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ABSTRACT

Solis Ocampo, Jennifer M.S., Purdue University, August 2017. Multi Material Topol-
ogy Optimization with Hybrid Cellular Automata. Major Professor: Andres Tovar.

Topology Optimization is a technique that allows for the obtaining structures

which maximize the use of the material. This is done by intelligently deciding the

binary distribution of solid material and void, in a discretized given space. Several

researchers have provided methods to tackle binary topology optimization. New ef-

forts are focused on extending the application for multi-phase optimizations. At the

industrial level, several components designed are made up of more than one material

to reduce weight and production costs. The objective of this work is to implement

the algorithm of Hybrid Cellular Automaton for multi-material topology optimiza-

tion. The commonly used interpolation rule SIMP, which allows to relate the design

variables to the mechanical properties of the material, is replaced by ordered SIMP

interpolation function. The multiple volume constraints are applied sequentially,

starting with the most elastic material. When a constraint is satisfied, the elements

assigned to this material remain passive by a defined number of iterations to promote

the convergence of the solution. Examples are shown for static and dynamic loads.

The work demonstrates the versatility of algorithms based on control systems to solve

problems of multiple phases and transient response fields.
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1. INTRODUCTION

Topology Optimization (TO) is an optimization problem that seeks for an optimal

distribution of material within a design space, so that, under certain design con-

straints and loading conditions, a given response is minimized. The distribution of

material (arrangement and quantity) has a direct effect on the mechanical, thermal

and electrical performance of a component. For this reason, there is one (or more)

material distributions that favor the component response, which correspond to the

global or local minimum of the response function. TO opens the perspective for more

organic and complex designs that may be difficult to obtain through an iterative de-

sign process.

Structures subjected to static loading conditions are the most common problem solved

in topology optimization. For these cases, the objective function to be minimized may

include the maximum displacement, stress distribution, compliance, among others.

The design constraints correspond to the requirement that the design must comply.

Among the most common are maximum total mass and design physical boundaries

for structural optimization. The maximum total mass is usually expressed as a per-

centage of the total possible mass within the design space. To compute the response

of the component, the design domain is discretized using Finite Element Analysis

(FEA). The element type will depend on the problem formulation.
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1.1 Topology Optimization Problem

The structural optimization problem is formulated as:

minimize
x

f(xi)

subject to

∑nele
i=1 xi
nele

≤Mf

0 ≤ xi ≤ 1

(1.1)

Where, F is the objective function to be minimized; x corresponds to the design

variable, in this case, the elemental densities; N is the number of elements in the de-

sign domain; V is the design constraint, commonly used volume fraction. The density

is restricted to assume values of zero or one, which represent void or solid material.

Since each element in the mesh could accept a different density, the optimization

problems involve a large number of variables.

1.2 Design Variable Approaches

TO was introduce in 1988 by the seminal paper by Bendse and Kikuchi [1], where

the homogenization approach proposed the utilization of periodically distributed

small holes in a given homogeneous isotropic material. Since then, several approaches

to tackle TO have been proposed.

Density Approach

This approach was suggested by Zhou and Rozvany [2], and Mlejnek [3]. Com-

monly known as SIMP (Solid Isotropic Material with Penalization). SIMP is the

most popular topology optimization method, with several industrial applications.

( [4], [5], [6], [7]). The design variable correspond to the density of the finite ele-

ment (FE) which conforms the discretized design domain. The density can take any
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value between 0, representing void, to 1, representing the completely solid material.

The final solution should only contain zeros or ones, to represent the elements where

no material is assigned and the elements with materials. Even when one is looking

for a binary design, allowing the design variable to assume intermediate continuous

values helps to reach convergence and relax the optimization problem. The design

variable is related to the properties of the element (e.g. mechanical, thermal,...) by

an interpolation function. The density approach will be expanded in this section.

Level Set Methods (LSM)

This is a more recent method introduced by Osher and Sethian [8] [9], and im-

plemented for TO problems by Allaire, and Wang [10] [11]. This approach draws on

a scalar function called Set Function which can present positive and negative values.

The boundaries of the design correspond to the zero level of the Set Function. This

approach also relies on FEA, but since the design is delimited by the boundary, no

intermediate densities are present. The design is updated modifying the Level Set

Function instead of directly modifying the boundary. The Level Set Function is com-

monly updated using the Hamilton-Jacobi equations, which includes a speed function

and the sensitivity of moving the interface on a certain direction.

Phase Field

This approach is based on the Allen-Cahn equations, which model phase sepa-

ration processes. A functional called Diffuse Interface represents the boundary of

different phases, e.g. solid-void. The Diffuse Interface includes an interpolation func-

tion and the gradient norm of the density. The update of the phase field functions

seeks for the direction in which the free energy function is minimized, so the resulted

topologies are biased to topologies with minimal interfaces and curvature [12]. The

design variables are the elemental densities, so intermediate densities are possible.
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Topological Derivative

This method was proposed by Eschenauer et al [13] under the name Bubble

method. The method incorporates holes (void) in the design domain and seeks for

the optimal distribution of the available holes that minimizes the objective function.

A sensitivity analysis is performed to predict the influence of introducing a hole on a

specific FE.

Global approximation techniques

The physical model is replaced by a Response Surface Method (RSM) generated

from sampling points in the design space. Therefore, there is no need of an explicit

expression to relate the design variables with the response field. Among the advan-

tages are lower computational cost, filtering of numerical noise, and insight on the

entire design space. However, the minimum relies on the sampling quality.

1.3 Optimizers or updating schemes

The optimization algorithm updates the design variables after each iteration. This

update is aimed at finding the minimum of the objective function. Several updat-

ing rules have been proposed for each optimization approach. Specifically, density

based approaches can be solved by mathematical programming or heuristic meth-

ods. Examples of mathematical programming approaches are: Sequential Lineal Pro-

gramming (SLP), Sequential Quadratic Programming (SQP), Convex Linearization

method (CONLIN) [14], Method of Moving Asymptotes (MMA) [15], Optimality

Criteria (OC) method. Heuristic methods to update the design variable are: Evolu-

tionary Structural Optimization (ESO/BESO) [16], and Hybrid Cellular Automation

(HCA) method [17] [18].

OC was popularized for the solution of minimum compliance problems [19] due to its

efficiency. OC method can be seen as a special case of the explicit convex approx-
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imation method. The gradient of the compliance can be linearized, this expression

leads toward a convex problem that can be solved using the Lagrangian Duality. The

updating rule obtained after solving the Lagrangian Duality shows that the minimum

of the function corresponds to the design where the energy per volume (specific strain

energy) is constant for every FE [20].

HCA is an algorithm inspired by bone regeneration that uses the Strain Energy Den-

sity failure criterion. HCA has been implemented for topology optimization prob-

lems [18]. For this application, the algorithm aims to equalized the Strain Energy

Density (SED) for all the elements on the mesh by setting a target value called Set

Point. In this case, the updating scheme is heuristic and is performed by a control

system. The present work explores the capability of HCA to be implemented in multi-

material optimization problems in which, the method is presented in detail further in

this chapter.

1.4 Numerical Instabilities

TO seeks for the optimal topology of a component. The optimization problem is

solved using FEA, numerical methods and/or approximations functions. The solution

to the optimization problem is achieved over a series of iterations until a convergence

criterion is met. However, the iterative process is known to present numerical insta-

bilities [21] that difficult the convergence of the problem.

Non-existence

The 0-1 TO problem lacks solutions. The reason is that the optimization problem

is ill-posed and lacks delimitation of the set of feasible designs. As explained by [21],

in a structural optimization problem, the introduction of more holes maintaining the

volume of the design will benefit the efficiency of the response (objective function).
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Local Minima

In the case the optimization problem is a nonconvex problem the solution may

lead to a local minimum. In this case, the final solution will highly depend on the

starting point or initial design.

Checker board solutions

This problem consists of alternating solid and void elements on the optimization

solutions in which the final design is not a continuous structure. To avoid this problem

several solutions are proposed, still filtering is the most common practice. Sigmund

suggested in 1994 [22] to use low pass filter techniques from image processing. The

response or sensitivity of the response for each FE depends on a weighted average

over the element’s response and its nearest neighbors.

Mesh dependency

TO problems present different solutions according to the mesh size of the FE.

This follows from the ill-possessing of the optimization problem whereas the number

of finite element increases, finer structures will grow in the design.

1.5 Density Approach

The density approach takes as design variables for the optimization problem the

density of the FE and relates the design variable to the material properties using a

continuous variable formulation. The density approach is an artificial way of reducing

complexity and promoting convergence of the optimization problem. Intermediate

densities are penalized so the function favors 0 and 1 designs. The first density

approach formulation was proposed by Zhou and Rozvany [2], and Mlejnek [3]. This

interpolation is known as SIMP (Solid Isotropic Material with Penalization). Later,
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Stolpe and Svanberg [23] proposed the RAMP (Rational Approximation of Material

Properties) interpolation.

General Inteprolation:E(xi) = g(xi)E0

SIMP:E(xi) = xpiE0

RAMP:E(xi) = xi/(1 + p(1− xi))E0

(1.2)

Where, E is the effective Elasticity Modulus, x is the density of the i-th finite

element, p is the penalization, and E0 is the Elasticity Modulus of the solid material.

For values of p > 1 the interpolation function inhibits intermediate densities in the

solution. The penalization factor should be carefully selected since it affects the

convergence of the problem. Note that for high values of p the variable update

may be abrupt which leads to an early convergence. Otherwise, if the value of p is

smaller e.g. 1, the design may contain a considerable amount of intermediate densities.

Continuation approaches vary the value of the power p along the optimization to

promote the exploration, it starts with p=2 and gradually increases the value of p on

every iteration of the optimization process.

Since the different formulations of density approach are continuous and easy to derive,

the optimization problem can be solved by gradient based methods like Optimality

Criteria (OC) or The Method of Moving Asymptotes (MMA).

1.6 Hybrid Cellular Automaton Algorithm (HCA) [18]

HCA is a method based on the Strain Energy Density failure criterion that has

been previously implemented in topology optimization problems [18]. HCA is a bio-

logically inspired algorithm that mimics the process of structural adaptation of bones.

The algorithm abstracts the biological behavior applying the paradigm of Cellular

Automaton (CA) used by first time to describe the operation of the heart mus-

cles [24] [25].
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CA discretizes a complex problem into a set of local problems. The space to be

studied is divided into a regular grid of cells. At the beginning of the simulation

each cell has an assigned state. Throughout the time (iterations), the state of the

cells is updated based on a generalized rule that works locally as it depends on the

previous state of each cell and its closest neighbors. For every cell, the evolution is a

function of a weighted sum of the response of the cell of interest and its neighbors.

By considering the influence of neighboring cells, it is possible to model the problem

as a system in which the discrete parts are mutually affected.

The definition of the neighborhood can be done in different ways, Figure 1.1 shows

the most common types of neighborhoods. For small neighborhoods, the state and

the updating of each cell acquired independence. Contrarily, a large neighborhood

distributes the states of the cells obtaining an update with less abrupt changes among

the cells. The grid should be extended on the boundaries to allow the boundary cells

to use the same update rule, Figure 1.2 presents some types of boundary conditions.

The states of the boundary can be fixed to a specific value (a), adiabatic (b), reflect-

ing (c) or periodic as if the design domain would be wrapped (d). In TO applications,

the extended boundary cells are fixed to a state of zero to avoid its influence in the

design domain.

Fig. 1.1. Two dimensional neighborhoods for CA. (a)Empty (b)Von
Neumann (c)Moore (d)Extended

The utilization of CA to solve shape optimization structures was presented by [26]

taking the Young Modulus of each cell as the design variable and solving the response

of the stress field using FEA. Kita and Toyoda [27] implemented the CA to solve TO
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Fig. 1.2. Two dimensional boundary conditions for CA. (a) Fixed (b)
Adiabatic (c) Reflecting (d) Periodic.

problems. In this work, the design variable was the thickness of each cell. The prob-

lem was formulated as a multi-objective optimization problem to minimize weight and

the deviation between the yield stress and the Von Misses. However, this algorithm

presents slow convergence and a high number of intermediate densities.

The Hybrid Cellular Automaton (HCA) [17] [18] as implemented for TO problems,

is a density based approach with a non-gradient based updating scheme. It uses the

CA paradigm in conjunction with FEA to calculate the response of the cells to the

mechanical stimuli. The optimization problem solved by HCA algorithm is given by:

minimize
x

|S̄i(xi)− S∗(t)|

subject to

∑nele
i=1 xi
nele

≤Mf

0 ≤ xi ≤ 1

(1.3)

The design variable x is the density of each cell. HCA has been previously tested

with linear interpolation and penalized interpolation function (SIMP), to relate the

design variables with the mechanical properties of the FE. The objective function

proposed corresponds to achieve a target value of strain energy density (SED) of

the finite elements called Set Point (SP*). Finally, the update rule corresponds to

a local control strategy that compares the response of the cells to a target value
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of SED∗. The control rules that have been tested for this algorithm include two-

position, proportional, proportional-derivative, proportional-derivative-integral, and

radio technique.

The state of a cell consists of the design variable xi (e.g. density), and the response

or field variables (e.g. SED). As mentioned, the design variables are related to the

properties, and therefore to the response by the interpolation function (e.g. SIMP).

The optimization algorithm has two iterative loops. The outer loop monitors the con-

vergence of the optimization design, and the inner loop checks the fulfillment of the

constraints, e.g. volume constraint. The algorithm for HCA TO is shown below in 1.

The response S is a function of the design variable x at each iteration t, as S(x(t),t).

However, it has been omitted in the following pseudo-code for simplification.

Result: final design

S∗(0) calculation of Set Point

x(0) initial design

while convergence has not been met do

S(t) structural analysis FEA

S̄(t) = f(S(t), SN(t)) filtered response

while volume constraint has not been met do

S∗(t+ 1) = f(S∗(t), volfrac)

e(t) = f(S̄(t)− S∗(t))

x(t+ 1) = f(x(t), e(t))

end

end

Algorithm 1: HCA algorithm

Once the design domain, boundary and loading conditions are defined, the algo-

rithm calculates the value of a Set Point (SP) which corresponds to the reference

performance that will drive the optimization process. Arbitrarily, the set point is
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chosen as the average of the SED of all the elements in the mesh when the design

domain is completely solid (arrangement of ones). In this way, the algorithm will

attempt to even the SED along the mesh, and bring this value as close as possible

to the SP. The optimization starts with an initial design for all the elements. The

response (SED) for the initial design is computed using FEA. As follows, the response

is averaged with the response of the cells that belong to the neighborhood:

S̄i(t) =
Si(t) +

∑
n∈N(i) Sn(t)

N + 1
(1.4)

Where, S̄i(t) is the ”filtered” response of the i-th element at the t-th iteration,

Si(t) is the response obtained from the FEA, N refers to the neighborhood of the i-th

element, and the denominator N corresponds to the total number of neighbors in the

neighborhood.

This expression is the analog to the low pass filter used in SIMP applications, where

a radius of filtering is applied. Filtering techniques are applied to the sensitivity of

the objective function, whereas HCA softens the response of the design. Using the

averaged response, the error with respect to previous iterations is calculated, and the

local update rule is applied to update the design variables. The following are the

different available updating rules:
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Two Position:

xi(t+ 1) = xi(t) + cT sgn(ēi(t))

Proportional:

xi(t+ 1) = xi(t) + cP ēi(t)

Proportional Integral:

xi(t+ 1) = xi(t) + cP ēi(t) + cI(ēi(t) + ēi(t− 1))

Proportional Integral Derivative:

xi(t+ 1) = xi(t) + cP ēi(t) + cI(ēi(t) + ēi(t− 1)) +cD(ēi(t)− ēi(t− 1))

Ratio Technique:

xi(t+ 1) = xi(t) + (
S∗i (t)

Si(t)
)

1
p−1

(1.5)

Where xi(t) corresponds to the i-th design variable at the t-th iteration. Analo-

gously, xi(t+ 1) is the updated variable for the next iteration. cT , cP , cI , and cD are

the control coefficients, sgn is a signal function, and ēi(k) is the effective signal error.

The signal error is defined as the difference between the elemental response and the

target SP. The control rules aims to minimize this error.

ei(t) = Si(t)− S∗i (t) (1.6)

Then, the effective error signal is defined for the cell and its neighborhood N as:

¯ei(t) =
e
(t)
i +

∑N
n=1 en(t)

N + 1
(1.7)

For the Two Position Control, the signal function is given by:
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sgn( ¯ei(k)) =


+1.0, ¯ei(t) > 0

0.0, ¯ei(t) + 0

−1.0, ¯ei(t) ≤ 0

(1.8)

For the inner loop, the volume constraint should be less than an admissible tol-

erance. If the volume fraction is above the constraint, the set point SP is modified

proportionally to the ratio between the actual volume fraction and the target volume

fraction.

SP ∗(t+ 1) = SP ∗(t)
Mf (t)

M∗
f

(1.9)

Where, SP ∗ is the Set Point, t is the iterator, M∗
f is the mass fraction target

i.e. design constraint, and Mf is the actual mass fraction. The mass fraction is

calculated as the average mass of the design domain since all the FE have the same

volume (dimensions).

Mf (t) =

∑nele
i=1 xi(t)

nele
(1.10)

Where nele refers to the number of elements. If the volume constraint is satisfied,

the inner loop breaks. Once the design meets the volume constraints, a new itera-

tion begins and the response (SED) of the new design is computed. After each outer

loop, the convergence of the model is checked, and the optimization stops when the

convergence criterion is met.
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The convergence criterion is met when the change in the mass of two consecutive

iterations is less than a tolerance value. The mass change of two iterations is used to

avoid premature convergence [18].

∆M(t) =
nele∑
i=1

|xi(t)− xi(t)| (1.11)

With, ∆M the change in the mass for the t-th iteration, nele is the number of

elements in the design space, and xi(t) is the density of the i-th element on the t-th

iteration.

The control rules used to locally update the design variable, the power p, and the

initial design have a major influence in the convergence and the solution of the opti-

mization. The SP chosen also influences the final solution of the optimization. The

final response is proportional to the value of the SP, and the final volume fraction

is inversely proportional to the SP. However, the algorithm doesn’t show mesh de-

pendency with the refinement of the mesh; only higher resolution and computational

time was observed [17].

1.7 Objective

The objective of the present work is to explore and implement the HCA algorithm

as a control system for multi-material topology optimization. HCA has proven to be

an efficient algorithm in binary topological optimization with the great advantage

of not requiring sensitivity information. The expansion of the HCA algorithm for

crash-worthiness applications, and its adoption by commercially available software,

demonstrate the versatility of control systems in optimization problems.

The work is organized as follows: The second chapter starts with a recapitulation
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of existing approaches for multi-material topology optimization. Two recently pro-

posed algorithms based on the density approach are detailed. These two algorithms

are tested to highlight their advantages and disadvantages. Subsequently, the work

comments on the optimization for dynamic loads and the implementation of HCA for

crash-worthiness applications. The next chapter introduces the expansion of the pro-

posed HCA algorithm to solve multi-material problems. Two-dimensional numeric

examples are shown for static and dynamic loading problems.
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2. MULTI MATERIAL TOPOLOGY OPTIMIZATION

The conception of TO was a revolutionary contribution since made possible to au-

tomatize the iterative design process, allow the analysis of complex problems, and

take advantage of the emerging manufacturing technologies that can handle a bigger

complexity in terms of shapes and resolution. Since TO seeks the optimal mate-

rial distribution, the idea was initially focused on obtaining a binary design of void

or solid material. However, the field has been increasing even more the complexity

of the design as implementing multi-scale topology optimization and multi material

topology optimization, pointing toward more efficient structures in terms of mate-

rial utilization, manufacturing cost and performance (mechanical, electrical, thermal,

etc.).

Multi Material Topology Optimization (MMTO) expands the idea of the TO, where

the topology of the design matters in addition to the distribution of different ma-

terials. Several materials or phases could be considered to integrate into the same

model because of a trade-off between performance properties (e.g. elasticity modulus,

yield strength, heat conduction coefficient, etc.) and non-directly related performance

properties (e.g. time of production, cost, weight, degradation, etc.).

2.1 Current approaches

There are several proposals for MMTO with different TO approaches. In 1997,

Sigmund and Torquato [28] solved the problem by implementing homogenization and

expanding the SIMP interpolation for three phase materials. This density based ap-

proach was later implemented in composite material optimization, and is referred

to as Discrete Material Optimization (DMO) [29], [30], [31]. In this method, the
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interpolation function that relates the material properties and the design variables

is expressed as an artificial mixture of the three (or more) phases, complying with

the upper and lower Hashin-Shtrikhman bounds. The optimization was solved using

Linear Programming Algorithms (LP). The results converged to optimal and organic

shapes, however, the computational time required to solve the problem was consider-

ably high even for coarse meshes. Using a similar approach to that of Sigmund and

Torquato [28], Tavakoli and Mohseni [12] proposed a solution that works with the

optimization of all the possible combinations of the considered phases. Recently, Zuo

and Saitou [32] presented a piece-wise interpolation function approach for the opti-

mization with multiple materials. These last two works will be described in detail

in the next section because they were used as a benchmark for the multi-material

expansion of the HCA algorithm.

In the Level Set approach, a possible solution for multi-material optimization prob-

lems is defining a level set function for each material considered; in this way, the

number of level set functions required is equal to the number of materials. However,

overlaps among the different phases and subsequently, intermediate densities, are un-

avoidable. Wang and Wang [33] proposed a method referred to as Color level set

which appeals to set theory. In this case, the number of m set functions required

decreases, as for a design with n = 2m materials, the algorithm uses m = log2n level

set functions. The phases are assigned to different sets according to the union or

intersection of the level set functions so intermediate densities are not possible.

Zhou and Wang [34] extended the phase field approach based on the Cahn-Hillard

equations for MMTO. The Cahn-Hillard model is adapted for mechanical loads and

deformations. To consider several materials, the authors represent the material prop-

erties of an element as a weighted sum of the material properties of each phase, similar

to the density approach. The solution is characterized by favoring the grouping of

the materials which may have advantages for manufacturing proposes, however, the

optimization takes thousands of iterations to converge.

Ramani [35] solved the problem with discrete variables. The method estimates the
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change (pseudo sensitivity) of a failure function when an element changes to the im-

mediately lower and higher density materials. Based on the pseudo sensitivity, the

elements are ranked, and only a fraction of the elements are updated for the next

iteration. Ramani used a finite-difference approximation to compute the pseudo sen-

sitivity which may be inefficient for a large number of design variables. The algorithm

is solved with an evolutionary approach similarly to [13].

It is worth mentioning that most of the work done to date, including the present study,

is in an exploratory phase. In the proposed methods for structural applications, the

variety of materials is modeled only through the magnitude of the isotropic modulus

of elasticity. Other mechanical properties have been little used and assumed equal

for all the materials (e.g. Poisson ratio). Also, perfect bonding between the phases

is assumed. The modeling of the union mechanisms between phases, and including

these mechanisms within the considerations of the optimization process, represents

one of the biggest challenges in the multi-material optimization.

The following presents a detailed description of the density and gradient based MMTO

proposed by [12] and [32]. This algorithm will be compared against the performance

of the modified HCA MMTO algorithm.

2.2 Alternating Active Phase Algorithm [12]

Tavakoli and Mohseni [12] proposed a density and gradient based MMTO that

divides the optimization problem into binary-phase optimization sub-problems. In

every iteration, the binary-phase optimization is performed for all the possible com-

binations of the phases, so the algorithm performs n(n − 1)/2 optimization in every

iteration, where n represents the number of materials considered. As it is possible

to observe, the number of function calls increases exponentially as the number of

materials increases. Below is the pseudo-code for the Matlab implementation.
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Result: final design

x(0) initial design

while convergence has not been met do

for all the possible combinations of two materials do

S(t) structural analysis FEA

c(x) = f(S(t), x(t)) compute objective function

dc(x) = f(S(t), x(t)) compute sensitivity of objective function

d̄c(c) = f(dc(x), dcN(x) filtered sensitivity

while volume constraint has not been met do

x(t+ 1) = f(x(t), d̄c(t))

end

end

end

Algorithm 2: Active Phase algorithm

The interpolation function used to relate the material properties with the design

variables corresponds to a weighted sum of the individual contributions of all the

materials to the element. The author used the expression previously proposed by [2]:

E(xi) =
M∑

m=1

xpi,mEm (2.1)

Where xi is the density of the element (design variable), E(x) is the property of

the element (Young Modulus), M is the number of materials been considered, p is

the penalization factor, xi,m is the density or weight that indicates the influence of

a the m-th material in the i-th element, and Em is the Young Modulus of the m-th

material.

At this point, the author makes a clarification. The interpolation equation used may

result in non-physical data, as in some singularity cases the Hashin-Shtrikman bounds

could be violated [30]. However, to find the Hashin-Shtrikman bounds for an arbitrary
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number of phases is complex and may not be possible in some cases [36].

During the binary-phase optimization, the remaining phases are deactivated. The

algorithm uses the matrix of x densities as design variables. In this matrix, the

rows correspond to the elements in the design space, and the columns correspond to

the different materials available. The sum of the density values on each row (same

element) must add 1, that is, the densities represent the contribution or weight of

each material in the performance of the element. When a binary-phase optimization

is performed, only the densities of the two materials in consideration are modified by

the optimizer.

These binary-phase optimization subproblems are solved using the traditional density

based topology optimization. The author implemented the algorithm on a 115 line

code in Matlab. As implied previously, the algorithm works with FEA to obtain

the response of the design and the OC criterion was used to solve the optimization.

A filter is applied to the objective function sensitivity to avoid checker boarding.

The code was implemented to solve the minimum compliance problem, and a volume

constraint was defined for each material.

2.3 Ordered SIMP Algorithm [32]

The second algorithm of interest was presented by Zuo and Saitou [32]. This algo-

rithm is also a density based approach solved with gradient information, as does the

OC method. However, unlike most of the density based MMTO algorithms proposed

that used the extended SIMP interpolation, Zuo and Saitou proposed a piece-wise

interpolation equation. The following presents the pseudo-code for this proposal:
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Result: final design

x(0) initial design

while convergence has not been met do

Ē(x), P̄ (x) interpolated proprieties

S(t) structural analysis FEA

c(x) = f(S(t), x(t)) compute objective function

dc(x) = f(S(t), x(t)) compute sensitivity of objective function

d̄c(c) = f(dc(x), dcN(x) filtered sensitivity

while volume constraint has not been met do

x(t+ 1) = f(x(t), dc(t))

end

end

Algorithm 3: Ordered SIMP algorithm

The algorithm works with three vectors of material properties for each phase un-

der consideration: physical density vector, elasticity vector, and cost vector. The

vectors are normalized, i.e. each vector has values from 0 to 1. The physical density

vector drives the optimization process and is sorted in ascending order. The other

two vectors are ordered consistently so that each material has its properties in the

same position of each vector.

The piece-wise interpolation equation to relate material density (x) with the elasticity

modulus (E) is obtained with the scaling coefficient AE and the translation coefficient

BE as:

E(xi) = AEx
p
i +BE if ρm < xi ≤ ρm+1

with,

AE =
Em − Em+1

ρpm − ρpm+1

BE = Em − AEρ
p
m

(2.2)
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Where the subscripts m and m+1 refer to the position of the material properties

in the ordered vector.The design variable x corresponds to the density of the element,

ρ represent the density, and E the Elasticity modulus; the last two are properties of

the desired materials. A second interpolation equation is used to relate the density

of the material with the cost property. To reflect the preference of the designer for a

lower cost, the penalization factor is substituted by 1/p. Here, the scaling coefficient

is given by AC and the translation coefficient is given by BC in:

C(xi) = ACx
1/p
i +BC if ρm < xi ≤ ρm+1

with,

AC =
Cm − Cm+1

ρ
1/p
m − ρ1/pm+1

BC = Cm − ACρ
1/p
m

(2.3)

Where the subscripts m and m+1 refer to the position of the material properties

in the ordered vector. Figure 2.1 illustrates both interpolation curves. In this Figure

both equations are monotonically increasing; however, this may not be always the

case since usually a trade-off between properties is present in optimization problems.

As summarized in Figure 2.2, the authors considered all the possible cases in the

interpolation equations. In this image, the case (d), one material is strictly domi-

nated for both properties so the material should be deleted and not considered in the

optimization problem.

Since Ordered SIMP works with a piece-wise equation delimited for a higher den-

sity material and a lower density material, the Hassin-Shtrikman bounds were calcu-

lated and the author concluded that the interpolation equations satisfy the bounds.

The Ordered SIMP algorithm was implemented to minimize the compliance under

cost and volume constraint. If desired, one constraint could be turn off by simply

using a constraint equal to 1.The algorithm applies a sensitive filter to overcome the

numerical instabilities known for TO.
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Fig. 2.1. Interpolation curves for modulus of elasticity and cost for a
monotonic three phases optimization.

Fig. 2.2. Possible cases of interpolation function for two materials.
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3. CRASHWORTHINESS TOPOLOGY OPTIMIZATION

Crashworthiness is the ability of an object to resist a collision. Most efforts in crash-

worthiness have applications in vehicle safety, which focuses on occupant protection

to reduce the number of fatal and serious injuries in case of collision. Crashworthiness

design emerged during the decade of the 50s for the aerospace industry and started

to develop in the decade of the 60s for the automotive industry. The main considera-

tions are to design structures with the ability to deform plastically in order to absorb

part of the kinetic energy of the collision, to minimize the intrusions in the areas

occupied by the passenger, and to maintain an acceptable deceleration load. As it

is possible to notice, the design for crashworthiness structures is complex because of

the compromise of its requirements between stiffness and deformability.

3.1 Current approaches

Topology optimization techniques have been widely developed for isotropic, linear

elastic and static problems. Models of crashworthiness events have a higher complex-

ity with nonlinear interactions like material nonlinearities, geometry, and transient

nature of boundary conditions [37]. Most of the TO approaches use sensitivities to

solve the optimization problems; in the case of linear static problems, the sensitivities

are inexpensive to obtain; however, computing sensitivities for dynamic problems is

expensive and non-practical. The development of algorithms for crashworthiness TO

needs to be further explored.

Following is presented a brief introduction to the development of crashworthiness TO

approaches. Fang et al [38] published a detailed state of the art on crashworthiness

TO. Mayer et al. [39] addressed the first TO problem for crashworthiness in 1996
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implementing the homogenization technique using the internal energy as objective

function. Pedersen [40] implemented TO for 2D frame structures. In his work, the

objective was to minimize the error between the acceleration of the nodes and a

prescribed acceleration. The optimization was solved using sensitivity information,

which increases the computational cost of the solution. Besides, no contact informa-

tion was included in the design. Soto [41] purposed an approach where a structure

to efficiently absorbed energy, would distribute the plastic deformation. For this, the

design domain had to achieve a prescribed distribution of plastic deformation. This

was a heuristic method, so no sensitivity information was required.

Other approaches have opted for simplifying dynamic nonlinear problem through

equivalent static and/or linear counterpart. There are two main approaches.

• Equivalent Static Loads (ESL): This approach was extended by Park [42] for topol-

ogy optimization in 2011. This approach divides the optimization problem in two

sub-problems: nonlinear simulation and linear optimization. The respond field is

computed using nonlinear analysis. Following, the ESL that produce an approxi-

mated response field are calculated. Finally, the ESL are used as external loads for a

linear static topology optimization design. The new design is tested again under non-

linear conditions, the optimization continuous for several iterations until convergence

is reached. There is limited literature regarding crashworthiness topology optimiza-

tion using ESL. The main concern to be addressed in future research is whether the

equivalent static loads represent the field response, considering that during a crash

event the stiffness of the structure changes [43].

• Inertia Relief Method (IRM): IRM is used in the analysis of unconstrained struc-

tures, e.g. aircraft and spacecraft. Static analysis cannot be used to solve uncon-

strained structures because of the singularity of the stiffness matrix. IRM assumes

a static equilibrium state between the external forces and the inertia forces of rigid

body acceleration produced during the unconstrained motion. The external load is
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calculated and is used to later perform the FEA. IRM has gained attention as a

practical engineering approach for crashworthiness TO [43]. Chuang and Yang [43]

performed a crashworthiness optimization implementing IRM using Optistruct soft-

ware. The problem formulation intended to minimize compliance for a frontal impact

under mass constraint; the design converged in 55 iterations.

3.2 HCA for Crashworthiness Topology Optimization [37]

HCA is an algorithm that has been implemented to solve density based TO prob-

lems, with a non-gradient based updating scheme. Since the control feed does not re-

quire sensitivity information, HCA offers flexibility on the setting of the optimization

problem, in terms of objective function and constraints. Patel et al. [44] proposed an

implementation of HCA to perform crashworthiness TO in three-dimensional designs.

The objective is to obtain uniform strain energy density (SED) while constraining the

mass. The pseudocode of the algorithm is shown in the algorithm 4.

Result: final design

S∗(t) calculation of Set Point

x(0) initial design

while convergence has not been met do

S(t) structural analysis FEA

S̄(t) = f(S(t), SN(t)) filtered response

S̄h(t) = f(S̄(t), S̄(t− 1), S̄(t− 2), S̄(t− 3)) response memory

while volume constraint has not been met do

S∗(t+ 1) = f(S∗(t), volfrac)

e(t) = f(S̄h(t)− S∗(t))

x(t+ 1) = f(x(t), e(t))

end

end

Algorithm 4: HCA algorithm for crashwrothiness
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The goal in crashworthiness design is to absorb the maximum energy with an ac-

ceptable peak load, as well as minimizing the intrusions near the passenger. In this

way, crashworthiness TO can be addressed as a multi-objective topology optimiza-

tion, increasing, the complexity of the problem. The work by Patel et al. [44] focuses

on the energy absorption of the design using the strain energy density (SED) as the

objective function for the optimization problem. In ductile materials such as met-

als (commonly used materials in automotive applications), the energy absorption is

achieved by elastic and plastic deformation and folding. The SED is defined as,

U = U e + Up =

∫ εf

0

σ : dε (3.1)

Where U is the total energy absorbed by the structure, U e and Up are the energy

absorbed through elastic and plastic mechanisms, εf is the final strain, and σ is the

stress. The SED is illustrated in Figure 3.1.

Fig. 3.1. 4 Stress-strain curve for inelastic events. The area under the
curve represents the dissipated energy. [37]

SED can be maximized by maximizing the area under the curve of strain-stress.

In a discretized structure, as in the case of FEA, the energy absorbed by each element

can be computed from the transmitted force to each element and its corresponding

displacement.
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The algorithm used for crash-worthiness TO is similar to the algorithm for the lin-

ear HCA TO previously explained. As in the linear scheme of HCA, the material

parametrization is performed using the density based approach with SIMP interpo-

lation. The response of the design, in this case, SED, is obtained using a dynamic

FEA, therefore the equilibrium equation is given by:

M a(t) + C v(t) + K d(t) = F(t)−R(d, t) (3.2)

Where, a(t), v(t), d(t), are the acceleration, velocity, and displacement; M, C, K

are the mass, damping, and stiffness matrices respectively; F is the external force, R

is the residual. The analysis is terminated at a specific time.

Then, the optimization problem is set as:

minimize
x

| ¯Sh, i(xi)− S∗(t)|

subject to

∑nele
i=1 xi
nele

≤Mf

0 ≤ xi ≤ 1

(3.3)

Where, S∗ is the Set Point response, and ¯Sh, i(xi) correspond to the effective

response of a cell, which is calculated considering the response of the neighborhood

as in equation 1.4 and the history of the responses, as explained below.

To reduce the oscillations in the material distribution between iterations, the field

state of each element corresponds to an exponential moving average of the SED state

at the current iteration and T previous iterations [37]. This information gives memory

proportional to the density of each element. Patel proposed a value of T=3. The field

state is computed as:
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Si(t) =

∑T
j=0wi(t)

jUi(t− j)∑T
j=0wi(t)j

where wi(t) = (xi(t)− xmin)2 (3.4)

Several issues have been discovered concerning the use of the software that ques-

tion the robustness of HCA for nonlinear applications; some of the main concerns are

the high number of iterations required to converge, aand a non-periodic oscillatory

behavior on the objective function [43] [38].

The commercial software Ls-Tasc was developed [45] based on the work by Patel et al

to address nonlinear TO as a nested formulation. Ls-Tasc performs the optimization

using FE, and the dynamic simulation of the design is executed in LS-DYNA. Ls-Tasc

generates cards for discrete intermediate material densities; this allows a smoother

transition between the continuum optimization and the discrete simulation in LS-

DYNA. Initially, the same material is assigned to all the elements of the mesh. After

the initiation, the input deck for LS-DYNA is overwritten according to the update

of the material densities of each element at each iteration. Elements may be added

or deleted in each iteration. An element is deleted if its density surpasses the lower

possible bound of the density.

As the original HCA approach, the response (SED) is filtered using information of

the neighborhood. A proportional control update rule is implemented as:

xi(t+ 1) = xi(t) + ∆xi(t) = xi(t) +H
S̄i(t)

S∗(t)
(3.5)

Where, H is a scaling factor, and the change is given by the ratio of the effective

field response and the target set point S∗.
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3.3 Crashworthiness Multi Material Topology Optimization

In the area of multi-material topology optimization works are developed imple-

menting surrogate models. Liu [46] proposed a method to design graded cellular

materials on a thin-walked structure. The methodology includes two optimizations

and is divided into three main steps. The first stage is conventional topology optimiza-

tion to minimize the compliance. The second stage is clustering the design variable

using a machine learning algorithm called K-mean. Finally, the third stage results

in a meta-model based optimization to maximize the internal energy absorption of

the structure. The final design does not include values of intermediate densities as

it selects cellular material phases from a predefined library. The computational cost

of solving this algorithm a small fraction of the cost of a FEA. Liu [47] developed

a generalized methodology for the MMTO design using clustering techniques. This

work included numerical examples for crashworthiness of an armor plate and an S-rail

frontal impact; for the former, the objective function was to minimize the penetration

and the mass of the plate, in the second case, the goal was to maximize the strain

energy absorption and minimize peak crushing force.

HCA promises to have applications in multi-material topology optimization for crash-

worthiness. Some advantages are that the control updating rule allows the flexibility

to work the problem as a black box. This is specially used for complex optimization

problems as dynamic loading conditions. Also, the SED as an objective function of-

fers a great advantage in MMTO problems, since the state of the cell is a trade-off

between the mechanical property (Young Modulus) and the deformation. Finally, the

Ls-Tasc formulation with cards for intermediate material densities offers the flexibility

to implement a multi-material interpolation approach.



31

4. EVALUATION OF MMTO ALGORITHMS

In this section, we analyze the performance of two algorithms proposed to perform

MMTO with density based approach. The lessons learned from the comparison were

implemented in the MMTO HCA algorithm. The density approach is flexible to be

implemented for MMTO applications given that the interpolation function allows the

existence intermediate densities that can be penalized according to the need of the

designer. As mentioned before, for the scope of this project, and most of the work

that has been developed for MMTO, the material phases are mainly differentiated by

the elasticity modulus; other properties as Poisson ratio are considered same for all

the phases.

The two algorithms chosen are the Alternating Active Phase [12], and Ordered SIMP

[32]. Both algorithms have been addressed in previous sections. Both proposals were

developed using the density approach and resort to OC to solve the optimization. Two

numerical examples are presented: the well-known example of the Messerschmitt-

Blkow-Blohm (MBB) beam, and a Body in White (BIW) structure of an automotive.

The models are presented in two mesh sizes, for three material optimizations, and for

different volume constraints. The Figure 5.2 shows the boundary conditions for the

simulation.

The convergence of the objective function and the density distribution were monitored

to compare the performance of the algorithms. In order to quantify the number of

intermediate undesired densities, the following resolution error was formulated:

eE =
nele∑
i=1

(
M∏

m=1

(Em − E(xi))
2) (4.1)
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Where eE is the resolution error, nele is the number of elements, M the number

of considered materials, Em the elasticity modulus of the m-th material, and E(xi)

is the elasticity modulus obtained by the interpolation function for the i-th element

in the mesh. The resolution error is normalized against the maximum possible value;

this occurs when all the elements on the mesh are assigned the more distant density

value from the values of the given material vector. The normalized error is given by:

eE,N =

∑nele
i=1 (

∏M
m=1(Em − E(xi))

2)

nele ∗ (
∏M

m=1(Em − E(xi))2)
(4.2)

(a) MBB (b) BIW

Fig. 4.1. Simulation boundary conditions.
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4.1 Alternating Active Phase

The simulation parameters are presented in table 4.1.

Table 4.1.
Active Phase Simulation Parameters

Parameter MBB BIW

Coarse mesh 60x20 60x20

Fine mesh 150x50 150x50

Penalization 3 3

Coarse mesh filter radius 3 3

Fine mesh filter radius 15 15

Elasticity Modulus E=[1 0.5 1e-9] E=[1 0.5 1e-9]

Vol Frac 0.30 volfrac=[0.15 0.15 0.7] -

Vol Frac 0.50 volfrac=[0.25 0.25 0.5] volfrac=[0.25 0.25 0.5]

Vol Frac 0.70 volfrac=[0.35 0.35 0.3] volfrac=[0.35 0.35 0.3]

The algorithm has the advantage of being user-friendly and interactive in that

it allows the user to decide the volume fraction of each material.A characteristic

mark observed in the designs obtained in these simulations and those presented by

Tavakoli and Mohseni is that of the solutions tend to group the materials. This can

bring advantages in manufacturing considerations and benefit the performance of the

design by having fewer interfaces.

The designs converge in an acceptable number of iterations as seen in Figure 4.3,

however, the Wall-clock time to perform the iterations was significant due to the large

number of function calls per iteration. The optimization time increases with respect

to the number of materials. It is observed that for high values of volume fraction, a

larger number of undesired intermediate densities are generated. This indicates that

the value of the filter must also be modified according to the constraints.

The resolution error (Figure 4.4) shows that even after the convergence criterion
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has been met, the resolution continues varying until reaching convergence after 100

iterations. The design with the intermediate volume fraction presents low resolution

error, whereas the design with larger volume fraction presents an error up to 0.5

during the first iterations for the finer mesh.

VolFrac 0.3 VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 4.2. Designs for MBB using Alternating Active Phase (a)Mesh
of 60x20 (b) Mesh of 150x50.

For the BIW design (Figure 4.6)the algorithm is successful in creating a load path.

The solution shows a preference to incorporate the more elastic material at the front

of the vehicle and near the rear wheel. The solution show no mesh dependency. Finer

meshes result in more organic designs, and the undesired intermediate densities are

reduce. In general, this algorithm presents jumps in the error resolution function.

The definition of materials is not established in a smooth way through the iterative

process.



35

(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.3. SED function convergence for MBB using Alternating Active Phase.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.4. Normalized resolution error for MBB using Alternating Active Phase.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.5. Density distribution for MBB using Alternating Active Phase.

VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 4.6. Designs for BIW using Alternating Active Phase (a)Mesh of
60x20 (b) Mesh of 150x50.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.7. SED function convergence for BIW using Alternating Active Phase.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.8. Normalized resolution error for BIW using Alternating Active Phase.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.9. Density distribution for BIW using Alternating Active Phase.
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Table 4.2.
Ordered SIMP Simulation Parameters

Parameter MBB BIW

Coarse mesh 60x20 60x20

Fine mesh 150x50 150x50

Penalization 3 4

Coarse mesh filter radius 2 3

Fine mesh filter radius 15 15

Elasticity Modulus E=[ 0 0.5 1 ]

Density D=[ 0 0.7 1]

Price P=[ 0 0.8 1 ]

Case 1 massfrac=0.3 costfrac=0.25 -

Case 2 massfrac=0.5 costfrac=0.4 massfrac=0.25 costfrac=1

Case 3 massfrac=0.7 costfrac=0.3 massfrac=0.35 costfrac=1

4.2 Ordered SIMP

The simulation parameters are presented in table 4.2.

This algorithm reduces the decision making of the user, while it determines the

distribution of the materials based on a trade-off between the mass and cost con-

straints. However, it was verified through several simulations that the value of the

property vectors (density, elasticity, and price) and restrictions; can destabilize the

convergence of the solution with undesired intermediate densities. Most property and

constraint configurations offer designs with large percentages of unwanted densities.

The simulations presented below for the MBB and the BIW correspond to configura-

tions that provided acceptable results for the mesh size and the established boundary

conditions.

Although the solutions depend to a large extent on the properties of the materials and

the loading conditions, in general the code tends to converge in less than 50 iterations
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for medium-sized meshes. The wall-Clock time for this approach is considerably less

than the time required through Alternating Active Phase. Since the constraint is over

the mass instead of volume, the designs have a preference for using void as little as

possible. The void is replaced by the following lighter material in order to improve

the mechanical performance. Finally, the solutions tend to distribute the material in

cores (as seen in Figure 4.10) with the stiffer material (blue) covered by the second

more elastic material (light blue).

The BIW optimization was unstable through several attempted configurations. For

the presented simulation (Figure 4.14), the algorithm could not define a load path.

The stiffer material is concentrated at the frontal section.

VolFrac 0.3 VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 4.10. Designs for MBB using Ordered SIMP (a)Mesh of 60x20
(b) Mesh of 150x50.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.11. SED function convergence for MBB using Ordered SIMP.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.12. Normalized resolution error for MBB using Ordered SIMP.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.13. Density distribution for MBB using Ordered SIMP.

VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 4.14. Designs for BIW using Ordered SIMP (a)Mesh of 60x20
(b) Mesh of 150x50.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.15. SED function convergence for BIW using Ordered SIMP.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.16. Normalized resolution error for BIW using Ordered SIMP.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 4.17. Density distribution for BIW using Ordered SIMP.
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5. HCA FOR MULTI MATERIAL TOPOLOGY

OPTIMIZATION

HCA was implemented for TO problems knowing that the solution of the Lagrangian

duality for the compliance as objective function for static loading conditions, corre-

sponds to the design where the energy per volume is constant through the mesh [20].

This algorithm present the great benefit of treating the FEA as a black box; the

control system modifies the design variable with respect to the distribution of the

response variable over the mesh. Since the design variable is individually updated

for each finite element based on the response to that FE, there must be a correla-

tion between the design variable and the response field. The correlation used by the

authors corresponds to the well-known SIMP interpolation. SIMP has been widely

used in TO as it allows relating the density of the material with its stiffness matrix.

SIMP has many advantages, the main one being that since it is a continuous func-

tion, it is possible to update the design variables in a smooth manner without sudden

changes, and losing information about the behavior of the design. SIMP proposes to

penalize the density of the material to promote the development of binary densities,

which represent void, and completely solid material. In this way, the optimization

converges gradually to densities close to zeros and ones.

Nowadays, when we talk about MMTO, most of the efforts are differentiating and

characterizing the phases using solely the elasticity modulus. Similarly, in this work,

the phases are differentiated through the modulus of elasticity, so that the final de-

sign obtained corresponds to a solid with variable elasticity along the two dimensions.

Isotropic properties and elastic behavior are assumed for the designs. Additionally,

perfect bonding is assumed between the phases. The study of the bonding mecha-

nisms and the phenomena present in the boundaries is outside the scope of this work.
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5.1 Algorithm

The optimization problem for the multi-material adaptation of HCA is given by:

minimize
x

S(xi)

subject to

∑
xj

nele
≤M

(m)
f ,

for E(m) < E(xj) ≤ E(m+ 1)

with m = 1, 2, ...M

0 ≤ xi ≤ 1

(5.1)

The implementation of HCA for MMTO presented the following considerations:

• Definition of an interpolation function that allows the development of selected

intermediate densities.

• Evaluation of the update rule for MMTO.

• Establishment of volume constraints for each phase, or constraints that limit the

growth of the most elastic material.

5.1.1 Interpolation function

The SIMP interpolation function approximates the designs obtained to a step

function, with only one step. The equivalent multi-material corresponds to a step

function with as many steps as phases are considered. In view of the above Zuo

and Saitou [32] proposed a step-wise formulation for a step penalized function and

deduced the solution of the OC for the pice-wise interpolation rule and an additional

cost constraint. On the other hand, Tavakoli and Mohseni [12] used a weighted sum

of all the materials. In this case the updating of the variable can occur in a smoother

manner, however, it allows the permanence of intermediate densities that do not

belong to any of the considered phases.

Opting for a low computational cost, Ordered SIMP was selected as interpolation
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rule. An example of interpolation function is shown in figure 5.1 for a four material

optimization with normalized elasticity modulus of 0, 0.3, 0.7, and 1.

Fig. 5.1. Interpolation function for design variable and material properties.

5.1.2 Update rule

Because HCA allows the use of the FEA as a black box, the same control update

rules were implemented to update the design variables. In the examples, the ratio

technique and proportional rule proposed by Tovar [17] is used, as it proves to be

more stable than the ordinary control rules for this specific case of small scale op-

timization. However, other control rules can be implemented and the tuning of the

control constants must be configured according to the size of the mesh.

For the multi-material implementation, the update rule was not modified. The factor

that drives the multi-material behavior of the optimization is the modification of the

set point at each iteration. The set point update is explained below.
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5.1.3 Volume constraint

In the traditional binary approach of TO, a volume restriction is used so that the

design performance (objective function) is limited by the amount of material that can

be distributed. The multi-material approach should modify this volume restriction or

implement a second constraint to limit not only the quantity of material to be used,

but also to favor the selection of other materials. It is evident that the stiffer mate-

rial will offer the best possible performance, and the design will tend to use only this

material, returning a binary solution. Tavakoli and Mohseni [12] utilized a volume

fraction constraint per material, whereas Zuo and Saitou [32] introduce two additional

properties to the characterization of the materials: density and cost. Leaving the cost

considerations out (Cost Fraction = 1); the former work constraints the volume, and

the second the mass. Both proposals are valid and have their advantages according

to design considerations.

In the present work, a volume restriction per material is arbitrarily used, as in [12], so

that the user indicates in a normalized vector the target volumes of each phase.This

approach offers greater flexibility to the designer given that allows deciding the frac-

tions according to various considerations and not only price. In this way, the decision

of the restrictions must be a previous exercise apart from the TO problem.

HCA seeks to take advantage of the maximum use of the elements distributing the

energy absorption, similar to the full stress approach. As explained previously, HCA

aims to a reference SED value for all the FE called set point. If the design does not

meet the volume restriction, the value of the set point increases proportionally to the

ratio between the current volume fraction and the target volume fraction as presented

in equation 1.9.

In the present algorithm, a set point (SP) value is sequentially defined for every ma-

terial. The volume restriction is applied gradually to each material, starting with

the stiffer material and ending in the less elastic material (or void). During the first

iterations the set point is updated based on the volume fraction of the most elastic
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material, once this restriction is fulfilled, the elements that were assigned to the most

elastic material remain passive by a certain number of n1 iterations (two, selected

arbitrarily). From this point, the set point is updated using the volume fraction of

the next most elastic material. After complying with the second volume fraction,

likewise these elements remain passive for a certain number of iterations n2 (three,

selected arbitrarily). Following, the set point is updated based on the volume frac-

tion constraint for the third most elastic material. This way it is performed for all

remaining materials. It should be mentioned that the elements that become passive

only remain in this way for a certain number of iterations to favor the convergence

and direct the optimization, the elements are ”released” every number of iterations

to relax the problem.

Bellow is presented the pseudo-code for the multi-material implementation of HCA.

The algorithm has the same structure as HCA. As mentioned above, SIMP is replaced

by Ordered SIMP interpolation. The inner loop that controls the volume constraint

now includes as many conditions to meet as materials are considered.
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Result: final design

S∗(t) calculation of Set Point

Ē(x) interpolated proprieties

x(0) initial design

while convergence has not been met do

S(t) structural analysis FEA

S̄(t) = f(S(t), SN(t)) filtered response

while volume constraints have not been met do

S∗(t+ 1) = f(S∗(t), volfrac)

e(t) = f(S̄(t)− S∗(t))

x(t+ 1) = f(x(t), e(t))

end

end

Algorithm 5: Multi Material HCA algorithm

5.2 Numeric examples for static loading

This section includes examples of static load simulations for the same models

tested with the multi material algorithm of [12] and [34]. The boundary conditions

for the MBB beam and the BIW are repeated in the Figure 5.2 below. The simulation

parameters are summarized in table 5.1. To solve the optimization problems the ratio

technique 1.5 was applied for the updating of the design variables since it has shown

to be more stable for static loading conditions.
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(a) MBB (b) BIW

Fig. 5.2. Simulation boundary conditions.

Table 5.1.
HCA Simulation Parameters for static simulations

Parameter MBB BIW

Coarse mesh 60x20 60x20

Fine mesh 150x50 150x50

Penalization 3 3

Neighbor 8 8

Elasticity Modulus E=[1e-9 0.5 1] E=[1e-9 0.5 1]

Vol Frac 0.30 volfrac=[0.7 0.15 0.15] -

Vol Frac 0.50 volfrac=[0.5 0.25 0.25] volfrac=[0.25 0.25 0.5]

Vol Frac 0.70 volfrac=[0.3 0.35 0.35] volfrac=[0.35 0.35 0.3]
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From Figures 5.3 and 5.7 can be observed that the value of the SED reaches con-

vergence near 10 iterations. Designs for low volume fractions presented problems for

convergence, displaying discontinuous structures and intermediate densities. How-

ever, for the rest of volume fractions the designs present complex solutions for the

optimization problem, and successfully develop loading paths.

Figure 5.5 and Figure 5.9 shows the normalized error for undesired densities; as ob-

served the decreased of the undesired densities takes place on a smooth manner and

by the time the value of SED has converged. The nonexistence of undesired inter-

mediate densities is expected because of the way in which the volume constraints are

handled; once the volume constraint of the more elastic material is reached, those

elements remain passive for a predefined number of iterations. For this study, the

elements where released every 2 iterations. It was observed that the number of iter-

ations in which the elements remain passive does not have great influence for static

analysis.

The algorithm converges in a number of simulations similar to the alternating active

phase. For the two sizes of mesh considered small changes in the optimization solu-

tions are perceived.

VolFrac 0.3 VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 5.3. Designs for MBB using MMTO HCA (a)Mesh of 60x20 (b)
Mesh of 150x50.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.4. SED function convergence for MBB using MMTO HCA.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.5. Normalized resolution error for MBB using MMTO HCA.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.6. Density distribution for MBB using MMTO HCA.

VolFrac 0.5 VolFrac 0.7

(a)

(b)

Fig. 5.7. Designs for BIW using MMTO HCA (a)Mesh of 60x20 (b)
Mesh of 150x50.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.8. SED function convergence for BIW using MMTO HCA.
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.9. Normalized resolution error for BIW using MMTO HCA.



62

(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 5.10. Density distribution for BIW using MMTO HCA.
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6. HCA FOR MULTI MATERIAL CRASHWORTHINESS

TOPOLOGY OPTIMIZATION

This section presents the multi-material adaptation of HCA for impact loads. The

first part explains the modifications made to the multi-material HCA to optimize

dynamic loads, these modifications are based on Patel’s proposal [37]. The second

part covers the considerations taken in the models to perform the dynamic simulations

using the commercial software Ls-Dyna. Following, two examples of multi-material

topology optimization for quasi- static loads are given, and the chapter closes with

optimization examples for impact loads.

6.1 Algorithm

The HCA multi-material algorithm previously demonstrated for static loads, was

modified based on Patel’s proposal [37] to optimize designs under dynamic load.

Below is presented the pseudo-code for multi-material HCA for crash-worthiness.
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Result: final design

S∗(t) calculation of Set Point

Ē(x) interpolated proprieties

x(0) initial design

while convergence has not been met do

S(t) structural analysis FEA

S̄(t) = f(S(t), SN(t)) filtered response

S̄h(t) = f(S̄(t), S̄(t− 1), S̄(t− 2), S̄(t− 3)) response memory

while volume constrainst have not been met do

S∗(t+ 1) = f(S∗(t), volfrac)

e(t) = f(S̄h(t)− S∗(t))

x(t+ 1) = f(x(t), e(t))

end

end

Algorithm 6: Multi material HCA algorithm for crashwrothiness

The algorithm maintains the same structure as HCA. The main change is the re-

sponse managing. As performed in the original HCA, once the response is obtained

from the FEA black box, it is filtered with respect to the neighborhood responses.

For dynamic loads, Patel recommends using the response history to perform the up-

date of the design variable. The response of each element is given by a weighted sum

of the response of the element in the present iteration and three previous iterations.

This weighted sum is expressed in equation 3.4. The history of the response allows

to reduce the oscillations in the optimization process and benefits the convergence.

Since the response is expressed as a weighted sum with respect to the densities of the

element, the elements with low densities (close to zero), will have little memory of

previous states; this allows the regeneration of the voids if required by the mesh in

future iterations.
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The design variables are related to the material properties by the interpolation

function based on meta-model proposed for the multi-material optimization. As for

the variable update rule, the algorithm can potentially work with any of the control

rules previously shown in the equation 1.5. However, in this work, only the propor-

tional rule was used for dynamic loading. The proportional rule was recommended in

Patel’s work [37] and was also implemented in the commercial software LS-Tasc [45].

In this way, the proportionality variable must be tuned according to the conditions

of the simulation problem.

Based on the experience gained from the use of the algorithm, it was concluded that

the user must properly tune three variables:

• The recently mentioned proportionally constant for the update rule. This dictates

the magnitude of the change in design variables. It is advisable to make changes

gradually to the structure so that the response field likewise does not vary much.

The update of the design variable depends on the history of iterations if the response

variable is very different between iterations, the update lacks trend.

• The time of design which corresponds to the time in which the response is compile.

For dynamic problem, the response is transient and different for each time. Later in

this section, dynamic simulations are shown with three different design times. For

future collaborations, we propose to analyze the performance of the algorithm using

history of iterations but also including the history of design times, so that the so-

lution considers the behavior at different times. Possibly, this greatly increases the

complexity and destabilizes the solution of the optimization problem.

• Number of iterations to release the volume fraction restriction. This variable relaxes

or stiffens the design solutions since it minimizes a number of elements that can be

updated.
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6.2 Ls Dyna Integration

The commercial software Ls-Dyna was used as a black box to obtain the response

of the models. LS Tasc is a topology and shape optimizer that works with the Ls-Dyna

solvers, it implemented HCA algorithm to optimize designs under crash events [45].

The integration of Ls Dyna into the MMTO HCA algoritm used the Ls Tasc scheme

to handle the simulation files.

The implementation of HCA for crash events works for two dimensional designs, solid

elements and under elastic behavior. The optimization is performed using Matlab in

two dimensions, then Ls-Dyna is used as a black box for testing the designs and ob-

taining the field response. To simulate the crash in Ls-Dyna, the designs must be

converted into three dimensional models, so the two dimensional designs are extruded

using little elements enough to avoid buckling. However, the code can be expanded

for tri-dimensional designs by modifying the HCA functions such as the filter. The

major challenge is to carefully perform the mapping of the design variables into the

Ls-Dyna mesh.

The optimization code modifies the input files of Ls-Dyna, called k file (key file), in

each iteration. This file contains the model of the simulation, as the details of the

mesh, loads, boundary constraints, contacts, simulation time, desired output infor-

mation, etc. The code modifies the modulus of elasticity of each element, and after

the simulation it collects the value of the SED of each element from the d3plot output

file.

As known, the density approach optimization allows the existence of intermediate

densities to relax the problem. In order to be consistent with the continuous op-

timization update, the Ls-Dyna input file is created with 100 material cards. The

material card number 1 represents a material with an elasticity modulus near zero

(void), whereas the material card 100 corresponds to the stiffer material. For this

model, the the properties of steel were assumed for the material with the card num-

ber 100. In the same way, the input file uses as many part cards as number of material
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cards. In each simulation, the parts assigned to each element of the mesh are modi-

fied, which therefore modifies the mechanical properties of the element.

The elements that are assigned with the void material are removed from the mesh to

avoid numerical instabilities due to large deformations, as recommended by [45]. The

elements have the possibility to re-grow in future iterations if necessary, while they

are eliminated they are assigned a response of zero.

Another important consideration for impact simulations are contacts. The model

includes two different types of contacts. The first one corresponds to the contact

between the design and the rigid wall (or pole) that impacts it. The second type

of contact occurs between the same elements of the design when the material is de-

formed. This contact must be defined only between the active parts of the design to

avoid errors in the simulation. In this way, after each iteration in addition to modi-

fying the parts of each element of the mesh, the code must update the set of active

parts to feed the contact card.
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6.3 Numeric examples for dynamic loading

This section includes dynamic loading examples for the MMTO HCA algorithm.

Ls-Dyna was used as solver for the FEA. The impact was set using a pole as rigid wall

and imposing a prescribed displacement. The boundary conditions are shown in the

Figure 6.1. The first model corresponds to a cantilever beam impacted at the end;

the second model corresponds to a bumper impacted at the middle of its length, the

problem was solved by symmetry modeling only half of the bumper. The simulation

parameters are summarized on table 6.1 and table 6.2. The Figure 6.2 shows the

curve that defines the prescribed displacement for the pole that works as a rigid wall;

the axis of the abscissa corresponds to the time of simulation and the axis of the

ordinates to the displacement in meters. All units used for the Ls Dyna simulation

correspond to the International System of Units and are given in: kg-m-s-N-Pa-J.

Table 6.1.
HCA Simulation Parameters for impact simulations

Parameter Cantilever Half Bumper

Mesh size 150x50 150x50

Penalization 3 3

Neighbor 8 8

Proportional Gain 0.05 0.05

Elasticity Modulus E=[1e-9 0.5 1] E=[1e-9 0.5 1]

Vol Frac 0.30 volfrac=[0.7 0.15 0.15] volfrac=[0.7 0.15 0.15]

Vol Frac 0.50 volfrac=[0.5 0.25 0.25] volfrac=[0.25 0.25 0.5]

Vol Frac 0.70 volfrac=[0.3 0.35 0.35] volfrac=[0.35 0.35 0.3]
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(a) Cantiliver

(b) Half Bumper

(c) Bumper

Fig. 6.1. Dynamic simulation boundary conditions.



70

Table 6.2.
Ls Dyna Simulation Parameters for impact simulations

Termination time 1e-2 s

Load Nodal load

Elasticity Modulus 2.07e+11 Pa

Density 7830 kg/m3

Poisson ratio 0.3

Fig. 6.2. Prescribed displacement for pole (rigid wall).

6.3.1 Beam under transverse impact

The Figure 6.3 shows the designs obtained for the cantilever beam impacted by the

pole. Only the solutions for three volume fractions are presented since the model with

volume fraction 0.1 did not converge, it was composed by discontinuous structures.

This bad performance was previously observed for low volume fraction designs for

the simulations under static loads. It seems that the complexity of the dynamic load

response field does not allow a continuous structure to be generated even if it would

include intermediate densities.

For the volume fractions present, complex structures are again observed. The designs

are characterized by distributing the most elastic material on the surface where there
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is greater stress of compression and tension. The resolution error decreases smoothly

as seen in Figure 6.4, and converges by the time the SED converges. As in the

static case, there are few or no undesired intermediate densities (Figure 6.5. The

convergence is more unstable than in static cases, and although the optimization

requires more iterations to converge, the solution is found in about 50 iterations

(Figure 6.6. As mentioned previously, the HCA code has two loops. The outer loop

controls the iterations and convergence of the objective function, while the inner

loop controls the volume constraints. Figure 6.6b shows the history of internal loops

required to comply with the volume constraint. The optimization iterates less than

100 times before finding a suitable update of the design variables. Finally, Figure

6.7 shows the elemental SED distribution along the design for the two different solid

materials. As observed, the internal energy of is equalized for the materials that are

assigned with one same material.
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VolFrac 0.3

Volrac 0.5

VolFrac 0.7

Fig. 6.3. Cantilever beam under impact load using MMTO HCA. The
design on the left side corresponds to the 2D Matlab model and design
on the right to the 3D Ls Dyna model.
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Fig. 6.4. Normalized resolution error for cantiliver beam using MMTO HCA.

Fig. 6.5. Density distribution for cantilever beam under transverse
impact using MMTO HCA..
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 6.6. Convergence for cantilever beam under transverse impact
using MMTO HCA.
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Complete design

Material 1

Material 2

Fig. 6.7. SED distribution for the cantilever beam under impact load
using MMTO HCA.



76

6.3.2 Bumper under transverse impact

The bumper simulation was performed using symmetry conditions. The third col-

umn of Figure 6.8 shows the complete design of the bumper with the pole impacting

it in the middle. The first two columns show the model used to perform the opti-

mization. Of the three simulations, the design with a volume fraction of 0.3 shows a

defect with a discontinuous section that does not offer any mechanical advantage.

Figure 6.9 shows that the resolution error behaves similarly to the previous cases

studied. Undesired intermediate densities are almost non existent (Figure 6.10; the

solution continues to offer a density distribution more favorable to that observed with

other algorithms of multi-material optimization.

In this case, the maximum number of design iteration was set to 200, however the

value of the SED continuous oscillating after 100 iterations. The results shown in the

Figure 6.11 correspond to the most representative behavior of the optimization. This

optimization problem is more complex than that of the cantilever beam; despite of

this fact the loops required to meet volume constraints continue to be less than 100

iterations. The number of mass iterations, corresponding the inner loop, are less than

the maximum number of internal loop iteration admissible of 100 .

The Figure 6.12 shows the distribution of the elemental SED for one same solid

material. As in the example for the cantilever beam, MMTO HCA minimizes the

dispersion of the response for the considered elements in the mesh.
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Fig. 6.9. Normalized resolution error for half bumper using MMTO HCA.

Fig. 6.10. Density distribution for half bumper under transverse im-
pact using MMTO HCA..
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(a) Mesh of 60x20

(b) Mesh of 150x50

Fig. 6.11. Convergence for half bumper under transverse impact using
MMTO HCA.
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Complete design

Material 1

Material 2

Fig. 6.12. SED distribution for half bumper under impact load using MMTO HCA.
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6.3.3 Design time influence in the design solution

The model of the cantilever beam was run three different design times, considering

the rest of parameters fixed. The beam model uses a volume fraction of 0.5. The

objective of this numeric example is to show the influence that both parameters have

on the optimization solutions.

The results obtained are shown in the Figure 6.13. At different times the response

field at different times varies so the optimization solutions are different. Although

the convergence graph indicates that the objective function converges faster and lower

response values are obtained, it is difficult to obtain conclusions about the time re-

quired to perform the optimization. During the analysis process, other simulation

times were taken to which the design did not converge. For this reason, it is impor-

tant to make an analysis of the design time that best suits according to the application

of the design. For future collaborations it is possible to analyze the performance of

the algorithm when considering the history of states (times), so that the design has to

comply with the response to different times. As mentioned previously, this additional

consideration could significantly increase and impair the convergence of the code to

a solution. However, the possibility may be considered due the little information and

the uncertainty that exists regarding the optimum design time.
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t=4ms

t=7ms

t=10ms

Fig. 6.13. Cantilever beam under impact load for different design
times. The design on the left side corresponds to the 2D Matlab
model, and design on the right to the 3D Ls Dyna model.
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Fig. 6.14. Objective function convergence for different impact velocities
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7. SUMMARY AND RECOMMENDATIONS

Topology optimization allows to develop designs with complex topologies that maxi-

mize the use of the materials. In addition to optimizing the binary distribution of solid

material and void, it is possible to appeal for the distribution of several phases that

together offer mechanical, cost or weight advantages. The multi-material topology

has been developed in previous works expanding the different approaches of density

based, set level, and phase field.

HCA is a density-based algorithm for topology optimization with a control-system-

based solver, inspired in the bone regeneration process. HCA has been used to suc-

cessfully solve optimization problems under static load and impact loads. The present

work expanded the use of HCA for multi material topology optimization applications.

The algorithm replaces the SIMP interpolation with ordered SIMP interpolation func-

tion, which allows to relate the design variables to the mechanical properties of the

material. To perform the actualization of the variables during each iteration, the

ratio rule was used for static loads, and the proportional rule was tested for dynamic

loading conditions. The user decides the volume fraction for each material. Volume

constraints are applied sequentially starting with the most elastic material. Cells that

belong to the material that has already met the volume restriction remain passive for

a certain number of iterations to promote the convergence of the solution. Numerical

examples are included for cases of static and dynamic load. For the cases of impact

loading it is observed that the designs obtained depend to a large extent on the design

time and the impact speed.

The proposed algorithm has a series of parameters that must be tuned, particularly

for the transient loading conditions. The first corresponds to the control system gains

according to the rule that is applied. The second parameter corresponds to the num-

ber of iterations in which the elements remain passive during the volume constraints.
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The third parameter corresponds to the design time, which also for transient loads.

Several of these parameters depend on the application and the preference of the de-

signer; however, the influence can be more explored.

Finally, the optimization assumes perfect bonding between the phases. Future works

may focus on analyzing the shear stresses that are involved in joints, and assign a

maximum value as a constraint on optimization.
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