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ABSTRACT

Zhang, Hanyin. M.S.M.E, Purdue University, August 2016. Characterization of Ten-
sile, Creep, and Fatigue Properties of 3D Printed Acrylonitrile Butadiene Styrene.
Major Professor: Jing Zhang.

Acrylonitrile Butadiene Styrene (ABS) is the most widely used thermoplastics

in 3D printing for making models, prototypes, patterns, tools and end-use parts.

However, there is a lack of systematic understanding of the mechanical properties of

3D printed ABS components, including orientation-dependent tensile strength, creep,

and fatigue properties. These mechanical properties are critically needed for design

and application of 3D printed components.

The main objective of this research is to systematically characterize key mechan-

ical properties of 3D printed ABS components, including tensile, creep, and fatigue

properties. Additionally, the effects of printing orientation on the mechanical prop-

erties are investigated. There are two research approaches employed in the thesis:

first, experimental investigation of the tensile, creep, and fatigue properties of the 3D

printed ABS components; second, laminate based finite-element modeling of tensile

test to understand the stress distributions in different printing layers.

The major conclusions of the thesis work are summarized as follows. The ten-

sile test experiments show that the 0 ◦ printing orientation has the highest Youngs

modulus, 1.81 GPa, and ultimate strength, 224 MPa. The tensile test simulation

shows a similar Youngs modulus as the experiment in elastic region, indicating the

robustness of laminate based finite element model. In the creep test, the 90 ◦ printing

orientation has the lowest k value of 0.2 in the plastics creep model, suggesting the

90 ◦ is the most creep resistant among 0 ◦, 45 ◦, and 90 ◦ printing orientations. In

the fatigue test, the average cycle number under load of 30 N is 3796 revolutions.
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The average cycle number decreases to 128 revolutions when the load is below 60N.

Using the Paris Law, with the crack size of 0.75 mm long and stress intensity factor

is varied from 352 to 700 MN −m 3
2 , the predicted fatigue crack growth rate is 0.0341

mm/cycle.

Key words: Acrylonitrile Butadiene Styrene (ABS); additive manufacturing; 3D

printing; printing orientation; tensile; creep; fatigue; finite element
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1. INTRODUCTION

1.1 Background

Three dimensional (3D) printing is a technique of rapid prototyping, which uses

a digital document created by the physical model, then constructs the object layer

by layer with powder metal or plastic material filament. 3D printing usually uses

digital technology to achieve the printing order, compared to the traditional mold

manufacturing, which involved complex industrial design and other time-consuming

technologies [1]. 3D printing technology is based on a 3D computer design model

created by designated software, and uses a laser beam or melt nozzle to fuse special

materials like metal powder, ceramic powder, plastic, etc. Then those melted mate-

rials will be stacked and bonded layer by layer. Eventually, by the precise movement

of nozzle and laser beam, the physical product will generate from digital codes. Since

the 3D printer reads the model file by layers, this feature enables its technology to

create almost any shape of objects.

In contrast with traditional manufacturing industries which use cutting, molding,

milling, and other machining methods on raw materials in order to achieve final pro-

duction, 3D printing technology can greatly reduce the complexity of manufacturing

by slicing a 3D entity into numbers of layers of two-dimensional planes, then super-

imposing them on the material handling and production. 3D printing technology

can directly generate any shape from the computer graphics data without requiring

a complex digital manufacturing process, huge machines, and a vast amount of man-

power. Therefore, production can easily be manufactured by more people. There

are various forms of orientation to stack each layer. Some 3D printers use ink-jet

approach. For example, a company called Objet from Israel uses the printer-head

to spray very thin layer of liquid plastic material on the mold tray, then the coating
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will be placed under ultraviolet light for processing. The mold tray will fall a slight

distance for the next layer stack up. Also a company called Stratasys, uses fused

deposition modeling technology, which the entire process is melting plastic in the

nozzle, and then depositing a thin layer of plastic.

Some 3D printing systems use powders as printing materials. The particles are

sprayed on the mold tray to form a very thin layer of powder layer, and then cured by

the discharge of the liquid adhesive. There also use a technique called laser sintering

technology which cast laser on raw powder material to form predetermined shape.

This technology has been used by a German company called EOS GmbH Electro

Optical Systems. Also, the Swiss company Arcam using electron current to melt

the powder particles in a vacuum condition. These different technologies mentioned

above are only several of many ways used in current fast growing industries. When

facing a complex structure contains holes or bridges, gluing gels or other substances

will be needed to provide support or occupy spaces in between particles. This part of

the powder will not be casted, but will need to be rinsed off with water or compressed

air. Today, 3D printing can be used to print a wide variety materials from a different

kinds of plastics, metals, ceramics and rubber-like substance. Some printers can be

combined in different materials, in order to print out a hard object while some part

of it remain soft.

Additive manufacturing involves a process from creating a CAD model to printing

a part. The first step always involves converting external geometry into a professional

CAD solid-modeling software. After finishing the CAD modeling, the 3D profile needs

to be converted to an STL file, which essentially describes the small steps of how the

printer is going to move. Next step is to properly set up the machine before it starts

printing; the settings include material constraints, timing, etc. After the model has

been printed, it can be removed and cleaned up before it is ready to be used.

The thickness of printing section (Z direction) and the resolution of planar di-

rection (X-Y plane) are calculated by microns (1 × 10−6 meter) and DPI (pixels per

inch). The general layer thickness is around 100 microns, or 0.1 millimeters. Some
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more advanced, precise printers, such as Objet Connex from Stratasys and Pro-Jet

from 3D Systems series, can print out a thin layer of 16 microns [2]. Using traditional

methods to create a model usually takes several days, depending on the size and

complexity of the model. However, 3D printing technology can shorten the time to

several hours; of course, the size and complexity of the performance of the printer may

add printing time. Traditional manufacturing techniques such as injection molding

can be mass-produced with low cost polymer products, in contrast with 3D printing

technology which can be faster, more flexible and more cost-effective way to produce

a relatively small number of products.

3D printing technology can process more complex parts than traditional meth-

ods [1]. A conventional manufacturing method usually starts from a raw block of

materials, then cuts out unwanted areas. Another traditional method creates a mold,

then fills it with melted metal or plastic. 3D printing technology has great advan-

tages in terms of creating complex parts, which also reduce the manufacturing time.

Secondly, 3D printing can form the model all at once, which means after-treatment

is greatly reduced. This can avoid data leaks and shorten the outsourcing time span,

which is important for the high-security industries such as defense or nuclear power.

Again due to the significant reduction in manufacturing preparation and data con-

version time, single experimental production cycle and small batch production costs

are decreased, which is favorable for the development of new products. High speed

and ease of use are helping 3D printing become a new trend in many fields, including

architectural design, industrial modeling, and animation [3].
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1.2 Objective of Thesis

The objective of this research is to systematically characterize the key mechanical

properties of 3D printed Acrylonitrile-Butadiene-Styrene (ABS), including tensile,

creep, and fatigue. Additionally, the effects of printing orientation on the mechanical

properties are investigated. The mechanical property data are critically needed by

the community for adopting the 3D printing technique for their specific applications.

With this objective in mind, the specific aims of the work include: (1) experimental

investigation of tensile, creep, and fatigue properties of the 3D printed ABS; (2)

development of a finite-element based computational model to simulate tensile testing,

and understand stress distribution in different layers.

1.3 Problem Statement

3D printing technology can seamlessly print products, and its stability and strength

of the connection between the structures much higher than traditional methods. How-

ever the material properties are very depending on the printing method and orien-

tation. In this research, Fused Deposition Modeling (FDM) technique is the main

method to print test specimen [4]. FDM uses a hot melting nozzle, therefore, that

the melted materials will be extruded, deposited, molded layer by layer according

to the path defined by computer-controlled program [5]. After deposition and co-

agulation, support material can be removed, in order to give the desired 3D prod-

uct. The raw material used by FDM is generally a thermoplastic polymer include

Acrylonitrile-Butadiene-Styrene (ABS), Polylactic acid, poly-amide, polyester, etc.

ABS plastic is a widely used in FDM printing, where acrylonitrile can provide chem-

ical resistance and impact resistance, butadiene is to provide toughness and impact

resistance, styrene imparting rigidity and easy post-processing. Because ABS has be-

come a common raw material 3D printing because of its various advantages, including

heat resistance, low-temperature-impact resistance, glossy surface, easy coloring. The
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other commonly used 3D printing material is PLA, which is stronger than ABS, but

more brittle [6].

Fig. 1.1. Fused Deposition Modeling (FDM) System [7]

For Fused Deposition Modeling, its product strength is anisotropic. Depending

on the load direction of printing, design, and stacking direction of layers, both should

be considered as a variable to material strength. For example, the most basic rule

is to avoid letting prints withstand shear stress in the stacking direction, since the

shear stress load tolerance is relatively small [8].
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1.4 Structure of Thesis

This thesis is organized into six chapters provide a clear and logical flow of content.

The first chapter is an introduction of thesis work, giving the background of research,

a statement of the current problem and objective of this thesis.

Chapter 2, Chapter 4, and Chapter 5 provides information about materials used,

printing process, test method, research data and correlated graphs of three different

approaches, tensile test, creep test and fatigue test. Chapter 3 investigates the tensile

test with numerical method, including governing equations, CAD geometry, material

model, boundary conditions and ANSYS analysis. Last but not least, Chapter 6 gives

conclusions and directions of future study.
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2. TENSILE TEST

2.1 Experimental Details

2.1.1 Materials

The specimens used in this study are designed in accordance with the ASTM

standard test method for tensile properties of plastics [9]. The printer used is a

Dimension SST 3D printer in conjunction with CatalystEx software, both products

of Stratasys Inc. The 3D printed specimen material used is ABS, also a product of

Stratasys Inc.

2.1.2 Printing Process

Fused deposition modeling is the 3D printing technique used to fabricate tensile

test specimens. First, drawn a CAD model from a solid modeling software by using

measured data of the physical model, then slice the CAD model with the data pro-

cessing software which compiled into a bulk scan NC program. Secondly, numerical

control commands controls the motion of heated nozzle, which orderly deposit melted

materials on a layer of sheet, including border outline and fill scan contours. After the

completion of a stacked layer, printing platform descend one layer height, and then

continue to deposit next layer. The printing process will finish till the completion of

the accumulation of superimposed layers forming the whole entity. Print parameters

through optimized as follows: melting temperature in a range of 220 ◦C to 230 ◦C,

the nozzle diameter of 0.5 mm, the print speed of 30 mm/s, layer height 0.1 mm, in-

ternal contour with 100% dense packing accumulation mode. Those parameter play

important roles in tensile test [10], however, only the printing orientation is focused

on this research.
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2.1.3 Test

First, prepare the specimen, measure the width and length of the specimen in the

perpendicular directions, and then choose the average number to calculate original

cross-sectional area of the specimen A. Secondly, adjust the testing machine based

on the maximum load and the tensile strength of the ABS plastic, configure the

extensometer, and select the appropriate measurement portion. Turn on the testing

machine, so that the table rises about 10mm, to eliminate the influence of the weight

influence. Then, clamp the specimen to both sides of the machine. After that,

inspect the tensile machine. In order to check whether the test is working properly,

start testing machine, place a small amount of pre-load, and then unloaded to zero.

Start the experiment, the tensile strain rate applied is 0.0847 mm/s. Observe the

yield phase slippage and necking phenomenon when extension of specimen reaches the

maximum. The machine stops immediately when specimen break, then the maximum

load value will be recorded. The MTS software will record a raw data which can be

organized in Microsoft Excel [11].
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Fig. 2.1. Tensile Specimen Tested in the MTS Testing Machine

In this research, three different printing orientation are being tested: 0 ◦, 45 ◦,

and 90 ◦ (Figure 2.2). 0 ◦ refer as the specimen print along the x-axis. 45 ◦ refer

as the specimen placed in between x-axis and y-axis. By the contrast, 90 ◦ printing

orientation refers the specimen prints along the y-axis. Printing orientation defines

how an object is printed on the platform, which eventually can affect the strength

and other properties of the object [12]. Stratasys can optimize the orientation of each

layers once the model file is imported in it.
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(a) 0 ◦ (b) 45 ◦

(c) 90 ◦

Fig. 2.2. Printing Orientations of the Tensile Specimens (a) 0 ◦, (b)
45 ◦, and (c) 90 ◦

Stratasys allows users to define how the object being printed on the platform.

The 135 ◦ printing orientation example from Figure 2.3 to Figure 2.12 show how each

layer has a different orientation than how the object being placed on the platform.

Table 2.1 shows how each layer is angled differently among 0 ◦, 45 ◦, and 90 ◦ printing

orientation. After collecting each layer orientation, a frequency chart (Figure 2.13)

was created to illustrate the layer angles repeating about every five layers.
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Fig. 2.3. Angle with Stress verses 135 ◦ Printing Orientation - Layer 1

Fig. 2.4. Angle with Stress verses 135 ◦ Printing Orientation - Layer 2
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Fig. 2.5. Angle with Stress verses 135 ◦ Printing Orientation - Layer 3

Fig. 2.6. Angle with Stress verses 135 ◦ Printing Orientation - Layer 4
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Fig. 2.7. Angle with Stress verses 135 ◦ Printing Orientation - Layer 5

Fig. 2.8. Angle with Stress verses 135 ◦ Printing Orientation - Layer 6
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Fig. 2.9. Angle with Stress verses 135 ◦ Printing Orientation - Layer 7

Fig. 2.10. Angle with Stress verses 135 ◦ Printing Orientation - Layer 8
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Fig. 2.11. Angle with Stress verses 135 ◦ Printing Orientation - Layer 9

Fig. 2.12. Angle with Stress verses 135 ◦ Printing Orientation - Layer 10
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Table 2.1
Degrees from Stress Axis and Degrees from X-Axis
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From Figure 2.13, we can see that the degrees of each layer from stress axis is

forming a sin wave with 2π period.

Fig. 2.13. Layer Orientation Difference with Stress Axis

2.2 Results and Discussion

Figure 2.14 shows the 0 ◦ printed tensile bar sample before and after the tensile

test. The breaking gap is slightly above the center, but it still inside of the range

of extensometer. Reasons why the tensile bar is not broken in the center will be

discussed in Chapter 3.

The detailed cross sectional view of the fracture surface is given in Figure 2.15.

It is very clear to see each layer from layer 1 to layer 10. When each layer was being

built, the printer automatically printed an enclosure of the border.
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(a) (b)

Fig. 2.14. Optical Images of 0 ◦ Tensile Bar (a) Before and (b) After Tensile Test

The stress-strain curves of tensile bars in different printing orientations are plotted

in Figure 2.17. This figure shows a brittle material characteristic, which 0 ◦ printing

orientation has higher ultimate stress and yielding stress compare 45 ◦ and 90 ◦ print-

ing orientation. As shown in Table 2.2, the Youngs modulus for the 0 ◦, 45 ◦, and 90 ◦

orientations are 1.81 GPa, 1.80 GPa, and 1.78 GPa, respectively. A study shows the

0 ◦ has the advantage on tensile properties among printing flat, edge and upright [13].
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Fig. 2.15. Optical Image of Cross-Section Area of the 0 ◦ Tensile Bar
Fracture Surface

Table 2.2
Averaged Mechanical Strength as a Function of Printing Orientation

Printing Orientation 0 ◦ 45 ◦ 90 ◦

Young’s Modulus (GPa) 1.81+/-0.10 1.80+/-0.11 1.78+/-0.13

Ultimate Strength (MPa) 22.4+/-0.1 20.7+/-0.1 19.0+/- 0.2
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Fig. 2.16. Stress-Strain Curve of ABS Tensile Bars in Different Print-
ing Orientations

The main reason why 0 ◦ has a relative large ultimate strength is the loading

direction during the tensile test is aligned with how the sample being printed during

the process. An article also shows that average the Youngs modulus of 3D printed

ASTM D638 bar is 1.8 GPa, which is very close to our results [14]. This result

indicates the best printing orientation is 0 ◦ when trying to achieve higher ultimate

strength in applications. Reference has shown that the tensile strength of 3D printed

specimen has nearly same strength, but inner structure has caused different time

before fracture [15].
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3. NUMERICAL METHOD ANALYSIS OF TENSILE

TEST

3.1 Model Description

3.1.1 Model ASTM D638 ANSYS Tensile Analysis

Since the ASTM D638 a perfectly symmetrical structure, weight evenly on both

sides of the specimen, therefore, apply force on one side of the specimen can reach

the analysis of the overall sample. It can also help to reduce the step of a simplified

analysis of ASTM D638. This numerical test can be done in three steps, first, the

modeling of ASTM D638 in finite element analysis software ANSYS. Second, use finite

element analysis software ANSYS to perform finite element analysis. Third, check

specimen and structural optimization based on the results of finite element analysis

model of specimen.

3.1.2 Specifics of ASTM D638

Taking into account the simplicity of the model structure, therefore it was not

modeled in a 3D modeling software, but directly in the finite element analysis software

ANSYS. This test is performed under finite element analysis software ANSYS, which

developed to be large general purpose finite element analysis (FEA) software ANSYS.

Model analysis, including setting job name and title, define the element types and

material properties, 3D model and mesh, and define the load type and amount, and

analysis structure. Due the nature of the ANSYS [16], the parts are assumed 100%

fill, which results no gap inside of specimen.
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3.1.3 Defined Cell Type

During finite element analysis, the analysis should be based on the geometry of

the problem, the type of analysis and the analysis of the problem’s precision require-

ments, and the type of unit selected for detailed analysis. This test selected four-node

Shell element SHELL181. SHELL181 is suitable for analyzing thin to moderately-

thick shell structures. It is a four-node element with six degrees of freedom at each

node: translations in the x, y, and z directions, and rotations about the x, y, and

z axes. The degenerate triangular option should only be used as filler elements in

mesh generation. SHELL181 is well-suited for linear, large rotation, and large strain

nonlinear applications. Change in shell thickness is accounted for in nonlinear analy-

ses. In the element domain, both full and reduced integration schemes are supported.

SHELL181 accounts for follower effects of distributed pressures [17].

Fig. 3.1. ANSYS Set-up 8 Node 183



23

Fig. 3.2. ANSYS Set-up Layer Orientation

3.1.4 Define Material Properties

Due to the materials used for the ASTM D638 ABS plastic, it is possible to look

up the elastic modulus of ABS plastic is 2.344 GPa in horizontal direction and 1.172

GPa in other directions, Poisson’s ratio is 0.35 in horizontal direction and 0.175 in

other directions, assume the material is non-compressive and format as laminates.

From the main menu Preprocessor, Material Props, Material Models command, open

the Properties window to define material models for elastic modulus and Poisson’s

ratio can be set. Reference [15] shows treating ABS 3D printed parts as composite

material, however the layer bond in between would not reach perfect condition, but

still assume the 3D printed part are bonded ideally in order to process to analysis.
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Fig. 3.3. ANSYS Set-up Materials Properties

3.1.5 3D Solid Model of ASTM D638

From the main menu click through Preprocessor, Modeling, Create, then Key

points, In Active CS command to create four key points. Then select from the main

menu Preprocessor, Modeling, Create, Areas, Arbitrary, Through KPs command,

were picked up on four key steps in creating a generation of plane. Then from the

main menu, select Preprocessor, Modeling, Operate, Extrude, Areas, Along Normal

command, pick-up step to generate a surface to be stretched into one entity. Due to

the length of the area only for the weight of the sample load range, so the sample

load the stent surface to create three parts. Finally, from the main menu, select

Preprocessor, Modeling, Operate, Booleans, Add, Volumes command, the 3D solid

model of specimen created.
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Fig. 3.4. ANSYS Model with Key Points

3.1.6 Solid Model Meshing

From the main menu, select Preprocessor, Meshing, Mesh Tool command, open

the Mesh Tool (Grid Tool), check the Smart Size slider is set to the default value of

6, Mesh object selection Volumes, then click Mesh, entity selection dialog box opens,

click Pick All button on the ASTM D638 model mesh, which is shown in Figure 3.5.

After model mesh finished, the next will be finite element analysis, which includes

the definition of load and boundary conditions, and then solve the current model.

Fig. 3.5. ANSYS Model after Mesh (Front View)
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Fig. 3.6. ANSYS Model after Mesh (Side View)

After model mesh finished, the next will be finite element analysis, which includes

the definition of load and boundary conditions, and then solve the current model.

Fig. 3.7. ANSYS Applied Force and Fixture
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Fig. 3.8. ANSYS Reaction Force

Fig. 3.9. Convergence Force on Different Point
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3.1.7 Definition of Load and Boundary Conditions

Only one side of the specimen is going to apply force, other side of the sample

to set as fixed in displacement and rotation. According to the characteristics of the

real world test machine, in which the boundary conditions simplify the stand near

the end surface of the side wall, the freedom of all to define loads and constraints will

be fixed. From the ANSYS main menu, select Preprocessor, loads, Define loads, Ap-

ply, Structural, pressure, on Areas pick-up dialog box pops up, pick up the required

loading surface, above the input force value is then calculated on the bracket close.

The end face of the wall side constraints, select Preprocessor, Loads, Define Loads,

Apply, Structural, Displacement, on Areas pick-up dialog box pops up, pick up close

to the wall bracket in the face that the freedom of all constraints from the main menu.

Then it is solved, select from the main menu Solution, solve, Current LS command, a

confirmation dialog box opens and the state table for a list of the information in the

confirmation, click [OK] button to start the solution. After the completion of solving,

close the dialog box, click the [Close] button to close the dialog box prompts.

Fig. 3.10. Deformed Shape Compared with Original Model
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Fig. 3.11. ANSYS Stress Concentration (Front View)

3.2 Results and Discussion

3.2.1 ANSYS Graph

Fig. 3.12. Stress Concentration in the Middle Section (Top View Enlarged)
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Fig. 3.13. Stress Concentration (Right Side View)

3.2.2 Strength Check

Due to the materials used for the ASTM D638 is ABS plastic, according to the

investigation from MATWEB, obtaining tensile strength between 40 MPa to 60 MPa.

From the finite element analysis results can be seen above the maximum stress in the

X-axis is 57 MPa, which fall in the allowable stress. Therefore, the tensile test results

meet the real world strength requirements.



31

Fig. 3.14. Strain Concentration (Top View)

Fig. 3.15. Stress Concentration (Side view)

Compared with the end portion of the tensile specimen freely rotate, the presence

of the end restraint specimens under normal circumstances, can result higher the

peak value of the stress and strain. This indication can be observed in the ANSYS

analysis, which Figure 3.10 is result after fix the right end from any rotation.



32

Fig. 3.16. Stress Concentration in the Middle (Bottom View Enlarged)

Fig. 3.17. Stress Strain Curve (ANSYS Results verses Test Results)
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Based on the understanding and knowledge of the basic theoretical foundation

finite element analysis and from the physical tests, found that ANSYS results can

meet the real world material results. The tensile test results may have a downside

which the correctness of the results calculated by finite element software still need to

validate. In this research, only elastic analysis has been conducted; a plastic model

study will show the tensile property under a large amount of load. In some cases,

the computer calculated results are not necessarily correct, therefore after finished in

the analysis, and the results need to compare with the theory calculation in order to

make strong support of results data.
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4. CREEP TEST

4.1 Experimental Detail

4.1.1 Materials

The specimens used in this study are designed in accordance with the ASTM stan-

dard test method for tensile properties of plastics. The printer used is a Dimension

SST 3D printer in conjunction with CatalystEx software, both products of Stratasys

Inc. The 3D printed specimen material used is ABS, also a product of Stratasys

Inc. [18].

Fig. 4.1. 3D Model from Software
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4.1.2 Printing Process

Fused deposition modeling is the 3D printing technique used to fabricate tensile

test specimens. First, drawn a CAD model from a solid modeling software by us-

ing measured data of the physical model, then slice the CAD model with the data

processing software which compiled into a bulk scan NC program. Figure 4.1 shows

the completed CAD model in CatalystEX. Secondly, numerical control commands

controls the motion of heated nozzle, which orderly deposit melted materials on a

layer of sheet, including border outline and fill scan contours. After the completion

of a stacked layer, printing platform descend one layer height, and then continue to

deposit next layer.

Fig. 4.2. 3D Printed Sample in Different Orientation
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The printing process will finish till the completion of the accumulation of superim-

posed layers forming the whole entity. Print parameters through optimized as follows:

melting temperature of 220 ◦C to 230 ◦C, the nozzle diameter of 0.5 mm, the print

speed of 30 mm/s, layer height 0.1 mm, internal contour with 100% dense packing

accumulation mode. During this creep test, three different angles (0 ◦, 45 ◦, 90 ◦) have

been printed and tested. Figure 4.2 not only shows the 0 ◦, 45 ◦, 90 ◦ printing orienta-

tion samples which located at bottom left corner, but also shows extra samples were

printed.

4.1.3 Test

Creep is a time-dependent deformation under a certain applied load. It is a chal-

lenging issue for applying time-dependent deformation with 3D printed internal struc-

ture, which is complex to assume linear elastic region during the first several seconds

of loading [17]. This experiment is to perform a creep test on the 3D printed speci-

men. The main reason of this test is to observe the creep performance of 3D printed

materials. Secondly, this experiment can show us the experimental curve of strain

versus time under different printing orientation. In this case, the test environment

is at normal room temperature. Figure 4.3 shows the creep measurement apparatus

been used in creep test, which is model SM 106.

Fig. 4.3. SM10 Creep Apparatus (Front View)
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In order to obtain the strain versus time creep curve, one 3D printed specimen has

been applied with a small, but constant load. The 560 grams of weight were chosen

to be the load number. Upon completing the experiment, it was evident a significant

amount of deformation occurred within the initial 30 seconds the specimen was ex-

posed to the load and after that the rate of deformation continued in a much slower,

linear model of behavior. After 20 minutes, measure the maximum elongation, the

load will take off from specimen allowing it to recover if it is not broken. Immediately

the specimen shrank the length which is close to original length. We then measured

the deformation in the specimen at equivalent time intervals.

Fig. 4.4. SM10 Creep Apparatus with 3D Printed Specimen
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From this experiment, we were able to obtain a creep curve and a creep constant

for 3 different angles of printing orientation material. However, both 0 ◦ and 45 ◦ did

not complete the entire test before the break. Figure 4.4 shows one of the specimen

has been loaded on the apparatus, some crack start to show after pulling the reset

pin.

4.2 Results And Discussion

4.2.1 Data

Table 4.1
Sample Data Measured Creep from 3 Different Print Orientation at Time Interval
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Table 4.1 shows partial data of entire data pool we collected. After gathering data

from each printing orientation, the average number of elongation has been calculated.

The early breakers (specimen break before first 150 seconds) are being considered

as outliers. Most of the possible errors in this experiment would result from the

possibility of slippage in the test apparatus. If at any point there was a lessened strain,

because the apparatus could not hold the test material in position, then the values

were compromised slightly, as the actual strain was less than the assumed strain,

giving a bit of inaccuracy. Also, there was the possibility of human error in getting

precise readouts at the exact time needed for a flawless experiment, as each of the

readings were taken at intervals of thirty seconds over the course of twenty minutes

total. This made it difficult to get the right readings at the exact times, without

rounding. Finally, there was the presence of instrument error, as the instrument used

to measure the amount of creep only had marked measurements to the nearest tenth

in units of 0.1 mm.

4.2.2 Load and Elongation Curve

Figure 4.5, below, is a plot of the elongation of the material versus time, as the

weight force of 560 grams was being applied for the first eighteen minutes. Then, as

the weight was removed at the fifteen minute mark, the graph shows a sharp drop,

where the material quickly relaxed without under the decreased load and strain.

However, the 0 ◦ and 45 ◦ printing orientation was not able to endure the load and

broke before 500 seconds and 780 seconds respectively.
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Fig. 4.5. Plot of Elongation of Test Material versus Time

The creep curve was not able to be observed for ABS materials during the creep

recovery. In Figure 4.5 shows where the primary creep is because the elongation starts

to diminish due to work hardening of the material, but for plastics this process cannot

be determined due to work hardening. Polymers consist of chain-like molecules that

are tangled. The creep occurs when chains untangling and slipping. However the 3D

printed specimen created by a string of melted ABS material, therefore, its composite-

like structure does not provide as many tangled chains as normal polymers. Once we

released the weight of the specimen, the graph shows how 90 ◦ printing orientation

recovered from the elastic deformation. Once it recovered almost completely it then

started to taper off where the creep recovery region is found.
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The following equation is the most commonly used in analyze plastic creep model

of empirical equation [19]:

ε = ε0 +Bσmtk, where B =
A2

dqT
exp

−Q
RT

Where ε is the tensile creep strain, t is time , σ is the applied creep stress, ε0 is

the instantaneous loading, A2 is activation energy, q is average grain diameter, T

is temperature, and B,m, k are constants for a given materials [19]. A plot of logε

against logt will therefore be linear and the slope will give the value of exponent k. In

this research case, we have calculated three different k value because of the variation

of printing orientation. After obtaining data with different orientation, the B,m, and

k value of 0 ◦ printing orientation was calculated.

Table 4.2
k Value verses Printing Orientation

Printing Orientation 0 ◦ 45 ◦ 90 ◦

k 0.455 0.243 0.200

Table 4.3
B,m, k Value at 0 ◦ Printing Orientation

Printing Orientation B m k

0 ◦ 0.000126 0.321 0.455

The ABS specimen studied had a relatively linear increase of elongation while the

load was on, however, was able to recover significantly when the tensile load on the

creep apparatus was taken off. This has partials caused with the elastic properties

of ABS material and their ability to physically resemble Hooks Law closely. ABS

materials are considered to be in the primary creep stage. The strain decreases as

the printing orientation increased from 0 ◦ to 90 ◦.
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Fig. 4.6. Steady-State Strain in Log Scale versus Time in Log Scale

If further creep experiment will be done in the future regarding 3D printed model,

the layer number of specimens and the weight of the load should be varied. This will

give even a better understanding of the ABS material and how it will respond to vary-

ing levels of mechanical stress relative to the specimens layer or printing orientation.

Ways to improve the study also may include repeating the experiment more times

to derive to more accurate conclusions along with recording the elongation of the

specimen in smaller increments to get a more accurate model comparing elongation

versus time.



43

5. FATIGUE TEST

5.1 Experimental Detail

5.1.1 Materials

The specimens used in this study are designed in accordance with the Terco mate-

rial test method for fatigue properties. During the test, materials will undergo many

levels of stress. A measurement of this property can be obtained by means of fatigue

test. The common stresses or loads are tensile, compression, bending and rotary

bending. The printer used is a Dimension SST 3D printer in conjunction with Cat-

alystEx software, both products of Stratasys Inc. The 3D printed specimen material

used is ABS, also a product of Stratasys Inc.

Fatigue properties of 3D printed model can help people to understand the stress

concentration and strain behavior in the specimen, which can provide a more reliable

basis for estimating the fatigue life of the 3D printed model. Under fatigue loading, the

material structures undergo an irreversible process of energy consumption, resulting

in declining strength properties and dislocation, slip within the material and other

defects, and ultimately lead to failure of the material. Fatigue damage plastic parts

is the most common failure mode. It can be said fatigue strength are a measure of

an important indicator of the durability of plastic, therefore, the fatigue life of 3D

printed parts research and forecasting has great significance.
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Fig. 5.1. 3D Model Showed in CREO

5.1.2 Printing Process

Fused deposition modeling is the 3D printing technique used to fabricate fatigue

test specimens. First, drawn a CAD model (Figure 5.1) from a solid modeling software

by using measured data of the physical model, then slice the CAD model with the

data processing software which compiled into a bulk scan NC program. Figure 5.1

show the completed CAD model in CERO. Secondly, numerical control commands

controls the motion of heated nozzle, which orderly deposit melted materials on a

layer of sheet, including border outline and fill scan contours. After the completion

of a stacked layer, printing platform descend one layer height, and then continue to

deposit next layer.
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The printing process will finish till the completion of the accumulation of superim-

posed layers forming the whole entity. Print parameters through optimized as follows:

melting temperature of 220 ◦C to 230 ◦C, the nozzle diameter of 0.5 mm, the print

speed of 30 mm/s, layer height 0.1 mm, internal contour with 100% dense packing

accumulation mode. During this fatigue test, all the samples were printed in the nor-

mal position which is parallel to the bed shown as Figure 5.2. Because of its unique

shape and size, the vertical print cannot be achieved.

Fig. 5.2. Fatigue Model Showed in Slicing Software
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5.1.3 Test

Fatigue property is an important material characteristic where fatigue fracture

can caused by different type stress variations at a point even though the maximum

stress is less than the proof or yield stress [20]. The static fracture is started by tensile

stress with 3D printed gap or crack. Once started the edge of the crack acts as a stress

stimulate and thus assists in the propagation of the crack until the reduced section

can no longer carry the imposed load [21]. While it appears that fatigue failure may

occur in all materials, there are marked differences in the incidence of fatigue [21].

To introduce this very complex subjects in a simple way, the apparatus demonstrates

the classical fatigue experiments carried out by Terco. The fatigue test conducted

by the machine made by Terco, model number MT 3012-E. It uses the method of

reversing the stress on a part by employing a cantilever rotated about its longitudinal

axis. Hence the stress at any point on the surface of the cantilever varied sinusoidal.

This kind of test machine is the most commonly used in fatigue test, developed for

analog shaft working conditions.

Fig. 5.3. Preparing the Test Piece
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Figure 5.3 shows a rotating bending fatigue test machine, where the testing sample

fasten from the left to right form into a whole as a rotating beam. The narrower side

supported by rolling bearing, the wider side is connected to the motor, which is linked

to counter that can record 7 figure numbers. The motor drive the specimen to rotate

at a speed of 3000 revolutions per minute, power supply provided is 200V single phase.

Attached to the shaft at the other end is a fixture. The loading device consists of a

spherical ball bearing and a micro switch. By turning the loading wheel clockwise

the loading on the test piece can be increased. A spring balance measures the loading

value. The fatigue tester, which is designed to be placed on a bench, is very stable at

8 feet, weighing 24kg. The hanging weight does not move, but the sample is rotated,

the specimen is subjected to symmetric cyclic bending stress. When the sample

fatigue fracture, triggers the machine stop, then write down the cycle number N. The

Figure 5.4 shows test data, N indicates elapsed revolutions since the RESET-button

was pressed or the first start of the machine. F indicates the actual force applied to

the test piece. LIM indicates the force-level where the test will stop. ORG indicates

and save the value of the applied force when the test starts.

Fig. 5.4. The LCD-Display Showing Test Data
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Fig. 5.5. The MT3012-E Fatigue Tester

5.2 Results and Discussion

5.2.1 Data

The cycle number of material experienced under alternating load before failure

called fatigue life N . Applied stress is smaller, longer fatigue life. Any cyclic fatigue

limit is higher than the maximum stress max, below a certain life cycle will correspond

to base N . The maximum number of different cyclic stress tests obtained by fatigue

life data as well as fatigue limit data to max vertical axis N as the horizontal, we

can draw the maximum stress curve verses fatigue life, namely σmax − N curve,

commonly referred to as S − N curve. S − N curve with stress to characterize the

fatigue properties of the material. Figure 5.17 shows the general form S − N curve

of 3D printed ABS model with 90 ◦ printing angle.
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Fig. 5.6. Fatigue Test with 30 N Load

Fig. 5.7. Fatigue Test with 30 N Load
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Fig. 5.8. Fatigue Test with 40 N Load

Fig. 5.9. Fatigue Test with 40 N Load
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Fig. 5.10. Fatigue Test with 50 N Load

Fig. 5.11. Fatigue Test with 50 N Load
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Fig. 5.12. Fatigue Test with 55 N Load

Fig. 5.13. Fatigue Test with 55 N Load
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Fig. 5.14. Fatigue Test with 60 N Load

Fig. 5.15. Fatigue Test with 60 N Load
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From all the samples above, a break occurred in the parts, and it is the result of

stress under the rupture limit. Those samples have therefore been subjected to dy-

namic loading. Sample 1 (Figure 5.6) can clearly see both static fracture and fatigue

fracture. Static fracture is based on one load which occurred in relatively white color

part of the center of the sample. Outside of the center white part is called a fatigue

fracture, which appears to be uneven surface compares to static fracture. Compres-

sive tension and rotary bending are the causes of the fatigue fracture. As can be seen

from the tension diagram, point A is the most susceptible and it is at this point that

fatigue fracture was occurring during the sample test. The test piece broke at the

radius of the fillet is due to the fact that the fatigue limit is not as constant for the

material, but is dependent on other factors such as type of load, volume of material,

surface finish and form [22]. At high stresses levels, short fatigue lives noticed accom-

panied by plastic strains.

Fig. 5.16. Tension Diagram
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Fig. 5.17. S −N Curve in Log Scale

To find the linear least-squares fit equation, obtain logσ and logNf , then perform

least-squares fit to obtain A and B value of the S − N curve. Since the machine

runs at 3000 RPM, which is relatively fast rotation speed, however the samples were

not showing any thermal melting effect because of the short amount of run time.

Therefore, the following calculation was based on no heating assumption. The cycle

number of failures increases dramatically, with stress level decreases and may change

over into different magnitude. Therefore, logarithmic scale is used in x-axis. Since

single log plot cannot be read accurately, logarithmic scale is also used in the y-axis.
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During the test, stress levels at all levels should be carefully selected so that a small

number of samples measured with desirable results. The Table 5.1 shows the values

of A and B from the rough solutions and refined solutions are relatively agreeing with

each other in general. Since the cycle number is below 105, the fatigue model can

refer as low-cycle fatigue.

5.2.2 Discussion

Many engineering components are stress concentration area, such as holes, grooves,

at the cross section of the transition, the internal defects. When the specimen expe-

riencing cyclical external loads, although it is still at elastic range of work, but in the

material stress concentration area will enter the inelastic state. With the increase of

external load of cycles, cyclic stress concentration of plastic strain resulted in crack

initiation, expands to make specimen fracture. For data approximating a straight

line on a log-log plot, the corresponding equation [19] is

σa = ANB
f

Both A and B are fitting constants, A has unit of MPa, B is dimensionless.

Table 5.1
Fitting Constants A and B

Constant A (MPa) 45 ◦

Test Average 1283.338 -0.198

Fit Equation 1336.634 -0.205
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The crack is shown on Figure 5.14 can dramatically reduce the life of this fatigue

bar. By applying Paris Law, fatigue crack growth can be calculated with following

equation:

da

dN
= C(∆K)n

Where K is stress intensity factor, C is material constant, N is cycle number, and

da/dN is m/cycle [23].

With the crack size of the 0.75 mm long, then apply the Paris Law equation.

Found that the stress intensity factor is varies from 352 to 700MN −m
3
2 , therefore,

the fatigue crack growth rate is 0.0341 mm/cycle. However, if the crack size is 0.6 mm

long, then the stress intensity factor will vary from 315 to 630MN −m
3
2 , resulting

the fatigue crack growth rate become 0.0269 mm/cycle. Despite the increasing cycle

number with large amount of load, surprisingly small differences in the crack length

can have a large effect on the crack growth rate. Therefore, when choosing the printing

parameter, 100% infill would results, lower fatigue crack growth rates.

As a consequence of the 3D printed model which shows on S−N curve figure, the

model can be used in aircraft interior or other similar applications. However, when

designing for infinite life (millions of cycles), such result may not exist and will take

too long to reproduce. When the material to enter the plastic strain-based plasticity

state, only a strain for the control parameters can be measured to take the fatigue

properties of the material. Application of these materials provides strain curve fatigue

performance, which can estimate safety life Nf .

Overall, the fatigue test of 3D printed materials for laboratory equipment require-

ment is complex, may test a long time, and there are no standard fatigue test for 3D

printed ABS to follow, and therefore less current research. Further, during the fatigue

test results of the experimental frequency vulnerable to cyclic loading, many factors

affect the polymer molar mass, orientation, temperature and other experiments, the

conditions difficult to control, thus poor reproducibility of the experiment.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

In this research, an ASTM standard tensile test is presented on 3D printed ABS

tensile bar. The dumbbell-shaped specimen was printed on Stratasys printer. Tensile

analyses are performed by pulling a constant force on one side and fixed the other

side. The procedure was demonstrated by preforming tensile analysis on ASTM D638

Type IV. In addition, a computer based analysis was performed by using ANSYS

finite element software, simulation of ASTM D638 model under force displacement

loads and thus to plot the tensile stress-strain curves of samples. Also, creep test

was conducted on 3D printed bar with three different printing angles. Through the

creep test, which put a material under a constant temperature and constant stress

for a long time to observe the occurrence of slow plastic deformation behavior, creep

limit of each printing orientation was found. Last but not least, by conducting fatigue

experiment, an S-N curve has been measured. The establishment of the curve and

its corresponding stress amplitude with cycle shows how stress value determines the

specimen can withstand a number of stress cycles without breaking.

During the tensile and creep test, the specimen geometry and the mechanics of

test machines can impact the test results. Therefore, this test has sought a load

axis, which consistent with the testing machine geometric center axis, in order to

avoid offset tension during trials. Different restraint conditions at the end of the

specimen, the stress distribution of the specimen will be dissimilar. However, when

the specimens crack, if the end of the test piece is free to rotate, and even if the

geometry of the test piece can still be assured, the stress distribution of the test piece

has changed. Different end constraints on the specimen can affect tensile test results.

Compared with the end portion of the tensile specimen freely rotate, the presence of
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the end restraint specimens under normal circumstances, can result higher the peak

value of the stress and strain. This indication can be observed in the chapter of

ANSYS analysis.

In a uni-axial fatigue test, when the test piece using the same model as Terco

standard, can obtain more uniform static fracture in the middle of the specimen

with a long test period interval. Tensile load can be passed by loading the specimen

with spring. Due to springs mechanical load, the specimen experiencing a uni-axial

stress, the grip portion is tough to fracture, stress-strain curve can be obtained and

experimental error is small. Increasing the mechanical load at the end of the specimen

can fracture the middle of the specimen faster, also the cross-section of specimens will

show a large amount static fracture concentration. If the specimen has large voids or

gaps, so the stress distribution is less uniform, results more experimental error. By

using cylindrical specimens, it will deliver the most uniform stress distribution, and

the test results are most stable.

6.2 Conclusions

Based on the physical and simulated tests in this research, the following conclu-

sions can be made:

1. 0 ◦ printing orientation shows the best tensile properties among 0 ◦, 45 ◦ and

90 ◦.

2. Simulated tensile test and measured results agree with each other in elastic

region, which confirmed the reasonableness of analog design parameters.

3. In physical tensile test, 0 ◦ printing orientation has largest Youngs modulus and

ultimate strength, results on average at 1.81 GPa and 224 MPa respectively.

4. During the creep test, the 90 ◦ printing orientation has the lowest k values,

which is around 0.2, and shows the best creep properties among 0 ◦, 45 ◦ and

90 ◦.
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5. Based on the fatigue data approximating equation, the values of A and B from

test average and the linear least-square fitting results relatively agree.

6. During the fatigue test, the average cycle number under the load of 30N is 3796

revolutions. The average cycle number decreased to 128 revolutions when the

load is 60N.

7. Despite the increasing cycle number with large amount of load, surprisingly

small differences in the crack length can have a large effect on the crack growth

rate. Therefore, when choosing the printing parameter, 100% infill would result

lower fatigue crack growth rates.

8. Compare the stress level in tensile and fatigue test, has a large amount of

difference at Nf equals to 1, due the different strain rate and model dimension.

6.3 Recommendations

Based on the research accomplished in this thesis, some recommendations are:

1. In this research, only elastic analysis has been conducted; a plastic model study

will show the tensile property under a large amount of load.

2. A non-contact strain gauge can be used in the future tensile test, in order to

increase measuring accuracy, and a provide more precise strain rate.

3. The fatigue test machine will need re-balance, in order to increase the loading

accuracy.

4. If further creep experiments will be done in the future regarding the 3D printed

model, the loads should be varied. This will give even a better understanding

of the ABS material and will help with finding constant B and m.
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