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ABSTRACT

Akella, Arun. M.S.M.E., Purdue University, May 2018. A Novel In Vitro Stretch
Device for Simulating In Vivo Conditions. Major Professor: Hazim El- Mounayri.

Biological cells are constantly subjected to mechanical forces such as tension, com-

pression and shear. The importance of these forces in mediating cell signals, mainte-

nance of lineages, promoting embryonic cell differentiation and tissue engineering is

only now coming into focus [1]. It has been shown that stretch stimulus can influ-

ence growth, differentiation, as well as tissue strength and integrity [2]. Most stretch

systems built to understand more of these phenomena suffer from shortcomings, as

accurately replicating the in vivo environment is quite challenging [3]. Many of the

devices currently available are very expensive as well as limited to a single applica-

tion. The objective of this thesis is to design, manufacture, test, and validate a novel

uniaxial cyclic cell stretch device that overcomes most of the major limitations of ex-

isting systems, and to experimentally demostrate that uniaxial cyclic stretch causes

a shift towards in vivo characteristics of smooth muscle cells. The stretch mechanism

is driven by a single servo motor which makes its operation simple and straight for-

ward. Coolworks Lite, a proprietary software of the servo motor supplier, is used to

control the motor and LabVIEW is used to obtain feedback from the sensors. Vali-

dation for the stretch machine was done by evaluating the performance of the device

against engineering requirements. Methods were suggested to improve shortcomings

that were encountered. Also, the machine’s unique design allows its extension to a

biaxial stretch unit while keeping the same driver platform, a concept for which has

been discussed and illustrated.
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1. INTRODUCTION

1.1 Background

Biological cells are subjected to a variety of mechanical stimulations and many

studies have demonstrated the importance of mechanical forces in regulating cell spe-

cific markers in vivo. Identifying the mechanisms that regulate these expressions is

critical for understanding the cell genetic and physical properties in both normal and

pathological conditions. However, due to the complexity of the in vivo environment,

cells could not be accurately studied in vitro. Some of the preliminary studies show

a difference in the expression level of specific genes when the cells are cultured in

stationary conditions- they acquire a generic gene expression profile with a slight

change in physical structure. For example, smooth muscle cells (SMCs), which are

a major component of blood vessels, are constantly under cyclic tension due to pul-

sating blood flow. Vascular SMCs (VSMCs) have significant plasticity and can show

reversible changes in phenotype in response to the local environment. The complexity

of the in vivo environment has made the study of these cells in vitro very difficult.

Some of the preliminary studies conducted show changes in the expression levels of

smooth muscle specific genes when the cells are cultured in stationary conditions-

they acquire a generic gene expression profile with a slight change in physical struc-

ture [13, 14]. It was therefore thought that if cells are cultured at in vivo conditions

in vitro, and subjected to controlled mechanical loading (cyclic strains at various fre-

quencies and time durations), they will retain the same level of gene expression as in

vivo [4–12].

The aim of this thesis is to design and develop a novel uniaxial stretch device that

will simulate in vivo environmental conditions in vitro. The device must stretch cells

through direct mechanical loading, and must allows both culturing and stretching
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of SMCs on the same unit, effectively reducing working time needed by researchers

to complete each run. The petri dishes and membranes used must be commercially

available, reducing costs per experiment. The type of substrate used must be deter-

mined by the end user. This can vary from non-biological substrates like silicone and

PDMS to biological ones such as collagen. The size of the substrate must also be

chosen by the user according to his/her cell plating needs.

1.2 Literature Review

Most biological cells are constantly subjected to mechanical forces such as tension,

compression and shear, and its importance in mediating cell signals, maintenance

of lineages, promoting embryonic cell differentiation and tissue engineering is only

now coming into focus. Different cells in different parts of a living organism are

sensitive to different mechanical stimuli that occur in their immediate environments.

These mechanical stimuli influence cells in various ways, such as defining its function.

Changes in these stimuli may cause a diseased state. Hence the study of mechanical

forces on cells has become very important [15]. Cyclic uniaxial stress is one such

dominant force, which has been shown to influence growth, differentiation, as well

as tissue strength and integrity in a variety of cells, either by itself, or in addition

to other forces and chemical factors. For example, vascular cells are continuously

subjected to cyclic strain among others. As a result of these stimuli, during fetal

development, vascular remodelling and angiogenesis, cells automatically align to form

the most efficient configuration functionally, based on its environmental dynamics

[16], while other studies have shown that cyclic stretch also affects cell proliferation

[17], and in some cases may show results that replicate in vivo conditions exactly.

Cells show that their phenotype, or genotype, or both may change when acted upon

by mechanical stimulus similar to the ones found in vivo.In order to study these

phenomena, devices were created to maintain in vivo conditions in vitro. And since

the in vivo environment is a highly complex one to mimic, devices often fall short
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of accurately reproducing these conditions. Many custom-made devices have been

designed and built to stretch cells to observe these phenomena. Simple uniaxial

deformation has been one of the most popular ways of studying cell biomechanics, as

it is the easiest to replicate in a controlled environment. Some of the first devices used

for longitudinal stretching of cells were based on a single cycle, static type stretch

rather than cyclic [18, 19]. In time, additional parameters such as cyclic loading,

duration of stretch were later added to gain as much control over the environment as

possible. Today, almost all the devices made are PC based programmable units [3].

The three major types of driving units in these devices are motor-based, vacuum

based and pressure based [20, 21]. Flexcell, EMS Cell Stretcher and StrexCell are

three commercially available devices for in vitro uniaxial cell stretch applications,

of which flexcell is the most popular and is widely used. Flexcell is a vacuum based

stretch unit which utilizes a base plate with sealed cylindrical well-like units that house

rectangular strips of stretchable membranes. Vacuum is applied from the bottom end

of these cylinders, which in turn causes the membranes to stretch. A solid cylindrical

object, whose diameter is less than that of the cylindrical housing, is placed just

under the elastic membrane. This prevents the membrane from forming a downward

U-shape when vacuum is applied and will deform along the top surface of the solid

cylinder in a uniaxial direction. Strexcell is a motor based stretch device that uses a

thick silicone membrane (40mm x 25mm x 10mm) that is secured on both sides. A

rectangular cavity (20mm x 20mm) is made at the centre of the membrane, leaving

a small thickness of 0.1 mm at the bottom of the well. This well is used to hold

the cells and the biological fluid, while it is stretched using a motor. The stretching

mechanism, driver and the silicone chamber are enclosed in a box that can be placed

in an incubator in order to maintain necessary environmental conditions. The EMS

cell stretch unit is another stretch device that is commercially available. This device

is unique as it is mainly designed to be operated under a microscope for real time

observation. It is a motor based device that stretches an elastic membrane on both

sides in a uniaxial fashion, so that the center of the membrane does not move relative
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to the lens of the microscope. The membrane used is bent and held in a U-shape so

as to hold cells and media at the bottom of the channel. The clamps used to stretch

the membrane are attached externally to a driver unit, which can be placed in an

incubation chamber. Many successful experiments have been performed with these

devices.

These systems, while offering very precise displacements, have a few drawbacks.

Flexcell has certain areas where does not deliver or limits the user in terms of func-

tionality and uniaxial stretch [22]. Substrate dimensions used are fixed. This restricts

the user in terms of the number of cells he/she would want to use per experiment.

The type of substrate is also fixed- only one type of substrate (with different biological

coating options) is available. Since the substrates come pre- attached to the stretch

plates, there is no other alternative for the end user. Strexcell has only 64 pre-set

values that control strain ratio and strain frequency. Only one material, silicone, is

available to the user for plating cells. The EMS cell stretcher has only one stretch

chamber, as opposed to the more desirable multiple chambers, which will minimize

experiments failing completely. The drawbacks mentioned above create a necessity

for a novel stretch device that is able to address these issues. This can be accom-

plished by creating a device in which the user has the ability choose the substrate size

and material, and can control the displacement, frequency and duration of stretch,

atleast within a given range.

1.3 Deficiencies in Capstone Design Project

The uniaxial stretch device was first designed by a group of students as a part

of their undergraduate capstone design project. The project is explained briefly in

appendix A. From the suggestions made by the capstone design group, it is apparent

that the deficiencies of design and working of the uniaxial stretch device must be

addressed before it can function reliably. Since the recommendations are to change

the most important parts of the device such as the clamping mechanism, the stretch
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plate design, materials etc., it was deemed best to note down all deficiencies, es-

tablish customer needs, and re-design and evaluate the uniaxial stretch device using

established design and evaluation practices. The capstone design project has three

major deficiencies in terms of design, and other issues related to the device overall.

Addressing these issues is very critical for coming up with a good design. The issues

are as follows:

1. The clip design is not practical. Both hands are needed to fix the clips. This

means that the user must need help with holding the membranes in place. An-

other concern is that all the assembled membranes may not have the same ten-

sion. Due to the nature of clamping, there are more chances of the membranes

having a slack.

2. The design of the stretch plates is another issue. The number of membranes

planned for this design is eight. This makes each membrane very small, which

will be very cumbersome to handle while assembling them.

3. Mount sub frame is another part that needs to be redesigned. For the device to

function properly, it is important that the stretch plates and petri be together.

This is because the membranes need to be immersed in a biological fluid at

all times. In the current design, the parts have to be separated in order to be

assembled into the frame.

4. User should have the ability to control the driver electronically via programmable

input parameters. The device must also be able to display control and feedback

data to the user for monitoring.

1.4 Goal and Objectives of Current Thesis

The goal of this thesis is to redesign the uniaxial stretch device, manufacture a

prototype and test to see if it works as intended. The device should utilize an elastic

membrane chosen by the user as a substrate on which cells are plated. The membranes
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should be assembled into a stretch mechanism connected to a driver, which stretches

them uniaxially at a given stretch magnitude, frequency and duration. The device

should be kept in an incubation chamber that imitates environmental conditions found

in vivo. Following are the objectives of this thesis:

1. Design a uniaxial stretch device that utilizes a stretchable membrane of the

customer’s choice to cyclically stretch biological cells at a desired magnitude,

frequency and duration of stretch.

2. Manufacture a prototype of the machine that meets all design criteria.

3. Determine if the device is working as intended.

4. Determine if the device functions as desired in a real world experimental setup.
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2. DESIGN AND DEVELOPMENT OF THE NOVEL UNIAXIAL

STRETCH MACHINE

The design of uniaxial stretch machine is based on the process developed by author

David G. Ullman, from his book ”The Mechanical Design Process”. The process is

explained briefly in appendix B.

2.1 Generating Customer Requirements and Engineering Specifications

2.1.1 Identifying the Customers

In order to generate customer requirements and engineering specifications, it is

important to identify who the customers are, who will be buying the device, and who

will be using it. Are they the same person/ institution? This will help understand

in the establishment of customer base, which will, in turn, help identify and under-

stand the design problem better. In this case, the customers are primarily research

institutes and researchers who work on biological cells. Dr. Omar El- Mounayri, post

doctorate fellow at the McEwen center for regenerative medicine, Ontario, Canada,

had played the role of a researcher/ customer for gathering priliminary information for

identifying and understanding the design problem. Dr. El- Mounayri works primarily

on cell research, and has an interest in understanding the effect of various mechanical

stimuli on biological cells. There are two major customers for the product: the buyer

(research facility/ university) and the end user (researcher/ lab technician). Broadly,

the general aspects that these customers will look for when buying are price, durabil-

ity, ease of use, accurate repeatability of experiments, and adaptability of the device

to the lab environment.
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2.1.2 Understanding the Problem

The steps required for cell culture must be taken into consideration, as it will be

an integral part of the process of cyclically stretching biological cells. Cell culture

methods will have an influence on the design of, and materials used for, the stretch

device. For example, cell plating on membranes is done only inside a standard com-

mercial fume hood in order to provide a sterile environment. A commercially available

pipette is used to pour cells onto the membrane, and the cells are observed under the

microscope that can only accommodate limited sizes. These dimensions are the con-

straints around which the dimensions of the components of the stretch device depend.

To identify which steps of the cell culture process affect component dimensions and

other functions, an understanding of the process is important. Following is a brief

step by step process for culturing cells:

1. A set of cells cultured in a flask that have reached confluency is taken for sub-

culture in order to plate a specific number of cells for experimentation.

2. The biological media in the flask is removed by aspiration.

3. Dead cells and other debris is washed off by pipetting in a buffer solution (Phos-

phate Buffered Saline, or PBS), and later aspirating it.

4. The cells, currently adhered to the flask wall, are loosened with the help of

a known quantity of cell dissociation reagent, namely trypsin. The volume is

usually 3ml.

5. A known quantity of biological medium (Dulbeccos Modified Eagles Medium,

or DMEM), whose volume is usually 4ml, is added to the flask. The solution is

mixed thoroughly. The total volume of the fluids in the flask is now 7ml.

6. Out of this volume, a 10 µL sample is taken for counting cells. The rest of the

mixture is centrifuged at 2100 rpm for five minutes.
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7. The 10 µL sample is taken for cell counting using a hemocytometer. The number

of cells in each grid is counted and averaged. This is the number of cells per

100nL. It is multiplied by 10000 and then again by 7 (total volume of the fluids

present before centrifuging the cells), to get the number of cells in 7ml of fluids.

Say the researcher, by trial and error, has previously established that the desired

concentration is 1000000 cells in 1 ml of media, the following formula is used

to calculate the volume of medium to be added to the cell palette, so that the

density of the cells is at the desired concentration:

cell count

resuspension volume
=

1000000 cells

1 mL media
(2.1)

8. The number of cells per milliliter of media is now at the desired number of

1000000. The user may transfer this into a flask, or in the case of this particular

application, a silicone membrane attached to a stretch device.

The idea is to seamlessly integrate the stretch device into the cell culture process,

so that the user may use familiar methods and equipment. The customer has also

given his idea of the overall design of the device and how the process of cyclically

stretching cells may be implemented. These guidelines are listed below:

1. The stretch machine must be designed as two integrated units: unit 1 must be a

portable assembly of membrane stretching mechanism and petri dish. This unit

is hand held, and is compact enough to fit in a fume hood and an incubator.

The second unit, unit 2, is an assembly of the base frame to hold unit 1 and a

driver to provide uniaxial cyclic motion.

2. Membranes are prepared and assembled into unit 1 in a fume hood.

3. Cultured cells are plated onto the membranes with a pipette. The stretch

mechanism must accommodate a pipette in order to do this. The petri dish

holds biological medium below. The membranes must be submerged in the

medium at all times.
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4. Unit 1 is placed in an incubator for the cells to reach confluency. After 24 hours,

unit 1 is placed under an inverted microscope for checking cell proliferation and

death.

5. Unit 1 is assembled into unit 2 which is already setup in an incubator. The

driver is connected to the stretch mechanism.

6. The desired stretch magnitude, frequency and duration are fed into the driver

via a control software. Sensors are used to gain feedback on these parameters.

It is more desirable if the sensor and driver data can be displayed in real time.

Based on these guidelines, customer requirements were developed for the stretch

device, which are listed below:

1. Design unit 1 of the stretch device, which consists of a stretch mechanism hold-

ing the membranes, that will sit on top of a commercially available four- well

petri dish. A support should hold the mechanism and petri dish together.

2. User must be able to sterilize components of the device that are in direct contact

with the cells and media.

3. Device must be able to stretch the membrane at a given magnitude of stretch,

frequency and duration.

4. An environment imitating biological conditions, i.e. in vivo conditions, must

be provided for the cells at all times.

5. The elastic membrane must be held tightly so as to not cause any slip during

cyclic stretch process.

6. Plating cells on the membranes should be done in a sterile environment.

7. The user must be able place the membrane and petri dish unit on an inverted

microscope in order to view cells on the membrane.
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8. Membrane and petri dish unit must be assembled into the driver unit as soon

as possible.

9. User must be able to cyclically stretch the membrane for a desired amount of

time.

10. Total number of steps to assemble the membrane unit into the driver unit and

to start the experiment should be as low as possible to avoid death of cells.

11. Verify if the displacement across the membrane, for a given magnitude of stretch,

is distributed evenly.

12. Total number of steps to disassemble the membranes for collecting cells must

be as low as possible.

13. Shear stress experienced by the cells must be negligible to ensure that cyclic

tension is the only major force in action.

2.1.3 Comparing Currently Available Devices to Customer Requirements

In order to develop quality engineering requirements, the designer must look at

currently available devices in the market for the same application. The devices must

be evaluated against the customer needs developed, which will indicate if there are

any more features that need to be added. This evaluation will also help identify the

pros and cons of each device, which may be used as benchmarks for improvement.

Areas where each of the devices need improvement are as follows:

Flexcell

• Substrate material and size cannot be customized.

• There is no built in environmental control. An external incubator must be used.

• Cells cannot be viewed under a microscope.

EMS Cell Stretcher
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• Does not have a built in environment controller. An external incubator must

be used.

Strexcell

• Substrate material and size cannot be customized. Only one material is avail-

able.

• Only one of 64 preset combinations of stretch magnitude, frequency and dura-

tion can be used.

• Does not have a built in environment controller. An external incubator must

be used.

It may be observed that the most popular device on the list, Flexcell, has the least

overall score, but is consistent with the scores for individual tasks. This shows that

in order to build a successful device, all aspects of its working must be satisfactory.

The evaluation is shown in the table below:
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2.1.4 Developing Engineering Specifications

Engineering specifications are developed based on customer requirements. While

customer requirements indicate ’what’ needs to be done, engineering specifications

indicate ’how’ the customer requirements are going to be met. Engineering specifi-

cations are only measurable end goals that have units, and must not include specific

methods and concepts. Table below shows the engineering specifications developed

for each customer requirement.

Table 2.2. : Generating Engineering Specifications from Customer Requirements

Customer Requirements Engineering Specifications

1. User must be able to use an

elastic membrane as a substrate,

the dimensions and material of

which, is of his/ her choosing

1. Dimensions of membrane relative

to the dimensions of the petri dish

well

2. Elasticity of the membrane

3. Thickness of the membrane

2. User must be able to sterilize

components of the device that are in

direct contact with the cells and

media

4. Melting point of materials used

3. Device must be able to stretch

membrane at a given magnitude of

stretch, frequency and duration

5. Stretch magnitude range

6. Frequency range of cyclic stretch

7. Duration of stretch range

4. An environment imitating

biological conditions, i.e. in vivo

conditions, must be provided for the

cells at all times

8. Temperature, atmospheric gases

and humidity levels

continued on next page
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Table 2.2. : continued

Customer Requirements Engineering Specifications

5. The elastic membrane must be

held tightly so as to not cause any

slip during cyclic stretch process

9. Slip, in relation to % strain

6. Plating cells on the membranes

should be done in a sterile

environment

10. Worksurface area needed

7. The user must be able place the

membrane and petri dish unit on an

inverted microscope in order to view

cells on the membrane

11. Dimensions of the membrane and

petri dish unit in relation to

microscope stage

8. Membrane and petri dish unit

must be assembled into the driver

unit as soon as possible

12. Steps to assemble stretch unit

into the driver unit

9. Total number of steps to assemble

the membrane unit into the driver

unit and to start the experiment

should be as low as possible to avoid

death of cells

13. Number of steps to complete

assembly and start experiment

10. Verify if the displacement across

the membrane, for a given magnitude

of stretch, is distributed evenly

14. Difference in actual displacement

across the membrane in relation to

displacement applied

11. Total number of steps to

disassemble the membranes for

collecting cells must be as low as

possible

15. Number of steps to disassemble

membranes after experiment

continued on next page
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Table 2.2. : continued

Customer Requirements Engineering Specifications

12. Shear stress experienced by the

cells must be negligible to ensure that

cyclic tension is the only major force

in action

16. Shear stress on cells
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2.1.5 The House of Quality

The house of quality is an arrangement of all currently available information af-

ter developing engineering specifications. This arrangement allows the designer to

evaluate various relationships between the customer requirements, engineering spec-

ifications and current competition in the market. He/ She will be able to compare

and prioritize which aspects to value most. To start with, customer requirements are

listed down, and their relative importances against each other (which should add upto

100) is noted beside them. Engineering specifiactions are written in a single row as

shown in figure 2.1. Each customer requirement is now compared to all engineering

specifications, and any relation between them strong = 9, medium = 3, and weak =

1 is noted. The relation values below each engineering specification is multiplied to

its corresponding customer requirement value, and the totals are noted. After cal-

culating the individual totals for all engineering specifications, they are added, and

each individual total is divided by the total sum. This gives the importance of each

engineering specification, enabling the designer to be able to prioritize which specifi-

cation to spend more time on. The available competition is listed to the right side of

the table, and are rated from 1 to 5 against customer requirements. Also, the values

for each engineering requirement are noted. Based on the available data, target (cus-

tomer is delighted) and threshold (customer is disgusted) values are generated. The

last step in the house of quality is to see if any of the engineering specifications are

related to each other. This is important for two reasons: It tells the designer which

specifications to work on first, and if a specification has a detrimental/incremental

effect on another specification/s. From figures 2.1 and 2.2, the following may be

concluded:

• Slip occuring in the membrane, maintaining desired atmospheric conditions,

stretch magnitude and frequency ranges are the most important engineering

specifications, in that order.

• There are limitations in all of the currently available devices.
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• An increase in frequency of stretch will increase shear stress experienced due to

movement of media by the cells.

• Work surface area needed to assemble parts will increase if there is an increase

in the dimensions of the membrane.

• If length of the membrane is increased, stretch magnitude range available will

decrease, as there is limited space.
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2.2 Concept Generation and Evaluation

2.2.1 Developing Functional Decomposition

Functional decomposition is describing the working of the product being designed

in terms of its functionality. A single function is first developed, and then this function

is further divided into sub functions, sub-sub functions and so on, until a function can

no longer be split into smaller functions. For the uniaxial stretch device, the main

function is to cyclically stretch elastic membrane in a uniaxial direction. This main

function may be further divided into 11 sub-functions, as illustrated in figure 2.3, and

as listed below:

1. Assemble stretch unit.

2. Transfer cells and media to membrane.

3. Transport stretch unit to incubator.

4. Supply in vivo environment.

5. Transport stretch unit to inverted microscope.

6. Observe cells for confluency.

7. Transport stretch unit to driver base.

8. Assemble stretch unit to driver base.

9. Supply in vivo environment.

10. Move membrane uniaxially.

11. Supply feedback to user.

Each of the sub- functions are now considered for further division into sub- sub-

functions. The first sub function, assembling the unit, can be divided further into

four sub- sub- functions, and two of these sub- sub- functions can be further divided
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Figure 2.3. : This figure shows the functional decomposition for the uniaxial stretch

machine. The overall and individual fucnctions in order of execution are described.

This method helps the designer to better understand the individual tasks needed

to accomplish the overall function. Each individual function is then analyzed and

concepts are generated to implement the function.
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Figure 2.4. : This figure shows the first sub function further split into four smaller

functions. The first two sub sub functions are further split into two smaller functions

each.

Figure 2.5. : This figure shows further divisions of sub- function 2, split into three

smaller functions.

as shown in figure 2.4. In a similar fashion, sub- functions 2, 6, 8, 10, and 11 can also

be divided into smaller functions, which are illustrated in figures 2.5, 2.6, 2.7, 2.8,

2.9.
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Figure 2.6. : This figure shows further divisions of sub- function 6, split into two

smaller functions.

Figure 2.7. : This figure shows further divisions of sub- function 8, split into three

smaller functions.

Figure 2.8. : This figure shows further divisions of sub- function 10, split into four

smaller functions.
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Figure 2.9. : This figure shows further divisions of sub- function 11, split into two

smaller functions.
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2.2.2 Function Concept Mapping

In this section, each function is listed in the order in which they are executed.

As many ideas as possible are generated for each function using methods such as

brainstorming. The best possible concepts only for each function are selected. Table

2.4 shows the details.

Table 2.4. : This table shows the functional morphology and function concept map-

ping for the uniaxial stretch machine. The individual fucnctions in order of execution

are listed, and ideas for possible concepts that may be used for implementing these

functions are generated. The final concept for each function is emphasized.

Function Concept 1 Concept 2 Concept 3

Move one side of

the unit relative to

the other

One side slides

on other

One side rotates

about a hinge

Two sides slide

independently

Hold the desired

distance between

the sides

Screw Wedge Hole and pin

Position membrane

relative to each end

of the holding unit

Insert

membrane into

clamps

containing slots

on both sides

Lay on top of

the holding unit

Use separate

frame to

temporarily

position

membrane with

foldable clamps

Attach both ends

of the membrane

to holding unit

Insert clamps

into slots on

holding unit

Staple both

sides to holding

unit

-

continued on next page
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Table 2.4. : continued

Function Concept 1 Concept 2 Concept 3

Place membrane

holding unit on top

of petri dish

No fixture cover

design
- -

Hold membrane

and petri dish

together

Adhesive
Slide both into a

sleeve together
Screw

Position stretch

unit on the fume

hood floor

Orient

membranes

parallel to the

ground

Place wedge like

plate under the

stretch unit

-

Collect cells and

media
With a pipette - -

Transfer cells and

media onto

membrane

Make a slot

large enough to

use pipette

directly

Use tube

through an

opening to

access the

membrane

-

Transport stretch

unit to Incubator
By hand only

Hand held

stabilizer
-

Supply in vivo

environment

Commercial

incubator

Custom

chamber
-

Attach driver to

stretch unit
Hole and pin Screw Spring latch

Supply in vivo

environment

Commercial

incubator

Custom

chamber
-

continued on next page
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Table 2.4. : continued

Function Concept 1 Concept 2 Concept 3

Transport stretch

unit to Incubator
By hand only

Hand held

stabilizer
-

Position stretch

unit on the

inverted

microscope

Make stretch

unit dimensions

smaller than

standard

microscope

stage

Make custom

adapter to fit

stretch unit on

microscope

-

Pass light through

stretch unit from

bottom

No obstacles

above and below

the membrane

Stretch unit

made entirely of

transparent

materials

-

Transport stretch

unit to driver base
By hand only

Hand held

stabilizer
-

Position stretch

unit w.r.t base
Slide into place Place in a cavity -

Attach stretch unit

to base

insert slide lock

bars
Pin and hole -

Attach driver to

stretch unit
Pin and hole - -

Input stretch

magnitude,

frequency and

duration data to

driver

Data via PC

Adjustable

manual

mechanism

control

-

continued on next page
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Table 2.4. : continued

Function Concept 1 Concept 2 Concept 3

Transform input

data into linear

motion

Convert input

data into

electrical signal

to actuate

driver

Manually

actuate driver

via a mechanism

-

Transfer linear

motion to stretch

unit

Attach

membrane

holding unit to

driver directly

Attach via an

adapter to

manipulate

input

parameters

-

Transfer linear

motion to elastic

membrane

Transfer directly

Transfer via an

adapter to

manipulate

magnitude

-

Move elastic

membrane

Stretch

membrane only

on one side

Stretch

membrane on

both sides

-

Transform linear

motion to output

signal

Electrical signal
Mechanical

signal
-

Transport signal to

user

Electrical signal

to PC

Mechanical

signal to dial
-
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Table 2.5. : This table shows two possible overall concepts developed from the various

concepts generated previously for each function.

Function Overall Concept 1 Overall Concept 2

Move one side of the

unit relative to the other

One side slides on

other

Two sides slide

independently

Hold the desired

distance between the

sides

Screw Hole and pin

Position membrane

relative to each end of

the holding unit

Insert membrane into

clamps containing

slots on both sides

Use separate frame to

temporarily position

membrane with

foldable clamps

Attach both ends of the

membrane to holding

unit

Insert clamps into

slots on holding unit

Staple both sides to

holding unit

Place membrane holding

unit on top of petri dish
Place as a lid design -

Hold membrane and

petri dish together

Slide both into a

sleeve together
Screw

Position stretch unit on

the fume hood floor

Orient membranes

from left to right

Orient membranes

with the two ends

towards and away

from user

Collect cells and media With a pipette With a pipette

Transfer cells and media

onto membrane

Make a slot large

enough to use pipette

directly

Use tube through an

opening to access the

membrane

continued on next page
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Table 2.5. : continued

Function Overall Concept 1 Overall Concept 2

Transport stretch unit

to Incubator
By hand only Hand held stabilizer

Supply in vivo

environment
Commercial incubator Custom chamber

Attach driver to stretch

unit
Hole and pin Screw

Supply in vivo

environment
Commercial incubator Custom chamber

Transport stretch unit

to Incubator
By hand only Hand held stabilizer

Position stretch unit on

the inverted microscope

Make stretch unit

dimensions smaller

than standard

microscope stage

Make custom adapter

to fit stretch unit on

microscope

Pass light through

stretch unit from bottom

No obstacles above

and below the

membrane

Stretch unit made

entirely of

transparent materials

Transport stretch unit

to driver base
By hand only Hand held stabilizer

Position stretch unit

w.r.t base
Slide into place Place in a cavity

Attach stretch unit to

base
insert slide lock bars Pin and hole

Attach driver to stretch

unit
Pin and hole Screw

continued on next page
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Table 2.5. : continued

Function Overall Concept 1 Overall Concept 2

Input stretch magnitude,

frequency and duration

data to driver

Data via PC
Adjustable manual

mechanism control

Transform input data

into linear motion

Convert input data

into electrical signal

to actuate driver

Manually actuate

driver via a

mechanism

Transfer linear motion

to stretch unit

Attach membrane

holding unit to driver

directly

Attach via an adapter

to manipulate input

parameters

Transfer linear motion

to elastic membrane
Transfer directly

Transfer via an

adapter to

manipulate

magnitude

Move elastic membrane
Stretch membrane

only on one side

Stretch membrane on

both sides

Transform linear motion

to output signal
Electrical signal Mechanical signal

Transport signal to user
Electrical signal to

PC

Mechanical signal to

dial

2.2.3 Concept Evaluation

Concept evaluation deals with comparing the concepts generated with the cus-

tomer requirements, as well as any previous designs that may have been developed.

In this case, the new concepts are compared to the capstone design product, which is

taken as datum. As can be seen from the totals, overall concept 1 has been evaluaed
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as the better concept and will be used to generate the product. Table 2.6 shows the

comparison in detail.
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2.2.4 Generating Options for the Driver

Criteria for a Good Driver

1. Compactness: The driver should be small enough to fit into a commercial sized

incubator, while being connected to the rest of the assembly. Keeping these

factors in mind, the ideal dimensions of the driver should be less than or equal

to 150mm x 150mm x 150mm.

2. Power: By using the equation F = (∆l.E.A)/L (where ∆l is change in length

of membrane when a force F is applied, E is the elastic modulus of the material,

and A is the area of cross- section), it was calculated that the force required to

stretch a single membrane of silicone rubber (The exact model used is SILASTIC

Biomedical Grade Liquid Silicone Rubber Q7- 4840, Post Cure, 8hours, for

which the modulus of elasticity, = 4.01 MPa and Tensile Strength, = 7.45

MPa) of dimensions 50mm x 14mm x 0.254mm by 10% of its length, i.e. by

5mm was 1.426 N. Since the maximum number of membranes that can be used

is 4, the total force needed to stretch the four membranes is 4 x 1.426N =

5.704N. Therefore, a good driver must be able to produce unidirectional motion

while providing at least a force of 5.704 N.

3. Speed: This machine is being designed to stretch membranes from 5% to 20%

of their length, at a frequency of 1 Hz to a maximum of 2 Hz. From these

parameters, the minimum and maximum speeds with which the driver must

move the stretch plate can be calculated to be 2.5 mm/s and 20 mm/s. To

avoid operating at full load, a driver that can generate a maximum speed of

50mm/s or more may be considered as ideal.

4. Accuracy: Accuracy may be defined as the ability of a driver to impart a move-

ment of exactly 10mm, when 10mm is desired. As this machine will be used

in stretching membranes by a few mm, accuracy must be high. Positioning

accuracy equal to or less than 0.05mm can be considered ideal.
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5. Stroke Range: It is important that the driver must be able to move the stretch

plate a minimum of 10mm, as that represents 20% stretch on a 50mm mem-

brane.

Potential Driver 1: Pneumatic Air Cylinder

Pneumatic air cylinders use compressed air to move a piston back and forth. Stroke

lengths available for these drivers range from 0.5 to 36, depending on the size of the

model selected. Force produced at 100psi ranges from 7lbs to 700lbs. Due to the

nature of this driver, only one stroke length is produced per driver. If a different

length is necessary, another driver must be purchased. Disadvantages of this driver

include air leaks, and bending and buckling of piston rod during operation.

Potential Driver 2: Adjustable Stroke Length Air Cylinder

These drivers have an adjustable shaft collar that can be moved to fine tune the

length of the stroke. So the user may change length of the stroke but it can only be

done manually after pausing the experiment. The rest of the operations are the same

as the single stroke length air cylinder.

Potential Driver 3: Servo Pneumatic Systems

These systems use a servo mechanism to deliver desired stroke length, acceleration

and frequency. These systems require compressed air, and may not produce absolute

precision and speed. Stroke range varies from 10mm to 2000mm, while the force

applied may vary from 153 N to 48,255 N. Servo pneumatics systems are generally

used for industrial applications such as pressing, filling, gripping and labelling.

Potential Driver 4: Air Powered Motors

Air powered motors include an output shaft connected to a rotating vane run by

compressed air. They are considered safer in harsh environments compared to electric

motors. They remain cool even after continuous load for long durations. The user

must use a rack and pinion to convert the rotation to linear motion. Power for these

motors range from 0.18 hp to 5 hp.

Potential Driver 5: Hydraulic Actuators

Hydraulic cylinders work in the same way as a pneumatic cylinder, except for the
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air, which is replaced by a liquid, usually an oil. For the specific application of

cyclic stretch, double acting hydraulic cylinders are necessary. However, additional

equipment is necessary in order to control and monitor the cylinder. Stroke and force

ranges are shown in table 3 below:

Table 2.7. : Stroke and Force Ranges for Air Cylinders

Description Max. Pull Force Max. Push Force Stroke

Smallest Cylinder 1209 lbs 1762 lbs 1”

Largest Cylinder 25400 lbs 31425 lbs 12”

Potential Driver 6: Hydraulic Motor

Works exactly as an air motor, except for the fluid, which in this case is an oil. Power

generated in these motors are in the range of 6.2 hp to 9.6 hp.

Potential Driver 7: Piezo Electric Actuators

Piezo electric actuators use materials that expand or contract when a potential is

applied to them, to push/ pull an object. Piezo electric actuators are extremely

precise and may be a good option for cyclic stretch applications, the only drawback

being their low force generation, at about 2.5 N

Potential Driver 8: Electric Actuators

These are fixed stroke actuators that reply on an electric motor to transfer power to

a screw type linear moving rod. Stroke lengths are in the range of 2 to 6. Maximum

pull/ push force is 25lbs.

Potential Driver 9: Solenoid

A solenoid works just like a pneumatic air cylinder, but instead of air, magnetic field

is used to generate forces necessary to push a shaft out, while a returning spring

brings the output shaft back to zero after the magnetic field is taken off. Typical

stroke lengths of a solenoid range between 0.18 to 0.7, and power generated by the

output shaft ranges between 8 oz. to 50 oz.
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Potential Driver 10: Position Control Motor with Integrated Driver and Controller

These units are integrated servo systems that put together a stepper motor with an

encoder, a driver and a controller. These systems produce a maximum stroke length

of 500mm, maximum speed of 200 mm/s and a maximum axial load of 90 N, with a

repetition accuracy of 0.025mm. Table 4 below shows specific models of each type of

potential driver their specifications based on criteria specified above.
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2.2.5 Decision Matrix for the Selection of Driver

Table 2.9 shows various potential drivers and evaluates them based on the cri-

teria defined. From the totals, a position control motor with integrated driver and

controller is calculated to be the best suited for the project.

Table 2.9. : Decision Matrix for Selecting Driver

Issue
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Compactness 20 5 3 5 5 2 5 5 1 5 5

Power 20 5 5 5 5 5 5 2 5 5 5

Speed 15 5 5 5 5

Accuracy 25 3 5 5 5

Stroke Range 20 1 2 2 5 5 5 5 5 1 5

Weighted To-

tal

100 220 200 315 300 240 375 440 420 220 500

2.2.6 Generating Options for Proximity Sensor

There are four types of proximity sensors in general. They are induction, capaci-

tive, photoelectric and ultrasonic sensors. Of these, photo electric type of proximity
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sensors are not feasible for this particular application as they cannot interpret the

distance at which the stretch plates are at a given point of time. Therefore, only

three concept ideas will be generated.

Criteria for a Good Proximity Sensor

1. Compactness: The proximity sensor must be small enough to fit on to the stretch

machine, exactly parallel to the stretch plate movement. It is also desirable if the

emitter and receiver are on the same unit, instead of separate ones. Maximum

desirable dimensions of the sensor may be set to 75mm x 50mm x 50mm.

2. Sensing Range: Based on the smallest and largest lengths of the membranes

and % strains, the sensing range for a good proximity sensor may be calculated

as 1mm to 10mm.

3. Operating Temperature: The sensor will be kept in an environment maintained

at a temperature of 37o C and 90% humidity. The sensor must be able to

function in these conditions.

Potential Proximity Sensor 1: Inductive Sensor

The model chosen here is a DC metallic object proximity switch, with model number

7674K833, from McMaster CARR. The dimensions of this sensor are 18mm x 51mm,

while the sensing range is 0mm to 10mm. Operating temperature is −10◦F to 155◦F .

Potential Proximity Sensor 2: Capacitive Sensor

This model is also chosen from McMaster CARR. It is a DC universal object proximity

switch, with model number 7675K86. The dimensions are 30mm x 80mm, while the

sensing range is from 0mm to 15mm. Operating temperature is −10◦F to 155◦F .

Potential Proximity Sensor 3: Ultrasonic Sensor

This model is also chosen from McMaster CARR. It is a digital ultrasonic switch,

with model number 6565K31. The dimensions are 30mm x 100mm, while the sensing

range is from 4 inches to 40 inches. Operating temperature is from 35◦F to 140◦F .
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2.2.7 Decision Matrix for Selection of Proximity Sensor

Table 2.10 shows various potential sensors and evaluates them based on the criteria

defined. From the totals, it can be decided that an induction sensor is the right choice

for this application.

Table 2.10. : Decision Matrix for best Proximity Sensor

Issue

Relative

Impor-

tance

Concept 1 Concept 2 Concept 3

Compactness 30 30 20 15

Sensing Range 35 35 35 35

Operating

Temperature
35 35 35 35

Total 100 3350 3050 2900

2.3 Product Generation

2.3.1 Form Generation

Product generation deals with generating details of the form, materials and pro-

cesses required for manufacturing of the product, and manufacturing the product

itself. These operations are inter-dependent on functions, as well as each other.

Form generation requires information on four sub-categories: constraints, config-

uration, connections, and components. Each of the sub-categories are explained and

information is generated for the uniaxial stretch devices.
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Spatial Constraints

Spatial constraints may refer to the the space occupied by a product, space re-

quired by the product to function, or the space required for the interaction of two

moving components in a product. Spatial constraints are important as the dimensions

of a product are constrained by the space they work in.

For the uniaxial stretch machine, functions developed for the product in the ear-

lier sections may be used to identify those functions that are dependent on spatial

constrains. They are as follows:

• Assemble the stretch unit.

• Transfer cells and media to the membrane.

• Transport stretch unit to the incubator.

• Observe cells for confluency.

• Assemble stretch unit to driver base.

• Supply in vivo environment.

• Move membrane uniaxially.

From the concepts developed earlier from sub-functions, assembling the stretch

unit will depend on the following dimensions:

1. Size of the single well petri dish

2. Size of the membrane

3. Size of clamp

4. Size of slot in the clamp

5. Size of the stretch plates
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6. Size of the slot for pipette in the stretch plates

7. Size of sleeve to hold the stretch plate and petri dish assembly

8. Area needed to assemble the stretch plates

The spatial constraints for each of these components are explained in detail below:

Size of the Four Well Petri Dish

This is the most important component w.r.t defining spatial constraints, as the

petri dish used is a commercially available one and cannot be customized. All the

other components must be designed to fit around the petri dish. The overall dimen-

sions of the petri dish are: L=127.8mm, W=85.5mm, H=14.5mm. Bottom thickness

is 1.14mm. The internal dimensions of a single well are: L=78mm and W=27.9mm.

These dimensions will influence the dimensions of the membrane, clamps, and the

stretch mechanism.

Size of the Stretch Plates

The size of the stretch plates depend on the size of the petri dish. The thickness

of the plates were established as 10mm in order to provide enough stiffness to resist

bending. The idea here is to create two plates with slots for clamps. The bottom

plate will sit on top of the petri dish like a lid while being fully constrained, the top

plate rests on top of the bottom plate, and slides back and forth on the bottom plate.

Adding material for handling, the outermost dimensions of the bottom plate were

calculated to be 130 mm x 98 mm, and those of the top plate were calculated to be

180 mm x 118.4 mm. Details of all specific dimensions of the top and bottom plate

are illustrated in figures below:

Size of the Slots for the Pipette

The user must be able to reach the membranes from the top of the stretch plates

after assembling the assembly. For this, the width of the slot should be about the

same size of the membrane, as the cells must be distributed as evenly as possible.

The minimum size of the slot was determined to be 50mm x 14mm, the same size as

the largest possible membrane. The dimensions of the slots are shown in figure .
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Size of the Clamp

The size of the clamp depends on the internal dimensions of a single well of the

petri dish as well as the thickness of the slot in which the clamp will sit. The internal

height of the petri dish well is 13.36mm, which can be considered to be the minimum

height of the clamp. Since outer and inner widths of the slot were calculated to be

24mm and 20mm respectively, the maximum width of the clamp can be calculated to

be 20mm. A rectangular slot of length 15mm, width 4mm, and height 2mm is placed

in the clamp in order to accommodate for the membranes.

Size of the Sleeve to hold Petri Dish and Stretch Plate Together

Size of the sleeve depends on the dimensions of the stretch plates and the petri

dish assembled together. The length and width should be 130mm x 98mm, based on

the bottom plate dimensions. One side of the box must be open so as to allow for

the top plate to slide freely. The height of the sleeve depends on two factors:

• It must hold both the stretch plates and the petri dish together.

• Although the plates and the petri dish are inserted together, the sleeve must

support the top and bottom plates independently. User must be able to move

the petri dish up and down by a distance of 2mm.

A detailed drawing of the sleeve is shown in figure .

Area Needed to Assemble the Stretch Unit

All assembly of the components must be done in a sterile environment. A fume

hood is the best option for this purpose. All components required for the asembly

of the stretch unit must fit in the smallest fume hood commercially available. This

constrains the area available to 30”x30”.

Transfer Stretch Unit by Hand to Microscope Stage to Observe Cells

Transporting the stretch assembly was best done by hand, as was discussed previ-

ously. Hence, the dimensions of the stretch assembly is limited by the average user’s

hand size. In order to hold the assembly properly, it was decided that the height of

the assembly should not exceed 100mm. The length and width of the assembly is
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dependent on the size of the inverted microscope stage. Nikon TS-100f, a popular

model was used as a reference for this purpose. The dimensions of the stage are as

follows: 170mm x 225mm. The maximum height of an object that can be placed on

the stage is 115mm, which is more than the required height of the assembly. Total

height of the stretch assembly, which is also the height of the sleeve is illustrated in

figure .

Size of the Driver Base

The size of the base is constrained by the dimensions of the following components:

• Driver and its accessories

• Proximity Sensor

• Stretch Plate Assembly

The base must be large enough for all components, i.e. the driver, proximity sensor

and the stretch unit, to fit and function properly. Also, the base must be small

enough to fit in a commercially available incubation chamber, and must have enough

free space to allow for assembling the stretch unit. Considering all constraints, the

total length and width were limited to 450mm x 250mm.

Configuration

Configuration deals with the development of individual components, their loca-

tions, and orientations. The driver is placed upright, and the rack is positioned and

oriented in such a way that its axis alignes with the central axis of the stretch plates.

This is done to ensure that the stretch plate moves in a straight line. The stretch

plates, petri dish and the sleeve are assembled together and their centers align with

the central axis of the rack. The proximity sensor is fixed at an offset and parallel to

the rack.
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Developing Connections

A connection, also known as an interface, is a point that supports a component’s

function, and transfers forces, materials, etc. to the next component. Interfaces

are classified into fixed, non adjustable, adjustable, separable, locator and hinged

connections.

Connection between the Clamp and the Stretch Plate

This will an adjustable connection and only one degree of freedom is needed for

the clamp to slide into the stretch plate slot, which is necessary to insert and remove

membrane. The connection will lock in place due to friction.

Connection between the Stretch Plates and Sleeve

The connection between the stretch plates may be classified as a separable con-

nection. This is needed in order to be able to assemble membranes. Only one degree

of freedom is required in order for the top plate to slide back and forth on the bottom

plate. The bottom plate is constrained in all directions to the sleeve, making it a

separatable, non adjustable connection.

Connection between the Top Stretch Plate and Driver Rack

The most suitable and simple connection between the driver rack and the stretch

plate is a fork joint. It transfers the forces to the plates without any losses, and is a

separable connection, which is necessary in order to disassemble the components.

Connection between the Top Stretch Plate Assembly and Base

A separarble, non adjustable connection is used to secure the stretch assembly to

the base. A dovetail slide protrusion on both sides of the sleeve, and slots on the base

make the sliding joint complete, while a horizontal bar is used to lock the assembly

in place.

Connection between the Driver, and the Proximity Sensor, with the Base

Both the driver and the sensor are fixed, non adjustable connections. They are

held in place by screws and do not have any degree of freedom.
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2.3.2 Developing and Manufacturing Components

Uniaxial Stretch Device- The Final Product

This section illustrates and summarizes each component of the newly designed

and manufactured uniaxial stretch device.

Overview

As depicted in figure 2.10, the uniaxial stretch device consists of a PC, connected

to a power and signal conditioning unit, used to control a servo motor at the other

end. The servo motor, with the help of a rack and pinion attachment, is connected to

one of the stretch plates, while the other plate remains fixed sitting above the petri

dish containing biological media. A membrane is suspended in the media via clips

attached to the stretch plates. As the servo motor is driven, the rack moves the top

stretch plate, which in turn moves the clip holding the membrane, stretching it. This

cycle is repeated as many times as desired. The inductive sensor is used to monitor

the stretch magnitudes applied.

The Controller - LABVIEW

Labview is a data acquisition based control software. All programs are written

not in terms of text but in terms of diagrams, which makes it interactive and easy

to learn. The programs are run through another window called the front end, where

commands to run are in the form of interactive buttons. Data collected from any

devices connected may also be displayed in real time. Figures 2.11 and 2.12 show

the front end and back end of the program written to control the uniaxial stretch

machine.

Individual Components of the Uniaxial Stretch Machine

Membrane Holding Clips

The clips hold the silicone membrane suspended in the media, and are one of the

key components of the stretch device. Figure 2.13 below shows the main dimensions

of the clips.

The Stretch Plates
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Figure 2.10. : Schematic of the stretch machine. Two plates with clips hold a mem-

brane submerged in media. A servo motor with a rack is attached to the moving plate

via a load cell. LabVIEW is used to monitor signals from the displacement and load

sensors. a) Fixed plate. b) Moving plate. c1),c2) Clips on each plate with membrane

assembled at desired length. d) Membrane onto which cells are plated. e) Petri dish

with media. f) Inductive sensor for measuring cyclic displacement. g), h) RRA23

rack attachment for motor shaft. i) Motor output shaft. j) Myostat CM123L servo

motor. k) 12V AC to DC converter. l) National Instruments signal conditioning unit.

m) PC with National Instruments 6052e data acquisition card installed.

The stretch plates hold the membrane bearing clips, and one of them is also

connected to a servo motor, while the other remains stationary on top of a petri dish.

Each of the stretch plates has its own unique design, whose dimensions are shown in

figures 2.14 and 2.15.

The Sleeve

The sleeve holds the stretch plate, clips, membranes and petri dish assembly

together as a single unit. This allows the user to move it around by hand between the

incubator, fume hood, and the microscope. Figure 2.16 below shows the dimensions

of the sleeve design.
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Figure 2.11. : Front End of the Labview Control Software

Figure 2.12. : Back End of the Labview Control Software
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The Plate Cover

The plate cover, as the name suggests, sits on top of the top plate in order to stop

contamination from the openings on the plate. The cover also has a provision for an

external tube of carbon di oxide supply, which is channeled to the membranes below.

Figure 2.17 shows the dimensions of the plate cover.

The Base

The base of the stretch machine was manufactured using polycarbonate sheets. It

houses all components of the stretch device, and is fairly large. It must be assembled

in an incubator where the experiments are done and cannot be moved from its place.

Figure 2.18 shows the dimensions of the base.

The Stretch Device - Full Assembly

Figure shows the stretch device with all components assembled and its overall

dimensions. Figure 2.21 shows the bill of materials.
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2.3.3 Material and Process Selection

A few criteria were developed in order to select the best possible materials for the

stretch device.

1. The material must be autoclave friendly (should be able to withstand steam @

1200C for 15- 20 min).

2. The material must be non-porous and chemical resistant. since it will be sub-

merged in biological media for long durations

3. It should be able to withstand high humidity, 5%CO2 and 370C for at least a

week without any effect.

4. The material chosen must be rapid prototype friendly since conventional man-

ufacturing methods are not capable of producing the complex geometries of

parts.

5. FDA class VI compliance is an added advantage but not a necessity since the

parts are not implants.

But these materials were very expensive to model a prototype with. Hence a standard

material used with 3D printers, called Acrylonitrile Butadiene Styrene (commonly

known as ABS plastic) was used. Of the five criteria stated above, ABS plastic does

not fit criteria 1, 2 and 6, but is relatively much cheaper and can be easily replaced

with new copies. Working prototypes of the stretch unit were manufactured with ABS

polymer using a Dimension BST 1200es 3D printer (resolution: 1/1000 in). Table

2.11 shows various alternative materials that may be used for better performance.
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Table 2.11. : Material Options for the Stretch Device

Company

Name
Material Concept 1

Operating

Tempera-

ture/s

Bio-

Compatibility

(USP Class

VI)

3rd

Dimension
17-4 Steel 760 Mpa 316◦C YES

GPI

Prototyping
GP1 Steel

540+/-50

Mpa
YES

GPI

Prototyping
17-4 Steel 760 Mpa YES

GPI

Prototyping
ABS M30i 36Mpa 108◦C

YES (EtO,

UV, No

steam)

Proto 3000 GP1 Steel
540

+/-50Mpa
YES

GPI

Prototyping
Ultem 9085 71.6MPa 186◦C NO

Cideas
Duraform PA

Nylon
44 Mpa 177◦C YES

3D Systems

Polyphenyl

Sulphone

(PPSF)

55.158Mpa 189◦C YES

3D Systems
Polycarbonate

ISO
51.7Mpa 126◦C YES
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2.4 Product Evaluation

2.4.1 Criteria and Score Allotment for Product Evaluation

Engineering Requirement 1: ”Dimensions of the membrane relative to the dimensions

of a single well of the petri dish”

The internal dimensions of a single well of the petri dish are 78mm x 27.9mm. As

the maximum length of the membrane that can be used was calculated to be 55mm,

the effective available area for experimentation is 55mm x 27.9mm, which is 1534.5

sq.mm. In terms of percentage, this is 70.5% of the total internal area of a single

well. Hence, 60% to 70% area is deemed to be the best case scenario, and will be

allotted the maximum number of points, which is 5. The rest of the point distribution

is shown in table 2.12 below:

Table 2.12. : Score Allotment for Product Evaluation- Engineering Specification 1

Score Description Value Range

5 Excellent 60% - 70%

4 Very Good 50% - 60%

3 Good 40% - 50%

2 Average 30% - 40%

1 Bad 20% - 30%

0 Worst 10% - 20%

Engineering Specification 2: ”Modulus of elasticity of substrate material.”

The material selected for the substrate must be a hyperelastic material, as it will

need to sustain deformations ranging from 5% to 50%. Hence a substrate with an

elastic modulus of less than 5MPa is deemed satisfactory, the lesser the value, the

better. Table 2.13 below shows the distribution of scores:

Engineering Specification 3: ”Thickness of the membrane.”
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Table 2.13. : Score Allotment for Product Evaluation- Engineering Specification 2

Score Description Value Range

5 Excellent 0 - 1 MPa

4 Very Good 1 - 2 MPa

3 Good 2 - 3 MPa

2 Average 3 - 4 MPa

1 Bad 4 - 5 MPa

0 Worst ≥ 5 MPa

Thickness of the membrane is critical to holding the membrane firmly. If it thicker

than what the clamps can handle, there is a chance that the membrane might slip

during the stretch process. By trial and error, a maximum thickness of 2mm was

deemed acceptable. The lower the thickness of the membrane, the better it is to work

with. Table 2.14 below shows the score distribution:

Table 2.14. : Score Allotment for Product Evaluation- Engineering Specification 3

Score Description Value Range

5 Excellent 0 - 0.4 mm

4 Very Good 0.4 - 0.8 mm

3 Good 0.8 - 1.2 mm

2 Average 1.2 - 1.6 mm

1 Bad 1.6 - 2 mm

0 Worst ≥ 2 mm
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Engineering Specification 4: ”Melting point/ glass transition temperature of the ma-

terials used”

All materials used for the stretch unit and sleeve must be sterilized before use with

cells, as any contamination will affect cell growth. This is done by placing the items

in a steam bath @ 120 degrees centigrade for 20 min. Hence all components must

have a melting point or glass transition temperature of atleast 120 degrees centigrade.

The higher this temperature, the better. The score distribution is shown in table 2.15

Table 2.15. : Score Allotment for Product Evaluation- Engineering Specification 4

Score Description Value Range

5 Excellent 140◦C - 145◦C

4 Very Good 135◦C - 140◦C

3 Good 130◦C - 135◦C

2 Average 125◦C - 130◦C

1 Bad 120◦C - 125◦C

0 Worst ≤ 120◦C

Engineering Specification 5: ”Stretch magnitude range”

Literature shows that the general magnitudes of stretch used for biological cells

ranges from 0 to 15%. Hence, at the maximum length of substrate possible, an

elongation of 20% is deemed excellent. The higher the % elongation, the better. The

score distribution is given in table 2.16 below:

Engineering Specification 6: ”Frequency range of cyclic stretch”

Most experiments in current literature do not exceed 2 Hz. Hence, a frequency of

5 Hz may be taken as excellent. The greater frequency that be achieved, the better.

The score distribution is shown in the table 2.17 below:

Engineering Specification 7: ”Duration of stretch”
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Table 2.16. : Score Allotment for Product Evaluation- Engineering Specification 5

Score Description Value Range

5 Excellent ≥ 20%

4 Very Good 16% - 20%

3 Good 12% - 16%

2 Average 8% - 12%

1 Bad 4% - 8%

0 Worst 0% - 4%

Table 2.17. : Score Allotment for Product Evaluation- Engineering Specification 6

Score Description Value Range

5 Excellent ≥ 5 Hz

4 Very Good 4 Hz - 5 Hz

3 Good 3 Hz - 4 Hz

2 Average 2 Hz - 3 Hz

1 Bad 1 Hz - 2 Hz

0 Worst 0 Hz - 1 Hz

As seen in the literature review, most cells stop changing their orientation after

6 to 8 hours, so a stretch duration of 10 hours is deemed excellent. The greater this

value, the better. The score distribution is shown in figure 2.18 below:

Engineering Specification 8: ”Temperature, atmospheric gases and humidity levels”

In order for cells to sustain growth, an ideal environment must be provided. This

environment must be maintained at 37◦C, 5% carbon di oxide, and 90% humidity.
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Table 2.18. : Score Allotment for Product Evaluation- Engineering Specification 7

Score Description Value Range

5 Excellent 9 hrs - 10 hrs

4 Very Good 8 hrs - 9hrs

3 Good 7 hrs - 8 hrs

2 Average 6 hrs - 7 hrs

1 Bad 5 hrs - 6 hrs

0 Worst ≤ 5 hrs

Hence there are only two scores for this specification: 5, if the environmental condi-

tions are met, and 0, if they are not.

Engineering Specification 9: ”Slip, in relation to displacement of membrane”

The membrane secured to the clamps, may sometimes slip, which causes undesired

stretch magnitudes. Hence, the lower the slip, the better. The score distribution is

shown in table 2.19 below:

Table 2.19. : Score Allotment for Product Evaluation- Engineering Specification 9

Score Description Value Range

5 Excellent 0% - 1%

4 Very Good 1% - 2%

3 Good 2% - 3%

2 Average 3% - 4%

1 Bad 4% - 5%

0 Worst ≥ 5%
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Engineering Specification 10: ”Work surface area needed to assemble the stretch unit”

All components of the stretch unit must be assembled in a fume hood, in order

to keep them out of contamination. Hence, there is only a limited amount of area for

the user to work with. The smallest commercially available fume hood has an area

of 30”x30”. If the user is able to fit all components within an area of 20”x20”, it is

deemed to be excellent. The score distribution is given below in table 2.20:

Table 2.20. : Score Allotment for Product Evaluation- Engineering Specification 10

Score Description Value Range

5 Excellent 22”x22” - 20”x20”

4 Very Good 24”x24” - 22”x22”

3 Good 26”x26” - 24”x24”

2 Average 28”x28” - 26”x26”

1 Bad 30”x 30” - 28”x28”

0 Worst ≥ 30”x30”

Engineering Specification 11: ”Dimensions of the membrane and petri dish in relation

to the microscope stage dimensions”

The dimensions of a popular model inverted microscope Nikon TS-100f was taken

as a reference for this specification. The area of the stage is 170mm x 225mm. In

order to observe the cells on the membranes, the size of the stretch unit must be

less than or equal to the stage size. The lesser the size, the better. An area of 70%

was deemed to be the best for handling and observation, while 100% was deemed the

worst. The score distribution is shown in table 2.21 below:

Engineering Specification 12: ”Steps to assemble the stretch unit into the driver unit”

The least number of steps logically possible to assemble the stretch unit into

the driver unit is three: Slide stretch unit into base, secure stretch unit to base,

and connect stretch unit to driver unit. Any steps added will make the process less
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Table 2.21. : Score Allotment for Product Evaluation- Engineering Specification 11

Score Description Value Range

5 Excellent 70% - 75%

4 Very Good 75% - 80%

3 Good 80% - 85%

2 Average 85% - 90%

1 Bad 90% - 95%

0 Worst ≥ 95%

efficient. Hence, 3 steps is taken as excellent. The lesser the number of steps, the

better. The score distribution is shown in the table 2.22 below:

Table 2.22. : Score Allotment for Product Evaluation- Engineering Specification 12

Score Description Value Range

5 Excellent 3

4 Very Good 4

3 Good 5

2 Average 6

1 Bad 7

0 Worst 8

Engineering Specification 13: ”Total number of steps to complete assembly and start

experimentation”

The minimum number of steps logically needed to complete assembly and run

experiments are five. Three steps from the assembly of stretch unit into the base,
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and two more steps- connecting the driver to PC, and open and running the stretch

program. Hence, 5 steps is taken as excellent. The lesser the number of steps, the

better. The score distribution is shown in the table 2.23 below:

Table 2.23. : Score Allotment for Product Evaluation- Engineering Specification 13

Score Description Value Range

5 Excellent 5

4 Very Good 6

3 Good 7

2 Average 8

1 Bad 9

0 Worst 10

Engineering Specification 14: ”Displacement across the membrane in relation to %

stretch applied”

It is important to ensure that the stretch applied to the membrane is being trans-

mitted to it without losses, and if the stretch is the same at all points on the mem-

brane. The difference between % displacement applied to the membrane and the %

displacement achieved at any point on it, should not cross a threshold value. This

was set as 5%. The lesser this value is, the better. The score distribution is shown in

table 2.24 below:

Engineering Specification 15: ”Number of steps to disassemble the membranes after

the experiment”

The least number of steps logically needed to disassemble the membranes is six:

disconnect driver from stretch unit, unlock stretch unit, remove stretch unit from

base, remove sleeve, push clamps out of stretch plate slots, and place membranes in

separate dish. Any steps added will result in increased chances of cells dying, hence

six is deemed to be excellent. The score distribution is presented below in table 2.25:
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Table 2.24. : Score Allotment for Product Evaluation- Engineering Specification 14

Score Description Value Range

5 Excellent 0%

4 Very Good 1%

3 Good 2%

2 Average 3%

1 Bad 4%

0 Worst 5%

Table 2.25. : Score Allotment for Product Evaluation- Engineering Specification 15

Score Description Value Range

5 Excellent 6

4 Very Good 7

3 Good 8

2 Average 9

1 Bad 10

0 Worst 11

Engineering Specification 16: ”Ensure that there are no shear stresses experienced by

the cells, and if present, are negligible”

As the cells are stretched under a biological fluid, there may be a small amount of

shear produced due to the movement of the cells under the fluid. It must be ensured

that these stresses are reduced to negligible levels in order to ensure that cyclic tension

is the only dominant force acting on the cells. Literature states that a shear stress
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that is less than 1 Dyne-s/sq.cm may be considered negligible. Hence any value less

than 1 is given the highest points, 5 and any value greater than 1 is given 0.

2.4.2 Uniaxial Stretch in Membranes

From engineering specification 14, in order to verify if the strain distribution is

even given a required magnitude of displacement, an FEA simulation was performed

using ANSYS. All material properties of silicone elastomer (acquired from the man-

ufacturer, table 2.26) were assigned to a 50mm 3D model of the membrane, one of

the sides was fixed and a displacement of 5mm (10% stretch) was applied on the

other side. Figure 2.22 illustrates this. After solving, the FEA results show that

the desired magnitude of stretch is being transmitted as desired to the loaded side

of the membrane. This is illustrated by figure 2.23. The membrane also experiences

constant strain along the entire membrane, verifying that all points on the membrane

are subjected to the same amount of stretch. This is illustrated by figure 2.24.

Table 2.26. : Properties of Silastic Biomedical Grade Silicone Rubber Q7-4840

Property Value

Relative Density 1.12

Tensile Strength 9.4 MPa

Elongation, % 540 %

Elastic Modulus, @ 200 % 2.6 MPa

Tear Strength, Die B 37 KN/m

Compression Set, % 77.3 %

Poisson’s Ratio 0.47
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Figure 2.22. : Finite element 3D model to simulate 10% stretch in a 50mm long silicone

elastomer membrane. In the figure, A represents the fixed side, and B represents the

moving side, with a displacement of 5mm.

Figure 2.23. : Finite element analysis showing the required magnitude of stretch ap-

plied at one end of the membrane, 5mm in this case, and the consequent displacements

along the length of the membrane
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Figure 2.24. : This figure shows the distribution of strain along the membrane during

stretch. As depicted, strain is distributed evenly across the membrane, causing every

point on it to experience the same amount of stretch.

2.4.3 Slip Experienced by Membranes

To verify that there was no slip of the membrane at the clamps while stretching,

two ink stains were placed using an alcohol based permanent marker at two random

points along the 50mm long/ 14mm wide silicone membrane. It was assembled on

to the stretch plates, which were then subjected to a strain of 10% (the membrane

will be 55mm in length after application of strain). Before and after stretch pictures

of the same stains were taken with a microscope. ImageJ software was used to mea-

sure length in pixels between two points placed in the x direction, along the opposite

outer edges of the stain. The images before and after stretch, are shown in figures

2.25 through 2.28. The yellow lines represent the points where length was measured.

To reduce measuring errors, each distance was measured 5 times and averaged. Theo-

retical stretch values were also calculated and the difference between these values and

values obtained experimentally were compared to find the magnitude of slip. All the

data obtained is shown in table 2.27. However, results obtained showed that there are

differences between the theoretical and experimental values of distance between the
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points after stretch. In a single stain, there is a difference in after stretch distances

between two points at different locations. From table 2.27, these differences may be

observed. However, since the same stain also shows almost no difference between

theoretical and experimental distances at some points, it may be derived that there

is no slip at the clamps, and the different values may be a result of the alcohol based

stains peeling off at certain areas.

Figure 2.25. : Ink stains were placed on the membrane for the validation of 10%

Stretch on a 50mm Silicone Membrane. Lengths of the lines 1 to 26 were measured

in pixels using ImageJ software.
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Figure 2.26. : Lines 1-26 were measured again after stretching the membrane by 10%

longitudinally. All lines showed elongation.

Figure 2.27. : Length of lines 1- 26 were measured in Pixels using ImageJ Software.
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Figure 2.28. : Lines 1- 26 were measured in pixels after stretching the membrane by

10% longitudinally. All lines showed elongation.
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2.4.4 Shear Stress on Cells

During cyclic stretch, as the membrane is stretched back and forth, the media

remains stationary while the cells move along with the membrane. This causes shear

stress on the cells. As seen in figure 2.29(a), when the membrane is stretched from

position 1 to 2, the cells attached to the membrane move, causing shear stress between

the cells and the media above the membrane. To calculate the approximate shear

stress on the cells, a parallel plate flow chamber model may be used. A parallel plate

flow chamber model can be visualized as a very thin rectangular hollow box, with

an inlet and outlet on either side. These are connected to tubes, which are in turn

connected to a two-way pump. Biological media can now be pumped through the

inlet, causing a constant velocity flow of media inside the chamber. Cells are plated

onto the underside of the ceiling of the rectangular chamber, so that when media

passes through the chamber, they are adhered to the ceiling, and thus experience

shear stress due to fluid flow. Shear stress on cells (calculated from the parameters

media viscosity , volumetric flow rate Q, and cross sectional dimensions width b and

height h (see figure 2.29(b)) of the flow channel), is said to be negligible if its value is

less than or equal to 1 dyne-s/cm2 (τ ≤ 1) [23]. During uniaxial stretch, a membrane

goes through two different phases. A stretch phase, where the membrane is stretched

from position 1 to position 2 (figure 2.29(a)), and the return de-stretch phase, where

the membrane is restored to its original position at 1. During each of these phases,

cells on the membrane experience shear stress. As this case is approximated using

the parallel plate shear stress model, the equation used was as follows:

τ =
6µQ

bh2
(2.2)

[23]. Volumetric flow rate, Q, was taken as the rate at which the membrane was being

stretched, which is 0.8 cm/s multiplied by the cross sectional area of the medium

directly above the membrane (1.4 cm x 0.2 cm), which yields 0.224 cm3/s. Viscosity

of DMEM media was taken to be 0.0078dyne.s/cm2 [24]. The dimensions, b and h

were 1.4 cm and 0.2 cm respectively. Substituting these values in the equation above,
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(a) Movement of Stretch Plates that induces

Shear Stress

(b) Dimensions of the Clip submerged in Me-

dia

Figure 2.29. : The figures above show the movement of stretch plates that causes

media to move back and forth, causing shear stress on the cells plated on the silicone

membranes.

the approximate shear stress was calculated to be 0.1872 dyne − s/cm2, proving

that shear is negligible in this case. Also, in order to verify that the shear stress

experienced by the cells would not increase with increase in the level of media above

the membrane, a maximum value for h (1cm) was considered. Substituting h = 1cm

in the equation above, the shear stress was calculated to be 0.03744 dyne − s/cm2,

verifying that any volume of biological media in the petri dish would only produce

negligible shear stress on the cells.

2.4.5 Evaluation of the Unaxial Stretch Machine

This section deals with evaluating the unaxial stretch machine by comparing it to

the engineering specifications generated. Criteria were developed for each specifica-

tion, and points were given based on how well the device satisfied each specification.

The device satisfies all engineering specifications successfully. Table 2.28 gives the

details.
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2.5 Suggestions for Improvement and Conclusions

The following may be concluded from the evaluation process:

• All engineering requirements have been satisfied. The device is capable of uni-

axial cyclic stretch of certain types of substrates.

• Further testing must be done to verify if there is any slip of the membrane

during stretch. Although the test has shown that fluctuations may be due to

stains losing adhesion to the membrane, they must be redone with stains that

have stronger adhesive strengths to absolutely verify that this conclusion is true.

• From the FEA analysis, it is observed that the stretch distribution across the

membrane is even.

• The material used for the current product, ABS plastic, is incapable of resisting

sterilization by steam. As this is a temporary material, it was cleaned using

laboratory grade detergent, bleach and UV light exposure. A list of materials

that may be useful has been presented.



108

3. CASE STUDY- CYCLIC STRETCH EXPERIMENT USING THE

UNIAXIAL STRETCH DEVICE

3.1 Introduction

The experiment presented here were done under the IUPUI Multidisciplinary

Undergraduate Research Institute (MURI) program, under mentors Dr. Hazim El-

Mounayri, Dr. Julie Ji, and Dr. Omar El-Mounayri. The participating undergradu-

ate students were Jessica Collins, Caleb Comoglio, Zahir Sheikh, Niraj Vipra, Joseph

Yeoh, Caleb Comoglio, Jeffery Joll II, and Mai Khuu.

3.2 Design of the Experiment

SMCs, when cultured in stationary conditions acquire a generic gene expression

profile. In order to prove that in vitro cyclic mechanical stretch can bring the concen-

tration of these markers back to in vivo levels, the markers must show signs of increase

in their concentration. An experiment was designed to test this. The following points

briefly explain the order in which the experiment was designed to be executed:

1. Two types of SMCs, specifically coronary and bladder cells will be used for this

experiment. Each type of the SMCs are plated onto a single silicone membrane,

which are pre- assembled into a stretch plate unit, and are incubated.

2. Cyclic stretch is now applied on the SMCs, giving specific magnitude of stretch,

frequency and duration.

3. After experimentation, cells are checked visually for density, morphology and

dead cells. Proteins are extracted and frozen.
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4. Protein analysis will be done to check concentrations of - actin, - actin, calponin

and transgelin.

3.3 Experimentation

Silicone substrates of dimensions 75mm x 14mm x 0.254mm were used in this

experiment. They were coated with fibronectin so as to improve cell adhesion. The

membranes were assembled onto the stretch plate assembly and placed on top of the

petri dish. Biological media DMEM containing a fixed number of cells are plated

onto the membranes. This unit is placed in the incubator maintained at 37oC, 5%

CO2 and 90% humidity for 24 hours for cell proliferation. The cells are now checked

for density and death. The stretch plate and petri dish unit is now slid into the

level support and the unit is assembled into the stretch machine, which is placed in a

biological incubator. The cells are now stretched cyclically causing percentile strains

of 5% to 10% lengthwise, gradually increasing the stretch magnitude every two hours,

for a total of 8 hours. The stretch plate is removed and cells are collected. Proteins

are extracted and frozen for later analysis. Concentrations of - actin, - actin, calponin

and transgelin are identified, with - actin as control. Western blot method is used for

this. The results are then normalized and plotted.

3.4 Results and Discussion

Material selected for manufacturing various components was ABS plastic as it was

a cheap option for testing, and also satisfied a criteria required. However, due to the

nature of 3D printing, there were small gaps and imperfections in the components

which aided in fungal growth. The components were cleaned with soap and bleached

after every experiment as they could not withstand the temperature of the steam

sterilization chamber. Alternative materials that satisfied all criteria were discussed.

Stainless steel was found to be the best choice.
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All components were evaluated for performance and scored above the acceptable

5 points. Table 2.28 shows the details of evaluation. The minimum value was 6.5,

while the maximum was 8. If the material change is made, components would score

better. Uniaxial stretch that was transferred from the driver to the membrane was

verified to be without losses. This was done by simulating stretch on the membrane

using ANSYS simulation software. As seen from figure 2.24, strain distribution was

even throughout the membrane. There was also no slip calculated, but this must be

verified using better methods.

Coronary and bladder SMCs were used to perform a stretch experiment to find

out if the device works as intended. The aim of the experiment was to prove that

the stretch device can increase concentration levels of proteins in cells cultured in

a static environment. 5- 10% strain was provided to the cells for eight hours, rais-

ing the stretch levels every two hours. Concentrations of - actin, - actin, calponin

and transgelin are identified using the western blot analysis method, with - actin as

control. CSMC protein analysis did not follow any expected patterns. Each protein

had a fairly erratic expression behavior as indicated by western blot. Alpha actin was

barely present after four hours of stretch, peaked at 6 hours, and then fell below static

levels again at 8 hours. Gamma actin peaked at 4 hours with an over 2.5 fold increase

over static levels. After this it returned to below static levels for both 6 and 8 hours.

Calponin followed the same erratic behavior, falling below static levels at 4 hours,

drastically peaking at 6 hours, and back to below static levels at 8 hours. Transgelin

initially dropped below static at 4 hours, and then gradually returned to base levels

at 6 and 8 hour stretch. Protein analysis of bladder smooth muscle cells, however,

showed more expected levels of expression for gamma actin and transgelin for static,

4 hour, and 6 hour time periods. Alpha actin was the only protein that exhibited

unexpected expression. From its static sample, it fell below base level and remained

there for 4 and 6 hours. Both gamma actin and transgelin had slight increases after 4

hours of stretch and at 6 hours they both experienced significant fold increases. This

information is illustrated in figure 3.1. These unusual results are most likely explained
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Figure 3.1. : Western Bolt Analysis for CSMCs and BSMCs

by experimental errors caused by researchers or machine errors. Several modifications

were made to the machine throughout the research process, which may have altered

expected results. Cell culturing, adhesion, and plating techniques all may have to be

modified in order to prevent inaccurate protein expression. Because only one round

of stretching was completed, it is difficult to make any definitive conclusions about

the data. Future rounds of testing will serve to validate and regulate the results.
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4. CONCLUSIONS AND FUTURE SCOPE

The Capstone design project report was summarized. Future improvements as sug-

gested by the report were taken into account and implemented in the new design.

Customer requirements and engineering objectives were re- written. Uniaxial stretch

machine was designed based on the new engineering requirements, CAD models of

the different parts were created and 3D printing was used to manufacture a working

prototype. Testing and validation of the machine was done to verify that all design

requirements were met. Experiment was conducted to verify if cyclically stretched

cells show a shift towards contractile phenotype. Analysis of data shows that the de-

vice has the potential to carry out its intended function, although more tests should

be run in order to make sure. A change in material of the manufactured components,

most preferably to stainless steel, may result in a much better device, as this will

allow for sterilization by steam and better handling.

A biaxial stretch unit is also being developed to fit in to the same driving unit,

so the user can run either uniaxial or biaxial experiments. The biaxial system will

use the same driving unit as the uniaxial system. The only difference will be in the

stretch plate design. Circular membranes are placed on top of the bottom plate and

the top plate will slide onto it, fixing the membranes. The plates are secured using

thumb screws. This assembly is inverted onto a 6 circular well petri dish containing

the indenter plate, against which the membranes are stretched. Springs stop the

stretch plates right on top of the indenters. Cells are plated from the top using a

pipette via media. This assembly is placed into the incubator for proliferation and

adherence. The entire assembly is now placed onto the driving unit. A steel rope is

used to connect the motor shaft to a cam mechanism located on top of the stretch

plates. When the shaft moves, the cam is rotated back and forth in partial cycles,
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which transmits the movement vertically via a cam follower on the stretch plates,

stretching the membranes. The biaxial device is illustrated in figures 4.1 and 4.2.

Figure 4.1. : Figure 4.1 illustrates the CAD model for the biaxial stretch unit plates

and bottom dish. The membrane is secured between the rings of the two plates. The

membrane is held in place by friction.

Figure 4.2. : Figure 4.2 shows the corresponding CAD model for the unit assembly.

Assembled stretch plates are placed onto the bottom dish, and this unit is placed into

the cam rocker holding unit.
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A. APPENDIX

UNIAXIAL STRETCH DEVICE - SUMMARY OF CAPSTONE

DESIGN 2008

The Final Product

The Clips

The design of the clips was treated as a completely separate design. The require-

ment here was that the clips should hold the membrane without any slip, and should

be easy to handle. The idea was modeled in Pro-E and a prototype was manufactured

using 3D printing methods. The material used was ABS plastic. Figure A.1 shows

the clips modeled in Pro-E and the clips after being manufactured by 3D printing.

For 10% stretch, these clips were very effective in holding the membranes without

any slip.

The Stretch Plates

The stretch plates were designed to be able to slide on top of one another. Clips

mount directly onto these plates, which in turn will hold the membranes. Figure

A.2 shows the CAD model and the manufactured stretch plates using 3D printing

methods.

Mount Sub - Assembly

This is the part that is used to hold the petri dish and stretch plates together.

The petri dish would slide onto and rest on the two sliding red bars, right below the
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(a) Clip Design- CAD Model (b) Clip Design- 3D Printed Prototype

Figure A.1. : Figure A.1(a) illustrates the CAD model of the membrane clamping

mechanism developed by the capstone design team. Figure A.1(b) shows the 3D

printed model of the prototype. A flexible silicone membrane is sandwiched between

the two clips and pressed together until they click into place, restraining the mem-

brane.

(a) Stretch Plate Design- CAD Model (b) Stretch Plate Design- 3D Printed

Prototype

Figure A.2. : Figure A.2(a) illustrates the CAD model of the stretch plates developed

by the capstone design team. Figure A.2(b) shows the prototype created using 3D

printing methods. These plates are assembled onto each other so that they slide in a

linear fashion. The unit is then turned upside down and the membranes are asembled.
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rectangular form. The stretch plates are then assembled onto so that it is constrained

completely in all directions. Figure A.3 illustrates this.

(a) Mount Sub Assembly- CAD Model

(b) Stretch Plate Design- Prototype made from

Polycarbonate Sheet and 3D printing methods

Figure A.3. : Figure A.3(a) illustrates the CAD model of the mount sub- assembly.

Figure A.3(b) shows the manufactured parts. The red bars were developed by 3D

printing methods and the transparent base was manufactured using a polycarbonate

sheet. The petri dish was neamt to sit on top of the red bars just under the rectangular

top, and the stretch plates were placed from the top of the unit. The assembled

membranes would sit just above the bottom of the petri dish.
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The Driver

The driver chosen for this design was a cool muscle motor with an RRA linear

actuator. The reason this motor was chosen was because it came preassembled, and

the hardware driver and the encoder came with it. A National Instruments signal

conditioner was used for signal conditioning. The driver was also suitable for lab

environment as it could withstand a humidity of 90 % and temperatures of up to 40

degrees centigrade. Figure A.4 shows the driver and the signal conditioning unit.

(a) Cool Muscle Servo Motor

with RRA Linear Actuator

(b) National Insruments Signal Condi-

tioner

Figure A.4. : Figure A.4(a) illustrates the driver used to move the stretch plates

cyclically. Figure A.4(b) shows the signal conditioner from the manufacturer National

Instruments.

Sensors

The design team decided on two sensors to collect real-time information on the

magnitude of stretch and force exerted on the membranes for each cycle. These

would be an inductive proximity sensor and a load cell. For the inductive sensor, the

one made by the manufacturer Baumer was selected. It can measure up to 5mm of

displacement. For the force sensor, a 50 lb load cell was selected from the company

HTC- Load cell central. Figure A.5 shows the sensors.
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Figure A.5. : This figure illustrates the sensors used to measure. Figure on the left

shows the inductive proximity sensor from Baumer Inc, which measures the distance

travelled by the stretch plate from each cycle, and on the right is a load cell from the

manufacturer HTC Load Cell Central, which measures the amount of force transmit-

ted from the driver for each cycle of stretch.

Control Software

The software used to enter commands and control the motor is called Cool Works

Lite, a proprietary software of the servo motor company Cool Muscle Corp. The

software used to monitor and record the data from the devices is LabVIEW from

National Instruments. This software was selected because of its ease of use, and ex-

cellent technical support from the company. Figure A.6 shows the LabVIEW software

interface.

Suggested Changes by the Capstone Design Team

The capstone design group suggested a few areas where changes may be made.

The clips are one area where a change is necessary. They have also suggested that the

dimensions of the stretch plates could be changed for better assembly of membranes.

Another change recommended was to replace the induction sensor with a laser type

sensor, so as to increase range and accuracy. The last recommendation was to change

to material used for the 3D printed parts. Polymers commercially available through

the firm Solvay, were suggested as an ideal material.
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Figure A.6. : This figure illustrates the front end user interface of the LabVIEW soft-

ware developed by National Instruments. LabVIEW may be used to control electronic

devices using signal acquisition.
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B. APPENDIX

THE DESIGN PROCESS

For successfully designing and manufacturing a product, a standardized design process

has been put forth by author David G. Ullman. The process involves five major steps,

which are further classified in to three phases. The first phase, also known as the

product definition phase, involves the first step of the design process. The next two

steps in the process is the second phase or the conceptual design phase, where concepts

are developed and evaluated. The last two steps of the design process, the product

generation and evaluation, form phase three. Each of these steps are discussed briefly

below:

Phase 1

• Step 1: Understanding and Analyzing the Problem

This is the first step in the design process. The designer must first identify

the target group of customers. He must then gather information on customers

requirements. This can be done by directly talking to them, or by taking sur-

veys, or by taking feedback on existing devices. After establishing the customer

needs, the relative importance of each need is determined. The devices cur-

rently available in the market are evaluated against these needs. Engineering

specifications are now developed corresponding to the customer requirements.

In order to develop engineering requirements, it is mandatory that the designer

convert each customer need into a set of parameters that can be measured and

evaluated. If a customer need cannot be represented by numbers, it must be

re-done so that calculations can be made to evaluate the requirement. If param-

eters cannot be developed for evaluation, the customer need must be scrapped.



121

A relation must now be made between customer needs and engineering specifi-

cations. The inter-relation between engineering specifications, and the current

competition evaluation are also noted. All this information will give the user a

chance to prioritize his requirements. A popular tool to do this is called qual-

ity function deployment. The quality function deployment chart establishes a

relation between the customer needs and engineering requirements. It also as-

signs importance to each engineering requirement so the engineer may prioritize

among them. The flow chart shown in figure B.1 shows sequence in which a

QFD is implemented. Figure B.2 shows the different sections (or rooms) in a

house of quality diagram, which illustrates the QFD process.

Phase 2

• Step 2: Developing Potential Concepts

According to author David Ulman, a concept is ”An idea that is sufficiently

developed to evaluate the physical principles that govern its behavior”. A concept

maybe a sketch, an idea or even a set of calculations. A concept must hold

enough information so that the designer may be able to assess what technologies

might be helpful in turning the concept into a product, how the product might

look and work, and what methods may be used to manufacture it. The method

to generate concepts maybe summarized briefly with the following steps:

1. Understand the basic overall function of the intended product.

2. Split the overall function into smaller, individual sub functions, sub- sub-

functions, and so on. This is called functional decomposition until a func-

tion can no longer be split. Arrange all functions according to their order

of execution.

3. Use methods such as brainstorming, the 6-3-5 method, researching patents

or the theory of inventive machines to develop ideas that can be used to
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Figure B.1. : This figure illustrates the sequence of steps taken during the product

definition phase. The information gathered during this process is illustrated using a

house of quality diagram.

Figure B.2. : This figure illustrates the compilation of different steps taken during

the project definition phase. It provides an easy reference and acts as a guide for the

rest of the design process.
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fulfill the individual functions while fulfilling the overall function. Add in-

formation on possible design, manufacturing methods and materials. This

is a concept. Develop as many concepts as possible for each function. This

is called a morphology.

4. Select the best concept for each individual function. Combine the best

possible concepts of different functions to implement subfunctions, and

eventually, the overall function. This is called function concept mapping,

and will help the designer decide on the best concept for each as well as

the overall function.

Figure B.3. : This figure illustrates the different steps taken during the conceptual

design phase.

• Step 3: Concept Evaluation

Every concept must be evaluated before they are compared against each other

and a final selection is made. The first step is to gather all information that
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is known about the concepts and refine it in such a way that it may be at

the same level of abstraction as the customer requirements. Once the concepts

are generated and have enough information, a decision matrix is built using

the Pugh’s method (developed by Stuart Pugh, a mechanical design engineer).

In this method, all functions and engineering specifications that are related to

each concept is listed out and their relative importance is determined. They

are then given scores based on how well they satisfy each requirement. Scores

are multiplied to their relative importance, and the total sum of each concept

is noted. The concept with the highest score is best suited for the application

at hand. Figure B.3 illustrates the steps involved in phase 2.

Phase 3

• Step 4: Product Generation

Product generation deals with the materials and manufacturing methods used

to generate products based on concepts developed earlier. The most common

method is to list all constrains and relations between individual components,

create CAD models to verify all parameters, and manufacture the components

using the most feasible of the different methods available (CNC machining,

molding, casting, 3D printing etc.).

• Step 5: Product Evaluation

Similar to concept evaluation, product evaluation also aims at listing each pa-

rameter, determining their relative importance, creating a datum for evaluation

and evaluating the product based on the functional parameters. Product eval-

uation is done after manufacturing and testing the prototype.
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Figure B.4. : This figure illustrates the different steps taken during the product design

phase. The steps include generating and evaluating the product, making decisions

and approving/ cancelling the process, refining the concept, or proceeding to the next

step.
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