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ABSTRACT

Alotaibi, Ahmed Mohammed. M.S.M.E., Purdue University, May 2016. Development
of a Mechatronics Instrument Assisted Soft Tissue Mobilization (IASTM) Device to
Quantify Force and Orientation Angles. Major Professor: Sohel Anwar.

Instrument assisted soft tissue mobilization (IASTM) is a form of massage using

rigid manufactured or cast devices. The delivered force, which is a critical parameter

in massage during IASTM, has not been measured or standardized for most clinical

practices. In addition to the force, the angle of treatment and frequency play an

important role during IASTM. As a result, there is a strong need to characterize the

delivered force to a patient, angle of treatment, and stroke frequency.

This thesis proposes two novel mechatronic designs for a specific instrument from

Graston Technique R©(Model GT3), which is a frequently used tool to clinically deliver

localize pressure to the soft tissue. The first design is based on compression load cells,

where 4-load cells are used to measure the force components in three-dimensional

space. The second design uses a 3D load cell, which can measure all three force

components force simultaneously. Both designs are implemented with IMUduino

microcontroller chips which can also measure tool orientation angles and provide

computed stroke frequency.

Both designs, which were created using Creo CAD platform, were also analyzed

thorough strength and integrity using the finite element analysis package ANSYS.

Once the static analysis was completed, a dynamic model was created for the first

design to simulate IASTM practice using the GT-3 tool. The deformation and stress

on skin were measured after applying force with the GT-3 tool. Additionally, the

relationship between skin stress and the load cell measurements has been investi-

gated. The second design of the mechatronic IASTM tool was validated for force
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measurements using an electronic plate scale that provided the baseline force values

to compare with the applied force values measured by the tool. The load cell mea-

surements and the scale readings were found to be in agreement within the expected

degree of accuracy. The stroke frequency was computed using the force data and de-

termining the peaks during force application. The orientation angles were obtained

from the built-in sensors in the microchip.
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1. INTRODUCTION

1.1 Problem Statement

Physical therapy has been used to help people to relieve their pains and stresses for

thousands of years. The physical therapy practice has different styles and methods,

which have been improved and modified to meet patients satisfaction and wellbeing.

Instrument assisted soft tissue mobilization (IASTM) is a massage technique that uses

solid tools to enhance the restricted tissue. In 1994, Graston Technique R© introduced

a massage methodology based on IASTM using six different tools for different tasks

and functions, illustrated in Figure 1.1.

Fig. 1.1. Graston Technique R© Instrument Set

Massage therapy has been used widely for decades; however, the lack of force

quantification, which can potentially computed by a physician, has affected the de-

velopment of optimal dosing during an IASTM process and the understanding of the
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underlying biological mechanisms [1–3]. The IASTM has offered interesting results

with different conditions and tissues [4–11]. These studies showed that the force ap-

plied by the therapist is a critical parameter in the IASTM, and it should be quantified

and measured accurately for research purposes as well as clinical applications.

1.2 Literature Review

The Graston Technique was introduced to the world of physical therapy by an

athlete who had debilitating knew injury during water skiing. Because of the insuf-

ficiency of Physical therapy and surgery at that time; he created different tools to

treat his knee’s soft tissue using his knowledge in machining. After he succeed on

his knew treatment, he decided to work with Ball Memorial Hospital and Ball State

University to advance and produce the Graston Technique to the world. In 1994,

TherapyCare Resources Inc., which was the main company of Graston Technique,

established in Indianapolis [12]. It has been recommended for use on superficial and

fibrous structures and in the treatment of soft tissue injury (tendinopathies, trigger-

points, hypertonicity, and myofascial pain). Scar tissue from injury causes pain and

restriction of motion-range and functioning in the affected muscles [13].

Instrument assisted soft tissue mobilization (IASTM or ISTM) technique has been

utilized in treatment of soft tissue dysfunction. The method focuses on a controlled

magnitude of micro-trauma to an area of excessive scar tissue or fibrosis. This has

been found to stimulate repair and reorganization of affected tissue [14]. In a study

by Heinecke, Thuesen, and Stow [15], the effect of the Graston Technique (GT) was

found to better facilitate treatment of soft tissue limitations, when compared with

dynamic stretching and strengthening protocols. The GT effect improved shoulder

motion in overhead athletes (softball, baseball, or volleyball).

Laudner, et.al [16], argued that due to the repetitive rotational and distractive

forces exerted on the posterior shoulder during the deceleration phase of the over-

head throwing motion, limited glenohumeral (GH) range of motion (ROM) occurred,
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causing shoulder injuries. It was determined that utilization of instrumentassisted

soft tissue mobilization (IASTM), such as the Graston Technique, was proven to be

effective for various injuries and disorders.

In a case study by Loghmani [17], of a 55-year-old man who had injured the prox-

imal interphalangeal joint of the left index-finger, physical measures were improved,

including an immediate gain in finger range of motion with IASTM alone. However,

it was seen that manual therapy approaches integrating IASTM could provide an

effective conservative treatment strategy for patients with finger-hand conditions in

the performing arts and other patient populations.

As a conservative approach, eccentric strengthening exercises have been used for

the treatment of Achilles tendinopathy. The recommended treatment period for this

approach is 12 weeks. Phipps et. al. [14], demonstrate the potential effectiveness of

IASTM as a manual therapy approach for the treatment of tendon disorders. They

show the potential to yield positive outcomes in a reduced treatment time. How-

ever, it was seen that the treatment regimen included exercise; therefore, the effect

of IASTM cannot be isolated. However, despite this limitation, the treatment com-

bination yielded positive outcomes in relatively fewer visits. Looney, et. al. [8] also

carried out studies to demonstrate that patients with plantar fasciitis treated with

Graston Instrument Soft Tissue Mobilization techniques (GT) and a home stretching

program experienced clinically meaningful improvements.

Arthrofibrosis of the knee is a surgical complication that can limit range of motion,

inhibit muscle activity, and decrease patient function. In studies by Black [18], the

Graston Technique was used as a rehabilitative course in arthrofibrotic limitations.

Clear improvement in range of motion and quadriceps activity and function was noted.

Several human and animal studies have attempted to measure the delivered pres-

sure using different strategies for different massage sets. An earlier human study by

Hsin-Min Lee et al. [19] investigated the effect of transferred friction massage (TFM)

on flexeor carpi radialis (FCR) motoneuron (MN) pool excitability. They built an

electronic system to evaluate the massage rate, momentary pressure and total cu-
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mulative pressure. Their system is based on an ultrathin flexible pressure sensor

(ConTacts C500) and it is fixed on a thumb of the physician and insulated by plastic

glove. However, this system provided an inaccurate measurement for clinical use for

several reasons. Any electrical failure in the system can cause harm either to physi-

cian or patient since one of its components is directly in contact with the therapists

hand. And different therapists have different thumb sizes and softness, which might

affect the force measurements.

Recently, an animal study by Qian Wang et al. [20] has developed an automated

device that can generate a certain amount of force using a feedback loop. Force can be

applied either with compression or transverse force profiles; however, transverse force

is not used as a feedback. The device consists of a base, where small animal (rats and

rabbits) are held during application, and two movement axes to apply force in the

horizontal (X) and vertical (Z) directions. Two-axis force sensors, which are based

on piezoresistance, are mounted at the bottom end of the Z-axis, and can measure

both compression and tensile forces in the X and Z directions. Different stainless

steel tips, which can be fixed on the two-axis force sensors, have been manufactured

according to different tissue size. This bulky equipment has provided a useful method

to quantify the force delivered to the subject; however, this device is impractical for

clinical usage because of its constraints, and neglecting the transverse force will result

in inaccurate force readings.

Similarly, another animal study by Hansong Zeng et al. [21], constructed a vertical

automated compression device, which used a pneumatic system to apply a certain

amount of force on a rabbit. A linear motion control system was used to control the

generated force, and a force sensor (Pasco Inc., U.S.) provided the feedback to the

device. But this device conflicted with the repeatability and feasibility required in

the clinical practice.
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1.3 Objective

In this thesis, two proposed designs of mechatronic IASTM tool for localized ap-

plication of pressure, similar to the treatment tip of GT3, as shown in Figure 1.2 [13],

will be presented, analyzed, built, and evaluated. The first design uses 1D compres-

sion load cells, where 4 load cells are used to measure the three force components in

the 3D space. The second design uses a 3D load cell. The 3D printing technology has

been used to fabricate and assemble these models. The primary objective of this work

is to design, build, and test an accurate force measurement system for IASTM tool

and provide other important parameters, such as the tool orientation angles, stroke

frequency, and a full monitoring system using a suitable platform. The design con-

cepts are intended to enable expansion to other shaped treatment tips for dispersive

pressure and use on different shaped body parts.

Fig. 1.2. GT-3 Treatment tip [13]
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2. PROPOSED IASTM TOOL DESIGNS

2.1 Design Requirements

To design the mechatronic IASTM device, different parameters should be con-

sidered in the design stages. From a safety perspective, the new device must run

at relatively low voltage to reduce the risk of electric shock. The device should be

compact, lightweight, and portable. The new device require measuring forces within

0-155 N, instrument orientation angles, treatment time, and stroke frequency during

a session. It is preferred that the new designs be adaptable to fit different IASTM

devices. In addition, they have to be durable and reusable because of their frequent

usage in clinics, and they must be available at reasonable prices. Finally, the new in-

strument must have a real time user interface for researchers, students and therapist.

These design requirements are crucial at all design stages, from component selection

to the manufacturing process.

2.2 Electronic Component Selection

After considering all design requirements, extensive research was conducted to

reach the optimal designs that could meet the requirements stated in the previous

section. The IMUduino [22] microcontroller was selected to measure the angles and

stroke frequency using its Gyro, a 3-Axis Digital Compass IC, and an Accelerometer.

As shown in Figure 2.1, the IMUduino board has a small form factor (39.8 mm ×

15.72 mm) which helps in reducing the device size.

An extensive and wide-ranging search on force sensors was performed to select

the appropriate force sensors for the new IASTM tool designs. As a result, two load
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Fig. 2.1. IMUduino microcontroller [22]

cells were selected: the smallest compression load cell and a 3D load cell. Two force

measurement strategies were chosen for cost reduction and design versatility purposes.

The first selected force sensor is the smallest compression load cell (FC-08), which

is a compression type load cell produced by Forsentek Co., Limited, as shown in

Figure 2.2. It can measure up to 20 kg of force acting vertically on its nob with a

diameter and height of 8 mm and 5 mm, respectively. Using the compression load

cell requires a signal conditioning unit to amplify and filter the output signal.

Fig. 2.2. The Smallest Compression Load Cell (FC-08) [23]

As shown in Figure 2.3, the second load cell is a 3D load cell (USL06-H5-500N-

C), which is made by Tec Gihan Co., Ltd. This load cell can measure forces in three

dimensional space, with force ranges of up to ±500, ±500, and +1000 N for X, Y and
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Z, respectively. An external amplifier (DSA-03A) supplied by the same company was

used for signal conditioning, as shown in Figure 2.4.

Fig. 2.3. The 3D load cell

Fig. 2.4. The External Amplifier for the 3D Load Cell

2.3 1D Compression Load Cell Based Design

After all electronics and sensors have been selected, the new designs of the IASTM

tool were created using Creo Parametric 2.0 CAD software. The first model was

constructed based on the compression load cell, as shown in Figure 2.5. This device



9

consists of four parts: tip, frame, back cover, and keyways. As shown in Figure 2.6,

the tip was designed to be similar to the GT-3 tip, so it would have the same precision

for targeting soft tissues. A back cavity was designed to fit all electronic component

sizes needed for the device, as shown in Figure 2.5. A back cover was used to seal and

insulate the electronics inside the cavity, as shown in Figures 2.8. The cross section of

the frame was narrowed for finger placements in consideration of the overall diameter

and sensor placements.

Fig. 2.5. Device Based on the Compression Load Cell

Fig. 2.6. Tip Design for the Device Based on the Compression Load Cell
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Fig. 2.7. Sensor Placements for the Compression Load Cell Model

Fig. 2.8. Back Cover of the Compression Load Cells Device

In terms of force measurements, this design used combinations of the compression

load cell to measure the three resultant force components in three-dimensional space.

The orientation angles of the IASTM device, which had an effect on the force mea-

surements, were considered in the new device design stage. Figure 2.9(a) presents

the orientation angles of the IASTM device with respect to its global coordinates.

The angle between the tool and skin generally varies between 20 and 70 degrees in a

typical treatment; this is based on the X-Y plane, with free rotation about the Z-axis.
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As shown in Figure 2.9(b), the compression load cell design consists of four load cells,

which is based on the force analysis of the measured forces.

(a) Device Orientation

(b) Sensors Placement

Fig. 2.9. Mechatronic IASTM Device Orientation Angles and Sensors Placement.

According to the orientation constraints, there were three expected movements,

each of which produced three different measurements of force. As shown in Figure

2.9(b), the various load cells were positioned around the measurement cavity based

on force factorization. First, the Sz+ and Sy+ load cells measure force components

where the force was applied perpendicularly at the tip of the IASTM device, as shown
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in Figure 2.10. Second, when the force is applied with an angle between 0 and 89

degrees, three force components are measured by the Sz+, Sx- and Sy+ load cells, as

shown in Figure 2.11. Third, when the force is applied with an angle between 91 and

180 degrees, three force components are measured by the Sz+, Sx+ and Sy+ load

cells, as shown in Figure 2.12. As a result, this force analysis confirmed that there

was no need for the fifth load cell since there was no force component in the direction

of -Z; this would lead to reduced cost of the compression load cell device.

Fig. 2.10. Force Analysis for 90-degree Force Applied to the Tool

Fig. 2.11. Force Analysis for 0-89 Degrees Force Applied to the Tool

As shown in Figure 2.13, the measurement mechanism of the compression load

cell device was based on forces measured by a well-placed four compression load cells

and a subsequent transformation to an appropriate coordinate system. Three tiny
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Fig. 2.12. Force Analysis for 91-180 Degrees Force Applied to the Tool

wiring canals were used to connect the wires from the load cell compartment to the

microcontroller in the electronics cavity. This design included two keyway pins to

lock the tip to the main frame with 3 mm clearance to allow force transmission.

Fig. 2.13. Full Section for the Compression Load Cell Device

2.4 3D Load Cell Based Design

The second design is based on a 3D load cell, which is a single load cell that

measures all force components. As shown in Figure 2.14, the 3D load cell design

consists of three parts similar to the previous model; however, the main frame is

separated into two parts for wiring purposes. These frame parts are assembled using

two front internal screws and two back external screws for the back cover, as shown

in Figure2.15(a) and Figure 2.15(b).
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Fig. 2.14. 3D Load Cell Device

(a) Right Side

(b) Left Side

Fig. 2.15. 3D Load Cell Device Frame Parts

Similar to the compression load cell device, the tip was designed to be of the

same shape as the IASTM device’ tip; as a result, it will have the same precision in

targeting soft tissues, as shown in Figure 2.16. A back cavity was designed to fit all
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electronics and components needed for the main tasks, as shown in Figure 2.18. The

back cover is used to seal and insulate the electronics inside the cavity. It has a small

crescent shaped outlet hole for the 3D load cell and microcontroller wires, as shown in

Figure 2.17. Part of the cross section of the frame has been narrowed for ergonomic

finger placement.

Fig. 2.16. 3D Load Cell Device Tip

Fig. 2.17. 3D Load Cell Device Back Cover

In order to measure the force, the 3D load cell is inserted into the slot, which has

been designed on both sides of the frame to fit the dimension of the 3D load cell and

its wires, as shown in Figure 2.18. The tip is attached to the 3D load cell using a

fully threaded stainless steel screw, and the contact area is the center part of the 3D

load cell with a diameter of 6 mm. As a result, the 3D load cell measures all force
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Fig. 2.18. Half Section of the 3D Load Cell Device

components that are being applied to the device’s tip. However, the 3D load cell

measures the forces applied to its center, and these forces need be transferred to the

tool tip/skin interface.

As shown in Figure 2.19, the 3D load cell based device had three different coor-

dinate systems: microprocessor, 3D load cell, and tool tip / skin coordinate. The

load cell and microcontroller coordinates were based on their datasheets, while the

tool-tip/skin coordinate was assumed to have the following sign convention: device

forward (+Y), right (+X), and upward movement (+Z), which was based on the right

hand rule.

It was important to transfer the force measurements to the tool-tip/skin interface

because the forces at this interface were the main concern for the treatment practice.

To perform the force transformation, the microcontroller coordinate was rotated by

90 degrees counterclockwise (CCW) about the X-axis to agree with the 3D load cell

coordinates, as shown in Figure 2.20. And this rotation transformation was performed

in the orientation measurement code within IMUduino chip [22]. Next, the orientation

angles were used to transfer the force measurement to the tool/skin interface since
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Fig. 2.19. Main Coordinates for the 3D Load Cell Device

the microcontroller and the 3D load cell coordinates agreed with each other, as both

coordinates were on the same solid body.

Fig. 2.20. Final Coordinates for the 3D Load Cell Device

Based on Eulers rotation theorem, any arbitrary rotation for a solid object or

vector (V) can be represented by a combination of three rotations [24], as shown in

Equation 2.1.

V ′ = ROTx×ROTy ×ROTz × V (2.1)

Where rotations about the X, Y and Z axes are computed using Equations 2.2,

2.3, 2.4. All angles were multiplied by -1 because force components should transfer
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back to the origin (horizontal plane) of the 3D load cell coordinate after any rotation

in 3D space.

ROTx =


1 0 0 0

0 cos(−p) −sin(−p) 0

0 sin(−p) cos(−p) 0

0 0 0 1

 (2.2)

ROTy =


cos(−r) 0 sin(−r) 0

0 1 0 0

−sin(−r) 0 cos(−r) 0

0 0 0 1

 (2.3)

ROTz =


cos(−y) −sin(−y) 0 0

sin(−y) cos(−y) 0 0

0 0 1 0

0 0 0 1

 (2.4)

Next, measurements were transferred to the skin with a distance d, which is

the distance between the measuring point on the 3D load cell and the tip, and is

represented in matrix form, as shown in Equation 2.5.

T =


1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

 (2.5)

Then, a counterclockwise (CCW) rotation about the X-axis was necessary to

transfer the measurements to the proposed practice direction, as shown in Equation

2.6.
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ROTx− skin =


1 0 0 0

0 cos(90) −sin(90) 0

0 sin(90) cos(90) 0

0 0 0 1

 (2.6)

Finally, to get the transformed force measurement on the skin surface, the force

vector was multiplied by the distance matrix, Eulers rotation matrix and the assumed

practice direction matrix, respectively, as shown in Equation 2.7. Where Equation

2.6 was used to transfer the force measurement to the skin coordinate.

F ′ = ROTx− skin×ROTx×ROTy ×ROTz × T × F (2.7)

Equation 2.7 was computed using Matlab code, to represent each force component

in a separate formula, as shown in Equations 2.8, 2.9, 2.10.

Fx′ = d× sin(−r) +Fz× sin(−r) +Fx× cos(−r)× cos(−y)Fy× cos(−r)× sin(−y)

(2.8)

Fy′ = −Fx× (sin(−p) × sin(−y) − cos(−p) × cos(−y) × sin(−r))

− Fy × (cos(−y) × sin(−p) + cos(−p) × sin(−r) × sin(−y))

− Fz × cos(−p) × cos(−r) − d× cos(−p) × cos(−r) (2.9)

Fz′ = Fx× (cos(−p) × sin(−y) + cos(−y) × sin(−p) × sin(−r))

+ Fy × (cos(−p) × cos(−y) − sin(−p) × sin(−r) × sin(−y))

− Fz × cos(−r) × sin(−p) − d× cos(−r) × sin(−p) (2.10)

To verify and examine these formulas, different orientation angles were proposed

under measured 100 N compression force and substituted in the overall force trans-

formation matrix, as shown in Table 2.1. The data obtained were broadly consistent
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with different orientation angle sets and the shifting distance of the 3D load cell from

the skin surface.

Table 2.1
Resultant Forces on Skin with Different Orientation Angles Under
100N Compression Force

An external amplifier (DSA-03A) is used to filter and amplify the output signal

of the 3D load cell, which is then introduced to the Labview software using the data

acquisition card (DAQ), as shown in Figure 2.21. In addition, the microcontroller

(IMUduino), that measures the orientation angles, is connected directly to the com-

puter (PC) using a USB programming cable.

The 3D load cell sensor measures strains in the 3D space, (Appendix A). The

force components are obtained by multiplying strain readings in 3D space by the
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Fig. 2.21. 3D Load Cell Device System Configuration

calibration matrix, as shown in Equation 2.11. However, the sensor output is in

volts, where one volt is equal to 400 micro strains.

(2.11)

2.4.1 Labview Model Building for 3D Load Cell Device

Force Measurement Model

Force measurement was filtered and amplified using the external amplifier (DSA-

03A), which provided the force variation in terms of voltage within ±5 Volt for the

three axes using three cables. These cables were connected to the DAQ device, and

a Labview model was created to get the final force measurement for each axis, as

shown in Figure 2.22. The force measurement model consisted of three phases, which

were signal enquiring, gains multiplication, and calibration and transformation. DAQ
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assistant was used in a while loop to extract the force signal from the DAQ and send

it to the labview model continually. The DAQ assistant displayed the input signals,

which were adjusted to zero using the external amplifiers trimmers. Then two different

gains were multiplied by the input signals. The gains for the X and Y axes were 200

each, and 400 was the gain for the Z axis according to the manufacturer. Then, force

signals were stored in matrix form and multiplied by the calibration matrix 2.11.

The resultant force measurement matrix was translated along the Z-axis and rotated

around the X- axis 90 degrees using Eulers rotation matrix with a rotation order of

X-Y-Z, respectively.

Fig. 2.22. Force Measurement Labview Model for the 3D Load Cell Design
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Orientation Measurement Model

The IASTM orientation angles with respect to horizontal treatment surface were

measured using the microcontroller (IMUduino), which used the open source modified

code Free IMU-Yaw-Pitch-Roll (Appendix B). The arduino code sends the measured

angles to Labview using a serial USB cable in a specific modified form (x-YAW-y-

ROLL-z-PITCH ). In Labview, a model was developed to interpret the previous angle

measurement string, which was sent to Labview by the IMUduino, using NI-Visa block

to communicate with a serial port, as shown in Figure 2.23. The orientation mea-

surement model extracted the angles based on the placements of the three characters

x, y and z.

Fig. 2.23. Orientation Measurement Labview Model for the 3D Load Cell Design
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The IASTM Measurement Model

As shown in Figure 2.24, the angle and orientation measurement models were

assembled in one final model, to use the momentary angles in the force transformation.

In this thesis, only pitch angle was considered in the force transformation because it

was cortical in the IASTM practice; roll and yaw assumed to be zero. Pitch angle

was converted to radian since Euler rotation block uses radian angles in Labview.

Besides angle and force measurements, the IASTM device provided postprocessing

data, which included critical parameters in the treatment. These parameters were:

average angles, average forces within 200 samples, maximum and minimum measured

force for each axis, resultant force using Equation 2.12, average peak resultant force,

stroke number and stroke frequency per minute.

Resultant Force =
√
Fx2 + Fy2 + Fz2 (2.12)

The stroke counter used the peak detection for the measured force of Z-axis func-

tion in Labview, where the threshold and signal width were set to be 5 N and 3 sec,

respectively. All measurements could be exported in Excel format file for practice

analysis. As shown in Figure 2.25, a user-friendly front panel was created to present

all necessary data for the physician during the IASTM practice.

2.5 IASTM Tool Fabrication Using 3D Printing Technology

The prototypes of the proposed designs were fabricated or printed using 3D print-

ing technology, which is a relatively new technology in additive manufacturing. The

3D printed prototypes are shown in Figures 2.26 and 2.27. 3D printing is the process

of transforming a CAD design into a physical model, which is printed layer by layer

until the model is completed, using Fused Deposition Modeling (FDM). All hung parts

and cavities are filled by the printer with removable supporting materials, which can

removed using hand tools or specific solutions. All CAD files were transformed into

STL (STereoLithography) format using Creo Parametric 2.0. The 3D printer (uPrint
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Fig. 2.24. The IASTM Measurements Labview Model

SE) by Stratasys was used to fabricate both designs using Acrylonitrile Butadiene

Styrene (ABS) after uploading STL files to CatalystEX Software.
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Fig. 2.25. The IASTM Device Front Panel

Fig. 2.26. 3D Printed Model of Compression Load Cell Device

Fig. 2.27. 3D Printed Model of 3D Load Cell Device
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3. FINITE ELEMENT ANALYSIS OF THE PROPOSED

DESIGNS

3.1 Modeling Initialization

Finite Element Analysis (FEA) is a numerical method used to analyze and sim-

ulate various mechanical systems, such as thermal, structural, electromagnetic and

fluid dynamics systems. In this research, the proposed designs of the mechatronic

IASTM tool are modeled, analyzed, and simulated as a mechanical structure with

simplifying assumptions on the elastic behavior of the skin under a certain amount of

force. A finite element model of a human arm is simulated to show the relationship

between the applied forces, stress and strain on skin, and force measurements.

3.1.1 Skin and Tissue Modeling

For the purposes of this study, the human tissues and layers were modeled in Creo

Parametric 2.0 as a 100mm3 box with four curved edges to be similar to an arm, as

shown in Figure 3.1. A cylindrical hollow of 30 mm diameter was designed for bone

placement. The skin model was imported to ANSYS Workbench R15.0 to perform

the simulation.

Human tissue is a very complex structure in the human body which has four main

layers: skin, subcutaneous adipose tissue, muscle, and bone, each of which has differ-

ent mechanical properties. Agache al. [25] has presented these mechanical properties

and Youngs modulus of human skin in vivo, and showed that Youngs modulus varies

between 0.42 MPa and 0.85 MPa. According to the Physics Hyper textbook [26],

skin density was shown to be about 1050Kgm−3. In a study of characterization of

the mechanical properties of skin by inverse analysis combined with the indentation
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Fig. 3.1. Human Arm Model in ANSYS

test [27], Poisson’s Ratio was estimated to be 0.48 using the indentation test. The

ultimate tensile strength (UTS) has been determined to be between 5.7 and 12.6

MPa [28] and has been selected to be the UTS of all tissue layers, as shown in Table

3.1. The friction coefficient between skin and stainless steel found to be to be 1 [29].

Table 3.1
Mechanical Properties of Human Skin
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As shown in Figure 3.2, a finite element mesh was generated for the human skin

model, which holds the skins mechanical properties, in order to compute the resultant

stress-strain at each node on the skin. The more mesh the model had, the more

accurate the result became. However, increasing the mesh size resulted in increasing

the solution time. As a result, a mesh refinement was performed on the skin surface,

since the purpose of this study was to show skin reaction to the applied forces.

Fig. 3.2. Skin Meshing
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3.1.2 IASTM Modeling

The device, which was based on four compression load cells, was imported to

ANSYS workbench R15.0 to perform the simulation, as shown in Figure 3.3. As

shown in table 3.2, stainless steel was selected to be the material for both the tip and

tail of the IASTM device. Different assumptions were utilized to simplify the analysis;

the back cover was welded to the device tail. In addition, the four compression load

cells were embedded into the devices front end of the tail, where the devices front

end and the four load cells were part of the tail made of stainless steel, as shown in

Figure 3.4.

Fig. 3.3. Compression IASTM Load Cell Device in ANSYS
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Table 3.2
Mechanical Properties of the Compression IASTM Load Cell Device

Fig. 3.4. Compression Load Cell Embedded into the Device Tail

Meshing was generated for both the tip and tail models, as shown in Figure 3.5.

Since the purpose of this analysis was to evaluate stress and the applied force on the
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skin with respect to force measurement, the load cells tips mesh was refined to obtain

accurate force analysis, as shown in Figure 3.6.

Fig. 3.5. Meshed Load Cell Device

Fig. 3.6. Meshed Load Cell Tail
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3.1.3 Simulation Scenarios Setup

After the compression load cell device and the skin model were imported to the

ANSYS Workbench, connections and the static structural setting had to be defined

to conduct the simulation. The finite element analysis of the 1D compression load cell

device had two scenarios, which were based on the mechanical connection between

the devices tip and skin surface. These scenarios were the frictional and bonded

connections.

Frictional Contact Scenario

The device’s tip was linked to the tail with small tolerance, so force could be

transferred from the device’s tip to the four compression load cells when force was

applied to the patients skin. As a result, the connection between the tip and the tail

was assumed to be a bonded connection, where nine faces on both parts were defined

to be the connection areas, as shown in Figures 3.7 and 3.8.

Fig. 3.7. Device Tail Bonded Connection
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Fig. 3.8. Device Tip Bonded Connection

In the IASTM treatment, tools interact with human skin in different areas, and

most of these tools, which are used in physical therapy clinics, are made of stainless

steel. The contact between the polished stainless steel and skin is a frictional contact,

even when gel is used to minimize the friction. As a result, the connection between

skin and the device tip was determined to be a frictional connection with friction

coefficient µ = 1 [29] . The frictional coefficient plays an important role in defining

the relationship between two materials and normal force, and the frictional coefficient

between skin and stainless steel has been found to be one [29]. The contact areas

were defined as four faces on the device tip and the upper area of the arm model, as

shown in Figures 3.9 and 3.10. The Augmented Lagrange formulation was used to

define the contact area and prevent interaction between two bodies using Equation

3.1, where λ made the solution less sensitive to contact stiffness [30].

Fnormal = knormal × apenetration + λ (3.1)

After the connections were defined, the contact initial information could be gener-

ated and investigated using contact tools, as shown in Table 3.3. The table shows all
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Fig. 3.9. Skin Frictional Contact Area

Fig. 3.10. Device Tip Frictional Contact Areas

connections, geometric gaps, and penetration, and the resulting pinballs radii, which

provide an efficient contact calculation by differentiating the far and near contact

regions while identifying the expected contact elements [30].
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Table 3.3
Initial Information for IASTM Device Simulation Using Contacts Areas

The static structural and boundary conditions were defined after meshing was

performed and the contact information was generated. The analysis time was set

for 6.3 seconds, and the number of steps was 12. For the nonlinear controls of the

static structure, the unsymmetrical Newton Raphson option was selected to help with

convergence of the solution. In the real practice of IASTM, the device is moved with

certain acceleration on a skin surface. Therefore, the device acceleration was assumed

to be 0.5mm/s2 in a direction parallel to the skin surface (Z axis), as shown in Figure

3.11.

The displacement constraint was set as follows: the bottom surface of the device

was selected to apply the displacement condition, as shown in Figure 3.12. The device

was set free to move against the skin, which was represented by the Z direction in the

device coordinate system. Similarly, the device was set to move across and parallel to
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Fig. 3.11. Direction of Devices Acceleration

the skin with an acceleration of 0.5mm/s2. But the device was not allowed to have

sideways movements, which means it couldnt move in X direction.

Fig. 3.12. Device Displacement Constraint Areas

IASTM has different treatment positions and methodologies, where force is applied

to different parts of the device. For the new IASTM device, the force can be applied

to device either on the tool neck or on the back cover, as shown in Figures 3.13 and

3.14. In both cases, the same pressure amount will be delivered to the skin. In this
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FEA, a compression force was chosen to be applied gradually to an area of 207.14mm2

on the back cover to test the IASTM under different pressures/forces and to assist

with the force convergence, as shown in Table 3.4.

Fig. 3.13. Applied Force to IASTM Device on the Tool Neck

Fig. 3.14. Applied Force to IASTM Device on the Back Cover
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Table 3.4
Hand Pressure on the Back of Device in FEA (Frictional Connection)

Bonded Contact Scenario

Similar to the frictional scenario, the device tip was linked to the tail with small

tolerance. The connection between the tip and the tail was assumed to be a bonded

connection, where nine faces on both parts were defined to be the connection areas,

as shown in the previous section, in Figures 3.7 and 3.8. In the bonded scenario,

in order to investigate the impact of the IASTM device on skin and its force mea-

surement, the contact between the polished stainless steel and skin was considered a

bonded connection, which means both objects were glued together and not allowed

to separate. The contact areas were defined as four faces on the device tip and the

upper area of the arm model, as shown in the previous section, in Figures 3.9 and
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3.10. The contact initial information was generated and investigated using contact

tools, as shown in Table 3.5.

Table 3.5
Initial Information for AISTM Device Simulation Using Contacts Areas

The static structural and boundary conditions were defined after meshing was

performed and the contact information was generated. The analysis time was set for

12 seconds, and the number of steps was 12. For the nonlinear controls of the static

structure, the program controlled Newton Raphson option was selected to help with

convergence of the solution.

The displacement constraint was set as follows: the bottom surface of the device

was selected to apply the displacement condition, as shown in Figure 3.15. The device
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was set free to move against the skin, which was represented by the Z direction in the

device coordinate system. But the device was not allowed to have sideways movements

(X-axis) or vertical movements (Y-axis). The force was applied gradually to an area

of 207.14mm2 on the back cover to test the IASTM under different pressures /forces

and to assist with the force convergence, as shown in Table 3.6.

Fig. 3.15. Device Displacement Constraint Areas

3.2 Analysis Results and Discussion

3.2.1 Frictional Scenario

After all the IASTM device simulations parameters were defined, the simulation

was successfully solved to compute the desired stresses and strains on different com-

ponents, which resulted from the applied hand force by a therapist, using ANSYS

Workbench R15.0. As shown in Figure 3.16, the force convergence chart shows which

sub-step or load step converged at each iteration, to check the simulation validity.
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Table 3.6
Hand Pressure on the Back of Device in FEA (Bonded Connection)

The following subsections explore the relationship between stress and deformation on

the skin, which resulted from hand pressure measured by the load cell’s tips.
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Fig. 3.16. Force Convergence Chart (Frictional Connection)

Simulated Skin Results

Von Mises Stress (Equivalent Stress) and Maximum Principal Stress were gen-

erated to determine the relationship between the hand pressure and the stresses on

the skin. These methods are used widely to detect the failure criteria of different

material under certain forces. As shown in Figure 3.17, the relationship between the

Von Mises Stress (Equivalent Stress) and hand pressure was produced using the AN-

SYS. Its clear that when the hand pressure increased, the maximum and minimum

Equivalent Stress also increased. In terms of maximum Equivalent Stress, the maxi-

mum value was recorded after the hand pressure was increased to 0.20 MPa, at 2.49

seconds, as shown in Figure 3.18. The minimum value was recorded at the beginning

of the practice, at 0.10 seconds, when the device just touched the skin with a pressure

of 0.0281 MPa.

The relationship between the minimum and maximum readings for the Maximum

Principal Stress was generated, as shown in Figure 3.19. The maximum value of the

Maximum Principal Stress represents the tension stress on skin, which increases when

the hand pressure increases. In addition, the compression stress (minimum values)
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Fig. 3.17. Hand Pressure vs. Equivalent Stress on Skin (Frictional Connection)

Fig. 3.18. Maximum Equivalent Stress under Hand Pressure of 0.20
MPa (Frictional Connection)

increases when hand pressure is applied, too. Although the compression stress on

skin is slightly higher than the tension stress, which was recorded when hand pressure

increased to 0.25 MPa, as shown in Figure 3.20.
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Fig. 3.19. Maximum Principal Stress on Skin vs. Hand Pressure
(Frictional Connection)

Fig. 3.20. Maximum Value of the Maximum Principal Stress Under
Hand Pressure of 0.25 MPa (Frictional Connection)

Skin/tissue deformation is an important factor in IASTM process in order to

ensure the optimal treatment of the restricted tissues. As shown in Figure 3.21,

the maximum and minimum deformation values reached their maximum after the

hand pressure increased to 0.25 MPa at 6.2 second with 4.0012 mm and 0.18247 mm,

respectively. To visualize the maximum total deformation, a photograph has been

taken at that moment, as shown in Figure 3.22.
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Fig. 3.21. Skin Total Deformation (Frictional Connection)

Fig. 3.22. Maximum Total Deformation (4.0012 mm) Under Hand
Pressure 0.25 MPa (Frictional Connection)
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IASTM Force Simulation Results

The force measurements have been investigated when the IASTM device inter-

acted with the patients arm model at an angle of 20 degrees in ANSYS Workbench,

to show the force/stress levels at the load cell tips (Area = 2mm2) in relation to the

therapists hand force. As shown in Figure 3.23, the maximum stress on the load cells

measurement has been exported, where stress measurements have been recorded on

each load cells tip. The maximum stress measurements by F+y and Fz recorded a

higher stress than the stresses on the X axis load cells, because the device is rotated

only around the pitch angle of 20 degrees and that agrees with the vector analysis

that has been discussed before. The maximum stress measured by F+y was relatively

smaller than the measured stress in Fz until the hand pressure increased to 0.20 MPa

and the skin deformed 2.8566 mm. As a result, F+y load cell will measure a slightly

higher value than Fz when the hand pressure and skin deformation increases.

Fig. 3.23. Maximum Four Load Cells Stress Distribution vs. hand
pressure (Frictional Connection)

On the other hand, the minimum stresses recorded in the directions F+y and

FZ were large after increasing the hand pressure to 0.20 MPa with resulting skin
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deformation of 2.8566 mm, as shown in Figure 3.24. However, stress measurement in

the X axis is still low but not higher than the maximum values.

Fig. 3.24. Minimum Four Load Cells Stress Distribution vs. Hand
Pressure (Frictional Connection)

3.2.2 Bonded Scenario

The simulation was successfully solved to compute the desired stresses and strains

on different components, which resulted from the hand force applied by a therapist,

using ANSYS Workbench R15.0. The following subsections explore the relationship

between stress and deformation on the skin, and the simulation of the measured forces

by the load cell’s tips.

Simulated Skin Results

As shown in Figure 3.25, the relationship between the Von Mises Stress (Equiv-

alent Stress) and hand pressure was generated using ANSYS Workbench. It’s clear

that the maximum and minimum Equivalent Stress were proportional to the hand
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force. In terms of maximum Equivalent Stress, the maximum value was recorded at

the maximum hand force (120 N), as shown in Figure 3.26. To reduce the scope,

the base 10 logarithm was used to generate the graph. The minimum value was

approximately zero during the simulation.

Fig. 3.25. Hand Force vs. Equivalent Stress on Skin (Bonded Connection)

The relationship between the minimum and maximum readings for the Maximum

Principal Stress was generated, as shown in Figure 3.27. The maximum and minimum

values of the Maximum Principal Stress were proportional to the hand force, and they

represent the tension and compression stresses on skin, respectively. The compression

stress on skin was slightly higher than the tension stress, which was recorded when

the hand force reached 100 N, as shown in Figure 3.28.

In terms of skin/tissue deformation, the maximum and minimum deformation

values reached their maximum when the hand force reached 120 N, 9.2811 mm and
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Fig. 3.26. Maximum Equivalent Stress under Maximum Hand Force
(120 N) (Bonded Connection)

Fig. 3.27. Maximum Principal Stress on Skin vs. Hand Force (Bonded Connection)

1.4865 mm, respectively, as shown in Figure 3.29. To visualize the maximum total

deformation, an image was recorded at that moment, as shown in Figure 3.30.

IASTM Force Simulation Results

The force measurements were investigated when the IASTM device interacted with

the patients arm model at an angle of 20 degrees in ANSYS Workbench, to show the
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Fig. 3.28. Maximum Value of the Maximum Principal Stress Under
Maximum Hand Force (120 N) (Bonded Connection)

Fig. 3.29. Skin Total Deformation (Bonded Connection)

force/stress levels at the load cells tips (Area = 2mm2 ) in relation to the therapists

hand force. As shown in Figure 3.31 and 3.32, the maximum and minimum stresses on

the load cells measurement were exported, where stress measurements were recorded

on each load cells tip. The maximum and minimum stress measurements of load
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Fig. 3.30. Maximum Total Deformation Under Hand Force 120 N

cells F+y and Fz were higher than the stresses on the X axis’s load cells, because

the device was rotated around the pitch angle of 20 degrees, which agreed with the

vector analysis that was discussed before. The stress on load cell Fz was measured

at the highest maximum and minimum stress/force during the complete simulation,

followed by F+y.
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Fig. 3.31. Maximum Four Load Cells’ Stress Distribution vs. Hand Force

Fig. 3.32. Minimum Four Load Cells’ Stress Distribution vs. Hand Pressure
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4. MEASUREMENTS VALIDATION TEST

4.1 Validation Systems

After the 3D compression load cell based IASTM device was assembled, valida-

tion tests were performed to check the measurements accuracy and repeatability.

The IASTM technique is used to enhance the restricted tissue by applying a certain

amount of force and angle, which must be quantified accurately. And that will allow

the new IASTM device to standardize the IASTM practice and move it to the next

level, which is human study.

4.1.1 Force Validation System

A validation system was built to insure that the IASTM device met the force mea-

surement requirements. The system was based on electronic scale (PCE-PB 150N)

with readability of 0.49 N to measure the vertical force component on the scale plate,

as shown in Figure 4.1 . Different weights placed on the scale to check the scale

accuracy. As shown in Table 4.1, the scale couldn’t detect any load less than 100 g.

However, the absolute relative error varied between 0 and 2.06 % for the rest of load

measurements.

Fig. 4.1. Electronic Scale
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Table 4.1
Summary of The Scale Accuracy Test

The scale measurement in Newtons was acquired using Labview software through

a serial port interface. According to the scale manufacturer (Appendix C), the scale

measurement is transferred in 16 digits using the scale controller through a USB cable,



56

as shown in Table 4.2. The scale measurement is placed between the third and tenth

byte, where the second and eleventh bytes are spaces and the measurement unit is

stored in bytes 13 and 14. As a result, a Labview model was constructed to extract

the scale measurement based on the previous criteria, as shown in Figure 4.2. The

scale measurement was embedded into the main IASTM device using the Labview

model to provide the user with all measurements in one display.

Table 4.2
Scale Data Format

Fig. 4.2. Scale Labview Model
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4.1.2 Angle Validation System

A validation system was built to insure that the IASTM device met the angle

measurement requirements. As shown in Figure 4.3, the combination square set was

set on flat surface.

Fig. 4.3. Combination Square Set (Angle Validation System)

4.2 Methodology and Test Results

Three student examiners from the School of Health and Rehabilitation Science at

IUPUI were assigned to use the new IASTM device and apply force to the scale plate

with different pitch angles. In the first and second test, each student was asked to

apply as much force as possible five times through the IASTM device with a pitch

angle between 85 to 95 degrees (holding the device perpendicular to the scale surface)

using a pencil grip hand position, as shown in Figure 4.4. The 3D load cell and scale

measurements were exported. The absolute relative error varied between 0 and 5.9

%, as shown in Tables 4.3 and 4.4.
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Fig. 4.4. Hand Position of IASTM Device in the First and Second Tests

Table 4.3
Summary of The First Force Measurement Test
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Table 4.4
Summary of The Second Force Measurement Test

In the third test, each student was asked to apply as much force as possible, but

the IASTM devices pitch angle had to be within 40 to 50 degrees using a pencil

grip hand position, as shown in Figure 4.5. An exercise mat was inserted between

device’s tip and scale plate to simulate skin behavior. The 3D load cell and scale

measurement were exported. The absolute relative error varied between 2.74 and

11.43 %, as shown in Table 4.5. The maximum absolute relative error was higher

than previous test because of the existence of the exercise mat. These test results

indicated the IASTM device had great repeatability and accuracy criteria.

In terms of angle measurement, the IASTM device was attached to a ruler arm of

the combination square set at three different angles, 30, 45 and 60 degrees, as shown in
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Fig. 4.5. Hand Position of IASTM Device in the Third Test

Table 4.5
Summary of The Third Force Measurement Test
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Figures 4.6, 4.7 and 4.8, respectively. The indicated pitch angle from the combination

square set and the measured pitch angle from the Labview were compared, as shown

in Table 4.6. The absolute relative error varied between 1.6 and 3.3 %. The angle test

results indicated that the IASTM device had an accurate pitch angle measurement.

Fig. 4.6. IASTM Device at 30 Degrees

Fig. 4.7. IASTM Device at 45 Degrees

Fig. 4.8. IASTM Device at 60 Degrees
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Table 4.6
Summary Pitch Angle Measurement Test

4.3 IASTM Device Dynamic Analysis

After force and angle measurements were proven to be effective and accurate, the

IASTM device’ measurement systems were connected to examine and analyze the

complete device. An examiner was asked to apply a random number of force strokes

to skin with an approximated pitch angle of 45 degrees. As shown in Figure 4.9,

the Fz and Fy force components on the skin surface (skin coordinate) were almost

identical during the test time, which was 21.5 seconds, because the pitch angle was

approximately 45 degrees and that would distribute the applied force equally for the

Fz and Fy components. The examiner attempted to maintain the device at 45 degrees

during the test, however, every time the IASTM device interacted with the skin, the

examiners hand tilted the device to approximately 50 degrees.

As illustrated before, the stroke counter was based on the beak detector of the

untransformed force component in the Z direction at the 3D compression load cell

center. The Labview front panel indicated that the examiner delivered 17 pressure

strokes to the skin; however, the examiner delivered 18 strokes based on the examiner

count and untransformed Fz reading, as shown in Figure 4.10. As a result, the stroke

counter was accurate with an absolute relative error of 5.5 %.
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Fig. 4.9. Summary of the Dynamic Test for the IASTM Device

Fig. 4.10. Stroke Number During the Dynamic Test
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

Instrument assisted soft tissue mobilization (IASTM) is a form of massage using

rigid manufactured or cast devices. The delivered force, which is a critical parameter

in the massage during IASTM, has not been objectively measured or standardized

for clinical practices. In addition to force magnitude, the angle of treatment and

frequency play an important role during IASTM. There is a strong need to charac-

terize the delivered force to a patient, angle of treatment, and stroke frequency. In

this thesis, two novel devices were developed to deliver localized pressure to the soft

tissue. The first design was compression load cell based, where four load cells were

used to measure the three force components in three-dimensional space.

A finite element analysis using Ansys software was created for the 1D compression

load cell based device to simulate IASTM practice using the IASTM device, which

was based on the 1D compression load cells. Bonded and frictional scenarios, which

were based on the relationship between the device tip and skin model, were simulated.

Deformation and stress on the skin were measured after applying a certain amount

of force with the GT-3 tool. In addition, the relationship between skin stress and the

load cell measurements were investigated.

Both design were used an IMUduino microcontroller board to measure IASTM

orientation angles and stroke frequency. The second design, which was based on a

3D load cell, could measure all three component forces by itself, and measurements

were transferred to a portable laptop using a data acquisition card from National

Instruments. The force measurements were transferred and represented with respect

to the skin coordinate system based on the orientation angles and the distance between

the device’s tip and the load cell placement. LABVIEW software was used to program
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and display all required measurements in a user-friendly interface. Orientation angles

and stroke frequency were measured by an IMUduino microcontroller, similar to the

first design.

In terms of validation, an electronic plate scale was used to measure known applied

forces. The load cell measurements and the scale reading were compared to determine

the accuracy of the IASTM device. The absolute relative error varied between 0 and

11 %. The angle measurement was tested using a combination square set tool, and

the absolute relative error varied between 0 and 3.3 %. The IASTM device was tested

to collect and examine the device performance. The device was found to be accurate

and stable during real dynamic operation mode.

5.2 Future Work Recommendation

The findings in this thesis suggest several possible future projects. First, the

device should be tested for reliability using a small animal model prior to use in

humans. Next, the design concepts could be expanded to different shaped treatment

device tips to allow for contoured treatment of different body regions. Also, a finite

element simulation could be created for the second design to simulate IASTM practice

using the IASTM device; different angles and device movements could be simulated

to investigate the force measurement for both devices. Pencil grip position for the 1D

compression load cell can be investigated,too. In addition, the angle measurement

code could be modified to include different orientation angles with respect to different

treatment surface inclinations using quaternion coordinate. Stroke length can be

measured using a laser displacement sensor, which might fixed on the device’s tail

or an external frame next to the treatment surface. The resonance, which impacts

the tissue rehabilitation progress,can be quantified using a piezo vibration sensor

maintained inside device’s tip.
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A. 3D LOAD CELL DATA SHEET

Fig. A.1. 3D Load Cell Data Sheet
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B. ARDUINO CODE FOR ANGLE MEASUERMENT

(FREE IMU-YAW-PITCH-ROLL)

B.1 Code 90 Degrees

#include <ADXL345.h>

#include <bma180.h>

#include <HMC58X3.h>

#include <ITG3200.h>

#include <MS561101BA.h>

#include <I2Cdev.h>

#include <MPU60X0.h>

#include <EEPROM.h>

//#define DEBUG

#include "DebugUtils.h"

#include "CommunicationUtils.h"

#include "FreeIMU.h"

#include <Wire.h>

#include <SPI.h>

int raw_values[9];

//char str[512];

float ypr[3]; // yaw pitch roll

float val[9];

// Set the FreeIMU object

FreeIMU my3IMU = FreeIMU();
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void setup() {

Serial.begin(115200);

Wire.begin();

delay(5);

my3IMU.init(); // the parameter enable or disable fast mode

delay(5);

}

void loop() {

// my3IMU.getYawPitchRoll(ypr);

my3IMU.getEuler(ypr);

Serial.print("x");Serial.print(round(ypr[0]));

Serial.print("y");Serial.print(round(ypr[1]));

Serial.print("z");Serial.println(round(ypr[2]));

delay(10);

//delay=10 there is deally in labview

//delay=50there is hight nois in labview

//delay=20 there is deally in labview( better than 10)

//delay=30 there is less nois in labview(still bad)

//delay=20 there is

}

B.2 Code 360 Degrees

#include "FreeIMU.h"
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#include <Wire.h>

#include <SPI.h>

#include "I2Cdev.h"

#include <EEPROM.h>

#include <MPU60X0.h>

#include <MS561101BA.h>

#include <HMC58X3.h>

#include "DebugUtils.h"

float ypr[3]; // yaw pitch roll

float val[9];

// Set the FreeIMU object

FreeIMU my3IMU = FreeIMU();

void setup() {

Serial.begin(115200);

Wire.begin();

delay(5);

my3IMU.init(); // the parameter enable or disable fast mode

delay(5);

}

void loop() {

getEuler360deg(ypr);

Serial.print("x");Serial.print(round(ypr[0]));

Serial.print("y");Serial.print(round(ypr[1]));

Serial.print("z");Serial.println(round(ypr[2]));

delay(10);

}
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C. SCALE DATA SHEET

Fig. C.1. Scale Data Sheet


