Depending on the

Figure 2.4. Schematic representation of meltpool and process parameters[42]

testing range of LP, SS and HS, the effect of HS on the formation of defects, tensile

strength and porosity vary. Scholars demonstrated that HS has the greatest influence

in formation of porosity and tensile strength however, few scholars mentioned that

HS has no effect on the defect generation and mechanical properties in their working

range [41-43]. But the overlap rate significantly affects the melting/sintering process

and results in the formation of pores which in turn affects the tensile properties of

the fabricated part. A comprehensive study of HS, with wide testing ranges of LP

and SS has to be conducted to reach a complete understanding of the importance of

HS in PBF process.



16

2.1.6 Beam diameter

Beam diameter is one of the least studied process parameters due to the limitations

of the equipment available in the market. In general, the variable focus diameter

ranges from 0.1 mm to 0.5 mm (e.g. EOSINT M 270) for the equipment available

in the market. With the limited research available and the equipment license issues

Figure 2.5. Molten pool temperature fields at various beam diameter[44]

manufacturers face, BD was preset to a machines constant value. Taking advantage

of the finite element methods (FEM), meager scholars studied the influence of BD

on the process. In Shen et al. [44] study, the results show that with an increase in

BD, the lower maximum temperature is obtained due to decrease in VED applied

at the spot on powder layer as a result, lower cooling rates. However, increasing

the BD beyond the optimal value decreases the laser penetration into the powder
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layer which can significantly affect the bonding between layers and may lead to LOF

defect. Figure 2.5 represents the maximum temperatures reached different BDs. In

this research work, BD of 0.1 mm, 0.15 mm, 0.2 mm are tested in the optimal range

of VED obtained from the phase-1 of the framework explained in Chapter 3.

2.1.7 Volumetric energy density

Under different combinations of process parameters, VED is often used as a mea-

sure for comparing the quality of components manufactured by PBF process. VED

is the thermodynamic quantity described as the amount of energy delivered by the

laser for a unit volume of powder deposited and is expressed in Eq. (2.1).

V ED =
P

S.V.t
(2.1)

Depending on the material being used, VED has to be adjusted providing suf-

ficient energy for successfully melting/sintering of the powder into smooth tracks

maintaining uniform melt pool dimensions. Lower VED doesnt provide enough en-

ergy to completely melt/sinter the powder material consequently forming LOF defects

and reduces the density and mechanical properties. Higher VED provides a greater

amount of energy which results in evaporation of the powder material and spatters of

melted material resulting in the formation of gas pores thereby increasing the porosity

and decreasing the quality of the fabricated component. An optimal process window

for VED has to be determined for successful melting/sintering of the powder material

without any process-induced defects ultimately obtaining a uniform microstructure

and better mechanical properties [45]. For any material, VED has to be estimated for

achieving the energy required for melting/sintering the powder material and subse-

quent solidification of the melted material. Chapter 3 demonstrates the methodology

used for roughly estimating the VED based on heat per unit volume concept. Exten-

sive research has been conducted by scholars to reach optimal VED range however,

same VED can be maintained with a different combination of process parameters
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(LP, SS, HS and LT). Limited information can be found on studying the effect dif-

ferent sets of process parameters maintaining the VED value constant. Maintaining

the VED constant and varying the process parameters can significantly help in better

understanding of the importance/influence of each individual parameter on the melt

pool formation, in-process defect generation and ultimate quality of the fabricated

part. In this research work, a framework is proposed in which the first phase opti-

mizes the VED and in the second phase, maintain the VED constant, the influence

of different ranges of parameters on the quality characteristics of fabricated part is

studied for improving the existing knowledge and for creating an optimal system for

PBF process. Chapter 3 provides the necessary information and methodology for

achieving this objective.

2.2 Process induced defects

In the previous section, the significance of process parameters on the defect gener-

ation and ultimate quality of fabricated parts was described. In this section, various

process induced defects will be elucidated in detail.

2.2.1 Introduction

In this era of Industry 4.0 and AM, one of the biggest challenges facing metal

AM is the formation of process-induced defects which hinders the ultimate proper-

ties of the fabricated part from meeting desired manufacturers standard. Changing

the process parameters not only influences the microstructural characteristics of the

fabricated component, but also results in the formation of process-induced defects

which ultimately affects the quality of the AM components. LP, SS, HS and BD are

few parameters among all which have a significant influence on the defect formation.

Although significant research has been conducted to study the influence of each pa-

rameter on the defect formation, the combined influence of process parameters is not

optimally studied leading to an incomplete understanding of the correlation between
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process parameters and defect formation. From section 2.2.2, process induced de-

fects are categorized and explained with the influence of process parameters in the

formation of defects in detail.

2.2.2 Porosity

This is the most regular defect found in AM components. Several process param-

eters conditions and powder characteristics have an influence on the porosity. The

porosity can be seen at different scales i.e. macro, micro and nano range. Macro

porosity is the majority scale which can be categorized into gas porosity and LOF.

Gas porosity

Deviations from the optimal VED value results in dynamic changes of melt pool

dimensions and enthalpy consequently increasing the potential to trap gas, forming

gas porosity. A circular pore is usually identified as the gas porosity. Working with

higher VED than required will evaporate the powder material forming gas. Also, the

potential for gas entrapment attributes to three main sources namely high powder flow

rate, an entrapped gas present in powder material and Marangoni effect. Marangoni

flow is the mass transfer due to surface tension along with two fluid interfaces causing

gas bubbles within the melt pool. Marangoni flow leads to the formation of gas

bubbles in the melt pool which subsequently results in the formation of big pores by

the end of the process [46]. Increasing VED will help in reducing/eliminating the

micro and nanopores but might lead to other inhomogeneities [47].

Lack of fusion porosity

The inability to sinter/melt the powder material at insufficient/low VED values

leads to the formation of LOF porosity in PBF process. Increasing the HS or in-

creasing the BD can cause LOF porosity. In general, LOF defects can be seen along
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the layers of boundaries in an irregular shape. Often, LOF pores contain unmelted

powder. According to Liu et al., LOF defects can be classified into three groups [48]:

• separated surface with un-melted powder.

• separated surface without un-melted powder.

• narrow and long shaped with unmelted powder.

SS has a major impact on LOF defect formation. Higher SS decreases the specific

energy input resulting in incomplete sintering/melting of the powder particles leaving

unmelted powder and forming LOF porosity.

2.2.3 Microstructure

Depending on the application, any deviation of features seen in microstructure is

considered as a defect. Microstructure anomalies can be seen in the form of variation

in crystallographic texture and grain size, LOF, porosity, cracks and composition.

2.2.4 Balling phenomena

Balling is generally seen in the laser sintering process. The primary cause for

balling phenomena is the application of low VED which results in insufficient sinter-

ing of the powder material. Also, due to the presence of oxygen, oxide layers forms

on the solid and molten material changing the wetting process of the material conse-

quently leads to balling [49]. Increasing the LP, decreasing the SS, decreasing the LT

ultimately to achieve greater VED can control the formation of balling phenomena

during the process. Figure 2.6 shows the schematic of balling phenomena.

2.2.5 Keyhole formation

Keyholes are formed when for a given SS, high LP is used consequently applying

greater VED and excess penetration of the laser into the current layer and previous
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Figure 2.6. Schematic of balling phenomena [37]

layers. Keyholes trap more energy deep inside the cavity leading to the formation of

deeper melt pool as shown in Figure 2.7. Also, with the keyhole formation, spatter

of powder particles occurs and traps powder inside the cavity.

Figure 2.7. Keyhole formation [80]

2.2.6 Crack formation

Different physical phenomena and process parameters can result in the formation

of cracks in fabricated AM parts. Merging of melted/sintered powder to the nearest
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particles which can either be in solid or liquid phase rather than to the previous layer

can cause a thermal energy distribution change leading to the formation of large

channels of material resembling cracks in the fabricated part. Also, high thermal

gradients in the melt pool during solidification process can lead to the formation of

cracks (hot tearing). Figure 2.8 shows the formation of cracks on the scan track [39].

In addition, the unmelted powder can lead to cracking during the fabrication process

due to stress concentrations.

Figure 2.8. Crack formation on scan track [39]

2.2.7 Geometrical anomalies

With applications of AM in various sectors for manufacturing high valued parts,

dimensional accuracy is an important quality requirement. Due to the layering pro-

cess of AM, staircase effect and surface roughness can be formed leading to possible

deviations from the actual CAD design. Melt pool dimensions also play a major role

in the formation of geometrical anomalies. To minimize anomalies, a stable melt pool

shape and size (dimensions) is required [50].
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2.3 Research gaps and challenges

With the increasing application of metal AM, quality control has become crucial

for obtaining reliance on the adoption into mass production. Although significant

research has been conducted to study the PBF process, there are still some gaps and

challenges which need to be addressed for achieving better/complete control on the

process and for standardizing the process. The current gaps and limitations in the

existing literature include

2.3.1 Lacking consistent results

With broader range of research being conducted to understand the effect of process

parameters on various phenomena occurring during PBF process and on quality of the

part fabricated, inconsistent conclusions/results were obtained by scholars working

on the same material and on same equipment. For instance, scholars reported that

optimum values of VED for SS316L material was 104 J/mm3, 70-120 J/mm3, 70-

95 J/mm3 [33, 35, 45]. Also, for HS, literature demonstrates that it has greatest

influence in formation of porosity and tensile strength however; however few scholars

mentioned that HS has no effect on the defect generation and mechanical properties

[41-43]. These inconsistent results occur because of the different approaches scholars

use for obtaining the same end objective. This can be resolved by using a standardized

approach/framework.

2.3.2 Multiple parameter consideration

Being a process with more than 50 influential parameters, Changing/controlling

all parameters for every build is not realistic/possible. As shown in figure 2.1, the

parameters are divided into different categories and controllable parameters have a

significant effect on the mechanical properties of the fabricated part. Scholars have

been studying the controllable parameters and their influence on the quality charecter-
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istics of fabricated part. Limited research attempted to study multiple parameters

and their importance on the defect generation and quality charecteristics during the

fabrication process and in the best application range of individual process parameters.

A comprehensive study considering all the controllable parameters and their influence

on the mechanical properties individually and all together has to be conducted for

obtaining a better understanding of the process.

2.3.3 Beam diameter

Beam diameter is one of the pre-defined machine specific value which if varied will

have significant effect on the heat input at a point [44]. As seen in figure 2.5, BD

has a significant influence on the maximum temperatures attained at a spot which

impacts the cooling rates and on the laser penetration into the layers for successful

bonding between them. Limited knowledge is available on the importance/influence

of BD when varied along with controllable parameters and is mostly confined to FE

studies without any experimental application.

2.3.4 Lacking a standard approach

The major challenge AM industry is facing is lacking standard procedures and

approaches for designing the component, process parameters and for conducting me-

chanical testing. In the existing literature, to optimize the process parameters, schol-

ars used various approaches leading to inconsistent conclusions/results. In this re-

search, a framework is proposed to address this issue and compare the results with

the existing literature.

2.3.5 Lacking a predictive model

In this era of industry 4.0, smart manufacturing plays a crucial role and to achieve

this using AM, the process parameters have to pre-designed accordingly with the de-
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sired output properties. For achieving this objective, a predictive model has to be

developed which is not present in the existing literature for coming up with param-

eter combination according to the manufacturers/users end-application requirement.

With a predictive model, based on the specific needs of the part under fabrication,

process parameters can be designed beforehand.
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3. METHODOLOGY: IMPLEMENTATION OF THE PROPOSED

FRAMEWORK FOR CORRELATING

PROCESS-MATERIAL-PROPERTY

The literature review in chapter 2 shows that in-process defects such as porosity,

crack formation etc. are the most prevalent defects, with which manufacturer en-

counter. Also, the previous chapter explains in process induced defects section that

laser power, scan speed, hatch spacing and VED are the main contributing param-

eters for the formation of defects during the fabrication process. The formation of

defects leads to decrease in density with irregular porosity distribution which in turn

affects the mechanical properties and quality characteristics of the fabricated part.

In this chapter, we implement the proposed framework (refer to Figure 3.1) by di-

viding into two phases. First, we conduct some preliminary experiments to achieve

more insight into densification and the effect of parameters on porosity formation

with the objective of achieving a maximum density with minimum porosity. These

experiments provide the optimized values of VED to implement in the next phase

and study the effect of a set of process parameters on the mechanical and quality

characteristics of the fabricated part. The objective of this phase is to understand

the correlation between process, material and property and ultimately to achieve a

part with required quality characteristics. The results from this chapter will be em-

ployed in chapter 4 for developing a neural network for training a predictive function

of process parameters for the required quality properties of the end-product.

3.1 Proposed framework

To address the aforementioned challenges and gaps, a two-phase framework is

proposed for establishing the correlation between process parameters and ultimate
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Figure 3.1. Proposed framework and corresponding workflow for
developing ANN model

properties of the fabricated part. Figure 3.1 shows the proposed framework. This

objective of this framework is to standardize the approach of studying the process

parameters which reduces the inconsistency in results for a given material and to

develop a predictive function for intelligent selection of process parameters according

to the desired quality properties for the part fabricated.

3.2 Phase-I

3.2.1 Introduction

In this section, the first phase of the framework (refer Figure 3.2.) will be explained

sequentially and the methodology for implementing will be detailed with emphasis

on the obtaining optimum range which will be carried forward in the framework and

will be employed in the second phase as input for designing the experiments. With
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merely considering laser power and scan speed, the main objective of this phase is

to acquire the maximum density parts thereby obtaining the VED range at which

maximum densification can be achieved. This VED range obtained will be employed

in the next phase for studying the effect of process parameters on the mechanical

and quality characteristics of the fabricated part within the maximum densification

range.

Figure 3.2. Phase I of proposed framework

3.2.2 Material

316L stainless steel is the for this research. The alloy composition and actual

specifications as supplied are shown in Table 3.1. 316L SS has widespread application

in additive manufacturing due to its good tensile strength at high temperatures, low

stress to rupture, high hardness, toughness and corrosion resistance properties [31].
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Table 3.1. Composition of 316L SS [33]

Grade 316L Min Max Actual

Carbon, C - 0.03% 0.019%

Silicon, Si - 0.75% 0.67%

Manganese,Mn 0.03% <0.1% <0.08%

Phosphorus, P - <0.025% <0.019%

Sulphur, S - <0.01% <0.006%

Chromium, Cr 17.5% <18% <17.9%

Nickel, Ni 12.5% <13% <12.7%

Molybdenum, Mo 2.25% <2.5% <2.36%

Nitrogen, N - <0.1% <0.06%

Copper, Cu - <0.5% <0.2%

Oxygen, O - <0.1% <0.022%

Iron, Fe Balance Balance Balance

3.2.3 Mathematical modelling

For any AM process, the starting step is determining the approximate process

parameters for successful completion of the fabrication process. This can be achieved

by evaluating the VED i.e. amount of heat given per unit volume which is required for

sintering/melting of the powder feedstock. Substantial research has been conducted

by scholars to comprehend the best range or values of VED for stainless steel 316L.

Diversified range of values were obtained by scholars lacking the uniformity in the

results for the same material processed with PBF process. In order to understand and

address the issue of non-uniform results for VED, in phase I, a rough estimation of

VED was calculated and experiments were carried out to obtain the optimized VED

range for achieving maximum density. A rough VED that is required for melting

and consequent solidification can be estimated based on the heat per unit volume, q
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( [
J

]mm3) for successful heating and melting of the material is given by Equation 3.2

[51].

∆T = Tm − T0 (3.1)

where Tm (K) and T0 (K) are the melting temperature of the material and room

temperature.

q = [c.∆T + lf ]ρ (3.2)

where c ( J
Kg.K

) is the specific heat capacity, lf ( J
Kg

) is the latent heat of fusion and ρ

( Kg
mm3 ) is the density of the powder material respectively.

However, in order to consider various thermal phenomena [52] associated with

PBF process, an efficiency coefficient n is incorporated which include heat losses due

to the reflectivity of the powder, heat conduction and additional losses. Equation 3.3

shows the VED equation with the efficiency coefficient.

V ED =
q

η
=

q

(1−RPowder)(1− krel)η∗
(3.3)

where RPowder and krel are the reflectivity of the feedstock material expressed in frac-

tions and relative thermal conductivity of the feedstock material. η∗ is the additional

efficiency factor and is assumed as 0.20 [51].

Table 3.2. Property values for SS316L

Property Value

specific heat capacity, c ( J
Kg.K

) 500

melting temperature, Tm (K) 1673

latent heat of fusion, lf ( J
Kg

) 0.25

Density, ρ ( Kg
mm3 ) 7.99 x 10−6

q = [500(1673-296) + 0.25](7.99 * 10−6) = 5.5 J
mm3
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VED with RPowder, 0.05 = 5.5
(1−0.05)(1−0.5)(0.20)

= 57.89 J
mm3

VED with RPowder, 0.6 = 5.5
(1−0.6)(1−0.5)(0.20)

= 137.5 J
mm3

The VED values obtained here are taken as the lowest and highest limit for the design

of experiments (DOE) explained in next sections in which the VED will vary ±10%

in order to consider the approximations of the properties introduced.

3.2.4 Sensitivity analysis

Sensitivity analysis (SA) quantifies the correlation between the given model and

its input parameters [53]. The main objective of conducting SA is to understand

(1) which parameters require additional research for strengthening the knowledge

base, thereby reducing output uncertainty; (2) which parameters are irrelevant and

can be eliminated from the final model;(3) which inputs contribute most to output

variability; and (4)which parameters are most highly correlated with the output [53].

Figure 3.3. Schematic for global sensitive analysis [34]
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LP, SS, LT, HS and BD are commonly cited in the literature as the crucial control-

lable parameters in the PBF process influencing the ultimate quality of the fabricated

part [24-27, 54-57]. SA considers these five parameters to evaluate their correlation

with the volume-based energy density (ED) shown in equation 2.1 [58]. In this re-

search, LT is set to a constant value of 0.02 mm. However, the employment of SA is

crucial to demonstrate the sensitivity of each parameter within the working range in

this work. The sensitivity analysis guides us through selecting the levels of parame-

ters and their distribution for designing the experiments during the next step. Figure

3.3 shows the schematic process of global SA employed by MATLAB [59]. Fourier

amplitude sensitivity testing (FAST) variable based global method which is based on

conditional variables for determining the uncertainty. The SA results evidently show

the scan speed as the most sensitive parameter, which drastically changes the energy

Figure 3.4. Total Global Sensitivity (GS) Coefficient

applied per volume and might influence the ultimate properties of the fabricated part

predominantly [58]. In a similar way, the laser power and hatch spacing also have

a considerable effect. The effect of layer thickness is not calculated as it is set to

a constant value throughout this research. figure 3.4 shows the values of the total
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global sensitivity coefficient obtained by SA. Previous literature also confirmed the

significant influence of laser power and scan speed, as two main parameters that affect

the energy transferred to the powder, on the ultimate quality of the printed part [8].

3.2.5 Design of experiments

In this phase, for designing experiments, full factorial analysis is employed and the

experiments were manufactured on LPBF machine EOS M280 with maximum laser

power of 200W. Table 3.3 shows the parameters, namely, LP and SS, whose values

are assigned based on the VED estimations calculated in section 3.1.3 and literature

[16, 55, 58] and Table 3.4 shows the full factorial DOE. The first set of experiments

prints a 10mm10mm5mm samples (figure 3.5) considering merely the LP and SS,

while HS and BD are kept constant at their machine default values (HS = 0.09 mm

and BD = 0.09mm). The LT is also set to a constant value of 0.02 mm throughout the

work. In this phase, we study the microstructure, porosity, and densification of the

printed samples to map them onto the VED. Previous literature demonstrated that

the porosity generated in the during the process significantly affects the mechanical

properties of a fabricated part. The porosity formation in low ranges (near full density

parts) is seen to alter mechanical properties substantially [60]. Moreover, reducing

the porosity enhances the build consistency [61]. Thus, in this phase, we seek to

obtain the optimal range of energy density for maximum densification. It should be

noticed that we study only 13 samples due to very close energy density for four of

the samples.

Table 3.3. Control factors and levels for DOE

Factor Level values Levels

Laser Power, W 100, 125, 150, 175 4

Scan Speed, mm/sec 700, 800, 900, 1000 4



34

Table 3.4. Full factorial DOE

No. Laser Scan No. Laser Scan

power (W) speed (mm/s) power (W) speed (mm/s)

1 100 700 9 150 700

2 100 800 10 150 800

3 100 900 11 150 900

4 100 1000 12 150 1000

5 125 700 13 175 700

6 125 800 14 175 800

7 125 900 15 175 900

8 125 1000 16 175 1000

Figure 3.5. Dimensions of sample in phase-I

3.3 Phase-II

3.3.1 Introduction

From the phase-I (section 3.2), the optimized VED range for achieving maximum

densification is obtained. In the second phase, LP, SS, HS and BD will be studied

to understand the correlation between process parameters and the mechanical and

quality properties of the fabricated part (figure 3.6). In the following subsections, a

detailed explanation of the parameter selection, DOE, mechanical testing, analysis
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of the data will be presented. A comprehensive elucidation of the mechanical testing

with the details of equipment used and the equipment settings will be presented along

with the steps for completion of the framework.

Figure 3.6. Phase II of proposed framework

3.3.2 Design of experiments

As four process parameters are being considered with different levels in this phase,

conducting a full-factorial analysis requires fabrication of many samples, material

and a great deal of time. Instead of conducting a full-factorial analysis, Taguchi

method is used to design experiments. Taguchi method is a statistical method, which

designs experiments using Orthogonal Array (OA) technique to eventually improves

the quality of a manufacturing process [26]. The OA technique converts the parameter

design values to the S/N ratio and calculates the design robustness [18]. To improve

the product quality, the quality characteristics must deviate as little as possible from

the target value. OA is a systematic and statistical way of testing interactions between

control factors. It provides a uniformly distributed set of experiments, which covers

all the paired combinations of the variables instead of the full factorial analysis.

Table 3.5 shows the assigned levels and values for the process parameters based on
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the results obtained from phase-I and table 3.6 shows the Taguchi DOE. Samples for

tensile, impact and hardness test are fabricated for each set of parameters in DOE.

Tensile and impact samples are designed according to the ASTM E8 and ASTM E23

standards [65](Table 3.8). Figure 3.7 shows the dimensions of fabricated samples.

Table 3.5. Control factors and levels for taguchi DOE

Factor Level values Levels

Laser Power, W 125, 150, 175, 195 4

Scan Speed, mm/sec 700, 800, 900, 1000, 1100, 1200 6

Hatch space, mm 0.09, 0.12, 0.15 3

Beam diameter, mm 0.1, 0.15, 0.2 3

Table 3.6. Taguchi DOE

No. LP (W) SS (mm/sec) HS (mm) BD (mm)

1 125 700 0.09 0.1

2 125 800 0.09 0.2

3 150 700 0.12 0.15

4 150 800 0.09 0.2

5 150 900 0.09 0.1

6 175 700 0.12 0.2

7 175 800 0.12 0.1

8 175 900 0.09 0.15

9 175 1000 0.09 0.2

10 175 1100 0.09 0.1

11 195 700 0.15 0.15

12 195 800 0.12 0.15

13 195 900 0.12 0.2

14 195 1000 0.09 0.1

15 195 1100 0.09 0.2

16 195 1200 0.09 0.15
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Table 3.7. Tensile testing specimen, ASTM E8/E8M 13a [31]

Dimensions for the subsize specimen (6 mm [0.250 in.] wide) (mm [in.])

G Gauge length 25.0 0.1 [1.000 0.003]

W Width 6.0 0.1 [0.250 0.005]

T Thickness Maximum 6 mm

R Radius of fillet, min 6 [0.250]

L Overall length, min 100 [4]

A Length of reduced section, min 32 [1.25]

B Length of grip section, min 30 [1.25]

C- Width of grip section, approximate 10 [0.375]

3.3.3 Signal-to-noise ratio and analysis of variance

The signal/noise (S/N) is a method of variability measurement of the manufac-

turing process, which evaluates the process parameters at all individual levels and

ensures the resulting optimum process conditions are robust and stable. The fol-

lowing equations calculate three types of S/N ratios, namely, the lower-the-better

used for surface roughness (Equation 3.4), the higher-the-better used for mechanical

properties (Equation 3.5), and the nominal the better used for dimension accuracy

(Equation 3.6) [18, 54].
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S

N
= −10 ∗ log10(s2) (3.6)

where n is the number of measurements and Yi is the observed performance charac-

teristic value and s is the standard deviation of the responses for the given factor level
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(a) Tensile

(b) Impact

(c) Hardness

Figure 3.7. Designed specimens

combination. S/N value will be calculated in this phase for all 16 experiments. With

the factor of having 16 experiments, even the slightest variation/error in employing

S/N value can be identified when the resulting S/N values will be used for calculating

the variance. After the calculation of S/N value, a method called Analysis of Variance

(ANOVA) statistically evaluates the significance of the control factors (i.e. process

parameters in this work) and their influence on the experimental results (mechanical
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properties). ANOVA studies the variance of properties with the levels of parameters

by employing the data available after material and mechanical testing [66]. The pro-

vided graphs and distribution charts will describe the variance of properties within

the tested range of levels; thus, they will obtain the optimal range of the values for

SS 316L in the PBF process. S/N ratio is calculated for each parameter at their

individual levels and is graphically represented for each parameter. This graphical

representation gives an insight into the effect of each parameter on the quality char-

acteristics of the fabricated part. After calculation of the S/N value, ANOVA method

is used to analyze the significance of individual parameters on the end-quality proper-

ties with a series of calculations which will be demonstrated in section 4.2 and finally

comes up with the percentage contribution of the process parameters for each prop-

erty. This will complete the correlation between the material, process and properties

for the PBF process, which will guide in the development of an ANN system.

3.3.4 Mechanical testing

To complete phase-II to understand the correlation between process parameters

and quality properties of the part fabricated, a series of mechanical testings are con-

ducted. As shown in figure 3.6, microstructure, surface roughness, porosity, dimen-

sional accuracy, tensile, impact and hardness tests have to be conducted. Due to

limitations of equipment, at this moment, only surface roughness, hardness and im-

pact tests are conducted and the results will be explained in chapter 4.

Surface roughness

The surface roughness Ra measurement is carried out on Bruker DektakXT system

shown in figure 3.8. A stylus of 2µm radius is used with the profile set to hills and

valleys and with a range of 6.5µ, the force of 5mg, speed of 600 µ m/s and time

duration of 25 seconds. On each sample three readings were taken from two corners

and center with the scan length of 10mm.
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Figure 3.8. Bruker DektakXT

Ra =
1

L

∫ L

0

|Y (x)|dx (3.7)

where Ra is the surface roughness which is the arithmetic average deviation of hills

and valleys from the mean line, L is the scan length and Y(x) is the profile of the

curve.

Hardness

The hardness test typically is a non-destructive test with minimal destruction of

the sample. It is conducted on Rockwell hardness testing machine B scale which is

equipped with 1/16 inch steel ball. A force of 100Kgf is applied. Figure 3.9 shows

the Rockwell machine. By conducting hardness testing, more insight into resistance

of material for plastic or permanent deformation can be obtained. With samples

fabricated with different sets of parameters, conducting hardness test can help to

study the effect of process parameters on the ductility and brittleness properties.



41

Figure 3.9. Rockwell testing equipment

Charpy impact test

Samples are fabricated using ASTM E23 standard dimensions as shown in figure

3.7. Figure 3.10 shows the charpy impact test equipment. The specimen is loaded and

the position of the specimen is adjusted such that the notch is parallel and centered

to the pendulum. The pendulum is dropped electronically to avoid any losses due to

vibrations which might occur if dropped manually. The equipment is not bolted to the

ground which might effect the results obtained by ± 5. The objective of conducting

the impact test is to study the amount of energy absorbed and to study the effect of

process parameters on the fracture growth or break of the sample giving insight into

plastic deformation.
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Figure 3.10. Impact testing equipment
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4. RESULTS AND DISCUSSION

In chapter 3, the methodology for implementing the two phases in the framework

is explained. In this chapter, the results obtained after implementing each phase

is elucidated with detailed discussion on the results obtained for establishing the

correlation between process parameters and quality properties of the part fabricated.

Finally, the data to be used for developing a predictive function (chapter 5) will be

explicated.

4.1 Phase-1: Results and discussion

From the mathematical model explained in section 3.2.3, the minimum and max-

imum values obtained for VED are 57.89 J/mm3 and 137.5 J/mm3. SA is conducted

to study the influence of LP, SS and HS on VED applied and the results evidently

showed that SS has the major influence on the VED applied followed by LP and HS

in the working range of VED (refer figure 3.4). After SA, DOE is conducted and

16 samples were printed with 10 x 10 x 5 mm dimensions (refer figure 3.5). We cut

each of the samples in the first set of experiments from the center in both directions,

namely, perpendicular to the build direction and parallel to the build direction (Fig-

ure 4.1) by using wire electric discharge machining (WEDM) process. WEDM process

is chosen because of its capability of machining hard materials which are electrically

conductive without inducing any stresses or impact which is an added advantage.

We take sixteen micrographs in total from each sample by using a scanning elec-

tron microscope (SEM). Six micrographs are taken from the horizontal cross-section

(each corner plus two from the center area) and two from the vertical one (Figure

4.2), each uses two different magnifications i.e. 60X and 300X (100µm and 10µm scale

respectively). We employ the MATLAB image processing to measure the porosity
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Figure 4.1. Cutting planes in the specimens of the phase-I [40]

(a) Horizontal (b) Vertical

Figure 4.2. The positions of image captured on cross-sections

of each sample in two steps. First, MATLAB creates black and white (BW) images

from the micrographs. In these images, the black pixels represent the porosity and

the white pixels represent the solid. In this step, the threshold level is adjusted by

comparing the pore size in the SEM image (Figure 4.3 (a)) with the image generated

by MATLAB (Figure 4.3 (b)) to increase the accuracy of the method [62]. Then,

we calculate the ratio of the number of black pixels to the total pixels for the hor-

izontal BW micrographs and the vertical ones separately. The overall average ratio

for both magnifications on the BW images of horizontal cross-section and vertical

cross-sections represent the porosity value of the printed sample in each direction.
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(a) SEM image (b) MATLAB image

Figure 4.3. The positions of image captured on cross-sections

The horizontal cross-section micrographs of the samples from the first set of ex-

periments show the energy densities applied to the samples generate three different

types of porosity according to low, medium, or high value of VED. Low VED leads

to incomplete melting of the powder particles and formation of irregular pores due

to lack of fusion such as sample 3 (the low VED with LP 100 W and SS 900 mm/s)

(Figure 4.4 (a)). While, the exertion of high volumetric energy vaporizes the material

and hence, it leads to the formation of circular gas pores such as sample 13 (the

highest VED with LP 175 W and SS 700 mm/s) (Figure 4.4 (b)). These circles can

be a cross-section for a keyhole porosity. Samples with medium VED such as sample

16 (medium VED with LP 175 W and SS 1000 mm/s) possess microscale holes with

a nearly uniform distribution throughout the cross-section, which is an evidence in

better mechanical properties compared with the other types [63]. Table 4 illustrates

the porosity values of the three aforementioned samples. The results are confidently

in agreement with the results from the previous literature such as cherry et. Al. [64].

Different types of porosity are visible in horizontal and vertical cross sections, which

lead to different porosity percentage in each cross section. Vertical cross-sections il-

lustrate the less frequent but bigger size porosity usually progressing through layers.
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(a) LOF pores

(b) Gas pores

Figure 4.4. Different pores formed during the process

Table 4.1. Porosity of the samples

Sample Horizontal (%) Vertical (%) Porosity (%)

3, VED = 61.7 J/mm3 5.453 3.5 4.48

16, VED = 97.2 J/mm3 0.8793 0.502 0.69

13, VED = 138 J/mm3 1.8736 1.308 1.59

Whereas, horizontal cross-sections illustrate the widespread porosity in different size

ranges, which scatters throughout the entire section (Figure 4.5). The horizontal

porosity will be used in the future phase of this framework.
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Figure 4.5. Horizontal vs vertical cross-section SEM images

Figure 4.6. Porosity vs VED

The porosities in horizontal and vertical cross-sections for the samples according

to the applied VED is shown in figure 4.5. As figure 4.6 shows, the energy density

alters between 55 and 138J/mm3. This energy density creates a part with the density

between 95.52% and 99.31% with a maximum of 99.31%. The maximum density is



48

achieved with the VED of 99.2 and 104.17J/mm3. Considering the densification

percentage, we can narrow down the range of optimum VED to 90 J/mm3 and 105

J/mm3 shown in the green band in figure 4.6. This range of VED suggests the

optimized range between 150 W to 200 W for the laser power and 800 mm/s to 1000

mm/s for scan speed to obtain the maximum densification. These ranges will be

employed as the inputs for the second phase in the framework. The second phase will

study the correlation between material, process parameters (LP, SS, HS and BD) and

ultimate quality characteristics of the fabricated part in the maximum densification

range.

4.2 Phase-II: Results and discussion

4.2.1 Surface roughness

As explained in section 3.3.4, surface roughness measurement is conducted on

Bruker DektakXT system and three readings of 10 mm scan length are recorded and

averaged to obatin the Ra value for each sample. From the profile shown in figure

4.7, mean value of hills and peaks and Ra value is calculated from the equation 3.7.

Figure 4.7. profile of 10mm scan
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Table 4.2. Calculated surface roughness for the DOE

Sample Left (µm) Center (µm) Right (µm) Average (µm)

1 20.31 18.94 27.22 22.16

2 17.39 23.2 14.13 18.24

3 22.34 17.39 11.56 17.1

4 17.61 13.07 16 15.56

5 14.12 15.84 11.68 13.88

6 14.44 18.25 17.98 16.89

7 13.3 16.29 16.26 15.28

8 13.52 24.39 14.75 17.55

9 15.85 16.11 14.44 15.47

10 14.28 18.89 15.88 16.35

11 10.79 15.78 14.99 13.85

12 20.98 19.71 18.36 19.68

13 10.6 21.04 9.83 13.82

14 11.26 14.82 11.68 12.59

15 16.05 12.87 14.5 14.47

16 11.18 13.2 9.49 11.29

Figure 4.8. Main effects plot for Ra

Table 4.2 presents the average roughness values of all the sets of DOE. For surface

roughness, equation 3.4 is used to calculate the S/N ratio and is represented in figure
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4.8. From figure 4.8, it can be clearly seen that decreasing the SS or HS reduces the

Ra.Also, from table 3.10 P-value, it should be noted that SS and LP followed by BD

and HS show progressive effect on the surface roughness.

Table 4.3. ANOVA for Ra vs LP, SS, HS BD

Source DF Seq SS Adj SS Adj MS F-value P-value

LP 3 53.94 18.65 6.215 1.65 0.346

SS 5 21.39 28.31 5.663 1.50 0.392

HS 2 11.83 15.60 7.802 2.07 0.272

BD 2 13.38 13.38 6.690 1.77 0.310

Error 3 11.31 11.31 3.770

Total 15 111.84

4.2.2 Hardness

Three readings from corners and center are taken and the average is calculated as

the final hardness of the part. Table 4.4 shows the calculated hardness values for the

DOE.

Table 4.4. S/N ratio for samples with different hardness

Sample Hardness, HRB S/N ratio Sample Hardness, HRB S/N ratio

1 86.6 38.75 9 91 39.18

2 94.8 39.54 10 91.5 39.23

3 93.23 39.39 11 88.57 38.95

4 93.67 39.43 12 92.23 39.3

5 89.13 39.00 13 89.47 39.03

6 89.9 39.07 14 89.5 39.04

7 89.6 39.05 15 92.87 39.36

8 93.03 39.37 16 93.6 39.42
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From the HRB and S/N ratio in table 4.4, it is evident that hardness value is

almost constant with a variation of ±5. This proves that, the parameters changes

within the maximum densification range doesn’t affect the hardness value irrespective

of the individual parameter selection setting as long as the VED falls in the optimized

range.

4.2.3 Charpy impact test

Impact test is conducted on the 16 samples from phase II. Table 4.5 shows the

results obtained. ANOVA is conducted to calculate the P-value which illustrates

the impact/importance of each process parameter on the energy absorbed. Table

4.6 shows the ANOVA results. From the results, it is evident from P-value that SS

has the major influence on the impact strength followed by HS, LP and BD. With

increase in SS fixing the other parameters constant, there is a drop in impact strength

of the samples (refer table 4.5). Similarly, with increase in LP, fixing other parameters

constant, there is an increase in impact strength of the samples. This might be the

result of better melting/sintering of the powder material leading to formation of stable

meltpool.

Table 4.5. Impact test results for 16 samples from phase II

Sample Impact strength (J) sample Impact strength (J)

1 148 9 137.2

2 144 10 143.8

3 127.5 11 109.5

4 136.5 12 120.5

5 150.2 13 126.2

6 124 14 140

7 129.6 15 134.2

8 134.5 16 132.2
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Table 4.6. ANOVA for impact strength vs LP, SS, HS & BD

Source DF Adj SS Adj MS F-value P-value

LP 3 78.49 26.262 14.32 0.028

SS 5 40.70 8.140 4.46 0.124

HS 2 50.12 25.062 13.72 0.031

BD 2 122.40 61.202 33.50 0.009

Error 3 5.48 1.827

Total 15 1713.12
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5. PREDICTIVE MODELLING: A NEURAL NETWORK APPROACH

5.1 Introduction

In the PBF process, with different parameters having a strong influence on the

quality characteristics of the fabricated part, it is complicated to establish simple

relations between the non-linear correlation of process parameters and quality prop-

erties. In chapter 3, the influence of each parameter on the tested quality properties

is presented but based on those estimations, a complete process cannot be predicted

for any required part. For instance, to reduce the fabrication time, SS will be in-

creased; but with high SS, melt pool instability occurs leading to the formation of

in-process defects. Each individual part will have a different set of process param-

eters which can achieve a better quality of the part. Based on the application, the

requirement for certain quality property will be required. So, a good scenario to solve

this issue is to develop a system which can auto select the process parameters based

on the requirements of the manufacturer/end user. There are two main methods for

modelling a manufacturing process. First, a physics-based and second, data-driven

modelling. The physics-based modelling technique analyzes a manufacturing process

from a physical point of view. However, this traditional analytical modelling method

is not always suitable to model some modern complex manufacturing processes, such

as AM, due to the number of process variables and the non-linear complex nature of

the process.

Another modelling method is empirical modelling, which employs experimental

data and statistical theory [66]. Many applications in manufacturing engineering

successfully implemented machine learning (ML) and ANN methodology as a good

empirical modelling method. In this research, an empirical model is developed in

three ways i.e. using SVR and random forest methods in ML and ANN. Detailed



54

explanation about the approaches, results and the best approach to be used in future

according to the error rates, loss function, uncertainty and stability are discussed in

the following sections.

5.2 Machine learning

Machine learning is a branch of artificial intelligence. It is a method of data

analysis which automates the building a model analytically based on the data. It

reads the data, analyzes the patterns by assigning some random weights to come

up with a certain weight for forming the relation analytically with minimal human

interaction. The major advantages of ML are the capability of data preparation,

analysis, scalability and automation of the iterative process. Apart from the data,

no custom coding is required as it learns from the data and builds an own logic and

function. Figure 5.1 shows the different classifications and algorithms employed.In

this work, we are using support vector regression (SVR) and random forest regression

techniques for training a function.

5.2.1 Support vector regression (SVR)

In SVR, hyperplane with maximum margin is identified in a way that a maximum

number of data points fall within that boundaries. Instead of eliminating/reducing

the error rate as carried out in simple linear regression, we try to adjust the error

within a certain threshold. Our objective in SVR is to basically consider the points

that are within the margin. The best fit line is the hyperplane that has the greatest

number of points within the boundaries. The 16 sets of data are divided into two

parts, 13 sets for training and 3 sets for testing. Heatmap is calculated for the

input data to investigate any possible correlation between the inputs. If there is any

correlation above ±0.5, then one of those parameters can be eliminated from the

training set as it has a correlation with another input level and doing so increases

the efficiency of the predictions. The top half above the diagonal can be neglected as
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Figure 5.1. Machine learning: classification and algorithms

it is the replica of the bottom half. Also, the diagonal is neglected as it represents

the correlation between the same inputs. Figure 5.2 shows the heat map calculated

for the 13 sets of data. The R2 value of 0.4511 is obtained. After training the data,

testing is conducted on the 3 sets of data. Table 5.1 shows the predicted value and

error percentage for each set for surface roughness prediction. An error percentage

between 12.92 and 34.47 is obtained from the predicted values with a mean error

of 20.18%. More data need to be incorporated into the SVR model for obtaining a

constant error. Similarly, for every output, a model is developed and finally all model

functions are put together into a single program which will result in achieving the

input parameters according to the quality requirements.
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Figure 5.2. Heatmap for the training data

Table 5.1. SVR method: actual vs predicted value for surface roughness

Test data Actual Ravalue Predicted Ravalue Error %

175,800,0.12,0.1 15.28 17.255 12.92

195,700,0.15,0.15 13.85 15.67 13.14

195,1000,0.09,0.1 12.59 16.93 34.47

5.2.2 Random forest regression

Random forest technique is one of the supervised learning model which can be

used for both classification and regression model training. The major disadvantage

with other models like SVR and NN is uncertainty. The uncertainty of a data set will

result in increasing error in the predictions and with other techniques, as the data

is used together, there is no way to reduce uncertainty in the predictions. But with

random forest technique, the data is divided into groups of data called as trees or
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bagging (figure 5.3) and the model runs in each tree and finally the average or the

best value is given as prediction. In this way, if there is an error in one of the data set

which leads to huge error in the prediction, the final predicted output will not have

a major effect because of the average of the trees used. The only possibility of wrong

prediction is if more than half of data is misleading.

Figure 5.3. Random forest model

Out of 16 data set, 12 are assigned as training data and 4 as testing data. Three

trees are used dividing the training data into three random group. Trees number is

estimated by running the model with 2 to 6 trees and out of all the values, 3 trees gave

the minimum error with better R2 value. Table 5.2 shows the predictions vs actual
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data. The predictions shown in table 5.2 show that the error was between 23-27%.

With just 12 set of training data, an accuracy 23-27% is obtained. Incorporating

more data into the model will reduce the error to minimum.

Table 5.2. Random forest method: actual vs predicted value for surface roughness

Test data Actual Ravalue Predicted Ravalue Error %

175,800,0.12,0.1 15.28 19.35 26.64

195,700,0.15,0.15 13.85 17.122 23.624

195,1000,0.09,0.1 12.59 15.57 23.67

5.3 Neural network

With the non-linear data of process parameters and quality characteristics in

AM processes, the ML technique which learns a pattern or forms a function for all

the data is not realistic. For this kind of non-linear data, a system needs to be

developed which can self-learn and update the knowledge base after each experiment

to come up with better weight factors or functions. The artificial neural network

which resembles the structure of the human brain having highly interconnected nodes

between input and output is a more generalized approach. Scholars have been using

ANN for developing time models and quality models. In this work, a multi-layer feed

forward back propagating neural network is developed with LP, SS, HS and BD as

features/inputs and UTS, impact strength, fabrication time and SR as labels/outputs

(figure 5.4). Here, inputs or process parameters are called features and outputs are

called labels. The NN network consists of three parts namely input layer (process

parameters), hidden layer and output layer (ultimate properties). The hidden layer

connects the input and output layers. In this work, one hidden layer with three nodes

is used and to simulate the network, python programming is be used. The results

and data acquired from the framework will be initially used for creating a knowledge
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base. The NN system uses the acquired experimental data for training a function

which acts as a learning engine. The weights will be calculated and adjusted by BP

which gradually brings the output closer to the required output. Out of 16 sets of

data, we divided the data as 12 sets of experiments for training data and 4 for testing

data. The BP algorithm is employed for developing a knowledge learning module in

the optimization model which requires the following stages

Figure 5.4. The schematic ANN architecture of this research

1. Importing the inputs and outputs as a matrix.

2. Set random weights and multiply with input.

3. Applying the activation function.

4. Calculate and return the output. Error is calculated by considering the differ-

ence between actual and predicted data.

5. Weights will be adjusted by the program. process is continued till the weight

factor reaches to the best value.
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However, for more accurate results and efficient prediction of the trained network,

more data will have to be incorporated to make the network more complex. In

python, for developing an ANN, the sigmoid function is used (figure 5.5). As sigmoid

function varies from 0 to 1, the input and output are scaled down to between o and

1 by an activation function. Activation function introduces non-linearity and scales

down the values to 0 and 1 which makes the training of weights for the function easier.

Once the network is forwarded from input to output by assigning some random value,

the learning of the network by back propagation (BP). BP uses a loss function for

calculating the error between the calculated value and the target value. The loss

function is calculated by the mean squared loss sum showed in equation 4.1

Figure 5.5. Sigmoid function

Loss =
∑

(0.5)(o− y)2 (5.1)

where o is the output predicted and y is the actual output. The network is trained

individually for each output and the networks for all quality properties will be run

together in one program at the end of developing a network for each property. A

network is developed for predicting the surface roughness values. after training the

network, it is tested for predicting the Ra for training data. Figure 5.6 and 5.7 shows
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the actual and predicted values for training data, scatter plot with best fit and table

5.3 shows the error percentage. From table 5.3, the mean error rate of 10.236% is

obtained with a loss function of 0.0002946. With lower loss function ideal being 0, the

weights will be adjusted to the best values which gives predictions accurately with

minimum error between actual and predicted data. Table 5.4 shows the predictions

and error rate for test data. More data need to be incorporated for obtaining accurate

predictions outside the working range of process parameters.

Figure 5.6. predictions of the network

From the results of SVR, random forest and FF BP neural network, SVR method

is not the ideal method for developing a predictive function as the error rate is not

constant and is varying in a range (Table 5.1). Random forest method with three

trees lead to almost stable error rate and with limited number of experiments, the
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Table 5.3. Training data: Actual vs predicted data with percentage error

Training data Actual Ravalue/100 Predicted Ravalue Error %

125,700,0.09,0.1 0.2216 0.21 5.2346

125 ,800 ,0.09 ,0.2 0.1824 0.169 7.3465

150 ,800 ,0.09 ,0.2 0.1556 0.168 7.9691

150 ,900, 0.09, 0.1 0.1388 0.1743 25.5764

175 ,700 ,0.12 ,0.2 0.1689 0.1819 7.6966

175,900,0.09,0.15 0.1755 0.1633 6.9515

175,1000,0.09,0.2 0.1547 0.1437 7.1105

175, 1100, 0.09, 0.1 0.1635 0.1482 9.3578

195 ,800 ,0.12 ,0.15 0.1968 0.1764 10.3658

195 ,900, 0.12, 0.2 0.1382 0.1539 11.3603

195, 1100,0.09,0.2 0.1447 0.134 7.3946

195,1200,0.09,0.15 0.1129 0.1315 16.4748

Figure 5.7. Training data scatter plot with best fit line

error rate achieved is significantly better. Similarly FF BP NN trained a network

with loss rate of 0.0002945 which is promising for making the network stable with

more experiments. Hence, in future, both random forest and FF BP NN will be used

to study the uncertainty finally developing a network with minimum error without

overfitting.
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Table 5.4. Testing data: Actual vs predicted data with percentage error

Test data Actual Ravalue/100 Predicted Ravalue Error %

150,700,0.12,0.15 0.171 0.1892 10.6433

175,800,0.12,0.1 0.1528 0.1832 19.8953

195,700,0.15,0.15 0.1385 0.1773 20.8159

195,1000,0.09,0.1 0.1259 0.15311 21.6124

By integrating this system with an online monitoring and control (OMC) system,

nearly flawless parts with the desired ultimate qualities (the long-term objective) can

be fabricated. Plentiful research nowadays has focused on the development of OMC

systems [67-72] to avoid/diminish the defects and abnormalities generated during

the fabrication process [24, 25, 37, 73-75]. Monitoring and control of the thermal

specifications and thermal evolution of any inherently thermal AM process has been

recognized as a crucial step towards improving the microstructure and ultimate me-

chanical properties of a fabricated part [76-78]. Nowadays, most vendors try to handle

the frequent thermal anomalies of the fabricated parts such as distortion by design-

ing some temporary support structures. These supports facilitate the conduction

during the fabrication process and strengthen the structure. Designing the topology-

optimized support structures reduces the fabrication time and material [79] however

the fabricated parts still need significant work for post-processing. Optimization of

process parameters by using an ANN model in this project integrated with an OMC

system can considerably improve the mechanical properties and surface quality of

fabricated parts, increase the repeatability, reduce fabrication time, and significantly

decrease the need for the post-processing operations.
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6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this work, addressing the mentioned gaps and challenges existing in PBF pro-

cess, a two-phase framework is proposed for optimizing the process parameters thereby

achieving maximum density and better ultimate properties of the fabricated part and

a predictive function is developed using different approaches for intelligent prediction

of mechanical and quality properties for a given set of process parameters.

First, a mathematical model is developed to estimate the range of VED to be

studied in phase-I and obtained that the lower limit and upper limit of VED are

57.89 J/mm3 and 137.5 J/mm3. Within this obtained VED range from mathematical

model, SA is conducted to realize the influence of LP, SS, HS, and LT on the heat

input per unit volume i.e. VED. The results from SA clearly shows that SS has the

major influence on the VED working range followed by LP and HS. In this work,

SS316L material is used and LT is kept at machine constant value of 0.02 mm. Then

two DOEs are conducted as part of two phases to study different process parameters

and their significance on mechanical and quality properties of the fabricated part

aiming to achieve different objectives in each phase.

In phase I, full factorial analysis is conducted within VED range obtained from

mathematical model and by merely changing LP and SS keeping the other values

at machine constants. LP was varied between 100 W to 175 W and SS was varied

between 700 mm/s to 1000 mm/s. 16 cubic samples with the dimensions 10 mm x 10

mm x 5 mm were fabricated. The samples were cut parallel and perpendicular to the

build direction using WEDM process and porosity and microstructure were studied

using SEM. The results prominently showed formation of gas pores and LOF pores at

the high and low VED ranges leading to formation maximum porosity. Whereas, the
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porosity reduced steeply in the range between 90 J/mm3 and 105 J/mm3. Densities

between 95.52% and 99.31% with a maximum of 99.31% is achieved. From the results,

the optimum range obtained for VED is 90 J/mm3 and 105 J/mm3 with a maximum

density of 99.31%. Also, the results suggest the optimized range between 150 W to

200 W for the laser power and 800 mm/s to 1000 mm/s for scan speed to obtain

the maximum densification. These results of optimum values for achieving maximum

density are carried forward to phase II for further understanding of process parameters

on ultimate quality of the fabricated part.

In phase II, the optimum range obtained from phase I is employed and the in-

fluence of LP, SS, HS and BD on surface roughness and mechanical properties were

studied with objective of correlating process parameters with quality properties of

the fabricated part. Taguchi method is used for DOE with 16 sets of experiments.

For each experiment, 3 samples were fabricated according to ASTM E8, ASTM E23,

and ASTM E18 standards. S/N ratio and ANOVA is conducted to obtain the F-value

and P-value. Rockwell hardness is used for hardness measurement using HRB tester

with a force of 150 KgF. Three readings were taken on the sample and averaged to

obtain the hardness value. From the hardness results obtained, for all the samples

the hardness values are ± 4 from 90. This proves that irrespective of the combination

of parameters or values of each parameter within the optimum range of VED, the

hardness values will almost be the same with a minor variation. We can imply that;

the hardness values are correlated with porosity. The lower the porosity, the better

the hardness of the fabricated part.

For surface roughness, Bruker DektakXT system with a stylus of 2µm radius,

force of 5mg, speed of 600 µm/s and time duration of 25 seconds is used. Three

measurements of 10 mm length are scanned and averaged for obtaining the Ra value

reducing the uncertainty in the results. From the results of S/N and ANOVA, it can

be clearly noticed that decreasing the SS or HS reduces the Ra. Also, from P-value,

it should be noted that SS and LP followed by BD and HS show progressive effect

on the surface roughness. From the results from phase II, the correlation between
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process parameters and quality properties is obtained which is finally used to develop

a network for intelligent predictive modelling of process parameters in PBF process

using different approaches in ML and ANN.

Finally, employing the results obtained from phase II, using ML and ANN tech-

niques an algorithm and network is developed for predictive modelling. In ML, SVR

method is used for training an algorithm for surface roughness prediction with given

set of process parameters. Primarily, heatmap is generated to realize the correlation

between inputs and from the results, it is observed that all inputs are independent

without any linear dependence. After training the algorithm with 13 sets of data,

3 sets of data are used for validation and from the validation, an error percentage

between 12.92 and 34.47 % is achieved.

A feed forward back propogating neural network is developed with three layers

i.e. input layer, one hidden layer with 3 nodes, and output layer. Sigmoid function

is used and the input, output values are scaled down to values between 0 and 1. The

data is divided into 12 sets of training data and 4 sets of test data. After training

the function, the network is validated by test data. From the results, the mean error

obtained is 10.236% with a loss function of 0.0002945. With just 12 sets of data,

the network is trained for predictive modelling with a minimum error. For further

development of the network and to make the loss function ideal, more data needs to

be incorporated.

In summary, the proposed framework proves its capability to study the influence

of the process parameters on the quality properties of the fabricated part providing

better insight into the complex nature of working with multiple process parameters.

Also, employing this framework ensures maximum density parts with better mechan-

ical properties. With the predictive model developed in the framework, the biggest

challenge of uncertainty in the quality properties of fabricated part is addressed lead-

ing to stability of the process.
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6.2 Future works

With the prominent results obtained from the framework, more research has to be

conducted to complete the framework and to make it standardized approach which

include

• Phase-II will have to be completed by conducting the remaining tests.

• A FFBP NN for all inputs and outputs will have to be developed.

• More data will be included for making the network stable with a minimum

error.

• A GUI will be developed with ability to make it more user-friendly.

• Different samples have to be tested and included in the network for making the

framework and the modelling of the process complete.

• Finally, the network will have to be calibrated on different machine to realize

the scope and efficiency.
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