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ABSTRACT

Elshal, Mohamed M.S.M.E, Purdue University, December 2017. MBSE Driven Sim-
ulation of a Mid-Size Emergency Department Operation. Major Professor: Hazim
El-Mounayri.

Healthcare system in the United States faces multiple issues including quality,
rising cost and outcome of the healthcare care delivery process. Systems engineering
methodologies and tools have been proposed to address the complexity of healthcare
delivery processes as well as the challenges facing the industry, including emergency
departments. However, very few initiatives have considered such promising method-
ology to address the current limitations and improve the quality of care.

The objective of this work is to develop and validate an innovative framework
based on model-based systems engineering (MBSE) and discrete-event simulation
(DES) to accurately model patient flow and predict resource utilization at a mid-
size emergency department. MBSE framework is developed using OMG systems
modeling language (SysML); which provides a better understanding of the system,
supports multiple system views, and enhances the verification and validation process.
Data protocols are implemented to define data inputs and requirements. Time studies
are conducted inside the ED to collect patient and human resource processing time
data to run the simulation. Two discrete-event simulation models were implemented
to evaluate the key performance measures of the ED system. Results are validated
by comparing the output behavior of the model to the output behavior of the ED
system using different data sources. The resulting simulation platform is able to
predict human resources utilization, patient throughput and length of stay (LOS); in
order to support clinical decision making (e.g. resource allocation) and improve the

outcome of the emergency care delivery process.
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The systems engineering approach provided a better understanding of the prob-
lem, data needs and requirements, the function, the structure and the behavior of
the ED system. Simulation results show an observed crowding situation at the ED,
where room utilization rates range between 75% to 100%, and patients wait inside
the ED rooms more than 55% of the time. Results also show large utilization rates
and workload for ED physicians. Sensitivity analysis was conducted on ED resources
to optimize the average length of stay and the current resource allocation. Simulation
results show that re-allocation of existing ED resources will result in 15% reduction
in the average LOS, and allocation of more staff to the ED will result in more than

25% reduction in the average LOS.



1. INTRODUCTION

This chapter gives an introduction of the research project, which aims at applying
systems engineering approach to a mid-size emergency department operation. First,
problems in healthcare delivery are described. Second, the motivation behind apply-
ing the systems approach is given. Finally, the thesis specific aims and contributions

are stated.

1.1 Emergency Care Delivery Problem Statement

The healthcare system in the United States has multiple issues regarding rising
cost, increasing patients’ volume and outcome of patient flow process. There are
multiple reasons for these problems including data challenges, overloading, medical
errors, variability of demand, government laws and regulations, data storage issues,
clinicians’ fatigue and others [1]. Emergency Department (ED) is a service within
a hospital that operates 24/7, and is responsible for minimizing early complications.
EDs in the United States of America provide 24/7 access to all people visiting with
different medical conditions [2]. EDs cover more than 141.4 million people a year,
and most of the visits occur after typical business hours. EDs have several growing
challenges due to the increasing patients’ volume, where it is reported that the number
of ED visits have increased by 19% over the past decade. Those challenges result in
an increased length of stay (LOS) for ED patients, where it is reported that more than
67% of patients wait more than 15 minutes in order to get assigned to a healthcare
provider. This impacts resource utilization rates inside the ED and increases the
workload among the medical staff. Moreover, 50% of the EDs reported that they
operate at or above their capacity, which also impacts the LOS and resource utilization

rates [3] [4].



1.2 Systems Engineering as a Methodology For Improving The Health-

care Delivery Process

The research project is motivated by PCAST report, which came out in 2014 to
address healthcare delivery challenges for patients and healthcare organizations [5].
This report came to recommend applying systems engineering methods and tools to
improve the healthcare delivery process in the United States. The author spoke about
the importance of systems engineering by describing multiple success stories of other
organizations who implemented systems engineering either in healthcare delivery or
other industries, which made systems engineering methodologies and tools carry a
huge promise for improving the healthcare delivery process including emergency de-
partments. The report suggests using multiple systems engineering tools such as:
MBSE, computer simulations, operations management, lean techniques, human fac-
tors engineering, predictive analytics, big data and other tools. The author spoke
about the value of implementing those tools on multiple healthcare stakeholders such
as: patients, clinicians, small clinics, large healthcare organizations and the overall
community. In this thesis, we used different SE tools and methods such as MBSE,
discrete-event simulation and process modeling to analyze resource availability at the
ED.

Systems Engineering (SE) provides methods for modeling systems that have mul-
tiple interacting entities such as the ED. SE has the full set of tools that can analyze,
design and manage a system from stakeholder needs to solution [1]. There are sev-
eral well-known system life-cycle process models in systems engineering that define
systems development process such as the ”vee model” which has been developed by
Forsberg at al. (2005), the Spiral Model and the Waterfall model [6]. The most
widely used one is the vee model, which has been widely used in multiple industries.
It defines a series of steps from concept development to system disposal that can be
used to reflect a generic systems engineering approach for designing, developing and

testing a system. As shown in Figure 1.1, the left side of the Vee diagram demon-



strates the definition and decomposition sequence of the system all the way from
concept development to system design. The right side of the Vee model demonstrates

the system’s integration, verification and validation sequence.
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Fig. 1.1.: Systems Engineering vee-cycle: methodology for life-cycle process modeling

& development [7].

This diagram is widely applied by companies and industries that use systems engi-
neering as a methodology for designing and building their systems such as aerospace,
defense, information technology and medical devices industry. Moreover, the vee dia-
gram represents a generic system life-cycle methodology that can be applied to other
industries including healthcare. In our research application, we used the left side
of the vee diagram to define and decompose the ED system using multiple layers of
abstraction [6].

We considered the ED as a complex system that has multiple interacting enti-
ties such as patients, physicians, support units such as labs and care units, medical

devices, instruments, pharmacy, health information system and compliance require-



ments. Figure 1.2 shows the organization structure of healthcare providers including

the ED [1] [8].
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Fig. 1.2.: Healthcare system stakeholder decomposition [8].

1.3 Eskenazi ED Overview

The case of Eskenazi Health ED is used as an example application in our research
project. Eskenazi treats around 100,000 patients annually, and approximately 80% of
the hospital admissions occur through the ED. Eskenazi provides care to a population
with one of the highest indigent care rates (more than 60%) in the nation. Median
boarding time for admitted patients is seven hours and LOS exceeds six hours for more
than 25% of admitted patients [1]. Eskenazi Health ED has capacity of 90-beds, and
more than 60 Registered Nurses and 30 Physicians. Figure 1.3 demonstrates the ED
physical layout model, showing the main treatment areas at the ED: Registration
Desk, Front Assessment unit, Intake unit, Low Acuity unit (LA), High Acuity unit
(HA), Shock rooms, CDU, Holding Area, Ambulance, Lab, X-ray and others [1].
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Fig. 1.3.: Eskenazi ED layout model, showing a plan view of the ED.

1.4 Thesis Objective and Outline

The thesis objective can be stated as using SE driven modeling and simulation
approach for accurate representation of the patient flow process at Eskenazi ED. The
patient flow process at the ED can be described as the pathway of the emergency
care process from the time patients walk into the ED to the time they discharge. The
discrete-event simulation model is used to estimate the key performance outcomes
such as: LOS, patient throughput and resource utilization. We can summarize the

thesis specific aims as follows:



The first aim is to use systems engineering methods and tools to create a verified
and validated simulation model to simulate the current operation at the ED.

The second aim is to gather the required data and accurately analyze model inputs.

The third aim is to run a group of testing cases to verify and validate the model,
and examine the change in the output in response to different conditions.

The forth aim is to validate the model with ED output data, a simulation expert
and an ED clinician.

The fifth aim is to run a group of "what-if” scenarios for ED process improvement
and resource allocation optimization.

In chapter 2, a literature overview is given on similar work. The overview shows
similar case studies for using systems engineering, DES, MBSE and SysML in health-
care delivery applications; specifically the ED. The chapter also discusses some of the
limitations.

Chapter 3 describes the SE approach and the implementation of the MBSE model
using Cameo, and the implementation of the simulation model using Tecnomatix
Plant Simulation 13.0 from Siemens. Two different simulation models were imple-
mented: 1. Model A: is a generic "black-box” model, developed to predict high-level
patient and room utilization data, and 2. Model B: is a more detailed model, which
has been developed to predict human resource utilization rates for three different
types of ED clinicians by applying the queuing theory. Model B is a more detailed
model, which has been implemented over a longer period of time to capture the in-
teractions between patients and human resources; therefore, we used this model for
analyzing resource availability.

Chapter 4 demonstrates the verification and validation methods applied on the
models, including running multiple testing cases and the results from each case.

Chapter 5 demonstrates the results and discussion, including the discussion of the
resulting SysML diagrams from Cameo; and the discussion of the simulation results.
Chapter five also demonstrates the results from the different ”what-if” scenarios.

Chapters 6 summarizes the conclusion and future work.



1.5 Thesis Contribution

The contributions of this thesis can be summarized as follows:

1. The thesis describes a methodology for improving the healthcare delivery pro-
cess at Eskenazi ED by applying a systems approach, which provided a better under-
standing and specification of the ED system and its requirements.

2. MBSE framework was developed to drive process simulation and inform re-
source allocation optimization. The MBSE framework models the four pillars of SE:
requirements, structure, behavior and parametric under three layers of system’s ab-
straction: concept, problem and solution.

3. A number of systems engineering tools were used and demonstrated in this
thesis such as time studies, process modeling, systems modeling, discrete-event sim-
ulation, statistical analysis, use-case analysis, computer programming and design of
experiments.

4. Two discrete-event simulation models were implemented to model the patient
flow process. The simulation models provide a tool for understanding the ED behavior
in the form of animation of the patient flow, and provide a decision making tool that
can be used by ED stakeholders in allocating their human and treatment rooms.

5. The thesis demonstrates a better approach for verifying and validating the DES

models using multiple methods and case studies.



2. LITERATURE OVERVIEW

This chapter gives an overview of similar SE and DES applications. The chapter dis-
cusses the on-going efforts on using DES in modeling the ED operation. In addition,
the chapter gives an overview of systems engineering including systems engineering
standard process models and modeling languages such as UML and SysML. MBSE
is introduced as a novel methodology for modeling complex systems. The limitations

in similar work are discussed in this chapter as well.

2.1 Modeling and Simulation of The ED Process

Modeling and simulation of the patient flow process has been an on-going and a
well-studied topic over the past 40 years. Discrete-event simulation (DES) models
have been used by various organizations, since the 1960s as an industrial engineer-
ing tool that helps in improving business processes. DES models helped hospitals
and healthcare organization in process design, resource allocation, cost optimization,
clinical assessment and scheduling (e.g. hospital) [9] [10].

DES is commonly used to represent a complex system that involve production or
a service. DES is a method that uses mathematical and logical models to portray
a change in the state of the system at a specific time. Simulation outputs can be
interpreted by decision makers to make conclusions and recommendations. Common
applications for DES are managing clients in a service center, Military system simu-
lations and Inventory management [10]. According to (Anu Maria, 2007), there are
eleven steps involved in designing any DES experiment. Those steps are flexible and
may include multiple iterations and sub-stages. Those steps are: 1. Identify the
problem. 2. Formulate the problem. 3. Collect real system data. 4. Formulate and

develop a model. 5. Validate the model. 6. Document the model for future use. 7.



Select appropriate experiment design. 8. Establish experimental conditions for run.
9. Perform simulation runs. 10. Interpret and present results. 11. Recommend a
future course for action [9].

DES applications for modeling the patient flow are characterized by having con-
straint resource models. These models are used for measuring the utilization of human
and physical resources such as clinicians, beds and treatment rooms. DES has been
used for resource management applications either to optimize the current resource al-
location, or for hiring new staff. Decision makers are using DES to study the impact
of the current staffing allocation on various performance metrics such as: length of
stay, resource utilization, workload, waiting times and idle times. The problem of ED
crowding is widely addressed in similar applications; since it is a common problem
that affects the quality of emergency care and patients’ satisfaction. This problem
happens at most of the EDs due to: increasing patients’ demand, increasing num-
ber of patients who board to the hospital (long boarding time), resource management
problems (scheduling and optimization), delay in test results, under-staffing and other
problems that impact the efficiency of the process [11] [12].

Multiple research surveys have come out to cover a number of clinical models for
similar ED applications. Muhammet Gul, and Ali Fuat Guneri (2015) provided a
comprehensive review study that covered a number of ED simulation and modeling
applications, used for either assessing day-to-day ED conditions, or for modeling the
readiness of ED resources and clinicians at disaster times [13]. This review paper
provides a comparison of 58 different ED simulation models from different countries,
which have a wide range of objectives such as: staffing analysis, resource allocation,
crowding assessment, examining ED readiness at extreme conditions, and prediction
of patients’ demand patterns. Moreover, multiple tools have been used and imple-
mented in those models including systems modeling, process modeling, operations
research, lean, value-stream mapping, agile and others [13] [14].

DES has also proven to be a powerful decision-making tool in modeling extreme

emergency care conditions. Lisa Patvivatsiri (2006) implemented a discrete-event
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simulation model to evaluate the readiness of the ED in the case of a bio-terrorism
attack scenario, which is expected to result in a higher demand of patients visiting
the ED in study. Erik W. Kolb et al. (2008) studied the problem of ED overcrowding
and measured the impact of adding buffering areas by testing five different buffering
concepts to reduce patients’ waiting times and enhance their treatment experience.
Camila Espinoza et al (2013) implemented a real-time simulation model of a public
Chilean ED to predict the patient throughput for three different demand scenarios
[15] [16] [12].

DES has been commonly used by engineers and hospitals’” managers to optimize
the allocation of ED resources: nurses, physicians, technicians, beds, equipment,
rooms and other ED resources. Michael Thorwarth and Amr Arisha (2011) applied
a modeling mechanism that can be used for designing an automated ED resource
allocation model [17]. D.M Koster (2013) measured the effect of integrating the
ED and the GP post, primarily on patients by verifying the general applicability of
an existing discrete-event simulation model. Shao-Jen Weng et al (2011) used the
NEDOCS (National Emergency Department Overcrowding) score as a performance
metric for predicting the optimal resource allocation inside the ED. Stuart Brenner et
al (2010) implemented a DES model to evaluate the optimum resource configuration,
based on analyzing the amount of resources (e.g. Nurses, Technicians, Beds, etc.)
over various performance measures [18] [19] [20] [21] [22].

There are other different case studies which used DES in modeling the patient
flow process. Paola Facchin et al. (2010) implemented a generalized flexible ED
model that can be applied to different Emergency departments regarding their size
and operation. Yong-Hong Kuo et al. (2015) embraced big data methods to improve
and automate the data collection process for enhancing the accuracy of the DES
models. Eddy de Haas et al. (2010) implemented a comprehensive simulation model
to investigate multiple modification scenarios for ED process improvement. Aaron
E. Bair et al. (2009) measured the impact of inpatient boarding on the NEDOCS
crowding score [23] [24] [25] [26].
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2.1.1 Limitations and Gaps in ED Simulation Studies

DES has proven to be a significant system analysis tool that provides multiple
solutions to hospitals and healthcare organizations; however, many limitations have
been observed in similar work. Those limitations can be summarized as follows:

1. Re-usable modeling methodologies or a frameworks were not applied in similar
work; although, many have created conceptual models for their studies and some used
process modeling tools to conceptualize the process.

2. Difficulty of customization and generalization of these models.

3. Complexity of the healthcare delivery processes were not fully addressed.

4. Limited accuracy and scope of some of these models.

5. Limited use of verification and validation techniques.

8. Some of these models have limited prediction capabilities and limited data

value [27].

2.2 Applying Systems Engineering Principles in Healthcare Delivery

Complexity and high cost of care brought the need of understanding the healthcare
system as a whole, as well as understanding the function and the behavior of the
modeled system. According to William B. Rouse (2000), there are still barriers to
achieving success in implementing the systems approach in healthcare delivery [28].
These barriers are due to: 1. Extensive data requirements. 2. Laws and regulations
that govern healthcare organizations and stakeholders. 3. The ability of all providers
in the healthcare domain to think analytically in a systems thinking way. 4. Lack of
documentation.

The author suggested in his article to consider the healthcare system in the United
States as a ”"complex adaptive system”, not a system that follows a hierarchical
decomposition; therefore, we need to consider that the dynamic properties of the

system change over time [28].
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Sloan Elliot (2008) summarized a group of systems engineering efforts that adopt
both quantitative and qualitative methods; in order to support the systems of systems
(SoS) practice, showing two different exploratory cases in UK and USA that are used
to assess quality of healthcare delivery [8].

Levis (1993) defined an analytical process for carrying out the discrete-event sim-
ulation of the systems’ functions by mapping its functional architecture with its phys-
ical one. The process starts from the operational concept of the system, which consid-
ered a representation of what the system is, including its requirements and interfaces;
then decomposing the system into functional and physical architectures that describe
the functions the system shall perform and the physical resources available to perform
those functions. Both functional and physical architectures are mapped to carry-out
discrete-event simulation of the system functions. Figure 2.1 shows the architecture

breakdown according to Levis (1993) [29].

Operational Concept

et ey

Functional Physical
Architecture Architecture
Allocated Architecture

Fig. 2.1.: Development of three system architectures from the operational concept of

the system according to Levis (1993) [29].
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2.3 MBSE As a Novel Approach

Model-based systems engineering (MBSE) is defined by INCOSE as ”systems en-
gineering using models”. According to Holt and Perry (2008), MBSE is ”an approach
to releasing successful systems that is driven by a model that comprises a coherent and
consistent set of representations that reflect multiple viewpoints of the system [1].”

MBSE can also be described as the use of models to implement the systems
engineering approach. MBSE has evolved as a novel methodology to reduce the
application of traditional text-based systems engineering, which makes it easier to
access the information. It also aids in performing traceability and perform change
management [30] [31]. MBSE uses a single point of reference to which design criteria
can be met. This results in an abstraction of systems of interested (SOI), which
results in multiple benefits to all stakeholders. Those benefits are:

1. Reduced Risks: Modeling results in an early and on-going validation process
through simulation, modeling and analysis.

2. Improved Communication: Modeling enhances communication among all sys-
tems stakeholders and among engineering teams, where communication happens through
the models.

3. Improved Quality: Modeling enables the early identification of requirements’
issues before moving to testing and integration.

4. Increased Productivity: Reuse of existing models improve the impact of ana-
lyzing requirements and evaluating changes in design.

MBSE methodologies and tools have been used to support the discipline of sys-
tems engineering by many organizations [32]. Some examples of standard MBSE
methodologies are:

1. Object-Oriented Systems Engineering Methodology (OOSEM). OOSEM has
been evolved in the mid 1990’s by the systems and software consortium and Lockheed

Martin Corporation. The methodology utilizes a top-down modeling approach that
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uses SysML language to support multiple system activities [33]. Figure 2.2 shows both
unique and common methods and tools applied using the OOSEM approach [32].

2. IBM: Telelogic Harmony Systems Engineering.

3. Vitech: Model-Based Systems Engineering Methodology.

Causal analysis
Enterprise model
Efaborated comtext
Requirements variation analysis
f ! . System/fogical decomposition
F A Partitioning criteria
/ \ Node allocation

/OOSEM\
~ Unique

Top down SE approach
\ Recursive SE process
X Use case/scenario driven (reqt's - tesq)
Common ; Black boxAvhite box

0O0SE 00 concepts
A\ UML/SysML

/  SE Foundation \  SEProcess
‘. Regts, Trades, ..

Fig. 2.2.: Demonstrates OOSEM foundation, common and unique techniques [32].

The Unified Modeling Language (UML) is one of the common techniques applied
by OOSEM, and maintained by the Object Management Group (OMG). OMG has
created the System Modeling Language, namely SysML; in order to support modeling
of complex systems that involve multiple abstraction layers and interacting entities
[33].

MBSE provides systems engineers with a framework to integrate multiple tools,
track changes in the design, and provide re-usability of data and information through
the life-cycle process. According to OOSEM, a modeling framework is defined as
”conventions, principles and practices for the description of systems established within
a specific domain of application and/or community of stakeholders”. INCOSE UK
provided a modeling representation of MBSE concepts using SysML block definition
diagram (BDD) as shown in Figure 2.3. The figure is implemented to specify MBSE
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concepts, which are: 1. Model, which is a representation of the system, 2. System
of Interest, covers a problem or the overall project, 3. Representation, which is a
system’s description that reflects a particular viewpoint, 4. Viewpoint, represents
the purpose of the system’s representation, 5. Quality Criterion, which is a quality
measure of the model., 6. Concern, represents a stakeholders’ concern addressed by
a viewpoint, and 7. Stakeholders, represent the group of people concerned about the

system of interest [34].

bdd [Packagel 20 IConceptel
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Syatem of Interast | 1 1 Modal
y " 1
allocks COMpriess
_______ Conoern Text, table, diagam Y
or othier Byout
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Fig. 2.3.: MBSE concepts as defined by INCOSE UK [34].

SysML offers multiple diagrams to model the views of the system and perform
traceability. These diagrams are all connected to represent system’s layers of abstrac-
tion. SysML is also used in clarifying system’s inputs, outputs, constraints, assump-

tions and simplifications; all which are essential for a successful simulation study.
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SysML is commonly applied in industries such as aerospace, defense and information
technology; however, very few researchers have considered applying SysML to model
the ED process. Ola G. Batarseh et al (2013) proposed SysML as a replacement for
traditional process documentation; in order to facilitate communication, verification
and validation between all stakeholders involved in the modeling process. The author
reported that such approach helped in getting the clinicians involved in the model-
ing process by transferring a considerable amount of information using a number of
SysML activity diagrams. The author reported that such modeling activity improved

the decision making process with minimum risks and less modeling errors [35].
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3. METHODOLOGY

This chapter demonstrates the detailed implementation methodology of Eskenazi ED
systems model using MBSE and DES. First, the chapter describes the underlying
theory behind each. Second, the chapter describes the approach and tools used for
modeling the ED work-flow using systems modeling and DES methods. Finally, it
describes the implementation process of the SysML model using Cameo and the DES

model using Tecnomatix.

3.1 Theory

A model is considered as an abstraction of the system, since it first starts as
a simple representation, and then it develops to define the whole system including
its mathematical and physical details. Each modeling technique is considered as a
language that answers a group of questions about the system. SysML is applied
to support modeling the behavior of the system, including modeling activity and
state machine diagrams to model a given process. SysML also supports parametric
and structural modeling using SysML block definition diagrams and internal block
diagrams, where both are used to model the system’s components. Modeling system
requirements is also supported by SysML, including modeling stakeholder needs and
use-cases, and mapping those into technical and logical requirements [36].

Simulation is considered as an important tool for modeling the performance of any
given system. Since world war II, computer simulations have been applied to estimate
the performance metrics of a system and conduct sensitivity analysis. Simulation
model building is not considered an easy task, since it requires the application of
both critical thinking and engineering concepts. Discrete-event simulation models a

discrete system, which has its state changes with time at discrete-points. A state is a
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collection of attributes, which represent the entities of the system. Events, attributes,
entities and activities are all considered the components of DES [36].

DES is a dynamic stochastic simulation, where time is considered as a significant
variable. Monte Carlo simulation is another common type of stochastic simulation,
which uses sampling of random variables between zero and one. Figure 3.2 shows
the taxonomy of different types of system models including DES and Monte Carlo

simulation [36].

System Model

Deterministic Stochastic

Monte Carlo Simulation
coninus

Fig. 3.1.: Models taxonomy showing DES as a stochastic and dynamic type of simu-

lation [36].

DES uses probability theory including conditional probability theory to determine
the likelihood of an event (X) in occurrence of another event (Y). The conditional

probability theory is defined by:

PrixXny}
Pr{Y}

DES uses continuous distribution functions, which generate a number of random

PriX|Y}= (3.1)

variables. Four different distribution functions were used in our application: Uniform,

Gamma, Triangular and Lognorm.
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3.2 MBSE Approach

The proposed MBSE framework is used to model the ED work-flow and capture
multiple system views all the way from stakeholder needs to solution under three lay-
ers of abstraction: concept, problem and solution; and by modeling the four pillars of
systems engineering: structure, behavior, parametric and requirements. The general
methodology is driven from the "Magic Grid” developed by NoMagic Inc., which is a
generic grid developed by the software company to model complex systems with mul-
tiple layers of abstraction using SysML language. In this section, the MBSE modeling
framework for the ED is generally described. The MBSE framework was implemented
using Cameo Systems Modeler and other modeling tools such as microsoft visio and

power point [37].

3.2.1 MBSE Framework

As mentioned earlier, MBSE framework is developed to allow a comprehensive
representation of Eskenazi Emergency department operation all the way from re-
quirements to simulation of the ED process. Information and data from these models
feed into the simulation software. A specific pathway has been defined in the mod-
eling framework through the MBSE diagrams. Resulting MBSE views are used to
derive process simulation and inform resource allocation optimization [38] [35].

A group of SysML diagrams are developed within the modeling framework and
described in terms of: structure, parametric, requirements, and behavior. SysML
has nine different types of standard diagrams as shown in the Figure 3.3. Eight dia-
grams out of the nine were used in our application. SysML sequence diagram was not
used. SysML Package diagram was constructed to describe the model organization
in a group of packages, and is not included in the framework. Figure 3.3 shows the
modeling framework, which starts from the identification of stakeholder needs and
requirements, followed by use-case analysis. Selected use-cases provided a high-level

functional analysis of the ED work-flow and allowed us to develop a group of func-
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tional activity diagrams to analyze the process. System’s measures of effectiveness
were identified and logical requirements were put together to define the ED require-
ments including patient, staffing, process and others requirements. An architecture
block digram was developed for the ED and system’s structure was put together to
decompose the ED system into different components. Tecnomatix model was built to
estimate the key performance measures of the system and optimize resource alloca-

tion [39] [38] [40].

SysML Diagram

S — |
Behavior ! Requirement Strueture
Diagram I Diagram " Diggram
PR i
I I I I | I
Activity Seguence State Machine Lize Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
L
I Pammetric 1
1 Diagram
------ |
I Modified from UML 2 I

Fig. 3.2.: Classification of SysML diagrams [40].

3.3 Implementation

This section describes the implementation process of the SysML model using

Cameo, and the simulation model using Tecnomatix.

3.3.1 MBSE Model Using Cameo

Eight different types of SysML diagrams were implemented using Cameo. Those

diagrams are:
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Fig. 3.3.: ED modeling framework pathway from user needs to solution.

1. Requirement Diagram: Requirement diagram is used to specify conditions and
functions that shall be satisfied. The first requirement diagram was implemented in
the form of IPO (Input Process-Output) diagram, which was developed by INCOSE
for the design definition process in general. The other requirement diagram was
developed using Cameo; where basic staffing, process and input requirements are
derived. Both diagrams are shown in the framework in Figure 3.4 as (i) and (v).

2. Use-case Diagram: Developed to define the high-level system function and
use-cases. It is shown in Figure 3.4 as (II).

3. Internal Block Diagram (IBD): Developed in the form of a context diagram for
the ED, which shows a high level Black Box understanding of the modeled system of
interest. It is shown in Figure 3.4 as (III).

4. Parametric Diagram: Developed to define the measures of effectiveness (MOESs)
of the ED system. It is shown in Figure 3.4 as (IV) and (IX).

5. Activity Diagram: Activity diagrams were developed to model the work-flow

of patients, including treatment unit sub-flow. It is shown in Figure 3.4 as (VI).
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6. Block Definition Diagram (BDD): The BDD diagram is developed to describe
how the system of interest (ED Work-flow model) is put together. It defines each of
the blocks in terms of structure and behavior features and relationships. It is shown
in Figure 3.4 as (VII).

7. State Machine (STM) Diagram: STM diagram is developed to define a state
dependent behavior of a block through its life cycle. The STM diagram acts as a
blueprint of the simulation model that shows all factors and elements that define the

patient work-flow behavior in the simulation and in the real ED system. It is shown

in Figure 3.4 as (VIII) [39].
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Fig. 3.4.: ED system views contained in the modeling framework.

Figure 3.5 shows the flow path between the different MBSE diagrams from stake-
holder needs to the Tecnomatix model. Each of the highlighted MBSE diagrams will
be discussed separately in the results section.

Cameo Systems modeler is the major software platform used in our application to
design the MBSE architecture of the ED using multiple SysML views. It is considered
one of the popular SysML tools in the market, widely regarded as the most standard
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Fig. 3.5.: Pathway between MBSE views from stakeholder needs to simulation. Five
different diagrams were used to derive the ED process model and inform resource

allocation optimization.

tool that design for customization to satisfy customer needs. It also supports system’s
integration, specification, analysis, verification and validation.

Figure 3.6 shows the modeling framework interface as implemented in Cameo.
SysML version used in our application is 1.4. Diagrams supported by SysML language
include those similar to UML 2.0 diagrams, and others have been modified from it.
In addition to the eight SysML diagrams used in our work, a content diagram is also
used which can be found in the Cameo expert mode. This diagram is used to provide

a window for each package to upload and contain all related diagrams and files.

SE Tools and Data

The MBSE driven approach required using different types of tools including SE
tools, process modeling and computational tools. Each tool has its own usage and

ED application. SE tools are used to capture stakeholder needs including data needs
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Fig. 3.6.: MBSE framework as implemented in Cameo.

and requirements. Process modeling tools are used to implement those requirements
and provide a visual representation of the ED process. Computational tools provide
a platform to analyze the behavioral models and perform various predictions. Data
is a key element to our simulation study, and is obtained from multiple sources: 1.
ED data systems (Picasso and Epic), 2. Interviews with key ED stakeholders, 3.
process documents, and 4. direct observation of patient flow. Data collection tools
are used such as time studies and data templates. Time studies were conducted inside
ED using physical observation method. Interns and students used a data protocol
and a formal data collection table to collect human resource time-spans and patients’

processing times. Table 3.1 shows Data categories and sources.

3.3.2 DES Model Using Tecnomatix

DES approach is applied to develop a simulation model for the ED process to

estimate the performance measures of the ED such as LOS, patient throughput and
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Table 3.1: Summary of data used for developing the models

Category Source Description
Operational Data ED Databases Work-flow Data
Patient Data ED Databases Arrivals’ Timestamps
Staffing Logs Process documents and Interviews Staffing Schedules
Direct Observation Manual Data Recording Processing Time Data

human resources utilization. Two simulation models were developed as mentioned
earlier: 1. Model A: is a time-in-motion black-box model developed to evaluate and
predict the high-level room data, and 2. Model B: is a model developed to predict
human resource utilization inside the main treatment units for three different types
of ED clinicians by applying a queuing approach.

This section describes the development of the DES model in detail using the
following approach: 1. ED process review, 2. data collection, 3. input data analysis,
4. computerized model development, 5. model verification, 6. model validation, and
7. output analysis and interpretation. Steps from 1 to 4 are demonstrated in this
chapter. Steps 5 and 6 are demonstrated in chapter 4 and step 7 is demonstrated in
chapter 5.

Tecnomatix Plant Simulation 13.0 is the main software tool used to implement
the ED simulation model. It supports a wide range of functionalities for modeling
healthcare facilities and operations. Tecnomatix has been used in multiple healthcare
applications and digital hospital planning case-studies. In our models, most Plant
Simulation features are used to design a successful ED process simulation application
including: models, sub-models, user interfaces, information flow objects, entities,
resources, methods, material flow objects and animation of the process. Moreover,
a group of powerful data and statistical analysis tools are used such as: Experiment
Manager, Genetic algorithm and Sequential Sampler. These tools are used to help in

performing data fitting, sensitivity analysis, and resources scheduling. In addition,
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charts and graphics are used in our application to provide better output reporting
and better visibility while the simulation is running.

The key DES concepts represented by Tecnomatix are entities, attributes, vari-
ables, resources and queues. Entities are the dynamic objects flowing through the
simulation model from source to drain and their state might change at any time
during the simulation. In our case, entities represent patients visiting the ED. Model
attributes are the characteristics of the model that define model objects in the form of
patients attributes such as arrival times and patients processing times, and resource
attributes such as staffing schedules and the amount of resources. Model variables
represent the characteristics of the system. Tecnomatix model is adjusted to track
some variables such as queuing time, length of stay, resource utilization and oth-
ers. Tecnomatix enables users to create and track his own variables according to
their need. Model resources represent both physical and human resources. In our
application, resources are used to define rooms, pods, physicians, nurses, and care
technicians. Resources utilization and availability is considered as an important vari-
able in the model, which can define the overall performance of the system and impacts
other variables such as LOS and waiting times.

A queue represents a place where patients wait until a resource becomes available
to serve them. The constructed DES model for the ED is considered as a queuing
model, where resource utilization and capacity highly impact the time patients wait
inside the queue; and thereby, impact the overall process efficiency. A patient waiting
in a queue is modeled in two ways using Tecnomatix. The patient stays inside the
queue either in the form of waiting inside a buffering (waiting) area or waiting inside
his treatment room. ED buffering areas and patients’ rooms have an assigned capacity

[41].
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ED Process Review

The ED in study is a mid-size ED, with six-trauma levels. Unlike other EDs,
the ED operates based on a queuing system, where patients are assigned to the first
available room in case the room is equipped with what they need for treatment.
Figure 3.7 shows the generic patient work-flow model implemented using Microsoft
Visio. This model is considered as a conceptual model for the patient flow process,
which is validated by an ED physician. The model represents the pathway of the ED
patient from arrival to discharge by capturing the main decision points and activities.
As shown in Figure 3.7, there are two arrival modes: Front and Back registration.
The front registration represents patients who are arriving by bus, walking, or with a
personal car. The workflow initiated at the front registration is defined as the ” Front
Registration”. The Front registration desk does a rapid sort of the incoming patients
and sends them to appropriate acuity level within the ED. The Back registration
represents patients arriving via ambulance or police car. The workflow initiated at
the back registration is defined as the "Back Registration”. Most of these patients
are considered as "High Acuity” patients. We can summarize the ED patient generic
workflow process in the following five stages using the flow model shown in Figure
3.7: 1. Arrival, 2. Admission, 3. Assessment, 4. Treatment, and 5. Discharge. There
are five main treatment units inside the ED, demonstrated by the different levels of
acuity. The ED patient shall be admitted to at least one of them during their visit.
Those units are:

1. Intake Area: Intake serves patients with minor injuries who come to the ED
and leave immediately after their treatment. Approximately 70% of patients who
visit Intake leave without being sent to any other unit; however, a small percentage
go to Low Acuity area if more treatment is needed. Intake has seven pods including
a fast-track one. Each pod has three rooms and one nurse assigned. Each pod can

accommodate a maximum of three patients.
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2. Low Acuity Area (LA): LA serves patients with low acuity illness who are
required to stay inside the ED for a long time until their condition becomes stable.
Those patients usually occupy the room on an average of 4-5 hours and sometimes
for more than one day. Most of LA patients discharge the ED directly; however, some
are transfered to either Shock room or HA unit. LA has four pods, and each pod has
six rooms and one nurse assigned.

3. High Acuity Area (HA): HA serves patients with high acuity illness who need
to stay inside the ED for a long period of time on an average of six hours. More than
50 percent of HA patients are admitted to the hospital after receiving treatment. HA
has a total of four pods and 16 rooms.

4. Shock Room: Patients who need immediate rescue are treated inside the Shock
room. After being stabilized, Shock patients might get admitted to either LA, HA or
Holding unit, in order to complete their treatment. The majority Shock patients are
admitted to the hospital after leaving the ED.

5. Holding Unit: where incarcerated patients are treated and held until they
leave the ED or go to the Shock room to complete their treatment. Holding patients

account for 3% of the overall ED patients.

Data Collection

Data is collected from five different sources: 1. Interviews with ED stakeholders,
2. Observation of emergency patients, staff and process, 3. Staffing schedule data
sheets, and 4. Datasets of patient arrivals from the EMR system (Picasso and STAR).
Interviews were conducted with two physicians, ED nurse-in-charge, registered nurses,
one technician, one environmental services, three radiologists, and one with Director
of laboratory services at the ED. The type of data and information collected pertains
to requirements, ED processes, resources, duties, tasks, constraints and challenges at

ED. Interviews served to instruct the SysML based model. The data is also used for
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Fig. 3.7.: Generic patient work-flow model in Microsoft Visio.

ongoing work to create more detailed models and analysis. In addition to process
information, ED stakeholders helped in validation of the data.

A time study of resource utilization in providing patient care is conducted. Ob-
servations were carried out over a 1.5-month period inside the different ED units
namely, registration desk, front assessment area, Intake, Low Acuity, High Acuity,
and Shock room. Timestamps were recorded for care technicians (CT), registered
nurses (RN) and attending physicians when they were directly involved in providing
care to a patient in a room under observation. Observations were performed as per
the observation protocol. The data was captured in observation data grid (shown in
the appendices). The grid specifically records the timestamps of patients assigned
to specific ED unit rooms, resources entering and leaving the patient room and dis-
charge time. Observation captured resource utilization time, and is not concerned
with the actual care details provided by the resource. The data grid also captures
room occupied, assigned RN patient time, assigned physician patient time, assigned

CT patient time, discharge location and discharge time, and patient transfers from
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one treatment unit to a different treatment unit. Patient routing data was collected
with the help of ED nurses. Resource rate utilization was estimated by total resource
time for providing care to the patient divided by total patient time in room. Collected
data were analyzed for data fitting and distribution. Data was used to configure the
simulation parameters such as routing probabilities and overall patient stay times.
16 ED observations were conducted inside the four treatment units (Intake, LA, HA
and Shock) room by one medical intern and two engineering students. Two observa-
tion sessions were conducted at the patient registration desk. The first one was on
Tuesday at the morning shift and the second was on Saturday at the afternoon shift,
where a total of 23 patients were followed. In most cases, the observation period of
eight hours enabled the tracking of the patient flow from registration to discharge.
There were 13.59 percent of patients who were not completely followed because they
were discharged beyond the observation time period. Situations were observations
lasted more than 8 hours were for patients transferred to LA or HA units. A total
of 103 patient observations were conducted of which 78 patients were seen in Intake,
11 patients for LA, eight patients for HA, and six patients for shock room. All ob-
servations were made as per the HIPAA compliance guidelines [42]. Majority of the
observations were carried out by medical students, which allowed them to observe
and record resource utilization from within the patient room. Inputs defined in the
grid are:

1. Time Patient occupies Intake Room: Time patient starts occupying his treat-
ment room (Physically).

2. Time CT enters patient room: Time CT starts treating the patient inside his
room.

3. Time CT exits patient room: Time CT exits patient room. The CT might
enter and exit a patient’s room one or two times per visit.

4. Time Nurse enters patient room: Time registered nurse starts serving a patient

in his room.
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5. Time Nurse exits patient room: Time registered nurse exits a patient’s room.
The Nurse might enter and exit a patient’s room multiple times, up to 6 times for
each patient (maximum recorded).

4. Time Physician enters a patient room: Time attending Physician starts treating
a patient in his room.

5. Time Physician exits a patient room: Time attending Physician exits a patient
room. Physicians might enter and exit a patient’s room up to five times.

6. Time Patient discharges the room: Time stamp patients leaves his treatment
room (physically) either to get discharged or transfered to another unit.

7. Room Occupied: Room Number occupied by patient.

8. Assigned RN: Name of assigned RN.

9. Assigned Physician: Name of assigned physician.

10. Assigned CT: Name of assigned CT.

11. Discharge Location: Patient Discharging location after treatment.

Staffing grid charts were obtained, which provided seven days staffing details for
nurses, technicians and attending physicians for ED units. The charts were used
to configure the resource availability and room availability schedules. On day-to-
day basis, there are resource availability changes due to ED priorities, presence of
student nurses and physicians and absence of some staff members. However, for our
simulation model purpose, such changes are not taken into account. Each unit is
broken down into pods. Each pod has two or more rooms. Nurses are assigned
to pods or a fixed number of patients. Physicians have shifts assignments that are
managed independent of the nursing grid. Physician grid has changes that are more
frequent and is managed actively. For the current work, a specific physician grid was
considered representative of physician staffing. Physicians might be assigned to more
than one treatment unit at a time. Manipulating the grid data provides one way to
verify the model, such that treatment units in the model are divided into pods and

patient rooms, where clinicians serve patients according to their grid assignments and
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shift times. To conduct what-if analysis, simulations were carried to observe changes
in response to modification of the resource grid.

Table 3.2 shows the CTs grid. It shows the number of CTs assigned to each unit
over six different shifts defined by the ED. The number could be zero, one or two CTs
at each shift. Sample from the nursing and physicians’ grids are shown in the appendix
section. Nurses and CTs have the same exact shift durations, while physicians have
different shifts durations and assignments. Physicians might be assigned to more
than one treatment unit at a time. Nurses are assigned to pods, which represents a
specific number of rooms or patients at each unit. Exact nurse to patient ratios will

be demonstrated in the next section.

Table 3.2: ED Care Technicians’ Grid

Treatment Unit | 7a 1la|1la 3p |3p 7p | 7p 1llp | 1l1lp 3a | 3a T7a
Intake 1 2 2 2 1 1
LA 0 1 1 1 1 0
HA 1 2 2 2 1 1
Shock 0 0 0 0 0 0

For all remaining data, we relied on data extracted from the ED system either
from Picasso or Epic, especially for the operational and patient data with the help of
a data specialist from the ED. Data collected from the ED system were cleaned and
analyzed using multiple software tools, in order to fit our modeling need. A summary

of data inputs including data analysis is demonstrated in the next section.

Model Input Data Analysis

Simulation model inputs are: 1. Arrival timestamps, 2. Processing time data, 3.
Routing probabilities, 4. Room data, and 5. Staffing grids. Patient arrival dataset

from 2014 to 2016 was obtained from Picasso. Arrival dataset was cleaned and ana-
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lyzed using Matlab and Excel. A total of 281,562 patients visited the ED from Jan
2014 to Dec 2016. Patient arrival data was provided as number of arrivals in 10 min
intervals. Figure 3.8 plots the number of patients arriving per hour over 0-24 hours.
Figure 3.8 consists of multiple plots, one for each day of the week. Each data point
on the plot is a mean value over one year time period with corresponding confidence
interval. The arrival pattern seen in the plot is observed to be very similar to the
ones found in the literature for similar applications [12]. Arrivals data was converted
from the original data provided in 10-min interval to individual patient timestamps.
A random generator was used to generate specific time points for each of the patients
arriving at each of the 10-min intervals. Data used in the DES model were analyzed,
and their distribution characteristics were defined using Tecnomatix. Distribution
functions used are gamma, log-normal, triangular and constant distributions. The
distribution functions and their corresponding parameters are obtained by fitting the
observation datasets to various distribution functions. We used log-normal, trian-
gular and gamma distributions for processing time data, and average distribution
percentages for patient routing data. Anderson-darling (AD) test was used to assess
the fitness of each distribution. AD statistic values were estimated directly using
Tecnomatix. The resulting values from the AD statistical test were compared with a
predefined level of significance of 2.5 percent to select the best distribution function.

ED data were collected and analyzed through many iterations by our research
team. Finally, data collected manually through observation were identified to be the
major source for model’s processing time data. Observation allowed us to collect the
exact data required by our models to follow a model-based approach. In addition,
observation Sessions were conducted over 1.5 month and over 120 hours, which is
similar or more than what observed the literature for similar time studies [13]. Data
were recorded by the observer in the data template using a computer or an I-Pad
as shown in Figure 3.9. Timestamps recorded for each type of human resource were
gathered and analyzed individually into a group of probability distribution function

as discussed earlier.
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Data collected through ED observation were analyzed two times, once for the time-
in-motion model (model A), and second for the resource model (model B). Figure 3.10
shows histograms of fitted data for: Intake, LA, HA and Shock room processing times
for Model A. X-axis represents the frequency, and Y-axis represents the observed
processing time values in seconds. Figure 3.11 shows the process sequence of data
fitting using data fit tool for Intake processing time in Model A. First, processing time
data are input to a table file in seconds. Then, the level of statistical significance and
number of classes are identified, a histogram for the data is created and data are
fitted using identified distribution functions. Reports that show all fitting results
are automatically generated after that. Results of data fitting are shown in the

appendices.

Histogram with 7 classes

Histogram with 13 classes
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(a) Intake processing times his- (b) LA processing times histogram.

togram.

Histogram with 13 classes
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Observed Values

(c) HA processing times histogram. (d) Shock room processing times his-

togram.

Fig. 3.10.: Histograms of fitted processing time data.
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Fig. 3.11.: Data fitting sequence using ”DataFit” in Tecnomatix.

Nursing, CTs and physicians grids were analyzed and input manually to the model
using scheduling and resourcing tools in Tecnomatix. In addition, patient room avail-

ability was defined in the model.
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Table 3.3 lists the inputs namely processing times, arrivals data for admissions,
routing probabilities for patients transfer, and staffing grids for the number of rooms.
Table 3.4 depicts the individual processing times for clinicians. All times are in
seconds except for Check-in processing times which are in minutes. Admission routing
probability numbers are inserted in the following order: Intake, LA, HA, Shock room
and Holding unit. Check-in processing time is assumed to be the time patient spends
from admission to room, and is modeled as a single constant value for each patient
type. Check-in times are inserted in the following order: Intake, LA, HA, Shock room
and Holding unit.

Table 3.5 shows the statistical analysis on human resources time-spans with pa-
tients. Data were collected through observation. We can observe that the standard
deviation is relatively higher for Shock room data and much lower for Intake data,
which explains the variability of treatment time for Shock patients compared to In-
take patients. It is also observed that patients have more face time with nurses at

Shock room compared to the other units. All data in Table 3.5 are in minutes.

Computerized Model Development

ED conceptual model was captured in Tecnomatix Plant Simulation 13.0 software
to carry out discrete-event simulation of the ED process. The objectives of the Tecno-
matix simulation model are: 1. Replicate process and output behavior. 2. Conduct
parametric analysis for measuring resource utilization. 3. Conduct trade analysis
between the different modification scenarios to improve the systems performance and
optimize resource allocation. The DES model has five sections as described in the
process flow model: patient arrival, quick sort, assessment, treatment /re-evaluation,
and discharge /hospitalization. Each section has a set of values for its given param-
eters that define its behavior. Figure 3.12 shows the layout of the simulation model

using Tecnomatix. The base time unit for the system is seconds.
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Input

Value

Data Source

Patient Processing Times Inside Each Unit

Intake Gamma (alpha = 4.86, beta = 19:17.31) | Observation
LA Gamma (alpha = 3.47, beta = 37:37.7) | Observation
HA Gamma (alpha = 7.17, beta = 22:35.77) | Observation
Shock Gamma (alpha = 2.19, beta = 43:30.6) | Observation
Check-in Constant (10:00, 5:00, 1:00, 1:00, 1:00) Estimation
Holding Log-norm (alpha = 22138, beta = 962) Epic
Arrival Data
Arrival Timestamps For 2014, 2015 & 2016 Picasso
Key Decision Points
First Room Routings | (71.76%, 8.86%, 10.49%, 5.72%, 3.17%) Picasso
Intake to Discharge (Home-71.43%, LA-28.57%) Observation
LA to Discharge (Home-73.68%,HA-10.53%,CDU-5.26%) | Observation
HA to Discharge (Home-37.5%, Admitted-62.5%) Observation
Shock to Discharge (HA-40%, LA, Admitted, Hol-20%) Observation
Holding to Discharge (Admitted, Shock-50%) Observation
Room Data
Room Assignments (INT-20, LA-24, HA-16, Shock-14) ED Layout
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Table 3.4: Individual processing time data for ED clinicians. Data is analyzed for the

resource model

Input Value Data Source
Processing Times

Intake CT-Log-norm (Mu = 329.79, Sigma = 254.39) Observation

Intake | Nursing-Log-norm (Mu = 581.68, Sigma = 382.74) | Observation

Intake | Physician-Gamma (alpha = 4.14, beta = 154.65) Observation
LA CT-Triangle (¢ =0, a =0, b = 7:00) Observation
LA Nursing-Gamma (alpha = 2.84, beta = 209.4) Observation
LA Physician-Gamma (alpha = 1.43, beta = 527.6) Observation
HA CT-Gamma (alpha = 23.53, beta = 14.02) Observation
HA Nursing-Gamma (alpha = 6.04, beta = 229.44) Observation
HA Physician-Gamma (alpha = 2.67, beta = 309.09) Observation

Shock | Nursing-Gamma (alpha = 1.83, beta = 2001.99) Observation

Shock | Physician-Gamma (alpha = 1.06, beta = 1185.98) | Observation




40

Table 3.5: Statistical analysis on processing time data for Intake, LA, HA and Shock

room
Variable Mean | St.Deviation | Variance | Minimum | Maximum
Intake
CT Care 1.657 2.313 5.35 0 7
Nursing Care | 7.371 5.719 32.711 2 31
Physician Care | 7.571 4.943 24.429 0 24
Total Time 106.17 47.16 2224.32 27 216
LA
Nursing Care | 10.14 5.64 31.81 2 19
Physician Care | 15.29 12.65 159.9 2 34
Total Time 131.4 81.1 6578.6 49 289
HA
Nursing Care 22 7.81 61 13 27
Physician Care | 11.67 7.23 52.33 7 20
Total Time 182 113.5 12877 114 313
Shock
Nursing Care 68.2 51.7 2668.7 17 129
Physician Care | 45.8 47.2 2231.7 5 103
Total Time 109.6 60.4 3652.8 38 182
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Patients are captured in the model as system’s main entities. Three different
types of clinicians are captured: CTs, registered nurses and attending physicians.
Treatment rooms and beds are captured in the model; however, availability of beds
is not taken into consideration. Other resources such as medical equipment are not
captured in the model. Other processes such as X-ray, MRI, CT scan and lab testing
are not captured as well. Process animation is captured using 2D and 3D animation
for better visualization of the ED process.

Starting from patient arrival, we collected three years of patient historical data
which was considered the main entity to our model. These data has been formulated,
reprogrammed according to Tecnomatix formating requirements and put in a table
file as shown in Figure 3.13. All patients are assumed to be of the same group
regarding their illness type. For each patient, the date of the visit and its exact time
are considered as the arrival time.

Patients first go to the ”Check In” process, which is considered as the time patient
spends between arrival and treatment including waiting at the registration desk or
inside the Front Assessment area. The ED will allow all visiting patients to come
inside; therefore any number of patients might go through the check In process without
limitation. The ”Check-in” time is defined according to patient’s assignment to one
of the five treatment units, and is assumed to be a constant number obtained from
Epic reports.

After patient exits the ”Check In” process, he goes to one of the five treatment
units according to an exit strategy based on a routing probability number assigned in
the "P-flow” object as shown in Figure 3.12. Once patient is assigned to one of the
five treatment units, a counter records the number of patients admitted to that unit.
Each one of the major four treatment units has its own sub-model. After the number
is recorded, patient goes inside the sub-model for the treatment process. Figure 3.14
demonstrates a patient flowing through three stages of care: admission, assessment,

and treatment. Patients are demonstrated in the small blue icon.
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| 2014/01/01 00:05:00.0000

datetime object integer
11 |2 |3

string |Delivery Time MU Mumber
1 [2014/01/0100:... |.MUs.Fati... (1
2 |2014/01f0100:... [MUs.Pat... .1
3 |2014/01/0100:... [.MUs.Fati... (1
= .2D14,|"DIIDII:ID:... ..I"«"ILIS.Paﬁ... .1
5 |2014/01/0100:... |.MUs.Fati... (1
& .2D14,|"DIIDII:ID:... ..I"«"ILIS.Paﬁ... .1
7 |2014/01f0101:... |.MUs.Pati... |1
8 .2D14,|"Dl,|"0101:... ..I"«"ILIS.Paﬁ... .1
g |2014/01f0101:... |.MUs.Pati... |1
10 |2014/01/0101:... |.MUs.Pati... |1
11 |2014/01/0101:.., | MUs.Fati.. 1
12 |2014/01/0101:... |.MUs.Pati... |1
13 |2014/01/0101:.., | MUs.Fati.. 1
14 |2014/01/0102:... |.MUs.Pati... |1
15 |2014/01/0102:... | MUs.Fati.. 1
16 |2014/01/0102:... |.MUs.Pati... |1
17 2014/01/0102:.., | .MUs.Fati... 1
15 .2D14,|"Dl,|"0102:... ..I"«"ILIS.Paﬁ... .1
19 |2014/01/0102:.., | .MUs.Fati.. 1
20 .2D14,|"Dl,|"0102:... ..I"«"ILIS.Paﬁ... .1
71 |2014/01/0102:... |.MUs.Pati... |1
22 |2014/01/0102:... |.MUs.Pati... |1

Fig. 3.13.: Tecnomatix table file showing the exact arrival time for patients.

After treatment, there is a probability that patients either transfer to another
treatment unit or leave the ED directly. This probability number is assigned as an
exit strategy after patients exit the sub-model. Patients coming out of Intake might
visit the results pending unit to complete registration and paper work before they
leave the ED. Patients discharging the ED might go to either to home, CDU or to
the hospital. Each treatment unit in the model has a discharge flow object, which

assigns patients to one of the discharge methods. Figure 3.15 shows a patient routed
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Fig. 3.14.: Demonstration of a patient going through admission, assessment and

treatment.

from one of the five treatment areas to get hospitalized/discharged. The number of
discharged patients is recorded using a counter as shown in Figure 3.15.

As described earlier, two different simulation models were implemented: a time-
in-motion model and a resource model. Each one of the two models has the same
frame but different structure for treatment sub-models. The way sub-models are
structured reflects how we want to model the patient care process inside the treatment
units and what performance measure we need to estimate. Figure 3.16 demonstrates
Intake sub-model developed for the time-in-motion model (Model A). Similar ones
are constructed for the other three treatment units.

As shown, Intake treatment is modeled as a single process only for model A. Each
process is assigned to an Intake pod and each pod represents three rooms combined.

We assume that Intake treatment processing time is the overall time patients spend
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Fig. 3.15.: Demonstration of a patient going to discharge the ED using one of the
three discharging methods.

inside the Intake room. For each pod, there is one nurse assigned serving three
patients at the same time, except for pod 7 which has two rooms only. As mentioned
earlier, nurse to patient ratios are different for each treatment unit. Once a patient is
admitted to Intake, he remains in the queue ”Intake Boarding” until a rooms becomes
available. After that, patient goes to one of the seven pods to stay in one of its three
rooms. The time of operation for each pod is defined using the ”ShiftCalender”
tool in Plant Simulation, where nursing grids are inserted using nursing pools shown
in Figure 3.16. A method (program) is implemented using Tecnomatix to prevent
sending a patient to a pod outside the time of its operation. Patients are assigned to
rooms such that each nurse has an equal assignment of patients. The time of room
operation as well as the treatment time can be visualized using ”ResourceStatistics”
chart while the simulation is running as shown in Figure 3.17. After treatment,
patient exits the sub-model and move through the process. Similarly, LA, HA and
shock room sub-models were constructed. We didn’t implement a sub-model for the
Holding unit as it represents the incarcerated patients; therefore, it was modeled as

a single process where the processing time is extracted from Epic output reports.
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The "LOS Counter” tool was developed and used to record the LOS for all patients
going through the simulation in a table file "tab”. Figure 3.18 demonstrates the LOS
for discharged patients while simulation is running in the form of a plotter. Figure
3.19 shows the two tools used to input the staffing grids to the model: ”shiftcalender”
tool is used in defining the shift times, and ”workerpool” tool is used for assigning

clinicians to their pods.
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Fig. 3.16.: Intake Sub-model of the time-in-motion model.

Another detailed model was built to capture three different stages in the care
process and to include both patients and clinicians flow. Sub-models for the four
major treatment units were built to capture the number of rooms, CT care process,
nursing care process, physicians treatment process, human resources’ schedules, room

and patient’s status at each stage.
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Fig. 3.18.: Real-time patients’ LOS chart.

Sub-models capture all the three stages in the patient care process. In addition, an-
other stage is added for discharging the patient. A number of methods (sub-routines)
were implemented to prevent any additional patient from entering a treatment room

unless the patient occupying the room has completed all the four stages of care. A
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Fig. 3.19.: Definition of resourcing shifts using Tecnomatix.

loop is added at each stage of the care process such that, a care provider might visit
the patient inside his room more than once according to the percentage number de-
fined in that loop. CTs, nurses and physicians shifts are uploaded into the resourcing
pools using the ”ShiftCalender” tool for each sub-model. The ED stops assigning new
patients to certain pods 30 minutes before the nurse leaves; however, existing patients
might still be served with the help of other nurses. Icons were added for each human
resource type to distinguish between them and make the model easier to verify.
Similarly for the other units, physicians are assigned to HA and Shock during their
shifts, while nurses are assigned according to pod distribution for each unit. CTs are
assigned to all patients in a given unit except for Shock room, which doesn’t have
any CTs assigned. Once a patient is admitted to one of the four treatment units,
he starts waiting for a room to be ready, and then he goes through the three stages
of treatment sequentially. Once the patient finishes one stage of treatment, he waits
inside his room until a clinician is available to serve at the next stage of care. Once he

receives all the treatment needed by the three care providers, he exits the sub-model
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and goes through the next stage of the process which is Hospitalization/Discharge.
The model is built in a way such that the main frame (process) is not affected by the
sub-models.

At this stage, the model is populated with some animation such as: hospital logo,
patients’ icons, clinicians’ icons, real-time charts and others to enhance its visualiza-
tion. Some comments are added in the main frame to help the reviewer understand
and verify the model. Those comments have information about data sources, the way
model is built, and the model output behavior.

A method was developed to record the LOS for each patient discharging the
system, while the simulation is running. This method can be easily customized such
that patients’ LOS can be recorded during a certain time of the day (e.g. night shift).
Results of these recordings are documented in a table file each time a patient exits the
system as shown in Figure 3.20. The table records patients’ entrance and exit times,
and LOS is considered as the difference between them. This method is important to
capture the time stamp for each patient; however, it slows the simulation.

In addition, the DES model has the following assumptions:

1. Patient discharge process is assumed to have a zero processing time, since no
data is available for it and it was not captured in the SysML based model. Discharge
activities include completing registration/paperwork, and moving patients outside of
the ED.

2. All ED nurses, CTs and physicians are assumed to have the same efficiency
and speed.

3. ED patients might wait for an available bed anywhere at the ED (e.g. waiting
inside the room, in the hallway or at the front assessment area); therefore, patients
waiting inside treatment buffers represent all patients waiting for an available bed at
the assigned rooms.

4. The three stages of care inside each treatment room are assumed to follow a

sequential order: CT care, then nursing care, and then physician treatment.
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5. Other treatment processes (e.g. X-ray, lab test or MRI) are not captured in
the model, and are assumed to happen while the patient is occupying his room.

6. Only three types of clinicians were captured in the simulation model, and
medical equipment were not captured.

7. patients LWBS output was not calculated using the model, since no data is

available for those patients and they were not captured in the SysML based model.

siring time time time
il 2 3
string Patient Entrance_Time Exit_Time oT

1 [.MuUs.Patient:1 5:00,0000 1:05:11.0616 1:00:11.0616
2 |.MuUs.Patient:2 ..G:DD.DDDD 1:12:02.5010 .l:DG:DZ.SDID
3 ..MUs.Paﬁent:S 41:00,0000 .3:45:18.9513 .3:04:18.9513
4 |.MUs.Patient:4 ..SZ:DD.DDDD .1:13:42.2651 .21:42.2651

5 ..MUs.Paﬁent:S 58:00,0000 .1:53:43.06?4 .55:43.06?4
6 |.MuUs.Patient:6 i 59:00,0000 .1:59:01.43?‘3 .1:00:01.43?‘3
7 ..MUs.Paﬁent:? 1:08:00,0000 .4:4*3:4?.8392 .3:41:4?.8392
a | .Mus.Patient:3 i 1:32:00,0000 .2:5?:25.6685 .1:25:25.6685
9 ..MUs.Paﬁent:g 1:37:00,0000 .3:20:39.8965 .1:43:39.8965
10 |.MUs.Patient: 10 j 1:49:00.0000 .3:12: 23.2108 .1:23:23.2108
11 ..MUs.Paﬁent:ll 1:51:00,0000 .11:06:15.5043 .9:15:15.5043
12 |.MUs.Patient:12 i 1:54:00.0000 .3:31:4?.4054 .1:3?:4?.4054
13 ..MUs.Paﬁent:H 1:57:00,0000 .3:06:08.0525 .l:Dg:DB.DSZS
14 |.MUs.Patient: 14 i 2:02:00.0000 .3: 2722,1889 .1: 25:22,1889
15 ..MUs.Paﬁent:lﬁ 2:05:00.0000 .11:26:46.1148 .9:21:46.1143
16 |.MUs.Patient: 16 i 2:07:00.0000 .3:2?:41.354—‘} .1:20:41.354—‘}
17 ..MUs.Paﬁent:l? 2:05:00.0000 .18:13:15.2439 .16:05:15.2439
13 |.MUs.Patient: 18 i 2:24:00.0000 .3:14:16.3811 .50:16.3811
19 ..MUs.Paﬁent:lg 2:28:00.0000 .3:55:46.4306 .1:2?:46.4306
20 | .MUs.Patient:20 i 2:32:00.0000 .4: 24:36.2378 .1: 52:36.2378
21 ..MUs.Paﬁent: 21 |2:39:00.0000 :4:41: 58,6865 :Z:DZ: 53,6868

Fig. 3.20.: LOS of discharging patients, recorded in a table file while the simulation

is running.
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4. VERIFICATION AND VALIDATION

4.1 Model Verification

Research team members including a physician from the ED participated in the
verification and validation process of the ED general model through characterization
and description of the patient flow process using the process flow model in Figure
3.8. Model verification methods are applied on both simulation model A and B to
ensure that the formal representation of the computerized model is accurate for both.
Simulation models were developed part by part. Data were gathered over two-years’
period and model’s logic was built manually using Tecnomatix existing functionalities,
which have proven to be effective for modeling the healthcare operation [43].

The following four methods were applied for verification:

1. Inspection of the simulation’s logic using walkthroughs, slow simulation runs
and test runs (inspection).

2. Performing consistency checks on some of the model output parameters (anal-
ysis).

3. Running extreme test scenarios to test the change in the model’s output in
corresponding to different inputs under a set of assumptions and initial conditions
(examination).

4. Testing the variation in the model’s output using multiple simulation runs
(analysis). All these verification methods involved reprogramming some of the model’s
components [36].

We focused on verifying the resource model (Model B); however, some of the
verification methods were applied to Model A as well. We used graphs and plots to

demonstrate the results, in order to make it easier for verification.



52

First, both simulation models were inspected using slow simulation runs and ani-
mation of patient flow. We tracked the patient flow process through the main frame
and the sub-models. The model was animated to show different states of the flow pro-
cess for patients and clinicians. The following were observed during the walkthroughs:
1. Patient being served by a clinician, 2. Patient waiting for another patient being
served, 3. Patient waiting in his room for a clinician to serve him. 4. Room being
Idle, 5. Room being filled by a patient, 6. Room being not in operation, 7. Clinician
being idle, 8. Clinician serving multiple patients and 9. Clinician serving the same
patient more than once. Figure 4.1 shows a snapshot for the treatment process at
6:30 am, Sunday at Intake. Figure 4.1 shows an animation of the patient flow process,
showing a patient being served by a CT at the first stage of treatment process, and
another one being served by a nurse at the second stage. It shows a patient wait-
ing in the queue for another patient being served by a physician, in order to occupy
his room once the current patient leaves. To facilitate the verification process while
the simulation is running, patients waiting are animated in yellow color, and patients
currently receiving treatment are animated in blue color. All human resources are an-
imated in different colors as well. Similar walk-troughs have been conducted through
the simulation model for the other treatment sub-models at different times of the day

and different days of the week.
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Fig. 4.1.: Treatment process walk-through using animation of patient low while run-

ning the simulation.
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In addition, model data inputs were also inspected against the process input re-
quirements that has been developed at an earlier stage of the project. Each of the key
decision points in the process flow model were verified with the help of our research
team using excel templates (shown in the appendices). Key probability distribution
numbers were identified and verified, which represent the routing probabilities in the
model.

Simulation was also examined by performing consistency checks on some of the
output measures. Different output parameters were tracked for each patient such as
LOS as shown in Figure 3.26. We relied on a qualitative approach for this test to
ensure that the output behavior of the model falls within a "reasonable” range. Four
different testing cases were applied on both model A and model B, and used either
for testing the model, or testing the boundary conditions of the ED in the form of
extreme case scenarios. Some of the testing cases are applied only on Model B.

The first testing case is varying the input data for both models, such that the
average LOS and patient throughput were calculated daily, weekly, biweekly and
monthly to show that the model output is consistent. It is observed that the results
are consistent for both models. It is also observed that the results from both models
are comparable, where data variations from both are minor. Simulation was run and
the output data were plotted using excel. Figure 4.2 shows patient throughput results
of model A for 2015. Figure 4.3 shows patient throughput data of model B for 2015.
It is shown that the throughput data for each time frame follow similar trends; where
the maximum observed variation between the upper and lower limits in the graphs
was 41 patients only, while monthly data showed a maximum variation of 75 patients
between the upper and lower limits in the plot. Similar trends have been observed in
the real system. Similar results were observed for 2014 and 2016 data.

The second testing case is testing an extreme condition by doubling the rate of
patients arriving to the ED at 2015. The aim is to test the boundary conditions of the
model and the actual ED system. This test is applied assuming all model’s variables

are the same regarding of the extreme condition. Model B was used to run this test,
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Fig. 4.2.: Consistency check of patient throughput data of Model A for 2015.
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Fig. 4.3.: Consistency check of patient throughput data of Model B for 2015.
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and the average LOS was used as a performance metric. Table 4.2 shows the results’
comparison between normal and extreme condition scenarios for both discharged and
admitted patients. It is observed that patients coming to the ED are blocked in the
waiting room (buffer) for a very long time until a room becomes available at Intake or
another treatment unit. Results show that the LOS will increase dramatically when
doubling the number of patients on 2015 as shown in Table 4.1, to exceed one day for
both admitted and discharged patients. Based on the results, a more realistic case is

identified and communicated with the ED, which is the third case.

Table 4.1: Checking the boundary of the model using an extreme case of doubling

the rate of arrivals on 2015

Scenario Discharged Patients’ LOS Admitted Patients’ LOS
Current State 3:20:59 6:07:42

Extreme Case 1 Day and 3 hrs. 1 Day and 23 hrs.

The third testing case is testing the same extreme condition over a specific period
during the day (surge), where the number of patients arriving to the ED was doubled
between 9 AM and 12 PM on 2/1/2014. Figure 4.4 shows the results from both
extreme and normal scenarios for Model B. The forth testing case is also an extreme
condition, which is applied by tripling the number of patients during the same time
frame. Figure 4.5 shows the results after tripling the number of arriving patients for
Model B. The x-axis represents the time of the day starting at 12 AM on 2/1/2014,
and the y-axis represents the average LOS in hours. It is observed from Figure 4.4
that patients’ LOS starts increasing after 1 PM and returns back to its original value
at 3 AM in the morning. Figure 4.5 shows that the model reacts to tripling the
number of patients; such that, the LOS starts increasing after 1 PM to reach 7 hours
at its peak, then it decreases again to go back to normal at 5 AM in the next day.
All these extreme cases are applied on the generic population of patients, and assume

that the ED will use its existing resources (all model variables are the same).



o7

Comparison Between Current and Extreme Case Patients'
LOS

712
6:00
448
336
224
112

0:00
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

m— Oouble Patients' LOS  =——Normal LOS

Fig. 4.4.: Comparison between the current LOS and the LOS after doubling the
number of patients between 9 AM and 12 PM on 2/1/2014. The graph shows LOS

behavior over two days’ period.
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over two days’ period.
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The model output variation was tested by running the simulation 100 times using
"FExperimentManager” tool in Tecnomatix for both models. Figure 4.6 shows the
resulting output interval of Model B after 100 simulation runs. Figure 4.7 shows the
resulting output interval of Model A after 100 simulation runs. Both plots show that
the output is consistent with minor variations. It is observed that the variation is
minimum for both models, where Model A has a standard deviation of 2.16 in patient
throughput and 13.5 seconds in the average LOS, while Model B has a standard
deviation of 4.3 in patient throughput and 1.8 minute in the average LOS.

4.2 Model Validation

Model validation is applied validate the model’s assumptions and ensure the model
approximates the real system’s behavior. Results from verification testing cases are
used for validating the model with the help of a simulation expert and by using outputs
from the actual ED system (Data from Epic). We focused on validating Model B,
which was used later in the analysis. Only one validation method is applied to Model
A. Validation methods applied are: 1. Comparing model’s output data with Epic
and Picasso data, 2. Comparing the model’s behavior with another model’s output
trends, 3. Validation with a simulation expert and with the ED, and 4. Validation
by observing the real ED system (observation) [43].

The first validation method is validating the model’s output behavior using ED
output data (Epic and Picasso). First, simulation’s output was compared with Epic
data using three different metrics: patient throughput, average LOS, time between
arriving to the ED and firs ED room assignment (Time between Door to Room).
The output results were estimated according to the last patient room except for the
time between door to room. The first validation method is also applied on Model A,
where average LOS values and patient throughput data were compared. Table 4.2

shows a comparison between the output results of Model B and Epic data for model
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Fig. 4.6.: Simulation output intervals for Model B after 100 runs, including mean,
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61

validation. Table 4.3 shows a comparison between the output results of Model A and
Epic data.

It is observed that the percentage error between the average patient throughput
data, Door to first provider output data and average LOS output data is minor
for Model B (less than 1% in patient throughput and 3% in LOS and door to first
provider); however, when the data is divided according to last patients’ room, a larger
percentage of error is observed because we are only relying on the sample we collected
through observation for building the model. Besides, we used only four months of
ED (Epic) data for validation. A larger variation in the average LOS for LA patients
is observed; because we didn’t collect data for patients who occupy the LA room for
a long time, and sometimes for one day or more (e.g. Intoxicated patients).

It is also observed that there is a minor variation in Intake patients’ results; whom
they account for more than 70% of total ED patients. Patients visiting the other three
units combined account for less than 30% only. Results from the simulation model
show an average value for monthly patient throughput of 7618.2, an average LOS value
of 3.8 hours and an average time between door and first provider assignment of 50.86
minutes for all patients. Epic data shows an average monthly patient throughput of
7567.9, average LOS of 3.9 hours and average door to first provider time of 52.19
minutes for all patients.

Model A is observed to have the exact same values for patient throughput numbers;
however, it has slightly lower values for the average LOS with less percentage of error
for LA patients. Model A is determined to be only valid for measuring the high-level
room utilization data, which are demonstrated in the results section. A more detailed
statistical analysis was not applied due to the limitation in the current ED data.

The second validation method is based on comparing the output trends over the
day with ED (Picasso) data; since Picasso had captured the average patients’ LOS
every one hour during the day, which was not captured by Epic. An algorithm was
implemented using Tecnomatix that enables the simulation model to calculate the

average LOS every one hour. Figure 4.8 shows the results from both the simulation



Table 4.2: Validation of Simulation Model B results using Epic data

Patient Type | Simulation Output | EPIC Output | % Error
Average Patient Monthly Throughput
Intake 4008.92 3632.64 10.36%
LA 2044.64 2470.57 17.24%
HA 1407.36 1246.7 12.89%
Shock 157.28 218 27.85%
Average 7618.2 7567.9¢ 0.66%
Average LOS
Intake 2.78 hrs. 2.67 hrs. 4.12%
LA 4.07 hrs. 5.33 hrs. 23.64%
HA 5.84 hrs. 6.0 hrs. 2.67%
Shock 5.07 hrs. 4.41 hrs. 14.97%
Average 3.8 hrs. 3.9 hrs. 2.56%
Average Door to Room

Intake 31.17 mins. 32 mins. 2.59%
LA 11.12 mins. 10.75 mins. 3.44%

HA 4.7 mins. 4.65 mins. 1.8%
Shock 2.21 mins. 2.67 mins. 17.23%
Average 24.76 mins. 25.36 mins. 2.37%
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Table 4.3: Validation of Simulation Model A results using Epic data

Patient Type | Simulation Output | EPIC Output | % Error
Average Patient Monthly Throughput
Intake 4008.92 3632.64 10.36%
LA 2044.64 2470.57 17.24%
HA 1407.36 1246.7 12.89%
Shock 157.28 218 27.85%
Average 7618.2 7567.9¢ 0.66%
Average LOS
Intake 2.43 hrs. 2.67 hrs. 9.88%
LA 4.78 hrs. 5.33 hrs. 10.32%
HA 5.37 hrs. 6.0 hrs. 11.73%
Shock 5.05 hrs. 4.41 hrs. 14.51%
Average 3.69 hrs. 3.9 hrs. 5.38%
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model and ED data analyzed from Picasso. The x-axis represents the time of the
day, and the y-axis represents the trend of the average LOS during the day. The
results capture the average LOS between 6:00 AM and 6:00 PM for both graphs,
where both were observed to follow the same trend during the day. It is observed
from both graphs that the LOS reaches its peak value between 3 PM and 4 PM, and
starts decreasing again until it reaches its minimum value between 9 AM and 11 AM
for both graphs.

The model output trend was also compared to another model (case study) output
trend. We compared human resource utilization rates and the average LOS from
the present model with Lisa Patvivatsiri, (2006) model from the literature. The
output from the current system is showing similar trends for patients’ LOS, room
utilization rates and human resources utilization rates; which range between 14% and
75.95% [16].

On the other side, the MBSE framework and the SysML based model were vali-
dated with the help of the research team and an ED physician, whom she validated
the model assumptions one by one by going through the generic process model. Data
used for building the model were also validated; although, we faced many challenges
regarding data collection and analysis. Data has been collected over two years pe-
riod using different sources: observation, interviews, databases (Epic and Picasso)
and documents. Models were developed through many iterations, and multiple data
sources were used in building the models to ensure the assumptions behind the data
are accurate. Data were collected such that, it can be used for different purposes
either for building the models or for validation. Procedures and data protocols were

used to collect and maintain the data.
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(b) Hourly LOS trend from the Simulation model.

Fig. 4.8.: Comparison between hourly trend of Simulation and Picasso LOS Data

over the day.



66

5. RESULTS AND DISCUSSION

This chapter discusses the results of the MBSE framework and the DES model. Each
MBSE diagram we used in the development of the simulation model is presented
and discussed separately. The results from both simulation models are presented.
The results focus on measuring physical and human resources utilization rates. In
addition, the results from the different ” what-if” scenarios are presented, which focus

on optimizing resource allocation at the main treatment units.

5.1 Discussion of The MBSE Model

This section discusses the resulting MBSE views, implemented using Cameo and
other modeling tools. In general, the selection of the current MBSE approach depends
on the nature of the problem being addressed; therefore, a simplified pathway has been
followed to solve the problem. The current MBSE approach helped us achieve the
following;:

1. Definition of stakeholder needs and requirements. 2. Definition of the use-
cases. 3. Functional analysis of the ED work-flow. 4. Behavioral modeling of the ED
work-flow. 5. Structural decomposition of the ED work-flow. 6. Simulation of the

ED process using DES.

5.1.1 ED Stakeholder Needs Identification

The ED general model requirements are put together using the IPO diagram.
Figure 5.1 shows the definition of stakeholder needs using the IPO diagram as de-
veloped by INCOSE. The diagram shows a summary of the requirements gathering
phase of the project including inputs, activities and outputs. This IPO model helped
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our research team to define project controls and to have a general strategy for imple-
mentation, while considering stakeholder needs through the entire project life-cycle.
The process of stakeholder needs identification started by conducting initial meetings
with ED stakeholders and gathering information from them including information
about their process documents, constraints, alternative solution classes, policies, reg-
ulations and problem statement. Groups of actions were taken, followed by a group
of activities conducted to meet the project requirements in general as well as other
requirements including data storage, software, process, training, ED observation and
others. The outcomes of this requirements gathering phase include the implementa-
tion of a project charter document that defines problem statement, solution strategy,
list of tasks, team members, durations, time-lines, milestones, risks, mitigation plans
and deliverables. In addition, initial frameworks and models were developed to define

a high-level domain of the ED work-flow including function, activity and sequence

models.
Inputs Activities Outputs

. Initial process . Meetings/Interviews
Documents *  Initial flow

*  Health Policies and charts/activity diagrams *  Stakeholder needs
Regulations *  Stakeholder definition strategy

*  lab/radiclogy requirement analysis *  Requirement
stakeholder ED walkthroughs traceability
identification Documentation ED domain madel

ED function maodsl
ED activity model
Data collection

*  Murse-in Charge

identification
. Physician in charge

Reguirement definiticn

Froblem definition
Data requirement

identification identification Strategy

*  Data Specialist *  Project requirement *  Problem solving
identification identification Strategy

*  EDProblem *  Data storage *  Agreements/ project
Statement requirements charter

*  System constraints *  Implementation *  Training strategy

*  Alternative solution requirements * Implementation
classes *  Training requirements strategy

- Interfaces

Enablers and
Controls

Fig. 5.1.: IPO diagram defining stakeholders’ need in the form of inputs, activities
and outputs [7].
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5.1.2 ED Use-cases Definition

Based on the application of stakeholder requirements, multiple use-case scenarios
were defined for ED patients and human resources. Figure 5.2 shows the first use-case
model that demonstrates the objective of the current work as modeling the work-flow
of the generic population of patients. Two use-cases are identified for patients who
are considered the system actors, the first one represents the generic work-flow at the
ED, and the second one represents the treatment sub-flow. The two use-cases are
connected to a group of activity models. Another use-case diagram is implemented

to define the use-cases for ED clinicians.

uc [Package] 12 User Needs [ ED Patient Workflow _]J

wsystem contexts
Patient Process Flow

>
y
l.-‘ ED Workflow

~

- m

)
) / zincludes

P e —

.y .~ Treatment Unit
ED Patient ( Sub-flow
b th

Fig. 5.2.: SysML use-case diagram defining patient use-cases.

5.1.3 ED Functional Analysis

Multiple views of the ED work-flow were implemented using SysML activity dia-
grams to demonstrate the generic patient flow process and sub-flow processes. Figure

5.3 demonstrates the generic work-flow model in Cameo, which shows the four steps
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in patient’s flow (admission, assessment, treatment and hospitalization/discharge),
are all allocated to the activity diagram. The sub-flow model shown in the Figure
5.3 is applied to all four units inside the ED: Intake, LA, HA and Shock. It describes
the treatment process in the form of a queuing model with three stages of care: CT
treatment, registered nurse treatment and attending physician treatment. Those ac-
tivity models were used to develop time studies and data collection grids to define

data inputs and requirements and provide mapping of the process flow.

5.1.4 ED Structural Decomposition

The structural model is implemented using SysML BDD diagram to clearly demon-
strate the definitions and functions of the modeled system of interest and its elements.
This structural diagram helped in the development of the simulation model’s by de-
composing the system into components. It has three different types of blocks: system
block, interface block and block. As demonstrated in Figure 5.4, the system of in-
terest (patient work-flow model) is decomposed it into six different blocks (system
components). Each component is described using different types of properties: flow
properties, value properties, constraints and parts. Generalization and association
relationships were used in connecting the different elements of the diagram with each

other and with the system of interest.

5.1.5 ED Model Behavioral

The ED work-flow STM diagram was implemented to describe the component
behavior of the patient flow process. The STM diagram was used by our research
team as a blueprint of the simulation model’s logic. The diagram is divided into four
different states: admission, assessment, treatment and discharge. This diagram is
used to call a number of other activity diagrams at each state to describe the function
of the flow. An example is the treatment process which has three different states,

where a patient starts the process only if he got assigned to a bed (entry state). After
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(b) Treatment process activity diagram.

Fig. 5.3.: SysML activity models describing the generic patient flow and treatment

sub-flow.
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Fig. 5.4.: SysML BDD diagram defining work-flow model structure.

that, clinicians process his treatment through multiple stages (do state); and finally,
the discharge nurse or CT will process his discharge or might send him to another
unit in case he needs further treatment (exit state). Those states are defined at the
treatment block, which is connected to the other blocks through different signals such
as "send patient home” signal which represents discharged patient as demonstrated
in Figure 5.5. Each state is described by different functions and different activity
models. Figure F.8. in the appendices section is another model that demonstrates

the simulation model’s behavior in more detail.

5.2 Discussion of The DES Model Results

The MBSE integration between the conceptual model and the Tecnomatix model
was achieved manually. The resulting data were analyzed and a group of modification
scenarios were formulated to optimize the ED process. Figure 5.6 shows how the
mapping process was achieved between SysML activity diagrams, data grids and the

simulation platform.
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Fig. 5.5.: SysML STM diagram describing model behavior.

5.2.1 Time-in-Motion Model Results

We used the time-in-motion model in estimating the high-level room utilization
data, without taking into consideration the interaction between human resources and
patients. Figure 5.7 shows a graphical representation of the results from the time-
in-motion model in the form of resource utilization charts for each one of the four
treatment units respectively; showing percentages of patients occupancy at each pod,
non-operating time and idle time at each. We can observe from the charts that the
utilization rates of pods at Intake - without the non-operating time - is close to 97
%; while it ranges between 75 and 90 percents for the other units, where the idle

time is observed to be large for LA. Table 5.1 demonstrates the numerical data for
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Fig. 5.6.: Demonstration of the mapping Process between Cameo activity models,

data grids and Tecnomatix process simulation.

pod utilization rates. This data is used to show the capacity of the ED by estimating
the portion of time pods are occupied by patients. It is observed from the data that
Intake Pods are occupied more than 95% of the time while they are in operation, which
causes patients to have long waiting times. Charts also show a higher occupancy rate
for HA pods compared to LA and Shock ones. A high pod utilization rate doesn’t
mean that all rooms within the pod are utilized; therefore, room utilization rates are
expected to have lower values, especially for LA unit which has six rooms for each

pod.

5.2.2 Resource Model Results

Human resource utilization data were estimated by the resource model. These

data represent the percentages of time spent by each human resource inside patients’
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Fig. 5.7.: Room usage charts for Intake, LA, HA and Shock room respectively, showing

patient occupancy rate in green, room idle time in gray and non-operating time in

blue.



Table 5.1: Physical resources statistics as estimated by Model A
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Treatment Pod | Occupancy Rate | Non-operating Time | Idle Time
Intake Pod 1 96.56% 0% 3.44%
Intake Pod 2 96.41% 0% 3.59%
Intake Pod 3 80.81% 16.67% 2.52%
Intake Pod 4 68.32% 29.75% 1.93%
Intake Pod 5 54.41% 44.04% 1.55%
Intake Pod 6 44.05% 54.75% 1.20%
Intake Pod 7 33.45% 64.25% 2.31%

LA Pod 1 79.59% 0% 20.41%
LA Pod 2 79.72% 0% 20.28%
LA Pod 3 79.59% 0% 20.21%
LA Pod 4 79.66% 0% 20.34%
HA Pod 1 87.6% 0% 12.4%
HA Pod 2 87.73% 0% 12.27%
HA Pod 3 87.82% 0% 12.18%
HA Pod 4 74.59% 16.67% 8.74%
Shock Pod 1 76.77% 0% 23.23%
Shock Pod 2 76.61% 0% 23.39%
Shock Pod 3 24.46% 66.67% 8.87%
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rooms based on applying the queuing theory, where patients wait inside their rooms
until a clinician is available to serve them. The sequence of this queuing process
is shown in Figure 5.8. For each activity in that diagram, a loop might be added,
where care providers might visit the patient inside his room more than once. Table
5.2 shows the percentage of time spent by each clinician inside patients’ rooms after

running the model for three years.

act [Activity] Treatment Unit Sub-flow [ Treatment Unit Sub-flow l,|

at (Waiting for \ 5 =
Treatment/Pr Care Nursing Physician

- — N ovider) > 1;_(?2:;1':2:"1 — = Treatment L -  Treatment — —,w!)
Intake Patient Discharge

Fig. 5.8.: SysML Activity Diagram, showing the process sequence of the patient care

process inside each treatment unit.

It is observed from Table 5.2 that the percentage of time physicians spend inside
patients’ rooms is relatively higher than other human resources, recorded at 75.16%
for physicians at LA-Intake and recorded at 79.59% for physicians at HA-Shock; since
physicians serve a large number of patients at the same time (up to 45 patients per
shift). Utilization rates recorded for CTs are considered to be the lowest, where CTs
at LA and HA spend 16% and 21% of the time inside patients’ rooms; however, Intake
CT spend 48.9% of the time inside patients’ rooms due to the high occupancy rate
at Intake compared to the other units.

Some of Tecnomatix output reports for both model A and model B are shown in

the appendices.
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Table 5.2: Percentage of time spent by CTs, registered nurses (RNs) and attending
physicians inside patients’ rooms (contact time) during their shifts, as estimated by

Model B.

HR Type Utilization Rate
Intake CT 48.9%
Intake RN 44.01%
LA CT 20.82%
LA RN 40.35%
HA CT 16.31%
HA RN 36.94%
Shock RN 32.23%
Intake LA PHYS. 75.16%
HA Shock PHYS. 79.59%
Fast_Track PHYS. 37.18%
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5.3 Modification Scenarios

Information driven from the MBSE framework and the resulting data from both
models were analyzed and formulated to develop a group of ”what-if” scenarios for
ED process improvement. Results from the resource model show a large workload for
physicians at the four units, since each physician is assigned to two treatment units at
the same time. Results also show high room utilization rates at Intake, which cause
patients to wait for more than 30 minutes on an average before getting assigned to an
Intake room. Results show a high occupancy rate for HA unit as well. The problem
is formulate such that, the objective function is to minimize the average LOS and
the average time between door to room. The first constraint to our problem is a cost
constraint, which represents the hiring budget for adding new resources to the process.
The second constraint is an improvement constraint, which requires a minimum of
10% improvement in the average LOS and the average time between door to room.
The third constraint is related to the clinical value, where the average LOS shall not
be less than 2 hours. Decision variables are the resources amounts and the shift times.
Two different types of what-if scenarios were implemented using the resource model,
the first one is based on optimizing existing ED resources (added cost = 0) and the

second one is adding more human resources to the current process [44] [45].

5.3.1 Optimization of Existing ED Resources

Four different case studies were applied to optimize the current resources without
adding more costs. The first case study we applied was moving resources between
LA and Intake. First, we tried re-assigning one pod from LA to Intake, and re-
assigning the LA nurses working in that pod to Intake without changing the Nurse to
room ratio; such that, three rooms were added to Intake and six rooms were removed
from LA. Two performance measures were compared: the average LOS and the time
between door to intake room. Results show a slight improvement in the average LOS

and door to room time as demonstrated in Table 5.3.
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Table 5.3: Results of the first what-if scenario (Case study 1) compared to the current

model

Performance Metric | Current Model | Case Study 1
Average LOS 3.8 hrs. 3.7 hrs.

Door to Intake Room 31.17 mins. 30.4 mins.

Second, we re-assigned one pod from LA to Intake and changed the nurse to
patient ratio at Intake from 1/3 to 1/4, except for Intake pod 7 which remains at
1/2, such that, all six rooms were allocated to Intake from LA. After increasing the
nurse to patient ratio at Intake, we tested replacing the nurses from the removed
pod at LA with one physician serving at Intake/LA between 9 AM to 6 PM (peak
time). This optimization scenario shows a possible reduction in the average LOS
from 3.8 hours to 3.25 hours, and a possible 7 minutes reduction in the average time
between door to Intake room as demonstrated in Table 5.4. Both first and second
case studies have an additional cost = 0; therefore, both meet the cost constraint.
Only case study two meets the improvement constraint; therefore, it is determined
to be the optimum solution for Intake patients. It is also observed that by applying
the second case study, the percentage of time clinicians spend with patients will be
optimized as demonstrated in Table 5.5. The table shows an increased utilization
rates for Intake/LA CTs, RNs and fast-track physicians. It also shows a reduced
utilization rate for Intake/LA physicians’. Both case studies show that the current

number of physicians has the highest impact on the problem.

Table 5.4: Results of the second what-if scenario (Case study 2) compared to the

current model

Performance Metric | Current Model | Case Study 2

Average LOS 3.8 hrs. 3.25 hrs.

Door to Intake Room 31.17 mins. 23.2 mins.
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Table 5.5: Comparison between current and optimum human resource utilization

rates from case study 2.

HR Current Utilization | Optimum Utilization
Intake CT 48.9% 59.74%
Intake RN 44.01% 47.4%
LA CT 20.82% 25.31%
LA RN 40.35% 45.96%
Intake/LA PHYS. 75.16% 74.56%
Fast-Track PHYS. 37.18% 44.23%

The third case study is based on moving resources between LA and HA. We
tested re-assigning one pod from LA to HA without changing the Nurse to room
ratio; such that, four rooms were added to HA and six rooms were removed from LA.
Two performance measures were compared: the average LOS and the time between
Door to HA room. Results are demonstrated in Table 5.6, which shows a 30-minutes
reduction in the average LOS.

In addition, we tested changing the nurse to patient ratio at HA from 1/4 to 1/5,
and adding one physician serving at HA /Shock between 9 AM to 6 PM (peak time)
instead. Results from this case study (forth case) are demonstrated in Table 5.7,
which shows a slight improvement in LOS compared to results from Table 5.7. Case
study four is determined as the optimum solution for HA patients; since it meets the
two constraints. Table 5.8 shows the new human resources utilization rates based on
applying case study four. Table 5.9 shows a comparison between the current state,
case study 1 and case study 2. Table 5.10 shows a comparison between the current

state, case study 3 and case study 4.
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Table 5.6: Results of the third what-if scenario (Case study 3) compared to the

current state

Performance Metric | Current Model | Case Study 3
Average LOS 3.8 hrs. 3.3 hrs.
Door to HA Room 4.7 mins. 4.55 mins.

Table 5.7: Results of the forth what-if scenario (Case study 4) compared to the

current state

Performance Metric | Current Model | Case Study 4
Average LOS 3.8 hrs. 3.25 hrs.
Door to HA Room 4.7 mins. 3.78 mins.
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Table 5.8: Comparison between the current and optimum human resource utilization

rates from case study 4

HR Current Utilization | Optimum Utilization
HA CT 16.31% 17.14%
HA RN 36.94% 42.08%
LA CT 20.82% 25.31%
LA RN 40.35% 45.96%
HA /Shock PHYS. 79.59% 65.97%

Table 5.9: Comparison between the current state, case study 1 and case study 2

(optimum)
Point of Comparison Current State | Case Study 1 | Case Study 2
Average LOS 3.8 hrs. 3.7 hrs. 3.25 hrs.
Door to Intake Room 31.17 mins. 30.4 mins. 23.2 mins.
Added/Removed INT RNs 0 +2 RNs 0
Added/Removed LA RNs 0 -2 RNs -2 RNs
Added/Removed Physicians 0 0 +1 Physician
Number of Intake Rooms 20 23 26
Number of LA Rooms 24 18 18
Intake N/P Ratio 1to3 1to3 1to4

5.3.2 Allocating More Resources to The ED

Based on the results from the first four case studies, other case studies were
introduced and communicated with the ED based on adding more physicians to the
current model. The average LOS was used as a performance metric in this test.
First, five different experiments were tested on the physicians at HA /Shock, where

we tested adding from one to five physicians serving at both units. An experiment
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Table 5.10: Comparison between the current state, case study 3 and case study 4

(optimum)
Point of Comparison Current State | Case Study 3 | Case Study 4
Average LOS 3.8 hrs. 3.3 hrs. 3.25 hrs.
Door to HA Room 4.7 mins. 4.55 mins. 3.78 mins.
Added/Removed HA RNs 0 +2 RNs 0
Added/Removed LA RNs 0 -2 RNs -2 RNs
Added/Removed Physicians 0 0 +1 Physician
Number of HA Rooms 16 20 20
Number of LA Rooms 24 18 18
HA N/P Ratio 1to4 1to4 1tob

number from two to six demonstrates each added physician, while experiment one
represents the current state. We started by adding one physician at the peak-time,
then adding more physicians one by one to the remaining shifts. Similarly, we tested
adding physicians from one to five at Intake/LA. In addition, we tested adding one to
five CTs at Intake as a lower cost alternative to adding physicians. A cost constraint
of $1,000,000 was identified as the maximum cost for hiring new resources.

A tool in Tecnomatix namely, ”ExperimentManager” was used to conduct all the
experiments that involve adding resource to the ED due to the sensitivity of the
problem. The paired t-test was used by this tool for testing the null hypothesis
to design our experiments. This test was used because the simulation was run for
multiple times for each experiment. The observed statistical significance values (p-
values) were analyzed and traditionally determined as 0.05, where values less than 0.05
are considered as statistically significant. Figure 5.9 shows the sequence of conducting
experiments using experiment manager tool. The p-values from the outputs of each

test are shown in the appendices.
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Resulting graphs were plotted using ” ExperimentManager” tool to show the op-
timum LOS value for each case study. Figure 5.10 shows the results of sensitivity
analysis on HA /Shock physicians, including statistics on the output values. Figure
5.11 shows the results of sensitivity analysis on Intake/LA physicians. Figure 5.12
shows the results of sensitivity analysis on Intake CTs. Figure 5.13 shows the re-

sults after combining all optimum scenarios for adding physicians. The x-axis in all
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Fig. 5.9.: Sequence of using ExperimentManager tool in Plant Simulation.
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plots represents the experiment number as described earlier. The y-axis in all plots
represents the average LOS in hours. It is concluded that the average LOS can be
reduced up to 3.18 hours when adding three physicians at HA/Shock, and to 3.13
hours when adding four physicians at Intake/LA. Adding CTs at Intake might result
in improving the average LOS by 5 minutes only as shown in Figure 5.12; therefore
it doesn’t meet the improvement constraint.

A combination between all optimum scenarios results in an optimum average LOS
of 2.43 hours as shown in experiment five in Figure 5.13; however, experiment three
shown in Figure 5.13 is identified as the optimum solution because it meets the cost
constraint. The optimum LOS is identified as 2.83 hours, which is considered as a
25.53% reduction in the average LOS for ED patient. The optimum scenario will
result in adding four physicians; therefore, the percentages of time physicians spend
inside patients’ rooms are reduced at the four units based on the new simulation
results. The annual cost is also increased by $960,000, assuming each physician will
make an annual salary of $240,00 per year (as estimated by the ED). Table 5.11 shows
a comparison between the current and the new human resource utilization rates for
Intake CTs, Intake/LA Physicians and HA /Shock Physicians; showing a reduction of
approximately 20% in the percentages of time spent inside patients’ rooms based on

applying the optimum scenario [44].

Table 5.11: Comparison between the current and new human resource utilization

rates based on applying the optimum scenario

HR Current Utilization | Optimum Utilization
INT CT 48.9% 42.14%
INT_LA PHYS 75.16% 57.27%
HA_SHOCK PHYS 79.59% 64.39%
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Fig. 5.10.: Sensitivity to number of physicians at HA /Shock.
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(a) Plot of sensitivity analysis results on physicians at Intake/LA, showing the opti-
mum solution as adding four physicians through the different shifts, which results in

an average LOS of 2:52 hours.

Output value Average Patient [ 0%

‘ ‘ Mean value |Standard Deviation ‘ Minimum | Maximum |Le|’tinterva|bnund |R]ght'|ntenralbnuml

‘ Exp1 | 3:43:34.4524 | 1:05.0363 ‘ 3:41:52,3807 |3:44:4?.0331 | 3:42:13.3913 |3:44:55.5135
‘ Exp 2 ‘ 3:23:22,7185 | 538.4716 ‘ 3:22:31.0219 | 3:24:59.5442 | 3:22:09,8396 |3:24:35.59?4
‘ Exp 3 ‘ 3:17017.3577 | 1:20,3880 ‘ 3:15:15.3782 |3:18:39.1329 | 3:15:37.1872 |3:18:5?.5281
‘ Exp 4 i 3:06:38.8923 | 25,2148 ‘ 3:06:19,4052 |3:U?:21.4689 | 3:08:07, 46496 |3:U?:1U.32[JU
‘ Exp 5 ‘ 2:52:39.6154 | 36,8939 ‘ 2:52:04.8010 | 2:53:38.1918 | 2:51:53.6310 | 2:53:25.5999
‘ Exp & I 2:51:58,2653 | 33.2121 ‘ 2:51:21,7695 |2:5?_:43.6553 | 2:51:16.8698 |2:52:39.660?

(b) Experiment statistics after five simulation runs.

Fig. 5.11.: Sensitivity to number of physicians at Intake/LA.
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(a) Plot of sensitivity analysis results on CTs at Intake, showing the optimum value

as adding one more CT, which results in an average LOS of 3:35 hours.

Dutput value Average Patient LOS

| ‘ Mean value |Stimdard Deviation ‘ Minimum | Maximum |Leﬂ:'mterva|bnnmd |R.'|ghtin:ter\ra| bound

‘ Exp1l ‘ 3:40:42.4716 | 20,8596 ‘ 3:40:25.5194 | Fi41:12,2691 | 3:40:16.4722 | 3:41:08.4710
I Exp 2 i 3:35:51.3204 i 1:02.8628 ‘ 3:34:35.2758 | 3:37:05.3614 | 3:34:32.9683 | 3:37:09.6725
| Exp 3 i 3:35:42.3082 | 55,1870 ‘ 3:34:39.1015 | 3:36:41,3312 | 3:34:33.5232 i 3:36:51.0933
‘ Exp 4 ! 3:35:15.46007 143.?6?0 ‘ 3:34:15.7058 | 3:36:16.8791 | 3:34:20.9095 | 3:36:10.0118
i Exp 5 | 3:35:18.0864 | 35,0565 ‘ 3:34:35.9943 | Fi36:02.9122 | 3:34:34.3520 | 3:36:01. 7307

(b) Experiment statistics after five simulation runs.

Fig. 5.12.: Sensitivity to number of CTs at Intake/LA.
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optimum value as adding four more physicians at Intake/LA and HA /Shock, which

results in an average LOS of 2:50 hours (optimum solution identified).

Output value Patients Average [0S

Exp 1

Exp 2

Exp 3

Exp 4

Exp 5

Exp &

Mean value

3:42:51.2744

3:00:41.5329

2:50:28.6641

2:40:55.8690

2:26:09.6941

2:25:30.4010

Standard Deviation
55.4423
6.83132

18.3370

19.2233

17.3422

12.8297

Minimum
: 3:41:28.9672
| 3:00:32.7364
| 2:50:03.8814
2:40:34.6774

2:25:44.7553

| 2:25:18.3675

Maximum
3:43:49.9383
3:00:51.7127

l 2:50:50,9712
2:41:27.2781
2:26:31.2999

2:25:44,5770

Left interval bound
. 34142,1712
[ 3:00:33.0410
2:50:05,8089
2:40:31.9092
2:25:43.07589

2:25:14.4100

(b) Experiment statistics after five simulation runs.

Right interval bound

3:44:00.3770

3:00:50.0249

2:50:51.5193

2:41:19.8289

2:26:31.3094

2:25:46.3919

Fig. 5.13.: Sensitivity to number of physicians at Intake/LA and HA /Shock combined.
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6. CONCLUSION AND FUTURE WORK

The conclusions of the current research project can be summarized as follows:

1. A model-based systems engineering approach is applied to build a patient flow
systems model all the way from stakeholder needs to simulation of the ED process.
The four pillars of systems engineering were modeled with an emphasis given to
modeling the behavior of the system. This approach has been applied to Eskenazi
ED, and can be generalized and applied to other EDs as well. The resulting MBSE
framework provided the following: a. Better understanding of the system and its
requirements, b. Identification of simulation inputs, outputs and key decision points,
c¢. Mapping of the process flow, d. Documentation of the system in the form of a
group of models, e. Communication tool, and f. Verification and validation tool.

2. Two different simulation models were implemented to model and simulate the
ED work-flow using a commercial DES tool: Tecnomatix 13.0. Multiple methods and
testing cases were implemented to verify and validate the two models. The validity
of the models was determined by comparing the results with an alternative output
data from the ED.

3. The Time-in-motion model was used to predict the high-level room and pa-
tient data, and the resource model was used to predict human resource utilization
data. The resource model was used in formulating and running a group of ”what-if”
scenarios that offer multiple strategies for resource allocation optimization.

4. Four case studies were implemented to optimize existing ED resources. Case
study two was applied on Intake patients, and shows a potential reduction in the
average LOS from 3.8 hours to 3.25 hours, and a potential reduction in the time
between door to Intake room from 31.7 minutes to 23.2 minutes. Case study four was
applied on HA patients, and shows a potential reduction in the average LOS from 3.8
hours to 3.25 hours.
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5. Three case studies were implemented to optimize resource allocation by adding
more physicians to Intake, LA, HA and Shock room, and by adding more CTs to
Intake. A combination between all of the three case studies resulted in reducing the
average LOS by more than 25%, and reducing the time spent by physicians inside
patients’ rooms by more than 20%.

Future work will focus on using the systems modeling efforts and expanding our
model to include the two use-cases (phase II of the project). The first use-case will be
applied on patients with acute exacerbations of chronic obstructive pulmonary disease
(COPD). Those patients often present in significant respiratory distress; therefore,
they require emergency care.

The second use-case will be applied to patients who present with mental illness,
and require medical evaluation for acute injury or toxicities requiring intervention,
followed by evaluation by psychiatric services. Those patients are presented as acutely
intoxicated. We are currently in the process of collecting the required data and
modeling the workflow of those patients with the help of medical students and our
research team members. This activity requires the breakdown of the system-level
views into more detailed structures describing staffing requirements for those patients
and the cost associated with their care.

The simulation model has proven to be a valid decision-making tool that can be
used by the ED in making resource planning decisions; however, it has the following
limitations:

1. The model did not consider some design variables which impact the process
and need to be considered in the future such as student nurses and physicians, whom
they help registered nurses and attending physicians in treating patients; therefore,
adding those resources to the model in the future will provide a better understanding
of the current resource utilization at the ED.

2. Fewer data points were collected for LA, HA and Shock patients compared to
Intake patients. The current model didn’t capture patients who stay inside those units

for a long time, and sometimes for one day or more. This is due to the limitations
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in the current data collection methods applied. It is recommended in the future to
use data collected through the ED systems over using time studies and manual data
collection approaches, although this might seem difficult due to the limited access to
patient data.

3. Output data for patients left without being seen (LWBS) was not calculated
using the model, since no data were available for them and those patients were not
captured in the generic process flow model. It is recommend considering those patients
as a separate case study in the future.

5. Human Resource utilization rates are assumed to be the percentage of time
spent by an ED clinician to serve a number of patients inside their rooms. The time
physicians, CTs and nurses spend inside their workstations or doing other tasks is
not estimated by the model, which is recommended to be considered in the future.

6. Other DES validation methods are used in similar case studies and were not
included in the current model. Those validation methods include validation using
mathematical and operations research models such as the M/M/C queuing model [46].
In addition, model validation should be applied on recent changes in the ED process,
and using real-time data from the ED, which is not currently available.

7. Tt is assumed that all human resources will reserve the exact same functions;
however, CTs might replace nurses in some tasks and vice versa. A more detailed

functional analysis of ED resources needs to be conducted in the future.
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A. ED PLAN VIEW MODEL
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Fig. B.1.: Time study template used to record patient data at the registration desk.
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Other Information (Optional)

Physician Treatment
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Fig. B.2.: Time study template used to record patient data inside the treatment units.
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C. TECNOMATIX MODEL OBJECTS

Statistical Tools Resource Objects Initialization Logic
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Fig. C.1.: Tecnomatix objects used by the simulation model.

Statistical Tools: Tools used for data fitting and output sampling.

Resource Objects: Objects and tools used to input ED resourcing grids.

Initialization Logic: Sub-routine used to set-up the initial conditions of the model.

Table Files: Files containing model input and output data.

Chart Objects: Represent charts that track some of the model variables (e.g LOS

and number of patients) while the simulation is running.
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Frame Objects: Represent the main model and sub-models for the treatment

units.
Sub-routines: Programs which Tecnomatix execute while the simulation is run-

ning.
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D. ED DATA
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Fig. D.1.: ED throughput summary from Epic (From October 1st, 2016 through
February 1st, 2017).
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Sample of Physicians schedules during the first two weeks of May.

Fig. D.2.
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E. DATA FITTING RESULTS
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Fig. E.1.: Data fitting results for Intake Patients, obtained from the ”DataFit” tool

Tecnomatix. Data is for Model A.
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Fig. E.2.: Data fitting results for LA Patients, obtained from the ”DataFit” tool in

Tecnomatix. Data is for Model A.
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Fig. E.3.: Data fitting results for Intake CTs time-spans with patients, obtained from

the "DataFit” tool in Tecnomatix. Data is for Model B.
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the "DataFit” tool in Tecnomatix. Data is for Model B.



108

TUESFESEEZL | UBOS00FS'T |=2ng OZet'T 6989°0 =ng 0852°T QLTL0 Ing=ny ST
006 1,74 ang 0Z6+'T BETL'T ang 085E'T SE20'T wiegun - ST
154 006 ang 0Z6+'T 8650 ang 085E'T STLE0 sjbueu)  +T
"09BL5'SEE [TUSOESEET'T Bng Z6+"2 LIF0T ang 085E'T 50680 mased  ET
TUCRPSC'ER0 | TUB0BLEIR'T | ANG 0Z6k"C LBTLO ang Q2se'T ETRLD Jnpsifoesed 7T
"I RAE [ OFD ang Z6k"C +965°0 ang Q2ee'T £862°0 [ewioy 1T
2 ang 0Z6F"T S026'0 ang 02se'T SLren dxabay 0T
TUEREER'BLE | TUPLELB'IGS |[=2N4 0Z6t'T +69°0 =ng 085E°T 8EELTOD uwoube 6
TURREESEE'Y | TRLB0L°586 |=ng OZet'T ST6Z'T =ng 085£°T 6558°0 agsibopol €
"ELBEED0E | OBD ang 0Z6+'T 8EBS'0 ang 085E'T Q50410 onsiba L
"USZTTE'GEE [0GL ang 0Z6+'T 0923'0 ang 085E'T LE62'0 soEdey 9
"UELBEE00E | (BS ang Z6+"2 S08'0 ang 085E'T E15£°0 [Pqungy 5
"Be0S9FST | TUS0SERET ¢ | ANg 0Z6k"C 20990 ang Q2se'T Q040 =R o
TUTSPLTETS |TUOTLLSELE 2SRy (cerc TL6T'LE = Q2ee'T 19T Ppad £
"ULBTOE60E | "TSEE09°ETY Ang 0Z6F"T 200Lm0 ang 02se'T E65L°0 Buepg T
(174 006 =ng 0Z6r'T 0855°'T =ng 085E°T TLOE'T Apreny T
TiABueled  T.jaweled Qv ynsay| aneady) 20SnEIS Qv SHNSIW| Anjea sy d0snms Sy yoynsay  =njeawyD  2gsnes o uoongusig Gulgs
TE o1t & ] [ 9 ] * £ 4 T 0
2=l (2N uEa|0oq |22l (==Y uEa|ooq 2=l |22l ueajoog 2=l |22l buLns

Fig. E.5.: Data fitting results for Intake physicians time-spans with patients, obtained

from the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.6.: Data fitting results for Intake physicians time-spans with patients, obtained

from the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.7.: Data fitting results for HA CT time-spans with patients, obtained from the

?DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.8.: Data fitting results for HA RNS time-spans with patients, obtained from

the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.9.: Data fitting results for HA physicians time-spans with patients, obtained

from the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.10.: Data fitting results for LA RNs time-spans with patients, obtained from

the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.11.: Data fitting results for LA physicians time-spans with patients, obtained

from the ”DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.12.: Data fitting results for Shock RN time-spans with patients, obtained from

the "DataFit” tool in Tecnomatix. Data is for Model B.
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Fig. E.13.: Data fitting results for Shock physicians time-spans with patients, ob-

tained from the "DataFit” tool in Tecnomatix. Data is for Model B.
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F. OTHER OUTPUT DATA
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Fig. F.1.: Patients’ general statistics.
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I Drain Statistics

Name |Mean Life Time | Throughput | Throughput per Hour | Production | Transport | Storage | Value added | Portion
Patient 3:53:54 8907 43905 019 B3.44% 0.03%) 16.53% 39.64% | I

.Models.Frame.CDU_Admission

Mame |Mean Life Time | Throughput | Throughput per Hour | Production | Transport | Storage | Value added | Portion
Patient 3:14:13 4445 232023 882 74.31% 0.03%| 25.66% 38 435 | I

.Models.Frame.Discharge

MName |Mean Life Time |Throughput [Throughput per Hour | Production | Transport | Storage | Value added | Portion
Patient 6:07:41 9418 44514 170 95.21% 0.02%| 4.77% 57.53% | I

.Models.Frame. AdmittionH

Indianapolis, 7.10.2017

Fig. F.2.: Throughput Report for Model B.

Table of the p-values of the T-test of the output value Patients Average 105

Exp2 Exp3 |Expd | Exp5 Exp6

.Expl :I:u 0 0 0 :I:u
.Expl: [0 o 0 0
:Exps_ | :In [0 0
 Exp4 0 0
Exp 5 .. | I.n.uu-ft

Fig. F.3.: Resulting P-values for the optimum resource allocation case-study. All

values are reported to be lower than 0.05.
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Table of the p-values of the T-test of the output value Average Patient LO5

Exp2 Exp3 |Exp4d | Exp5 Exp6
Exp1l [0 0 0 0 0
Exp 2 0 o 0 0
Exp3 0 0 0
Exp 4 0 0
Exp 5 0.1

Fig. F.4.: Resulting P-values for the case study that involves adding resource to

Intake/LA. All values are reported to be lower than 0.05.

Table of the p-values of the T-test of the output value Fatients Average 105

Exp2 Exp3 |Expd4 Exp5 Exp6
Expl (O 0 i a i}
Exp 2 0 0 0,001 |0
Exp 3 1] 1] 0.032
Exp 4 0 0
Exp 5 0

Fig. F.5.: Resulting P-values for the case study that involves adding resource to

HA /Shock. All values are reported to be lower than 0.05.
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Fig. F.6.: Tecnomatix throughput report after using an arrival distribution for pa-

tients instead of timestamps, showing a larger deviation in the output.
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Fig. F.7.: Tecnomatix throughput report after using average distributions for all

processing times, showing a larger deviation in the output.
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Fig. F.8.: Tecnomatix Model Behavior

using Visio
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Fig. F.9.

conforms to process requirements.
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Fig. F.10.: SysML package diagram describing model organization in the form of a

group of folders.
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ibd [Block] 13 System Context[ 13 System Context lJ

:C ication and D tation Flow : Human Resource Behavior | : ED Beds/Rooms
\ F 3
:C pts and Requi it : Visibility Flow
- \ Y
z T ; «systems = / = —
: Admission and Discharge - EDWor " | : HR Training
«—> < >
: Data and Information Flow "A,//_'/ I : Patient Process Flow
F Y
: EMRIEHR Interface v : Follow up Care

: Environment

Cost Flow : Billing System |

: Time of Day

: Day of Week

: Season :Year

: Other Hospital Departments

Fig. F.11.: SysML IBD describing the system’s context.



