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GLOSSARY

An operating strategy for a SAPV where residential cus-
tomers do not have individual batteries or solar panels
but instead buy into a collective solar and battery sys-
tem.

A Photovoltaic system which injects the solar electricity
to a power utility grid network. Typically consists of
two major components: the PV modules and inverter.
Due to the ease of interconnection and small number of
components involved, GCPV systems are more widely
used especially in locations with a readily available utility
grid network.

A widely used, commercially available software for opti-
mizing microgrids and distributed energy resources. The
acronym stands for "Hybrid Optimization of Multiple En-
ergy Resources.’

An operating strategy for a SAPV where each house is
connected to an energy infrastructure which allows for
energy trading. Energy trading allows for less excess gen-
eration to be wasted and a secondary source of back up
power, however, the energy infrastructure must be cre-
ated.

The conventional operating strategy for a SAPV where
each house is disconnected from any energy infrastruc-
ture and can only supply its loads from its own solar
power. Using this operating strategy, excess generation
is typically wasted and costly, polluting generators must
be used for providing back up energy.



Loss of Power Supply
Probability (LPSP)

Stand-alone Photovoltaic
System (SAPV)

XVvi

A loss of load occurs whenever the system load exceeds
the available generating capacity. The overall probability
that there will be a shortage of power (loss of supply) is
called the Loss of Power Supply Probability. It is usually
expressed in terms of days per year, hours per day, or as
a percentage of time. Similar terms include Loss of Load
Probability (LOLP), Loss of Power Probability (LOPP),
and Load Coverage Rate (LCR).

A Photovoltaic system which is used to directly power
electrical loads without connecting to the conventional
power grid. An SAPV system typically consists of PV
modules, charge controller, batteries and an inverter.
There is typically no back-up power to meet the load
demand during events with no PV generation such as on
rainy or cloudy days, after dark, or during system fail-
ure. For this reason, reliability of electricity supply is
given top priority in the system design of a SAPV.
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ABSTRACT

Vance, David M. M.S.M.E., Purdue University, December 2018. Developing a PV and
Energy Storage Sizing Methodology for Off-Grid Communities. Major Professor: Ali
Razban.

Combining rooftop solar with energy storage for off-grid residential operation
is restrictively expensive. Historically, operating off-grid requires an ’isolated self-
consumption’ operating strategy where any excess generation is wasted and to ensure
reliability you must install costly, polluting generators or a large amount of energy
storage. With the advent of Blockchain technology residents can come together and
establish transactive microgrids which have two possible operating strategies: Cen-
tralized Energy Sharing (CES) and Interconnected Energy Sharing (IES). The CES
strategy proposes that all systems combine their photovoltaic (PV) generation and
energy storage systems (ESS) to meet their loads. IES strategy establishes an en-
ergy trading system between stand-alone systems which allows buying energy when
battery capacity is empty and selling energy when battery capacity is full. Transac-
tive microgrids have been investigated analytically by several sources, none of which
consider year-round off-grid operation.

A simulation tool was developed through MATLAB for comparing the three oper-
ating strategies: isolated self-consumption, CES, and IES. This simulation tool could
easily be incorporated into existing software such as HOMER.

The effect of several variables on total cost was tested including interconnection
type, initial charge, load variability, starting month, number of stand-alone systems,
geographic location, and required reliability.

It was found that the CES strategy improves initial cost by 7% to 10% compared
to the baseline (isolated self-consumption) and IES cases in every simulation. The IES

case consistently saved money compared to the baseline, just by a very small amount
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(less than 1%). Initial charge was investigated for March, July, and November and was
only found to have an effect in November. More research should be done to show the
effect of initial charge for every month of the year. Load variability had inconsistent
results between the two geographic locations studied, Indianapolis and San Antonio.
This result would be improved with an improved load simulation which includes peak
shifting. The number of systems did not have a demonstrable effect, giving the same
cost whether there were 2 systems or 50 involved in the trading strategies. It may
be that only one other system is necessary to receive the benefits from a transactive
microgrid. Geographic locations studied (Indianapolis, Indiana; Phoenix, Arizona;
Little Rock, Arkansas; and Erie, Pennsylvania) showed a large effect on the total cost
with Phoenix being considerably cheaper than any other location and Erie having
the highest cost. This result was expected due to each geographic location’s load
and solar radiation profiles. Required reliability showed a consistent and predictable
effect with cost going down as the requirement relaxed and more hours of outage were
allowed.

In order to accomplish off-grid operation with favorable economics it is likely
that a system will need to reduce its reliability requirement, adopt energy saving
consumption habits, choose a favorable geographic location, and either establish a
transactive microgrid or include secondary energy generation and/or storage.

Keywords: Energy Sharing, Photovoltaic, PV Sizing, Energy Storage, Loss of
Power Supply Probability, PV Utilization, Load Variability, Transactive Microgrid,
Blockchain



1. INTRODUCTION

This thesis will be organized as follows: ’Chapter 1: Introduction’ introduces SAPV
systems and energy sharing strategies, states the problem, expresses the significance of
the study, and outlines the scope and limitations; ’Chapter 2: Literature Survey’ com-
pares GCPV and SAPV systems, describes the major components of SAPV systems,
provides background information on how the methodology is developed such as how
geological conditions can be simulated, how residential load profiles can be simulated,
and how the sizing of SAPV systems can be optimized; 'Chapter 3: Methodology’
explains the research design for analyzing if it is beneficial for residential customers
to establish interconnected communities, establishes the specific cases that will be
investigated, explains input variables and where their information is obtained from,
and outlines how results will be analyzed; 'Chapter 4: Results’ analyzes the results
gathered from applying the methodology described in Chapter 3 and discusses the
implications of the data; finally, 'Chapter 5: Conclusions’ reviews the work that was

accomplished and summarizes the major findings.

1.1 Stand-Alone Photovoltaic Systems (SAPV)

A Stand-Alone Photovoltaic System (SAPV) employs solar panels and energy stor-
age to fulfill load requirements without being connected to a conventional grid system.
If the cost of generating and storing electricity is less than the cost of electricity from
the grid, consumers and small businesses can save money with this approach. Al-
though current prices restrict SAPV feasibility, ”the cost of PV-generated and stored
energy is declining, while retail power prices are on the rise” [1,2]. Sometimes, an
SAPV makes sense in rural areas where it is difficult and expensive to extend ex-

isting power lines to connect with the grid (which can cost the customer between



$15,000 and $50,000 per mile) [3]. The high expense is due to the large amount of
storage required to ensure sufficient reliability going off-grid. Studies which attempt
to optimize solar and storage for off-grid residential applications have suggested it
is not currently economical [4-7]. The conventional operating strategy for going off-
grid, isolated self-consumption, requires that any excess generation is wasted and for
back-up energy the most cost effective method is costly, polluting generators. To re-
main zero emission, large amounts of additional storage are required just to improve
reliability by a fraction.

A new method for going off-grid, transactive microgrids, has been enabled with
the advent of 'Blockchain’. It is now possible to centrally store PV and ESS known as
Centralized Energy Sharing (CES) or distribute PV and ESS and establish a trading
system known as Interconnected Energy Sharing (IES), connecting otherwise stand-
alone systems. According to Renewable Energy World [8] ”Blockchain makes a new
energy sharing economy possible, one that facilitates an open exchange of power
between homes, with all transactions recorded through a decentralized ledger. This
will represent a fundamental change in the way we generate, use and distribute energy
for the better. Its promise will empower all of us to determine the impact our homes
have on our climate.” Hahn [9] demonstrates how transactive energy exchanges can
be implemented on the Ethereum blockchain. To be clear, Blockchain technology
enables the transactive microgrid which will be investigated but is not the subject of

this research.

1.2 Centralized Energy Sharing (CES)

In this operating strategy, solar panels and energy storage are ’centrally stored’
within an off-grid residential microgrid meaning that customers do not have individual
batteries to monitor but a collective battery system. In this system all loads are
summed and considered as one, energy trades are internal, and if the energy storage

is depleted then every customer is without power.



1.3 Interconnected Energy Sharing (IES)

In this operating strategy, solar panels and energy storage are distributed through-
out the community, but a microgrid is established which allows for customers to buy
and sell their energy. Habib [10] proposed an ’interconnected sharing mode’ where
residential customers can exchange PV power to supply their electrical loads in the
case that the micro-grid switches to islanded mode due to large scale power outage
or blackout. In a study of 10 houses the inter-connected sharing case supplied the
most load for 5 out of the 10 houses, 3 houses preferred isolated self-consumption,
and 2 houses achieved the same load met under either operating mode. The author
states "the interconnected energy sharing case produces only slightly better indi-
vidual results than the isolated case. However, most importantly, it also lead to a
44% reduction in the total size of ESS required.” Habib also states that ”isolated
self-consumption is only attractive if the size of the PV associated with each house is
large relative to the consumption, but most houses, at least in winter, do not get much
power from their local PV generation and their loads are lost. [11]” While Habib’s
proposal is for grid-connected customers which are disconnected from the grid due
to isolation or blackout, this thesis proposes allowing islanded residential customers
to share their stored energy amongst each other year-round without connecting to
the main grid. Being able to sell energy when the battery is at capacity and buying
energy when battery is depleted should increase reliability and reduce the individual

costs associated, however, there are costs to interconnect such a community.

1.4 Problem Statement

The idea of a 'transactive or connected neighborhood’ for a residential micro-grid
has been investigated analytically by several sources, none of which use conventional
SAPV sizing strategies or consider off-grid operation [12-16]. The gap in literature
this research fills is to propose a sizing methodology for off-grid transactive microgrids

so that operating strategies (isolated self-consumption, CES, and IES) can be com-



pared. A MATLAB program will be developed for comparing the costs and reliability
of each operating strategy.

The problem this thesis seeks to solve: What type of SAPV energy sharing strategy
provides the lowest total cost? For each energy sharing strategy, how does initial
battery charge, load variation, starting month, number of SAPV systems, geographic
location, and required reliability affect total cost?

The goal of this thesis research is to develop a tool for comparing energy sharing
tactics between SAPV systems (isolated consumption, CES, and IES) and then use
that tool to compare operating strategies and show the effect of relevant variables on
total cost.

Specific objectives include:

e Develop a tool (MATLAB program) which compares 3 operating strategies for
SAPYV systems (isolated self consumption, CES, IES).

e Simulate the tool considering the effect of initial battery charge, load variability,
starting month, number of SAPV systems, geographic location, and required

reliability on energy storage required and total cost.

e Compare results each operating strategy to determine how effectively energy

sharing reduces initial cost in SAPV systems.

There may be other operating strategies to consider, but they will be similiar in
style to either the IES or CES case. For example, the systems may be connected like
IES but operate with the objective of only allowing equitable trades or the systems
may be connected like CES but operate with restrictions which restrict one system
from taking advantage of the others.

The variables initial charge, geographic location, required reliability, and starting
month were chosen as a natural progression from the software development. Looking
at isolated SAPV systems it made sense that the same variables would be important in
interconnected systems. Load variation was investigated because this is what makes

energy trading worthwhile. If every system has the same load and PV generation than



there will not be any instances where it is beneficial for them to trade. Finally, the
number of SAPV systems was chosen because it was thought that with more systems
more trades would occur and the benefit of establishing a transactive microgrid would
increase. Component specifications (PV rating, PV cost, battery efficiency, battery
cost) could have been investigated to show how these specifications must be improved
to make transactive microgrids economical, but it made sense to start with current

technologies.

1.5 Significance of the Study

The purpose of this section is to identify the significance of the study.

This study progresses the research of sizing SAPV systems, sharing economies for
the grid, establishing infrastructure between SAPV systems, and the effect of load
variation on SAPV sizing.

The implementation of this study will improve off-grid neighborhood planning,
encourage SAPV energy sharing research, and identify the best (least expensive)
energy sharing strategies.

Indirectly, this study contributes to the progress of geological simulation for SAPV
sizing and application of Markov models.

The model developed can be used to determine PV, ESS, and interconnection pric-
ing goals that will make off-grid transactive neighborhoods competitive with utility
pricing.

In the field of SAPV systems this study proposes a new way of addressing the lack
of an energy market. It’s important to improve solar irradiation modeling, PV and
ESS efficiency, and electric distribution, but there may be a more innovative approach
to solving this problem such as establishing energy infrastructure.

At later stages, the model developed in this study can be used to plan energy
infrastructure between existing/theoretical SAPV systems, study the effect of load

variation on IES scenarios, and find ideal situations for implementing case studies.



This model could be incorporated into existing software such as HOMER, which
was investigated but did not have the capability to simulate interconnected energy

sharing.

1.6 Scope and Limitations

The purpose of this section is to identify the scope and limitations of the research.

This research is limited to studying SAPV systems. The problems presented will
not likely be important when applied to GCPV systems. SAPV systems present
unique challenges in reliability and design that do not apply to GCPV systems which
have back-up power provided by the grid.

For this research, systems connected to an energy trading infrastructure that
would otherwise be off-grid are also referred to as SAPV systems.

This research does not consider the social and political parameters that can be
taken into consideration when designing an SAPV system or microgrid.

This research does not consider the technical aspects of choosing a location for
the solar panel and ESS. There are some scenarios in this research that recommend
a large amount of solar panels or ESS that a typical residential customer would not
be able to fit on their property.

In this study, the term ’energy sharing’ is used to discuss different operational
strategies. This is the term used by Habib [10] and is not to say that the residential
customers will be expected to share their energy without any compensation. Instead
the residential customers will trade, buy, and sell energy using the ’energy sharing’
operational strategy. The specifics of price, equity, and policy regarding these trades
will not be discussed in this research.

The model excludes the effect of temperature and clearness index in the PV output
simulation, discharge/charge rate in the energy storage simulation, and lifetime or

degradation of any of the parts.



The model assumes that all IES SAPV systems will have the same number of
solar panels and receive the same solar irradiation. This is not a likely scenario
but avoids additional variability, questions of equity, and situations where an SAPV
system has no power generation. In the future, issues of inequality must be modeled
and addressed.

The study does not intend to replace the existing power system infrastructure. As
stated before, residential solar power is often more expensive than that provided by
a utility and there is already a reliable, cheap electricity supply available just about
anywhere in the United States. However, considering the number of homeowners
currently off the grid, emerging markets worldwide, and the cost of extending power
lines, there may be some systems which will benefit from energy sharing. In particular,
IES and CES strategies will be practical for isolated microgrids which have no access
to an existing national grid.

The model used in this paper is limited to hourly simulations. A higher time
resolution of a minute or second is desired for more accurate simulation of PV and
ESS performance. For instance, with a smaller time step the model could include
charge/discharge rate of the battery, specific appliance end-uses, and charge controller
behavior.

Finally, the scope of this thesis is limited to SAPV systems in the United States.
Component specifications, residential load profiles, and geological conditions may not

be relevant for another geographical location.



2. LITERATURE SURVEY

The purpose of this chapter is to compare grid-connected and stand-alone PV sys-
tems, describe major components of SAPV systems for use in modeling, and inves-
tigate methods for simulating geological conditions and residential load profiles and

optimally sizing SAPV systems.

2.1 Grid-Connected PV vs. SAPV

Fundamentally, solar energy from the sun is converted to electricity for use in our
homes via the photovoltaic (PV) effect. This electricity can be implemented using
either a Grid-Connected Photovoltaic (GCPV) system or a Stand-Alone Photovoltaic
(SAPV) system. A GCPV system is an independent decentralized power system that
is connected to an electricity transmission and distribution system (referred to as the
electricity grid). An SAPV produces power independently from the utility grid; hence,
they are said to be stand alone [17]. A GCPV system typically consists of two major
components i.e. the PV modules and inverter while an SAPV system consists of PV
modules, charge controller, batteries, and inverter. GCPV systems offer a distinct
advantage in having energy back up to meet the load demand whenever the system
fails. As a result, the design of GCPV systems are often less critical when compared
to SAPV systems because the reliability of electricity supply for a particular location
is often not an issue [18]. However, SAPV systems are becoming increasingly viable
and cost-effective in remote locations where there is no readily available utility grid
network, where there is very high yearly solar radiation, or when the cost of producing
and storing energy is less then the cost of buying from the utility [18-21].

Nick Rosen, author of ”Off the Grid: Inside the Movement for More Space, Less

Government, and True Independence in Modern America” [22], estimated in 2010



that at least 750,000 US households are self-reliant in producing one of their utilities
(water, electricity, sewer, natural gas, and other services). Home Power Magazine [23]
estimated in 2006 that at least 180,000 US households operate without the assistance
of any public utility service. Major reasons for wanting an off-grid system where the
grid is available are energy independence, green living, and saving money. Owners of
off-grid systems are not subject to rate increases, blackouts, or the terms and policies
of the local utility. System owners can also rest assured that the energy they use is
produced in a clean, sustainable manner.

Be aware though, once off-grid, you must now take on the duties of the utility you
sought independence from. First of all, making your own electricity is expensive, and
it’s unlikely that installing an SAPV will provide you with cheaper electricity unless
the resident has very high solar irradiation, generous incentives, high utility rates,
existing solar and energy storage or some combination of the above. Also, system
maintenance and troubleshooting are serious, ongoing problems. Most batteries will
need to be replaced every 5-15 years. A battery is only 90% efficient at its best
causing large amounts of energy waste [24]. Another serious drawback is wasted
surplus energy. When a GCPV system makes more electricity than the homeowners
use, the surplus is sold to the utility for an energy credit which can be exchanged for
money or energy when needed. In contrast, an SAPV must either use the surplus
or waste it. Usually the inverter automatically turns off so that the energy is never
generated in the first place. Of course, the major drawback of SAPV systems is
ensuring reliability. A GCPV system can always rely on the utility for backup power
but an SAPV system must size their PV and energy storage so that their load is met
reliably throughout the year.

This is specifically the area which this research seeks to improve. SAPV systems
waste energy and money by not being able to sell back to the grid and they have no
access to backup power because they are not able to buy energy from the grid. If
energy infrastructure could be established which enables systems to sell power when

their batteries are full and buy power when their batteries are empty, this would
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increase their reliability and improve their utilization of solar energy, theoretically
reducing total cost depending on the cost to implement the energy infrastructure.
This energy infrastructure could be expanded to include load control or electric ve-
hicle storage for further improvement of reliability and reduction of cost. It might
be the case that there are several SAPV systems too far from the standard utility
grid to become GCPV or that by establishing energy infrastructure they succeed in
establishing a lower energy rate than if they were connected to the grid. These SAPV
systems could save money by establishing an energy infrastructure amongst them-
selves instead of connecting to the grid or going alone, although they will not be able
to sell or buy from the standard grid and the combined initial capital cost will likely

require a company to bring the community together.

2.2 Components of SAPV Systems

Because of the stochastic nature of the sun (variability introduced from day and
night cycle plus clouds) the power output from solar energy is not predictable or linear.
Therefore, energy storage resources such as an electrochemical battery, flywheel, and
ultracapacitor, or a generator are required to meet the load demand when there
is a shortage of available energy from the renewable source [25]. A typical SAPV
consists of PV generation, battery storage, charge controller, inverter, and a load as
illustrated in Figure 2.1. Often, a generator is used to improve reliability in winter
months or when energy storage is low but will not be considered in this research.
To help understand the proposed energy infrastructure these components will be
investigated further: solar panels, energy storage devices, charge controllers, inverters,

and residential load profiles.
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Figure 2.1. Typical components of an SAPV.

2.2.1 PV Panels

PV panels or solar panels convert sunlight into direct current (DC) electricity.
PV panels are made of many silicon solar cells, which act as semiconductors. When

photons from sunlight strike the surface, electrons flow due to the photoelectric effect.

2.2.2 Energy Storage System (Battery)

Because solar panels only generate electricity during the day when the sun is
shining, this energy must be used instantaneously or stored in an energy storage
system. The most common energy storage device for residential applications is the
battery.

A battery is a device that converts the chemical energy contained in its active ma-
terials directly into electric energy by means of an electrochemical oxidation-reduction
(redox) reaction. While the term ”battery” is often used, the basic electrochemical

unit being referred to is the "cell.” A battery consists of one or more of these cells,
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connected in series or parallel, or both, depending on the desired output voltage and

capacity [26].

2.2.3 Charge Controller

The battery’s current and voltage are controlled by a charge controller in order
to increase battery life, improve performance and protect the battery from damage
due to deep discharging. Using a good charge controller, for example, a Pulse Width
Modulation (PWM) with state-of-charge calculation algorithms, the same battery
exposed to the same charge/discharge cycles can have a much higher lifetime than

one using a bad charge controller with incorrect settings [27].

2.2.4 Inverter

Because the U.S. electrical grid uses AC electricity and solar panels create DC
electricity, an inverter must be used. Along with converting DC to AC power, inverters
provide ground fault protection and monitor system stats, including voltage, current,

energy production, and maximum power point tracking [28].

2.2.5 Residential Load Profiles

A residential load profile shows yearly energy usage for a residential customer
either historically or simulated based on geographical location, appliances, building
characteristics, type of heating, type of lighting, and occupant behavior among other
factors. These load profiles are useful for accurately forecasting load, planning net-
works, and sizing renewable generation. Pairing this information with the expected
power output of solar panels is a way of simulating the expected energy an energy
storage device or the grid will need to supply. Figure 2.2 shows a sample residential
load profile, demonstrating some of the numerous factors that can be considered. This

load profile is typical, with a minor peak in the morning when residents are typically
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waking up and preparing for work, a larger peak in the afternoon when residents are
returning from work and preparing for bed, and it usually bottoms out when resi-
dents are sleeping and at work. Note: A load profile can vary drastically with new
technology such as electrical vehicles and energy storage or with different occupant

behavior such as vacation or odd-working hours.

Hourly Load Profile Download CSV
kw

Year

Autumn R
Air Conditioning Yes &
Winter
Heating Electric

0.6

Spring
Hot Water Electric &

@ Lighting LED

Base Load

Midnight 6 AM Noon 6 PM Midnight

Figure 2.2. An example of an estimated energy load profile in summer
for a residential house in Stanford, California with air conditioning,
electric heat, and LED lighting [29]

2.3 Simulation of Geological Conditions

Solar radiation data is required to determine the availability and magnitude of
solar energy at a specific site. Geologic conditions, including solar radiation, clearness
index, and ambient temperature are always changing. Therefore, a long-term analysis
of solar energy resource should be performed at the start of any project for accurate
sizing of components [30].

Two methods for simulating geological conditions include: Time-series simulation

and Statistical simulation.
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2.3.1 Time-series Simulation

Time-series simulation relies on historical weather data such as hourly solar radi-
ation, wind speed, and ambient temperature to ’estimate’ or recreate’ solar radiation
conditions for a time period. This weather data can usually be obtained from the
Internet or from local meteorological stations for any US location. For instance, the
National Solar Radiation Database (NSRDB) has a comprehensive collection of me-
teorological and solar data across the United Sates and a growing list of international
locations that is publicly available at no cost to the user [31].

Practically measured data is the most accurate but not always readily available,
which is mainly due to the initial investment and maintenance cost of the measur-
ing instruments and relevant recorders. In reality, the transient solar irradiance at
any location, with the unit of W/m?, keeps changing throughout the daytime, which
mainly attributes to the movement of the earth and the chaotic effect of the atmo-
sphere. There is barely any effective way to accurately estimate or predicate transient
solar irradiance except practical measurement [32]. Therefore, any method used to
simulate geological conditions should be based on field measurements and not on
global simulation, monthly averages, or extrapolated from far away sites.

One method for developing synthetic solar data from historical data that has
been around for many years is the use of a Markov model. U. Amato [33] showed
that irradiation sequences are not stationary, both in the mean and in the variance,
and can thus be modeled by Markovian and Fourier concepts.

Weissbach [4] created a Markov model consisting of 288 (24 hours x 12 months
per year) state transition matrices to generate synthetic solar data for analysis.

Chamola [34] generally improved Weissbach’s model by introducing day-level

weather correlations that are critical for dimensioning high-reliability systems.
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2.3.2 Statistical Simulation

Sometimes, hourly records of meteorological variables do not exist. In this case,
synthetic weather data can be generated from the monthly-average values of the
meteorological data or the weather data can be extrapolated from a nearby site by
making necessary adjustments [30].

Because this thesis does not require a case-study for a specific location without
hourly data, locations can be chosen so that reliable, long-term, hourly weather data
is freely available. Thus, geological conditions will be simulated using the Time-Series

method and statistical methods will not be further explained.

2.4 Modeling PV and ESS Performance

The purpose of this section is to outline how PV and ESS Performance can be
modeled for use in developing the methodology.

Table 2.1 shows various equations which could be used for estimating power gen-
eration from a solar PV module. Most of them are complex and require year-round
temperature data. Of particular interest for this study is equation 21 in Table 2.1.
The symbol df, known as the de-rating factor, is used to estimate the loss in effi-
ciency due to different factors such as wiring losses, soiling of the panels, shading,
snow cover, and aging. This factor can be used to estimate temperature related ef-
fects to simplify the equation. Looking at Table 2.2 and 2.3, removing temperature
considerations will greatly simplify the model. There will be no need to estimate cell
temperature of the solar module and the efficiency of the module can just be taken
as the reference efficiency. This is desirable for this research because the goal is to
develop an initial estimate, not to do an in-depth case study.

Table 2.4 shows various correlations for simulating battery state of charge. An
equation similar to the first equation in this table was chosen due to its simplicity

and variable choice and is discussed in more detail in section 3.4.2.
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Table 2.1.  Various equations for estimating power generation from
a solar PV module [35]. Sources and variables are stated within the
reference.
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solar PV module [35].
reference.
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Various equations for estimating cell temperature of a
Sources and variables are stated within the

Sr. No. Model Remarks
1 Toy = 1.14(T; — Ty ) +0.0175 = (G —300)+30 Based on environmental parameters
2 Tow = 1.14(Tg — Ty ) +0.0175 = (Gr —300) +30—cf x v Based on environmental parameters
3. Toe=T, +n.%2mcl Skoplaki model; For free stream wind velocity (v = 0) m/s.
4. T =T, +5‘THSSFGI Skoplaki model; v is the wind velocity component parallel to the surface of PV array.
5 Taia _ Ta+ (v — g )G Schott model; Based on environmental and optical parameters.
[EEE
6. Tow =T +1Gril +c;_1' 1 -cav)(1-1.053 x gy ) Servant model; ¢;, ¢, and ¢y are empirical constants; includes cell efficiency.
7 Toy =0943T,+0.028Gy — 1528v+43 Based on environmental parameters.
8 Tow=Ta+k; x Gr Ross model; Estimate instantaneous value; k, depends on the module specifications and
environmental conditions; k,=002-0.054.
9. T [ =t o 1 4 Talhy + 2eeet 14 cos 0l T2+ by + 4T3 FF]  Ingersoll model; Predicts the average steady-state cell temperature; Includes environmental,
Bog +2axeTo{1+ cos B +Roy +4TIEF, geometrical, optical, and thermal properties.
10. To=To 4 (fﬂu'ﬂl}ﬁ Based on energy balance
=T, -
1. Tpy =T, +(219-832 x]”_ugm-ﬂ Modified NOCT model
2y = Ul G-yl T Mattei et al. model; Based on energy balance.
iat — FyPref
13. Toy =T, +£LFD.0?IEVQ—2.4II\-+32_QE‘| Based on environmental parameters.
14. ‘[,q.r,.m canrl 1 = POJET + A Lroe o + Urmneo 1 Based on energy balance
L'm,r.w +Ueandrd
15. Toa Ty ( )z—‘—[me? Tanocr) (1-2) Includes wind speed parameter in Ref |50]
16. Tor = Tuf G [e‘“ + uw#’_""lrﬁ] King et al. model; Dimensionally inconsistent.
17. Toy = Ty +0.031Gy - 0.058 Based on Ross model
18. Tow =Ta +huwGr  where, k=772 Includes energy balance in Ross model.
x
19, T -Th Based on environmental and optical parameters; Includes sky temperature.
Tpv—T.:+c‘—+‘r,—,[H—pH1—wa!—wL,:l_—‘“] P s
20. R e [If'_f,'} [1 | [!E.L)] Included transmittance in Ref. [160]
21 Tpy =3.12+0.025Gr +0.899T: - 1.3v Based on environmental parameters.
22 T =T +___,_{u.m \ur) (Twvocr — Tanoer) (1-22) Suitable for free standing PV array; Not suitable for BIPV.
23, T = [Uru--lﬂ_fl-lcl:! ;gp:r.—l'—u .IJ [[1 +\"} 12 Based on environmental parameters and heat loss by radiation.
_ 4(m/pf) [(Ueot pf T+t —tipy rof !C'r]
(Usee /) — (/B NT, + T )|
oy, ref =V ref [1 +X%; Ty, ref X2 [n Gm
24, Toy =304+00175(Gr — 1500+ 1.14T, - 25) Based on incident radiation and ambient temperature
25, Ty =Tg +1Gr(1+63To )1 - cav) Servant model; Based on environmental and optical parameters.
26. Tt [l 4Tt '](;J:,f,—} Based on environmental, geometrical and optical parameters.
Toy =
1—npn, .-:I
27. Toy =T, +0.028G; -1 Based on Ross model
B Tow=Ta+ T+ T+ (T4~ Thach King model
29, Toy = 30.006+0.0175(Cy — 300y +1.14T, -25) Based on environmental parameters.
30. Top=Ta +cE‘—(TNm:r— Tanocr)(1—5%) Davies et al. model; Assumes constant heat transfer coefficient.
31 Tl +‘5r[ ](' —y Based on steady state energy balance.
32, Toy =T, +m§jﬂ'~oc:r _20) NOCT model
33 Toy =T, +00155G; 407 Based on Ross model
34. o o<+ gl = PIIGr = G <67 P+ U proms T+ Uimia Tot Based on energy balance equation of solar cell and tedlar
i [ —
35, Tow =T, +0031Gy Based on Ross model
36. Tey =3.81+0.0282Gr +1.31T, - 1.65v Based on environmental parameters.
37 Tpy =T, +£§jﬂ'mc:r —20)+civ—1) Based on NOCT model; Includes the impact of wind speed.
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Table 2.3. Various equations for estimating efficiency of solar PV
module [35]. Sources and variables are stated within the reference.

Sr. No. Model

L. npv = tiref |1 — py (Tpv — Trer) + @L0g19(Gr)|
2. Moy = ireg — 22.4( T —273'%)

e

Npy = Nref [1 7”}7(1‘0 *Tref) }%]

Table 2.4. Various equations for simulating battery state of charge
[35]. Sources and variables are stated within the reference.

Sr. No. Model

L SOC(t +1) = SOC(t) - 2eat®) Ibmi(t) At

2. SOC =SOCo +y— [y (Ipge —1I) dt

3. SOC =S0Co [1 -t —to)] + fi, (Loggc) dt
4. SOC, = [socr_ N g e T (?_H

5.

SOC: = [SOC,_1(1-0)— () |

Ninv X Mdis
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2.5 Simulating Residential Load Profiles

To understand the effect of multiple interconnected SAPV systems, different res-
idential load profiles will have to be generated for each SAPV system. However,
residential load profiles differ greatly depending on the ’occupant’. For example, of-
fice workers, retirees, early birds, night owls, singles, families, rich, and poor will all
have different expected load profiles. Considering that measured profiles are not eas-
ily available, and that the use of average profiles often yield misleading results [36],
simulating load profiles is likely the only available option. For this purpose, various
techniques for modeling residential sector energy consumption will be analyzed.

Two fundamentally different approaches for simulating residential load profiles are

"Top-Down” and ”Bottom-Up”, referring to the hierarchical level of the data inputs.

2.5.1 Top-Down Approach

Top-down methodologies consider the situation as a whole (considering national
energy statistics for instance) and try to attribute an electricity consumption to the
studied household stock with regard to its characteristics without distinguishing the
effect of individual end-uses [37]. Variables which are commonly used by top-down
models include macroeconomic indicators (gross domestic product, employment rates,
price indices), climatic conditions, housing rates, and estimates of appliance ownership

and number of units in the residential sector [38].

2.5.2 Bottom-Up Approach

The bottom-up approach was developed to identify the contribution of each end-
use towards the aggregate energy consumption value of the residential stock [38].
Models can account for the energy consumption of individual end-uses, individual
houses, or groups of houses and these results can be extrapolated to represent the

region or nation based on the representative weight of the modeled sample [38]. Com-
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mon inputs to bottom-up models include geometrical and thermal properties of the
dwelling areas, equipment and appliances consumption history and technical prop-
erties, weather information, historical electrical consumption of the dwelling, and
expected human behavior [37].

This thesis does not require an in-depth knowledge of end uses, historical data is
available, and bottom-up approach is not as easily adapted. Therefore, the bottom-up

approach is not appropriate for this research.

2.6 Optimum Sizing of SAPV Systems

The purpose of this section is to describe the importance of careful sizing in SAPV
systems, propose technical and economic evaluation criteria for designing SAPV sys-
tems, and introduce several methods (intuitive, numerical, analytical, commercial
software, intelligent, and hybrid) for sizing SAPV systems. The technical and eco-
nomic criteria and sizing method chosen for this thesis and why will be discussed
further in the Methodology section.

Because there is no steady backup power supply, the sizing of an SAPV is a
crucial part of the system design [39]. Sized correctly, the combination of renewable
energy sources with energy storage satisfies power output fluctuations with a certain

reliability of supply specified by the user at minimum capital and operational costs.

2.6.1 Evaluation Criteria

The first step in sizing an SAPV system is choosing appropriate evaluation cri-
terion. Various parameters (technical, economic, social and political) can be taken
into consideration in designing an SAPV system as shown in Figure 2.3. Social and
political parameters are outside the scope of this research. Some popular evaluation

criteria are shown in Table 2.5.



Table 2.5. Some popular evaluation criteria for sizing SAPV systems
[35]. Sources and variables are stated within the reference. *Table 4’
in this table refers to Table 2.4 in this thesis.
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Definition

Mathematical formulae

Objective functions
To minimize the NPC.

To maximize the NPV

To minimize the LUCE.

To minimize the simple payback
period.

To minimize the discounted payback
period.

Constraints

Loss of load probability

Capacity shortage

Excess electricity
Battery state of charge

t
Cg+C C
NPC= 2 av
NPV = —Co+(Cy — Com — C)[121]

13
LUCE = Z (Co+Con +Cr)/(141)!

=0 Ee/(A+1)

pit Co
SPP = Cs—Com —Cr

_ In(Cs — Com —Cp)— In{(Cp —Com — Cr) —1Co }
DPP = In(1+r)

LLP = Lioad.def
- rload
CS =t
Ejoad

Eex = EPV o Efoad
S0C; =%; (Table 4)
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SAPV System Evaluation

Criteria
Technical Economic Social and Political

Figure 2.3. Evaluation Criteria for SAPV sizing optimization

Technical Considerations

Technical considerations are due to the fact that solar radiation is not uniform

and the power must be supplied reliably. Some parameters to consider are:

e Loss of Power Supply Probability (LPSP)- The percentage of power sup-
ply that is not able to satisfy the load demand. Used to indicate the reliability
of a power supply [40].

e Loss of Load Probability (LLP)- Indicates how often a system is not being
able to satisfy the load demand or the mean load percentage not met by the

system [41].

e Loss of Load Expected (LOLE)- The amount of energy not provided to load

demand when the load demand exceeds the energy generation from the system.

e Equivalent Loss Factor (ELF)- The ratio of effective time period in hours

of load outage to the total operation time in hours.

e Total Energy Loss (TEL)- The energy loss due to the extra power generated

from a standalone energy system.



23

e State of Charge (SOC)- The amount of energy that can be stored in a system

for the purpose of selecting a suitable battery capacity for a given system.

e Level of Autonomy (LA)- The time ratio expressed as the percentage of load

covered based on the operational time of the system.

e % PV Generation Utilization- The ratio of utilized PV generation to total
PV generation [10].

(References indicated give the definition, equation, and provide an example of using

the technical consideration in sizing an SAPV.)

Economic Considerations

The general concept of optimum design is to design an SAPV system that can
meet the load demand at a defined level of security, and at minimum capital and

operational costs [21]. Thus, the following economic parameters can be considered:

e Capital Cost- The initial investment without considering operation or main-

tenance costs.

e Net Present Cost (NPC)- The present value of all initial investment, oper-

ation and maintenance cost and financial cost.

e Net Present Value (NPV)- Calculated by adding the present value of all
incomes and subtracting the NPC during the life of an SAPV system. A positive
value indicates that the SAPV system is a benefit.

e Simple Payback Period (SPP)- A simple financial tool which does not con-
sider time value of money but simply calculates the time period needed to

recover the invested money.

e Annualized Cost of a System (ACS)- The summation of annualized capital
system cost, annualized operational and maintenance costs, and the annualized

replacement cost [40].
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e Total Life Cycle Cost (TLCC)- Defined as the summation of the net present
values of all the amount of the system costs such as the capital cost, maintenance

and operation costs, replacement costs, etc. [42].

e Capital Recovery Factor (CRF)- The ratio of the amount of constant an-
nuity costs to the total present value of all the costs received for a given time

in years [43].

e Levelized Cost of Energy (LCE)- Defined as the ratio of the total annual
cost of the system components to the total annual energy generated by a stan-

dalone PV system [44].

(References indicated give the definition, equation, and provide an example of using

the economic consideration in sizing an SAPV.)

2.6.2 Sizing Methods

"In general, in determining optimal sizing of a PV system, a specific area for
a standalone PV system is first defined, and then meteorological data such as solar
radiation and ambient temperature are obtained. Capacity of PV system components
such as PV array, storage battery and inverter size are then calculated. It is noted
that several considerations need to be taken into account in a standalone PV system
sizing, such as the kWh/yr needed to cover the load demand, the kWh/yr generated
by the PV system, the Ah of battery banks, the area that the system will occupy,
and the system cost.” [21] Available sizing methodologies for the PV array size and
the storage battery capacity (intuitive, numerical, analytical, commercial software,
intelligent, and hybrid) are given in Figure 2.4. The sizing method chosen, numerical

methods, will be discussed in more detail in the Methodology section (Chapter 3).
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SAPV Sizing
Methodologies
Y Y Y | Y Y Y
. . . Commercial Artificial .
Intuitive Numerical Analytical Software Intelligence Hybrid

Figure 2.4. Sizing methodologies for SAPV systems

Intuitive

A simplified calculation of the size of the system is carried out without estab-
lishing any relationship between the different subsystems nor taking into account the
random nature of solar radiation [45]. A common intuitive approach is the ”worst
month method” where the energy input required is taken to be the month with the
worst conditions for the system. The calculation is greatly simplified but this usually
results in over-sizing the installation, and prevents any kind of energy or economic
optimization. As a result, this method is only suitable to be used for estimating initial

and rough approximation of the standalone PV system [21].

Numerical

In numerical methods, simulations are carried out at each time interval, usually an
hourly or daily time period in either a deterministic or stochastic approach. Stochastic
considers the effect of solar radiation variability while deterministic does not [21].
Deterministic is useful when there are difficulties finding a data set of geological
information. The stochastic approach is considered to be more accurate and allows
for a quantitative analysis of the energy reliability. A stochastic numerical approach

will be used for the research’s model.
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Figure 2.5. Generic numerical method flowchart [21]

A sample procedure for a numerical method is depicted in Figure 2.5. This
flowchart will be taken into consideration for the development of the energy stor-

age analysis.
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Analytical

In analytical methods,the components of a standalone PV system are charac-
terized by computational mathematical models as a function of reliability so as to
determine a system’s feasibility [21]. The advantage of the analytical method is that
sizing calculations are simple while the disadvantage is the difficulty in estimating

coefficients of the mathematical equations which are location dependent [46].

Commercial Software

Currently, many software tools such as Hybrid Optimization Model for Electric Re-
newables (HOMER), Improved Hybrid Optimization by Genetic Algorithms (HOGA),
Transient Systems Simulation Program (TRNSYS), RETScreen, and PV.MY are
available for optimal sizing of an SAPV, none of which facilitate energy sharing strate-

gies between SAPV systems.

Intelligent

Artificial intelligence (AI) methods are used to overcome the unavailability of
meteorological data for sizing a standalone PV system in remote areas [21]. Because
meteorological data is widely available across the US, AI methods will not be an

appropriate sizing method for the proposed energy infrastructure.

Hybrid

Hybrid methods combine two or more different methods to obtain the optimal
result usually to overcome the perceived disadvantages of the previous methods. Al-
though most optimization problems are multi-objective in nature, the hybrid method
usually introduces complex algorithm functions which are not appropriate for adding

functionality (energy sharing).
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3. METHODOLOGY

This chapter describes the methodology for investigating the proposed energy infras-
tructure in detail including the research design; inputs such as project specifications,
component specifications, solar irradiation data, and residential load data; procedures
such as simulating solar irradiation, simulating residential loads, predicting PV and
ESS performance, predicting energy infrastructure performance, and optimally sizing
of SAPV; outputs such as Loss of Power Supply Probability, and Capital Cost; expla-
nation of the code through flowcharts and variable descriptions; validation methods;

analysis methods; and summary.

3.1 Research Design

The research goal is to solve the problem statement: ”What type of SAPV energy
sharing strategy has the lowest total cost? For each sharing strategy, how does
initial charge, load variation, number of SAPV systems, geographic location, required
reliability, and starting month affect total cost and energy storage required?”

The variables initial charge, geographic location, required reliability, and starting
month were chosen as a natural progression from the software development. Looking
at isolated SAPV systems it made sense that the same variables would be important in
interconnected systems. Load variation was investigated because this is what makes
energy trading worthwhile. If every system has the same load and PV generation than
there will not be any instances where it is beneficial for them to trade. Finally, the
number of SAPV systems was chosen because it was thought that with more systems
more trades would occur and the benefit of establishing a transactive microgrid would
increase. Component specifications (PV rating, PV cost, battery efficiency, battery

cost) could have been investigated to show how these specifications must be improved
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to make transactive microgrids economical, but it made sense to start with current
technologies.

To determine the effect of initial charge, one hundred trials will be conducted
for six cases (1%, 5%, 10%, 15%, 20%, and 100% initial charge) for the months of
March, July and November, keeping the number of SAPV systems (five), geographic
location (Indianapolis), and required reliability (nine hours a year or 0.1% LPSP)
constant Values were chosen to get a complete picture of the typical range (5% to
20%) and an outlier on each end (1% and 100%). One hundred trials was chosen
for all of the simulations because initial simulations showed that the values converge
without taking a very large time. Ten trials gave values that did not converge and
one thousand trials took more than thirty minutes per simulation. The purpose of
investigating the effect of initial charge is to find a reasonable baseline and to explore
the effect of initial charge. The hypothesis is that initial charge will not have much
of an effect for the values between 5% and 20% but that it will have more of an effect
for low initial charge if the initial month is in the winter because the simulation will
begin when there is less PV generation.

To determine the effect of the starting month (day 1 of simulation) 100 trials will
be conducted for each month (12 cases), keeping the initial charge (10%), number
of SAPV systems (5), geographic location (Indianapolis), and required reliability (9
hours a year or 0.1% LPSP) constant. Every month was considered to get a complete
picture of the effect. The results for varying starting month will be used to determine
a baseline starting month for the rest of the simulations. The hypothesis is that the
selection of any month besides a winter month will give typical results.

To determine the effect of load variation 100 trials will be conducted for 2 cases:
all systems having the same load and all systems having loads simulated using the
load simulator, keeping the initial charge (10%), number of SAPV systems (5), geo-
graphic location (Indianapolis), required reliability (9 hours a year or 0.1% LPSP),
and starting month (June) constant. The purpose of this test is to demonstrate the

justification of load simulation. The hypothesis is that if every system is considered to
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have the 'typical residential load profile’ then there will be no benefit in establishing
energy infrastructure, but this is not indicative of real life load profiles where people
have different time schedules.

To determine the effect of the number of SAPV systems, geographic location, and

required reliability 100 initial trials of the following cases will be conducted:

e Number of Systems = (2, 5, 10, 20, 50)

e Geographic Location = (Phoenix, Arizona; Little Rock, Arkansas; Indianapolis,

Indiana; Erie, Pennsylvania)

e Required Reliability = (0.1%, , 0.2%, 0.5%, 1% LPSP)

The number of systems were chosen so that a wide range of number of systems
could be investigated. In the model, increasing the number of systems greatly in-
creases the computation time. The case of 100 systems was not investigated because
the computation took more than an hour per simulation.

The reasons these specific locations were chosen are that they all have Class 1
(low uncertainty) data from TMY3, they represent a spectrum of different yearly
average Global Horizontal Irradiance (GHI) values, and they provide examples from
each climate zone in the US. Another reason for including geographic location, besides
investigating different climate zones, is to verify that the effect of number of SAPV
systems and required reliability applies for various datasets.

The values for required reliability were chosen to show the typical range that
residential customers would accept. Nine hours is the standard for utilities across the
U.S. and ninety hours would be considered a large amount of outage for a typical
residential customer.

Five possible number of systems, four geographic locations, and four required reli-
ability options gives a total of eighty cases (eight thousand trials). Constant variables
include starting month (June), initial charge (10%), and component specifications.

The hypothesis is that the number of systems and required reliability will have a large
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effect on the total cost of the IES and CES cases in comparison to the Baseline case,
this effect will be seen in each geographic location, and the geographic location will

affect the total cost but not in comparison to the Baseline case.

3.2 Model Development

The research is carried out through the 'main’ file ”Main.m” which is outlined be-
low and through the flowchart in Figure 3.1. Functions called by ”Main.m” which can
be better explained by flowchart including ”Solar_Cumulative_ STM_Generator.m”,
”Solar_Irradiation_Simulator.m”, ”Baseline_Analysis.m”, and "IES_Analysis.m” can

be found in Figures 3.2, 3.3, 3.4, and 3.5 respectively.

1. Main.m - The main project file given in Figure 3.1. Input the excel file name,
number of SAPV systems, number of trials, number of acceptable outage hours,
number of years of simulation, geographic location of solar and load data, initial
charge of battery, and starting month and then follow the flowchart through each
function until finally a table is output for the baseline, CES, and IES cases.

2. TMY3_ Input.m - Input geographic location by changing the filename of so-
lar and load data to fill the variables ”Solar_Data” and ”Load_Data”. These

outputs will be used to generate synthetic solar and load data.

3. Component_Specifications.m - Input component specifications such as So-
lar Panel Rating, Solar Panel Unit Cost, Solar Panel Installation Cost, Range
of Solar Panels to test, PV De-rating Factor, Battery Capacity, Battery Effi-
ciency, Battery Unit Cost, Battery Hardware Cost, Battery Installation Cost,
and Initial Battery. These inputs will be described in more detail in the next

section ”Inputs”.

4. Solar_Cumulative_STM _Generator.m - Generates a cumulative STM based
on the provided solar data. The outputs include ”Maximum_Solar” which

gives the largest value of solar irradiation rounded to the nearest ten, and
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"Big_Cumulative_Solar” which is the cumulative STM which will be used to

simulate solar. Given by Figure 3.2.

. Solar_Irradiation_Simulator.m - Takes ”Maximum_Solar” and ”Big_Cumul-
ative_Solar” and generates solar irradiation data for each trial. Each system is
considered to receive the same amount of solar irradiation. The output is a
matrix of all simulated solar data for each trial ”Simulated_Solar” which will be

used to calculate the PV output from each system. Given by Figure 3.3.

. PV_Output_Calculator.m - Calculates the PV output energy for each possi-
ble PV configuration based on ”Simulated Solar.” The outputs are ”"Total PV
_Generation” which will be used to calculate % PV Utilization, and ”PV_Output”
which will be used in energy storage analysis. Refer to Equation 3.1 for how

the PV output is calculated from PV derating factor and simulated solar data.

. Load _Demand_Simulator.m - Takes "Load_Data” and simulates for each
SAPYV system a random offset from the typical residential load profile. The load
can be offset between 2 hours ahead and 2 hours behind and will start between
2 days ahead or 2 days behind. This introduces variability by giving a total of
25 possible different load profiles for each trial. The outputs are ”"Hourly_Load”
which stores the hourly load for all systems and ”Shared_Hourly_Load” which
is the sum of the load of all systems for each trial. No flowchart is given for this

function because it simply shifts the load.

. Baseline_ESS_Analysis.m - Given by Figure 3.4. Performs an energy storage
analysis based on "Hourly_Load” and "PV_Output.” Battery State of Charge
(SOC) begins at the specified initial charge and is calculated every hour. If bat-
tery SOC exceeds 100% that energy is stored in energy excess array "LOPVG
Joss” and "LOPVG_Count” is incremented. If battery SOC equals 0% the
amount of energy not supplied is stored in an energy deficit array ”"LOS lack”

and "LOS_Count” is incremented. If the reliability requirement is not met
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(LOS_Count <= LPSP) then the battery is incremented and analysis is re-
peated. Once the reliability requirement is met, a table is output which gives
all useful information from the analysis including number of batteries required,
LOPVG count and loss, % PV Utilization, and capital cost. This is repeated
for the number of systems, number of configurations, and for the number of tri-
als. At the end, a table is output which gives the average performance of each
configuration from all systems and trials. Finally, all of the tables are written

to an Excel file outside of the for loops to speed up the simulation.

Central_ESS_Analysis.m - Performs the same function as ”Baseline_ESS_
Analysis” except based on ”Shared _Hourly_Load” and ”Shared_PV_Output”
which is to say that all systems are treated as one, having a combined PV
output and Hourly Load. The table output at the end gives the average perfor-
mance of each configuration from all trials and gives some extra results including
total cost both as a total and as an average per system. No flowchart is given

for this function because it is very similar to the baseline analysis.

IES _Analysis N_Systems.m - Given by Figure 3.5. Performs an energy stor-
age analysis similar to ”Baseline_ESS_Analysis” where each SAPV system has
its own battery and solar panel configuration but now the systems are able to
share energy. If a systems battery SOC is equal to 100%, that SAPV system
will attempt to sell its energy for that hour to the SAPV system with the lowest
battery SOC. If no SAPV system can take the energy without going over 100%
SOC itself then the energy is stored in energy excess array "LOPVG_loss” and
"LOPVG_Count” is incremented. If a systems battery SOC is equal to 0%,
that SAPV system will attempt to buy energy for that hour from the SAPV
system with the highest battery SOC. If no SAPV system can sell the energy
without reaching 0% SOC itself then the energy not supplied is stored in an
energy deficit array ”LOS_lack” and ”"LOS_Count” is incremented. If any of the

systems do not meet the reliability requirement then those systems not meeting
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the reliability requirement will have their batteries incremented and the analysis
is repeated. Once every system meets the reliability requirement, calculation is
done for all useful information from the analysis as in ” Baseline_ESS_Analysis”
but also including information about which how many times each system bought
and sold energy and the total number of trades. This is repeated for each con-
figuration and for the designated number of trials. Finally, all of the tables
are written to an Excel file outside of the for loops to speed up the simulation.

Pivot tables are created which calculates the average results over all systems.

All inputs, procedures, and outputs will be discussed in closer detail in the fol-

lowing sections.

3.3 Inputs

This section describes the inputs to the model including: project specifications,

component specifications, solar irradiation data, and residential load data.

3.3.1 Project Specifications

Variable names for varying inputs (project specifications) to the model include:

e Excel File Name - Destination for saving output tables. Not included in

Figure 3.1 to save space.

e Number_of SAPV _Systems - The number of interconnected SAPV systems
in CES and IES cases.

e Number_of Trials - Number of trials performed. Load and PV are re-simulated
for each trial. This and other variables with 'Number’ in the name are specified

by # in Figure 3.1.

e LPSP_Count - Referred to as 'Required Reliability” in Figure 3.1. The number

of acceptable outage hours.



Inputs to Main.m
Initial_Charge
# of SAPV_Systems
#_of_Trials
Required Reliability
Geographic Location

Outputs from Main.m
Baseline_Table

Central_Table
IES_Table

TMY3_Input

|

Component_Specifications

|

Solar_Cumulative_STM_Generator

A —

e
[ e f—

v

Solar_Simulator

|

l

PV_Output_Calculator

}

Load_Demand_Simulator

i

v

Baseline_ESS_Analysis

Central_ESS_Analysis

IES_Analysis

11

Figure 3.1. Major inputs (on the left), functions (in the middle), and
major outputs (on the right) for Main.m. Final outputs are tables of
results for baseline, CES, and IES.
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Solar_Irradiation_Simulator.m

“hour = hour + 1

NO,
Test = Test +1

Test = Test + 1
v

YES
row = nextrow
hour = hour + 1

*

YES
day = day +1

*

YES
month = month + 1

‘

YES
Trial = trial + 1
v

|

YES

Figure 3.3.  Flowchart explaining ’Solar_Irradiation_Simulator.m’.
Outputs an hourly matrix of synthetic solar data which will be used
by PV_Output_Calculator.m to calculate PV generation for each hour.
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e Initial Charge - The initial charge of the battery system on hour 1. Given
as a percentage of total battery capacity. The UN Committee of Experts on
the Transport of Dangerous Goods established regulations for transporting haz-
ardous materials. According to resolution UN 3480 no lithium battery may be
transported with a SOC greater than 30%. [47] A Tesla energy advisor through
phone call stated ”The company does not monitor the exact SOC upon arrival,
only that it is below 30% at the time it is shipped. The charge of the battery
when shipped will not be equal to it’s charge when it arrives mainly due to
leakage losses. According to customer surveys charge upon arrival is anywhere
between 5% to 20%.” [48] Simulations will be conducted to determine the effect

of initial charge and then the baseline will be taken as 10%.

e Monthpoint - Used to specify the initial hour of simulation. For instance,
Monthpoint = -744 specifies that the simulation will begin on February 1st, 1
AM.

e Simulation_years - Whole number of years to simulate results. Only con-
sidered 1 year in this research but the model has the ability to simulate any
number of years. Currently, solar data will be the same for each year but load

will vary.

e Solar _Data - Given as a text file with 8,760 data points for every hour of a
regular (non-leap) year. This variable can accept more than one year of data

and consider leap years by examining commented code.

e Load _Data - Also given as a text file with 8,760 data points for every hour of a
regular (non-leap) year. Not currently able to accept more than one year of data
or leap years but can be achieved by looking at how 'Solar_Data’ is handled.
Figure 3.1 specifies 'Geographical Location’ is used within "TMY3_Input’ to
generate 'Solar_Data’ and 'Load_Data’ which is just to say that the file name

of the source data is changed.
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e Initial Battery - The initial number of batteries to test. Not included in
Figure 3.1 and is always one in the research. Can be used to speed up the
simulation or investigate situations with more than the required number of

batteries.

3.3.2 Component Specifications

Variable names for constant inputs (component specifications) including PV and

ESS performance and cost parameters are described in the list below and specified in

Tables 3.1 and 3.2.

PV and ESS Performance Parameters

e Solar_Panel Rating - The solar panel rating in kW.

e PV _Derating_Factor - An empirically determined factor which considers all
of the losses in A.C power generation from a solar panel including, in this case,

the losses due to temperature. Not included in Figure 3.1 due to space.

e PV_Configurations - The range of PV configurations to test (number of solar
panels). Not included in Figure 3.1 or Table 3.1 but a range of 5-20 is used

because this usually covers practical values.

e Battery_Capacity - The 'usable battery capacity’ as specified by the battery.
The Tesla Powerwall has 13.5 kWh of usable capacity of which 100% can be
discharged [49].

e Battery Efficiency - The 'round-trip efficiency’ of the battery considering
charging and discharging.
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Table 3.1. PV and ESS Performance Parameters

PV and ESS Performance Parameters

Input Value Source
Solar_Panel _Rating | 3 kW 50
PV Derating Factor | 0.731 51

49

[50]
[51]
Battery_Capacity 13.5 kW | [49]
Battery_Efficiency 90% [49]

System Cost Parameters

e Solar_Panel_Unit_Cost - The unit cost of the solar panel. In this case, the
price is for a 3 kW solar panel kit which includes the solar panel and also
an inverter and racking system. In Figure 3.1 ’Solar_Panel Cost’ includes "So-

lar_Panel_Unit_Cost’, "Solar_Panel _Hardware_Cost’, and "Solar_Panel_Installation_Cost.’

e Solar_Panel Hardware_Cost - The cost of supporting hardware, estimated
to be from $300 to $500 [50]. Includes wire, conduit, fittings, breakers, AC/DC

Disconnects (if required), junction boxes and a sub panel (if required).

e Solar_Panel Installation _Cost - Estimated by the solar panel kit source to

be 1$/W or $3,000 per 3kW kit [50].

e Battery_Unit_Cost - The unit cost of the battery. In this case, the price
is for a Tesla Powerwall which includes a charge controller and does not re-
quire an enclosure. In Figure 3.1 'Battery_Cost’ includes 'Battery_Unit_Cost’,

‘Battery_Hardware_Cost’, and "Battery_Installation_Cost.’

e Battery Hardware Cost - The cost of supporting hardware, estimated by
Tesla to be $700 per Powerwall [49].

e Battery_Installation_Cost - $1,000 to $3,000 as estimated by Tesla [49]. An

estimate of $1,500 is used in the simulation.
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e Interconnection Cost - Taken as $200 considering that the houses are 50 foot
apart, $1/foot of wire and adding $150 for installation. This is an especially

rough estimate and needs further research.

Table 3.2. System Cost Parameters

System Cost Parameters

Input Value Source

Solar Panel Unit_Cost $4,877 [50]
Solar_Panel_Hardware_Cost | $500 [50]
Solar_Panel _Installation_Cost | $3,000 [50]

Battery Unit Cost $5,900 [49]

Battery Hardware Cost $700 [49]

Battery Installation Cost $1,500 [49]
Interconnection Cost $200 / house | Rough estimate

3.3.3 Solar Irradiation Data

"Typical Meteorological Year (TMY) data files were first created from long-term
data files in the National Solar Radiation Data Base (NSRDB) to help with the
analysis of building performance at a time when computers were much slower and
had smaller memory banks than today. Users wanted a one-year dataset that would
emulate the results produced by using the thirty years of available data in the NSRDB.
Many of the meteorological data parameters affected performance more than the
incident solar radiation, and the TMY data sets were created to be typical of the
meteorological data contained in the NSRDB.” [52]

TMY files were created to represent typical meteorological years and not typical
solar years. Due to the limited number of years in most TMY3 data files, there is

no guarantee that the TMY3 file will be an accurate representation of the average



44

Global Horizontal Irradiation or Direct Normal Irradiation for the entire historical
data set.

Ideally, the most bankable dataset would come from a high-quality site-specific
solar monitoring station that is well maintained and the measurements taken over 30
years or longer. However, very few data sets of that duration exist, and the need for
short-term profitability places severe constraints on the practicality of undertaking
any new and comprehensive studies before seeking funding for a project at a given
site.

7 A typical meteorological year (TMY') data set provides designers and other users
with a reasonably sized annual data set that holds hourly meteorological values that
typify conditions at a specific location over a longer period of time, such as 30 years.
TMY data sets are widely used by building designers and others for modeling re-
newable energy conversion systems. Although not designed to provide meteorological
extremes, TMY data have natural diurnal and seasonal variations and represent a
year of typical climatic conditions for a location.” [52]

Understanding the limitations, the dataset chosen for solar irradiation data is
Typical Meteorological Year, version 3 (TMY3), available at [53].

Figure 3.6 shows the geographical location of all TMY3 ground stations in the
US. Figure 3.7 shows the climate zones used to select sites and simulate residential
load data.

The 4 Locations chosen include: Erie, Pennsylvania; Indianapolis, Indiana; Little
Rock, Arkansas; and Phoenix, Arizona. San Antonio, Texas was initially chosen
but was dropped because it was found to have non-representative residential load
values (6.5 kWh days) resulting in much larger capital cost estimates. San Antonio
will however be used in the validation because it provides a useful example of how
starting month and load variability could affect performance. Figure 3.8 shows the
selected sites superimposed on a map of annual average daily total solar resource.

The reasons these specific locations were chosen are that they all have Class 1

(low uncertainty) data from TMY3, they represent a spectrum of different yearly
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Figure 3.6. Map of TMY3 Sites: Shows the geographical location of
TMY3 ground stations [52]
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Figure 3.7. Climate map [54]
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Figure 3.8. Geographical location of TMY3 ground stations chosen
for this study superimposed on a map of annual average daily total
solar resource from NSRDB

average GHI values, and they provide examples from several climate zones in the
US. The purpose of multiple geographic locations was to show that the results are
replicated among different data sets. For a complete study of transactive microgrids
in every climate zone a marine climate zone should also be considered. The NSRDB
Data Viewer was helpful in selecting locations because it shows monthly average and

annual average daily total solar resource available [55].

3.3.4 Residential Load Data

The TMY3 residential load data was selected because it coincides with TMY3
solar data, is easily accessible and is in a favorable format. This dataset also includes
typical, high and low residential hourly load profiles which will be useful for future

work.
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"This dataset contains hourly load profile data for 16 commercial building types
(based off the DOE commercial reference building models) and residential buildings
(based off the Building America House Simulation Protocols). This dataset also
uses the Residential Energy Consumption Survey (RECS) for statistical references of
building types by location. Hourly load profiles are available for all TMY3 locations
in the United States” [56].

3.4 Procedure
3.4.1 Simulating Solar Irradiation and Residential Load

Solar irradiation data is simulated using Weissbach’s Markov model [4]. This
method was chosen because it was accessible, easily understood, generates realistic
results, and only requires solar irradiation data, not temperature or clearness index.
As long as the results are typical and realistic, the solar irradiation simulation does
not have to be super accurate for this research. Chamola’s method, although it
improves Weissbach’s, is for dimensioning high-reliability systems and was not easily
accessible.

Residential load is taken straight from the residential load data. Variability is in-
troduced by adding or subtracting hours, creating the effect that residential customers
are on different schedules.

Some other strategies for simulating residential load which should be included
in the future include: synthetic loads with more variability, high and low use load
profiles, specific end uses (TV, heating, air conditioning, stove, microwave, etc.),

electric vehicle energy storage, and smart load control.

3.4.2 Predicting PV and ESS Performance

PV performance is taken from the method that HOMER uses for calculating
the output of a PV array without modeling the effect of temperature [57]. This
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method was chosen because it does not require temperature data and it can easily be

incorporated in Matlab.

Gr
Gr.src

Ppy = Ypy fpy( ) (3.1)

Ppy - the output of a PV array (kW)

Ypy - the rated capacity of the PV array, it’s power output under standard
conditions (kW)

fpv - the PV derating factor (%)

Gr - the solar radiation incident on the PV array in the current time step

(W/m?)

Gr.src - the incident radiation at standard test conditions (1,000 W/m?)

Delta is the difference in PV output and load consumed by the system in that
hour indicated by Equation 3.2. A positive Delta indicates that the system generated
more energy than it consumed for that hour. Delta will be used to calculate energy

storage at each consecutive time step.

Delta = PPV - PHourly,Load (32)

Energy storage calculations are taken from [4]. Energy storage is calculated for the
initial hour using the initial charge condition in Equation 3.3 and then in consecutive
time steps using the previous time steps energy storage plus the difference in energy
generated and energy consumed in the previous time-step Equation 3.4. Comparing to
HOMER kinetic battery model [58] some considerations which could be included are
maximum charge current, maximum discharge current, capacity ratio, temperature,

temperature dependence of capacity, and maximum operating temperature.

ESSstorea = Initial_Charge x Batteryy X Batterycapacity (3.3)
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ESSsioreqd = ESS’ + Delta x Battery, 3.4
stored ff

e FSSioreq - The energy available in the battery in the current time step. Equa-
tion 3.3 is only used in the first hour of simulation. Constrained between full

charge (Batteryn x Batterycapacity) and zero charge. (kWh)
o ESS., . .q- The energy available in the battery in the previous time step. (kWh)

e Initial_C'harge - The initial charge of the battery given as a percentage of full
charge. (%)

e Batteryy - The number of batteries being considered. (#)
o Batterycapacity - The usable battery capacity’ per battery. (kWh)

e Delta - The difference in energy generated and energy consumed in the previous
time-step. Calculated a step ahead because of the calculation for ESSgreq in

hour 1. (kWh)

e Battery.ss - The round-trip efficiency’ of the battery. The same value is cur-

rently used whether the battery is charging or discharging. (%)

This method was chosen because temperature, charge rate, and discharge rate
complicated the calculation, it was accessible, and it could be easily incorporated.
3.4.3 Optimum Sizing of SAPV Systems
Sizing Method

The sizing methodology chosen in this section must allow for energy sharing be-
tween individual SAPV systems without becoming too complex. From the literature
survey, there are 6 possible sizing methodologies for SAPV systems: Intuitive, Nu-

merical, Analytical, Commercial Software, Intelligent, and Hybrid. Each of the above



50

mentioned methods for optimal sizing of an SAPV system has limitations that can

be summarized as shown in Table 3.3.

Table 3.3. Limitations of SAPV Sizing Methodologies

SAPV Sizing Methodology Time-step Limitations
N , Simplifed calculation based on daiy or monthly meteorological data, leads to over/under szing of system design,
Intuitive Daily and Monthly o o ,
low reliability, increased system capital, maintenance and operation costs
Numerical Hourly, Daily, and Monthly Suboptimal solutions reached as computation involves finear changes of the decision variables
Analytica Hourly, Daily, and Monthly Less flexiole, requires calculating coefficents for each location
, Unable to improve system components and change component specifications. Unable to add energy trading
Software Hourly, Daily, and Monthly o
functionality
o , Complexity in designing system components, Useful for estimating system performance where there s no historical
Artficial Inteligence Hourly, Daily, and Monthly .
data but U.S. has data available
Hybrid Hourly, Daily, and Monthly Even more complex than artficial intelligence methods. Unable to add energy trading functionality

Intuitive methods are only suitable for an initial or rough approximation of the
SAPV requirements.

An analytical approach will not work for the proposed energy infrastructure be-
cause the model should be as generic as possible, not requiring calculation of geo-
graphical coefficients. Analytical methods also lack time simulation which is neces-
sary for use in % PV Generation Utilization and Loss of Power Supply Probability
calculations.

No existing software tool allows for optimization of SAPV systems which share
energy.

Artificial intelligence methods are not ideal because they are overly complex and
meteorological data is widely available across the US. As such, hybrid methods would
also be too complex for this application.

A numerical approach was chosen for this thesis because it uses iterative loops and

linear functions compared to complex algorithms and can easily incorporate varying
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data such as solar radiation and residential load profiles. This method can be imple-
mented through Matlab and there are several sources which will aid in the develop-

ment of the model.

Technical Considerations

For the purposes of sizing the proposed energy infrastructure, technical consid-
erations chosen include Loss of Power Supply Probability and % PV Generation
Utilization.

LPSP is chosen over LLP because in the case of an SAPV system it is usually
more accurate to say that the power supply was not adequate than to say that the
load was too large. This is because the load is somewhat consistent (cyclic) from day
to day but the supply (solar radiation) is not uniform.

LPSP is a tried and true method for sizing SAPV systems with a standard value
of 0.1%. This means that out of 8,760 hours in a standard (non-Leap) year, it is
acceptable for 8.76 hours (taken as 9 because of 1-hour time resolution) to have
insufficient supply. LPSP is given by the ratio of all energy deficits to the total load
demand during the considered period. [59,60] The expression used for LPSP is:

N,
LPSP — OutageHours (35)
NTotalHours

In this calculation it is important to notice that we are considering the time
sensitivity of the variables and not the quantity of energy produced. It would be
incorrect, for instance, to say that over a large time interval more energy is generated
than consumed so LPSP must be equal to 0 without conducting time simulation to
show if there is any moment where load demand is greater than energy available. An
LPSP value equal to 0, means that the load demand is satisfied at all times for a
specific time period (t). A value in between 0 and 1 means that the supply does not

meet load demand at all times due to either insufficient solar radiation and/or battery
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storage capacity. An LPSP value of 1 would mean that the supply never meets load
demand.

A familiar saying in energy efficiency is ” You can’t improve what you don’t mea-
sure.” Because it is expected that the utilization of solar energy will be improved
due to the proposed energy infrastructure, % PV Generation Utilization will be cal-
culated by the tool but will not be used in the optimization model. The purpose of
including this feature is to, in the future, compare different cases and hopefully show
that a higher percentage of the PV Generation is utilized using the proposed energy
infrastructure.

% PV Generation Utilization is expressed as:

=1 PV GenerationUtilized

'=0 Total PV Generation

%PV GenerationUtilization = (3.6)

Economic Considerations

For the purposes of sizing our proposed energy infrastructure, capital cost will be
the main consideration.

Capital cost is given as the total cost of the system including the cost for all solar
panels, all batteries, their installation and hardware, and the cost of interconnection.

Although lifecycle cost and levelized cost of energy are useful economic parameters,

they are not given directly by the model and require extra analysis.

3.5 Validation

This section describes how the model is validated by using an outside source
(HOMER), several other validations tests, and by giving the functions artificial inputs
and checking that they give the desired output.

HOMER was chosen for the validation because it is the world’s leading microgrid
modeling software, it performs a similar analysis to the proposed model (hourly nu-

merical analysis), it was accessible, the author had some experience with HOMER,
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and the inputs could be easily matched. No existing commercial software allows for
transactive microgrid modeling or simulation of trading between systems. Because
HOMER can not simulate an energy trading system or more than one residential
system, it can only be used to verify the Baseline (Isolated Consumption) case.

HOMER was setup according to the following specifications:

e Tesla Powerwall 2.0 from complete energy storage catalog. Changed Capital
Cost to $ 8,100, the search space to integers from 1 - 30, and changed the
initial state of charge for the different cases. Included a 'Large free Converter’

component to model the integrated inverter.

e Imported the same load and solar data used in this model. Noted that the load
data is somewhat larger than HOMER’s initial estimate for the same location

but my data includes electric heating.

e Used the 'Generic flat plate PV’ component for the PV generation. Changed
the PV capacity to 3 kW, capital cost to $8,377, Derating Factor to %73.1, and
edited the search space to only give answers my model would look at. Did not

consider the effect of temperature.
e (Case studies considered:
— Geographic Locations = (Phoenix, Arizona; Little Rock, Arkansas; Indi-
anapolis, Indiana; Erie, Pennsylvania)
— Required Reliability = (0.1%, 1% LPSP)

— Initial Charge = (10%, 20%, 100%)

These validation results are included in Table 3.4 which compares the results given
the same inputs for this model’s baseline case. My baseline case (one SAPV system
without any energy trading capability) compares reasonably well with HOMER, with

the largest difference being for Indianapolis.
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Some reasons for discrepancies between the two models are that HOMER calcu-
lates reliability through capacity shortage (capacity loss / total capacity demanded)
while I'm looking at hours (hours where capacity is lost/ 8760). HOMER does not
consider the effect of starting month so June was taken as the starting month for
my baseline model. It also may be due to the simulation model, battery model, and
better optimization model of HOMER. HOMER selects an optimum configuration
while this thesis’s model takes an average of all the trials. This is why HOMER gives
an integer value for number of batteries while this thesis’s model does not.

The next list describes other successful validation tests completed, mainly to con-
firm that Baseline ESS_Analysis, Central ESS_Analysis and TES_Analysis give ex-

pected results under artificial conditions:

e Baseline_ESS_Analysis simulates the systems one by one, IES_Analysis handles
each system concurrently. Commented out the trading system in IES_Analysis

and confirmed that it gives the same results as Baseline_ESS_Analysis.

e Although Central ESS_Analysis implements roughly the same code as Base-
line_ESS_Analysis it uses the variable ” Shared_Hourly _Load” instead of ” Hourly
_Load.” Checked to make sure that Central ESS_Analysis gives the same results

as Baseline_ ESS_Analysis when given the same load.

e Checked that Central ESS_Analysis and IES_Analysis give the same results as

baseline when only one system is considered.

The final list describes the functions validated by choosing inputs that should give
an expected output. These functions are given as they are in Matlab with the format:

[OUTPUT]| = Function_Name(INPUT).

e [Solar_Data, Load_Data] = TMY3_Input(Monthpoint)
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Method Location Required Reliability | Initial Charge | Solar Panels | Batteries | Capital Cost
(%) (%) (#) (#) (S)
HOMER Phoenix,AZ 0.1 10 6 3 S 74,562
Baseline Phoenix,AZ 0.1 10 5 3.2 S 67,805
HOMER Phoenix,AZ 0.1 20 6 3 S 74,562
Baseline Phoenix,AZ 0.1 20 5 3.1 S 67,319
HOMER Phoenix,AZ 0.1 100 6 3 S 74,562
Baseline Phoenix,AZ 0.1 100 5 3 S 66,995
HOMER Phoenix,AZ 1 10 5 3 S 66,185
Baseline Phoenix,AZ 1 10 4 3 S 58,051
HOMER Phoenix,AZ 1 20 5 3 S 66,185
Baseline Phoenix,AZ 1 20 3 3 S 57,970
HOMER Phoenix,AZ 1 100 5 3 S 66,185
Baseline Phoenix,AZ 1 100 4 3 S 57,808
HOMER Erie,PA 0.1 10 13 3 S 133,201
Baseline Erie,PA 0.1 10 13 3.1 S 134,011
HOMER Erie,PA 0.1 20 12 3 S 124,824
Baseline Erie,PA 0.1 20 13 3 S 133,444
HOMER Erie,PA 0.1 100 12 3 S 124,824
Baseline Erie,PA 0.1 100 13 3.1 $ 133,768
HOMER Erie,PA 1 10 12 2 S 116,724
Baseline Erie,PA 1 10 12 2.3 S 118,992
HOMER Erie,PA 1 20 12 2 S 116,724
Baseline Erie,PA 1 20 12 2.2 S 118,020
HOMER Erie,PA 1 100 12 2 S 116,724
Baseline Erie,PA 1 100 12 2.2 S 118,263
HOMER Indianapolis,IN 0.1 10 9 4 S 107,793
Baseline | Indianapolis,IN 0.1 10 10 4.5 $ 120,301
HOMER Indianapolis,IN 0.1 20 10 3 S 108,070
Baseline | Indianapolis,IN 0.1 20 10 4.5 S 120,625
HOMER Indianapolis,IN 0.1 100 7 4 S 91,039
Baseline | Indianapolis,IN 0.1 100 10 4.4 $ 119,410
HOMER | Indianapolis,IN 1 10 7 3 S 82,939
Baseline | Indianapolis,IN 1 10 9 3.5 S 104,067
HOMER | Indianapolis,IN 1 20 7 3 S 82,939
Baseline | Indianapolis,IN 1 20 9 3.4 $ 103,257
HOMER | Indianapolis,IN 1 100 7 3 S 82,939
Baseline | Indianapolis,IN 1 100 9 3.5 S 103,986
HOMER LittleRock,AR 0.1 10 11 5 S 132,647
Baseline LittleRock,AR 0.1 10 10 5 S 124,270
HOMER LittleRock,AR 0.1 20 11 5 S 132,647
Baseline LittleRock,AR 0.1 20 10 5.1 S 124,837
HOMER LittleRock,AR 0.1 100 8 7 $ 123,716
Baseline LittleRock,AR 0.1 100 10 4.8 S 122,812
HOMER LittleRock,AR 1 10 8 4 S 99,416
Baseline LittleRock,AR 1 10 9 3.7 S 105,120
HOMER LittleRock,AR 1 20 8 4 S 99,416
Baseline LittleRock,AR 1 20 9 3.7 $ 105,201
HOMER LittleRock,AR 1 100 8 4 S 99,416
Baseline LittleRock,AR 1 100 9 3.6 S 104,877
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— Here there is only one input to test, Monthpoint. Different values were
input and confirmed that the expected Solar and Load Data is output. For
example, choosing a value for Monthpoint of either -744 or 8,016 coincides

with data beginning on February 1st at 1 AM, as expected.

e [Maximum_Solar, Big_Cumulative_STM]| = Solar_Cumulative_.STM_Generator
(Solar_Data)

— Again, there is only one input. Solar Data can be chosen so that there
is an expected output and the function is validated. For example, Solar
Data with a repeating sequence of (0, 9, 18, 27, 36, 45) was input, Maxi-
mum_Solar and Big_Cumulative_.STM gave expected output. These values
were chosen because it confirms that the model rounds the numbers as

expected.

e Solar = Solar_Irradiation_Simulator(Number_of_Trials, Simulation_years, Max-

imum_Solar, Big_Cumulative_.STM)

— Similar to the previous function, the same repeating sequence of (0, 9, 18,
27, 36, 45) was input. Solar gave expected results going from 0 to 10 to 20
to 30 to 40 to 50 and back 0 for the time period of Simulation_Years and

the correct number of trials. This validation is shown in Figure 3.9.

e [PV_Output, Total PV_Generation] = PV_Output_Calculator(Solar, Number_of
_Trials, Solar_Panel Range, Solar_Panel Rating, PV_Derating_Factor)

— Confirmed that "Total PV _Generation’ accurately calculates the total PV
generated by 'PV_Output’ over the year. In Excel, the values of PV Output
are summed for the year and compared them with the model output, both

giving the correct output of 1,095.

— Confirmed that '"PV_Output’ gives realistic values that compare reasonably

with the source data set.
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— Confirmed both outputs for the sequence of (0, 9, 18, 27, 36, 45) for re-
dundancy and ability to manually reproduce the solution. Using a PV

derating factor of 0.5 and a PV rating value of 1 kW values sequence as

expected (0, 0.5, 10, 15, 20, 0), shown in Figure 3.9.

e [Hourly_Load, Shared _Hourly_Load] = Load_Demand_Simulator(Number_of_Tr-
ials, Number_of SAPV _Systems, Simulation_Years, Load_Data)

— Confirmed that Hourly Load is shifted as expected, that Shared_Hourly_L-
oad calculates the sum correctly, and that the function correctly considers

the Number_of_Trials, Number_of SAPV Systems, and Simulation_Years.

3.6 Summary

In summary, this chapter described the methodology for comparing energy sharing
strategies in detail, including the research design; inputs such as project specifications,
component specifications, solar irradiation data, and residential load data; procedures
for simulating solar irradiation, simulating residential loads, predicting PV and ESS
performance, predicting energy infrastructure performance, and optimally sizing of
SAPV; outputs such as Loss of Power Supply Probability, % PV Generation Uti-
lization, and Capital Cost; explanation of the code through flowcharts and variable
descriptions; validation methods; analysis methods; and summary. In the next sec-
tion, results will be generated according to the research design and will be discussed
to show the differences in isolated consumption (baseline), CES, and IES. A summary
table will be assembled which focuses on the optimum configuration found based on

total cost.
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4. RESULTS AND DISCUSSION
4.1 Results for Varying Initial Charge

The Baseline case corresponds with one isolated SAPV system which uses the
conventional SAPV sizing strategy and does not have energy sharing capability.

Based on the figures in this section, the effect of initial charge is not very prevalent
in July (Figures 4.1 - 4.3) or March (Figures 4.4 - 4.6), but is much more appreciable
in November (Figures 4.7 - 4.9). More research is needed to show how initial charge
might affect the rest of the months in the year.

In the November case the lower initial charges of 1% and 5% have a higher cost,
presumably due to difficulties generating enough power to bounce back from the
initial charge condition. It does not appear that any operating strategy handles a low
initial charge condition better than the others.

In the March and July cases for all three operating strategies every initial charge
condition gives roughly the same cost, showing that there was abundant solar power
available to recover from the initial charge condition.

The cases of 1%, 5% and 100% initial charge show more varied results but are
not likely scenarios in the real world. The purpose of including these cases was to
show that initial charge could have a more pronounced effect. From the Components
Specification section, a lithium ion battery must be shipped with less than 30% charge
and there are losses that occur before reaching the customer. Typical values for initial
charge are between 5% and 20% based on Tesla customer surveys. 10% was chosen

as the baseline for the rest of the simulation.
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Figure 4.1. Results for Baseline case with varying initial charge given
July, 5 systems, Indianapolis, and 0.1% LPSP
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Figure 4.2. Results for IES case with varying initial charge given
July, 5 systems, Indianapolis, and 0.1% LPSP
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Figure 4.3. Results for CES case with varying initial charge given
July, 5 systems, Indianapolis, and 0.1% LPSP
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Capital Cost

Effect of Initial Charge on Total Cost for March (Baseline)
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Figure 4.4. Results for Baseline case with varying initial charge given
March, 5 systems, Indianapolis, and 0.1% LPSP
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Effect of Initial Charge on Total Cost for March (CES)
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Figure 4.5. Results for CES case with varying initial charge given
March, 5 systems, Indianapolis, and 0.1% LPSP
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Capital Cost

Effect of Initial Charge on Total Cost for March (IES)
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Figure 4.6. Results for IES case with varying initial charge given
March, 5 systems, Indianapolis, and 0.1% LPSP
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Effect of Initial Charge on Total Cost for November (Baseline)
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Figure 4.7. Results for Baseline case with varying initial charge given
November, 5 systems, Indianapolis, and 0.1% LPSP

66



Capital Cost

Effect of Initial Charge on Total Cost for November (IES)
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Figure 4.8. Results for IES case with varying initial charge given
November, 5 systems, Indianapolis, and 0.1% LPSP
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Capital Cost

Effect of Initial Charge on Total Cost for November (CES)

$200,000.00
$180,000.00
$160,000.00
$140,000.00
$120,000.00
$100,000.00
$80,000.00
$60,000.00
$40,000.00
$20,000.00
5 7 9 1 13 15 17 19
Number of Solar Modules

—0—1%Initial Charge  —@—>5% Initial Charge ~ —@=10% Initial Charge 15% Initial Charge ~ —@=20% Initial Charge  —@=100% Initial Charge

Figure 4.9. Results for CES case with varying initial charge given
November, 5 systems, Indianapolis, and 0.1% LPSP
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4.2 Results for Varying Starting Month

Based on the figures in this section the months of January, February, March,
July, and December give non-typical results compared to the rest of the months,
which compare very reasonably. Indianapolis (Figures 4.10 - 4.12) and San Antonio
(Figures 4.13 - 4.15) did not show the same effect for every month. Comparing both
geographic location results, the month of June was selected as the baseline month for
the rest of the simulation. Choosing July as the baseline was the original plan but
this might introduce a small bias in favor of going off-grid.

HOMER does not include a method for analyzing the starting month of the sim-
ulation. These results indicate that starting month should be considered when a
system wants to go off-grid especially in the winter months. If you must go off-grid
during a winter month, it may be worth using a generator or external power source

to increase the initial charge of the battery.
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Figure 4.10. Results for Baseline case with varying starting month
given 10% initial charge, 5 systems, Indianapolis, and 0.1% LPSP
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Figure 4.11. Results for IES case with varying starting month given
10% initial charge, 5 systems, Indianapolis, and 0.1% LPSP
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Effect of Starting Month (CES) Indianapolis
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Figure 4.12. Results for CES case with varying starting month given
10% initial charge, 5 systems, Indianapolis, and 0.1% LPSP
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Effect of Starting Month (Baseline) San Antonio
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Figure 4.13. Results for varying starting month given 10% initial
charge, 5 systems, San Antonio, and 0.1% LPSP. Note the change in
scale compared to other results
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Figure 4.14. Results for varying starting month given 10% initial
charge, 5 systems, San Antonio, and 0.1% LPSP. Note the change in
scale compared to other results



Effect of Starting Month (CES) San Antonio
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Figure 4.15. Results for varying starting month given 10% initial
charge, 5 systems, San Antonio, and 0.1% LPSP. Note the change in
scale compared to other results
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4.3 Results for Varying Load Variability

Varying load variability for San Antonio (Figure 4.16) suggests that the capital
cost is lower in both the CES with variability and IES with variability cases. For IES
without load variability it’s immediately clear that there is no purpose in establishing
a transactive microgrid because it costs more than the baseline case. Ideally, load
variability would greatly decrease the capital cost so that systems that are not on the
same schedule have a chance to save money by joining together. The no variability
case is not a realistic situation, there will almost surely be some load variability
between residents.

These results are not consistent when geographic location is changed to Indianapo-
lis (Figure 4.17) which indicates that more simulations are required to determine the
effect of load variability. For this locations data, there does not seem to be much
difference at all between the cases with variability and without.

There are better solutions for introducing load variability but it is not an easy
question to determine how a residential load typically varies or how much the load
was varied in a specific case. More advanced load simulation should be included so

that load is not simply shifted to introduce variability.
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Figure 4.16. Results for varying load variability given June, 10%
initial charge, 5 systems, San Antonio, and 0.1% LPSP
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Effect of Load Variability for Indianapolis
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Figure 4.17. Results for varying load variability given June, 10%
initial charge, 5 systems, Indianapolis, and 0.1% LPSP
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4.4 Main Simulation

4.4.1 Effect of Number of Systems

The effect of the number of systems on total cost is explored in Figures 4.23 -
4.26, 4.32 - 35, 4.41 - 4.44, and 4.50 - 4.53.

The number of systems did not have a consistent or significant effect on total cost
per system. This is contrary to the hypothesis that increasing the number of systems
would reinforce the infrastructure because of more systems being available for trading.
Considering that the IES case performs consistently better than the baseline with an
interconnection cost included suggests that the IES case does provide a cost savings,
its just not very much. More research is required with a better load simulation method
to verify this result.

Interestingly, the centralized case showed similar savings for two systems and fifty
systems, indicating that you don’t need to increase the number of systems to find
savings. This is promising because it’s much easier to find just one other person to
establish a microgrid with than to find fifty like-minded individuals and the lower

combined capital cost might not require a company to step in.

4.4.2 Effect of Required Reliability

The effect of the required reliability on total cost is explored in Figures 4.18 - 4.22,
4.27 - 4.31, 4.36 - 4.40, and 4.45 - 4.49.

Changing LPSP required had a significant predictable effect in that as you relax
the requirement the total cost per system goes down. Because the cost is so high, it
is likely that sacrificing reliability and changing energy consumption habits will be
required to make going off-grid affordable. Lower levels of required reliability should
be considered to determine how low reliability would have to be for competitive pricing

with GCPV systems.
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4.4.3 Effect of Geographic Location

The effect of geographic location is explored for Indianapolis (Figures 4.18 - 4.26),
Erie (Figures 4.27 - 4.35), Phoenix (Figures 4.36 - 4.44), and Little Rock (Figures
4.45 - 4.53). A summary table for each geographic location (Indianapolis Table 4.1,
Erie Table 4.2, Phoenix Table 4.3, and Little Rock Table 4.4) was developed based
on these figures.

Each location had a unique typical optimum range of solar panels and batteries.
This was expected because the locations were all chosen from different climate zones
and have different levels of average solar irradiation.

The results show that it is considerably cheaper to go off-grid in Phoenix than in
any of the other locations studied. The cases with the lowest cost per system found
in this study were from Phoenix with 1% LPSP required.

Erie consistently had the highest cost for going off-grid. The cases with the highest
cost per system found in this study were from Erie with 0.1% LPSP required.
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4.4.4 Indianapolis

This section contains all case studies for the location of Indianapolis (Figures 4.18
- 4.26) with a corresponding summary table (Table 4.1). Indianapolis has a climate
zone of ’Cold’ and a global normal irradiance of 3.5 - 4.0 kWh/sq.m/day. Indianapolis
fell somewhere in the middle of the geographic locations studied in terms of total cost

per system.
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Table 4.1. Summary Table for Indianapolis showing the optimum
configurations for each case from the Main Simulation.
Summary Table for Indianapolis
Operating LPSP Number of | Optimum # of | # of Batteries | Capital Cost
Strategy (%) Systems Solar Panels (Average) (Average)

Baseline 0.1 - 10 4.5 S 120,301
Baseline 0.2 - 10 4.2 S 117,709
Baseline 0.5 - 10 3.3 S 110,662
Baseline 1 - 9 3.5 S 103,338
IES 0.1 2 10 4.4 S 119,691
IES 0.1 5 10 4.5 S 120,161
IES 0.1 10 10 4.3 S 119,035
IES 0.1 20 10 4.1 S 117,188
IES 0.1 50 10 4.2 S 117,630
IES 0.2 2 10 4 S 116,532
IES 0.2 5 10 4 S 116,435
1IES 0.2 10 10 4.1 S 117,059
IES 0.2 20 10 3.9 S 115,884
IES 0.2 50 10 4 S 116,540
IES 0.5 2 10 3.2 S 109,931
IES 0.5 5 10 3.3 S 111,056
IES 0.5 10 10 3.2 S 109,769
IES 0.5 20 10 3.1 S 109,426
IES 0.5 50 10 3.1 S 109,048
IES 1 2 9 3.6 S 104,713
1IES 1 5 9 3.6 S 104,397
IES 1 10 9 3.2 S 101,116
IES 1 20 9 3.3 S 102,319
IES 1 50 9 3.2 S 101,703
CES 0.1 2 10 3.3 S 110,903
CES 0.1 5 10 3.2 S 109,517
CES 0.1 10 10 3.1 S 108,716
CES 0.1 20 9 3.9 S 107,337
CES 0.1 50 10 2.9 S 108,168
CES 0.2 2 9 4 S 107,912
CES 0.2 5 9 3.8 S 106,567
CES 0.2 10 9 3.8 S 106,584
CES 0.2 20 10 2.7 S 106,067
CES 0.2 50 10 2.8 S 106,519
CES 0.5 2 9 3 S 99,974
CES 0.5 5 9 3.1 S 100,314
CES 0.5 10 9 2.8 S 98,411
CES 0.5 20 9 2.8 S 97,917
CES 0.5 50 9 2.8 S 98,352
CES 1 2 9 2.4 S 95,317
CES 1 5 9 2.3 S 94,110
CES 1 10 9 2.1 S 92,611
CES 1 20 9 2.1 S 92,814
CES 1 50 9 2.1 S 92,739
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Figure 4.18. Results for varying LPSP required given June, 10%
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Figure 4.19. Results for varying LPSP required given June, 10%
initial charge, 5 systems, and Indianapolis
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Figure 4.20. Results for varying LPSP required given June, 10%
initial charge, 10 systems, and Indianapolis
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Figure 4.21. Results for varying LPSP required given June, 10%
initial charge, 20 systems, and Indianapolis
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Figure 4.22. Results for varying LPSP required given June, 10%
initial charge, 50 systems, and Indianapolis
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Figure 4.23. Results for varying number of systems given 0.1% LPSP
required, June, 10% initial charge, and Indianapolis
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Figure 4.24. Results for varying number of systems given 0.2% LPSP
required, June, 10% initial charge, and Indianapolis
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Figure 4.25. Results for varying number of systems given 0.5% LPSP
required, June, 10% initial charge, and Indianapolis
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Figure 4.26. Results for varying number of systems given 1% LPSP
required, June, 10% initial charge, and Indianapolis
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4.4.5 FErie

This section contains all case studies for the location of Erie (Figures 4.27 - 4.35)
with a corresponding summary table (Table 4.2). Erie has a climate zone of ’Cold’
and a global normal irradiance of 3.0 - 3.5 kWh/sq.m/day. Erie had the highest total

cost out of the geographic locations studied.
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Table 4.2. Summary Table for Erie showing the optimum configura-

tions for each case from the Main Simulation.

Summary Table for Erie
Operating LPSP # of Systems Optimum # of Solar # of Batteries Capital Cost
Strategy (%) Panels (Average) (Average)
Baseline 0.1 - 13 3 S 133,282
Baseline 0.2 - 13 2.7 S 131,014
Baseline 0.5 - 12 3 S 125,148
Baseline 1 - 12 2.3 S 118,911
IES 0.1 2 13 3 S 133,037
IES 0.1 5 13 3 S 132,980
IES 0.1 10 13 2.9 S 132,696
IES 0.1 20 13 2.9 S 132,283
IES 0.1 50 13 2.8 S 131,800
IES 0.2 2 13 2.5 S 129,149
IES 0.2 5 13 2.5 S 129,675
IES 0.2 10 13 2.5 S 129,132
IES 0.2 20 13 2.4 S 128,496
IES 0.2 50 13 2.5 S 128,965
IES 0.5 2 12 2.8 S 123,688
IES 0.5 5 12 2.8 S 123,534
IES 0.5 10 12 2.8 S 123,582
IES 0.5 20 12 2.8 S 123,594
IES 0.5 50 12 2.7 S 122,719
IES 1 2 12 2.1 S 117,815
IES 1 5 12 2.1 S 117,766
IES 1 10 12 2 S 117,621
IES 1 20 12 2.1 S 117,702
IES 1 50 12 2 S 117,204
CES 0.1 2 12 2.8 S 123,526
CES 0.1 5 12 2.6 S 121,719
CES 0.1 10 12 2.6 S 121,800
CES 0.1 20 12 2.5 S 121,010
CES 0.1 50 12 2.4 S 120,540
CES 0.2 2 12 2.4 S 120,083
CES 0.2 5 12 2.2 S 118,933
CES 0.2 10 12 2.2 S 118,641
CES 0.2 20 12 2.1 S 118,026
CES 0.2 50 12 2.2 S 118,312
CES 0.5 2 12 2.2 S 117,167
CES 0.5 5 12 1.8 S 115,320
CES 0.5 10 12 1.8 S 114,972
CES 0.5 20 12 1.8 S 115,025
CES 0.5 50 12 1.7 S 114,688
CES 1 2 11 2.2 S 110,289
CES 1 5 11 2 S 108,822
CES 1 10 11 2 S 108,345
CES 1 20 11 2 S 108,644
CES 1 50 11 1.9 S 108,048
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Figure 4.27. Results for varying LPSP required given June, 10%
initial charge, 2 systems, and Erie
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Figure 4.28. Results for varying LPSP required given June, 10%
initial charge, 5 systems, and Erie
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Figure 4.29. Results for varying LPSP required given June, 10%
initial charge, 10 systems, and Erie
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Figure 4.30. Results for varying LPSP required given June, 10%
initial charge, 20 systems, and Erie



Capital Cost

98

Erie 50 Systems

S200000
9180000
160,000
§140000
§120,000
§100,000
%0000
%0000
40,000
§20000

5
0 1 4 b § 10 1 it 16 18 0

Number of Solar Modules

-[ESOLRIPSP —8—[ESO2%LPSP —@—IESO.5%LPP —@—IES1% PSP —@—CESO.L% (PSP —8—CESO2% PSP —@—CESO.S%LPSP —@—CESLhLPSP

Figure 4.31. Results for varying LPSP required given June, 10%
initial charge, 50 systems, and Erie
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Figure 4.32. Results for varying number of systems given 0.1% LPSP
required, June, 10% initial charge, and Erie

99



Ccapital Cost

Fie0 2410

1 | b § 10 1 i 19 i
Nurerf Sl Noduls

e A=EDgcers =ESSotens =S I0ggtens =S opens A-ESSDgens #=(EDotens =(ESSotens A=CE Ltens A=CEWoptems =CEoptems

Figure 4.33. Results for varying number of systems given 0.2% LPSP
required, June, 10% initial charge, and Erie
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Figure 4.34. Results for varying number of systems given 0.5% LPSP
required, June, 10% initial charge, and Erie
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Figure 4.35. Results for varying number of systems given 1% LPSP
required, June, 10% initial charge, and Erie
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4.4.6 Phoenix

This section contains all case studies for the location of Phoenix (Figures 4.36 -
4.44) with a corresponding summary table (Table 4.3). Phoenix has a climate zone
of "Hot-Dry / Mixed-Dry” and a global normal irradiance of 5.0 - 5.5 kWh/sq.m/day.
Phoenix had the lowest average cost per system out of the geographic locations stud-

ied.
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Table 4.3. Summary Table for Phoenix showing the optimum config-
urations for each case from the Main Simulation.

Summary Table for Phoenix
Operating LPSP # of Optimum # of # of Batteries Capital Cost
Strategy (%) Systems Solar Panels (Average) (Average)
Baseline 0.1 - 4 4 S 65,908
Baseline 0.2 - 4 3.8 S 64,126
Baseline 0.5 - 4 3.2 S 59,752
Baseline 1 4 3 S 57,970
IES 0.1 2 4 4.1 S 66,756
IES 0.1 5 4 3.8 S 64,358
IES 0.1 10 4 4 S 66,278
IES 0.1 20 4 3.8 S 64,666
IES 0.1 50 4 3.8 S 64,865
IES 0.2 2 4 3.7 S 63,759
IES 0.2 5 4 3.5 S 61,815
IES 0.2 10 4 3.5 S 62,074
IES 0.2 20 4 3.4 S 61,199
IES 0.2 50 4 3.4 S 61,191
IES 0.5 2 4 3.1 S 59,142
IES 0.5 5 4 3.1 S 59,093
IES 0.5 10 4 3.2 S 59,385
IES 0.5 20 4 3.1 S 58,522
IES 0.5 50 4 3.1 S 58,638
IES 1 2 4 2.9 S 57,198
IES 1 5 4 2.8 S 56,485
IES 1 10 4 2.8 S 56,550
IES 1 20 4 2.6 S 55,060
IES 1 50 4 2.4 S 53,310
CES 0.1 2 4 3.3 3 60,438
CES 0.1 5 4 3 S 58,170
CES 0.1 10 4 3.2 S 59,247
CES 0.1 20 4 3.1 3 58,429
CES 0.1 50 4 3.1 $ 58,867
CES 0.2 2 4 2.9 S 57,563
CES 0.2 5 4 2.8 $ 56,129
CES 0.2 10 4 2.7 3 55,870
CES 0.2 20 4 2.7 S 55,222
CES 0.2 50 4 2.7 S 55,576
CES 0.5 2 4 2.6 S 54,485
CES 0.5 5 4 2.4 S 52,856
CES 0.5 10 4 2.3 S 52,322
CES 0.5 20 4 2.3 S 51,933
CES 0.5 50 4 2.2 S 51,899
CES 1 2 4 2.2 S 51,447
CES 1 5 4 2.1 S 50,394
CES 1 10 4 2 S 49,924
CES 1 20 4 2 S 49,803
CES 1 50 4 2 S 49,649
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Figure 4.36. Results for varying LPSP required given June, 10%
initial charge, 2 systems, and Phoenix
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Figure 4.37. Results for varying LPSP required given June, 10%
initial charge, 5 systems, and Phoenix
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Figure 4.38. Results for varying LPSP required given June, 10%
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Figure 4.39. Results for varying LPSP required given June, 10%
initial charge, 20 systems, and Phoenix
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Figure 4.40. Results for varying LPSP required given June, 10%
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Figure 4.41. Results for varying number of systems given 0.1% LPSP
required, June, 10% initial charge, and Phoenix
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Figure 4.42. Results for varying number of systems given 0.2% LPSP
required, June, 10% initial charge, and Phoenix
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Figure 4.43. Results for varying number of systems given 0.5% LPSP
required, June, 10% initial charge, and Phoenix
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Figure 4.44. Results for varying number of systems given 1% LPSP
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4.4.7 Little Rock

This section contains all case studies for the location of Little Rock (Figures 4.45
- 4.53) with a corresponding summary table (Table 4.4). Little Rock has a climate
zone of 'Mixed-Humid’ and a global normal irradiance of 4.0 - 4.5 kWh/sq.m/day.
Little Rock fell in the middle among the geographic locations studied in terms of total

cost per system.
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Table 4.4.  Summary Table for Little Rock showing the optimum
configurations for each case from the Main Simulation.
Summary Table for Little Rock
. . # of Capital
Operating LPSP (%) | # of Systems ol Al Batteries Cost
Strategy Solar Panels

(Average) | (Average)

Baseline 0.1 - 10 4.9 S 123,379
Baseline 0.2 - 9 5.4 S 119,457
Baseline 0.5 - 9 4.3 S 110,061
Baseline 1 - 9 3.6 S 104,634
IES 0.1 2 10 4.8 S 122,972
IES 0.1 5 10 4.8 S 122,477
IES 0.1 10 10 4.9 $ 123,814
1ES 0.1 20 = 5.6 S 120,917
1ES 0.1 50 10 4.6 S 121,627
IES 0.2 2 10 4.3 S 118,760
IES 0.2 5 10 4.3 S 118,444
IES 0.2 10 9 5.3 S 118,701
1IES 0.2 20 9 5.4 S 119,617
1IES 0.2 50 =) 5.3 S 118,333
1ES 0.5 2 = 4.4 S 110,828
1IES 0.5 5 =] 4.4 S 111,282
IES 0.5 10 =] 4.3 S 110,626
IES 0.5 20 9 4.3 S 110,715
1IES 0.5 50 9 4.2 S 109,529
1IES 1 2 9 3.6 S 104,753
1ES 1 5 9 3.6 S 104,656
1IES 1 10 = 3.5 S 103,870
IES 1 20 =] 3.5 S 103,951
1IES 1 50 9 3.4 S 103,057
CES 0.1 2 =] 4.9 S 115,567
CES 0.1 5 9 4.7 S 113,533
CES 0.1 10 9 4.8 $ 114,562
CES 0.1 20 9 4.5 S 111,828
CES 0.1 50 = 4.5 S 112,446
CES 0.2 2 = 4.3 S 110,585
CES 0.2 5 = 4.1 S 109,095
CES 0.2 10 9 4.2 S 109,492
CES 0.2 20 9 4.2 S 109,629
CES 0.2 50 =) 4.1 S 108,947
CES 0.5 2 = 3.5 S 103,741
CES 0.5 5 =] 3.4 S 103,327
CES 0.5 10 =] 3.3 S 102,372
CES 0.5 20 9 3.3 S 102,724
CES 0.5 50 9 3.2 S 101,566
CES 1 2 8 3.7 S 96,781
CES 1 5 8 3.6 S 96,295
CES 1 10 =] 2.6 S 96,532
CES 1 20 8 3.5 S 95,424
CES 1 50 8 3.4 S 94,578
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Figure 4.45. Results for varying LPSP required given June, 10%
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Figure 4.46. Results for varying LPSP required given June, 10%
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Figure 4.47. Results for varying LPSP required given June, 10%
initial charge, 10 systems, and Little Rock
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Figure 4.48. Results for varying LPSP required given June, 10%
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Figure 4.49. Results for varying LPSP required given June, 10%
initial charge, 50 systems, and Little Rock
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Figure 4.51. Results for varying number of systems given 0.2% LPSP
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Figure 4.52. Results for varying number of systems given 0.5% LPSP
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Figure 4.53. Results for varying number of systems given 1% LPSP
required, June, 10% initial charge, and Little Rock



125

4.5 Summary

The results from this thesis are summarized in Table 4.5. This table explains
the cases investigated, their effect on total cost, the associated figures for each case,

comments, and future work.
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5. CONCLUSIONS

5.1 Conclusions

In conclusion, the purpose of this thesis research was to investigate sizing method-
ologies for stand-alone PV systems (SAPV) and off-grid transactive microgrids to
compare conventional (isolated consumption), centralized energy sharing (CES), and
interconnected energy sharing (IES) operating strategies.

The idea for improvement of the conventional strategy is that if a transactive mi-
crogrid can be established between SAPV systems they could sell power when their
batteries are full and buy power when their batteries are empty, increasing their relia-
bility and improving their utilization of solar energy, theoretically reducing total cost
depending on the cost to implement the energy infrastructure. The transactive mi-
crogrid has just recently been enabled with the advent of 'Blockchain’; a decentralized
ledger which can allow for the open exchange of power between homes. Now, com-
munities can band together to centrally store their PV and ESS (CES) or distribute
PV and ESS and establish a trading system (IES). Before this research, there were
no analytical studies on the pricing of transactive microgrids which used conventional
SAPV sizing strategies or that considered off-grid operation.

The goal of this thesis was to develop a tool for comparing operating strategies
of SAPV systems (conventional, CES, and IES). This goal was accomplished through
development of a MATLAB program which directly compares the three operating
strategies. Although existing software such as HOMER do not include transactive
microgrid modeling this research shows that it could be easily done especially for the
CES case.

The problem statement for this thesis was as follows: ”What type of SAPV energy

sharing strategy provides the lowest total cost? For each energy sharing strategy, how
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does initial battery charge, load variation, starting month, number of SAPV systems,
geographic location, and required reliability affect total cost?”

The results of this thesis were summarized in Table 4.5. The CES strategy im-
proved initial cost by 7% to 10% compared to the baseline and IES cases. The IES
case saved less than 1% compared to the baseline but did show a consistent savings
considering that an interconnection cost was included. Initial charge was found to
have an effect in November but not in March or July. This indicates that initial
charge might be more of an issue in a winter month but more research should be
conducted to show the effect for every month of the year. Load variability did not
show consistent results, presumably due to the load simulation method, which can
be improved by adding peak shifting instead of just time shifting. The number of
systems involved in a transactive microgrid did not seem to affect the initial cost for
the CES or IES case. This may be due to the load simulation method but it may also
indicate that only one other system is necessary to receive the benefits from an energy
sharing operating strategy. Geographic locations studied showed a large effect on to-
tal cost with Phoenix being considerably cheaper than other locations studied, Erie
having the highest cost, and Little Rock and Indianapolis following closely behind
Erie. This result was expected due to the associated load and solar radiation profiles
of each geographic location. When the reliability requirement was relaxed, allowing
for more hours of outage per system in a year, the cost went down predictably.

Going off-grid with solar and battery is expensive and difficult. It is likely that
in order to go off-grid with favorable economics using any of the proposed operating
strategies it is necessary to reduce the reliability requirement, adopt energy saving

consumption habits, and choose a favorable geographic location.

5.2 Future Work

The results of this thesis could be expanded by:

e Improving load simulation by adding peak shifting
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Considering new variables in the load profile (high vs. low, commercial, indus-
trial, vacations, economic status, number of occupants, home-size, number of

working adults, night-owl vs. early bird, etc.)

Researching typical residential load variability, no study was found which de-

termines the typical variation between residential loads

Upgrading model equations to include solar angles, clearness index, dynamic

battery model, and charge controller behavior

Revising optimization method and search space so that smaller solar and energy

storage sizes are considered

Adding day-level correlations to the Markov solar simulation model. Current
model assumes that solar irradiation is 'memoryless’ which is generally true on
an hourly basis but not on a daily basis. Current model accurately forecasts
how many sunny and shady days there will be in a month but not the order in

which they occur.
Conducting a real world case study

Investigating isolated locations such as polar and tropical where the idea might

make more sense

Developing new energy sharing strategies (all sharing equally, determine the

most equitable sharing method, trying to spread the sharing out among houses)

Including storage from electric vehicles, smart load control between systems
(delaying unimportant loads, speeding up divertable loads), and conservative

energy consuming habits

Considering wind energy generation for transactive microgrids. Wind comple-
ments solar nicely by producing more consistent power during the winter but a

high capital cost usually hinders residential applications
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e Studying the physical interconnection between systems (determine efficiency
losses, develop a generic cost estimate for interconnection, show possible config-
urations, investigate existing equipment such as charge controllers and inverters

to determine how these systems may work)
e Developing a graphic user interface to make the tool more user friendly

These initial results need to be expanded to draw substantiated conclusions, but
a MATLAB tool is now available to advance this research. This tool could be easily
incorporated into existing software such as HOMER. The CES case in particular
shows promising potential for improving the baseline and furthering research in this

field.
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$Component_Specifications.m

% The purpose of this script is to input component specifications.
$%%%%% Solar Panels $%%%%%

%Solar Panel Rating

Solar_Panel Rating = 3000; % in Watt.

% Solar Panel Rating = input ('Please enter the solar panel rating.');

%Solar Panel Cost

Solar_Panel Unit Cost = 4877; % Price for one Solar Panel in U.S. Dollars / Watt. If
given as average installed cost/W then no need to calculate labor cost or inverter cost
%Solar_Panel Cost = input('Please enter the price for one solar panel.');

%Solar Panel Installation Cost
Solar_Panel_ Installation_Cost = 1500; %Price of installation for one solar panel. Not
necessary if solar panel cost given as the average installation cost /W.

%$Total Cost per Solar Panel
Solar Panel Cost = Solar Panel Unit Cost + Solar Panel Installation Cost;

%Range of Solar Panels to Test. $Give as a range of solar panel numbers to
%optimize or one number. i.e Solar_Panel Range = [1 6 9 16]
$Number of Configurations variable would be 4.

Solar_Panel Range = (5:1:50);

%PV Derating factor is a scaling factor that HOMER applies to the PV array
$power output to account for reduced output in real-world operating
%conditions compared to the conditions under which the PV panel was rated.
% Use the derating factor to account for such factors as soiling of the
panels, wiring losses, shading, snow cover, aging, and so on. If you
choose not to explicitly model the effect of temperature on the PV array,
include temperature-related effects in the derating factor.

PV_Derating Factor = 0.731;

P oe

oo

%$Battery Capacity
Battery Capacity = 13.5; % Capacity of Battery in kWh
% Battery Capacity = input('Please enter the battery capacity');

%Battery Efficiency
Battery Efficiency = 0.90; % Round-trip efficiency of battery storage. Using for charging
%Battery Efficiency = input('Please enter the battery efficiency');

%Battery Cost

Battery Unit Cost = 5900; % Price for one battery. If given as the average installation
cost/W then no need to calculate labor cost or controller cost

%Battery Cost = input ('Please enter the battery cost');

%Battery Hardware Cost
Battery Hardware Cost = 700; %Price of hardware for each battery. Not necessary if using
average installation cost/W for Battery Cost

%Battery Installation Cost
Battery Installation Cost = 1500; %Price of installation for each battery. Not necessary
if using average installation cost/W for Battery Cost

%Total Cost per Battery
Battery Cost = Battery Unit Cost + Battery Hardware Cost + Battery Installation_Cost;

%$Initial Guess for Number of Batteries. Used for every case

Initial Battery = 1;
%Initial Battery = input('Please enter the initial guess for number of batteries')

Figure A.5. Component_Specifications
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