
Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Weijie Zhang

Implementation of Re-usable, Configurable Systems Engineering Model using Product Lifecycle Management Platform

Master of Science in Mechanical Engineering

Hazim El-Mounayri
Chair

Jie Chen

Dan Surber

Shuning Li

Hazim El-Mounayri

Sohel Anwar 7/28/2015

IMPLEMENTATION OF RE-USABLE, CONFIGURABLE SYSTEMS

ENGINEERING MODEL USING PRODUCT LIFECYCLE MANAGEMENT

PLATFORM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Weijie Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

August 2015

Purdue University

Indianapolis, Indiana

ii

ACKNOWLEDGMENTS

I would like to send my graduate committee chair with deepest gratitude, Dr.

Hazim El-Mounayri, for his great guidance, advice, supervision and supports during

the entire research process. I also would like to thank my committee members, Dr.

Jie Chen, Dr. Dan Surber, and Dr. Shuning Li for serving on the committee and

giving me abundant suggestions for my thesis work.

I would like to extend my special thanks to my collaborator from ICTT Sys-

tem Sciences, Mr. Bill Schindel and Mr. Jason Sherey for generously providing

SystematicaTM1 Mapping Models, offering General Production Patterns, and assist-

ing on Systems Engineering, Systematica Methodology, and Pattern Content. I am

also grateful for meetings held with Mr. Schindel and Mr. Sherey.

I am grateful to my mentor, Dr. Shuning Li, for providing sufficient training

and guidance on Siemens PLM software. Dr. Li shared with me her experience on

using Siemens Teamcenter and constantly worked with me on trouble shooting the

challenges in this research.

I acknowledge the IUPUI Mechanical Engineering Department for financial sup-

port in this research.

I would like to thank IPLI (Initiative for Product Lifecycle Innovation) and IN-

COSE (International Council on Systems Engineering) for providing professional ma-

terial support and monthly roundtable meeting discussions.

1systematic is a trademark of System Sciences,LLC

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . iv

SYMBOLS . vii

ABSTRACT . viii

1. INTRODUCTION . 1
1.1 Background . 1

1.1.1 Product Lifecycle Management 1
1.1.2 Systems Engineering . 3

1.2 Literature Review . 6
1.3 Thesis Objectives and Contributions 10
1.4 Thesis Outline . 10

2. METHODOLOGY . 12
2.1 MBSE/PBSE and S* Metamodel 12
2.2 Business Modeler Integrated Devolvement Environment 16
2.3 PLM Software: Teamcenter . 17

3. IMPLEMENTATION AND DEMONSTRATION 22
3.1 Research Approach . 22
3.2 Mapping in BMIDE . 23
3.3 Implementation of General Production Pattern 41
3.4 Configuration System: Oil Filter End Seal Compression 58

4. DISCUSSION OF RESULTS . 69

5. CONCLUSION AND FUTURE WORK 77

REFERENCES . 79

iv

LIST OF FIGURES

Figure Page

1.1 Generic lifecycle of product [4] . 2

1.2 Systems engineering Vee diagram . 5

1.3 Life cycle cost commitment as a function of the system life cycle [15] . 7

2.1 Summary of some of the key portions of S* Metamodel [23] 13

2.2 The engineering process consumes and products information [23] 15

2.3 S* Patterns are re-usable, configurable S* Models [23] 16

2.4 Teamcenter rich client interface [36] . 19

2.5 Teamcenter systems engineering in navigation pane [36] 20

2.6 Teamcenter primary applications of systems engineering [36] 21

3.1 Research process approach (I) The S* Pattern compatible with S* Meta-
model (II) Mapping documental of S* Metalmodel to Teamcenter schema
(columns are hidden due to confidentiality) (III) Sample implementation
of S* Metamodel in Teamcenter interface (IV) Configured S* Pattern of
oil filter end seal compression research. 22

3.2 Mapping documental of S* Metalmodel to Teamcenter schema (columns
are hidden due to confidentiality) . 23

3.3 Business objects in BMIDE view . 24

3.4 The Item business object in BMIDE view 25

3.5 Business Modeler IDE interface . 25

3.6 New Business Modeler IDE template project creation window 26

3.7 View of “Thesisproject” template project 27

3.8 New business object creating window 29

3.9 Sample business object Feature view (contents are hidden due to confi-
dentiality) . 30

3.10 Sample business object FeatureRevision view (contents are hidden due to
confidentiality) . 30

v

Figure Page

3.11 Creating a new property in a business object 31

3.12 Creating a new persistent property in a business object 32

3.13 Icons creating in project files . 33

3.14 Changed icon in business object “Feature” view 33

3.15 Changed icon in business object “FeatureRevision” view 34

3.16 Naming rule created in rules folder (contents are hidden due to confiden-
tiality) . 34

3.17 The view of sample naming rule in business object feature 35

3.18 List of values folder in BMIDE view 36

3.19 Creating a new classic list of Values window 36

3.20 LOVs view of a sample property (contents are hidden due to confidentiality) 37

3.21 The global constant window . 38

3.22 Added business object revisions in modify global constant window . . . 39

3.23 Modified properties in “BOMLine” view 40

3.24 Teamcenter systems engineering interface 41

3.25 Created folders for project data management 42

3.26 Creating a new business object window 43

3.27 Creating a sample Systematica class in new business object information
defining window . 44

3.28 Created feature items in feature folder 45

3.29 Created functional interaction items in functional interaction folder . . 46

3.30 Created logical system items in logical systems folder 47

3.31 Feature framework in BOM view . 48

3.32 Interaction framework in BOM view 48

3.33 System environment in BOM view . 49

3.34 Feature attributes and values in properties 50

3.35 A sample trace link report . 51

3.36 The overall class and superclass summary 52

3.37 Primary key in feature and feature attribute 53

vi

Figure Page

3.38 The connection of feature and Interaction represented by feature primary
key value and interaction primary key rule 54

3.39 The connection of interaction and logical systems represented by role pri-
mary key rule . 54

3.40 The summaries of Teamcenter relationships and correlative primary keys 55

3.41 Feature overview diagram in Microsoft Visio 56

3.42 Interaction overview diagram in Microsoft Visio 57

3.43 Oil filter physical architectures [40] . 58

3.44 Specialized functional interaction framework 59

3.45 Specialized system environment . 60

3.46 Specialized role attributes . 60

3.47 Specialized feature framework . 61

3.48 Specialized feature attributes . 62

3.49 Specialized physical systems and physical systems attributes 62

3.50 CAD drawings for physical systems . 63

3.51 Specialized connections between feature and interaction 63

3.52 Specialized connections between interaction and logical systems 64

3.53 Matrix A coupling built in BOM structure 65

3.54 Matrix A coupling reference . 65

3.55 Matrix B coupling reference . 66

3.56 Matrix B coupling reference . 66

3.57 Created Specialized classes in Teamcenter systems engineering 67

4.1 Specialized feature framework . 70

4.2 General production pattern feature framework 70

4.3 Specialized interaction in oil filter case 71

4.4 Specialized logical systems in oil filter case 71

4.5 Allocation of logical systems and physical system in oil filter case [40] . 72

4.6 Oil filter end seal bonding BOM view 72

4.7 Microsoft Visio view of oil filter model 74

vii

SYMBOLS

BMIDE Business Modeler Integrated Development Environment

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

COTS Commercial off the Shelf

FEA Finite Element Analysis

LOV List Of Values

MBSE Model-Based Systems Engineering

PBSE Pattern-Based Systems Engineering

PDM Product Data Management

PLM Product Lifecycle Management

S ∗Metamodel Systematica Metamodel

S ∗Mapping Systematica Mapping

S ∗Models Systematica Models

S ∗ Patterns Systematica Patterns

SysML Systems Modeling Language

viii

ABSTRACT

Zhang, Weijie. M.S.M.E., Purdue University, August 2015. Implementation of Re-
usable, Configurable Systems Engineering Model using Product Lifecycle Manage-
ment Platform. Major Professor: Hazim El-Mounayri.

Industry is facing the challenge of increasing product complexity while at the

same time reducing cost and time in a highly competitive global market. Product

Lifecycle Management (PLM) and Systems Engineering have the potential to help

companies avoid costly product development and launching, as well as failure dur-

ing use; these two concepts not only share many common characteristics, but also

complement each other. PLM provides an information management system that can

seamlessly integrate enterprise data, business processes, business systems and, ulti-

mately, people throughout all phases of the product lifecycle. Systems engineering is

an interdisciplinary approach to designing, implementing, evaluating, and managing

the complex human-made systems over their life cycle. The same underlying meth-

ods that improve management of products and services can be used to organize the

framework in which PLM systems are implemented, integrated, and evolved. Though

several studies have indicated that adopting Systems Engineering with PLM brings

many benefits for industries, implementation of PLM based Systems Engineering with

PLM has rarely been conducted.

Pattern-Based Systems Engineering (PBSE), a form of Model-Based Systems En-

gineering (MBSE) based on the use of Systematic Metamodel (S* Metamodel), repre-

sents a family of manufacturing system, and is used in the life cycle processes of ISO

15288, was implemented here using TEAMCENTERrPLM software as the platform.

More specifically, we have implemented the key portion of the General Production

Pattern based on S* Metamodel, and demonstrated the benefit through the manufac-

turing of oil filter case study. The above implementation have resulted in a powerful

ix

systems engineering model in PLM that leverages the capabilities of Teamcenter, to

enable an enhanced systems engineering approach. Benefits brought to systems engi-

neering practice include: the ability to capture and reflect stakeholders’ requirements

and changes in product design process promptly and accurately; the ability of systems

engineers to create models quickly and prevent mistakes during modeling; the ability

of systems engineers to do their job much easily by using reusable and reconfigurable

models; the ability to re-use of previous designs in a new process.

1

1. INTRODUCTION

1.1 Background

1.1.1 Product Lifecycle Management

Currently much attention is being placed on PLM in many industries, such as

the automotive, pharmaceutical, aerospace, and military weapons industries. These

industries share similar expectations for enhancing their competitive ability in a glob-

alized economic environment. The impact of this globalization brings many positive

effects and opportunities, but it also requires that global companies meet new inter-

national and domestic challenges. As a result of the increased pressure to both reduce

cost and create high technology products rapidly, business managers are looking for

an appropriate tool or strategy to help monitor research and development for their

products, and help management teams make right decisions at the right time [1]. This

task can be accomplished by using the PLM method.

The product lifecycle includes the following steps: the requirements and planning

of a product, the concept and design, the manufacturing production, the sales and

distribution, and managing the product throughout its operational life until disposal

and recycling [2]. In the product lifecycle, with the passage of each stage and process,

products undergo a series of changes in functionality, performance, technical process,

materials, supply, marketing, and other aspects of social resources [3]. The pro-

cess produces a large amount of complex technical and business information. Under

the pressure of globalization from market competition, product life cycles are being

shortened, and new products must get to market faster. The only solution to keep

products competitive is to quickly and correctly manage and use this information [3].

So, it is significant for an enterprise to rely on information to accelerate the process

of enterprises to develop better products.

2

Figure 1.1. Generic lifecycle of product [4]

PLM is a concept with multiple interpretations, and the most common definition

is “an information management system which allows the enterprise to integrate data,

to integrate process, to integrate system, and to integrate people across the product

lifecycle” [5]. PLM is also an advanced enterprise information strategy [6]. It makes

people think about how to use the most effective methods to increase revenue and

reduce costs. An efficient and comprehensive PLM solution enables companies to

establish detailed, intuitive, and viable digital product information. It allows the

collection of early comprehensive information from each participant and then enables

the discovery and resolution of critical issues.

PLM was developed on the basis of Product Data Management(PDM), which is

a file-based system to manage production data. PLM is database system used to

manage processes [7]. PLM also refers to a type of software and process that uses

3

Internet technology to make everyone involved in the entire life cycle of products

cooperate in product development, manufacturing, and sales management.

Management (CRM), and Enterprise Resource Planning (ERP), are currently

applied widely. PLM is an information system that shares and leverages informa-

tion across all systems. This bi-directional information exchange between PLM and

other systems is important to facilitate information flow between multi-functional

groups [8].

1.1.2 Systems Engineering

According to the research, “by using the Systems Engineering approach, project

costs and timescales are managed and controlled more effectively by having greater

control and awareness of the project requirements, interfaces and issues and the con-

sequences of any changes. Research also indicates that effective use of systems engi-

neering can save 10-20 percent or more of the project budget. [9]”

What is systems engineering? Systems engineering is an interdisciplinary approach

to design, implement, evaluate, and manage the complex human-made systems over

their life cycle [10]. It focuses on defining customer needs, functionality, and docu-

menting requirements in the early stages of the development cycle, and then proceeds

with design synthesis, allocation, evaluation, operation, and system validation [11].

The driving force pushing industries into adopting systems engineering is the increas-

ing complexity of systems. Many systems cannot meet the needs of stakeholders in

terms of development time, overall cost, and performance. The benefits of applying

systems engineering concepts are: reduction in the total cost of ownership during the

system’s lifecycle, reduction in system acquisition time, and the reduction of risks

within the product development phase of the system.

Systems can be classified as natural or human-made. Human-made systems are

functional groups of hardware, software, and human interface that work together to

meet the mission need [12]. In many cases, a system is not independent. If one

4

system consists of two or more hierarchical levels, lower levels are conveniently called

subsystems. A system-of-systems is a group of dissimilar systems that collaborate to

achieve a mission purpose which none of them can perform alone. Building the right

system and building the system right is the top priority for a product development

team, and can be enabled through use of a system engineer. With the purpose of this

goal, a system engineer has the responsibility to ensure that the development team

makes decisions that ensure the stakeholders’ needs are satisfied in a high quality,

trustworthy, cost efficient, and schedule compliant manner throughout a system’s

entire life cycle.

Generally speaking, systems engineering is the high level view of a project. To

achieve success in applying systems engineering, there are tasks that must be per-

formed in a process. The first and foremost is stating the problem/understanding the

problem. The problem should identify stakeholder and system boundaries, describe

a mission statement, and provide a concept of operations or a description of the defi-

ciency, etc. It is important to understand the problem by thinking about what must

be done and how it must be accomplished [10].

The second task is investigating alternatives, especially for complex systems. Since

no design can economically achieve “best” on all its figures of merit, investigating

alternative designs must be redone while coping with the increasing amounts of design

and analysis data [10]. For example, figures of merit should be computed in designing,

model constructing, data analyzing, and prototype building processes. Alternative

designs will reduce the risk and also help clarify the problem statement. Besides

these, modeling the system is another task that has to be accomplished.

Systems engineers create many types of systems models, such as block diagrams,

functional flow diagrams, etc., based on the best designs to help manage the systems

development. Integration means bringing systems, people, and other interactions

together. Launching the system, assessing performance, and re-evaluating are also

very important tasks that are necessary for systems engineering.

5

Over the past few decades, several process models in systems engineering have

become well known: “waterfall”, “Vee”, and “Spiral” [12]. Those system life cycle

process models specify a series of steps to reflect systems engineering approach. The

“Vee” diagram is the most famous and has been applied in many industries. It is

no surprise that different “Vee” models have been seen, but they all derive from the

same basic model.

Figure 1.2. Systems engineering Vee diagram

The left side of the diagram demonstrates the decomposition and definition se-

quence; it resolves the architecture of a system and creates design details. The right

side of the model illustrates the integration and verification sequence [12]. In it suc-

cessively higher levels of subsystems are verified, with the sequence flowing up to

the culminating system level. In the middle of the model, at each level of testing

plan, requirements and specifications documents ensure that products, components,

subsystems, and system meet all requirements and specifications.

To standardize these processes, ISO15288 was published by International Organi-

zation for Standardization. It is a common framework defining processes and termi-

nology for describing life cycle of systems. ISO15288 can be applied to manage and

6

perform stages through the full system lifecycle by selecting sets of process [13]. In

ISO15288, four groups of systems engineering processes are organized: Agreement,

Enterprise, Project, and Technical [14]. Each process contains a purpose, activities,

and outcomes. Concept, development, and production are some examples of stages in

the life cycle that have been described in ISO5288. A critical part of this international

standard is that it will not conflict with any organization’s policy or procedure. This

is due to each life cycle having no definitive order for use. Systems differ in their pur-

pose, applications, domain, compliancy, time, location, and size etc., but ISO15288

describes the processes that comprise the development of any man-made system in a

repeatable life cycle.

1.2 Literature Review

In the past few years, systems engineering and PLM have become closely related.

Systems engineering and PLM not only share many common characteristics, but also

complement each other [15]. The product life cycle is covered through preliminary

design, detail design, production or construction, product utilization, support phase-

out, and disposal; those phases are based on understanding the application of systems

engineering [16]. PLM requires management of the entire product process; it must

meet the challenge of synchronizing disciplines involved in complex product systems

during the production process. Systems engineering methodologies provide ways to

synchronize disciplines during design, simulation, testing, verification, and validation

based on multidisciplinary functions for an industrial company [15].

Currently, mass customization, small lot sizes, high variability of product types,

and a changing product portfolio are characteristics of modern manufacturing systems

during the life cycle [17]. A direct consequence of these characteristics is a more

complex manufacturing system. This problem is especially serious in the aerospace

and defense industry. According to a recent study of Government Accountability

Office, growth in research and development costs and months’ delay in delivering

7

have been reported by defense acquisition programs [17]. In fact, due to complex

manufacturing processes, most issues happening in production can be traced back

to early architecture decisions, and those decisions directly or indirectly affect the

efficiency of design. Figure 1.4 shows that 70 percent of cost is locked in the design

concept and it is more expensive to make changes during later processes.

Figure 1.3. Life cycle cost commitment as a function of the system life cycle [15]

Systems engineering principles can alleviate manufacturing risks of serious chal-

lenges and issues. Involving systems engineering methodology is important to make

adjustments in the manufacturing work flow process. Currently, many systems en-

gineering methodologies have been applied to help make changes in manufacturing.

One such method is called product and process development, integrated by Georgia

Institute of Technology’s aerospace system design laboratory [17]. This methodol-

ogy comprises manufacturing process capability indices early in the design phase

to ensure robust design concepts are being developed. In addition, “Manufacturing

Systems Engineering” [18], “Factory Physics” [19], and “The Toyota Way: 14 Man-

agement Principles from the Worlds Greatest Manufacturer” [20] explore systems

engineering methods to improve manufacturing process. Even though the traditional

systems engineering methodology improves design process, many flaws still need to

8

be fixed. The traditional document-centric, text-based report and drawing format in

traditional systems engineering is not flexible. Under this high-flux design environ-

ment, it requires a higher level of methodology to assist systems engineers to do their

job [21,22].

One should not think of systems engineering without thinking of Model-based

Systems Engineering (MBSE). MBSE is shifting the design approach from document-

centric to model-based systems engineering by capturing information elements and

relationships to support requirement, design, analysis, verification, and validation

in life cycle. Compared to the traditional manufacturing process, applying MBSE

will improve the communication among stakeholders, making it easier to manage

systems in order to improve product quality, and improve the ability to learn the

concepts of system. Currently, many MBSE methodologies are used by systems en-

gineering communities: IBM Rational Harmony for Systems Engineering (Hoffmann

2011); INCOSE Object-Oriented Systems Engineering Method (INCOSE 2008) [13];

and Systematica Methodology for Pattern-Based Systems Engineering (ICTT System

Sciences) [23–27].

As mentioned above, the general development of MBSE methodologies is helping

systems engineers do a better job of adapting to the accelerated life cycles in product

development. But, due to the increasing complexity of production and manufacturing

processes and advancing in the computer-aided design technology, the traditional

systems engineering tools no longer have enough capabilities to help systems engineers

manage processes. The traditional systems engineering tools can be divided into

three categories, which are system design tools, systems analysis tools, and systems

control tools [28]. In each category, many methods and tools are involved to assist

systems engineers in different processes. Most of the time, systems engineers use

more than one system methods and tools to manage projects. For example, one of

MBSE methodologies, Object-Oriented Systems Engineering Method (OOSEM), can

be provided by SysML tools and associated with configuration management tools,

performance modeling tools, and verification tools [29]. With the increased diversity

9

of system tools, it is difficult for systems engineers to integrate tools and at the same

time track the changes during processes.

MBSE methodology emphasis capturing elements and relationships in model and

reusing then across multiple diagrams [13]. Most of the system tools do not provide

a database for reusing legacy data in life cycle process.

Currently, researchers are trying to integrate PLM and systems engineering to

overcome the weaknesses of traditional systems engineering tools and achieve the

benefits of using PLM software; for instance, one company, called InterCax, have

created a concept to build a bridge between MBSE and PLM. This concept called

System Lifecycle Management (SLIM), which is deployed in Systems Modeling Lan-

guage (SysML) environment, uses PLM software for specialization and configuration

control [30]. This SLIM allows systems engineers to work directly in an SysML envi-

ronment, in which the modeling language is most familiar to systems engineers. It also

addresses the weaknesses of SysML. Another study conducted by Georgia Institution

of Technology attempts to reduce cost and time by implementing a digitized systems

engineering process into a PLM software [1]. InterCax [30] requires systems engi-

neers to work in SysML environment instead of working in PLM environment; also,

it does not use the full capabilities of PLM. On the other hand, the work by Geor-

gia Institution of Technology does not include MBSE models, systems engineering

implementation of Integrated Product and Process Design method in PLM software

is used. The current work addresses the integration of PLM with systems engineer-

ing models to address the current limitations and advance the systems engineering

practice. More specifically, we propose a new methodology for integrating Team-

center PLM (an industry standard tool) with an advanced MBSE model, namely

s*pattern [23–27]. This is meant to achieve the full potential of implementing “a

re-usable and configurable” systems engineering model on a powerful PLM platform

that supports a comprehensive set of tools and functionalities.

10

1.3 Thesis Objectives and Contributions

Implementing a MBSE model in Teamcenter PLM and then using the latters capa-

bilities to improve systems engineering process is our approach to advance the systems

engineering practice. In order to achieve this, a strong MBSE model and process that

supports PLM systems engineering application and integration is needed; systemat-

ica methodology for PBSE has shown more advantages than other MBSE methods;

PBSE has MBSE capabilities but simplifies the introduction of MBSE methods; it

also reduces the recurring cost of modeling and shifting from “learn how to model

to “learn the model. On the other hand, a strong PLM allowing integrating systems

engineering model in its application tool is also required. Teamcenter provides a

systems engineering application to integrate MBSE method in it.

In order to implement the merging of systems engineering with PLM in practice,

the objectives of this research were as follows:

• Identify a targeted portion which is initially focused on Feature-Interactions-

Functional Roles- Physical Systems trace of the General Production Pattern in

S* Metamodel [31], and implement it into Teamcenter data schema.

• Generate a specialized system from using General Production Pattern in a spe-

cific application.

The long-term goal of this research is implementing the entire General Production

Pattern in S*Metamodel into Siemens Teamcenter Systems Engineering data schema.

1.4 Thesis Outline

This thesis focuses on moving the key portion of General Production Pattern,

which is a S*Pattern data structure compatible with the S*Metamodel, into a Siemens

Teamcenter Systems Engineering data schema [21]. In Chapter 2, the details about

the concept of MBSE and PBSE, the methodology of the S*model and the S*Metamodel

are presented. In addition, the methodology of S*Patterns is presented. Furthermore,

11

the data model configuring tool, Business Modeler Integrated Development Envi-

ronment (BMIDE), is introduced. Last, the functionalities of Siemens Teamcenter

software and systems engineering application are illustrated.

In Chapter 3 the procedure of creating and configuring S* mapping classes in

BMIDE are presented. Bill of materials (BOM) views for Feature Framework, Inter-

action Framework, and System Environment are created in the Teamcenter systems

engineering application environment. The relationships between different classes are

also created. Teamcenter is merged with Microsoft Visio 2010 professional to gener-

ate diagrams for reviews. An oil filter S* Model specialized from General Production

Pattern is applied to demonstrate the use of the General Production Pattern in Team-

center platform.

Chapter 4 discusses the results of this thesis.

In Chapters 5 and 6 conclusions and future work are presented.

12

2. METHODOLOGY

2.1 MBSE/PBSE and S* Metamodel

ICTT System Sciences, a systems engineering company devoted to solving com-

plex systems problems for enterprises, institutions and industries, has implemented

Systematica systems engineering methodology [23] which is a specific MBSE method-

ology, through the use of S* Model. Leveraging the power of MBSE, a PBSE method-

ology, which is re-usable, configurable S* Models based on the use of S*Metamodel

[31],is created. Re-usable, configurable S*Models are also called S* Patterns [23, 24,

27]. As mentioned earlier, the International Council of Systems Engineering defines

MBSE a “formalized application of modeling to support system requirements, de-

sign, analysis, verification and validation activities in the system development life

cycle” [32]. MBSE is a paradigm that emphasizes the common visual modeling prin-

ciples’ application and best practice involved in systems engineering activities. One

of the visual modeling languages is SysML, which is in response to Unified Modeling

Language (UML) for systems engineering [33]. The S* Model is an MBSE model

which is based on the S* Metamodel. The practical S* Models are not limited in

whatever modeling languages and tools are represented. Throughout the develop-

ment of MBSE methodologies, the vast number of MBSE methodologies and system

representation standards have proved that many elements are needed to build the

“smallest model” framework of the S* Metamodel [24]. This is why S* Metamodel as

the smallest set of information sufficient describes a system for systems engineering

purpose, in any modeling language.

The Figure 2.1 depict key element of the S* Metamodel, where different colors rep-

resent different related classes [23]. In this research, the trace of Feature, Functional

Interaction, Functional Role, and Design Component is being focused.

13

Figure 2.1. Summary of some of the key portions of S* Metamodel [23]

Understanding the performance of each element in a system and interactions

among elements is necessary to understand the whole system. As long as the in-

creasing complexity of systems, stakeholders have different performance measures.

It is necessary to understand the needs and performance measures of all stakehold-

ers [28]. Features are packages of behavior or performance of a system that have

stakeholder value [23]. S* Models are aimed at covering all the stakeholders not

only just users or customers. Feature attributes are features’ parameters that express

stakeholder valuations in stakeholder language. For example, the Cruise Control Fea-

ture has feature attributes in fuel economy and speed variation. Because Features

and Feature Attributes cover all stakeholders’ value and interest, they affect all the

design decisions, trade-offs, and optimization should be made in accordance. In the

General Production Pattern Metamodel, selectable system features are described by

the S* Metamodel. When the S* Patterns are used in specific product specializa-

tion and configuration, feature selection must obey one or few stakeholder values.

Those selectable features contain: system delivery, compatibility, production capa-

bility, reliability and availability, operability, maintainability, configurability, secur-

ability, accountability, integrity, product containment, product protection, regulatory

14

compliance, and health and safety. Those feature models can be categorized by dif-

ferent stakeholders, for instance, system management functions focus on operability,

maintainability, configurability, securability, and accountability.

Learned from traditional historical views, lots of potential problems occurred due

to ignoring interactions in the system. If go back to take a look at all the physical sci-

ence, and mathematics, whether Newton’s Law or Maxwell’s equation, all the physical

laws describe interactions [25]. Each engineering discipline (ME, EE, ChE, etc.) is

built upon those laws [23,25]. Since systems engineering is an interdisciplinary field,

has to respect the physical laws and bring interaction to the front. In a system, there

always exist interactions between components; an interaction means exchange of en-

ergy, force, mass or information [25] which leads to change of state. The Systematica

calls that interaction a functional interaction, and each component plays a functional

role in that interaction. MBSE helps make interactions explicit; this is the reason

to emphasizes functional interaction as a fundamentally coordinating class relating

other information in the S* Metamodel [25]. In the general production pattern S*

Metamodel, the interaction class consists the following interaction actions: consume

utility, control operation, coordinate production, deliver system, detect faults, main-

tain system, manage configuration data, manage electronic access, manage fault and

maintenance data and alarms, manage maintenance safety procedures, manage phys-

ical access, manage safety procedures and interlocks, manage security data, monitor

product quality, operate system, perform configuration procedures, perform mainte-

nance procedures, protect, provide interface, remove scrap, remove system, secure

system, stage material, configure system, account for system, and transport material.

Those interactions support defined features in a system.

The functional role is also called logical system in S* Metamodel. Functional Roles

are described by their behavior, and the role attributes are parameters of functional

role which have technical valuations [34]. Operator, operator (level N+1), man-

ufacturing management system, manufacturing management system (Level N+1),

manufacturing system, manufacturing system (level N-1), combined managed sys-

15

tem, managed subsystem, direct management system, material in process, occupant

system, air in process, environment, manufacturing system of access, support and

isolation system, support and isolation system (level N-1), utility service, utility ser-

vice(level N-1), material service, and material service (level N-1) are included in the

Logical Systems class in General Production Pattern.

The methodologies in systems engineering are concerned with both the engineering

process and the information activities during the process [23]. Compared with tradi-

tional systems engineering, PBSE refers using S* Patterns concentrates on enhancing

information involvement and relationships passing through the systems’ process. In

general, PBSE is built on MBSE models in patterns and uses a powerful MBSE Meta-

model to describe systemic phenomena. There are many advantages to applying the

PBSE approach, such as reducing the cost and time that shifting from the “learn how

to model” to the “learn the model”, such as being compatible with multiple modeling

language standards, generating configured systems from models rapidly, etc.

Figure 2.2. The engineering process consumes and products information [23]

S* Patterns are re-usable, configurable S*Models [23,24,26], based on Systematica

methodology for PBSE. An S*Pattern may be used and re-used across different system

product lines, system families or systems configurations [23]. Once an S* Pattern has

16

been applied in a specific enterprise or product line, it is very easy to quickly generate

an S* Model from pattern instead of creating a new model in a new project.

Figure 2.3. S* Patterns are re-usable, configurable S* Models [23]

As depicted in the above figure shows, PBSE involves two processes involved:

(1) The Pattern Management Process in a general system pattern, product lines,

or system families’ levels, (2) The Pattern Configuration Process in an individual

production level [26]. The Pattern Management Process generates the underlying

family model and updates the model based on project discovery and learning at the

same time [26]. The Pattern Configuration Process makes configurations from upper

level pattern use on specific projects. The S* Metamodel in the figure above is a

Metamodel to create the General Production Pattern. This is the S* pattern have

implemented in the Teamcenter platform, as described in the next chapter.

2.2 Business Modeler Integrated Devolvement Environment

BMIDE stands for Business Modeler Integrated Development Environment, it is

a tool used for configuring the data model of the Teamcenter installation. Using the

BMIDE function is allowed to configure the data model with new business objects,

classes, and properties. BMIDE interface contain two perspectives; standard perspec-

tives and advanced perspectives. In this research, the standard perspective is used

due to its simplification and contains all the views as needed.

17

Using BMIDE allows creating data model objects, this included business objects,

classes, properties, constants, and document management objects, lists of values,

options, and rules. The specific objects created in this research will be described

later.

2.3 PLM Software: Teamcenter

Under economic globalization pressure and highly competitive markets, PLM is

necessary lead companies to develop and deliver better products. PLM systems help

those companies make smarter decisions by providing decision makers with the right

information.

Siemens, as one of the pioneer multinational conglomerate companies in the world,

has involved in automation, energy, healthcare and mobility. Due to the structure of

the company, Siemens realized it needed to keep enhancing its competitiveness like all

the large international companies, is a very tough job to finish. In this case, Siemens

aimed to future develop at the PLM software market. Siemens spent a lot of money

to complete the acquisition of UGS, a computer software company that specializes in

Product Lifecycle Management software in both 2D and 3D areas. Currently, Siemens

have a lot of products in PLM software portfolio, for instance, Teamcenter, Active

Integration, NX, Solid Edge, Fibersim, Syncrofit, Seat Design Environment, Femap,

LMS, QPE, and Tecomatix. Those PLM products have covered diverse technologies,

including PDM, CAD (Computer-aided design), CAM (Computer-aided manufac-

turing), CAE (Computer-aided engineering), FEA (Finite element analysis), digital

manufacturing, and MOM (Manufacturing operations management) etc.

Teamcenter is the most widely used PLM software system in the world [35]. It

helps companies deliver complex products to the market by connecting people with

products and process in order to enhance productivity and integrate global opera-

tions. Basically, this is Siemens PLM software’s collaborative product data manage-

ment solution. Teamcenter provides a more manageable, more productive, collabo-

18

rative closer and stronger control environment for the manufacturing industry, this

capability of Teamcenter simplify and speed up implementation process, increase pro-

ductivity, enhance corporation, and expand the range of the whole product lifecycle

process control. Its overall unified architecture can provide a complete end to end

PLM portfolio to user.

Teamcenter customers are distributed at many areas, especially in automotive,

aerospace and defense, high-tech electronics and machinery. The major benefit of us-

ing Teamcenter can be divided by few aspects. First of all, Productivity is the most

important advantage in using Teamcenter, Teamcenter is able to establish a single

source of product and process because of this, all the team members can find needed

information everywhere and all the time through accessing this common resource.

The most direct impact is saving lots of searching time for all individual users. The

second is Teamwork; the Teamcenter facilitate collaboration to enables global teams

to communicate easily and visually, contact suppliers earlier, and improve the change

process to let decision makers make right decisions faster. Teamcenter is a product

lifecycle management tool, so manageability is absolutely one of the benefits. Com-

pared to other PLM software systems in the market, Teamcenter is the only system

that offers solutions from product planning all the way to retirement. Its end to

end solution can help users manage changes acrossing lifecycle. As mentioned ear-

lier, Teamcenter is the most widely used PLM software in the world, which means

there are higher probabilities to achieve collaboration between companies by using

the same PLM software. In addition, communication between users, development

and innovation in Teamcenter itself will be easier to accomplish.

Teamcenter has two tiers: A Rich client tier and a thin client tier. The Thin

client is web-based and without the application of computer terminals in the system.

The Rich client is installed in the user’s machinery. Usually, the Rich client is used

by authors and administrators who have access to manage design, create data, and

maintain process. The Thin client users are consumers and suppliers who are only

19

needed to view data. In this research, as an administrator, Teamcenter Rich client

interface are being used.

Figure 2.4. Teamcenter rich client interface [36]

Siemens PLM Corporation provided a detailed list of Teamcenter capability. It

included design and simulation management, document and content management,

BOM management, PLM process execution, requirement management, service life-

cycle management, manufacturing management, supplier integration, product cost

management, environment compliance and product sustainability, and Systems En-

gineering. The emphasis of this thesis is using the systems engineering application in

Teamcenter to implement and accomplish a PBSE model and establish its platform.

Teamcenter is the first PLM solution to integrate systems engineering within an

entire product lifecycle. It provides a close loop systems engineering environment.

The systems engineering environment employs systems engineering methodology to

allow an engineer to establish systems requirement, then define and validate all com-

ponent and subsystems in the contact of the entire system’s lifecycle. The benefit is

20

that products meet customers’ value satisfaction and understand the entire impact of

design decisions in the early stages of the lifecycle.

In order to access systems engineering application module, in the Teamcenter

interface, navigation pane options allow the users to select systems engineering ap-

plications in primary or secondary application window.

Figure 2.5. Teamcenter systems engineering in navigation pane [36]

After selecting the systems engineering application in the Primary Application,

the systems engineering icon is shown in Figure 2.6 which is the primary application

tab .

In addition, the most important reason for us to choose Teamcenter is because

Teamcenter systems engineering is the most relevant application to Systematica method-

ology, models, and patterns. This application allows a system engineer to view and

manage physical, logical, functional, and requirement statement hierarchies and trace

relationships between them.

21

Figure 2.6. Teamcenter primary applications of systems engineering [36]

22

3. IMPLEMENTATION AND DEMONSTRATION

3.1 Research Approach

The methodology followed in this research consists of three steps: mapping; im-

plementation; and specialization. This is illustrated in Figure 3.1. The first step was

the mapping process from Systematica Metamodel to Teamcenter Schema in BMIDE.

The second step was the implementation process in Teamcenter interface. The last

step was the specialization and configuration by using the S*Pattern in oil filter end

seal compression manufacturing process.

Figure 3.1. Research process approach (I) The S* Pattern compatible
with S* Metamodel (II) Mapping documental of S* Metalmodel to
Teamcenter schema (columns are hidden due to confidentiality) (III)
Sample implementation of S* Metamodel in Teamcenter interface (IV)
Configured S* Pattern of oil filter end seal compression research.

23

3.2 Mapping in BMIDE

Teamcenter was chosen in this research because of its capabilities. Teamcenter sys-

tems engineering is the most relevant application to Systematica models and patterns.

This application is allowed a system engineer’s view to manage physical, logical, func-

tional, and requirement statement hierarchies and trace relationship between them.

Before doing schema configuration in Teamcenter systems engineering, it is necessary

to use BMIDE interface to define data model objects (business object, classes, prop-

erties etc.). Those data model objects are based on S* Metamodel elements mapping

to Teamcenter. The first version of the mapping document [37] was summarized by

the following graph; due to the confidential agreement with the industrial sponsor of

this research, some information has been removed/protected.

Figure 3.2. Mapping documental of S* Metalmodel to Teamcenter
schema (columns are hidden due to confidentiality)

In this mapping document, the main design choices include: mapping most sys-

tematica classes to specialized classes in Teamcenter Logical Block item type, map-

ping most systematica relationships to Teamcenter structural relationships, mapping

Systematica classes of different attributes (Feature Attribute, Role Attribute, and

24

Physical System Attribute) to specialized item and attaching requirement statement

content into Requirement Attribute Table.

Business objects are fundamental objects to represent product parts, documents,

change process, and so on. Item, Item Revision, Dataset, Folder and Form are used

in business objects frequently. A basic structure of an “Item” object consists of item

master, item revision, views and other object forms, an “Item Revisions” uses to

manage a specific revision of an item. The “Item” object was used in this research

to represent systems engineering logical blocks, processes, requirements and similar

concepts. As shown in the figure below, the “Fnd0SEBlock” object was attached

under “Item” to represent systems engineering logical blocks. Logical blocks, which

were created to define abstract physical architectures for implementing system func-

tions, represent solution components. In this research, the logical block was the most

appropriate object to represent S* Metamodel items.

Figure 3.3. Business objects in BMIDE view

Once the mapping document that contains specialized item types, specialized

relationship types, and the mapping methods were prepared for Systematica Schema

25

Figure 3.4. The Item business object in BMIDE view

configuration, creating a new BMIDE project template was the first step to configure

Teamcenter schema.

Figure 3.5. Business Modeler IDE interface

26

In the BMIDE interface, Selecting File, New, and New BMIDE Template Project,

it allows users to create a BMIDE Template Project to organize all extensions ac-

cording to the Teamcenter Data Model, Behavior and Rules. The BMIDE Template

Project provides a template environment for users to organize XML files in folders

instead of coding XML files, and packaging template for deployment.

Figure 3.6. New Business Modeler IDE template project creation window

The project name is chosen by users. Template name and template display name

are default to the project name. Template description will appear in Teamcenter

27

environment manager for reviewing and understanding. Prefix is a unique naming to

distinguish with other projects.

In the next step, BMIDE also allows users to select a dependent template, choose

a language from a list in Locals Selector, write a code in Code Generation Information

if needed, make setting in the Build Configuration Information, and make setting in

the Service Bindings Configuration Information. A new BMIDE template will be

generated once all the information is finished.

Figure 3.7. View of “Thesisproject” template project

28

In this research, this template was called “Thesisproject” with a certain prefix had

been created. As mentioned earlier in the mapping document, most of the specialized

item types will be constructed under a specific item type. That specific item type

will be used as a “Father” COTS object for specialized item types.

In order to better control specialized items without affecting Teamcenter COTs

items, two higher level object groups were created based on different characteristics

of objects: one was created to manage and organize systems engineering specialized

items and another one was created to represent requirement statements and needs.

By creating higher level object groups, it is easier to add common property or value

for all specialized items.

In Teamcenter, relationships are also defined in business objects. “ImanRelation”

is the object to manage and organize relationships between business objects. One

specialized relationship type called “trace link” was created to represent relationships

in hierarchies. For example, features in systems engineering model were created based

on stakeholders needs, A “Need” object is the source of a “Feature” object.

In BMIDE interface, in order to create a new business object, it is necessary to

understand the upper level object, which is also called “Father” object, for that new

created object. Understanding upper level object is not only for creating hierarchies,

but also hesitating properties and values. For example, in this research, most of

the specialized objects were created under a certain item type; the two higher level

object groups were also created under that specific item type; all the properties and

values existed in COTs business object automatically comply with that two higher

level object groups. In addition, it is easy to show the relationship between different

levels. After figuring out the relationship between different levels, it is ready to create

a new business object under the “Father” object. The figure below showed the window

of creating a new business object.

29

Figure 3.8. New business object creating window

After creating a new business object, a new business class that contains a small let-

ter “c” showed in BMIDE view. The two figures below showed editor views of sample

specialized items which are “Feature” and “FeatureRevision”. In the object editor

view window, all the characteristics of the new business object are demonstrated.

From the two figures, feature editor window and feature revision editor window look

similar. Project name, display name, parent class, item revision, and object icon ap-

peared in both main tabs. All the properties details were shown in property interface

which allow users to create new properties.

30

Figure 3.9. Sample business object Feature view (contents are hidden
due to confidentiality)

Figure 3.10. Sample business object FeatureRevision view (contents
are hidden due to confidentiality)

31

The “ItemRevision” manages the specific revision instance of an item. In order to

have properties show in Teamcenter BOM view, all the properties should be added in

“ItemRevision” property window. In the “ItemRevision” window, the add button was

on the right side of the property table which enables users to create new properties.

A property window showed up and contained a few property types by clicking the

add button. In this research, persistent properties were selected in property types to

use in Systematica Metamodel elements. The figures showed the procedure to create

a new persistent property in BMIDE.

Figure 3.11. Creating a new property in a business object

32

Figure 3.12. Creating a new persistent property in a business object

The specialized items, modeled class display name, properties created in each ob-

ject, properties’ display names, and attribute types of each property were summarized

in the research.

Since many specialized items were created in BMIDE, providing a visual distinc-

tion of each item is necessary. In this case, adding icons for different specialized items

enable diversity appearance in Teamcenter. In the view of project template, the icons

folder is underneath the “Project Files”. Administrators or users are able to insert

and store defined customer icons’ photos in this folder. Going back to specific busi-

ness object editor views enable to change icons by selecting defined customer icons

figure from icons folder instead of using default icons. The Figures 3.14 and 3.15

33

were examples of a changed feature icon and a changed feature revision icon. In this

research, a black color background and an acronym was used to represent feature

and feature revision; a green color background and an acronym was created to repre-

sent Interaction and Interaction revision; a yellow color background and an acronym

represented logical system and logical system revision.

Figure 3.13. Icons creating in project files

Figure 3.14. Changed icon in business object “Feature” view

34

Figure 3.15. Changed icon in business object “FeatureRevision” view

An icon is a good way to distinguish different objects. In addition, naming rule

is another capability to organize those diversity business objects in Teamcenter view.

Naming rules consist of a rule patter and a counter to define the data entry format

for a business object property. Underneath the “Extensions” folder, “Naming Rule”

folder enables users to create a new naming rule.

Figure 3.16. Naming rule created in rules folder (contents are hidden
due to confidentiality)

35

In the naming rule window, pattern, initial value, maximum value, and description

are able to be added in a “add naming rule pattern” window. Once a naming rule

is created, it is necessary to attach it in the correspondent business object property.

An example below shows a feature naming rule created in BMIDE.

Figure 3.17. The view of sample naming rule in business object feature

The summary of Icon name within specialized objects and details about naming

rules, pattern, initial value, and maximum value were create in research. In order to

provide a convenient environment for end users, Lists of values (LOVs) is a concrete

capability for end users to pick a list of defined values which are displayed in the

Teamcenter data entry box. BMIDE enables users to create three different types

of LOVs which are Batch LOV, Classis LOV, and Dynamic LOV. In this research,

a classic LOV was created due to its string type. The figures are details creating

procedures of a classic LOVs in BMIDE.

36

Figure 3.18. List of values folder in BMIDE view

Figure 3.19. Creating a new classic list of Values window

37

The figure below is an example of a created custom LOV. The table in the middle

of the dialog box was the place to create customer defined values which will appear

in a data entry box for picking. Once finished building a picking list, it is necessary

to attach these LOVs into a business object property.

Figure 3.20. LOVs view of a sample property (contents are hidden
due to confidentiality)

After created the project template, constructing business objects, adding proper-

ties, and defining icons, list of values, and naming rules. The last step to finish BMIDE

38

was to implement custom properties which appear in Teamcenter BOM columns (the

explanation of BOM view columns will be illustrated later). There are a few re-

quirements that have to be done to add custom properties in BOM columns in order

to display in Teamcenter Structure Manager or system engineering application, such

as: customer business objects must be created under the “ItemRevision” objects and

customs properties must be added to those customer business objects.

The first step to add custom properties in BOM columns was enabling Global

Constants Editor. On the menu bar, choose Global Constants Editor in BMIDE

Editors, Global Constants provides consistent definitions which have either default

values or custom values used throughout the system. The constant was selected in

“Fnd0BOMLineRevCongifProps”. From the name of this constant, it is easy to tell

that this constant is used for adding properties from item revision types

Figure 3.21. The global constant window

39

When this constant had been selected and edited, a dialog box “Modify Global

Constant” showed on the screen to enable adding those customer objects revision,

which contains custom properties, by click “add button”.

Figure 3.22. Added business object revisions in modify global constant window

In the BMIDE training document, it mentioned “When you create a new constant,

you must also add the code on the server to return the constant’s value to the caller,

so the caller can branch the business logic based on the returned value [38]”. In this

case, reload data had to be done before using BOMLine. In the BOMLine dialog box,

new property names appeared in BOM columns starting with bi allow users to edit

their display name for using in BOM view in Teamcenter.

40

Figure 3.23. Modified properties in “BOMLine” view

41

3.3 Implementation of General Production Pattern

The objective of this research was to implement the trace of Feature-Interaction-

Functional Roles-Design Component from General Production Pattern [39] based on

S* Metamodel into Teamcenter Systems Engineering. In the Teamcenter Systems

Engineering interface (Figure 3.24), several folders were created to store different

specialized items for better organization. The steps to create a folder in Teamcenter

rich client interface included New, Meum, and Folder.

Figure 3.24. Teamcenter systems engineering interface

Currently, Feature, Interaction, Logical Systems, Requirement Attribute Table

(include Attribute Table Row and Requirement Relationship), and Role Attribute

folders that contain correspondent items under a Patterns folder were created. In

addition, Generic Model Views folder had been created to collect BOM structure

diagrams.

42

Figure 3.25. Created folders for project data management

An Item is a structure of related objects that represents products, parts, compo-

nents, or systems engineering logical blocks. Items or item revisions as the funda-

mental data objects are used to manage information in Teamcenter. Items are able

to contain other data objects which include items and folders. In this research, we

mapped all specialized S* Metamodel elements into items in Teamcenter platform.

In this case, creating either an S* Metamodel element or an item in Teamcenter are

similar. When clicked “Item” in the “New” tab, the following dialog box had been

shown. In this dialog box, the users allowed to pick a default or customer defined

item type. The mapping in BMIDE enabled to select those specialized S* Metamodel

elements as customer defined items in this window.

43

Figure 3.26. Creating a new business object window

This is an example of creating an S* Metamodel element “Feature” in general

production pattern feature folder. Once created this feature item in Teamcenter

interface, defined icon and naming rule in BMIDE are automatically showed in the

dialog box. In addition, the name and description of this item could be defined by

users.

44

Figure 3.27. Creating a sample Systematica class in new business
object information defining window

A set of features, interactions, and logical systems included in S* Metamodel el-

ements were created in folders, these features, interactions, and logical systems were

summarized by general production pattern. In this case, features were general de-

scriptions of stakeholders needs in a production, and interactions and logical systems

were summarized based on features. Because of successful configuration in BMIDE,

Features, Interactions, and Logical Systems all carried special icons and sequence IDs.

45

Figure 3.28. Created feature items in feature folder

46

Figure 3.29. Created functional interaction items in functional interaction folder

47

Figure 3.30. Created logical system items in logical systems folder

In this general production pattern, several “SEPerspective” items were created

to represent logical models in S* Metamodel which store and manage a set of corre-

spondent logical blocks. In the Teamcenter Systems Engineering application, many

views were included, for example: logical block view, function view, and requirement

view. A created logical model can be displayed in a Logical Block view automatically

or a Structure Manager to create, view, and modify a BOM view. The advantages

of using Logical Block views are: performing design solution alternatives, building

logical decompositions, and building diagram logical decompositions.

The following graphs are “Feature Framework” contains all the “Feature” logical

blocks, “Interaction Framework” contains all the “Functional Interactions”, “logical

blocks”, and “Systems Environment” contains all the “Logical System” logical blocks.

Each view represents a class in Systematica Metamodel.

48

Figure 3.31. Feature framework in BOM view

Figure 3.32. Interaction framework in BOM view

49

Figure 3.33. System environment in BOM view

50

The column configuration box helps to select a set of saved column configuration

list based on different views, and those columns represent customer properties of

correspondent objects which defined by administrator in BMIDE. Currently, those

columns are used to show both the value of relationships and the property value

of classes in the BOM view by switching table display control, which is an explicit

and simple way to present. In addition, Teamcenter used tree structures to build

relationships between different hierarchies, by expanding or collapsing nodes to view

an appropriate data in tree structures. These tree structures shows an explicit up-

down structure and made easier for users to trace the changes during processes.

Figure 3.34. Feature attributes and values in properties

The feature attributes were directly created in the lower-level of features, in the

BOM view, by accessing column configuration box to show related feature attributes

properties. In those three BOM views, there were some invisible relationships con-

nected by trace links among the same hierarchy. Some items are considered as su-

perclass of other classes, the latter is a special case of the former. For example, if

vehicle is considered as a superclass and then cars are classes. The mapping in the

51

BMIDE created a trace link relationship called “IsSuperclassOf” to define this rela-

tionship between class and superclass in Teamcenter systems engineering interface.

Trace links provide treatabilities between structure elements, and traceability defines

one object is precedent than another object. The figure below is an example of trace

link report generated from feature BOM view.

Figure 3.35. A sample trace link report

52

Figure 3.36. The overall class and superclass summary

From the S* Metamodel, each class has relationships with other class. The rela-

tionship between feature and feature attribute, feature and interaction, interaction

and logical system were created in BOM view. A primary key is a way to designate

a unique identification of each record in the table. In the relationship between the

two tables, the primary key has been used in one table to refer a specific record from

another table. In this research, relationships between S* Metamodel classes were

represented by creating primary keys in BOM views to show inter-connections. The

trace from Feature to Physical Systems is a bidirectional relationship. This trace

allows systems engineers to select appropriate features based on defined stakeholder

needs or requirements, and then all the way to find involved physical systems by using

primary keys. Moreover, using the primary key to build connect between different

classes, it is easy to trace the relationship from component design to features. For ex-

ample, most of commercial industries started a project with product designs. In this

case, this trace helps engineers to figure out whether their product designs meet re-

53

quirements from stakeholders or whether consistent or conflict with other engineering

departments.

Figure 3.37. Primary key in feature and feature attribute

54

Figure 3.38. The connection of feature and Interaction represented
by feature primary key value and interaction primary key rule

Figure 3.39. The connection of interaction and logical systems rep-
resented by role primary key rule

55

Figure 3.40. The summaries of Teamcenter relationships and correl-
ative primary keys

Teamcenter also have ability to configure the Microsoft office Visio diagram in-

tegration. Sometimes, building blocks help users to illustrate hierarchical relation-

ships of elements easier. For example, the following feature overview and interaction

overview graphs used block diagram to show the traceability between same hierarchi-

cal classes. Since the live integration of Teamcenter and Microsoft Visio, diagrams

can be generated from Teamcenter based on using appropriate diagrams templates.

The Feature overview diagram shows all the features, feature attributes, and rela-

tionships between features’ superclass and classes. The Interaction overview diagram

shows the Interactions in general production and relationships between interactions

superclass and classes.

56

Figure 3.41. Feature overview diagram in Microsoft Visio

57

Figure 3.42. Interaction overview diagram in Microsoft Visio

58

3.4 Configuration System: Oil Filter End Seal Compression

Oil filters are designed to remove containment in an engine oil, transmission oil,

lubricating oil, or hydraulic oil. The major use of oil filter is in automotive combustion

engine. In this case, manufacturing of the oil filter selected to illustrate general

production pattern can be specialized.

Figure 3.43. Oil filter physical architectures [40]

The end seal bonding compression production selected to demonstrate this oil fil-

ter specialization research. In an enterprise case, usually, systems engineers focus on

interactions with a starting point. specialized from the S* Pattern, the interaction

to produce this end seal compression bonding should be classified into “Transform

Material”, in this research, a new interaction called “Perform Compression Bond-

ing” was created to represent the interaction of which components are bonded using

compression forces.

59

Figure 3.44. Specialized functional interaction framework

Once the interaction was defined, the logical systems were modeled quickly. Filter

media, bonding compound, and end cap are necessary parts for production. Local

airspace, manufacturing system and other manufacturing logical systems hesitated

from general production pattern directly. Oil filter compression not only has to con-

sider production feature, interactions and logical systems, but also need to consider

manufacturing systems. Functional role attributes created and attached to logical

systems, those role attributes were considered as technical valuation of production

logical systems has been shown in the figure of System Environment (Production).

60

Figure 3.45. Specialized system environment

Figure 3.46. Specialized role attributes

61

Based on considering stakeholders needs and understanding of interactions and

logical systems, production and manufacturing features were created. Material trans-

formation capability, production capability features and other general production

features for manufacturing should be populated from the S* Pattern directly. And a

specialized oil filter production feature that contains engine lubricant filtration fea-

ture and reliability (production) features were created. Feature attribute based on

stakeholders valuations under each feature were also created.

Figure 3.47. Specialized feature framework

The Physical Systems were not created in the general production pattern due to

depending on specific projects; it is difficult to summarize physical system in a general

production pattern. Physical systems in this research can be defined obviously, which

includes: end seal adhesive, accordion filtration component, and filter cap component.

Based on understanding of each physical system, physical system attributes were also

created. The CAD drawing created in NX or other CAD tools can be linked with

physical system to accomplish integration by using Teamcenter environment.

62

Figure 3.48. Specialized feature attributes

Figure 3.49. Specialized physical systems and physical systems attributes

Once the different views representing the S* Metamodel classes were created, the

connections between these classes also needed to be constructed. As mentioned in

the general production pattern, primary key is the unique identification connection

between classes. In this specialized oil filter end seal compression model, the primary

keys were still needed to help trace relationship from features to physical systems.

63

Figure 3.50. CAD drawings for physical systems

The figures below show the relationship constructed in BOM view of features and

interaction, interactions and logical systems. Moreover, physical systems should be

allocated with logical systems.

Figure 3.51. Specialized connections between feature and interaction

In this specialization, a Matrix Coupling concept was introduced. Attribute Cou-

plings represent how the value of these attributes with respect to each other if changes

occurred. Matrix A Coupling describes how Feature Attribute change related to the

64

Figure 3.52. Specialized connections between interaction and logical systems

value change of Functional Role Attribute. Matrix B Coupling describes how Func-

tional Role Attributes change related to the value of Physical Component Attributes.

In the Matrix A Coupling, LSPD represents impacts in line speed, CB stands for

Compression Bonding Interactions, FCAP represents impacts on Filter Capability

and Reliability. In the BOM view structure, tree structures were still used to build

relationships between attributes. For example, LSPD attached under a line speed

feature attribute and then a bonding time system attribute created directly under

LSPD. Once the matrix couplings were built, the change of one attributes could be

traced with the other attribute quickly. This tree structure showed explicit up-down

structure, but also made it easier for users to trace changes during process. In the

Matrix A Coupling, if line speed is getting faster, the coupling called LSPD in the

tree structure affect the bonding time in the manufacturing system.

65

Figure 3.53. Matrix A coupling built in BOM structure

An excel relationship report for Matrix A Coupling is shown in the following figure.

Figure 3.54. Matrix A coupling reference

In the Matrix B Coupling, ADH stands for adhesive material data sheets, FM

stands for filter media data sheets, and EC means end cap data sheets.

66

Figure 3.55. Matrix B coupling reference

Figure 3.56. Matrix B coupling reference

67

Figure 3.57. Created Specialized classes in Teamcenter systems engineering

68

The summary of created specialized classes or relationship objects were showed in

Teamcenter systems engineering, this graph not only provides an explicit summary,

but also shows a preparation approach to create oil filter end seal compression project

from specialized general production pattern. By using this general production pattern

based S* Metamodel in Teamcenter, this S* Pattern are formally configurable through

configuration rules from selectable, configurable features for individual projects. This

pattern is created once for an enterprise and can be updated from leaning occurs

later. Since the S* pattern is built out of S* Metamodel components, a configured

model is required two transformation operations: Populate (instantiate) and adjust

values of attribute. Populated individual classes, relationships, and attributes into a

specialized S* Model, on various occasions, more than one instance may be populated

in a given element. This population is based on stakeholder needs and configuration

rules, and then select feature and find correspondent information built in S* Pattern.

Adjust values of attributes are based on specific project requirements for configuration

a specialized model from general production pattern.

69

4. DISCUSSION OF RESULTS

The integration of systems engineering and PLM is achieved in this thesis. The PLM

tool was used to support PBSE methodology based on the S*Metamodel; in the

meantime, the S*Pattern compatible with S*Metamodel provided a concrete MBSE

model to enhance systems engineering application in PLM software. In collaboration

with ICTT, we have demonstrated the methodology using a case study, namely, “the

oil filter production end seal compression bonding”. Below are the steps included

in the development process of the oil filter after the implementation of the general

production pattern:

• Collecting stakeholders’ requirements

In the oil filter end seal compression bonding production, the requirements

may included: the production capability of end seal compression bonding, the

transformation capability of end seal compression, engine lubricant filtration

capability, filtration reliability etc.

• Configuring the model by systems engineers

Based on the requirements, the features and feature attributes were populated

from the general production pattern. For example, the feature “Production

Capability” in oil filter (Figure 4.1) was populated from “Production Capabil-

ity” in general production pattern (Figure 4.2) based on the requirements of

production capability of end seal compression bonding.

70

Figure 4.1. Specialized feature framework

Figure 4.2. General production pattern feature framework

71

The functional interaction describes all external interactions of a subject system;

“Perform Compression Bonding” was selected in the demonstration. As shown

in Figure 4.3, this interaction was populated from the interaction “Transform

Material” in the general production pattern.

Figure 4.3. Specialized interaction in oil filter case

Based on the understanding of features and interactions, the logical systems

were defined. “Filter Media”, “End Cap”, and “Bonding Compound” logical

systems were created based on “Material in Process” from general production

pattern. The “Local Airspace” logical system was created in the oil filter model

based on “Air in Process” from the general production pattern, as shown in

Figure 4.4.

Figure 4.4. Specialized logical systems in oil filter case

In Figure 4.5, physical systems “Filter Media”, “End Cap”, and “Bonding Com-

pound” in the oil filter model were allocated with logical systems and CAD

drawing.

72

Figure 4.5. Allocation of logical systems and physical system in oil filter case [40]

Figure 4.6. Oil filter end seal bonding BOM view

73

• Figure 4.6 shows a created BOM view in Teamcenter based on the defined

features, interactions, and logical systems. Based on the model, related stake-

holders were involved:

– Project Manager and Systems Engineer

Systems engineer and project manager were defined by default and were

involved in the entire project.

– Design engineers

Design engineers were defined as a result of the presence of physical systems

“End Cap” CAD drawing.

– Manufacturing engineers

Manufacturing engineers were defined as a result of the presence of “Man-

ufacturing System” in physical system. The manufacturing system was

managed by manufacturing engineers.

– Quality engineers

Quality engineers were defined as a result of the presence of several physical

systems, the engine lubricant material, end cap, filter media, and bonding

material were evaluated by quality engineers.

– Material engineers

Material engineers were defined as a result of the presence of physical sys-

tem “Filter Media” and “Bonding Compound”; the filter media, lubricant,

and bonding material were selected by material engineers.

– Customers and Supplier

Customer and suppliers were defined by default.

74

Figure 4.7. Microsoft Visio view of oil filter model

• If a change of requirement happened (e.g. the production capability, in Figure

4.7, changed)

Based on the connection of production capability feature with interaction, log-

ical systems, and physical systems, design engineers, material engineers, man-

ufacturing engineers, quality engineers, project manager, and systems engineer

are informed about the change.

Systems engineers and project manager should known first, and then depending

on which logical systems were involved in the interaction, the other engineers

take certain actions.

Design engineers may change the CAD drawing, material engineers may re-

select the materials, quality engineers may re-evaluate materials, and project

75

managers may change schedule management, risk management, or cost man-

agement etc..

Compared to the traditional process, the above process has the following advan-

tages:

• Users’ requirements and the changes could be captured and reflected in the

product design promptly and accurately;

• Systems engineers, especially junior level, are able to create models quickly and

prevent mistakes during modeling. Systems engineers can do their job much

easier because of the reusable and reconfigurable nature of the models;

• Systems engineers have a trustful single data source to integrate all the systems

engineering tools;

• The live integration of PLM system with Microsoft package provides a powerful

environment to link Word, Excel, and Visio to generate documents, reports,

and diagrams used for systems engineers;

• The new process could increase the re-use of previous designs because similar

products’ models were configured from one generic model. This will help ac-

celerate the process of part verification and validation, and reduce the time to

market and potential failure;

• Systems engineers as administrators in the PLM system are able to set different

accesses for different roles and the corresponding actions that can be taken

during change.

S*Patterns and S*Models are tool-independent, which always conforms to the

underlying S*Metamodel. In order to use S*Metamodel in Teamcenter, mapping

was one of the most important steps. Fundamental detailed specifications of the

S*Metamodel classes, relationships, and attributes should be fully reflected in a spe-

cific schema. The mapping in this research used the extension of Teamcenter base

76

item type which is a logical block to represent classes and attributes. This mapping

process provided the General Production Pattern and oil filter specialization model

with fundamental capabilities.

The relationship between classes, for example, Feature and Interaction, Interaction

and Functional Role, Functional Role and Physical System, and Coupling Matrices

were mapped to standard Teamcenter structural relationships which are tree struc-

tures. These tree structures had many benefits from representing those relationships.

For example, tree structures in BOM management view showed explicit up-down

structures; it also made it easier for users to trace changes during the process.

77

5. CONCLUSION AND FUTURE WORK

The successful integration of PLM and S*Pattern is significant for enterprises, institu-

tions, and especially systems engineers in addressing challenges easier and quicker. In

this work, a specialized model was generated using General Production Pattern and

implemented in Teamcenter. Using S*Pattern’s extensions and re-using legacy data

to quickly created a systems engineer model reduce time and cost. In this research,

benefits brought to systems engineering practice include: stakeholders’ requirements

and changes could be captured and reflected in product design process promptly and

accurately; systems engineers were able to create models quickly and prevent mis-

takes during modeling; systems engineers could do their job much easier because of

reusable and reconfigurable nature of the models; and the process could increase the

re-use of previous designs.

In this work, the key portion of General Production Pattern expressed by S*Metamodel

(Feature-Interaction-Functional Role-Design Component) was implemented in Siemens

Teamcenter successfully. The Mapping in BMIDE generates the specific S*Metamodel

classes, attributes, and relationships into Teamcenter Schema.

Future work should include the completion of the implementation of S*Metamodel

in Teamcenter schema. This research work provided a basis for future evaluation of

the key portion of the S*Metamodel in general production pattern, as a successful

evaluation requires a good understanding of the mapping and implementation of the

S*Pattern.

In addition, there is a number of Teamcenter systems engineering abilities which

were not manifested in this research, for example: create, maintain and perform

physical model structures in Structure Manager, manage changes, integrate specific

CAD tools, and manage the impact analysis and process of changes etc. In this case,

78

the mapping process should be updated and upgraded to satisfy all the potential

capabilities when using of S* Pattern in Teamcenter environment.

Even though these tree structures showed many benefits when representing those

relationships, if the complexity of implementation, specialization and configuration

increases, a better relationship mapping method is required to define different re-

lationships separately. Teamcenter also has its own relationship management item

type such as “ImanRelation” to develop a variety of relationship types in BMIDE for

better management in Teamcenter.

Due to the limited time, this research work did not demonstrate all the Teamcenter

capabilities which can be used in this S* Pattern. Applying the S* Pattern with

Teamcenter to better support enterprise projects, specializing and configuring S*

Pattern in S* Models, and taking full advantage of PLM tool’s capabilities, improve

the product performance and competitiveness.

REFERENCES

79

REFERENCES

[1] P. B. Hart, “A plm implementation for aerospace systems engineering-conceptual
rotorcraft design,” vol. M.S. thesis, Dept. Mechanical. Eng., Georgia Institute of
Technology., Georgia, May 2009.

[2] A. Saaksvuori and A. Immonen, Product lifecycle management. Springer Science
and Business Media, 2008.

[3] G. Guo, C. Yu, and F. Liu, “Connotation and technology architecture of product
lifecycle management(plm),” China Mechanical Engineering, vol. 15, no. 6, pp.
512–515, 2004.

[4] N. I. Standards and T. Manufacturing, Product’s lifecycle. NIST Programs of
the Manufacturing Engineering Laboratory, 2008.

[5] R. Sudarsan, S. J. Fenves, R. D. Sriram, and F. Wang, “A product information
modeling framework for product lifecycle management,” Computer-aided design,
vol. 37, no. 13, pp. 1399–1411, 2005.

[6] A. Felic, B. Knig-Ries, and M. Klein, “Process-oriented semantic knowledge
management in product lifecycle management,” Procedia CIRP, vol. 25, pp. 361–
368, 2014.

[7] S. Lee, Y.-S. Ma, G. Thimm, and J. Verstraeten, “Product lifecycle management
in aviation maintenance, repair and overhaul,” Computers in industry, vol. 59,
no. 2, pp. 296–303, 2008.

[8] S. Terzi, A. Bouras, D. Dutta, M. Garetti, and D. Kiritsis, “Product lifecycle
management-from its history to its new role,” International Journal of Product
Lifecycle Management, vol. 4, no. 4, pp. 360–389, 2010.

[9] “Why do systems engineering?” INCOSEUK, 2009.

[10] A. J. Shenhar and B. Sauser, “Systems engineering management: The multi-
disciplinary discipline,” Handbook of systems engineering and management, pp.
113–36, 2009.

[11] C. Haskins, INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities. INCOSE, 2007.

[12] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis. Pren-
tice Hall Englewood Cliffs, New Jersey, 2006, vol. 4.

[13] P. Pearce and M. Hause, “Iso-15288, oosem and model-based submarine design.”
SETE/APCOSE 2012, 2012.

[14] S. Arnold, “Iso 15288 systems engineeringsystem life cycle processes,” Interna-
tional Standards Organisation, 2002.

80

[15] M. Messaadia and A. Sahraoui, “Plm as linkage process in a systems engineering
framework,” International Journal of Product Development, vol. 4, no. 3, pp.
382–395, 2007.

[16] E. Vezzetti, M. G. Violante, and F. Marcolin, “A benchmarking framework for
product lifecycle management (plm) maturity models,” The International Jour-
nal of Advanced Manufacturing Technology, vol. 71, no. 5-8, pp. 899–918, 2014.

[17] T. Milner, M. Volas, and A. Sanders, “Systems engineering methodology for
linking requirements to design complexity and manufacturing trade space con-
straints,” Procedia Computer Science, vol. 16, pp. 947–956, 2013.

[18] S. B. Gershwin, Manufacturing Systems Engineering. Prentice Hall, 1994.

[19] W. J. Hopp and M. L. Spearman, Factory physics. Waveland Press, 2011.

[20] J. K. Liker, “The toyota way: 14 management principles from the world’s greatest
manufacturer,” McGraw Hill, 2004.

[21] A. MacCalman, H. Kwak, M. McDonald, and S. Upton, “Capturing experimental
design insights in support of the model-based system engineering approach,”
Procedia Computer Science, vol. 44, pp. 315–324, 2015.

[22] A. Fay, B. Vogel-Heuser, T. Frank, K. Eckert, T. Hadlich, and C. Diedrich,
“Enhancing a model-based engineering approach for distributed manufacturing
automation systems with characteristics and design patterns,” Journal of Sys-
tems and Software, vol. 101, pp. 221–235, 2015.

[23] W. Schindel, “Pattern-based systems engineering (pbse), based on s*mbse mod-
els,” 2015.

[24] W. D. Schindel, What is the Smallest Model of a System? Proc. of the INCOSE
2011 International Symposium, International Council on Systems Engineering.

[25] W. Schindel, “System interactions: Making the heart of systems more visible,”
Proc. of INCOSE Great Lakes Regional Conference, 2013.

[26] W. Schindel, S. Sanyal, J. Sherey, and S. Lewis, “Accelerating mbse impacts
across the enterprise: Model-based s* pattern,” in Proc. of INCOSE Interna-
tional Symposium IS2015, Seattle.

[27] W. D. Schindel, “4.3.2 systems of innovation ii: The emergence of purpose,” in
INCOSE International Symposium, vol. 23. Wiley Online Library, pp. 1006–
1020.

[28] G. Fanjiang, J. H. Grossman, W. D. Compton, and P. P. Reid, Building a Bet-
ter Delivery System: A New Engineering/Health Care Partnership. National
Academies Press, 2005.

[29] J. A. Estefan, “Survey of model-based systems engineering (mbse) methodolo-
gies,” Incose MBSE Focus Group, vol. 25, p. 8, 2007.

[30] M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. G. Scott, and M. Wilson, “Slim:
collaborative model-based systems engineering workspace for next-generation
complex systems,” INCOSE IW 2013 - MBSE Workshop, pp. 1–20, 2011.

81

[31] “Systematica metamodel: Metamodel version 7.1, methodology release 4.0,”
ICTT System Science, Tech. Rep., May 29 2009.

[32] I. T. Operations, “Incose-tp-2004-004-02: Systems engineering vision 2020, ver-
sion 2.03,” International Council on Systems Engineering, Seattle, WA, Septem-
ber 2007.

[33] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems
modeling language. Morgan Kaufmann, 2014.

[34] W. Schindel, “Pattern-based systems engineering: An extension of model-based
se,” INCOSE IS2005 Tutorial TIES, vol. 4, 2005.

[35] V. Gecevska, T. Stojanova, and B. Jovanovski, “Product lifecycle management
tools,” Annals of Faculty Engineering Hunedoara, vol. 1, pp. 219–222, 2013.

[36] “Learning advantage,” (Last accessed July 2015). [Online]. Available: https:
//training.plm.automation.siemens.com/mytraining/home.cfm?cmd=&details=

[37] “Using teamcenter release 9 with systematica methodology release 4.0: Schema
configuration guide,” ICTT System Sciences, Tech. Rep., February. 4 2013.

[38] Teamcenter 10.1 Business Modeler IDE Guide, Siemens Product Lifecycle Man-
agement Software Inc., 2013.

[39] “Generic manufacturing pattern v1.1.13jjs.xls,” ICTT System Sciences, Tech.
Rep.

[40] “Oil filter production system v1.1.1.xls,” ICTT System Sciences, Tech. Rep.

	x_Form30_Updated04.2015
	weijie zhang thesis

