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ABSTRACT

Nahin,   M.S.M.E., Purdue University, December 2017. Modeling and Ex-
perimenting a Novel Inverted Drift Tube Device for Improved Mobility Analysis of
Aerosol Particles. Major Professor: Carlos Larriba-Andaluz.

Ion Mobility Spectrometry (IMS) is an analytical technique for separation of

charged particles in the gas phase. The history of IMS is not very old, and in this

century, the IMS technique has grown rapidly in the advent of modern instruments.

Among currently available ion mobility spectrometers, the DTIMS, FAIMS, TWIMS,

DMA are notable. Though all the IMS systems have some uniqueness in case of

particle separation and detection, however, all instruments have common shortcom-

ings. They lack in resolution, which is independent of mobility of different charged

particles and they are not able to separate bigger particles (20 120 nm) with good

accuracy. The work presented here demonstrates a new concept of IMS technique

at atmospheric pressure which has a resolution much higher than that of the cur-

rently available DTIMS (Drift Tube Ion Mobility Spectrometry) instruments. The

unique feature of this instrument is the diffusion auto-correction. Being tunable, It

can separate the wide range of particles of different diameters. The working principle

of this new IMS technique is different from the typical DTIMS and to simply put, it

can be considered as an inversion of commonly used technique, so termed as Inverted

Drift Tube (IDT).The whole work performed here can be divided into three major

phases. In the first phase, the analytical solution was derived for two new separa-

tion techniques: IPF (Intermittent push flow) and NSP (Nearly stopping potential)

separations. In the next phase, simulations were done to show the accuracy of the

analytical solution. An ion optics simulator software called SIMION 8.1 was used for

conducting the simulation works. These simulations adopted the statistical diffusion

Minal.Md
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(SDS) collision algorithm to emulate the real scenario in gas phase more precisely. In

the last phase, a prototype of experimental setup was built. The experimental results

were then validated by simulated results.
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1. INTRODUCTION

1.1 Historical Background of Ion Mobility Spectrometry

Ion mobility spectrometry (IMS) is a widely used analytical technique to sep-

arate and classify ionized particles in the gas phase based on their size and shape.

Separation of charged nanoparticles occurs at atmospheric pressure when the charged

particles drift through a buffer gas under the influence of an electrical field [1–5]. Pre-

viously, this separation technique was called plasma chromatography. The first trace

of IMS was found in 1889 when Rutherford tried to investigate the ionization of gases

and the conduction of electricity through that [6]. Later, these ionization work contin-

ued by Rutherford himself, Zeleny, frank, Tyndall, Townsend, and Thomson through

different methodologies [7]. As an aftermath of several trials, the IMS measurements

got its shape both theoretically and experimentally. In 1970s Karasek invented a new

technique to use IMS as a qualitative detector for liquid and gas chromatography. He

also continued his work to combine IMS (Ion mobility spectrometry) with MS (Mass

spectrometry) and created IMMS system. In 1980, ESI (electrospray ionization) un-

folded a new horizon for ionization of complex nonvolatile system. Shummate in 1989

coupled ESI with IMS. Wu and Chen later paired ESI with IMMS (Ion Mobility Mass

Spectrometry) system, where, they were able to detect the mass-identified mobility

peaks with fair resolving power [8,9]. The rapid advances in IMS occurred in the 20th

century. A wide variety of instruments and instrumentation techniques were devel-

oped very rapidly. Among them, the most notable are Traveling-Wave IMS [10, 11],

High Field Asymmetric waveform Ion Mobility Spectrometer (FAIMS) [12], Trapped

Ion Mobility Spectrometer (TIMS) [13], Open Loop IMS (OLIMS), and Differential

Mobility Analyzer (DMA) [14].
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IMS has its greatest impact in the sector of security [15,16]. It is the best choice

for detecting narcotics, explosives, chemical, and biological warfare agents [6]. IMS is

widely used in airports as well as customs. The interesting part of IMS is that it can

detect any substances, which can be ionized. It can be used for analysis of lightest

element like Helium to most complex mixtures, for example, proteomes, metabolomes.

In biology, IMS is used to determine cell, fungi, bacteria by the enzyme-substrate

reaction. In medicine, it is widely used for detecting drugs in the breath of pa-

tients and volatile metabolites to diagnose different diseases. In food and beverage

industries, it is also used for detecting different chemicals such as acetaminophen,

aspartame, caffeine, glucosamine, etc. IMS can also detect the airborne molecular

contamination as well as inorganic species such as Chlorine, Bromine, Hydrogen Flu-

oride, Nitrogen dioxide, Florine, Chlorine, iodine, Hydrogen bromide, etc [6]. Due

to easy, low-cost operation and quick detection, these IMS techniques have become

a promising tool for conducting research. Currently, IMS is not only being used for

separating and detecting the charged nano-particles rather, it is also being used for

calculating the collision cross section of molecules which is very important to predict

the collision behavior as well as transport properties of molecules [11].

1.1.1 Theoretical Consideration of a Drift Tube Ion Mobility Spectrom-

eter

The most basic instrument for IMS technique is drift-tube ion mobility spectrom-

eter. In a typical Drift tube ion mobility spectrometer (DTIMS), Ions get push by

constant electric field and drift through a buffer gas at atmospheric pressure. In a

drift tube instrument, different ions take different time to travel through the buffer

gas based on their shapes and sizes. The bigger ions face the huge number of collision

with the buffer gas particles and thereby lag behind. On the other hand, smaller ions

move ahead due to less number of collision with the buffer gas particles and take less

time to reach the detector. These characteristics can better be explained by a simple
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term mobility. Mobility can be defined as the terminal velocity of an ion when it is

pushed by a constant electric field and drifts through a buffer gas. By equation we

can represent the mobility as:

vdrift = K0E (1.1)

Where the vdrift is the velocity of gas. K0 represents the mobility of particles at

standard temperature 273.15K and standard pressure 760mm(Hg) and E represents

electric field. It is quite evident from the formula that, if the electric field is constant

then the vdrift is directly proportional to Mobility term K meaning, higher the mobility

the greater the drift velocity Now if the drift length is L and drift time for any

particular ion is t then it can be written,

vdrift = L/t (1.2)

If the applied voltage across the drift cell is V then the electric field can also be

written as,

E = V/L (1.3)

Combing equation 1.2 and 1.3,

K0 = L2/V t (1.4)

For any local temperature T and local pressure P the reduced mobility K can be

calculated as follow:

K = K0(P/760)(273.15/T ) (1.5)

From equation 1.4 if the voltage V and Length L are kept constant then the

mobility would only be a function of time t. Therefore, If a particle would take more

time t to cover length L then, the particle would have lower mobility and vice versa.

Using this concept experimentally the mobility can be calculated.

Theoretically, the mobility of any ion or particle depends on many other factors

and the relation is not that straightforward like the experimental mobility calculation.

The slower or faster movement of any ion or particle is dependent on size, shape,
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Figure 1.1. Peak distribution and resolution

mass, charge, etc. of that ion. Theoretically, in free molecular regime according to

Mason-Scamp the mobility can be defined also as,

K = 3qe/(4ρgasΩ)
√
πmred/8kT (1.6)

Where K is mobility, mred is the reduced mass of ion in drift gas, k is Boltzmann

constant, T is buffer gas temperature in kelvin, q is the charge of ion, ρgas is the

mass density, and Ω is collision cross section (CCS) of the ion. The experimentally

found Mobility value is used to find the collision cross-section of a particular ion

or particle. One very important parameter to determine the capability of an IMS

instrument is the resolution. The resolution is calculated for an IMS instrument to

find its relative ability of separate and detect different ions. The resolution of typical

drift tube spectrometer can be defined as [17],

R = t/FWHM (1.7)

Here, FWHM is the full width of the IMS peak at half maximum and t is the aver-

age time counted for the peak distribution. Figure 1.1 shows the peak distribution,

peak width at half maximum (FWHM) and average time t. The resolution of IMS

instrument can vary from 40 to 150. IMS can also be coupled with MS for more

better resolution.
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Figure 1.2. a) Drift Tube of an Ion Mobility Spectrometer. b) Guard
Rings inside the Drift Tube. c) Section View [6].

1.2 Different Common Parts of IMS Instrument

Any IMS instrument has some parts in common. They are ionization source, drift

cell, ion gate and ion detector.

Ionization Source

ESI or electro-spray is the common source of ionization widely used for Mass

spectrometry instrument. In ESI, the high voltage is applied into a solution or liquid

to create charged aerosol particles under the influence of pressure [18]. By tuning the

voltage and pressure, a stable Taylor Cone [19] can be found which is mandatory for

getting good signals. Figure 1.3 shows the electrospray ionization process. Nickel-

63 is another common ionization source which is a radioactive source which emits

beta ray [6]. The collision of the particle with the electron from beta ray convert

the particles into the positive ion. These ions are then separated in drift cell. One

advantage of Ni63 source is it requires no external power supply like the ESI. However,

extra caution is necessary for the radioactive source.

Another common ionization source is corona discharge ionization. Like ESI a high

voltage is applied to a needle produces a corona around the needle tip owing to the

high electric field. It generally produces high electric field.
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Figure 1.3. Electrospray ionization process [20].
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Drift Cell

The drift consists of several ring electrodes. Figure 1.2 (b) and (c) show the drift

cell with ring electrodes. To avoid voltage leaking one spacer is placed between two

electrodes. Voltage is applied to the ring electrodes and the distribution of voltages

over the electrodes are ensured by resistors. In DTIMS, the voltage linearly decreases

towards the downstream side to keep the electric field constant inside. In a typical

IMS instrument, the voltage applied to the ring electrodes creates an electric field

that pushes ions to drift through the buffer gas. The voltages in the ring electrodes

can be tuned based on the size of ions to be separated or detected. Typically, high

voltage in the ring electrodes is applied for detecting the low mobility or bigger sized

particles. Small voltage or electric field is needed to capture high mobility particles

that are much smaller.

Ion Gate

Ion gate is used to on and off the flow of ions inside the drift cell. The most

commonly used IMS ion gate is Barbury-Nielsen (BN) gate. In BN gate, a series

of parallel wires are arranged in the perpendicular direction of ion flow. In any two

consecutive wires, one contains positive, and another contains negative voltage. Due

to this positive and negative voltage ions get deflected from their way and cannot pass

through the detector which is the gate close stage. When no voltage is applied to the

wires then it is open for the ions to go through which is the open stage. Typically, ±

25 to 100V is applied in BN gate wires [6].

Pulsing is another popular gating system for the IMS system. A high voltage pulse

restricts the ions to go into the drift cell and when no voltage is applied the ions can

pass through. In both BN and pulse gate system, the voltage applied is proportional

to the size of particles. Higher voltage is applied in BN gate for shutting down the

flow of ions.
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Ion Detector

The most common detector for ion in IMS system is Faraday plate combined with

an aperture grid. Altogether, it is called Faraday cage which is common in DTIMS,

FAIMS instruments. In Faraday cage, ions are allowed to impact a metal plate which

is grounded in a current to voltage amplifier. The charge imparted on the plate by

the impact is amplified, and the resulting signal is plotted versus time to produce an

IMS spectra. One disadvantage of Faraday cage is, it can only detect positive ions.

For detecting both positive and negative ions at the same time, electro-meter pico-

ammeters can also be used [6]. In addition, one mass spectrometer system can be used

at the end of IMS instrument to detect the ions. After detection and amplification,

the signal turns into a peak in a recorder. The area of the peak represents the

concentration of the identified compound and the position of the peak represents the

compound size, and shape as the arrival time to the detector is proportional to the

mobility for any ion.

1.3 Drawbacks of Typical IMS System and The Characteristics New IMS

Instrument

Mobility is the key factor for determining the particle size distribution in any

IMS instrument. Considering the globular shape of a particle a particles electrical

mobility can be linked to its diameter, dp through the well-known equation in Aerosol

science [14,21].

K = qeCC(Kn, λ, dp)/(3πµdp) (1.8)

Where, K is mobility, qe is the net charge on the particle (product of the integer

charge state and the unit electron charge), µ is the dynamic viscosity and λ is the

mean free path. Cc represents Cunninghams correction factor and is a function of the

Knudsen number.

Most often, mobility based size distribution functions are measured with differ-

ential mobility analyzers (DMA) [22] coupled to Condensation Nucleus Counters
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CNCs [23]. DMA can also be operated in series as a scanning mobility particle

sizer (SMPS) [24]. SMPS combination technique has become very successful for sep-

arating and detecting particles, however, there are several shortcomings to its use

which could be improved upon employing different techniques. It is because the in

DMA the sheath velocity and distance to cover by a particle are both constant that

ultimately make the resident time inside the DMA constant for all types of parti-

cle. As a result, the diffusion broadening becomes huge which obviously degrades the

resolution especially for sub 20nm particles [25,26].

In most commercial devices for detecting the particles larger than 20nm, the

resolution, defined as fixed K/∆K is approximately less than 10. This results in the

adequate resolution but sometimes insufficient -a 90nm mono-disperse distribution is

not distinguishable from a 100nm mono-disperse distribution.

Scanning time is another issue for IMS instruments. Even in faster scanning

instruments, particles of different sizes are sampled at different times, for example, a

regular Drift tube spectrometer suffers from general elution problem [27] - it cannot

achieve optimal separation power with both small and large ions simultaneously.

Though voltage sweep method [27] has proved to be effective for solving this problem,

however, the major disadvantage is also the long scanning time. SMPSs also require

several minutes to complete voltage scans [24]. So these instruments are not effective

for detecting the rapidly varying aerosol particles at the time of sampling with an

aircraft, near roadways, or from a combustion engine. Furthermore, DMAs require

the use of high sheath flow rates as well as high voltage scanning which increases

the operational cost too [28]. Also, The separation of particles in a regular Drift

tube spectrometers proportional to the length and electric field. To achieve high

resolution (>100), the instrument length must be on the order of meters or make use

of excessively high electric field [29]. However, the increased length also increase the

resident time of charged particles inside the drift tube resulting diffusion broadening.

The greater length, as well as higher electric field, also precludes portability of IMS

instruments.
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Therefore, it is needed to improve the Ion Mobility systems based on the following

characteristics:

• Fast electrical mobility characterization system for rapidly varying aerosols par-

ticles

• Able to detect wide range of mobilities (0.3nm<diameter<100nm)

• A small device (length < 50cm)

• Operational in room pressure

• Can be coupled to a CPC [30] (or an electro-meter)

• Able to show high resolution by correcting diffusion broadening

• Compete against well-established DMAs

Considering all these characteristics, in this work, a new instrument concept is

proposed based on the DTIMS [31] that uses two varying controllable opposite forces

to correct for diffusion broadening [28]. In this instrument, the resolution is depen-

dent on mobility which is inversely proportional to the size of the particles. This

instrument has been termed as Inverse drift tube (IDT) as the electric field opposes

the migration of the nano-particles, dragged by sheath gas flow [28]. Two different

separation techniques- IPF (Intermittent push flow) and NSP (Nearly stopping po-

tential) separation can be used for successful separation of charged particles following

this concept.
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2. ANALYTICAL AND NUMERICAL SOLUTION OF IDT

2.1 Separation Techniques Using Inverted Drift Tube

In an inverted drift tube the separation mechanism is as follows: At room pressure,

packages of ions of multiple mobilities, is inserted at the entrance of the tube which

is controlled by an ion-gate pulsing mechanism- high voltage prohibits the ion to pass

through the gate, and low voltage permits ion to enter the tube. Ions that enter are

then pushed by a gas flowing with a velocity vgas downstream [28].

A series of electrodes are equally spaced inside the drift tube and are connected

through resistors into a power supply. The electrodes are used to create a linearly

increasing electric field which opposes the flow of the ions and slow their movement

relative to vgas. This allows the ions to be separated depending on their mobility

through the drift velocity vdrift. As the field opposes the flow, the lowest mobility

ions or bigger ions are the ones moving ahead in contrast to a regular DT-IMS hence

the term Inverted has been used. Figure 2.1 shows the sketch of an Inverted Drift Tube

with the gas flow direction and opposing field. As long as the ratio vdrift/vgas , termed

from here on separation ratio, Λ, is smaller than unity, the ions of a given mobility

will traverse through the drift cell without being completely stopped. Eventually,

these ions can be collected downstream of the drift tube. The closer Λ = vdrift/vgas

is to 1, the longer time the ion remains in the drift cell and the higher the separation

will be. However, if at some point inside the drift cell, the ratio Λ = 1 is reached,

particles of such mobility would be stopped and pushed towards the walls due to the

residual radial electric field that arises from Laplaces equation where ∆2V = 0 [28].

One good way to confine ions inside the Drift tube is to use RF. TIMS (Trapped Ion

Mobility Spectrometry) [13,32,33], the most recent IMS instrument, uses this kind of

mechanism for trapping ions [32]. However, it only works in low-pressure condition.
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Figure 2.1. Inverted Drift Tube System. The gas flow in the direction
of the moving ions and the linearly increasing electric field in the
opposite direction
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Figure 2.2. Intermittent push plow separation

For trapping relatively bigger ions, the RF would have to be very high in amplitude

and frequency which is difficult to pursue.

The alternate idea can be to allow all mobilities of interest to traverse the drift

cell while trying to keep the ratio Λ as close to 1 as possible without losing the ions.

However, it is not possible to maintain the constant separation ratio under a fixed

rising electric field. To illustrate more clearly, in case of separating a particular ion

with a separation ratio 0.9 under fixed rising electric field the separation ratio at the

beginning is zero. Separation ratio gradually increases towards the downstream side,

and before reaching the end, it should achieve 0.9. For the ions with size more than

the selected ion of choice separation would be either low or not possible. With that

in mind, two different separation mechanisms have been explored using IDT [28]:

1. Intermittent Push Flow (IPF) Separation:

To separate a wide range of mobilities, the varying the opposing electrical field is

necessary to acquire all mobilities at high resolutions. The method is depicted
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in figure 2.2 where the highest possible field slope dE/dx = A for a given

electrical supply is initially selected. Before the ion with the smallest mobility

hits a separation ratio of Λ, the slope of the electric field is lowered which

ensures that Λ = 1 will never be reached. This drop in the slope can happen

as many times as needed until all necessary ions are collected at the end of the

drift tube. The resolution and separation of the peaks will depend on the range

of mobilities. Figure 2.2 shows, two ions of different sizes at the entrance of an

IDT as well as the initial electric field at starting time t0.With time the electric

field gradually decreases and maximum separation occurs at time t3.

2. Nearly-Stopping Potential (NSP) Separation :

To separate ions of very close mobilities, an alternative possibility is to use

an opposing constant electric field which is slightly below the necessary field

to maintain the separation ratio slightly below 1 for all ions of interest hence

maximizing the separation potential. To avoid the radial electric field as well as

trap ions inside an RF of low amplitude and low frequency also can be used in

this technique. Figure 2.3 shows, at time t1 ions face the constant rising electric

field, and at time t2 the electric field is made constant, and separation occurs.

Based on the range of mobilities and the resolution either IPF or NSP can be used.

The advantage of these type of opposing-field instruments is their auto-correcting

properties- from equation 1.1 if the electric field strength E is less than the ion drift

velocity vdrift then ions will be pushed forward, and if the opposite is true, then ions

will be pushed backward.

The major difference in between IDT and TIMS is, in IDT the separation ratio

Λ < 1 always for particular ions of choice, however, in TIMS ions reach separation

ratio, Λ = 1 and then one RF field is used to trap ions in the different location

based on their mobilities [28].The ions are then subsequently pushed by lowering the

electric field to the critical value that pushes the particles through. On the other
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Figure 2.3. Nearly Stopping potential separation
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hand, in IDT, the electric field is continuously decreased without any influence of RF

to maintain the constant separation ratio.

2.2 Analytical Solution of IDT

The differential equation and corresponding solution are already established for

typical drift tube and thereby, the resolutions of those of drift tubes are also pre-

dictable. On the other hand, as the concept of IDT is quite new, so, It is needed to

find the proper differential equation and the solution of that to represent diffusion

auto-correction.

To avoid complexity, we can assume that the IDT has a fixed increasingly linear

electric field ~E = A~z, is applied opposite to the gas flow at a velocity vgas. A is the

slope of the field. The study can be made more simpler considering the concentration

of n(r, z, t) ions of a particular mobility K and charge q drift inside the tube. And,

the concentration of ions n(r, z, t) is low enough so that the effect of space charge can

be neglected.Then the balance equation can be represented as:

∂n/∂t−∆.( ¯̄D.∆n− ( ~vgas −K ~E)n) = 0 (2.1)

¯̄D is the diffusion tensor and K is electrical mobility. If one considers the one-

dimensional problem neglecting radial electric field and diffusion, the equation for

n(z, t) can be written in Cartesian coordinates as:

∂n/∂t = DL(∂2n/∂x2)− ( ~vgas −KAz)∂n/∂z) +KAn = 0 (2.2)

The initial concentration of ions at the inlet of the tube and at time t0 can be con-

sidered n(0, 0) = ns

The Sturm-Liouville solution to the equation for the aforementioned initial con-

centration can be written as [28]:

n(z, t) = ns/
√

2πσ2 exp−(z−~x)2/2σ2

(2.3)
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where,

σ2 = (2DL/vgas)(x̄−KA/2vgasx̄2)

= (DL/KA)(1− exp−2KAt)

= (KT/qA)(1− e−2KAt)

(2.4)

and

x̄ = (vgas/KA)(1− e−KAt) (2.5)

There are several characteristics that differentiate this equation from that of the

regular drift tube. Most importantly, the standard deviation σ as shown in equation

2.4 has a correction term KA/2vgasx̄
2 . This auto-correction term is quadratic with

the mean position x̄ of the distribution so that it increases with the traversing distance

through the drift cell. While in the conventional Drift Tube distribution broadens

as a function of time, in the IDT distribution broadening is damped and eventually

stopped. The contribution ofKA/2vgasx̄
2 increases with time, and as the ion advances

through the drift cell, leads to an asymptotic value of the standard deviation given

by kT/qA which is independent of time t. This asymptotic value will be reached

when the separation ratio Λ becomes one. At that moment, the mean position of the

distribution will be given by, vgas/KA and the ion will no longer advance in the axial

direction.

The resolution for the IDT can also be calculated as [28]:

R = x̄/∆x = (x̄/2)/
√

2 ln 2(KT/qA)(1− e−2KAt) (2.6)

The resolution of a typical DT of Length L is known as [29]:

RDTIMS = x̄/∆x = tvdrift/
√

16DLt ln 2 (2.7)

Where, DL is the longitudinal diffusion. For IDT, the resolution at distance L can be

calculated as [28]:

RL = L/
√

16 ln 2(KkT/qvgas)(L−KA/2vgasL2)

=
√
qL/

√
16 ln 2(KkT/qvgas)(1−KA/2vgasL)

= RDTIMS/
√

Λ(1− Λ/2z)

(2.8)
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2.3 Results from Analytical Solution

2.3.1 Resolution Using Varying Opposed Field (Intermittent Push Flow

Separation)

The equation 2.6 is representing that the resolution in IDT varies with dis-

tance travel inside the drift tube. With time the numerator term x̄, which repre-

sents the mean position of a particular particle, increases and the denominator term√
2 ln 2(KT/qA)(1− e−2KAt) decreases. The contribution of both ultimately makes

the resolution much higher on the downstream side. It should be noted here that,

in both IDT as well as typical DT the resolution increases with the length of the

drift tube. Equation 2.7 shows the term tvdrift which is ultimately the length L in

proportion to the resolution for regular DT. From the equation 2.8, the resolution

for inverted drift tube is equal to the resolution of regular drift tube divided by the

term
√

Λ(1− (ΛL/2z)). Figure 2.4 shows the resolution as a function of Length and

different mobilities (8-80 nm diameters particles) for a fixed slope A and vgas. It can

be mentioned here that, unlike the resolution of the DT depicted in equation 2.7,

the resolution of the IDT has a positive dependence on the mobility. The resolution

of the instrument is very high in terms of equation 2.8 for very modest lengths (12

cm). From figure 2.4, the resolution increases with increasing diameters or decreasing

mobilities, however, under constant electric field condition the separation ratio is not

different for different particles. Figure 2.4 shows when 8nm diameter particles grad-

ually increase to a separation ratio close to 1 then 80nm diameter particles reach to

a separation ratio Λ < 0.01 at the end of the conduit.

To improve the resolution and separation ratio, one must resort to the tactics

IPF and NSP separation discussed earlier. For the intermittent push flow, there is

a theoretical optimal resolution for which the separation ratio Λ is kept constant

for a particular mobility. This requires the continuous change of the field slope A

to guarantee that at any given position of the ion Λ constant. Figure 2.4 shows

the theoretical resolution maximum (dashed lines) for 80nm particles as a function
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Figure 2.4. Mobility dependent IDT resolution for vgas = 0.04m/s
and A = 3.25e5V/m2
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of the different constant values of the separation ratio. The resolution, as given in

equation 2.8, is not particularly useful for this type of instrument as opposed to the

DMA or DT-IMS. The reason is that if the field slope was A=0, i.e., no electric field,

the residence time in the drift tube will be minimal and there will be no separation

between any mobilities. However, the resolution would depend on the competition

between diffusion and Vgas which could still be very high. The importance of equation

2.8 relies on the fact that when the separation ratio Λ increases, the residence time

inside the system increases, but the resolution also increases in contrast to what is

expected with just diffusion.

Since the electric field is solenoidal when space charge is neglected, the radial

electric field might be non-negligible off axis, and one must wonder about its effect in

the trajectories of the ions as the separation ratio is increased [28]. Given, ∆. ~E = 0

one can calculate the radial field for constant axial field cross sections ∂Ez/∂z = −A

and which is given by Er = Ar/2 . Figure 2.5 shows the trajectories of off-axis

particles due to the effects of radial electric fields (no diffusion considered) for two

particular cases:

1. For constant separation ratio condition where electric field needs to decrease

continuously. Figure 2.5 shows for constant separation ratio Λ = 0.5 (dashed

lines) the trajectory of 8 nm diameter particles mobility, K = 1× 10−6m2/V s.

The initial condition was 2.4 cm as the slope A would be too high to maintain a

constant separation ratio Λ for smaller values of z. It is found that values that

are off axis up to 1.1cm still reach the end of the tube.

2. Constant slope condition where the separation ration is no longer constant.

The separation ratio Λ increases with the distance z progressively reducing the

velocity of the moving ions Vm = Vgas − Vdrift until the drift from the radial

field becomes of the order of Vm at a given radial position. If this occurs, the

ion will inevitably be lost.
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Figure 2.5. Off axis trajectories due to the existing radial field in
Intermittent Push Flow. Perpendicular lines to the axial direction
are iso-field lines (color-map) and iso-potential lines (dashed red) for
a constant A. Solid black lines correspond to off axis trajectories at
different initial radial conditions using Intermittent Push flow for con-
stant slope A. Dotted black lines correspond to trajectories at a con-
stant separation ratio Λ.



22

Figure 2.6. IDT resolution using the Nearly-Stopping Potential (NSP) method.
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2.3.2 Resolution Using Constant Opposed Field (Nearly-Stopping Poten-

tial Separation)

To avoid radial field effects, one can resort to NSP separation mode where the

electric field is constant. For such a case, the resolution RNSP of a distribution of

ions of mobility K after passing through the cell is equivalent to that of a DT-IMS

from equation 2.7 but where the field opposes movement [28]:

RNSP = x̄/∆x =
√
qlvm/16kT ln 2K =

√
qlvgas(1− Λ)/16kT ln 2K (2.9)

It is very important to note here that, the separation ratio opposes the resolution. The

reasoning is quite clear, the larger the separation ratio, the longer the total residence

time in the drift tube and the higher the chance ions have to diffuse (similar to that of

the regular drift tube) before covering a distance L. Figure 2.6 shows the resolution

for nearly stopping potentials for a given mobility K = 1× 10−7m2/V s (25nm) as a

function of the separation ratio where it is showing with increasing the separation

ratio the resolution is decreasing.

2.4 Numerical Simulations Including Diffusion Auto-correction

The 1D numerical solution of equation 2.8 shown in figure 2.7 where the position

of the distribution of singly charged ions of a single mobility is given as the function

of time for a specific set of parameters, namely A,K, vgas,DL and initial condition

ns(x). The advantage of using numerical methods is that one can easily use the initial

condition to be a distribution ns of any kind at time t = 0 and study its evolution.

In figure 2.7, there are a couple of notable features. The first of them is that there

exists a maximum value of x at which the distribution of ions reaches an asymptotic

behavior. This asymptotic behavior happens, as stated previously,

¯xasympt = vgas/KA and it will occur when the separation ratio reaches the value

of 1. The second is that the standard deviation of the ions will also asymptotically

tend to value σasympt = kT/qA regardless of the initial distribution. To test whether
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Figure 2.7. 1D numerical solution for equation 2.8 showing the po-
sition of the distribution as a function of time for an initial broad
parabolic distribution.
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Figure 2.8. Simulation of the 1D IDT equation 2.8 at different times.
Dashed lines correspond to the analytical solution equation 2.3 while
solid lines correspond to the numerical solution at times t=0 s,0.11
s,0.44 s,0.78 s and 0.9 s for initial narrow distribution.

Figure 2.9. Simulation of the 1D IDT equation 2.8 at different times.
Dashed lines correspond to the analytical solution equation 2.3 while
solid lines correspond to the numerical solution at times t=0 s,0.11
s,0.44 s,0.78 s and 0.9 s for initial wide distribution.Diffusion auto-
correction is able to narrow down the initial distribution as it travels
through the drift cell.
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the asymptotic standard deviation was reached from different initial distributions,

two initial distributions were modeled; one with smaller standard deviation than

the asymptotic value σinitial < σasympt) and one with a larger one σinitial > σasympt.

The distributions as a function of time are shown in Figure 2.8 and 2.9, and both

are compared to the analytical solution -obtained using equation 2.3 giving excellent

agreement between numerical (solid) and analytical (dashed) distributions. Figure

2.8 clearly shows that when the initial distribution is very narrow, the distribution

broadens and reaches the expected asymptotic behavior. The behavior follows the

analytical solution quite accurately. When the initial distribution is broader than

the expected asymptotic solution as in Figure 2.9, the distribution narrows to reach

the expected asymptotic solution. This behavior is unique to the IDT instrument

and provides the possibility of ultra-high resolution if we allow the ions to stay in

the cell for a sufficient length/time. The reasoning behind the auto-correction of the

diffusion broadening is quite apparent. Ions diffusing to the left of the equilibrium

point have values of Λ < Λeqilibrium, and are pushed forward faster than those at

Λeqilibrium.Similarly, for those ions diffusing to the right, Λ < Λeqilibrium and they suffer

a stronger electrical field which subsequently pushes them back to equilibrium [28].
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3. SIMULATIONS IN SIMION

3.1 SIMION and Collision SDS Model

SIMION is an ion optics simulation software package that can model ion optics

problem with 2D symmetrical and 3D asymmetrical electrostatic potential arrays.

Based on different generated 2D or 3D shapes and applied voltage, SIMION can

generate the virtual electric fields or magnetic fields. It also consists of ion charac-

terization options according to need. Ions can be flown from the different positions

inside or outside the generated electric field-and trajectory of the ions are calculated

by the finite difference numerical scheme. It is also possible to define any flow field

inside SIMION to mimic the actual flow of gas. The unique feature of SIMION is,

almost any command can be feed in SIMION through LUA programming language.

As for application, SIMION is suitable for a wide variety of systems involving 2D

or 3D for static or low-frequency (MHz) RF fields. It is capable of doing simulation

from ion flight through simple electrostatic and magnetic lenses to particle guns to

highly complex instruments including time-of-flight, ion traps, RF quadrupole, ICR

cells, Mass Spectrometry, ion source and detector optics.

SDS (Statistical Diffusion Simulation) is a user program for SIMION that simu-

lates the motion of charged particles in electrostatic and magnetic fields under atmo-

spheric pressure [34,35]. SDS uses collision statistics to simulate the effect of millions

of collision per unit time step [34,36,37].

3.1.1 Parameter Specification in SIMION

In SIMION for SDS model it is needed to define some parameters beforehand

including the collision gas mass (in nm), collision gas diameter (in nm), pressure

(in torr), temperature (in kelvin), bulk gas velocity (in m/s) in x,y and z-direction,
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Figure 3.1. Mobility as function of ion diameter.

pressure field and Temperature field, velocity field and minimum time step. If no

data are provided by the user regarding the mobility and collision diameter for ions

to fly then, SIMION automatically estimates them for simulation.

Ion Diameter, Mass and Mobility

SIMION uses the following formula for estimating the diameter of ion if the ion

mass is provided with an assumption of constant volume density (from atmospheric

aerosols 14-35 Handbook of Chemistry and Physics 83rd edition):

dion(nm) = 0.120415405(massion(amu))1/3 (3.1)

If the mobility is not provided, then it can be generated by fitting log-log plots of ion

diameter and mobility values in the air (from page 14-36 The Handbook of Chemistry
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Figure 3.2. Ion diameter as function of mobility.

and Physics 83rd edition) using a third order polynomial. Figure 3.1 shows the log-

log plot for mobility as the function of diameter and the following relation as the

polynomial equation.

Before calculation starts, some other parameters are needed to be configured in

SIMION. They are:

Position, Kinetic Energy and Distribution of Ions

In a separate tab in SIMION it is needed to provide the initial position of ions,

number of ions, kinetic energy as well as initial distribution. Figure 3.3 shows the ion

configuration options in SIMION.
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Figure 3.3. Ion Definition in SIMION
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Buffer Gas Mass and Diameter

By default, SIMION assumes air as buffer gas (mass = 28.954515 atomic mass

unit (amu) and diameter = 0.366 nm ). If the buffer gas is not air then the ions

diameter and and the mobility are calculated from the equation of gas kinetics [35]:

K0 = 3e/16N0((2π/µkT )1/2)(1/Ω) (3.2)

Where µ is the reduced mass and Ω is collision cross section. They can be defined

mathematically as:

µ = (massion ×massgas)/(massion +massgas) (3.3)

Ω = π(dion + dgas)
2/2 (3.4)

The mobility of gas k0gas and mobility of air k0air are estimated at standard temper-

ature and pressure as follow:

k0gas = k0air ∗ Cgas/air (3.5)

k0air = k0gas/Cgas/air (3.6)

where,

Cgas/air = (µair/µgas)
1/2(Ωair/Ωgas) (3.7)

Cgas/air = (µair/µgas)
1/2((dion + dair)/(dion + dgas))

2 (3.8)

So, if the diameter of ion dion is known but mobility of ion in gas K0gas is unknown

then using the mobility of ion in air K0air (can be found from fitting equation at figure

3.1) mobility of ion in gas K0gas can be calculated from equation 3.5. On the other

hand, if mobility of ion in gas K0gas is known, but, the ion diameter dion is unknown

then at first using the mass of ion the diameter of ion can be calculated from equation

3.1 and next, mass and diameter of ions can be used to calculate Cgas/air, which later

can be utilized to find the mobility of ion in air K0air. Knowing the mobility of the

ion in air K0air from equation 3.2 the actual diameter of ion can be calculated.
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Velocity, Pressure and Temperature Field

In SIMION the velocity and pressure, temperature values are either can be kept

constant throughout the simulation time or, the velocity, pressure and temperature

field can be provided in each grid point defined in SIMION. The values of velocity,

pressure, and temperature can be provided as the text file.

Electric Field

In SIMION, at first, 3D geometric figures are to be drawn in the grid specified. The

3D geometry can be declared as electrodes or non-electrode. SIMION calculates the

electric field based on the electrode geometry, empty space and the potential applied

to that electrodes. Potentials in that electrodes either can be provided externally or

by using an LUA program in SIMION. Figure 3.4 shows the generated grid points as

well as electrodes in SIMION. Figure 3.5 shows the 3D electrodes generated by the

geometry presented in Figure 3.4.

3.1.2 Statistical Diffusion Simulation (SDS) Calculation Method

In SDS collision model at the atmospheric pressure, the ion motions are simulated

by a combined viscous ion mobility xaxial and random ion jump rjump calculation

which is again the function of the number of collisions of ions with gas molecules.

Collision statistics are used for simulating the high number of collisions per unit time

steps. In collision statics, it is assumed that any particular ion can move to a random

distance at random direction from any initial point due to a fixed number of collisions

for a particular mass ratio. The mass ratio is the ratio between the mass of the ion

to the mass of the gas molecule. A distribution of random movements of ions can be

found considering a large number of ions (e.g. 1,000,000) with different mass ratios

as well as the different number of collisions.
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Figure 3.5. 3D Electrodes generated by the drawing presented in Figure 3.4
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The process of can better be explained considering the following two collections of

simulations: the first collection of the simulation considered ion with the normalized

velocity of 1 along x-axis and a normalized fixed distance step of 1. The second sim-

ulation used random Maxwell Boltzmann distribution of energy (average normalized

to 1) and direction, and each distance step was Poisson randomized to an average

of 1 (normalized). Each simulation was done for 10000 ions. A separate simulation

was run for each of five different total number of collisions (10, 100, 1000, 10000,

or 100000), and had one of seven mass ratios (1, 10, 100, 1000, 10000, 100000, or

1000000). Thus each collection had 35 simulations. The figure 3.6 shows a com-

parison of the variation of the 50% r distribution point for these simulations. The

most important observation is that both collections with the equivalent mass ratios

converge to common r (50%) values when the number of collisions is large enough.

This means that both approaches lead to the same r statistics for large values of n

collisions. Also, it is notable that, the lower mass ratios converge at a lower number

of collisions, n. Any ion jumps rjump for a particular mass ratio, in between calcu-

lated mass ratios, can be found using interpolation. These random movements can be

superimposed upon the viscous trajectories to predict the more realistic movement of

ions. In figure 3.6 the graph leads to the insight that, if the number of collisions is

high enough (around 100000), the mass ratios of less than 10000 to 1, converge into

the square root law. This means that if the time steps are large enough for 100,000

collisions, we can ignore the linear rule region and assume the ion trajectories will

be fully de-correlated and fly in the square root law scaling region. This condition

is easily satisfied for ions flying in atmospheric conditions using the sub to one mm

integration steps typically used by SIMION.
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Figure 3.6. Convergence to square root law at high collision numbers.
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3.1.3 Formulations of SDS Collision Model

Formulations for Random Jump:

The number of expected collision nexpectedcollisions of ions with the gas molecules

can be found from the following equation [35].

nexpectedcollisions = t ¯Vion/MFP (3.9)

Where ¯Vion is ions average thermal speed, and MFP is mean free path of ions and t

is time step. Ions average thermal speed can be calculated from:

¯Vion =
√

8kT/(πmion) (3.10)

The mean free path between collisions is found by dividing the average thermal

velocity of the ion ¯Vion by its collision frequency νrate.

MFP = ¯Vion/νrate (3.11)

Where,

νrate = (
√

2− 1/4)π((dion + dgas)
2/2)N ¯Vion+ πd2

ionNvgas/4 (3.12)

Where, N is the number density of the gas, Vgas is the velocity if gas, dion and dgas

are the diameter of ion and gas molecule respectively.

The true ions jump rjump−scaled can be found from [35]:

rjump−scaled = MFP × robtained
√
nexpected−collision/ndist−collision (3.13)

For a particular mass ratio in between two known mass ratios, the particular true ion

jump robtained is found via interpolation from two sets of distribution for those known

mass ratios. ndist−collisions is the number of collisions calculated from that distribution.

This random movement of ion in the random direction is repeated at each time step

throughout the ions trajectory and superimposed over the viscous movement to find

the actual movement.
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Formulations for Viscous Movement:

The mobility (either from the user or calculated from ion diameter) is used for

calculating the viscous movement of ion inside gas. Considering the damping effect

of ion in a buffer gas, the acceleration of an ion can be found as [35]:

A = A0e
−b0t (3.14)

Where, A0 is the initial acceleration, b0 is time constant and A is the acceleration at

any time t. Integrating the equation 3.14 we get the velocity∫ t

0

A0e
−b0tdt (3.15)

or,

V = A0/b0(1− e−b0t) (3.16)

From this equation 3.16 the term (1 − e−b0t) decreases with time and the ions even-

tually attain the maximum velocity V0. Where,

V0 = A0/b0 (3.17)

This maximum velocity V0 is directly related to the mobility by following equation:

V0 = K0E = K0 ∗ V olts/distance (3.18)

Where K0 represents mobility and E represents electric field. The acceleration term

can also be written as,

A0 = force/mass = work/(distance×mass) = (V oltage×charge)/(mass×distance)

(3.19)

Using this value from equation 3.18 we get

A0 = (charge× V olts)/(mass× distance) (3.20)

Therefore, using the value of A0 from equation 3.16 we can write,

b0 = charge/(mass×K0) (3.21)
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The time constant includes damping coefficient inside and damping is inversely pro-

portional to the mobility. Therefore, it can be written:

b0 ∝ 1/K0 (3.22)

This time constant b can be corrected for any local pressure and temperature in the

following way [35]:

b = b0(Plocal/P )(T/Tlocal) (3.23)

So, knowing in each time step using the velocity of ion V (from equation 3.16), the

axial movement of the ions is calculated from:

xaxial = V × timestep (3.24)

Where, V is the velocity of ions at local temperature and pressure.

In SIMION, this random ion jump rjump is then superimposed to this axial vis-

cous movement xaxial to calculate the actual movement distance and direction at any

specific ion time of flight. For the next time step, SIMION considers these calculated

values as initial values and the previous end-location of ions as the stating location

and continue calculating the trajectories until all the ions reach the end. Altogether,

figure 3.7 represents the flow chart for input parameters and calculated values con-

sidering SDS collision model in SIMION.

3.2 Simulation of IPF and NSP Separations Using SDS Collision Model

After finding the analytical solution for IDT concept, the validity of this system

was also checked by SDS collision model. Inside SIMION, 30 ring electrodes each of

48 mm inner diameter, 50 mm outer diameter and 2 mm thickness were drawn in

121 × 25 grid points (the distance in between any two grid points was 1mm). The

space in between two consecutive ring electrodes was kept 2 mm for the spacers. The

target was to separate the wide range of mobilities ranging from 20 nm to 120 nm. By

using an LUA code, the potentials of the ring electrodes were set in such a way that
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they follow a quadratic relation with distance: potential, V (n) = Ax2, where A is an

arbitrary constant and x represents the distance. It is because the potentials then

form linearly increasing electric field towards the downstream side. The equation of

electric field becomes E= dV/dx = 2A, where, 2A represents the slope of the electric

field vs distance graph in figure 3.8. Figure 3.8 a) shows a section of the IDT with

simulated electric field lines (blue) and b) shows the expected potential and electric

field inside IDT including the slope 2A of the liner electric field. However, It can

be noted here, the electric field lines were not perfectly linear (figure 3.8 (a)) rather,

slightly curved due to the presence of radial electric fields which were unavoidable.

The existence of this radial field caused the ions (with separation ratios Λ close to

1) to be pushed towards the electrodes precluding the possibility of capturing the

particles inside the drift tube. To avoid reaching separation ratios very close to 1, the

two techniques (mentioned in Chapter 2) were developed: Intermittent Push Flow

(IPF) and Nearly-Stopping potential (NSP) separation and were run in SIMION.

In order to define a reliable gas flow field, a CFD simulation of the drift tube using

Solid Works flow simulation was performed. A CAD model was prepared according

to the aforementioned dimension of the conceptual IDT (inner diameter 48 mm and

length 120 mm). In the CAD model, two inlet-one for ion flow with air (low flow)

and another for annular air flow (high flow) and one outlet were generated for CFD

calculation. The center flow 1L/minute and annular flow 4L/minute were considered

for CFD simulation. The outlet condition was environmental pressure.

One of the biggest problems of IMS instrument was the parabolic flow profile. In

case of the parabolic profile, the similar-mass ions can be at the different position

over the parabolic profile, thereby, hampers the resolution. In case of making the

flow profile less parabolic or flat one mesh structure was installed both at the inlet

and outlet section of the CAD model. Figure 3.9 shows the SolidWorks CAD model,

inserted mesh at both inlet and outlet as well as the flow profile at the different posi-

tion of the drift tube. The flow data from the CFD simulation was then transferred

to SIMION as a .txt file. The two most important observations from the simulation
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Table 3.1. Table of selected ions’ mass, diameter and mobility

Mass

(amu)
Diameter (nm) Mobility (m2/Vs)

5.00E+06 20.59 5.40E-07

2.00E+07 32.69 2.35E-07

6.00E+07 47.14 1.22E-07

1.00E+08 55.93 9.03E-08

2.00E+08 70.42 6.03E-08

3.00E+08 80.61 4.77E-08

5.00E+08 95.57 3.56E-08

1.00E+09 120.42 2.41E-08

were, the flow velocity in the mid-section of the drift tube increased towards the

downstream side, and at the same time, the flow profile was flat at the mid-section.

Inside SIMION eight types of particles (of different masses and diameters) were de-

fined for flying through the drift tube under the calculated electric field and provided

flow field. The particles chosen are shown in table 3.1. The starting coordinate of

the ions was chosen (0.5, 0, 0) in mm in the Cartesian coordinate system. No Kinetic

energy was provided to ions.

3.2.1 Intermittent Push Flow Simulation in SIMION

In intermittent push flow approach the field slope 2A was lowered at known fixed

times so as to never reach a separation ratio of Λ=1. Figure 3.10 shows a SIMION

simulation at 5 particular times using the modeled spherical nano-particles of 8 dif-

ferent sizes ranging from 20 to 120 nm as they travel through the inverted drift tube.

For easy calculation, to reduce the burden of simulation as well as simulation time,

instead of continuous ramping in the simulation, 4 pushes were used at 4 specific

times. To optimize the pushes, the pushes were made before the separation ratio Λ
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Figure 3.11. Distributions and Resolution R t/∆tf simulations using
the set of intermittent pushes for different particles sizes. 100 nano-
particles were used to create the distributions.

became 1 for the highest mobility particle (blue in the figure). At 4 different times,

specific potentials were supplied to the electrode in the simulation. The values of

potentials with pushes are provided in table 3.2 and table 3.3.

The potential of electrode no. 1 was always kept 0V intentionally. In all the cases

the potentials were based on the relation, V = A(n − 1)2 where V was the applied

potential (measured in Volts), A was an arbitrary constant, and n was the number of

the electrode. As potential more than 10KV was not possible and too high for an IMS

instrument, so, in all the cases potentials were kept below 10KV in the simulation. To

illustrate this more clearly, from the table 3.2 at no push condition the 10th potential

was 9963V and after that, all the potentials were more than 10KV (following the

formula mentioned above). For that reason, the 9963V value was applied for the

rest of the electrodes. Similarly, it was also done for the push 2 as well as push

3. All the commands were supplied in SIMION using an LUA code. The pressure,

velocity, and collision gas (air) diameter were also declared in that code. Using this
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Table 3.2. Potentials at different push-times for electrode no. 2 to 24

Electrode No.
Potential (V)

No push Push 1 Push 2 Push 3 Push 4

at 0.15 s at 0.25 s at 0.85 s at 3.5 s

2 123 50 20 8 4

3 492 200 80 32 16

4 1107 450 180 72 36

5 1968 800 320 128 64

6 3075 1250 500 200 100

7 4428 1800 720 288 144

8 6027 2450 980 392 196

9 7872 3200 1280 512 256

10 9963 4050 1620 648 324

11 9963 5000 2000 800 400

12 9963 6050 2420 968 484

13 9963 7200 2880 1152 576

14 9963 8450 3380 1352 676

15 9963 9800 3920 1568 784

16 9963 9800 4500 1800 900

17 9963 9800 5120 2048 1024

18 9963 9800 5780 2312 1156

19 9963 9800 6480 2592 1296

20 9963 9800 7220 2888 1444

21 9963 9800 8000 3200 1600

22 9963 9800 8820 3528 1764

23 9963 9800 9680 3872 1936

24 9963 9800 9680 4232 2116
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Table 3.3. Potentials at different push-times for electrode no. 25 to 30

Electrode No.
Potential (V)

No push Push 1 Push 2 Push 3 Push 4

at 0.15 s at 0.25 s at 0.85 s at 3.5 s

25 9963 9800 9680 4608 2304

26 9963 9800 9680 5000 2500

27 9963 9800 9680 5408 2704

28 9963 9800 9680 5832 2916

29 9963 9800 9680 6272 3136

30 9963 9800 9680 6728 3364
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method and 4 pushes, all particles were collected and easily separated in the span of

4.2 seconds. However, the largest particles -those with separation ratio much smaller

than unity- could not achieve its maximum possible separation. It was conceivable,

however, if one were interested in resolving the largest particles, a higher separation

ratio for such particles would be used, at the cost of losing higher mobility particles.

For the pushes used in figure 3.10, 100 particles of each of the sizes were studied,

sampled and their time distributions were collected in figure 3.11. The resolution was

subsequently calculated as t/∆t and shown in figure 3.11. The resolutions obtained

are in agreement with those obtained in figure 2.4 and are extremely high compared

to other instruments. Not a single particle was lost in the calculation process, so the

transmission was 100%. However, the simulation normally had the starting particles

initially centered in the drift tube (deviation was always less than 0.5cm) and space

charge was neglected for the calculations. In any case, the loss of nanoparticles to

the walls, even when space charge is considered, is not expected to be higher than

that of existing commercial instruments when the initial distribution is centered (see

Figure 2.4). Table 3.4 shows the mobilities and diameters of the particles used in

the simulation as well as the electric field slope and the average positions of the ions

when the pushes were made.

It shows only smaller particles are being pushed for the fourth time and all other

particles reached the end before the fourth push. It also shows the bigger particles

are keeping close distance at different pushes meaning the bigger particles are not

highly separated comparing to smaller 20.59nm and 32.69 nm charged particles.

3.2.2 Nearly-stopping Potential Separation Simulation in SIMION

In SIMION, the same .LUA code was used for Nearly-Stopping potential sepa-

ration. The only difference was instead of changing the electric field continuously

the field was made constant after the certain period of time (for a particular type of

particle). The constant field eliminates the radial field component almost entirely,
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Table 3.4. X Distance traveled by Different particles at the Time of Push

Diameter (nm)
X distance traveled (mm)

Push 1 at Push 2 Push 3 Push 4

at 0.15 s at 0.25 s at 0.85s at 3.5s

20.59 5.236514 7.92283 25.43225 98.1436

32.69 6.648518 9.972539 32.37745

47.14 7.171221 10.85113 36.0375

55.93 7.615708 11.31329 37.37791

70.42 7.512206 11.60728 38.44837

80.61 7.688492 11.8636 39.04178

95.57 7.835918 11.5851 39.38994

120.42 7.856611 11.65932 40.15078

Slope A (V/mm2) 6.1719 2.4864 0.9968 0.4984
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and therefore separation ratios closer to 1 can be used without the risk of losing ions.

Figure 3.12 shows a particular test where singly charged nano-particles of 55.89 and

55.93nm in diameter are trying to be separated (a 0.07% difference in diameter) us-

ing this method. All nano-particles with smaller diameters than 55.89nm will have

separation ratios larger than 1 and will be stopped at the entrance of the tube. All

nano-particles that are much larger than 55.89 will be promptly collected on the de-

tector. As shown in the Figure 3.12, initially both particles are indistinguishable.

However, as they travel through the drift tube, eventually the 55.89 nm particle is

contained inside the drift tube for a longer period of time (approx. 10 s) and effec-

tively separated from that of 55.93 nm. Even though the resolution given by equation

2.9 decreases with Λ, the ability to separate ions in time increases with residence time

inside the cell. Indeed, the effective comparable resolution for a 0.07% difference to

occur in a regular DTIMS is in the thousands, something unimaginable with other

systems.

3.2.3 Resolution vs Resolving Power

As it is clear from the concept of Inverted drift tube (IDT) that, If the instrument

is configured for a particular type of ion then only that particular ion will maintain

the constant separation ratio inside the IDT and will be separated effectively. On

the other hand, the ions bigger that the ion of choice will not maintain the constant

separation ratio inside IDT and for very bigger particles separation ratio would be

close to zero. At the same time the bigger particles, which are not being separated

well, will move faster to the detectors and thereby it would possible to get very high

resolution for those bigger particles in sacrifice of separation. However, the whole

system can be tuned to separate any choice of particles, but sometimes it would be

impossible due to the constraint for higher voltage usage. So, only the resolution is not

enough to describe the instrument’s performance. It is needed to check the separation

in between the particles also. It was mentioned earlier, and the pushes were made for
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Figure 3.13. Resolving power concept

highest separation of 20.59nm particles. In another way, more separation means more

resident time inside drift tube for a particular charged particle which will eventually

reduce the resolution. A better option to express separation is Resolving Power,

RP given by the ratio of the gap between two peaks, at an average half maximum,

gHW , divided by the average width W , of the peaks. From its definition, one should

expect two peaks to be resolved if RP < 0.1. Figure 3.14 shows different close

diameter particles resolution as well as the resolving power in a single graph. Directly

from the figure 3.14, one can tell that although the resolution for the initial peaks

(particle diameter of 120.42 nm and 114.47 nm) is in the thousands, the fact that

the separation ratio for such ions was far from unity, provides only resolving power

enough to differentiate the peaks even though, the particle diameters differed by 6nm.

On the other hand, the last pair of peaks (20.59 nm and 20.93 nm), which had the

separation ration Λ closest to unity, despite being only 0.34 nm apart and while having

resolutions of less than two hundred. One can use the analytical resolution provided

in equations 2.8 and 2.9 to provide an analytical value of the resolving Power. In

such sense, RP can also be defined as the time difference between the arrival of the

center of the distribution of two similar ions divided by the average FWHM of the
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two peaks minus one RP = tdiff/FWHM − 1. In particular, for IPF flow, assuming

a constant separation ratio through the drift cell, the resolving power is given by [28]:

RP−IPF = 2(t1 − t2)/(FWHM1 + FWHM2)− 1 (3.25)

or,

RP IPF = 2
√
qLvgas(1/vm1 − 1/vm2)/

(
√

16kT ln 2(1/vm1

√
K11− Λ1/2 + (1/vm2

√
K2(1− Λ2)/2)))− 1

(3.26)

Similarly, for the Nearly-Stopping Potential Separation teh resolving power is [28]:

RPNSP = 2
√
qL(1/vm1 − 1/vm2)/(

√
16kT ln 2(

√
K1/v

3/2
m1 +K2/v

3/2
m2 ) (3.27)

In all cases, vm represents the movement velocity of ions: vm = vgas−vdrift. Figure

3.15, 3.16 and 3.17 represent the Resolving power as a function of the separation

ratio Λ for different scenarios. Figure 3.15 shows the Resolving Power when trying

to separate mobilities that differ by 5% (2.23% in diameter) using the Intermittent

Push Flow. The graphs are cut purposefully at Rp = 0.1 so that anything visible

in the figure 3.15 can be resolved at the appropriate separation ratio. In particular,

lower mobilities are readily separable for any separation ratio, while higher mobilities

require higher separation ratios. For example, to separate two ions that differ in

diameter 0.06nm at 2.29nm requires at least a constant separation ratio of 0.43 or

higher. To understand the capabilities of the IDT, figure 3.16 shows Rp(IPF ) for

nano-particles that vary between 30% and 0.1% in mobility with respect to a value

of 5e−7m2/V s(21.5nm). Ions are easily separable up to 1% difference (21.5nm to

21.61nm) or less. However, to be able to separate a 0.01% one would require constant

separation ratios of over 0.8. Due to the existing radial field, a separation ratio this

high would most likely lead to the loss of the ions before reaching the end of the

drift cell [28]. In order to be able to use higher separation ratios, the nearly-stopping

potential can be used (in figure 3.17). The first thing to notice between figures

3.16 and 3.17 is that NSP requires higher separation ratios for the same mobility

when compared to the IPF. This is due to the auto-correcting feature of the IPF
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Figure 3.15. Resolving Power RP as a function of separation ratio
Λ ranges of ions with mobilities that differ 5% (2.23% in diameter)
using Intermittent Push Flow
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Figure 3.16. Resolving Power RP as a function of separation ratio Λ
for an Ion with Mobility of 5e−7m2/V s(21.5nm) with respect to ions
that differ between 30% and 0.1% in Mobility for Intermittent Push
Flow.
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Figure 3.17. Resolving Power RP as a function of separation ratio Λ
for an Ion with Mobility of 5e−7m

2/V s(21.5nm) with respect to ions
that differ between 30% and 0.1% in Mobility for Nearly Stopping
Potential.
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disappearing when a constant electric field is used. This point can be made quite

clear for low mobilities in figure 3.16. While, initially, increasing the separation ratio,

Λ increases the Resolving Power, Rp, this increase reaches a maximum at around

Λ=0.9 and then drops for larger values. At these very large residence times (large

separation ratios), the diffusion velocity becomes of the same order or higher than

the movement velocity vm leading to a drop in Rp. However, the fact that the NSP

can be used at higher separation ratios makes it a strong candidate for separation

when compared to the IPF [28].
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4. EXPERIMENT WITH IDT

4.1 Kanomax Drift Tube

For experimental purpose, Kanomax Inc. supplied one prototype of Drift tube

which was better for testing purpose before making an actual prototype. However,

the supplied drift tube varied from the designed model in different ways. The common

comparisons in between our designed drift tube and kanomax drift tube are provided

in table 4.1.

4.1.1 Formulations for Conducting Experiments

The position of a known mobility ion in the drift cell at any time t,

xP = (vgas − vdrift)t (4.1)

or,

xP = vgas(1− Λ)t (4.2)

Figure 4.1. Kanomax Drift tube CAD model
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Figure 4.2. Kanomax Drift tube front sectional view

Table 4.1. Comparison in between designed drift tube and Kanomax drift tube

Comparison Designed Kanomax

Types Drift Tube Drift Tube

Length 120mm 220mm

Inner diameter 48mm 45mm

Number of ring electrodes 30 20

Number of active electrodes 29 (1 was grounded) 16 (4 was grounded)

Width of spacer 2mm 10mm

Number of inlet and outlet 2 inlet and 1 outlet 2 inlet and 2 outlet
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Where, Separation ration Λ = vdrift/vgas. From the mobility equation (equation 1.1)

we know,

vdrift = KE (4.3)

Where K is the modified mobility at local temperature and pressure and E is electric

field. The used equation of quadratic potential for IDT is,

V = Ax2
p

(4.4)

So the electric field becomes,

E = dV/dX = 2Axp = vdrift/K (4.5)

or,

vgas × Λ/K = 2Axp (4.6)

Replacing xp in this equation from equation 4.1,

vgas × Λ/K = 2Avgas(1− Λ)t (4.7)

So, we can find the value of slope A from this equation,

A = (Λ/(1− Λ))/2Kt (4.8)

The equation 4.8 represents slope A for the electric field as a function of time t and

with time the slope A decreases if all the other parameters are kept constant. From

equation 4.4, for full length L, using the value of slope A we get,

V = ((Λ/(1− Λ))/2Kt)L2 (4.9)

Also, the time needed tend for a particular mobility particle to reach the length L is,

tend = L/(vgas(1− Λ)) (4.10)
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Figure 4.3. Applied Kilovolt HP005RAA025 series power supply

Figure 4.4. Emco (Model E121) power supply

4.1.2 Experiment Setup

Power Supply

Two power supplies were used in the experimental set up: One for providing the

potential to the ring electrodes and another for providing high voltage for ion gating.

A programmable Applied Kilovolt power supply was used for providing the potential

to the ring electrodes which was controlled by a data acquisition system. The power

output of this power supply could be instantly varied (within milliseconds) using

control signal. The applied Kilovolt power supply could supply 0 to 5 KV based on

the control signal 0 to 10V. The DAQ used (NI 6008) in experimental set up could

only supply 5V analog signal, so, it was not possible to reach over 2.5KV using these

power supply in the experiment.
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Figure 4.5. Resistors used for IDT

For providing high voltage to the ion gate an Emco type high voltage power supply

was used. Using a pulsar a pulsed signal was provided to the Emco power supply.

The higher and lower limit of the pulse was not varied with time.

DAQ

In the experiment, two NI 6008 DAQs were used for signal conditioning purpose.

Both of the DAQs were connected to the computer and controlled by a LabVIEW

software. One DAQ was used for providing pulse generator signal and at the same

time for acquiring the analog input signal from electro-meter simultaneously. Another

DAQ was used for providing control (analog output) single to the applied kilovolt

power supply. The control signal was continuously varied from a set high voltage to

low voltage based on the requirement of electric field ramping inside the drift tube.

Figure 4.20 shows the NI 6008 DAQ.

Resistors

The supplied resistors with Kanomax Drift Tube were changed by a new set of

resistors (ranging from 0.5 MΩ to 5 MΩ). The used resistances are shown in figure

4.5. The new set of resistor was placed in between the ring electrodes for making

the overall potential quadratic-electric field linearly increasing in the downstream

direction. Table 4.2 shows the values of resistances in between two electrodes. The

voltage and resistance configuration has been shown in Table 4.2 considering the

highest voltage applied 2500V at one end.
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Table 4.2. Potentials at different electrodes

Current (A) 3.22581× 105

No. of Electrodes
Resistances

MΩ

Potential (V)

in Different

Electrodes

1 Grounded (0)

2 Used for pulsing

3 1 Grounded (0)

4 1.5 32.26

5 2 80.65

6 3 145.16

7 3.5 241.94

8 4 354.84

9 4.5 483.87

10 5 629.03

11 5.5 790.32

12 6.5 967.74

13 7 1177.42

14 7.5 1403.23

15 8 1645.16

16 9 1903.23

17 9.5 2193.55

18 2500.00

19 Grounded (0)

20 Grounded (0)
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Figure 4.6. PVX-4130 ±6 KV pulse generator

Electro-Spray Ionization

As an ionization source, ESI was used in the experiment. For Ionization a separate

high voltage arrangement was made (using the emco power supply). At the same

time, one syringe was used to provide pressure for pushing the solution through the

silica capillary. In the combination of pressure, the high voltage, as well as flow the

electrospray, worked fine in the experiment to generate the electrospray. However,

the ESI was very sensitive, and sometimes it was tough to make the Taylor cone. (see

figure 1.3 for the Taylor Cone formation)

Pulser

One high voltage Pulsar was used to ion gate. As mentioned earlier, the DAQ

could supply only 5V control signal, which was not enough for triggering the Pulse

generator. So, using the DAQ as an external source at first a function generator was

triggered, and then that function generator triggered the Pulse generator with 10

V pp. From another side, one high voltage power source was connected to the pulse

generator for providing high voltage pulsing. Figure 4.13 shows signal in and out for

a pulsar.



67

Figure 4.7. Agilent 33521A 1-ch 250 MSa/s 30 MHz function generator
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Ion Gating

One metal mesh was used for ion gating. The metal mesh was placed inside the

drift tube and kept in touch with the no. 2 electrode. Then, the high voltage pulse

was supplied from the pulsar to that electrode directly. The mesh being attached to

the no. 2 electrode worked as ion gate. When the high positive voltage was supplied

to the mesh no ion could penetrate inside the drift tube chamber. Ion could only

penetrate inside the drift tube when the voltages went low. Another two meshes in

both left and right of the gate mesh were placed and grounded. They were placed to

make a barrier to the high electric field created by the pulsar voltage so that the ions

were not affected by the pulsar voltage.

Flow Meter

As mentioned earlier the Kanomax Drift Tube had two inlets: One inlet was in

the middle of the drift tube, and another inlet was through the side, it is better to

demonstrate this as annular flow. Following inlets, it had two outlets: One was in

the middle and directly connected to the electro-meter sensor, and another one was

the side outlet or annular outlet (see figure 4.2). Four flow meters were used for

controlling flow rates in these four inlets and outlets. The middle inlet flow which

also contained positive ions was controlled by one rota-meter, and the side flow was

controlled by one TSI flow meter. At the outlet side, The flow to the detector was

controlled by TSI flow meter, and the annular outlet flow was controlled by another

rota-meter. Both of the rota-meters were calibrated by the TSI flow meter. Figure

4.14 demonstrates the inlet and outlet flow as well as the flow meter positions.
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Figure 4.8. TSI 4100 series flow meter (max flow capacity 20 L/min)

Figure 4.9. Cole parmer rota-meter (maximum flow capacity 15 L/min)
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Figure 4.10. Swagelok stainless steel integral bonnet needle valve, 0.37 Cv, 1/4 in.

Flow Control Valve

Three Stainless Steel Integral Bonnet Needle Valve were used in the experiment:

one for controlling the annular flow inlet and other two of the two outlets. The flow

control valve was essential to control the flow rate inside IDT.

Pump

A 1/6 HP piston air vacuum pump was used in the experimental set-up. The

pump was directly connected to the outlet via the flow meter and flow regulator.

The pump was used to suck air from the drift tube, making the flow of gas from the

upstream to downstream direction. Figure 4.14 shows the position of pump in the

experimental setup.

Electro-meter

For detecting the ions in experiment one electro-meter was used. The electro-

meter was connected with one Analog to Digital converter (ADC), and the signal was

transferred to the computer using NI 6008 DAQ analog input channel. The signals

were recorded in the LabVIEW software. From the LabVIEW software, the data

were collected and saved for further analysis.
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Figure 4.11. 1/6 HP piston air compressor/vacuum pump, 115VAC,
50/50 Max. PSI Cont./Int.

Figure 4.12. Electro-meter and ADC
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LabView Software

A Lab View software was made for conducting the signals to DAQ and at the

same time for collecting the signal from DAQ.

The total LabVIEW program can be divided into four parts, and they are: 1)

input parameters, 2) calculated parameters 3) signal in and 4) signal out.

Input Parameters

The Lab View program considers the following Input parameters:

1. Diameter of ions

2. Separation ratio

3. Local Pressure

4. Local Temperature

5. Length of DT

6. Velocity of gas

Calculated Parameters

1. Mass of ion: The masses of the ions were calculated from the following formula

(source: atmospheric aerosols 14-35 Handbook of Chemistry and Physics 83rd

edition):

massion = (dion/0.120415405)3 (4.11)

2. Mobility: The mobility K0in air for selected ion was calculated from the follow-

ing equation (source: atmospheric aerosols 14-35 Handbook of Chemistry and

Physics 83rd edition):

K0(10−4m2V −1s−1) = 1× 10−5 × 10a (4.12)
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Figure 4.15. GUI of IDT software made in LabVIEW
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Figure 4.16. Input parameters in Software
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Figure 4.17. Calculated parameters in Software

Where,

a = 4.9137− 1.4491 log(d(nm))− 0.2772(log(d(nm)))2 + 0.0717(log(d(nm)))3

(4.13)

Based on the local pressure P and temperature T the the modified mobility K

was calculated as,

K = K0 × (760/P )× (T/273.15) (4.14)

3. Starting time: Starting time was always set zero by default.

4. Time Target: The time target was found using the formula 4.10.

5. Delay Time: From equation 4.9 the voltage corresponding the starting time

t = 0 was very high which may cause harm the Drift tube as well as any

electrical equipment attached to that Drift tube. So, a time delay was set based

on the maximum attainable starting voltage. During the time delay, the applied

voltage was kept constant to the set maximum starting voltage. After that time

delay, the voltage varied with time. The limitation of maximum voltage supply
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was 2.5kV (as mentioned in Pulsar section). Delay time was calculate from

equation 4.9 by the little rearrangement:

tdelay = 2V K/(Λ(1− Λ)v2
gas) (4.15)

6. Potential: The variation of potential with time was set using equation 4.9.

7. Drift velocity: Drift velocity vdrfitwas calculated for a given gas velocity vgas as

follow:

vdrift = Λ× vgas (4.16)

where, Λ was separation ratio.

Signal In and Out

Two different NI6008 DAQ were used for signal in and out. From one DAQ an

analog signal for pulse (0-5V) was supplied for the calculated target time, tend. It was

controlled by the Duty cycle and amplitude. The same DAQ was used for getting the

signal from the electrometer. The sample rate and sample per channel, sample mode

and sample input terminal all were configured before running the software. From

another DAQ, an analog control signal was supplied to the power supply to provide

electric field inside the drift tube which varied with time.

4.1.3 Results from Experiment and Validation

Experiment with Constant Voltage

In the experiment, the solution used was 20% 1 mL Ionic Liquid (1-Ethyl-3

methylimidazolium tetrafluoroborate). The 1mL solution was prepared in a vial by

mixing 200 µL Ionic liquid with 400 µL water and 400 µL methanol. Using the ESI

arrangement (see section Electro Spray Ionization) this solution was sprayed inside

the IDT.
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Figure 4.18. Pulse generator signal from NI 6008 DAQ

Figure 4.19. Voltage generator signal from NI 6008 DAQ
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Figure 4.20. NI 6008 data acquisition tool used for both signal and In and Out
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Figure 4.21. Generated signal in IDT software
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In the first trials, the supplied voltage was varied from 300V to 750V with a step

of 50V. With increasing the voltage (350V to 600V), the peak broadening occurred

due to separation, however, it could not resolve two separate peaks at that low voltage

range. In high voltage, starting from 650V, the instrument started resolving double

peaks. Flow rates at the two inlets and outlets were controlled by the flow meters.

The total flow rate measured from the flow meter was 13.6 L/min. The velocity

inside the tube was found around 12 m/s - flow rate divided by the cross-section of

the drift tube. However, that was not correct as the flow pattern inside the tube

was completely unknown and complicated to find. To find the actual velocity of the

particle a different tactic was used.

As the biggest particles moved with the velocity of the gas (due to inadequate

electric field to stop them) and were the first group to be detected, so, the actual flow

velocity inside the tube can be found by dividing the total distance (length of tube)

by the instantaneous signal starting point (starting time of peak). It was mentioned

earlier that the active number of electrodes used in the experiment were 16 of 10 mm

each and 2 mm spacers were in between two electrodes. Considering the widths of

the ring electrode and the spacers, the total length of travel distance was calculated

190 mm. The extra length at the inlet and outlet side were neglected as the cross-

sectional areas at the inlet and outlet section were minimum (1/4 inch diameter).

So, it was expected that the particles would pass those lengths within the fraction

of milliseconds. As a result, that length would not affect the time count very badly.

The signal starting point was 0.7 s, and considering the length 0.19 m, the calculated

velocity inside the drift tube was 0.225 m/s.

Figure 4.22 shows the raw orange signal (peak) represented the distribution of

ions when no voltage was applied. For no applied voltage, there was no separation,

and the width of the peak was 0.3 s only (time at signal ending point - time at

signal starting point). For constant high voltage, 750 V, however, the two peaks were

resolved (blue color), and the width of distribution became more than 2.3 s which

represented a very good separation of ions.
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Figure 4.22. Raw data (averaged over time) of the separation for
5nm using a maximum voltage of 750V.
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Conversion of Time to Mobility

According to the equation 4.9, at time t=0 the voltage would be infinitely high

which was impossible to achieve. So, in software, there was one option called initial

voltage or maximum voltage Vmax. The initial voltage was kept fixed for a particular

time, tdelay. This tdelay was the time when the decreasing voltage (from equation

4.9) is just below the initial voltage Vmax (see the section Delay Time). Another

assumption can be made, during tdelay time the particles reached xdelay distance. The

equation of particles of a given mobility to reach distance L at time t would be:

L = (xdelay − (1− Λ)tdelayvgas)(t/tdelay)
−(Λ/(1−Λ)) + (1− Λ)vgast (4.17)

where

xdelay = vgas/2KA(1− e−2KAtdelay) (4.18)

and

tdelay = Λ0/(1− Λ0)L2/2K0Vmax (4.19)

Equation 4.18 can be solved for mobility as a function of time using Lambert W

function. As the mobility was also a function of diameter, so, in the end, the time

was completely transformed to the diameter of the particle. A similar transformation

was done for the signal showed in figure 4.22, and the transformed signal is showed

in figure 4.23 which represented that the system separated the 1.66 2.3 nm diameter

ions within complete 1 second of the time difference.

For validating the experiment result with the simulated result, a SIMION model of

the kanomax Drift Tube was prepared only taking into account the 16 electrodes each

of 100 mm width and 15 spaces of 2 mm width to mimic the actual Kanomax Drift

Tube. The potentials applied to the electrodes were of quadratic order (increasing

with distance), and the highest voltage was set to 750V. Collision SDS model also

applied in the SIMION program, and the X directional velocity, Vx was considered

0.225 m/s. The particle, selected to fly through the drift tube, were given in table 4.3.

To observe the separation of 1.66 to 2.3 nm particles more closely, only the charged

particles of that range were selected.
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Table 4.3. Particles selected for validation

Mass (amu) Diameter (nm) Mobility (m−2V −1s−1)

2619 1.66 4.09e-5

5000 2.06 2.91e-5

5500 2.13 2.77e-5

6000 2.19 2.64e-5

6500 2.25 2.53e-5

7000 2.30 2.43e-5



88

From simulation, the same complete separation of 2 3 nm particles within 1 s

time period were found, which obviously validates the instrument for constant voltage

separation.

Experiment with Variable Voltage

For testing the instrument with variable voltage (continuous ramping of the elec-

tric field), the maximum voltage applied to the instrument was 2000 V corresponding

to control signal of 4V from DAQ. The ion inlet flow rate was 4.03 L/min, and the

annular flow was set to 4.73 L/min. For this experiment, only one outlet was used to

capture most of the ions based on the assumption that some ions might leak through

the annular flow. The total flow at the outlet was 9.03 L/min. The separation ratio Λ

used in the software was 0.5. For Different diameter, the signals were found. Figure

4.25 represents the progression of the signal for set diameter 1 nm diameter to 4 nm

diameter in the software.

SIMION Simulation for Varying Voltage

Figure 4.25 shows, at no voltage (zero voltage) condition, the peak was thin-

ner, and with increasing the voltage (going towards the higher value of diameter in

software), the peak became wide which again represents the higher separation with

higher applied voltage. From 1.8 nm diameter to higher diameter the peak became

much wider, and two peaks were resolved though, they were not completely separated.

From figure 4.25 the initial peak width (with zero voltage) 0.4 s which changed to 2.4

s for the voltage set for 4 nm diameter.

The .Lua program in SIMION was changed for implementing this variable voltage

with time. In SIMION for declaring the quadratic potential instead of using 4.4, the

following formula was used,

V = A(nP − 1)2 (4.20)
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Figure 4.26. Change of supply voltage with time for different diameters

Where, nP is the number of electrodes. We had total 16 electrodes for Kanomax Drift

tube, So np = 16.

The maximum voltage Vmax was found from equation 4.9 for different time t.

The slope was found as.

A = Vmax/152 (4.21)

As, (nP−1) = 15 and this slope A was then used in equation 4.17 to find the potentials

at different electrodes by changing nP from 1 to 16.

The change of voltage corresponding to different diameter is shown in figure 4.26.

The starting voltage was 2000 and the constant horizontal line before the voltage

decrement represents time delay. Figure 4.26 also shows that with increasing the

set diameter the voltage decrement shifts to the higher side, which represents more

separation in another sense.

The voltage in SIMION also varied as shown in the figure 4.26. Two simulation

works were performed in SIMION with the input parameters shown in table 4.4, and

the selected particles are shown in table 4.5. The axial velocity vx was assumed 0.173

m/s as calculated from the actual experiment.
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Table 4.4. The input parameters in SIMION

Simulation 1 Simulation 2

Length of IDT 0.19m 0.19m

Λ 0.5 0.5

Set Diameter 1 nm 2 nm

Set Mobility 8.79359E-05 m2V −1s−1 9.70264E-06 m2V −1s−1

Table 4.5. Particle selected for SIMION simulation

Mass (amu) Diameter (nm) Mobility (m2V −1s−1)

300 0.806100398 1.19E-04

500 0.955737703 9.39E-05

1000 1.20415405 6.69E-05

3000 1.736690661 3.82E-05

5000 2.059074462 2.91E-05

7000 2.303463831 2.43E-05

10000 2.594271257 2.00E-05

30000 3.741586606 1.09E-05

100000 5.589187992 5.45E-06

5000000 20.59074462 5.31E-07
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From figure 4.27, SIMION showed the biggest particle of 20.59 nm reached the

detector at 1.1 s for both the 1 nm diameter, and 4 nm diameter set conditions,

meaning the system could not at all separate the 20.59 nm particles. However, in

case of lower side voltage decrement (set diameter 1 nm), the separation was not

good for the biggest particle as expected and separation was good for 0.96 to 3.74 nm

particles, which was exactly in agreement with the signal showed in table 4.25 for 1 nm

diameter particles. On the other hand, for high side voltage decrement (set diameter 4

nm), the separation shifted from lower diameter particles to higher diameter particles.

SIMION showed good separation (see figure 4.28) for 3.74 to 2.06 nm particles for 4

nm set diameter condition and the time span was also in agreement with the signal

showed in figure 4.25 for 4nm set diameter. In all conditions, the simulations provided

very good representations of particle separation according to actual concept.
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5. SUMMARY

5.0.1 Conclusion

A new mobility particle analyzer, which has been termed Inverted Drift Tube, has

been modeled analytically as well as numerically and proven to be a very capable

instrument. The basis for the new design have been the shortcomings of the previous

ion mobility spectrometers, in particular, a) diffusional broadening which leads to

degradation of instrument resolution and b) inadequate low and fixed resolution (not

mobility dependent) for large sizes. To overcome the diffusional broadening and have

a mobility based resolution, the IDT uses two varying controllable opposite forces, a

flow of gas with velocity vgas, and a linearly increasing electric field E that opposes

the movement. A new parameter, the separation ration Λ = vdrift/vgas, is employed

to determine the best possible separation for a given set of nonparticipants [28]. Due

to the systems need to operate at room pressure, two methods of capturing the ions at

the end of the drift tube have been developed, Intermittent Push Flow for a large range

of mobilities, and Nearly-Stopping Potential Separation, with very high separation

but limited only to a very narrow mobility range. The following conclusions have

been obtained:

• Analytical description of the 1D IDT problem for an initial distribution of non-

participants has been shown to yield very high resolutions without any opti-

mization. Resolution is close to being proportional to the square root of the

length but has a dampening effect on the standard deviation that increases the

resolution several folds when compared to a drift tube. The resolution is also

proportional to the mobility. The lower the mobility, the higher the resolu-

tion. However, it is shown that the resolution is an ill-conditioned parameter

to express whether or not separation occurs inside the drift cell.
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• A 1D numerical simulation of the IDT shows that there is an asymptotic value

to the standard deviation for the intermittent push flow method. Regardless

of the starting distribution, whether broad or narrow, the asymptotic behavior

is achieved. The IDT has auto-correcting capabilities and fixes the diffusional

broadening existing in other commercial instruments.

• 3D numerical simulations for single particle trajectories using stochastic diffu-

sion in SIMION for the IDT are used to obtain resolutions of ions and sepa-

ration ratios. Intermittent Push Flow resolutions acquired agree qualitatively

with those predicted analytically. For Nearly-Stopping Potential Separation,

the modeling of the instrument is shown to be able to separate particles of

55.89 and 55.93 nm with ease. This would require effective resolutions of sev-

eral thousand.

• A new concept of Resolving Power is used to differentiate between peak res-

olution in the IDT and acceptable separation between similar mobility sizes

(Resolving power). It is shown that the IDT has a theoretically high Resolving

Power for both intermittent push flow and nearly-stopping potential separation.

5.0.2 Future Work

Optimum Design of IDT

The current IDT was a version of old Kanomax DTIMS. It had been used to

prove the validity of the concept which has already been achieved. The future work

is to model a new IDT instrument for optimum performance. In case of design, the

size of the ring electrode (diameter and thickness), the size of spacers(diameter and

thickness), the inlet and outlet flow should be checked and calculated. All the design

must be validated through the SIMION simulation (using SDS collision model).
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A Better Understanding the Flow Behavior

The biggest problem of the current IDT was the flow behavior. As it had two

inlets and two outlets, so, it was tough to predict the actual behavior of the flow

inside the tube. One important observation was, increasing the annular flow at the

inlet the peak became much thinner. More research-works are needed for the flow

understanding. In case of the new design of IDT, CFD calculation is a must for

predicting the inside flow more accurately, as the movement of charged particles is

highly sensitive to flow. At the same time, more research-works are needed to find

the advantages and disadvantages of parabolic flow profile as well as flat profile inside

the IDT.

Improve the Signal Conditioning

At present, the DAQ being used cannot reach a higher sample rate for the analog

input signal. The default sample rate is 1000 cycle/s. A better DAQ with high sample

rate will definitely be able to bring out any small hidden signal.

Couple the IDT Prototype with DMA

One important future work is to couple the current IDT instrument with DMA

and to check the auto-correction feature. Form the current performance of IDT it is

expected to show much better resolution comparing to DMA. A proper validation is

needed for that.
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