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ABSTRACT

Najmon, Joel Christian M.S.M.E., Purdue University, December 2017. Design of 
Compliant Mechanism Lattice Structures for Impact Energy Absorption. Major 
Professor: Andres Tovar.

Lattice structures have seen increasing use in several industries including automo-

tive, aerospace, and construction. Lattice structures are lightweight and can achieve 

a wide range of mechanical behaviors through their inherent cellular design. More-

over, the unit cells of lattice structures can easily be meshed and conformed to a 

wide variety of volumes. Compliant mechanism make suitable micro-structures for 

units cells in lattice structures that are designed for impact energy absorption. The 

flexibility of compliant mechanisms allows for energy dissipation via straining of the 

members and also mitigates the effects of impact direction uncertainties.

Density-based topology optimization methods can be used to synthesize compliant 

mechanisms. To aid with this task, a proposed optimization tool, coded in MATLAB, 

is created. The program is built on a modular structure and allows for the easy 

addition of new algorithms and objective functions beyond what is developed in this 

study. An adjacent investigation is also performed to determine the dependencies 

and trends of mechanical and geometric advantages of compliant mechanisms. The 

implications of such are discussed.

The result of this study is a compliant mechanism lattice structure for impact 

energy absorption. The performance of this structure is analyzed through the appli-

cation of it in a football helmet. Two types of unit cell compliant mechanisms are 

synthesized and assembled into three liner configurations. Helmet liners are further 

developed through a series of ballistic impact analysis simulations to determine the 

best lattice structure configuration and mechanism rubber hardness. The final liner



xvi

is compared with a traditional expanded polypropylene foam liner to appraise the

protection capabilities of the proposed lattice structure.



1

1. INTRODUCTION

1.1 Types of Energy Absorbing Lattice Structures

With the ongoing development of additive manufacturing technologies over the 

past few decades, cellular lattice structures and other complex designs have seen an 

increasing rise in application [1]. One of the most prominent uses of cellular lattice 

structures is for energy absorbing applications. Cellular lattice structures are ideal 

for this, as they mimic they excellent energy absorbing capabilities of foam, with the 

prospect for topology optimization resulting in increased performance.

1.1.1 Foams

Polymer foams naturally have a cellular internal structure that easily deforms 

when compressed, absorbing and dissipating impact energy. In general, foams have 

two dominate types of internal structures: open cell and closed cell. Open cell foams 

have internal voids open to the atmosphere and absorb energy through the straining of 

internal members and displacing of internal air. Closed cell foams have closed internal 

voids and absorb energy through the straining of internal members and compression of 

internal air. Figure 1.1 shows the internal structures of open and closed cell foams [2].

1.1.2 Truss-based Lattice Structures

Truss-based lattice structures can be modeled after the internal structure seen in 

foams. Due to additive manufacturing limitations, modern lattice structures designed 

for impact energy absorption rely solely on internal member straining and buckling 

to absorb energy [3–5]. Hence these lattice structures only contain one of the energy 

absorbing mechanics of foam, however greater control on the design of the unit cell is
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Figure 1.1. Internal structure of open (left) and closed (right) cell
foams. Source: Green Compliance Plus [2].

now afforded. This is achieved through trusses that are interconnected within a unit

cell. Truss orientation and placement is often in-between lattice points of crystalline

cuboids such as body center cubic (BCC) and face centered cubic (FCC), shown in

Figure 1.2 [4, 6, 7]. Arrangement of periodic spherical shell geometry has also been

studied and follows the typical orientation and placement of truss members [4]. Unit

cells are then patterned into the desired shapes using conformal methods [3]. Figure

1.3 shows examples of energy absorbing lattice structures.

Figure 1.2. Body center cubic (left) and face center cubic (right)
Bravais lattices of the cubic crystal system. Source: Wikipedia, Cubic
Crystal System.
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Unit cells can also be designed to deform with a positive or negative Poisson's

ratio [8]. This type of design can be used to impose the straining of truss members

through compression or tension forces, ensuring specific strains within the structure.

Positive Poisson's ratio unit cells initiate truss buckling, while negative Poisson's ratio

unit cells typically abstain from truss buckling [9].

Figure 1.3. Lattice structures with straight-edge design (left) and
spherical shell design (right). Source: [3, 4]

Lattice structures for impact energy absorption have been studied before, however

these lattices consisted of relatively simple topologies inspired by biological designs

[10]. Further studies have been conducted involving energy absorption of origami-

inspired compliant designs [11]. This study aims to further develop micro-structure

design of lattice structures for impact energy absorption.

1.2 Compliant Mechanisms

Compliant mechanisms are mechanisms that transfer their displacement, force,

or work through flexible members, rather than using rigid bodies and joints like a

traditional mechanism [12]. One outstanding benefit of using compliant mechanisms
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over a traditional mechanism is the significant reduction in the number of parts [13].

This is specifically desirable in the application of using compliant mechanisms in a

lattice structure, as manufacturing is greatly simplified. Figure 1.4 shows an example

of a compliant mechanism counterpart for a crimping mechanism.

Figure 1.4. Compliant mechanism counterpart (right) of a crimping
mechanism (left). Only half of the mechanism is shown due to sym-
metry. Source: Compliant Mechanisms Research, Brigham Young
University.

Not all compliant mechanisms are made entirely of flexible material. Multi-

material compliant mechanisms exist that feature rigid material for members and

flexible material at connecting points [13, 14]. Flexible materials serves as the joint

of the rigid-body members, similar to a traditional mechanism. This method of com-

pliant mechanism synthesis preserves some of the output accuracy that is seen in

traditional mechanisms at the cost of versatility for uncertainty in loads.

1.2.1 Maximum Mutual Potential Energy Objective Function for Topol-

ogy Optimization

Density-based topology optimization is a popular method for structural design as

it removes design biases associated with human intuition designs [15–17]. Densities of

a given design domain are allocated to create an optimized design that minimizes or

maximizes an objective function. Table 1.1 shows density allocation over optimization

iterations to achieve an optimal topology for minimum displacement.
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Table 1.1. Topology optimization for cantilever beam problem using
minimum compliance objective function.

initial iteration iteration = 15

iteration = 30 iteration = 60

iteration = 120 final iteration

For compliant mechanism synthesis, a popular optimization objective is to maxi-

mize the mutual potential energy (MPE) of the structure [18]. This type of formula-

tion has specified input and dummy output loads, with added corresponding external

stiffnesses to model force actuators. The MPE is the displacement of the dummy

output loaded nodes [19] and is given by

MPE = U2(x̃)TK(x̃)U1(x̃) (1.1)

where x̃ is the filtered design densities, U2 is the global displacement vector resulting

from the dummy output load, U1 is the global displacement vector resulting from the

input load, and K is the global stiffness matrix. Optimization is usually done subject

to a volume constraint of
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v(x̃) = x̃Tv − v̄ ≤ 0 (1.2)

x ∈ X , X = x ∈ Rn : 0 ≤ x ≤ 1 (1.3)

where v is element volume vector. Figure 1.5 shows an example force inverter problem

solved using topology optimization with a maximum MPE objective function.

Figure 1.5. A force inverter problem (top) solved (bottom) using
topology optimization with a maximum MPE objective function.
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1.2.2 Mechanical and Geometric Advantage

Another characteristic of mechanisms is their mechanical or geometric advantage.

The mechanical advantage (MA) is the ratio of output force to input force [20, 21]

and is given by

MA =
Fout

Fin

. (1.4)

The geometric advantage (GA) is the ratio of output displacement to input displace-

ment [21] and is given by

GA =
uout
uin

. (1.5)

1.3 Compliant Mechanisms for Energy Absorption

While most mechanism applications are to transfer displacement, force, or energy

to an output port, compliant mechanisms can be utilized for impact energy absorp-

tion. The flexibility of compliant mechanisms affords this ability through the straining

and buckling of its members.

Furthermore, compliant mechanisms can be tailored to behave with certain Pois-

son's ratios when compressed. Due to the inherent ambiguity of flexible members,

it is challenging to optimize a compliant mechanism that satisfies a specific Poisson

ratio, however an unspecified positive or negative Poisson ratio mechanism can still

be achieved. These mechanisms can be arranged into lattice structures to absorb im-

pact energy through the straining and buckling of internal flexible members through

compressive and tensile forces between neighboring mechanisms.
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1.4 Existing Helmet Liners

In this study, the developed lattice structure is used in the application of a

sports helmet. The most commonly seen reusable sports liner is crushable expanded

polypropylene (EPP) foam. For one-time-impact helmets, such as bike and horse

riding helmets, a crushable damage-retaining, foam liner is used, typically expanded

polystyrene (EPS). Other less common liners use thermoplastic polyurethane (TPU),

shock absorbing liquids (SALi), air bladders, buckling columns, or non-Newtonian

fluids [22]. The liner developed in this study aims at replacing a non-crushable foam

EPP liner (football, baseball, lacrosse, etc). Figure 1.6 shows a schematic of the dif-

ferent protective components of a helmet including the ethylene-vinyl acetate (EVA)

comport foam.

Figure 1.6. Traditional football helmet schematic showing EPP foam
liner and EVA comfort foam. Source: Silver State 55 helmets.
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1.5 Motivation and Objectives

1.5.1 Motivation

In the recent years, the short and long term effects of sports related head injuries,

like traumatic brain injuries (TBI) and mild traumatic brain injuries (mTBI), more

commonly referred to as concussions, has become apparent. A recent study found

that 99% of the brains of deceased National Football League (NFL) players (87%

across all levels of play), were found to have chronic traumatic encephalopathy (CTE),

which has been associated with memory and mood impairments and dementia [23].

Furthermore, athletes who received head injuries in the past are more susceptible

to mTBIs, intensifying their effects [24]. Table 1.2 shows the number of diagnosed

concussions and the corresponding percentage of total players in the NFL. These

facts show the inadequacies in traditional approaches to helmet design, and call for

disruptive technologies to escalate helmet safety and alleviate doubts behind head

injury prone sports. This can be achieved by using topology optimized compliant

mechanism lattice structures for helmet liners.

Table 1.2. Number of diagnosed concussions and the corresponding
percentage of total NFL players. Source: NFL Play Safe Play Smart
2016 Injury Data.

Year # of Diagnosed Concussions % of total players (1696)

2012 261 15.4%

2013 229 13.5%

2014 206 12.1%

2015 275 16.2%

2016 244 14.4%
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1.5.2 Objectives

The objective of this work can be characterized by three parts with a corresponding

chapter for each part. The first part is the development of a compliant mechanism

optimization tool. Ideally, the tool should be easy to use and have the adaptability for

use with other density-based topology optimization objective functions to promote

future academic development and learning.

The second contribution of this work is an investigation into the dependencies and

trends behind mechanical and geometric advantages of compliant mechanism. This

investigation was done to determine if resulting complaint mechanism topologies,

optimized with certain parameters, are more likely to favor certain advantages. The

investigation concludes with a discussion of the results and the implications they have

for compliant mechanism synthesis.

The last part of this work is the development and design of compliant mechanism

lattice structures for use in a helmet liner. The liner design starts with the synthesis

of two types of compliant mechanisms. The first mechanism operates with a positive

Poisson's ratio, where the Poisson's ratio, in this case, is defined as the displacement

ratio between the input and output ports of the compliant mechanism. The second

mechanism operates with a negative Poisson's ratio. These different mechanisms are

assembled into three different liner arrangements and analyzed through a series of

tests. The final liner design is compared against an EPP foam liner to appraise the

protection capabilities of the proposed liner.
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2. PROPOSED DESIGN OPTIMIZATION TOOL

The development of this compliant mechanism optimization code was done exclu-

sively in MATLAB. While other more efficient high-level languages exist, MATLAB 

was chosen for it's convenient and easy-to-use interface; ideal for development. Mod-

ifying existing topology optimization programs was straightforward, and was done in 

a manner that will hopefully encourage and facilitate future modification and devel-

opment.

The development of the final code can be broken up into three stages each bringing 

a significant new feature to the program. Stages are defined by a new algorithm that 

was brought into the program, however other features were also added during these 

stages. The first stage of the code used Optimality Criteria (OC). In the next stage, 

several more algorithms are added through MATLAB's fmincon function. The third 

stage of the code, introduces the method of moving asymptotes (MMA) algorithm [25].

All of the features that were successfully implemented in the code, were kept and 

exist in the final version of the code. These features will be documented as they were 

added and summarized into a comprehensive list. Code development occurred first 

in the 2D variant of the code (Optimizer 2D). Once the new feature was working 

in Optimizer 2D, the 3D variant of the code (Optimizer 3D) was updated with a 

corresponding feature.

Consequently, both programs work the same way, and have very similar structures 

and build histories. For the sake of simplicity, descriptions of build stages will pertain 

directly to Optimizer 2D, however details that are only applicable to the Optimizer 

3D program will still be expressed.
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2.1 Stage 1 - Optimality Criteria

The first build of the code was created by modifying the existing topology opti-

mization MATLAB programs top88 and top3d [18, 26]. Import code was also added

to read LS-PrePost's (LSPP) .k files containing geometry, loads, and boundary con-

ditions of the optimization problem. This change allowed the user to set up the

optimization problem with a graphical user interface (GUI), rather than manually

entering nodal loads and supports.

2.1.1 Modifying Top88/Top3d

Top88 was modified to create a 2D complaint mechanism optimizer and top3d was

modified to create a 3D counterpart [18, 26]. This build kept the same optimization

algorithm, OC, that the original two programs had. Modifications that were made

followed those detailed in the corresponding paper of the top3d code [18].

The first of these was switching out the minimum compliance objective function

for the maximum MPE objective function. Then the finite element (FE) code was

modified to include two of the forces, an input load and an output (dummy) load.

An external spring stiffness is also added to the output degrees of freedom.

2.2 LS-PrePost Interfacer

LS-PrePost was chosen as a complimentary GUI for the program for several rea-

sons. 1) LSPP is free to download and free to use. 2) LSPP has all of the neces-

sary modeling features needed for the program (geometry creation, meshing, loads,

boundary conditions), and more. 3) Future editions of the code may use LS-PrePost's

accompanying solver, LS-Dyna, to perform finite element analysis (FEA). This would

result in longer solving time, at the gain of using LS-Dyna's robust non-linear solver.

At the time of writing, the interfacer only reads the problem data and interprets

this into data that the MATLAB program can use. Due to the structure of the
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FE solver in the program, the current version of the program only supports simple

rectangular/cuboid shapes.

2.2.1 The Structure of a .k File

Modeling files are created in LSPP via keywords. As features of the model are

created corresponding keywords are added to the .k file. Following the unique keyword

headers are columns of data that define features and properties of that keyword. The

location and order of this data is how LSPP and the interface code assign meaning

to the numbers. An example of keyword text is shown in Figure 2.1.

Figure 2.1. Example of a .k file. This .k file is for a square 3x3
shell element. Only the geometry has been created so only *ELE-
MENT SHELL and *NODE keywords are seen.
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2.2.2 Reading .k Files

Data is read from .k files by searching the file for the unique keyword header. After

the header is located the program reads the following rows and columns and breaks

up the data into a corresponding array, which is further interpreted into numerical

data for MATLAB.

2.3 Stage 2 - fmincon

The second build of the code added MATLAB's constrained nonlinear multi-

variable function optimizer, fmincon [27]. Additional functionality was also added

by converting the code to a modular format. This allows the optimizer program

to solve optimization problems with different objectives by calling different functions

(minimum compliance, maximum MPE, heat conduction, and other user-created func-

tions).

Additional objective functions for minimum compliance (one or two loads) were

created to test the robustness of the program and to aid with trouble shooting. Ex-

amples of using the optimizer with minimum compliance problems can be found in

Appendix B and C.

2.3.1 Modular Program Structure

The main program file is responsible for calling all sub-functions to run. This is

where the input .k file is specified. Instead of directly passing data between functions,

data is saved to a temporary file on the hard drive. Sub-functions read and append

only the variables that are needed for their function. This allows the code to run

on computers with small amounts of ram, or allows higher-fidelity code to run on an

equivalent computer. This method trades run-time for greater versatility. Figure 2.2

shows a flowchart of the program's structure.
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Figure 2.2. Modular Program Structure Flowchart

2.3.2 MATLAB’s fmincon Optimization Function

Fmincon is a nonlinear programming solver with constraints. It finds the minimum

of a problem specified by
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Minimize f(x) such that:



c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(2.1)

where A·x ≤ b is an inequality constraint, Aeq·x = beq is an equality constrain,

and lb and ub are lower and upper bounds respectively [27].

The initial variables, objective function's value, c, the derivative of the objective

function's value, dc/dx, optimization options, and linear and nonlinear constraints

are specified when fmincon is called.

For binary density-based topology optimization, the variable constraints are:

x ∈ X , X = {x ∈ Rn : 0 ≤ x ≤ 1} (2.2)

xL = nv (2.3)

where, x = [x1, x2, . . . , xn], is the densities of the elements, L = [1, 1, . . . , 1]T is

a vector of ones, n is the number of elements, and v is the volume fraction. The

linear volume fraction constraint (2.3) is optional for compliant mechanism synthesis,

however it is often included to limit material use and produce more aesthetically

pleasing designs.

2.3.3 Algorithms

Fmincon can be run with five different algorithms. These algorithms include

interior-point algorithm (IPA), trust-region-reflective method (TRRM), sequential

quadratic programming (SQP), SQP-legacy, and active-set. For this study IPA and

TRRM were primarily used.

Hessian approximation is not user-supplied and calculated by fmincon using the

Broydon - Fletcher - Goldfarb - Shanno (BFGS) method [27]. It is worth noting that
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Optimizer 2D and Optimizer 3D have not been tested extensively with all combina-

tions of algorithms, objective functions, FE solvers, and problems, so some combi-

nations might prove to be ill-suited for the applied problem. Recommendations for

algorithms and other program options are given in the documentation of the code,

Appendix A.

2.3.4 Convergence Difficulties

The IPA reconstructs the objective function incorporating linear constraints within

the function. This produces a barrier function which leads to a vertical asymptote

at x = 0, where the objective function cannot be driven past with relatively small

changes in x. This effectively creates the constraint c(x) ≥ 0, when the algorithm's

stepsize is sufficiently small.

Due to this behavior, there can be convergence difficulties when optimizing for

maximum MPE for some compliant mechanism problems (cases where the negative

objective function is minimized). In most of these cases, the objective function is

initially a small positive number. As the program minimizes this value, the function

reaches an asymptote at f(x) = 0. Eventually, the change in the objective function

becomes small enough to meet the convergence criterion and the optimizer concludes

with a premature solution.

To address this problem, the initial densities were randomized. This method varies

the starting point (amongst different attempts) of the function allowing some attempts

to have their objective function's value move past zero and continue to minimize

the function (or maximize the negative MPE in the case of complaint mechanism

synthesis). Another approach is to lower the solution's convergence tolerance, which

allows the change for further iterations to go beyond the asymptote.

This solution did not work for all compliant mechanism problems. The SQP, SQP-

legacy, and active-set algorithms also produced similar convergence difficulties as the



18

IPA. Therefore, the trust-region-reflective method was selected as it's algorithm was

sufficiently different from the others to not incur the same difficulties.

While TRRM was able to successfully solve complaint mechanism optimization

problems, it had several disadvantages prompting to the implementation of MMA.

The two most prominent drawbacks to TRRM are lengthy run-times and the inability

to enforce linear constraints and boundary constraints at the same time, leading to

the removal of the volume constraint.

2.4 Stage 3 - Method of Moving Asymptotes

In the third build of the code, MATLAB code for the Method of Moving Asymp-

totes written by Krister Svanberg was added as an algorithm option [25]. MMA was

implemented to address convergence difficulties of using IPA and has several benefits

over TRRM.

Since MMA, approximates the objective function by generating and solving a sub-

problem, convergence problems caused by using a minimization solver with a maxi-

mization optimization problem (as was the case using IPA) are avoided. [25]. MMA

was developed for structural optimization problems, hence it can efficiently evaluate

computationally expensive objective functions. The method also is not limited to one

constraint like TRRM, allowing the application of boundary constraints and volume

fraction limits simultaneously [25].

2.4.1 Implementing the Method of Moving Asymptotes Algorithm

The MMA MATLAB code (mmasub and subsolve) by Krister Svanberg finds the

minimum of a problem specified by

find x (2.4)
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minimize −
n∑

i=1

[
(x

(k)
i − L

(k)
i )2

xi − L(k)
i

∂c

∂xi

(
x̃(k)
)
] (2.5)

subject to x̃Tv − v̄ ≤ 0, x ∈ X (k) (2.6)

where X = x ∈ X | 0.9L
(k)
i + 0.1x

(k)
i ≤ xi ≤ 0.9U

(k)
i + 0.1x

(k)
i , i = 1, . . . , n. (2.7)

L
(k)
i and U

(k)
i are the lower and upper asymptotes respectively and are updated

with the following heuristic rule: [18,25]

when k=1 and k=2: U
(k)
i + L

(k)
i = 2x

(k)
i , U

(k)
i + L

(k)
i = 1 (2.8)

when k ≥ 3: U
(k)
i + L

(k)
i = 2x

(k)
i , U

(k)
i + L

(k)
i = γ

(k)
i . (2.9)

γ
(k)
i =


0.7, (x

(k)
i − x

(k−1)
i )(x

(k−1)
i − x(k−2)i ) ≤ 0

1.2, (x
(k)
i − x

(k−1)
i )(x

(k−1)
i − x(k−2)i ) ≥ 0

1.0, (x
(k)
i − x

(k−1)
i )(x

(k−1)
i − x(k−2)i ) = 0

(2.10)

Using a similar structure to the OC algorithm, an optimization while loop, which

evaluates the objective function, calls mmasub and updates design variables for future

iterations. The while loop is run until the change in the design is within the specified

tolerance or the maximum number of loops is reached.
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2.4.2 Displacement-Driven FEA

Additional functionality was also introduced through the added option of using

a displacement-driven finite element method (FEM) over the traditional force-driven

FEM. Enabling this option turns the input loads into input displacements (instead

of input forces) and the output dummy loads to output dummy displacements (in-

stead of output dummy forces). The displacement-driven FE solver works through

the following steps: 1) Apply Uexternal. 2) Find Fexternal that minimizes the 2-norm

between U∗external = K−1Fexternal and Uexternal. 3) Solve for Uinternal = K−1Fexternal.

For minimum compliance problems, this change has no affect on the resulting topol-

ogy. However, for MPE problems, this option was found to have some effect on the

resulting topologies of the optimizer. Essentially, the force-driven FE solver controls

deformation force while the displacement-driven FE solver controls deformation dis-

placement. The details behind the affects of the FE solver on MA and GA are further

studied in the next chapter.

2.5 Program Options for Optimizer 2D and Optimizer 3D

The final program solves optimization problems in 2D and 3D allowing the user

to choose options for the objective function, algorithm, FE solver, and variable ini-

tialization. The following is a comprehensive list of options for Optimizer 2D and

Optimizer 3D.

Objective function options:

• Minimum Compliance, 1 Load

• Minimum Compliance, 2 Load

• Maximum Mutual Potential Energy

Algorithm options:

• Optimality Criteria

• Interior-Point
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• Sequential Quadratic Programming

• Sequential Quadratic Programming - Legacy

• Trust-Region-Reflective

• Active-Set

• Method of Moving Asymptotes

Finite element solver options:

• Force-Driven Finite Element Analysis

• Displacement-Driven Finite Element Analysis

Variable initialization options:

• Volume Fraction Initialization

• Random Initialization

Full program documentation is given in Appendix A, with example problems in

2D and 3D given in Appendix B and C respectively. See Appendix F for the main

file of the Optimizer 2D program and details on how to obtain the full code.
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3. DEPENDENCIES AND TRENDS OF MECHANICAL AND

GEOMETRIC ADVANTAGES IN COMPLIANT MECHANISMS

In this chapter, a study is carried out to determine the dependencies and trends 

of the MA and GA of compliant mechanisms. A topology optimization problem 

is proposed for the role of comparing topology solutions that were optimized with 

varying parameters. For reference, simple designs based on human intuition are also 

compared. The type of finite element solver (force-driven or displacement-driven) was 

chosen as a variable due to the difference between input and output load distinction. 

The second variable that was tested is the external load stiffness that is added to input 

and output ports of the mechanism. This variable was chosen for its correspondence 

with the symmetry of the problem. The effects of these parameters on resulting 

topology and the MA and GA are discussed. Results and conclusions of the study 

are also discussed.

3.1 Proposed Seesaw Topology Optimization Problem

The proposed topology optimization for use in this study was inspired by a sim-

ple seesaw, shown in Figure 3.1. This problem was chosen as it provides a simple 

illustration of the MA and GA dependencies on the topology of the problem. This 

illustration is created by specifying the left end of the seesaw as a downward facing 

input, the right end of the seesaw as an upward facing output, and by moving the 

pivot point.

For example, when the pivot point is in the center the MA and GA are 1 (for a 

rigid bar). The MA and GA can be directly changed by shifting the pivot point to 

the left or right.
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Figure 3.1. Simple seesaw with center pivot.

Adapting this setup into an initial topology optimization problem is done by fixing

the bottom of a 2:1 rectangle and specifying input and output loads in the middle of

the left and right sides respectively. Figure 3.2 shows the loaded nodes and supports

of the proposed design problem. All designs were optimized and analyzed with an 80

x 40 mesh.

Figure 3.2. Seesaw problem load and boundary conditions.
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3.2 Selected Design Solutions for the Seesaw Problem

3.2.1 Human Intuition Designs

A design based on human intuition was tested to gain perspective on the opti-

mization tool's ability to optimize designs with improved MA and GA compared to

traditional designs. The tested human intuition design has a seesaw-shaped topology

as seen in Figure 3.1. Three designs are analyzed with pivot points located on the

left, center, and right ends of the bar, shown in Figure 3.3

Figure 3.3. Human intuition designs. Top) left pivot seesaw. Middle)
center pivot seesaw. Bottom) right pivot seesaw.

3.2.2 Topology Optimized Designs

All topology optimized compliant mechanism designs were synthesized with the

Optimizer 2D program using the input parameters located in Table 3.1. The vol-
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ume fraction (VF) constraint was removed as non-essential constraints can mask or

hide MA or GA tailored topology. Table 3.2 shows the masking affect that the VF

constraint can have on topologies.

Table 3.1. Optimizer 2D Input Parameters for Seesaw Problem Optimization

Objective Function: Maximum MPE

Algorithm: Optimality Criteria

Volume Fraction: Removed

Density Initialization: 0.5

penalization: 3

minimum radius: 3

Table 3.2. Optimized seesaw topologies to show volume fraction
constraint masking.

VF Force-Driven FEA Displacement-Driven FEA

VF = 0.3

No VF

Optimizer 2D allows the use of a traditional force-driven FEA solver or a displacement-

driven FEA solver. This is the first parameter that was changed when generating

optimized designs. The second parameter that was changed is the external stiffness

added to loaded nodes. This can be visualized as an extra spring element added to
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the input and output nodes and is only applicable in the applied force's direction.

This spring is added to model the force actuator. These added external stiffness are

related by the k-ratio which is given by

k-ratio =
kout
kin

| kin 6= 0 (3.1)

where kin is the external stiffness added to the input node and kout is the external

stiffness added to the output node. Generally the k-ratio is 0.1/0.1. This typically

results in symmetrical designs, however unequal external stiffnesses can be applied

to obtain non-symmetrical topologies. Tables 3.3 and 3.4 shows topologies optimized

with force-driven and displacement-driven FEA for varying k-ratios. To prevent ex-

tremely stiff structures, one of the external stiffnesses was always maintained at 0.1,

while varying the other external stiffnesses.

Observing the topology results, there are a couple initial observations that can be

made. First, force-driven FEA and displacement-driven FEA produce vastly different

topologies (when not limited by a volume fraction). Displacement-driven FE solved

topologies show significant changes as the k-ratio is changed. Conversely, force-driven

FEA solved topologies show some morphing, but overall maintain a similar structure.

As expected, when the k-ratio is 1:1, the topology is symmetrical. When the

k-ratio is not 1:1 the topology becomes skewed towards the side with the larger

added stiffness. Surprisingly, when using the displacement-driven FE solver for large

disparities between the added stiffnesses the topology morphs into a simple seesaw

shape. Another interesting observation is the 6-bar mechanism that results from using

the force-driven FE solver.
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Table 3.3. Optimized Seesaw Topologies using Force-driven and
Displacement-driven FEA for various k-ratios (kout = 0.1).

k-ratio Force-Driven FEA Displacement-Driven FEA

0.1
10

= 0.01

0.1
5

= 0.02

0.1
1

= 0.1

0.1
0.5

= 0.2

0.1
0.1

= 1
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Table 3.4. Optimized Seesaw Topologies using Force-driven and
Displacement-driven FEA for various k-ratios (kin = 0.1).

k-ratio Force-Driven FEA Displacement-Driven FEA

0.1
0.1

= 1

0.5
0.1

= 5

1
0.1

= 10

5
0.1

= 50

10
0.1

= 100
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3.3 Mechanism Advantage Analysis

3.3.1 Measuring Mechanical and Geometric Advantages

The MA is measured by removing the output load and constraining the output

load's degree of freedom. For this case, the right output load is removed and replaced

with a constraint in the y-direction. A single iteration of FEA is performed on the

design, solving for the reaction force on the added constraint. This reaction force can

be divided by the input force to obtain the MA of the compliant mechanism.

Measuring GA is straightforward. The loads and boundary conditions are main-

tained from the topology optimization. FEA is performed to solve for the input

and output displacements. These are divided to obtain the GA of the compliant

mechanism.

3.3.2 Mechanical Advantage Dependencies and Trends

The MA for the human intuition and topology optimized designs are given in

Tables 3.5 and 3.6. To better visualize the effects of the FE solver and k-ratio on

MA, Figure 3.4 plots the MA vs. the k-ratio for the force-driven and displacement-

driven FE solvers.

Table 3.5. Mechanical Advantages of Human Intuition Designs

Human Intuition Design Mechanical Advantage

Left Pivot Seesaw 6.58× 10−5

Center Pivot Seesaw 4.86× 10−5

Right Pivot Seesaw 6.59× 10−5

The human intuition designs, or simple seesaw designs, have very bad mechanical

advantage when compared with the topology optimized designs. This poor perfor-

mance is because the rigid bar and joint mechanism of a traditional seesaw was directly
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Table 3.6. Mechanical Advantages of Topology Optimized Designs
using Force-Driven and Displacement-Driven FEA for Various k-ratios

k-ratio Force-Driven FEA Displacement-Driven FEA

0.01 0.280 0.035

0.02 0.281 0.049

0.1 0.297 0.101

0.2 0.313 0.144

1.0 0.390 0.354

5.0 0.463 0.338

10.0 0.472 0.270

50.0 0.480 0.141

100.0 0.479 0.098

translated to a flexible compliant mechanism counterpart. The bar does not have the

rigidity to effectively transfer force from one end to the next.

The topology optimized designs have significantly better MA than the human

intuition designs. Observing the MA of the force-driven FE solved designs, an in-

crease in the MA is seen when shifting the external stiffness from the input to the

output, with the greatest increase occurring at a k-ratio of 1. On the other hand, the

displacement-driven FE solved designs, see a maximum at a k-ratio of 1 and subse-

quently decreases with increasing external stiffness difference. It is worth noting that

at every k-ratio tested, the force-driven FEA topology had higher MA.
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Table 3.7. Geometric Advantages of Human Intuition Designs

Human Intuition Design Geometric Advantage

Left Pivot Seesaw 1.001

Center Pivot Seesaw 1.000

Right Pivot Seesaw 0.999

Table 3.8. Geometric Advantages of Topology Optimized Designs
using Force-Driven and Displacement-Driven FEA for Various k-ratios

k-ratio Force-Driven FEA Displacement-Driven FEA

0.01 1.708 2.818

0.02 1.711 2.946

0.1 1.586 2.651

0.2 1.481 2.402

1.0 1.000 1.000

5.0 0.684 0.422

10.0 0.630 0.380

50.0 0.584 0.340

100.0 0.584 0.355

Along those lines, it can be observed from Table 3.8 that the geometric advantage

is better for unequal external stiffnesses that are weighted in favor of the input load.

Conversely, designs with external stiffnesses weighted in favor of the output load

displayed significantly worse geometric advantage. Displacement-driven FEA based

designs showed the best GA for k-ratios less than 1, holding significantly higher

values than force-driven FEA based designs. However for k-ratios greater than 1, the

opposite is true, with force-driven FEA based designs maintaining the highest GA.
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Figure 3.6. Mechanical and geometric advantage trends with respect
to change in k-ratio.

When the k-ratio is 1, the resulting topologies are symmetric and consequently

have a GA of 1. The GA of a compliant mechanism is maximized when the external

stiffness added to the input load is higher than the relative output load's external

stiffness. The GA can be further improved by using a displacement-driven FEA solver

with topology optimization.

For the compliant mechanism lattice structure, a k-ratio of 1 was chosen (0.1/0.1)

as a symmetrical structure is best suited to handle the uncertainty in impact locations

and orientations. The force-driven FEA solver was selected for use as it provides a

higher MA compared to the displacement-driven FEA. Figure 3.7 shows a flow chart

for selecting what type of solver and k-ratio to use for high MA or GA.

Figure 3.7. Mechanical and geometric advantage trends with respect
to change in k-ratio.
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4. HELMET LINER DESIGN USING A LATTICE STRUCTURE OF 

POSITIVE AND NEGATIVE POISSON RATIO COMPLIANT

MECHANISMS

This chapter presents a study into the protective capabilities of a compliant mecha-

nism array that dissipates impact energy through straining of the compliant mecha-

nisms. Optimizer 2D is used to synthesis two types of compliant mechanisms. The 

first mechanism has a positive Poisson's ratio. The second mechanism operates has 

a negative Poisson's ratio. For this study, the Poisson's ratio of compliant mecha-

nisms is defined as the displacement ratio between the input and output ports. These 

different mechanisms are assembled into three different liner arrangements. Liner 

implementation into the helmet is done by embedding the liner between an inner and 

outer polycarbonate shell, replacing the traditional EPP foam liner of a standard 

sports helmet. The liners are further developed through a series of ballistic impact 

tests to determine the final mechanism arrangement and ideal Shore A rubber hard-

ness. The final liner is compared against an EPP foam liner to appraise the protection 

capabilities of the proposed liner.

4.1 Compliant Mechanism Synthesis

There are two primary designs for compliant mechanisms for use in the protective 

liner. Both function by redirecting an incoming radial force to a tangential direction. 

The first design for the compliant mechanism redirects forces out from the point of 

impact. Holistically, this gives the mechanism a positive Poisson's ratio. This mech-

anism will be referred to as the positive mechanism. The second design redirects the 

incoming force inwards, translating to a negative Poisson's ratio for the mechanism. 

This mechanism will be referred to as the negative mechanism.
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Applying symmetric boundary conditions, only one-quarter of the mechanism

needs to be optimized. Each problem was ran with a 30 x 30 mesh. For the positive

mechanism, an input load was specified in the upper left corner and a dummy out-

put load was specified in the lower right corner of the design domain. Similarly, for

the negative mechanism, an input load was defined in the upper right corner with a

dummy output load specified in the lower right corner of the design domain. Each

load was given a width of 10% of the edge length, to achieve a large enough con-

nection area so that implementation into the liner was robust. Roller supports were

applied to the nodes along the left and bottom edges of the design domain for both

mechanisms. Figure 4.1 shows the loaded nodes, load orientations, and supports for

the positive and negative mechanisms.

Figure 4.1. a) Positive mechanism and b) negative mechanism load
and boundary conditions.

By performing topology optimization on these compliant mechanisms we obtain

a 2D topology, which can be extruded for performance analysis using LS-Dyna. The

volume fraction was set to 40%, and the penalization value for solid isotropic material

with penalization (SIMP) was set to a value of 3. The volume fraction constraint was
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added (despite the potential of topology masking) as excess mass prevents buckling

of internal members and can conflict with the deformation path. A filter radius of 3

elements was also added to prevent the creation of spindly members. As previously

mentioned, the k-ratio was set to 1, and the force-driven FE solver was used for

optimization. Figure 4.2 , and the shows the results of the topology optimization

code.

Figure 4.2. Optimized topology for a) positive mechanism and b)
negative mechanism problems. c) Full positive mechanism topology.
d) Full negative mechanism topology.
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4.2 Mechanism Arrangements and Liner Architecture

Three different arrangements of mechanisms are assembled into liners for testing.

These arrangements use (1) all positive mechanisms, (2) all negative mechanisms,

and (3) alternating positive and negative mechanisms, shown in Figure 4.3. The liner

with the alternating positive and negative mechanism arrangement is referred to as

the net zero liner.

Each mechanism is 19.05 mm x 19.05 mm (0.75” x 0.75”) with an extruded depth

of 5 mm. The mechanism array sits between two polycarbonate shells that are 2

mm thick. To determine a suitable number of mechanisms, or liner section length,

a helmet drop test simulation on a EPP foam helmet was studied to determine the

impact area, shown in Figure 4.4 [28]. From this simulation, it was found that the

projected impact area of a 4.9 kg headform moving at 5.46 m/s is approximately an

oval with a major axis of 85 mm and a minor axis of 80 mm. Nine mechanisms were

selected for each liner, as this covers over twice the length of the impact area's major

axis.

Figure 4.3. Liner designs. Top) positive arrangement liner. Middle)
negative arrangement liner. Bottom) net zero liner.
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Figure 4.4. Simulation of NOCSAE Drop Test Method ND 001 on
a basic foam-based helmet to determine width of (top side) impact
area.

4.3 Numerical Results

Ballistic tests were carried out on a thickened 2D (extruded) cross-section of each

liner. Performance results are compared and further developed with a weighted table.

The final proposed liner is compared with current EPP foam liners to appraise its

protective capabilities. A comparison of all designs is made through an acceleration

vs. displacement plot.
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4.3.1 Testing Setup

Each liner design is put through a simple ballistic test, using LS-Dyna (with base

units of g, mm, ms). A rigid impactor impacts the top surface of the liner at 5

mm/ms. The bottom and side surface nodes are given roller supports, modeling the

support of the head and other mechanisms of the liner. An additional roller support

was added to the front and back sides of the 2D extrusion to prevent buckling and

mimic support from 3D versions of the designs (see Appendix E for full 3D models).

Figure 4.5 shows the initial test simulation setup for the positive arrangement liner

test.

Figure 4.5. Initial ballistic test setup for the positive arrangement liner
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4.3.2 Model Details

The polycarbonate shells are modeled as a simple elastic solid, as the given use

case is well under yield stress for polycarbonate. Each shell has dimensions of 171.45

mm x 5 mm x 2 mm. A polycarbonate impactor is modeled as a rigid shell cylinder,

and has diameter of 100 mm, depth of 5 mm, and mass of 70 g. Helmet Liners have

their array mechanisms glued to each other, at their respective output ports, and to

the top and bottom polycarbonate shells, at their respective input ports.

The compliant mechanisms were both modeled with the simple 2-parameter Mooney-

Rivlin rubber model, as vulcanized natural rubber [29]. The parameters, C10 and

C01, are obtained from a correlation study between Shore A hardness and the Mooney-

Rivlin parameters [30]. Shore A hardness is a measure of the hardness of the material,

using the type A scale (typically for softer materials). A Shore A hardness of 60A was

used for mechanism arrangement comparison ballistic test. The mechanism hardness

evaluation test compares the effects of using Shore A hardnesses of 50A, 60A, 70A,

and 80A on the liners protection capabilities.

For the baseline simulation, LS-Dyna's low density foam model was used to model

EPP [31]. All simulation variables not dependent on liner topology and hardnesses

were kept consistent across ballistic tests. This includes timestep options, hourglass

control, contact definitions, initial velocities, boundary conditions, element formula-

tions, and other model options. Complete LS-Dyna material model keycards details

can be found in Appendix D.

4.3.3 Performance Evaluation Criterion

It is widely known that TBIs and mTBIs are linked with the linear and rotational

accelerations experienced by the brain [32]. Consideration of injurious accelerations

are evaluated through the peak resultant acceleration and the head injury criterion

(HIC) of the impactor.
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The peak resultant acceleration of the impactor is the maximum value of the resul-

tant acceleration experienced by the impactor. However, peak resultant acceleration

does not capture all of the severity behind an impact. A steep spike to a low peak

acceleration, can be just as detrimental, as a gradual rise to a high peak acceleration.

As a result, the HIC, a measure of the likelihood of a head injury resulting from an

impact, is used to capture the significance of the slope of a resultant acceleration

curve [33]. The HIC is given by

HIC =

{
(t2 − t1)

[
1

(t2 − t1)

∫ t2

t1

a(t)dt

]2.5}
max

(4.1)

where, a(t) is the headform's acceleration measured in g (standard gravity), and

t1 and t2 (seconds) are the initial and final times that correspond to a maximum HIC

value. The ballistic test in this study does not accurately model impact on a human

head, consequently, HIC values in this paper are used exclusively for comparison

purposes, and should not be compared with external HIC measures. For this analysis

we use HIC15, which sets the integral's interval to 15 ms. When t2 = t1 + 0.015 ms,

HIC15 is defined as

HIC15 =

{
(0.015)1.5

[∫ t1+0.015

t1

a(t)dt

]2.5}
max

. (4.2)

For the average adult, for an HIC15 = 1000, there is 18% probability of severe head

injury, 55% probability of serious head injury, and 90% probability of a moderate head

injury [34].

While it may seem suitable to analyze liners through their energy absorption

capabilities, these evaluations are irrelevant within a simple impact test, as all liners

absorb all of the initial kinetic energy when the impactor is brought to a stop (before

rebounding). A more relevant evaluation would be to observe how the impact energy

is managed within the array. To this end, the internal energy distribution among the

compliant mechanism array is evaluated through the mean and standard deviation
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(SD) of the distribution of each mechanisms peak internal energy (PIE). The last

performance metric considered is the peak displacement seen by the impactors center

of mass. Large displacements could prove to be uncomfortable for the wearer.

To aid with design evaluation, performance values, fj(x), are normalized. A

subsequent weighted sum is calculated and used for justification of selecting designs

for further analysis. The resulting weighted score is then defined as

F (x) =
∑
j

ωj f̄j(x) (4.3)

where f̄j is the normalized performance value and ωj the corresponding weight.

Table 4.1 shows the weights corresponding to performance criteria. Performance

values in this analysis include peak resultant acceleration amax, HIC15, mean PIE, SD

of PIE, and peak displacement dmax. Normalization is done as a fractional percent

of the maximum value. Since most of the performance values are desired to be

minimized, the best design is the one with the lowest weighted score. Note that,

mean PIE criteria is desired to be maximized, so the sign was flipped for this row.

Table 4.1. Weights for Performance Evaluation Criteria

Criterion Weight

Peak Resultant Accel. 0.30

HIC15 0.35

Mean PIE 0.05

SD of PIE 0.15

Peak Displacement 0.15
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4.3.4 Liner Arrangement Analysis

Observing the acceleration curves of the liners, shown in Figure 4.6, one can

see that the net zero liner has very steep and high spike in the acceleration curve

lending this liner to have very poor acceleration-based criteria values. The positive

and negative liners had much better acceleration curves with the negative having the

best overall.

Figure 4.6. Acceleration vs. Time curves for positive, negative, and
net zero liner arrangements.

The peak internal energy distribution among the compliant mechanisms (where

compliant mechanisms are numbered from left to right) is shown in Figure 4.7. From

here, it can be seen that the negative and net zero liners have very poor energy
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management. The mechanisms that are near the impact location absorb significantly

more energy than mechanisms that are farther away (on the left and right ends). The

best overall PIE distribution among the compliant mechanisms is with the positive

liner arrangement. The negative arrangement has double the SD of PIE compared

to the positive arrangement. This is undesirable as failure to efficiently distribute

energy into the compliant mechanism array leads to unnecessarily high stresses and

strains, increasing the risk of mechanism failure.

Figure 4.7. Peak internal energy distributions for compliant mecha-
nisms in positive, negative, and net zero liner arrangements.

The impactor displacement for the different liners is similar at around 13 mm,

however the negative liner did have the best overall impactor displacement of 11.1
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mm. Compiling these results we obtain Table 4.2 and Table 4.3 which show the

results of these test simulations and their normalized values.

Table 4.2. Mechanism Arrangement Performance Values

Mechanism Arrangement Positive Negative Net Zero

Peak Resultant Acceleration of Impactor (g) 391.6 350.9 951.7

HIC15 of Impactor 273.3 255.3 768.3

Mean PIE of Compliant Mechanisms (N·mm) 71.4 72.7 70.2

SD of PIE of Compliant Mechanisms (N·mm) 40.3 80.6 70.9

Peak Displacement (mm) 13.0 11.1 13.4

Table 4.3. Mechanism Arrangement Performance Normalized Values

Mechanism Arrangement Positive Negative Net Zero Weight

Peak Resultant Acceleration of

Impactor (g)

0.411 0.369 1.000 0.30

HIC15 of Impactor 0.356 0.332 1.000 0.35

Mean PIE of Compliant Mecha-

nisms (N·mm)

-0.982 -1.000 -0.966 0.05

SD of PIE of Compliant Mecha-

nisms (N·mm)

0.500 1.000 0.880 0.15

Peak Displacement (mm) 0.970 0.828 1.000 0.15

Weighted Score 0.419 0.451 0.884 –

The net zero arrangement exhibited very poor impact protection capabilities, ob-

taining nearly all normalized values of 1. This poor performance is due to lack of

straining between adjacent positive and negative mechanisms. In the positive and

negative arrangements, the output ports apply a compressive and tensile load (re-
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spectively) on their members, converting kinetic energy to strain energy. In the net

zero liner, input and output ports move together, collapsing the structure with little

strain and thus, poor energy management (Figure 4.8).

The peak displacement across all arrangements were close to each other, with

the negative arrangement having the smallest at 11.1 mm, due to the large void

in the center of the topology. This void prevented the top shell from completely

collapsing the structure, as was the case with the positive and net zero arrangements.

Figure 4.8 shows the deformed topologies at their respective peak displacement. The

positive mechanism arrangement had the best weighted score, and will be used for

the following series of ballistic tests.

Figure 4.8. Deformed liners at peak impactor displacement. Top)
positive arrangement liner. Middle) negative arrangement liner. Bot-
tom) net zero liner.
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4.3.5 Rubber Hardness Analysis

The second series of ballistic test simulations are designed to determine an ideal

rubber hardness for use in the compliant mechanism array. Figure 4.9 shows the

acceleration of the impactor with respect to time for the 50A, 60A, 70A, and 80A

Shore A hardness liners. From this figure it can be seen that the soft 50A liner

has a poor acceleration, with the 60A liner also seeing mediocre results. The best

acceleration curves (and performance evaluation numbers) are seen in the 70A and

80A hardness liners.

Figure 4.9. Acceleration vs. Time curves for 50A, 60A, 70A, and
80A rubber hardness liners.
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The peak internal energy distribution among the compliant mechanisms (with the

same numbering from the prior ballistic test) is shown in Figure 4.10. All of the

liners showed similar peak internal energy distributions. Overall the best distribution

is with the 60A liner, although the 70A liner is close in performance. PIE distribution

is also significantly worse when comparing 70A with 80A, increasing from 46.4 N·mm

to 56.6 N·mm.

Figure 4.10. Peak internal energy distributions for compliant mech-
anisms in 50A, 60A, 70A, and 80A rubber hardness liners.

The impactor displacement seen in each liner is proportional to the rubber hard-

ness. As expected, as soft rubber sees large displacement into the liner, while a harder

rubber sees less displacement. Table 4.4 is a comprehensive table of all the results
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of these test simulations. As with the last series of tests, Table 4.5 contains the

normalized results.

Table 4.4. Shore A Hardness Performance Values

Shore A Hardness 50A 60A 70A 80A

Peak Resultant Acceleration of Impactor (g) 608.1 391.6 271.8 281.7

HIC15 of Impactor 455.8 273.3 210.9 200.7

Mean PIE of Compliant Mechanisms (N·mm) 70.0 71.4 70.4 68.9

SD of PIE of Compliant Mechanisms (N·mm) 43.7 40.3 46.3 56.6

Peak Displacement (mm) 13.7 13.0 11.9 10.9

Table 4.5. Shore A Hardness Performance Normalized Values

Shore A Hardness 50A 60A 70A 80A Weight

Peak Resultant Acceleration of

Impactor (g)

1.000 0.644 0.447 0.463 0.30

HIC15 of Impactor 1.000 0.600 0.463 0.440 0.35

Mean PIE of Compliant Mecha-

nisms (N·mm)

-0.980 -1.000 -0.986 -0.965 0.05

SD of PIE of Compliant Mecha-

nisms (N·mm)

0.772 0.712 0.818 1.000 0.15

Peak Displacement (mm) 1.000 0.949 0.869 0.796 0.15

Weighted Score 0.867 0.602 0.499 0.514 –

From Table 4.5 a Shore A hardness of 70A is the best natural rubber hardness

to use with the positive mechanism arrangement. It should be noted that the 80A

hardness liner was a close second to the 70A, losing out due to the slightly worse

internal energy distribution. In actuality, due to the closeness of the weighted scores
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between 70A and 80A, an ideal Shore A hardness lies between these two values. The

70A hardness design is used in the following section in comparison with a traditional

EPP foam liner.

4.3.6 Expanded Polypropylene Foam Liner Comparison

Figure 4.11 shows a comparison of the proposed liner design with a traditional

EPP foam liner. The proposed liner design sees significant improvement in peak

resultant acceleration. The proposed liner design also has a less steep acceleration

curve compared to the EPP foam’s curve.

Figure 4.11. Acceleration vs. Time curves for the proposed positive
70A liner and an EPP foam liner.
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The displacement is significantly less in the EPP foam liner due to their denser

design. The cellular nature of the compliant mechanism lattice structure lends this

design to much large liner displacements. Table 4.6 shows performance values for the

two liners, however PIE distribution, of the compliant mechanism array, has been

withdrawn as it is not applicable for the foam liner.

Table 4.6. EPP Foam vs. Proposed Design, Performance Comparison

Design EPP

Foam

Proposed

Design

Percent Change from EPP

Foam to Proposed Design

Peak Resultant Acceleration

of Impactor (g)

327.4 271.8 16.98% ⇑

HIC15 of Impactor 265.3 210.9 20.51% ⇑

Peak Displacement (mm) 6.55 11.9 81.68% ⇓

The proposed design shows significant benefits over a standard EPP liner with

respect to acceleration-based criterion. Both the peak resultant acceleration and HIC

of the impactor had improved values over the EPP foam liner. On the other hand,

the compliant mechanism array deforms more than the EPP foam liner which could

be uncomfortable for the user.

To further illustrate this comparison, Figure 4.12 shows a comprehensive acceler-

ation vs displacement plot of all tested liner configurations. It can easily be observed

from this plot that the compliant mechanism array liner offers better protection when

considering the resulting acceleration experienced by the head, while the foam design

experiences significantly less deformation, relative to the proposed design. Given

these trade-offs, the proposed liner still demonstrates net improvements, in protec-

tion capabilities, over traditional EPP foam liners, as resultant acceleration is a far

more frequent cause of head injuries than liner displacement.
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5. SUMMARY AND FINAL REMARKS

5.1 Summary

This study presented a compliant mechanism lattice structure helmet liner for im-

pact energy absorption. Compliant mechanisms were synthesized through a proposed 

design optimization tool and the mechanical and geometric advantage dependencies 

and trends of compliant mechanisms were also investigated. The research contribu-

tions made in this study include a 2D and 3D topology optimization code (featuring a 

LS-PrePost interfacer and displacement-driven finite element solver), the dependen-

cies and trends of compliant mechanism advantages, and a developed helmet liner for 

impact energy absorption (featuring a compliant mechanism lattice structure).

In chapter 2, the development of the proposed design optimization tool was de-

scribed. The details behind the LS-PrePost interfacer and it's uses was discussed. 

Select algorithms were outlined, along with the inter-workings of the displacement-

driven finite element solver. In appendices A, B, and C, the extent of the optimizer 

tool's capabilities is given and shown through program documentation and example 

problems that will encourage future academic development.

In chapter 3, an investigation on the dependencies and trends of mechanical and 

geometric advantages in compliant mechanisms was performed. Human intuition and 

topology optimized design solutions were presented for the proposed seesaw problem. 

The merits of using topology optimization for compliant mechanism design was ob-

served as mechanical and geometric advantage performance was significantly higher 

when compared with human intuition designs.

The dependencies and trends of the mechanical and geometric advantages were 

summarized. The mechanical advantage of a compliant mechanism was greater when 

using the force-driven finite element solver rather than the displacement-driven fi-
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nite element solver. Additionally, the mechanical advantage is higher when a larger

external stiffness is added to the input port relative to the output port's external

stiffness. It was also shown that symmetrical topologies have geometric advantages

of 1. The best geometric advantage was obtained when using the displacement-driven

finite element solver and with a low k-ratio (kin > kout). Conversely, when designing

with a high k-ratio (kin < kout), the best geometric advantage was obtained using

the force-driven finite element solver. Lastly, it was noticed, for the seesaw prob-

lem, that change in the k-ratio had significant affects on the topology when using the

displacement-driven finite element solver, however the topology was found to be more

resilient when using the force-driven finite element solver.

In chapter 4, a helmet liner was designed using an array of positive and negative

Poisson ratio compliant mechanisms. The mechanisms are arranged to form three

different lattice structures. Liner designs were modeled as 2D extruded cross sections

and two different ballistic tests were performed to determine the best liner design and

mechanism rubber hardness. Performance values were tabulated and normalized for

easy comparison. An acceleration vs. displacement graph is also provided for a visual

comparison of all liner designs.

The best lattice structure configuration was the one comprised of all positive

mechanisms. The best Shore A rubber hardness value was 70A. When the proposed

final helmet liner design was compared with a traditional expanded polypropylene

foam helmet liner, the proposed liner saw improvements in acceleration-based per-

formance criterion (peak resultant acceleration and HIC15) with a relatively large

increase in peak liner displacement. While the peak liner displacement rose signif-

icantly, the helmet liner is still an improvement in protection capabilities over ex-

panded polypropylene foam helmets, as the acceleration-based criterion is far more

pertinent to head-injuries.
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5.2 Limitations

For the sake of transparency, the limitations of this study are also detailed. The

two-parameter Mooney-Rivlin rubber material model used in this study was based off

of generalized values from a tensile uniaxial stress-strain test. While the comparative

study to find the ideal Shore A rubber hardness helped alleviate some of the effects

of using generalized rubber parameters, a final study is suggested for completeness.

Additionally, liners were modeled using 2D extruded cross section models. This

was done for the sake of time, as prior 3D simulations of a single compliant mechanism

could take up to 6 hours. The amount of computational time to solve a panel impact

test would have been significantly longer. This run-time would have been compounded

with increasing mechanisms. Thus, the liner configuration performance was tested in

2D, with the anticipation of a full 3D counterpart simulation.

5.3 Future Work

The future work of this study largely aims at addressing the limitations previously

discussed. The first of these includes the collection and consolidation of a more accu-

rate rubber model. Ideally, this model would be created off of 3D printed specimen

tests, as the final helmet is intended to be 3D printed. Sections of helmet liners will

be 3D printed for physical verification.

Now that the best lattice structure design has been identified, a panel of the liner

needs to be modeled and simulated to better appraise the proposed liner's protective

capabilities. The current lattice structure spans a 2D plane. Future work also per-

tains to the layering of the lattice structures to form a 3D structure. Additionally,

the ideal size of the complaint mechanism could also be studied. As further develop-

ments continually get more advanced, eventually homogenization should be used to

significantly reduce the computational cost of running each model.

After the compliant mechanism lattice structure is further developed, a high-

fidelity full helmet model should be created and simulated with several NOCSAE
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helmet test standards. Figure 5.1 shows a full helmet NOCSAE drop test simulation

for a foam pad helmet. A similar compliant mechanism lattice structure helmet liner

is planned to be similarly simulated. Due to the computational costs associated

with such a complex liner, homogenization of the unit cell may be used to reduce

computational costs to a more reasonable level. A full 3D printed helmet counterpart

will be manufactured for physical verification. If proven to be sufficiently reliable

at reducing head-injuries, the commercialization of this design will be brought to

market.

Figure 5.1. Full EPP foam helmet drop test simulation.
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A. OPTIMIZER PROGRAM DOCUMENTATION

This is program documentation for the Optimizer 2D and 3D program (versions
1.6a & 1.6b).

A.1 Program Inputs

A.1.1 Input File

The optimizer program receives the optimization problem’s geometry, loads, and
boundary conditions from a .k file that is created in LS-PrePost. The .k file needs
to be in the same directory as the rest of the program files. The name of the .k file
is entered in line 20 of the Optimizer main file (see Figure A.1). The file extension
’.k’ needs to be included in the file name. For Poisson’s ratio tailoring problems,
this line is ignored and automatically replaced with the name PoissonsRatio2d.k (or
PoissonsRatio3d.k for Optimizer 3D).

Figure A.1. Lines 19-21: Input File Code Segment

A.1.2 Material Properties

Material properties are entered at lines 55-57 (lines 56-58 for Optimizer 3D) (see
Figure A.2). E0 is the Young’s modulus of a fully solid element, xi = 1. Emin is the
Young’s modulus of a void element, xi ≈ 0. nu is the Poisson’s ratio of the material.

Figure A.2. Lines 54-57: Material Properties Code Segment
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A.1.3 Optimization Parameters

Optimization parameters are entered at lines 60-65 (lines 61-66 for Optimizer 3D)
(see Figure A.3). VF is the volume fraction that the optimizer will constrain the
problem to, if volume fraction constraints are enabled. penal is the penalization
exponent for use with SIMP Young’s modulus calculations. 3.0 is a recommended
value. rmin is the minimum radius that members (or beams) of the topology can
have. tolx is the tolerance for the change in step size of the objective function when
fmincon algorithms are used. It is the tolerance for the maximum change in a single
element of the design domain when using OC and MMA algorithms. Recommended
values for tolx are 1e-2 or 1e-3. maxloop is the maximum number of iterations for
the program. If the maximum number of iterations are reached before a solution
is found, the program stops the optimization loop and proceeds to save the last
iteration’s results. displayflag is a boolean operator that dictates whether or not the
program displays the topology at every step (1 displays topology, 2 hides it).

Figure A.3. Lines 60-65: Optimization Parameters Code Segment

A.1.4 Poisson’s Ratio Problem Parameters

If the optimizer is used to perform Poisson’s ratio tailoring, the program loads
the predefined problem data and ignores the .k file name given. Lines 68-71 (lines
69-73 for Optimizer 3D) is where Poisson’s ratio problem parameters are entered (see
Figure A.4). x is the number of elements in the x-direction. y is the number of
elements in the y-direction. z is the number of elements in the z-direction (Optimizer
3D only). pr is the objective Poisson’s ratio that the program will try to synthesize
a topology for. s is the number of elements for the input and output loads (in 3D,
s is side length of the input and output squares). See Figure A.5 for a graphical
representation of these variables in 3D. Using this objective function corresponds to
the positive Poisson ratio problem used in the proposed helmet liner design (Figures
4.1 & 4.2).
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Figure A.4. Lines 68-71: Poisson’s Ratio Problem Parameters Code Segment

Figure A.5. Graphical Representation of Poisson’s Ratio Problem Parameters

A.2 Program Options

A.2.1 Select Objective Function

In line 28, the objective function to use with the optimizer is specified (see Figure
A.6). The variable, obj, can be a 1, 2, 3, or 4. Other entries besides this will be
ignored and the default objective function (minimum compliance, 1 load) will be
used. The key is as follows:
If obj = 1, use the minimum compliance, 1 load, objective function.
If obj = 2, use the minimum compliance, 2 loads, objective function.
If obj = 3, use the maximum mutual potential energy objective function.
If obj = 4, use maximum mutual potential energy objective function with the Poisson’s
ratio tailoring problem.



64

Figure A.6. Lines 23-28: Select Objective Function Code Segment

A.2.2 Select Algorithm

In line 38, the algorithm to use in the optimization loop is specified (see Figure
A.7). The variable, alg, can be a 1, 2, 3, 4, 5, 6, or 7. Other entries besides this will
be ignored and the default algorithm (Method of Moving Asymptotes) will be used.
The key is as follows:
If alg = 1, use the Optimality Criterion algorithm.
If alg = 2, use the Interior-Point algorithm via MATLAB’s fmincon function.
If alg = 3, use the Sequential Quadratic Programming algorithm via MATLAB’s
fmincon function.
If alg = 4, use the Sequential Quadratic Programming - Legacy algorithm via MAT-
LAB’s fmincon function.
If alg = 5, use the Trust-Region-Reflective algorithm via MATLAB’s fmincon func-
tion.
If alg = 6, use the Active-Set algorithm via MATLAB’s fmincon function.
If alg = 7, use the Method of Moving Asymptotes algorithm.
For most problems, the Method of Moving Asymptotes algorithm is recommended.

Figure A.7. Lines 30-38: Select Algorithm Code Segment
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A.2.3 Select Finite Element Method

In line 43, the finite element method is specified (see Figure A.8). The variable,
fea, can be a 1 or a 2. Other entries besides this will be ignored and the default
method (Force-Driven FEA) will be used. The key is as follows:
If fea = 1, use force-driven finite element analysis.
If fea = 2, use displacement-driven finite element analysis.

Figure A.8. Lines 40-43: Select Finite Element Method Code Segment

A.2.4 Select Design Variable Initialization

In line 48, the way that the design variables are initialized is specified (see Figure
A.9). The variable, int, can be a 1 or a 2. Other entries besides this will be ignored
and the default initialization (initialize densities with volume fraction) will be used.
The key is as follows:
If int = 1, initialize densities with the volume fraction
If int = 2, initialize densities with random numbers.

Figure A.9. Lines 40-43: Select Finite Element Method Code Segment

At the start of the optimization loop, if the problem’s topology is slow to change
or the convergence criterion is met very quickly; consider running the problem with
int = 2, as this may fix these problems.

A.2.5 Build Full Structure if the Problem is Symmetric?

If the problem has symmetrical boundary conditions, the program can build the
full problem after the subproblem is optimized. Lines 51-52 (lines 51-53 for Optimizer
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3D) allow the user to specify if this construction should occur and over which axes
or planes to mirror the problem (see figure A.10). Setting a symmetry indicator to
’true’ causes the mirroring of the problem.

Figure A.10. Lines 50-52: Enabling Symmetrical Problem Build Code Segment

A.2.6 Additional Options

Optimizer 2D and Optimizer 3D have additional options that cannot be changed
from the main file.

• If random density initialization is selected (int = 2), then the interval that random
numbers are assigned from can be changed. Line 8 of any algorithm file (alg1 OC.m,
alg2 IP.m, etc...) defines variables a and b, which specify that random numbers as-
signed should be within the interval: [a, b]. The default range for all algorithms is
in-between 0.0 and 1.0. Note: in order for the densities to be realizable, a ≥ 0 and
b ≤ 1.

• For all fmincon algorithms, except Trust-Region-Reflective, the volume fraction
constraint can easily be removed by uncommenting lines 20 and 21, and commenting
lines 22 and 23 within the algorithm file (alg1 OC.m, alg2 IP.m, etc...). This change
can be see in Figure A.11.

Figure A.11. Lines 19-23: Disabling Volume Fraction Constraint for
fmincon Algorithms (left: volume fraction constraint enabled, right:
volume fraction constraint disabled)

• When using the minimum compliance, 2 loads, (obj = 2) or maximum mutual po-
tential energy (obj = 3) objective functions, a user-defined contact spring stiffness
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may be added to the input and output degrees of freedom. This value can be changed
on line 15 of the objfn comp2.m and objfn mpe.m files. For minimum compliance,
2 loads, the default value is 0. For maximum mutual potential energy, the default
value is 0.1.

• The options behind all fmincon algorithms can be modified in lines 25-35 within
the algorithm files (alg1 OC.m, alg2 IP.m, etc...).

• When using the minimum compliance, 2 loads, objective function, the weight for
each load can be defined in line 38, objfn comp2.m. w is the weight of load 1 and
(1− w) is the weight of load 2.

• The output STL file creation options can be modified in the Top3dSTL v3.m file.

• For Optimizer 3D, the options for the 3D topology figures can be changed in the
display 3D.m file.

A.3 Program Output

A.3.1 Runtime Figures and Command-Line Printouts

During execution, the Optimizer will post
• the name of the input file
• the objective function used
• the algorithm used
• the finite element method used
• the initialization method used
• Material Properties
• Optimization Parameters
and a running list of the current optimization iteration, objective function value,
volume fraction, and change in function. For compliant mechanisms (obj = 3), the
mechanism’s mechanical and geometric advantage is also calculated and displayed.
Figure A.12 shows an output sample.

The current iteration’s topology will also be displayed in a figure. If the user wishes
to save the current iteration before convergence criterion are met, they may press the
’Esc’ key while the figure window is active to prematurely terminate the optimization
loop and save the output (for OC and MMA algorithms only; fmincon produces a
plot that has a stop button on it for the same effect).
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Figure A.12. Command-Line Sample Output

A.3.2 Saved Files

An output folder is created with the name: ‘OPTIMIZER 2D OUTPUT
yourfilename’ to save the three output files of the program. The program saves a

.mat file of the design domain’s densities, a .STL file of the resulting topology, and a

.txt file of the command-line printouts.
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A.4 Creating a Problem Input File in LS-PrePost

A.4.1 Geometry Creation

In LS-PrePost, use the ‘shape mesher’ tool to create 2D rectangles and 3D cuboids.
Within the tool, the ‘4N Shell’ entity is used to create 2D problems (define point
counter-clockwise starting with the lower left point) and the ‘Box Solid’ entity is used
to create 3D problems. Figure A.13 shows the shape mesher interface.

Figure A.13. LS-PrePost: Shape Mesher Tool Interface

A.4.2 Boundary Condition Creation

In LS-PrePost, use the ‘Entity Creation’ interface to apply boundary conditions
to the problem. Within the ‘Boundary’ tab, select ‘Spc’ (specific point constraint) to
access the menu used to add boundary conditions (Figure A.14). Optimizer 2D only
recognizes X and Y degrees of freedom constraints. Optimizer 3D recognizes X, Y,
and Z degrees of freedom constraints.
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For every boundary condition that is created, a corresponding node set is also cre-
ated. By default, LS-PrePost will name the node sets “NODESET(SPC) #”, where
# starts at 1 for the first node set and counts upward. The LS-PrePost interpreting
MATLAB code looks for these default names, so any attempt to rename the node
sets will result in an error. It is actually the best practice to leave sub-features of
the model with their default names. Another noteworthy practice is to always en-
sure your model’s node sets are number sequentially. Out of order numbering (which
usually results from modifying/deleting prior boundary conditions) can cause errors.

Figure A.14. LS-PrePost: Entity Creation Tool Interface - Boundary Creation
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A.4.3 Load Case Creation

Objective functions minimum compliance, 2 loads, and maximum mutual poten-
tial energy require two load cases to be applied to the problem. Minimum compliance,
1 load, ignores a second load case. To create load cases, use the ‘Entity Creation’
interface in LS-PrePost (Figure A.14). Within the ‘Load’ tab, select ‘Node’ to access
the menu to create nodal loads. Similar to boundary condition creation, Optimizer
2D and Optimizer 3D only read loads in Cartesian coordinate directions (X dir, Y dir,
Z dir).

LCID is read by the program to specify which load case the current load will be
added to (LS-PrePost uses LCID for something else). Unlike boundary condition
creation, LS-PrePost does not create a node set for each load applied. This makes
adding additional loads to load cases easy, despite having varying directions, magni-
tudes, or application points. Additional loads can simply be added separately and
will be appended onto the corresponding load case list that the LCID specifies.

The SF value is the magnitude of the force. The CID value is not read by MAT-
LAB. LS-PrePost limits the number of loads that can be applied to an individual
node to one. Therefore, in order to add loads that contain multiple coordinates, the
.k file will need to be opened in a text editor and manually manipulated. Within the
.k file, find the ‘*LOAD NODE POINT’ keyword title. Here is where the nodal loads
are listed. Locate the node(s) that you which to add a second (or third) load to, and
copy and append these lines onto the list. From here you can manually change the
dof, lcid, and sf column values to create the loads.
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B. 2D EXAMPLES

B.1 Snail Problem - Minimum Compliance, 1 Load Case

• Open LS-PrePost.
• In the upper-left menu go to → FEM → Element and Mesh → Shape Mesher
• Choose ‘4N Shell’ in the Entity Menu.
• Enter the following data (Figure B.1) into the tool, to create a 60 x 20 2D mesh.

Figure B.1. Create 60 x 20 2D Mesh

• In the upper-left menu go to → FEM → Model and Part → Create Entity
• Open the Boundary drop-down menu. Click on Spc (specific point constraint).
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• Under the Create Tab (Cre), deselect the Z, RX, RY, and RZ constraints, and
apply a fixed x and y degree of freedom constraint on the nodes (16 nodes on left
upper edge, and 2 on the bottom edge) shown in Figure B.2.

Figure B.2. Constrain X and Y Degrees of Freedom on Selected Nodes

• Open the Load drop-down menu. click on Node.
• Under the Create Tab (Cre), apply a load in the x-direction on the points shown

in Figure B.3. The load on the left point has a value of -5.0. The load on the right
point has a value of 1.0. Make sure that the LCID is 1 for both loads.
• In the upper-left menu go to → File → Save As
• Save the file in the same location as the Optimizer 2D program. Save the file as

snail.k (see Figure B.4)
• Open the Optimizer 2D program in Matlab.
• Enter the file name as ‘snail.k’
• Set obj = 1; alg = 7; fea = 1; int = 1;
• Set E0 = 1; Emin = 1e-9; nu = 0.3;
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Figure B.3. Apply Loads in the X direction

Figure B.4. Save As snail.k

• Set VF = 0.5; penal = 3; rmin = 2; tolx = 1e-3; maxloop = 1000; displayflag
= 1;
• Run the Optimizer 2D script. The initial command-line output should look like

Figure B.5.
• When the problem has converged the termination command-line output should

be displayed (Figure B.6), and the final topology should be visible (see Figures B.7
& B.8).
• Open the folder ‘OPTIMIZER 2D OUTPUT snail’ to find saved output files.
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Figure B.5. Initial Command-Line Output for Snail Problem
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Figure B.6. Termination Command-Line Output for Snail Problem

Figure B.7. Topology for Snail Problem
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Figure B.8. 3D STL Iso-View of Snail Problem

B.2 Force Inverter Problem - Maximum Mutual Potential Energy

• Open LS-PrePost.
• In the upper-left menu go to → FEM → Element and Mesh → Shape Mesher
• Choose ‘4N Shell’ in the Entity Menu.
• Enter the following data (Figure B.9) into the tool, to create a 40 x 20 2D mesh.
• In the upper-left menu go to → FEM → Model and Part → Create Entity
• Open the Boundary drop-down menu. Click on Spc (specific point constraint).
• Under the Create Tab (Cre), deselect the X, Z, RX, RY, and RZ constraints,

and apply a fixed y degree of freedom constraint on the nodes along the top edge of
the shell (roller support) shown in Figure B.10.
• Fix the x and y degrees of freedom for the bottom left two nodes as shown in

Figure B.10.
• Open the Load drop-down menu. click on Node.
• Under the Create Tab (Cre), apply a load in the x-direction on the upper left

node. Make sure LCID is 1. SF, the magnitude of the load, should also be 1. See
Figure B.11.
• Apply another load in the x-direction on the upper right node. Set LCID to 2.

SF should be -1.
• In the upper-left menu go to → File → Save As
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Figure B.9. Create 40 x 20 2D Mesh

• Save the file in the same location as the Optimizer 2D program. Save the file as
forceinverter.k (see Figure B.12)
• Open the Optimizer 2D program in Matlab.
• Enter the file name as ‘forceinverter.k’
• Set obj = 3; alg = 7; fea = 1; int = 1;
• Set E0 = 1; Emin = 1e-9; nu = 0.3;
• Set VF = 0.3; penal = 3; rmin = 1.5; tolx = 1e-3; maxloop = 1000; displayflag

= 1;
• Run the Optimizer 2D script. The initial command-line output should look like

Figure B.13.
• When the problem has converged the termination command-line output should

be displayed (Figure B.14), and the final topology should be visible (see Figures B.15
& B.16).
• Open the folder ‘OPTIMIZER 2D OUTPUT forceinverter’ to find saved output

files.
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Figure B.10. Constrain Y Degrees of Freedom on Nodes Along the Top edge
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Figure B.11. Apply Inverter Loads in the X direction

Figure B.12. Save As forceinverter.k
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Figure B.13. Initial Command-Line Output for Force Inverter Problem
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Figure B.14. Termination Command-Line Output for Force Inverter Problem

Figure B.15. Topology for Force Inverter Problem
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Figure B.16. 3D STL Iso-View of Force Inverter Problem
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C. 3D EXAMPLES

C.1 Two Load Case Problem - Minimum Compliance, 2 Load Cases

• Open LS-PrePost.
• In the upper-left menu go to → FEM → Element and Mesh → Shape Mesher
• Choose ‘Box Solid’ in the Entity Menu.
• Enter the following data (Figure C.1) into the tool, to create a 60 x 60 x 4 3D

mesh.

Figure C.1. Create 60 x 60 x 4 3D Mesh

• In the upper-left menu go to → FEM → Model and Part → Create Entity
• Open the Boundary drop-down menu. Click on Spc (specific point constraint).
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• Under the Create Tab (Cre), deselect the RX, RY, and RZ constraints, and
apply a fixed x, y, and z degree of freedom constraint on the left face nodes shown in
Figure C.2.

Figure C.2. Constrain X, Y, and Z Degrees of Freedom on Left Face Nodes

• Open the Load drop-down menu. click on Node.
• Under the Create Tab (Cre), apply the first load case (LCID = 1) load on the

bottom right corner nodes in the negative y-direction with a magnitude of 1. Apply an
opposite, second load case (LCID = 2), on the top right corner nodes in the positive
y-direction with a magnitude of 2. Figure C.3 shows the applied loads.
• In the upper-left menu go to → File → Save As
• Save the file in the same location as the Optimizer 3D program. Save the file as

twoload.k (see Figure C.4)
• Open the Optimizer 3D program in Matlab.
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Figure C.3. Apply Two Opposing Load Cases in Y-Direction

Figure C.4. Save As twoload.k
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• Enter the file name as ‘twoload.k’
• Set obj = 2; alg = 7; fea = 1; int = 1;
• Set E0 = 1; Emin = 1e-9; nu = 0.3;
• Set VF = 0.4; penal = 3; rmin = 1.5; tolx = 1e-2; maxloop = 1000; displayflag

= 1;
• Run the Optimizer 3D script. The initial command-line output should look like

Figure C.5.

Figure C.5. Initial Command-Line Output for Two Load Case Problem

• When the problem has converged the termination command-line output should
be displayed (Figure C.6), and the final topology should be visible (see Figures C.7
& C.8).
• Open the folder ‘OPTIMIZER 3D OUTPUT twoload’ to find saved output files.
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Figure C.6. Termination Command-Line Output for Two Load Case Problem

Figure C.7. Topology for Two Load Case Problem
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Figure C.8. 3D STL Iso-View of Two Load Case Problem

C.2 Positive Poisson’s Ratio Mechanism Problem - Maximum Mutual
Potential Energy

• Open the Optimizer 3D program in Matlab.
• Set obj = 4; alg = 7; fea = 1; int = 1;
• Set yzsym, xysym, and xzsym to true;
• Set E0 = 1; Emin = 1e-9; nu = 0.3;
• Set VF = 0.2; penal = 3; rmin = 2; tolx = 1e-2; maxloop = 1000; displayflag

= 1;
• Set x = 20; y = 20; z = 20; pr = 0.5; s = 4;
• Run the Optimizer 3D script. The initial command-line output should look like

Figure C.9.
• When the problem has converged the termination command-line output should

be displayed (Figure C.10), and the final topology should be visible (see Figures C.11
& C.12).
• Open the folder ‘OPTIMIZER 3D OUTPUT PoissonsRatio3d’ to find saved

output files.
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Figure C.9. Initial Command-Line Output for Positive Poisson’s
Ratio Mechanism Problem
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Figure C.10. Termination Command-Line Output for Positive Pois-
son’s Ratio Mechanism Problem

Figure C.11. Topology for Positive Poisson’s Ratio Mechanism Problem
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Figure C.12. 3D STL Iso-View of Positive Poisson’s Ratio Mechanism Problem
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D. LS-DYNA MATERIAL MODEL KEYCARD DETAILS

D.1 Material Model Parameters for the Helmet Liner

LS-Dyna material model keycard details for helmet liner ballistic tests can be
found in Tables D.1, D.2, D.3, and D.4. Keycard parameters that are not in the table
were left at default values. LS-Dyna simulations were ran with base units of g, mm,
ms.

Table D.1. Polycarbonate Shell Material Keycard

MAT 001 - ELASTIC RO E PR
0.012 2390 0.37

Table D.2. Impactor Material Keycard

MAT 020 - RIGID RO E PR CON1
0.045 2390 0.37 3

Table D.3. Natural Rubber Material Keycard

MAT 027 - MOONEY-
RIVLIN RUBBER

Shore A Hardness RO PR A B

50A 0.012 0.4999 0.302 0.076
60A 0.012 0.4999 0.474 0.118
70A 0.012 0.4999 0.736 0.184
80A 0.012 0.4999 1.038 0.260

Table D.4. Expanded Polypropylene Foam Material Keycard

MAT 057 - LOW
DENSITY FOAM

RO E TC HU DAMP SHAPE

8.6e-5 1 1e+10 0.2 0.1 5
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E. 3D VERSIONS OF THE POSITIVE AND NEGATIVE
MECHANISMS

Positive Mechanism

Figure E.1. 3D version of positive mechanism.

Negative Mechanism

Figure E.2. 3D version of negative mechanism.
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F. OPTIMIZER 2D MAIN MATLAB CODE

Optimizer 2D Main Function MATLAB Code

This is the main function MATLAB code for Optimizer 2D, version 1.6a. It is
provided in this paper for reference. To obtain a full copy of Optimizer 2D and/or
Optimizer 3D please email: jnajmon@iupui.edu or tovara@iupui.edu.

1 % Optimizer 2D ( Vers ion 1 .6 a ) (Nov 2017)
2 % The main func t i on f i l e o f Optimizer 2D, wr i t t en by Joe l Najmon
3 % This i s a topology opt imiza t i on program that can opt imize s t r u c t u r e s f o r
4 % minimum compliance ( one and two loads ) and compliant mechanisms .
5 % Problem setup i s done with LS−PrePost . This program reads the . k f i l e and
6 % w i l l save a l l outputs a f t e r a s o l u t i o n i s reached . Early te rminat ion can
7 % be t r i g g e r e d by p r e s s i n g the ’ Esc ’ key whi l e the output f i g u r e window i s
8 % ac t i v e .
9 % The user can s e l e c t from 7 d i f f e r e n t a lgor i thms to use . The type o f

10 % f i n i t e element method can be a l s o s e l e c t e d ( fo r ce−dr iven or d i sp lacement
11 % driven ) . The way that d e n s i t i e s are i n i t i a l i z e d i s a l s o user−de f ined .
12 % Other program opt ions are d e t a i l e d in the Appendix o f the cor re spond ing
13 % Master ’ s Thes i s f o r t h i s code , wr i t t en by Joe l Najmon .
14 c l o s e a l l ; c l e a r ; c l c ; t i c ;
15

16 % ======================== PROGRAM INPUTS/OPTIONS =========================
17

18 % INPUT FILE
19 fname = ’ cant i l everbeam2d . k ’ ;
20 %For PR problem , fname i s ignored . Problem parameters are de f ined below
21

22 % SELECT OBJECTIVE FUNCTION TO USE
23 % 1 = Minimum Compliance (1 Load ) (DEFAULT)
24 % 2 = Minimum Compliance (2 Load )
25 % 3 = Maximum Mutual Po t en t i a l Energy ( Compliant Mechanism )
26 % 4 = Poisson ’ s Ratio Ta i l o r i ng Problem
27 obj = 1 ;
28

29 % SELECT ALGORITHM TO USE
30 % 1 = Optimal ity Cr i t e r i on
31 % 2 = In t e r i o r−Point ( fmincon )
32 % 3 = Sequent i a l Quadratic Programming ( fmincon )
33 % 4 = Sequent i a l Quadratic Programming − Legacy ( fmincon )
34 % 5 = Trust−Region−Re f l e c t i v e ( fmincon )
35 % 6 = Active−Set ( fmincon )
36 % 7 = Method o f Moving Asymptotes (DEFAULT)
37 a lg = 7 ;
38

39 % SELECT FINITE ELEMENT METHOD
40 % 1 = Force−Driven FEA (DEFAULT)
41 % 2 = Displacement−Driven FEA
42 f e a = 1 ;
43

44 % SELECT DESIGN VARIABLE INITIALIZATION
45 % 1 = I n i t i a l i z e d e n s i t i e s with volume f r a c t i o n (DEFAULT)
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46 % 2 = I n i t i a l i z e d e n s i t i e s with random numbers
47 i n t = 1 ;
48

49 % BUILD FULL STRUCTURE IF THE PROBLEM IS SYMMETRIC?
50 ysym = f a l s e ; %( ho r i z on t a l ) Symmetry about y ax i s ?
51 xsym = f a l s e ; %( v e r t i c a l ) Symmetry about x ax i s ?
52

53 % MATERIAL PROPERTIES
54 E0 = 1 ;
55 Emin = 1e−9;
56 nu = 0 . 3 ;
57

58 % OPTIMIZATION PARAMETERS
59 VF = 0 . 5 ;
60 penal = 3 ;
61 rmin = 3 ;
62 t o l x = 1e−3;
63 maxloop = 1000 ;
64 d i s p l a y f l a g = 1 ;
65

66 % POISSON’ S RATIO PROBLEM PARAMETERS
67 x = 30 ; %Number o f e lements in the x−d i r e c t i o n
68 y = 30 ; %Number o f e lements in the y−d i r e c t i o n
69 pr = 0 . 5 ; %Poisson r a t i o ob j e c t i v e
70 s = 15 ; %Number o f e lements on top and r i gh t s i d e that are loaded .
71

72 % VERIFY INPUT OPTIONS ARE VALID
73 i f obj˜=1 && obj˜=2 && obj˜=3 && obj˜=4
74 obj = 1 ; %Inva l i d obj entry , d e f au l t i n g to minimum compliance 1 load
75 end
76 i f a l g˜=1 && alg˜=2 && alg˜=3 && alg˜=4 && alg˜=5 && alg˜=6 && alg˜=7
77 a lg = 7 ; %Inva l i d a lg entry , d e f au l t i n g to MMA
78 end
79 i f f e a ˜=1 && fea˜=2
80 f e a = 1 ; %Inva l i d f e a entry , d e f au l t i n g to fo r ce−dr iven FEA
81 end
82 i f i n t ˜=1 && in t ˜=2
83 i n t = 1 ; %Inva l i d i n t entry , d e f au l t i n g to volume f r a c . i n t i a l i z a t i o n
84 end
85 i f obj == 4
86 fname = ’ PoissonsRat io2d . k ’ ; %Name o f output f o l d e r f o r PR problem
87 ysym = true ;
88 xsym = true ;
89 end
90

91 % ============================= PROGRAM START =============================
92

93 % CREATE OUTPUT FOLDER | SAVE COMMAND WINDOW
94 foutput = [ ’OPTIMIZER 2D OUTPUT ’ fname ( 1 : ( end−2) ) ] ;
95 sname = [ fname ( 1 : ( end−2) ) ’ ob j ’ num2str ( obj ) ’ a l g ’ num2str ( a l g ) ’ f e a ’ . . .
96 num2str ( f e a ) ’ i n t ’ num2str ( i n t ) ’ v f ’ num2str (VF) ’ rmin ’ num2str ( rmin ) ] ;
97 i f ˜ e x i s t ( [ cd ’ \ ’ foutput ] , ’ d i r ’ ) %c r ea t e output f o l d e r
98 mkdir ( [ cd ’ \ ’ foutput ] ) ;
99 end

100 d iary o f f
101 i f e x i s t ( [ cd ’ \ ’ foutput ’ \ ’ sname ’ l o g . txt ’ ] )==2
102 de l e t e ( [ cd ’ \ ’ foutput ’ \ ’ sname ’ l o g . txt ’ ] ) ;
103 end
104 d iary ( [ cd ’ \ ’ foutput ’ \ ’ sname ’ l o g . txt ’ ] )
105 i f e x i s t ( ’ temp .mat ’ )==2 %#ok<∗EXIST>
106 de l e t e ( ’ temp .mat ’ ) ;
107 end
108

109 % PRINT RUN INFORMATION
110 f p r i n t f ( ’ Running 2D Optimizer on f i l e : %s \n\n ’ , fname ) ;
111 f p r i n t f ( ’ Program Options :\n ’ ) ;
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112 prog opt i ons ( obj , alg , fea , i n t )
113 f p r i n t f ( ’ Mater ia l P rope r t i e s :\n E0 = %1d , Emin = %1.1e , nu = %1.2 f \n\n ’ . . .
114 ,E0 , Emin , nu) ;
115 f p r i n t f ( [ ’ Optimizat ion Parameters :\n VF = %1.2 f , penal = %1.1d , ’ . . .
116 ’ rmin = %1.1 f , t o l x = %1.1e , maxloop = %4d\n\n ’ ] . . .
117 ,VF, penal , rmin , to lx , maxloop ) ;
118

119 % IMPORT ELEMENT, LOAD, AND SUPPORT DATA
120 i f obj == 4
121 f p r i n t f ( [ ’ Po i s sons Ratio Parameters :\n ne lx = %3d , ne ly = %3d , ’ . . .
122 ’ pr = %1.2 f , s = %3d\n\n ’ ] , x , y , pr , s ) ;
123 save ( ’ temp .mat ’ , ’ x ’ , ’ y ’ , ’ pr ’ , ’ s ’ , ’E0 ’ , ’Emin ’ , ’ nu ’ , ’VF ’ , ’ penal ’ , . . .
124 ’ rmin ’ , ’ t o l x ’ , ’ maxloop ’ , ’ d i s p l a y f l a g ’ , ’ obj ’ , ’ i n t ’ , ’ f e a ’ )
125 pr 2d import ( )
126 e l s e
127 save ( ’ temp .mat ’ , ’ fname ’ , ’E0 ’ , ’Emin ’ , ’ nu ’ , ’VF ’ , ’ penal ’ , ’ rmin ’ , . . .
128 ’ t o l x ’ , ’ maxloop ’ , ’ d i s p l a y f l a g ’ , ’ obj ’ , ’ i n t ’ , ’ f e a ’ )
129 l spp 2d import ( )
130 end
131

132 % PREPARE FEA
133 i f f e a == 1
134 p r epa r e 2d fd f e a ( )
135 e l s e i f f e a == 2
136 prepare 2d dd fea ( )
137 end
138

139 % PREPARE FILTER
140 p r e p a r e 2 d f i l t e r ( )
141

142 % RUN OPTIMIZER
143 f p r i n t f ( ’ Output :\n ’ ) ;
144 i f a l g == 1
145 xopt = alg1 OC ( ) ;
146 e l s e i f a l g == 2
147 xopt = a lg2 IP ( ) ;
148 e l s e i f a l g == 3
149 xopt = alg3 SQP ( ) ;
150 e l s e i f a l g == 4
151 xopt = alg4 SQPL ( ) ;
152 e l s e i f a l g == 5
153 xopt = alg5 TRR ( ) ;
154 e l s e i f a l g == 6
155 xopt = alg6 AS ( ) ;
156 e l s e i f a l g == 7
157 xopt = alg7 MMA() ;
158 end
159

160 i f obj == 3
161 MA = mechadv ( xopt ) ;
162 GA = geoadv ( xopt ) ;
163 f p r i n t f ( ’ Compliant Mechanism Advantage Ana lys i s :\n ’ ) ;
164 f p r i n t f ( [ ’ Mechanical Advantage : %2.3 f ’ . . .
165 ’ Geometric Advantage : %2.3 f \n\n ’ ] ,MA,GA) ;
166 end
167

168 % SAVE RESULTS
169 c l f ; d i sp lay 2D ( xopt ) ;
170 i f ysym == true
171 xopt = [ xopt f l i p ( xopt , 2 ) ] ;
172 end
173 i f xsym == true
174 xopt = [ f l i p ( xopt ) ; xopt ] ;
175 end
176 save ( [ cd ’ \ ’ foutput ’ \ ’ sname ’ . mat ’ ] , ’ xopt ’ )
177 Top3dSTL v3 ( [ cd ’ \ ’ foutput ’ \ ’ sname ’ . s t l ’ ] , xopt , ’ Format ’ , ’ bin ’ , . . .
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178 ’Mode ’ , ’ i s o ’ , ’ FaceColor ’ , ’m’ , ’ Plot ’ , t rue )
179 toc
180 d iary o f f
181 de l e t e temp .mat
182 % =========================================================================
183 % === This program was wr i t t en by Joe l Najmon and Andres Tovar , ===
184 % === Dept . o f Mechanical Engineer ing , Indiana Un ive r s i ty − ===
185 % === Purdue Univers i ty , I nd i anapo l i s Indiana , United Sta t e s o f America ===
186 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
187 % === Please send your sugge s t i on s and comments to : jnajmon@iupui . edu ===
188 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
189 % === The program was o f f o f the e x i s i t i n g MATLAB toplogy opt imiza t i on ===
190 % === codes top88 and top3d . These codes can be found at ===
191 % === ( http ://www. topopt . dtu . dk/?q=node /751) and ( https : // top3dapp . com/) ==
192 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
193 % === Please emai l jnajmon@iupui . edu or tovara@iupui . edu f o r the f u l l ===
194 % === Optimizer 2D ( or 3D) code . The cor re spond ing Master ’ s t h e s i s , ===
195 % === Design o f Compliant Mechanism Lat t i c e S t ruc tu r e s f o r Impact Energy ==
196 % === Absorption ( i n c l ud e s program documentation and examples ) , can be ===
197 % === downloaded from ( https : // scho larworks . iupu i . edu/handle /1805/199) ===
198 % === by sea r ch ing f o r the t i t l e or author . ===
199 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
200 % === Disc la imer : ===
201 % === The authors r e s e r v e s a l l r i g h t s f o r the program . ===
202 % === The authors do not guarantee that the code i s f r e e from e r r o r s and ==
203 % === are not r e s p on s i b l e f o r any event caused by the use o f t h i s code . ===




