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ABSTRACT

Chandra Shekar, Arun. M.S.M.E., Purdue University, May 2017. Real-Time Estima-
tion of State-Of-Charge using Particle Swarm Optimization on the Electro-chemical
Model of a Single Cell. Major Professor: Sohel Anwar.

Accurate estimation of State of Charge (SOC) is crucial. With the ever-increasing

usage of batteries, especially in safety critical applications, the requirement of accurate

estimation of SOC is paramount. Most current methods of SOC estimation rely

on data collected and calibrated offline, which could lead to inaccuracies in SOC

estimation as the battery ages or under different operating conditions. This work

aims at exploring the real-time estimation and optimization of SOC by applying

Particle Swarm Optimization (PSO) to a detailed electrochemical model of a single

cell. The goal is to develop a single cell model and PSO algorithm which can run on

an embedded device with reasonable utilization of CPU and memory resources and

still be able to estimate SOC with acceptable accuracy. The scope is to demonstrate

the accurate estimation of SOC for 1C charge and discharge for both healthy and

aged cell.
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1. INTRODUCTION

1.1 Overview

Environmental Protection agency of USA estimated that production of Electric-

ity and Transportation contribute to 56% of greenhouse gases in 2014 as shown in

Figure 1.1. Additionally, Environmental Protection Agency in Europe (Decision No

406/2009/EU) estimates that by 2020 the emissions just due to transportation may

increase by 16% and may still increase by 10% even if the targets for additional

measures, which sets the target of 10% renewable fuel in transport, are met.

Fig. 1.1. US Greenhouse Gas Emission by Economic Sector

One of the measures proposed by the Environmental Protection Agency of USA,

to reduce these emissions, is Fuel Switching. Use of public transport fueled by Com-

pressed Natural Gas (CNG), increased use of hybrid and electrical vehicles are some

of the examples of fuel switching. It is clear from this directive that usage of portable

energy sources in transportation, like battery, will dramatically increase in the com-
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ing years. Apart from transportation, batteries are used in many devices we use in

our daily lives in everything from consumer electronics, like cell phones, laptops etc.,

to safety critical medical devices, like pacemaker. Thus, the effective utilization and

management of battery energy becomes paramount.

There are a lot of challenges in the field of battery management system, from

choosing the right chemistry for an application, to understanding the operating con-

ditions of a battery.

State of Charge is one of the most important parameters of a battery. It is

analogous to the fuel gauge in an automobile. SOC indicates the amount of usable

energy left in the battery at a given time. Accurately knowing SOC enables effective

management of operations like range estimation, fast charging, diagnostics to name

a few. SOC is also imperative in the safe operation of batteries, like Li-Ion, where

overcharging and over discharging can prove hazardous.

However, SOC is not a quantity that can be measured directly in real time and

must be estimated with the knowledge of other measurable quantities like voltage,

current etc. There are a wide range of options available to estimate SOC depending

on the application. This work explores Particle Swarm Optimization to accurately

estimate the SOC under varying conditions of the battery. Another goal of this work

is to be able to run this battery and estimator model on an embedded device with

reasonable performance.

1.2 Major Contribution of Thesis Work

Particle Swarm Optimization is employed on a Single Cell Physics model with the

goal of optimizing the SOC estimation. Particle Swarm optimization is a population

based algorithm where the best solution is explored in a solution space. Historically

optimization algorithms have been computationally demanding and seldom used in

real time application but with the advancement in embedded computers in the recent
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years, the goal of running optimization in real time is reasonable The contributions

of this work are listed below:

• Development of Single Cell model in Matlab Simulink.

• Develop PSO algorithm and verify operation in simulation with experimental

data.

• Verification of operation in real time, particularly on a Raspberry Pi 3.

1.2.1 Organization of Thesis

The document is organized into 6 chapters. Chapter 1 provides a brief introduction

and the motivation for this work. Chapter 2 explores the different SOC estimation

techniques and provides an overview of battery chemistries. It also lists the differ-

ent battery parameters and definitions used. Chapter 3 deals with the overview of

battery modeling techniques and details the battery model used in this work.The

latter part of chapter 3 details the implementation of the chosen battery model in

Simulink c©and presents the data of theoretical validation. Chapter 4 covers the PSO

algorithm overview and implementation. Chapter 5 deals with the validation of de-

veloped algorithm, it explains the experimental setup to collect data for validation.

It presents the simulation and real-time validation data. Finally Chapter 6 offers

conclusion and proposal of future work.
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2. LITERATURE SURVEY

2.1 Battery Overview

2.1.1 Definition

A battery is an electrochemical device which converts chemical energy to electrical

energy by a reduction-oxidation reaction [1]. It would be imperative to discuss the

definition and distinction of a cell and a battery here. A Cell is a basic unit which

delivers power through the process of electrochemical reaction. Most non-rechargeable

batteries that we use in our daily life are in fact cells. Battery is a more popular term

that is used commercially [1]. A Battery or a Battery Pack is the arrangement of cells,

either in series, parallel or both, to achieve desired performance as per requirement.

A popular example of this is Lead Acid Battery in automobiles. Electrochemical Cells

and Batteries are broadly classified as Primary and Secondary.

2.1.2 Classification

Primary cells or batteries are non-rechargeable and they are discarded once they

are discharged. They tend to be inexpensive, lightweight, portable with a long shelf

life [1]. These features make them useful in consumer electronics like watches, toys,

cameras etc. Secondary cells or batteries are rechargeable and they are cycled through

many charge-discharge cycles thought the lifespan of their application. They are

characterized by high power density, high discharge rate but tend to have a lower

retention rate or shelf life. These features make them useful in a wide range of

application from consumer electronics to Electric Vehicle applications. There are

other battery types like Reserve Battery and Fuel Cells although they still fall under

the same broad classification of Primary and Secondary cells or batteries.
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2.1.3 Electrochemical Process and Battery Chemistry

A cell primarily consists of three parts the anode or the negative electrode, the

cathode or the positive electrode and the electrolyte which is the medium in which

the ions are exchanged between the cathode and the anode [1]. During the discharge

process, anode gives up electrons and thus oxidized. These electrons travel through

the external circuit and reach the cathode. Cathode accepts the electrons and thus

getting reduced. The negative ions called anions and positive ion called cation are

exchanged through the electrolyte. The reverse of this process occurs during charging,

if the cell is rechargeable. The selection of the Anode, Cathode and Electrolyte

material, which also referred to as the battery chemistry, determine the performance

parameters of a battery. Typical characteristics considered in choosing the materials

are as follows [1]:

Anode:

• Efficient reducing agent

• High Coloumbic Output.

• Low cost to produce and fabricate.

• Good conductivity and stability.

Cathode:

• Efficient Oxidizing agent

• Stability in operation.

• Low cost to produce and fabricate.

Electrolyte:

• Good ionic conductivity.

• Stability in operation.

• Low cost to produce and fabricate.

Table 2.1 lists the Capacity, atomic/molecular weight and type(cathode or anode)

of some electrodes. Lithium (Li), with an atomic weight of 6.94 g, is the lightest
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Table 2.1.
Characteristics of Electrodes [1]

Material Type Atomic/Molecular

Weight (g)

Capacity (Ah/g)

H2

Anode

2.01 26.59

Li 6.94 3.68

Na 23.0 1.16

Mg 24.3 2.20

Pb 207.2 0.26

O2

Cathode

32.0 3.35

MnO2 86.9 0.308

LixCoO2 98 0.137
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metal but still has one of the highest capacity at 3.86 Ah/g. Thus, Li-Ion chemistry

is one of the most popular chemistry used especially in the transport industry.

The chart 2.1 shows comparison of specific energy of some of the popular battery

chemistry.

Fig. 2.1. Typical Energy Densities of Lead, Nickel and Lithium-based Batteries. [2]

Additionally, Li-Ion battery has the following advantages:

• High specific energy.

• Does not have the memory effect between charge/discharge cycles.

• Wider operating temperatures.

• Higher Open Circuit Voltage.

Some of the drawbacks of Li-Ion are:

• Hazardous if not operated under safe conditions.

• Does not age gracefully.

Some of the popular Li-Ion chemistries are along with their abbreviation is sum-

marized in the table 2.2
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Table 2.2.
Popular Li-ion Battery Chemistries. [2]

Chemical Name Material Abbreviation Short Form

Lithium Cobalt Oxide LiCoO2 LCO Li-cobalt

Lithium Manganese

Oxide

LiMn2O4 LMO Li-manganese

Lithium Iron Phos-

phate

LiFePO4 LFP Li-phosphate

Lithium Nickel man-

ganese Cobalt Oxide

LiNiMnCoO2 NMC NMC

Lithium Nickel Cobalt

Aluminium Oxide

LiNiCoAlO2 NCA NCA

Lithium Titanate Li4Ti5O12 LTO Li-titanate

Referring to the Figure 2.1 it is noted that Li-Cobalt (LCO) has one of the high-

est energy density thus the equation of Lithium Cobalt Oxide battery are further

explored:

C + LiCoO2 ↔ LiC6 + Li0.5CoO2 (2.1)

At the Cathode:

LiCoO2 − Li+ − e− ↔ Li0.5CoO2 ⇒ 143mAh/g (2.2)

At the Anode:

6C + Li+ + e− ↔ LiC6 ⇒ 372mAh/g (2.3)

2.1.4 Battery Parameter

Batteries are identified by the amount of energy they can hold and deliver. Some

of the definitions that are required in the study of battery are:
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Rated Capacity : Capacity of a battery is its ability to deliver power to an external

circuit. Manufacturer specifies the Rated Capacity in Ah (Ampere Hours).

Energy Density : It is energy that can be delivered by the battery expressed in Wh/L

(Watthour/liter).

Specific Energy : It is the energy that can be delivered by the battery expressed in

Wh/kg (Watthour/kilogram).

State-Of-Charge: It is measure of capacity or charge contained in a battery. It is

expressed as a ratio of available capacity to the rated capacity. It is also expressed

as a percentage of the rated capacity.

State-Of-Health: It is a measurement that determines the condition or health of the

battery. SOC is measure in percentage where 100% denotes a battery that can deliver

100% to the rated specification of the manufacturer.

2.2 State-Of-Charge Estimation Techniques

SOC is analogous to the fuel gauge in an automobile, which makes it a very crucial

measurement in designing any device that uses a battery. However, there is no direct

and easy method to measure SOC. In all cases, it must be estimated or determined by

establishing SOC as a function of other measurable signals like Voltage, Current, Cell

Temperature etc. This paradigm makes SOC estimation one of the most researched

topics. There are a wide variety of techniques available for SOC estimation [3]. They

can be broadly classified into three categories [4], which are:

• Non-model based method like Ampere hour counting.

• Computational Intelligence and Optimization based methods, like Fuzzy logic,

Particle Swarm Optimization.

• Estimation based methods, like variations of Kalman filter using equivalent

circuit and state space models.
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Both the Computational Intelligence & Optimization and Estimation based methods

are considered as online estimation methods as the SOC is estimated in real-time.

Some of these techniques are discussed in this section.

2.2.1 Ampere Hour Counting

Ampere hour counting or Coulomb Counting is the most popular and easy tech-

nique to determine SOC [3]. The charge is directly proportional to the current sup-

plied during charging and the current withdrawn during discharge operation. The

current can be integrated as shown in the equation 2.4 to determine the SOC

SOC = SOC0 +
1

CN

∫ t

to

(Ibatt − Iloss)dt (2.4)

Where SOC0 is the initial SOC, CN the rated capacity. Ibatt is the current and

Iloss is the current loss in the system. From the equation it is clear that this tech-

nique is subject to inaccuracies in charge/discharge current measurement, knowledge

of accurate initial SOC and rated capacity. If the accurate initial SOC and Capacity

are unknown, then it could lead to offset in estimated SOC. Inaccurate measurement

of current can add up over time, due to integration, leading to the drift of estimated

SOC from the actual SOC. This can be overcome by resetting the SOC when cer-

tain conditions like full charge are reached [3]. But to achieve such a condition, for

example, in an electric vehicle application would be impractical.

2.2.2 Open Circuit Voltage

Open Circuit Voltage (OCV) is the voltage across the battery/cell terminal un-

der no load condition. SOC bears a linear relationship to OCV [3]. This property

makes OCV a suitable candidate to directly determine SOC. However, this technique

would be suitable only in applications where there are rest periods [5] to take the

OCV readings. Lead acid battery, having a very linear relation with SOC, is a good

candidate for this technique but for batteries like Li ion (LiFePO4) where the OCV is
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flat in lower operating voltages, 2.0 to 3.65V which corresponds to 20% - 80%, even a

small error in measurement of OCV would lead to large estimation errors [6]. For the

aforementioned reasons this technique would not be suitable for online estimation.

2.2.3 Estimation Based

There are a good number of online estimation techniques proposed for the es-

timation of SOC. Kalman Filter method and its variants are one of the important

methods. The series of papers by Plett [7] [8] [9] proposes Extended Kalman filter

method to estimate battery states like SOC, power fade, capacity fade and instan-

taneous available power. The general requirement for such an estimation technique

is the definition of SOC as a function of measurable signals like Voltage or Current.

However, the parameters of the battery for different chemistries, different operat-

ing conditions and different health condition must be determined. A wide variety

of techniques are employed to determine the battery parameters, from off-line least

squared method to on-line PSO based method. More modern methods like Moving

Horizon Estimator [10] and Particle Swarm Optimization [11] have been proposed for

the estimation of SOC.

2.2.4 Computational Intelligence & Optimization

Computational intelligence like Genetic Algorithm and Fuzzy logic are proposed

to estimate SOC [12] [13] [14]. The models need to be trained off-line to learn various

operating conditions and scenarios. The model then estimates the states,in real-time,

with the knowledge of measured inputs, both current and historical.
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3. BATTERY MODEL

3.1 Modeling Techniques

There is a wide variety of battery models available. The right model must be

chosen depending on the application and its performance requirements. Some appli-

cations may need an elaborate model to accurately predict the states of the battery

while others may need a model for fast computation in real time. A few modeling

techniques are discussed in this section.

One of the most popular modeling technique used is the Equivalent Circuit or RC

model, here the battery is constructed using resistors(R) and Capacitors(C) to model

the battery behavior. The order of the model, that is the number of R and C cells in

the circuit, determines the accuracy. The higher the order, greater is the ability of the

model to account for different physical phenomenon like, Internal Polarization [15].

However, more parameters are involved with higher order model, which makes iden-

tifying and tuning them more difficult therefore a trade-off must be reached between

acceptable accuracy and model performance. Even with a good RC model, it must be

tuned for every operating condition, like healthy battery, aged battery, overcharged

battery etc. In a dynamic system, such as a Hybrid Vehicle, the application of such

a model would be less practical.

Another technique, a purely mathematical one, is Empirical Modeling. Here the ex-

perimentally obtained historical data is used to realize a model where the different

battery parameters and characteristics are represented using mathematical relations

like, exponential, polynomial etc. Evidently these models are computationally effi-

cient. However, they must be re-tuned to represent different operating conditions,

which means that the data for every such scenario should be available.

Fuzzy Logic and Neural Network techniques are also used to model battery behav-
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ior [12] [13] [14]. These techniques involve a learning process where the models are

trained on experimental data to learn the relationship between the different battery

parameters. These models are then used to predict various quantities and states, like

voltage, SOC etc. Similar to Empirical models, these models require large amounts

of data sets to be efficient. Additionally, the learning process could be complex and

time consuming.

Electrochemical or Physics based models incorporate both the chemical and the elec-

trical behavior to accurately model a battery. There are many models available

with varying complexities. The Single Particle Model (SPM) models the battery

as constituent particles in the active material. A model considering the diffusion

phenomenon of such particles and intercalation within the particle was developed

by Zhang et al [16]. Doyle et al [17] developed a more comprehensive model based

on concentrated solution theory. This model, also known as Pseudo 2-Dimensional

(P2D) model, aims to represent the behavior of wide range of Lithium Ion batteries

with different combination of electrolytes, separators, anodes and cathodes.

3.2 Electrochemical Single Cell Model

The goal of this thesis is to develop a PSO algorithm for Li-Ion battery which

shall, efficiently and seamlessly, work for different operating conditions and at the

same time it shall be computationally efficient to run on an embedded device in real

time. The equivalent circuit model is computationally efficient but needs re-tuning for

every operating condition. The Empirical model and the Genetic Algorithm models

need a lot of experimental data to be efficient. The electrochemical model developed

by Doyle et al [17] encompasses the battery physics to give more accurate estimation

of the states and the parameters but this model is not suitable for running in real-

time. However, there has been a lot of research done based on this model. One

such example is the model developed by Subramanian et al. [18], derived from first
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principles as an isothermal pseudo-two-dimensional model. One model of interest is

the model developed by Smith et al. [19] which is a control oriented, one-dimensional

electrochemical model. Based on this 1D model, Sourav et al. [20] developed and

validated a discrete model solved using Finite Difference Method (FDM). This model

demonstrates both the detail of battery physics and the computational efficiency to

run in real-time. This model shall be used in this thesis work.

Fig. 3.1. Single Particle Model. [21]

Figure 3.1 gives a diagrammatic view of the modeling approach. Here the lithium

ions are assumed to be constituted in spherical particles of radius R [21] along the

X-axis. It is a one-dimensional model where only the reactions along the X-axis are

considered.

3.3 Constituent Equations

Figure 3.2 gives an overview of a battery model based on 1-D Electrochemical

model along with its governing equations.

This model has six states, which are :

Electrolyte lithium concentration Ce(x, t)
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Fig. 3.2. Lithium Ion Cell Structure. [22]

Electrode lithium concentration Cs(x, r, t) both anode and cathode

Electrolyte potential φe(x, t)

Electrode potential φs(x, t) both anode and cathode

Electrolyte ionic current ie(x, t)

Molar ionic flux jn(x, t)

The constituent equations are as follows ( [17] - [23])

εp
∂C(x, t)

∂t
= Deff,p

∂C(x, t)2

∂x
+ ap(1− t0+)jp (3.1)

Reordering the equation we get:

εe
∂Ce(x, t)

∂t
=

∂

∂x
(εeDe

∂Ce(x, t)

∂x
+

1− t0+
F

ie(x, t)) (3.2)

∂Cs,i(x, r, t)

∂t
=

1

r2

∂

∂r
(Ds,ir

2∂Cs,i(x, r, t)

∂r
) (3.3)
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This is further simplified as:

∂Cs(t)

∂t
= − 3

Rp

J(t), (3.4)

∂φe(x, t)

∂x
= −ie(x, t)

κ
+

2RT

F
(1− t0+)× (1 +

dlnfc/a(x, t)

dlnCe(x, t)
)
∂lnCe(x, t)

∂x
(3.5)

∂φs(x, t)

∂x
=
ie(x, t)− I(t)

σ
(3.6)

∂ie(x, t)

∂x
=

3εs
Rp

Fjn(x, t) (3.7)

jn(x, t) =
i0(x, t)

F
(e

αaF
RT

η(x,t) − e
αcF
RT

η(x,t)) (3.8)

In Equation 3.8, the exchange current density i0(x, t) and the over potential η(x, t)

for the main reaction are modeled as:

i0(x, t) = reffCe(x, t)
αc(Cmax

s − Css(x, t))αaCs(x, t)αc , (3.9)

η(x, t) = φs(x, t)− φe(x, t)− U(Css)− FRfjn(x, t), (3.10)

where css(x, t) ≈ cs(x,Rp, t), U(css(x, t)) is the open circuit potential of the ac-

tive material and cmaxs is the maximum concentration in the active material of each

electrode. The internal temperature is described by:

ρavgcp
dT (t)

dt
= hcell(Tamb(t)− T (t)) + I(t)V (t)

−
∫ 0+

0−

3εs
Rp

Fjn(t)(U(c̄s(x, t))− T (t)
∂U(c̄s(x, t))

∂T
)dx,

(3.11)

where, Tamb is the ambient temperature and c̄(x, t) represents the volume averaged

concentration of a particle in the solid phase defined as
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c̄s(x, t) =
3

R3
p

∫ Rp

0

r2cs(x, r, t)dr, (3.12)

The initial conditions of the battery model are given by:

ce(x, 0) = c0
e(x), cs(x, r, 0) = c0

s(x, r), T (0) = T 0,

and the boundary conditions are given by:

∂ce(0
−, t)

∂x
=
∂ce(0

+, t)

∂x
= 0, (3.13)

ce(L
−, t) = ce(0

sep, t), ce(L
sep, t) = ce(L

+, t), (3.14)

ε−e De
∂ce(L

−, t)

∂x
= εsepe De

∂ce(0
sep, t)

∂x
, (3.15)

εsepe De
∂ce(L

sep, t)

∂x
= −ε+e De

∂ce(L
+, t)

∂x
, (3.16)

∂cs(x, 0, t)

∂r
= 0,

∂cs(x,Rp, t)

∂r
= −jn(x, t)

Ds

, (3.17)

φe(L
−, t) = φe(0

sep, t),φe(L
sep, t) = φe(L

+, t), (3.18)

φe(0
+, t) = 0, (3.19)

ie(0
−, t) = ie(0

+, t) = 0, ie(x
sep, t) = −I(t), (3.20)

ie(L
−, t) = −ie(L+, t) = −I(t), (3.21)

where, xsep ∈ [0sep, Lsep] represents the entire separator domain of the battery.
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In the above equations, εe, εs, σ, R, Rp, F , αa, αc, ρavg, cp, hcell and t0c are model

parameters and are constant in each region of the cell. κ, fc/a and De are known

functions of the electrolyte concentration.

The voltage is represented as:

V (t) = φs(0
+, t)− φs(0

−, t), (3.22)

This model has a nominal capacity of 3.5Ah. The SOC is directly calculated from

the Lithium Ion concentration as shown in the equation 3.23

SOC =
Cs

Csmax
(3.23)

where

Cs =

∑N
i=1Cs(i, t)

N
(3.24)

N being the number of nodes in the electrode.

The Lithium ion concentration of the Negative Electrode is used to estimate the

SOC. It is observed that the lithium ion concentration in the negative electrode

demonstrates the range and direction of the actual SOC, meaning SOC increases

with charge and decreases with discharge. Lithium ion concentration of the positive

electrode lacks the range and is also opposite in direction.

3.4 Reformulation of Battery model

The two main goals of this work are:

• Application of PSO for SOC estimation.

• Ability to run the algorithm in real time on an embedded target.

To achieve the above goals, the model needs to be re-formulated and the require-

ment for each of the above goals are discussed here.

An optimization algorithm like PSO, evaluates the function with a set of parameters

to determine an optimal solution. Additionally, this process could be repeated at

every time instance. In the case of a battery model, it would have to be run with
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a set values for a given state, evaluating the fitness of the output, at each value,

to the given optimization criteria. This requirement demands the battery model be

modular, where it can be run repeatedly within a given time-step.

The equations for positive and negative electrodes, Eq. 3.4, 3.6, 3.8, 3.9 and 3.10,

are similar. Hence all these equations can grouped together into a function. Similarly,

the equations for the electrolyte and temperature calculation can be grouped into

corresponding functions. Also, to run the model on an embedded target, it is preferred

to be in a high-level language like C, C++, where the code can be compiled into real

time executables.

Matlab c©Simulink c©offers a platform where we can not only develop the modular

model but we can also simulate and analyze the results. Additionally, it offers rapid

prototyping on embedded hardware, like Raspberry Pi. Once the Battery Model and

PSO algorithm are developed and validated in Simulink c©it can generate auto code

and can also be run on an embedded device with a click of a button.

3.4.1 Simulink Implementation

The core of the battery model is implemented as a Simulink library for modular-

ity. Figure 3.3 shows the blocks UpdatePosElectrode , UpdateNegElectrode , Upda-

teElectrolyte and UpdateTemperature, which update the states of Positive Electrode,

Negative Electrode, Electrolyte and the cell temperature correspondingly at every

time step.

The blocks in the Figure 3.3 are used to create the single cell model as shown in

the Figure 3.4. The top level modular implementation of a single cell is shown in 3.5.

It takes Ambient temperature(T Amb) and Measured Current (I) as Inputs. Voltage,

Open Circuit Voltage(opc), State of Charge at the Negative Electrode(SOC Neg)

and State of Charge of Positive Electrode (SOC Pos) are the model outputs. The

states are calculated and updated internally. This modular approach makes the model

efficient for prototyping and analysis.
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Fig. 3.3. Single Cell Battery Core Library.

Fig. 3.4. Single Cell Battery Core Library.

3.4.2 Theoretical Simulation Validation

This model was subjected to a standard discharge rate of 1C (30 A/m2) and 0.5C

(15 A/m2) in order to verify the battery operation in theory. The battery parameters
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Fig. 3.5. Single Cell Battery Model.

used in this work are listed in the Table 3.1. The response in Figure 3.6 indicates

that at 1C the battery discharges in 3500s and at 0.5C it takes 7000s to completely

discharge. This is in tune with the expected response of a battery with a nominal

capacity of 3.5Ah.

Fig. 3.6. Single Cell Battery Model.
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Table 3.1.
Battery Parameters. [18]

Parameter Units Negative Electrode Separator Positive Electrode

L m 88 × 10−6 35 × 10−6 80 × 10−6

N - 88 35 80

Ri m 2 × 10−6 - 2 × 10−6

εs - 0.4824 - 0.5

εe - 0.485 0.724 0.385

σ Ω−1m−1 100 - 100

t+0 - 0.363 0.363 0.363

Csmax,i molm−3 30555 - 51554

ce,i molm−3 1000 1000 1000

αa, αc - 0.5, 0.5 - 0.5, 0.5

R jmol−1K−1 8.314 8.314 8.314

F Cmol−1 96487 96487 96487

A m2 30 - 30
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4. SOC ESTIMATION

4.1 Particle Swarm Optimization

Particle Swarm Optimization, inspired by movement of a flock of birds or a school

of fish, is a population based stochastic optimization technique. It was developed by

Dr. Kennedy and Dr. Eberhart in 1995. The idea of the algorithm is that a set of

random solutions, called particles, are initialized in the solution space and the function

is evaluated at each of this solution for fitness. The velocity of the best particle is

then updated so that the other particles fly with the same velcity of the best solution.

This is analogous to flock of birds flying around looking for optimal path for food.

PSO had several advantages over GA, namely, PSO had fewer parameters to tune, the

algorithm is computationally efficient and has a higher degree of convergence. After

the advent of PSO it has been used in a wide variety of industries. It has been applied

in robotics for controller optimization [24], it has been used to optimize the estimation

of global solar radiation for regions where they cannot be measured [25], a biological

application where PSO is used in detection of Ovarian cancer can also be cited [26], it

has also been used in manufacturing industry to optimize machine loads [27]. PSO has

also been used in the automotive applications. One of the most popular use of PSO is

battery application is to identify battery parameters [28] [29] [30]. Another popular

application is in optimization of energy management in Hybrid Vehicles [31] [32] [33].

A particular work of interest is the PSO based SOC estimation of Li-Ion battery by

Ismail, N.H.F. et al [11],in which a Thevenin model was employed for the estimation of

SOC of LiFePO4 battery. A Mean Square Error of 0.2633 was demonstrated using the

PSO estimation. Thevenin model or the Equivalent circuit model has its drawback

for SOC estimation as discussed in the literature survey.
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4.2 PSO Algorithm

A global version of PSO algorithm is used in this thesis work. In this algorithm,

a swarm of solution, called particles, are initialized randomly in the solution space.

These particles are then flown through the solution space. The particles keep track

of its coordinates with respect to the best solution in the problem space. This is

termed as pbest. Similarly, a global best, termed as gbest, is tracked which is the best

location or solution obtained by any particle so far. At every time step the velocities

of the particles are updated towards the pbest and the gbest values until the required

optimization goals are met or the algorithm termination condition is reached.

A basic outline of the algorithm is presented here. It describes a systematic ap-

proach of the algorithm:

Step 1: Initialize the particles

Initialize the position array with random numbers having uniform distribution

X = Urand(rlowerlim, rupperlim) (4.1)

Assign this initial positon to best known position array.

P = X (4.2)

Initialize particle Velocity

V = X (4.3)

If the number of particles are Nump then, X is a Nump size array of particle posi-

tion, similarly P is a Nump size array of pbest positions and V is a Nump size array

particle velocities.

Step 2: Evaluate the optimization fitness function-

Ex = F (X) and Ep = F (P ) and eg = f(gbest) (4.4)
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Where Ex and Ep are the fitness evaluation array for X and P correspondingly.

eg is the function evaluation at gbest

Step 3: Update pbest value for each particle of the population-

if Ex(i) < Ep(i) then P (i) = X(i) (4.5)

Where i = 1, 2, ...Nump.

Step 4: Update gbest value for the entire population -

if Ep(i) < eg then gbest = P (i) (4.6)

Step 5: Update the velocity and position of the particles-

V (i) = wV (i) + c1urand(0, 1)(P (i)−X(i)) + c2urand(0, 1)(gbest−X(i)) (4.7)

X(i) = X(i) + V (i) (4.8)

Where w is the inertial weight, c1 is the cognitive parameter and c2 is the social

parameter.

Step 6: If criteria is met then exit else loop to Step 2. Exit criteria is usually a fitness

threshold or maximum number of iterations completed.

4.3 SOC Estimation Approach

An overview of the approach of SOC estimation using PSO is show in the Figure

4.1. The measured voltage and current is supplied to the PSO algorithm, which

optimizes the states in order to produce minimum error between the Measured Voltage

and the Estimated Voltage from the battery model for the given current value. The

battery model has six states but for simplicity only the lithium ion concentration,

Cs(x, r, t), of the electrode is used as particles of PSO in this work. Cs is the amount of

charge in the electrode, which is intuitively the SOC, also the charge in the electrodes

is directly proportional the Open Circuit Voltage. Thus optimizing the estimation

based on this state is expected to be efficient. Cs shall be used as the particles of
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Fig. 4.1. SOC Estimation Overview.

the PSO algorithm, where they are initialized to uniformly random values around the

previous Cs and the Voltage is estimated and optimized based on these states for the

measured current value. A pictorial view of this process is shown in Figure 4.2.

One point to note is that at the initial value of Cs could be chosen at random.

However, for faster convergence, best known value that would represent the current

battery condition is used instead. To achieve this a linear interpolation function

is employed, which takes the measured voltage and current as input and provides

stoichiometric value as output, which is used in the calculation of cs as shown in the

equation 4.9.

Cs = stoichiometric value ∗ Csmax, i (4.9)

This is done only once at the beginning of the algorithm. For subsequent time steps

the optimized states, including Cs, from the previous step are fed back.

4.4 PSO Algorithm Parameters

From the equation 4.7 it is clear that the PSO algorithm uses only three parame-

ters, c1 & c2, which are learning coefficients of the stochastic acceleration terms and w
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Fig. 4.2. Internal Working of PSO for SOC Estimation.

the inertial coefficient. Generally the values of c1 and c2 are chosen to be 2.0 [34] [35],

which is mainly based on early experience and trail and error. However Clerc [36]

introduced a constriction factor to ensure convergence. This constricting factor can

be applied to equation 4.7 as shown in equation 4.10. Here K is represented as shown

in equation 4.11 [35].

V (i) = K ∗ [V (i) + c1urand(0, 1)(P (i)−X(i)) + c2urand(0, 1)(gbest−X(i))] (4.10)

K =
2

|2− φ−
√
φ2 − 4φ|

where φ = c1 + c2, φ > 4 (4.11)

A typical number used for φ while using this constriction method is 4.1 [35], which

gives us the value of K to be 0.729. Thus c1 and c2 is 1.494. A slight adjustment was
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Table 4.1.
PSO Parameters.

Parameter Value

w [0.5 + urand
2

]

c1 1.494

c2 1.494

Number of Particles 8

Max Number of Iteration 20

proposed by Eberhart and Shi [35] for application of PSO for dynamic systems. In

this method the inertial weight w in set as [0.5+ urand
2

], which gives a randomly varying

number between 0.5 and 1.0 with a mean of 0.75, which is in line with the Clerc‘s

constriction factor. This improved inertial method along with Clec‘s constriction

coefficients is used in this work because the estimation of SOC is a dynamic process

where PSO is applied at every time instance. The values of the PSO parameters w,

c1, c2, Number of Particles and Maximum Iteration chosen for this work are shown in

the table 4.1. Figure 4.3 shows the Simulink implementation of the PSO estimation.
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Fig. 4.3. Simulink implementation of SOC Estimation using PSO.
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5. ALGORITHM VALIDATION AND RESULTS

5.1 Experimental Setup

In order to validate the PSO based estimation of SOC, battery testing was con-

ducted to collect experimental data. Cadex C8000 was used to collect the battery

data as shown in the Figure 5.1. The battery used was Panasonic NCR 18650B. It has

a rated capacity of 3200 mAh at a nominal voltage of 3.6 V. Charging and discharging

data, at 1C, of a new healthy battery was collected. Charging was performed using

the built in NCR18650B charging profile of the CADEX software. Discharging was

performed at constant current of 3.3 A.This battery was then subjected to a 100-

cycle aging and the discharging and charging data, at 1C, was collected. The data

was logged at 1 Hz.

Figure 5.2 and 5.3 show the charging voltage and current of both healthy and aged

battery. Similarly, Figure 5.4 and 5.5 show the discharging voltage and current of

both healthy and aged battery. These graphs clearly show the degradation of battery

performance with aging.

5.2 Simulation Validation

The data collected from the experimental set up was run on the Single Cell model

with PSO estimation for charging. The model was set to run with a discrete solver

with a step time of 0.2s. The model was set to ’Normal Mode’ in order to verify the

algorithm in simulation. To evaluate the performance of the algorithm, Root Mean

Square Error (RMS) as per equation 5.1 is employed on Voltage and SOC values. The
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Fig. 5.1. CADEX C8000 experimental setup.

simulation data for 1C Charging and Discharging for both Healthy and Aged batter

is presented in this section.

RMS =

√∑M
i=1 |xi|2
M

(5.1)

5.2.1 Healthy Charging

Figure 5.6 compares the Measured Voltage against the PSO optimized voltage.

Although the measured and the estimated voltage start with different values the

PSO algorithm optimizes the voltage in less than 45s. Figure 5.7 provides a zoomed

in view of voltage convergence. The average RMS error between the estimated and

measured is 0.0221. The graph of running RMS of PSO Voltage and measured voltage

is shown in Figure 5.9.

Figure 5.8 compares the experimental SOC against the PSO optimized SOC. The

curve for SOC estimation from the single cell battery without optimization is also
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Fig. 5.2. Experimental Aged and Healthy Charging Voltage.

plotted to provide a reference for analysis purposes.The estimated SOC converges

within a absolute difference of less than 2% within the first 800s and then continues

to follow the experimental SOC with a running RMS Of 0.0355 as shown in Figure

5.10. It is clear from the graph that the SOC estimated without PSO diverges from

the experimental SOC.

5.2.2 Healthy Discharging

Figure 5.11 compares the Measured Voltage against the PSO optimized voltage for

discharging. The measured and the estimated voltage start with different values but

the PSO algorithm optimizes the voltage in less than 15s. The short convergence time

is because the initial value of the PSO Voltage is closer to measured voltage, with an

absolute difference of 0.025 V for the given conditions. Figure 5.12 provides a zoomed

in view of voltage convergence. The average RMS error between the estimated and

measured is 0.0200.
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Fig. 5.3. Experimental Aged and Healthy Charging Current.

The graph of running RMS of PSO Voltage and measured voltage is shown in Figure

5.14.

Figure 5.13 compares the experimental SOC against the PSO optimized SOC. The

curve for SOC estimation from the single cell battery without optimization is also

plotted to provide a reference for analysis purposes. The estimated SOC converges

within a absolute difference of less than 2% within the first 1160s and then continues

to follow the experimental SOC with a running RMS Of 0.03186 as shown in Figure

5.15. The SOC of Single cell without optimization, SOC with PSO and Experimental

SOC converge to within 3% absolute difference withing 1500s.

5.2.3 Aged Charging

Figure 5.16 compares the Measured Voltage against the PSO optimized voltage

for charging. Although the measured and the estimated voltage start with different

values the PSO algorithm optimizes the voltage in less than 30s. The average RMS
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Fig. 5.4. Experimental Aged and Healthy Discharging Voltage.

error between the estimated and measured is 0.01729. Figure 5.17 provides a zoomed

in view of voltage convergence. The graph of running RMS of PSO Voltage and

measured voltage is shown in Figure 5.19.

Figure 5.18 compares the experimental SOC against the PSO optimized SOC. The

curve for SOC estimation from the single cell battery without optimization is also

plotted to provide a reference for analysis purposes.Similar to the healthy charging,

the estimated SOC converges within a absolute difference of less than 2% within the

first 800s and then continues to follow the experimental SOC with a running RMS

Of 0.03016 as shown in Figure 5.20.Just like in the case of Healthy Battery, it is clear

from the graph that the SOC estimated without PSO diverges from the experimental

SOC.
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5.2.4 Aged Discharging

Figure 5.21 compares the Measured Voltage against the PSO optimized voltage

for discharging. The measured and the estimated voltage start with different values

but the PSO algorithm optimizes the voltage in less than 12s. The short convergence

time is because the initial value of the PSO Voltage is closer to measured voltage,

with an absolute difference of 0.0212 V for the given conditions. The average RMS

error between the estimated and measured is 0.0196. Figure 5.22 provides a zoomed

in view of voltage convergence. The graph of running RMS of PSO Voltage and

measured voltage is shown in Figure 5.24.

Figure 5.23 compares the experimental SOC against the PSO optimized SOC. The

curve for SOC estimation from the single cell battery without optimization is also

plotted to provide a reference for analysis purposes. The estimated SOC converges

within a absolute difference of less than 1% within the first 830s and then continues

to follow the experimental SOC with a running RMS Of 0.02515 as shown in Figure
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Fig. 5.6. Healthy Battery: Experimental Vs PSO Voltage.

5.25. The SOC of Single cell without optimization, SOC with PSO and Experimental

SOC converge to within 3% absolute difference withing 1500s. However it is clear

that the PSO optimized SOC closely follows the experimentally calculated SOC.

5.2.5 Charge Discharge Cycle

Figure 5.26 compares the Measured Voltage against the PSO optimized voltage

for a single Charge Discharge cycle. The measured and the estimated voltage start

with different values but the PSO algorithm optimizes the voltage in less than 45s.

The battery is charged to 40% and then a discharging current of 3.37 V is applied

at 1300s. Figure 5.27 shows the applied Charging/Discharging Current. Figure 5.28

compares the Experimental SOC and PSO optimized SOC for the Charge/Discharge

cycle. The maximum error is 8.9% at the beginning of the estimation where the PSO

algorithm is trying to converge to the experimental values. However, the estimated

SOC converges within 2% of Experimental SOC in the first 800s and continues to
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Fig. 5.7. Healthy Battery: Experimental Vs PSO Voltage - Zoomed In View.

follow the experimental SOC within 1% error even when the battery switches to

discharging. The average RMS between the estimated and experimental SOC is

0.0366.

5.3 Real Time Validation

The PSO estimator is run on Raspberry Pi 3 by using the external mode in

Simulink. Raspberry Pi 3 is a single board computer with a 64-bit quad core pro-

cesser and 1GB internal RAM.Being a low-cost device, it is ideal for prototyping

computationally intense algorithms like the PSO Estimator presented in this work.

Simulink provides a seamless interface to Raspberry Pi. Once the models are val-

idated in pure simulation the same can be run on Raspberry Pi by changing the

simulation mode to ’External Mode’ in the model. If the Pi has been been set up

correctly (as per instruction in Matlab Help) then by clicking the simulate button,
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Fig. 5.8. Healthy Battery: Experimental Vs PSO SOC.

Simulink generates code, compiles it and starts running it in real time on Raspberry

pi. The real time data is displayed on the same scopes that were set up for pure sim-

ulation. Figure 5.29 shows the block diagram of the raspberry pi setup and Figure

5.30 shows the actual picture of the setup.

Figures 5.31 to 5.38, show the comparison of Voltage and SOC obtained from

Simulation and from Real-Time processor (Raspberry Pi). The results match 100%,

which shows that the PSO estimator is efficient on the real-time processor, thereby

giving the exact same results. The CPU utilization time of Raspberry Pi was collected

to evaluate the performance. A maximum of 26% CPU utilization was observed at

PSO Estimator initialization and during convergence, while it ran at 3% average

utilization for the rest of the execution.
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Fig. 5.9. Healthy Battery: Experimental Vs PSO Voltage RMS.
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Fig. 5.10. Healthy Battery: Experimental Vs PSO SOC RMS.
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Fig. 5.11. Healthy Battery: Experimental Vs PSO Voltage.
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Fig. 5.12. Healthy Battery: Experimental Vs PSO Voltage - Zoomed In View.
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Fig. 5.13. Healthy Battery: Experimental Vs PSO SOC.
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Fig. 5.14. Healthy Battery: Experimental Vs PSO Voltage RMS.
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Fig. 5.15. Healthy Battery: Experimental Vs PSO SOC RMS.
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Fig. 5.16. Aged Battery: Experimental Vs PSO Voltage.
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Fig. 5.17. Aged Battery: Experimental Vs PSO Voltage - Zoomed In View.
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Fig. 5.18. Aged Battery: Experimental Vs PSO SOC.
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Fig. 5.19. Aged Battery: Experimental Vs PSO Voltage RMS.
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Fig. 5.20. Aged Battery: Experimental Vs PSO SOC RMS.
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Fig. 5.21. Aged Battery: Experimental Vs PSO Voltage.
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Fig. 5.22. Aged Battery: Experimental Vs PSO Voltage - Zoomed In View.
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Fig. 5.23. Aged Battery: Experimental Vs PSO SOC.
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Fig. 5.24. Aged Battery: Experimental Vs PSO Voltage RMS.
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Fig. 5.25. Aged Battery: Experimental Vs PSO SOC RMS.
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Fig. 5.29. Raspberry Pi3 Setup Overview.

Fig. 5.30. Raspberry Pi3 Experimental Setup.
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Fig. 5.31. Simulation Vs Real Time Voltage.
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Fig. 5.32. Simulation Vs Real Time SOC.
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Fig. 5.33. Simulation Vs Real Time Voltage.
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Fig. 5.34. Simulation Vs Real Time SOC.
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Fig. 5.35. Simulation Vs Real Time Voltage.
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Fig. 5.36. Simulation Vs Real Time SOC.
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Fig. 5.37. Simulation Vs Real Time Voltage.
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Fig. 5.38. Simulation Vs Real Time SOC.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

The major goals of this work, as stated earlier, is to develop an a battery model

and a PSO algorithm to accurately estimate the SOC, which is also capable of running

in real-time.

A modular single cell electrochemical model was developed in Simulink and its

performance was theoretically verified. A basic version of PSO with constricting factor

was proposed and the algorithm was developed in Simulink. Experimental data was

collected for Healthy and Aged battery in order to validate the PSO algorithm.

Particle Swarm Optimization is a promising technique for estimation of State of

Charge. Results show a close agreement between the estimated value and experimen-

tal values:

• The SOC estimation for charging of a Healthy battery is 0.0355.

• The SOC estimation for discharging of a Healthy battery is 0.03186.

• The SOC estimation for charging of a Aged battery is 0.03016.

• The SOC estimation for discharging of a Aged battery is 0.0251.

It was demonstrated the proposed implementation of the PSO estimation is ca-

pable of effectively running on Raspberry Pi in real-time processor with reasonable

performance.

There were some limitations observed:

• Initial conditions needs to be closer to the actual value while starting the esti-

mation to ensure faster convergence.

• Only one out of the six states has been used for optimization in the proposed

method.
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• The single cell battery models were not optimized against the experimental

data. A more accurate and robust estimation of SOC may be achieved with an

optimized battery model.

In conclusion, with the availability of a modular battery model in Simulink, like

the one proposed in this paper, it gives the ability to perform faster analysis along

with the added capability of rapid prototyping on real-time processor.

6.2 Recommendations for Future Work

Simulink based Single Cell Model and PSO algorithm developed in this work has

a potential for wide variety of application.

• This work uses only one battery state for PSO, a natural progression is to use

all six states to achieve robustness.

• Only voltage has been used in this work for fitness evaluation of the optimization

algorithm. This can be extended to include cell temperature in the fitness

evaluation.

• PSO algorithm developed here may be used to estimate other battery states

like, State of Health(SOH).

• Incorporate advanced PSO algorithms to address dynamic nature of the system.

• Raspberry Pi provides the ability to connect Voltage and current sensors from

a real battery. One of the next steps would be to run and verify the PSO

estimation in autonomous mode where the signals from an actual battery can

be directly used.
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A. APPENDIX

One of the goals for the battery model is the ability to run on an embedded device.

Additional steps taken to generate efficient code is explained in this section.

A.1 Structure definition for Constants

The structures associated with the electrodes and the electrolyte are defined as

Simulink structures. This is a compact way of passing all the constants to the function.

Additionally, this produces compact code for running in real-time. The structure

definitions for the constants are shown here.

Positive Electode Constant

***************************************************************

PosEle_Const = struct(’Length’,80.0*1e-6,... %Thickness of Electrode

’Nodes’,81,... %Number of nodes

’Grid’,1.0000e-06,... %Spacing of Grid

’SoildDiff’,1.0*1e-14,... %Soild Phase diffusivity

’ElyteDiff’,1.6478*1e-11,...%Electrolyte Solid Phase

Diffusivity

’Sigma’,100,...

’REff’,2.164e-11,...

’Max_SP_Conc’,51554,...%Max Solid Phase concentration

51554

’Epss’,0.5,...%Volume of Solid Fraction in the Electrode

’Epsl’,0.385,...%Volume of Electrolyte in positive

Electrode
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’Radius’,2e-6);%Raduis of particle

Negative Electode Constant

***************************************************************

NegEle_Const = struct(’Length’,88.0*1e-6,...%Thickness of Electrode

’Nodes’,89,... %Number of nodes

’Grid’,1.0000e-06,... %Spacing of Grid

’SoildDiff’,3.9*1e-14,...%Soild Phase diffusivity

’ElyteDiff’,4.1498*1e-11,...%Electrolyte Solid Phase

Diffusivity

’Sigma’,100,...

’REff’,1.942e-11,...

’Max_SP_Conc’,30555,... %Max Solid Phase concentration

30555

’Epss’,0.4824,...%Volume of Solid Fraction in the

Electrode

0.4824

’Epsl’,0.485,...%Volume of Electrolyte in Negative

Electrode

’Radius’,2e-6); %Raduis of particle

Negative Electode Constant

***************************************************************

Elyct_Const = struct(’Length’,35.0*1e-6,...%Thickness of Electrolyte

’Nodes’,36,...%Number of nodes

’Grid’,1.0000e-06,...%Spacing of Grid

’ElyteDiff’,7.5*1e-10,...%Electrolyte Phase Diffusivity

’Epss’,0.1,...%Volume of Solid Fraction in the Seperator

’Epsl’,0.724);%Volume of Electrolye Fraction in the Seperator



61

A.2 Simulink Bus definition for States

The states for electrodes and electrolytes are defined as Simulink Bus. This is an

efficient and compact way of handling the multi-dimensional signals with heteroge-

neous data type. The bus definitions are shown here.

Electrode Simulink Bus

***************************************************************

function Electrode_BusCreate()

% Electrode_BusCreate initializes a set of bus objects in the

MATLAB base workspace

% Bus object: slBus7

clear elems;

elems(1) = Simulink.BusElement;

elems(1).Name = ’Ce’;

elems(1).Dimensions = [1 1];

elems(1).DimensionsMode = ’Fixed’;

elems(1).DataType = ’double’;

elems(1).SampleTime = -1;

elems(1).Complexity = ’real’;

elems(1).SamplingMode = ’Sample based’;

elems(1).Min = [];

elems(1).Max = [];

elems(1).DocUnits = ’’;

elems(1).Description = ’’;

elems(2) = Simulink.BusElement;

elems(2).Name = ’Cs’;

elems(2).Dimensions = [1 81];
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elems(2).DimensionsMode = ’Fixed’;

elems(2).DataType = ’double’;

elems(2).SampleTime = -1;

elems(2).Complexity = ’real’;

elems(2).SamplingMode = ’Sample based’;

elems(2).Min = [];

elems(2).Max = [];

elems(2).DocUnits = ’’;

elems(2).Description = ’’;

elems(3) = Simulink.BusElement;

elems(3).Name = ’Css’;

elems(3).Dimensions = [1 81];

elems(3).DimensionsMode = ’Fixed’;

elems(3).DataType = ’double’;

elems(3).SampleTime = -1;

elems(3).Complexity = ’real’;

elems(3).SamplingMode = ’Sample based’;

elems(3).Min = [];

elems(3).Max = [];

elems(3).DocUnits = ’’;

elems(3).Description = ’’;

elems(4) = Simulink.BusElement;

elems(4).Name = ’Ds’;

elems(4).Dimensions = [1 81];

elems(4).DimensionsMode = ’Fixed’;

elems(4).DataType = ’double’;

elems(4).SampleTime = -1;
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elems(4).Complexity = ’real’;

elems(4).SamplingMode = ’Sample based’;

elems(4).Min = [];

elems(4).Max = [];

elems(4).DocUnits = ’’;

elems(4).Description = ’’;

elems(5) = Simulink.BusElement;

elems(5).Name = ’Ie’;

elems(5).Dimensions = [1 81];

elems(5).DimensionsMode = ’Fixed’;

elems(5).DataType = ’double’;

elems(5).SampleTime = -1;

elems(5).Complexity = ’real’;

elems(5).SamplingMode = ’Sample based’;

elems(5).Min = [];

elems(5).Max = [];

elems(5).DocUnits = ’’;

elems(5).Description = ’’;

elems(6) = Simulink.BusElement;

elems(6).Name = ’Us’;

elems(6).Dimensions = [1 81];

elems(6).DimensionsMode = ’Fixed’;

elems(6).DataType = ’double’;

elems(6).SampleTime = -1;

elems(6).Complexity = ’real’;

elems(6).SamplingMode = ’Sample based’;

elems(6).Min = [];
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elems(6).Max = [];

elems(6).DocUnits = ’’;

elems(6).Description = ’’;

elems(7) = Simulink.BusElement;

elems(7).Name = ’Ke’;

elems(7).Dimensions = [1 81];

elems(7).DimensionsMode = ’Fixed’;

elems(7).DataType = ’double’;

elems(7).SampleTime = -1;

elems(7).Complexity = ’real’;

elems(7).SamplingMode = ’Sample based’;

elems(7).Min = [];

elems(7).Max = [];

elems(7).DocUnits = ’’;

elems(7).Description = ’’;

elems(8) = Simulink.BusElement;

elems(8).Name = ’Ue’;

elems(8).Dimensions = [1 81];

elems(8).DimensionsMode = ’Fixed’;

elems(8).DataType = ’double’;

elems(8).SampleTime = -1;

elems(8).Complexity = ’real’;

elems(8).SamplingMode = ’Sample based’;

elems(8).Min = [];

elems(8).Max = [];

elems(8).DocUnits = ’’;

elems(8).Description = ’’;
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elems(9) = Simulink.BusElement;

elems(9).Name = ’qs’;

elems(9).Dimensions = [1 81];

elems(9).DimensionsMode = ’Fixed’;

elems(9).DataType = ’double’;

elems(9).SampleTime = -1;

elems(9).Complexity = ’real’;

elems(9).SamplingMode = ’Sample based’;

elems(9).Min = [];

elems(9).Max = [];

elems(9).DocUnits = ’’;

elems(9).Description = ’’;

elems(10) = Simulink.BusElement;

elems(10).Name = ’U_eq’;

elems(10).Dimensions = [1 81];

elems(10).DimensionsMode = ’Fixed’;

elems(10).DataType = ’double’;

elems(10).SampleTime = -1;

elems(10).Complexity = ’real’;

elems(10).SamplingMode = ’Sample based’;

elems(10).Min = [];

elems(10).Max = [];

elems(10).DocUnits = ’’;

elems(10).Description = ’’;

elems(11) = Simulink.BusElement;

elems(11).Name = ’eta’;
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elems(11).Dimensions = [1 81];

elems(11).DimensionsMode = ’Fixed’;

elems(11).DataType = ’double’;

elems(11).SampleTime = -1;

elems(11).Complexity = ’real’;

elems(11).SamplingMode = ’Sample based’;

elems(11).Min = [];

elems(11).Max = [];

elems(11).DocUnits = ’’;

elems(11).Description = ’’;

elems(12) = Simulink.BusElement;

elems(12).Name = ’q’;

elems(12).Dimensions = [1 81];

elems(12).DimensionsMode = ’Fixed’;

elems(12).DataType = ’double’;

elems(12).SampleTime = -1;

elems(12).Complexity = ’real’;

elems(12).SamplingMode = ’Sample based’;

elems(12).Min = [];

elems(12).Max = [];

elems(12).DocUnits = ’’;

elems(12).Description = ’’;

elems(13) = Simulink.BusElement;

elems(13).Name = ’J’;

elems(13).Dimensions = [1 81];

elems(13).DimensionsMode = ’Fixed’;

elems(13).DataType = ’double’;
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elems(13).SampleTime = -1;

elems(13).Complexity = ’real’;

elems(13).SamplingMode = ’Sample based’;

elems(13).Min = [];

elems(13).Max = [];

elems(13).DocUnits = ’’;

elems(13).Description = ’’;

elems(14) = Simulink.BusElement;

elems(14).Name = ’q_lump’;

elems(14).Dimensions = [1 81];

elems(14).DimensionsMode = ’Fixed’;

elems(14).DataType = ’double’;

elems(14).SampleTime = -1;

elems(14).Complexity = ’real’;

elems(14).SamplingMode = ’Sample based’;

elems(14).Min = [];

elems(14).Max = [];

elems(14).DocUnits = ’’;

elems(14).Description = ’’;

elems(15) = Simulink.BusElement;

elems(15).Name = ’SOC’;

elems(15).Dimensions = [1 81];

elems(15).DimensionsMode = ’Fixed’;

elems(15).DataType = ’double’;

elems(15).SampleTime = -1;

elems(15).Complexity = ’real’;

elems(15).SamplingMode = ’Sample based’;
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elems(15).Min = [];

elems(15).Max = [];

elems(15).DocUnits = ’’;

elems(15).Description = ’’;

elems(16) = Simulink.BusElement;

elems(16).Name = ’i_0’;

elems(16).Dimensions = [1 81];

elems(16).DimensionsMode = ’Fixed’;

elems(16).DataType = ’double’;

elems(16).SampleTime = -1;

elems(16).Complexity = ’real’;

elems(16).SamplingMode = ’Sample based’;

elems(16).Min = [];

elems(16).Max = [];

elems(16).DocUnits = ’’;

elems(16).Description = ’’;

elems(17) = Simulink.BusElement;

elems(17).Name = ’Type’;

elems(17).Dimensions = [1 1];

elems(17).DimensionsMode = ’Fixed’;

elems(17).DataType = ’double’;

elems(17).SampleTime = -1;

elems(17).Complexity = ’real’;

elems(17).SamplingMode = ’Sample based’;

elems(17).Min = [];

elems(17).Max = [];

elems(17).DocUnits = ’’;
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elems(17).Description = ’’;

temp = Simulink.Bus;

temp.HeaderFile = ’’;

temp.Description = ’’;

temp.DataScope = ’Auto’;

temp.Alignment = -1;

temp.Elements = elems;

clear elems;

assignin(’base’,’Electrode_Bus’, temp);

Electrolyte Simulink Bus

***************************************************************

function temp = Elyct_BusCreate()

% Elyct_BusCreate initializes a set of bus objects in the

MATLAB base workspace

% Bus object: slBus9

clear elems;

elems(1) = Simulink.BusElement;

elems(1).Name = ’Ie’;

elems(1).Dimensions = [1 36];

elems(1).DimensionsMode = ’Fixed’;

elems(1).DataType = ’double’;

elems(1).SampleTime = -1;

elems(1).Complexity = ’real’;

elems(1).SamplingMode = ’Sample based’;

elems(1).Min = [];

elems(1).Max = [];
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elems(1).DocUnits = ’’;

elems(1).Description = ’’;

elems(2) = Simulink.BusElement;

elems(2).Name = ’Ke’;

elems(2).Dimensions = [1 36];

elems(2).DimensionsMode = ’Fixed’;

elems(2).DataType = ’double’;

elems(2).SampleTime = -1;

elems(2).Complexity = ’real’;

elems(2).SamplingMode = ’Sample based’;

elems(2).Min = [];

elems(2).Max = [];

elems(2).DocUnits = ’’;

elems(2).Description = ’’;

elems(3) = Simulink.BusElement;

elems(3).Name = ’Ue’;

elems(3).Dimensions = [1 36];

elems(3).DimensionsMode = ’Fixed’;

elems(3).DataType = ’double’;

elems(3).SampleTime = -1;

elems(3).Complexity = ’real’;

elems(3).SamplingMode = ’Sample based’;

elems(3).Min = [];

elems(3).Max = [];

elems(3).DocUnits = ’’;

elems(3).Description = ’’;
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elems(4) = Simulink.BusElement;

elems(4).Name = ’q’;

elems(4).Dimensions = [1 36];

elems(4).DimensionsMode = ’Fixed’;

elems(4).DataType = ’double’;

elems(4).SampleTime = -1;

elems(4).Complexity = ’real’;

elems(4).SamplingMode = ’Sample based’;

elems(4).Min = [];

elems(4).Max = [];

elems(4).DocUnits = ’’;

elems(4).Description = ’’;

temp = Simulink.Bus;

temp.HeaderFile = ’’;

temp.Description = ’’;

temp.DataScope = ’Auto’;

temp.Alignment = -1;

temp.Elements = elems;

clear elems; %Volume of Electrolye Fraction in the Seperator


