
PATTERN BASED SYSTEM ENGINEERING (PBSE)- PRODUCT LIFECYCLE

MANAGEMENT (PLM) INTEGRATION AND VALIDATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rajat Gupta

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

December 2017

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Hazim El-Mounayri, Chair

Department of Mechanical Engineering

Dr. Mangilal Agarwal

Department of Mechanical Engineering

Dr. Shuning li

Department of Mechanical Engineering

Approved by:

Dr. Sohel Anwar

Chair of the Graduate Program

iii

I dedicate this work to my family, which is the strongest pillar of my life.

iv

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to my mentor Dr. Hazim El-

Mounayri for his support and guidance throughout the research work. Working under

his direction in the IPLI laboratory has helped me to grow professionally and person-

ally.

I am grateful to professionally interact with Dr. Shuning Li. Under her guidance

I have gained immense knowledge of PLM using Teamcenter. Her timely suggestions,

and enthusiasm have enabled me to complete my thesis.

I thank Dr. Mangilal Agarwal for his dedication, keen interest and above all his

overwhelming attitude to help his students.

And finally thank ICTT System and Sciences specially William Schindel and Jason

Sherey for sharing systems knowledge and providing continuous support throughout

my thesis.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Problem Definition . 1

1.2 Literature Review . 3

1.2.1 Model Based Engineering . 3

1.2.2 Integrated MBSE Driven System Development and Management 7

1.2.3 Current Trends . 7

1.3 Thesis Outline . 14

2 METHODOLOGY AND IMPLEMENTATION 16

2.1 Pattern Based System Engineering . 16

2.1.1 S*Metamodel . 17

2.2 Teamcenter . 21

2.2.1 System Engineering (SE) and Product Lifecycle Management
(PLM) . 21

2.2.2 Teamcenter as a System Engineering Driven PLM Tool 22

2.2.3 BMIDE(Business Modler Integrated Developing Environment) . 23

2.2.4 Methodology to Create Business Objects 25

2.2.5 Methodology to Assign Properties to Business Objects 27

2.2.6 Methodology to Add Lists of Values (LOVs) 29

2.2.7 Methodology for Automatic Generation of Reports 31

3 SUMMARY OF RESULTS AND VALIDATION 52

3.1 Summary of Results . 52

vi

Page

3.2 Validation . 57

4 CONCLUSIONS . 61

5 FUTURE WORK . 62

REFERENCES . 63

vii

LIST OF FIGURES

Figure Page

1.1 Model Based Engineering . 3

1.2 Stakeholder Needs to System Solution . 5

1.3 Vee Domain Diagram . 5

1.4 Model Interpreters . 6

1.5 Multi-level, Multi-domain and Multiscale Models 8

1.6 Requirements Drive Process . 9

1.7 Effective Communication Cycle . 10

1.8 Traceability . 10

1.9 System Lifecycle Management . 11

1.10 Approach by PTC . 11

1.11 Survey . 12

1.12 Verification Process: from Document Based to Model Based 13

1.13 Previous work: Research Approach . 14

1.14 Current Approach . 15

2.1 PBSE Pattern Pyramid . 16

2.2 S*Metamodel=Smallest Model Necessary for Purpose of Science, Engi-
neerig, Life Cycle Management . 18

2.3 S* Models which are Reusable . 20

2.4 How to Create Business Objects in BMIDE 25

2.5 Detailed Class Type for S*Metamodel for Input in BMIDE (credit:ICTT
System Sciences) . 26

2.6 List of all Classes Created in BMIDE for the S*METAMODEL 26

2.7 How to Create Properties in BMIDE . 27

2.8 Detailed List of Custom Properties for Input in BMIDE 28

viii

Figure Page

2.9 All Properties Defined for Custom Oriented Functionality 29

2.10 Method to Add Classic LOV to Custom Template 30

2.11 Detailed Representation of the Custom LOV for Respective Classes 30

2.12 Method to Create an Excel Template . 31

2.13 Figure Shows How to Customize a Excel Template 31

2.14 Structure Manager User Interface . 32

2.15 Export to Excel . 34

2.16 Create an Custom Excel Template . 35

2.17 Define Custom Properties in Excel . 35

2.18 Create Custom Items and Enter Relevant Feature Name 36

2.19 Fill Relevant Description . 36

2.20 List of all Feature Items . 37

2.21 Create a New Folder for Export . 38

2.22 Feature Table Export to Excel . 38

2.23 Export all Objects in View and Choose Custom Template 39

2.24 Export All Objects in View and Choose Custom Template 39

2.25 Create Folders and Feature Attributes . 40

2.26 Steps to Configure Feature Attributes . 41

2.27 List of All Features and Feature Attributes 42

2.28 Group Feature and Feature Attributes in Structure 43

2.29 Final Assembly in Structure Assembly . 44

2.30 Export to Excel, Use Export All Visible columns 45

2.31 Final Assembly for Table 2 . 46

2.32 Create Custom Folders, Items for Logical Systems and Functional Interactions47

2.33 Configure Requirement Statements . 48

2.34 List of All Items Created for Logical System, Interaction and Specific
Required Statements . 49

2.35 Final Assembly of Table 3 in Structure Manager 50

ix

Figure Page

2.36 Export to Excel Table 3 . 50

2.37 Final Assembly Generated for Table 3 . 51

3.1 Extraction of Requirements . 52

3.2 Feature Definitions Table . 54

3.3 Stakeholders Requirement Table . 55

3.4 Detail Requirements Table . 56

3.5 Comparison of Features Definitions Table,(Orange represents Document
Generated from Integration and Blue represents Document Created by
Professional System Engineer) . 57

3.6 Comparison of Stakeholders Requirement Table,(Orange represents Docu-
ment Generated from Integration and Blue represents Document Created
by Professional System Engineer) . 58

3.7 Comparison of Detail Requirements Table,(Orange represents Document
Generated from Integration and Blue represents Document Created by
Professional System Engineer) . 59

x

ABBREVIATIONS

SE System Engineering

MBE Model Based Engineering

MBSE Model Based System Engineering

PLM Product Lifecylce Management

INCOSE International Chapter of Systems Engineering

PBSE Pattern Based System Engineering

IIOT Industrial Internet of Things

SDPD System Driven Product Development

SLIM System Lifecycle Management

SYSML Systems Modelling Language

MBPLE Model Based Product Line Engineering

BMIDE Business Modeler Identity Developing Environment

COTS Commercial Off The Shelf

SOA Service Oriented Area

WAN Wide Area Network

LOV List Of Values

BOM Bill Of Materials

CAD Computer Aided Drawing

xi

ABSTRACT

Gupta, Rajat M.S.M.E., Purdue University, December 2017. Pattern Based System
Engineering (PBSE)- Product Lifecycle Management (PLM) Integration and Valida-
tion. Major Professor: Hazim El-Mounayri.

Mass customization, small lot sizes, reduced cost, high variability of product types

and changing product portfolio are characteristics of modern manufacturing systems

during life cycle. A direct consequence of these characteristics is a more complex sys-

tem and supply chain. Product lifecycle management (PLM) and model based system

engineering (MBSE) are tools which have been proposed and implemented to address

different aspects of this complexity and resulting challenges. Our previous work has

successfully implemented a MBSE model into a PLM platform. More specifically,

Pattern based system engineering (S* pattern) models of systems are integrated with

TEAMCENTER to link and interface system level with component level, and stream-

line the lifecycle across disciplines. The benefit of the implementation is two folded.

On one side it helps system engineers using system engineering models enable a shift

from learning how to model to implementing the model, which leads to more effective

systems definition, design, integration and testing. On the other side the PLM plat-

form provides a reliable database to store legacy data for future use also track changes

during the entire process, including one of the most important tools that a systems

engineer needs which is an automatic report generation tool. In the current work, we

have configured a PLM platform (TEAMCENTER) to support automatic generation

of reports and requirements tables using a generic Oil Filter system lifecycle. There

are three tables that have been configured for automatic generation which are Fea-

ture definitions table, Detail Requirements table and Stakeholder Feature Attributes

table. These tables where specifically chosen as they describe all the requirements of

xii

the system and cover all physical behaviours the oil filter system shall exhibit dur-

ing its physical interactions with external systems. The requirement tables represent

core content for a typical systems engineering report. With the help of the automatic

report generation tool, it is possible to prepare the entire report within one single

system, the PLM system, to ensure a single reliable data source for an organization.

Automatic generation of these contents can save the systems engineers time, avoid

duplicated work and human errors in report preparation, train future generation of

workforce in the lifecycle all the while encouraging standardized documents in an

organization.

1

1. INTRODUCTION

Technological development is considered to be one of the most important factors to

affect the growth of an economy. Back in the 1950s, Manufacturing in the United

states was responsible for about 19% of gross domestic product (GDP) and employed

30% of the workforce [1] and this number has significantly dropped by the year 2011

where it is responsible for 12% of GDP and employs 11% of the workforce [2]. This

sector has been still in recession and many manufacturing facilities have advanced

their way towards developing countries. There is a strong need to find a way to stop

this, boost the countrys economy and remain a prominent force in the 21st century

as well. One way towards this goal would be by major advancement in technology

which solves increasing complexity of modern systems and the process of decision

making easier. The increasing complexity is the result of poor or no compatibility

between various technological tools. Thus integration of these tools would be a great

challenge and the resulting advantages are many. To support this statement, 6.573

billion things were connected to internet in the year 2014. This number will increase

to over 25 billion in 2020 [3] which will have direct and tremendous impact on the

future of manufacturing. This also comes as a possible solution to the frequently

described problem of increasing complexity, explosion of variants due to technological

progress and increasing rate of changes in manufacturing processes.

1.1 Problem Definition

Most of the modern complex systems we work around are smart systems that

perform according to requirements and with capabilities to predict, react and social

(communicate with each other and us). Industrial Internet of things (IIOT) and

industry 4.0 are two increasingly discussed strategies helping to make manufactures

2

more productive. [4] There is a need to develop a mechanism which helps product

managers with short-lived market windows and diverse product requirements with-

out compromising on the quality of the final product. PLM provides the best way

to effectively involve multi-disciplinary fields and ensure that the product and the

associated lifecycle approaches are optimized. The current system engineering trend

is to drive away from document based approach and towards integrated models for

managing the complexity. Model based methodologies yield significant benefits such

as early identification of unexpected design challenges, better understanding and doc-

umentation of designed behavior. This is a major reason why Model Based System

Engineering (MBSE) is of growing importance in system design. But, the critical

success factor is to manage alignment through requirement cascade and dependency

management, not to try to align all requirement to a single model, but to an inter-

dependent ecosystem. Hence integration of MBSE-PLM is important where one can

rely on this interdependent ecosystem.

Patterns knowledge and benefits drives from Model based System Engineering

(MBSE). When PBSE is used for a new project there is a strong foundation provided

from an preceding pattern or number of patterns. PBSE has been addressed and

carried out on different enterprises and domain. [5].

The gap addressed in this study is the lack of model-based continuity of system

engineering activities from the early phases (proposals and conceptual design) to de-

tailed phases (detailed design, development and delivery). There are also constraints

in the transfer of knowledge across the system lifecycle, as the knowledge is within the

mind of a system engineer. This gap exists because the tools used for systems mod-

eling and analysis are different in each phase. There are no common grounds for an

entire lifecycle for effective knowledge transfer. We introduce PBSE-PLM integration

in our efforts to easy understanding of complex systems. This integration is done to

ensure all possible information exchange (Requirements, feature model/variants, test

cases, process and workflows), Ensure traceability, integrated tool chain and have a

single or integrated data and configuration management platform.

3

1.2 Literature Review

Systems engineering approach is only complete when all the process, items etc

involved in a system are documented. This gets increasingly difficult in modern

manufacturing world as the products or systems are continuously evolving. There

is high level of complexity that comes along with this evolution. Complexity in de-

signs, behaviours, interdependencies, decision making etc involving implementations

are a common problem modern system engineers face. These problems are in varied

domains of a particular system and this entire information is covered by a system

engineer, therefore it is very important to have transfer of knowledge for next gen-

eration or future engineers which requires very in-detail and precise documentation.

In recent times, Models were created to better explain a complex system. Also it is

much easier to explain a system using figures than including hundreds of pages of

documents.

1.2.1 Model Based Engineering

Figure 1.1. Model Based Engineering

4

Model-Based Engineering (MBE): An approach to engineering that uses models

as an integral part of the technical baseline that includes the requirements, analy-

sis, design, implementation, and verification of a capability, system, and/or product

throughout the acquisition life cycle [6]. The models can reflect some aspects of a

problem in reality, but in a more orderly form, and can be explained by theories.

The objectives of a model range from facilitating clear understanding, to aiding in

decision making, examining what if scenarios, to explaining, controlling and predict-

ing events. Feeding from the MBE concept comes Model Based System Engineering

(MBSE) which is specifically associated with system engineering which also includes

behavioural analysis, system architecture, requirement traceability, performance anal-

ysis, simulation, test, etc. Model Based System Engineering (MBSE) changes and

improves how we represent systems [7]. Key characteristics of a MBSE process is

the continuous loop, which ensures that at the time of delivery, even though the

model becomes more complex than it was at beginning, it still has clear order and is

easy to understand. MBSE is the formalized application of modelling to support sys-

tem requirements, design, analysis, verification and validation activities beginning in

the conceptual design phase and continuing through development and later life cycle

phases [8]. MBSE is goal driven, the goal here is to eliminate document based tradi-

tion by using models as a form of representation. The main advantages MBSE posses

is that it helps increase productivity, improving quality, improving communication

and significantly reduce risk.

Above Figure 1.1 depicts the activities and related relationships that generally

characterize the overall process, from customer needs to the final system solution. In

the last decade, large-scale system projects have been created using different lifecycle

development models. They often use their own lifecycle patterns, but the most com-

mon lifecycle models are Royces Waterfall model [9], Boehms spiral model [10], and

Forsberg and Moozs Vee model [11]. Each defines the lifecycle differently. All these

process model approaches are continual, an iterative operation is done to achieve a

suffice result.

5

Figure 1.2. Stakeholder Needs to System Solution

Figure 1.3. Vee Domain Diagram

Global efforts are working toward the exchange and interpretation of model data

by machines and people, for purposes of simulation, procurement, fabrication, code

generation, etc [12].

The whole idea of a effective model is to serve the needs of model interpreter. If

the goal is to communicate with a large community or serve a large company with the

idea of modelling then it is that important to make the system easier to understand,

making model interpreters job easier.

6

Figure 1.4. Model Interpreters

But, there are few limitations of MBSE such as the domain is fixed when a prod-

uct is designed with respect to a model. This can lead benefits to a some cases where

you deal with a family of products, as system engineers shall not have to start from

scratch and can rely on some strong foundation. But, if a new product has evolved

significantly the existing model can not be used to designed this system as there is a

risk of diverging fundamental issues which are essential to incorporate new features.

An SE team that uses MBSE tools and practices improves productivity within the

team but finds itself further isolated from the rest of the engineering organization

and processes. This is due to complex MBSE tools being used by a small number of

engineering specialists whose models are not easy to disseminate and not easily un-

derstood by the rest of the organization preventing the intent of the systems engineers

from being followed to its fullest.

7

1.2.2 Integrated MBSE Driven System Development and Management

MBSE is not subject to the standard change control process, because MBSE lacks

integration into the overall design and configuration management process. To counter

these varied limitations the current trend is to integrate MBSE with a powerful PLM

tool which can manage the entire lifecycle, effective communication, ease of under-

standing the system and all the while assuring quality of the delivered product.

1.2.3 Current Trends

1. In today’s modern world, components and products have become systems where

product designs require a mix of hardware, software, electronics and/or firmware. If

MBSE is not tightly linked to PLM, product quality issues will emerge, putting

brands, companies and their stakeholders at risk. A fully integrated MBSE PLM ca-

pabilities that is supported by a computational continuum provides Integrated model-

based system driven product development and management,-Siemens, an industrial

leader, has referred to such integration as SDPD (Systems Driven Product Develop-

ment) Framework that is poised to address the current challenges of modern manu-

facturing (characteristics of Industry 4.0) by enabling the digital enterprise.

SDPD builds a solution by integrating different engineering disciplines involved

in a single process/system. It is defined as an open and modular solution to cross-

domain collaborative product development, manufacturing and in-service support

which fully integrates modelling and simulation to predict product and process perfor-

mance across a wide range of disciplines and domains, including mechanical, electrical,

software and controls. It combines systems engineering with an integrated product

definition and the ability to unify product development framework with manufactur-

ing and shop floor operations. There are five key characteristics to SDPD.

First, it involves multi-level, multi-domain, and multi-scale models. For exam-

ple, 1 Dimensional system modeling and simulation can be used to predict operating

point and scenario to manage transient I/O boundary conditions (e.g. temperature,

8

Figure 1.5. Multi-level, Multi-domain and Multiscale Models

pressure, flow rate, control, etc.), while, 3 Dimensional component (or subsystem)

modeling and simulation can be used for zooming in on components in the 1 Di-

mensional sketch to ensure the simulation quality at a geometric resolution (e.g. Jet

forces, pressure gradient, flow coefficient, etc.)

Second, requirements drive the development process. In the design team, system

analysts develop requirements based on customer needs to build products that cus-

tomers want. Requirements management works in conjunction with system modeling

and system simulation to both design and test the system model.

Third, SDPD requires multi-level and effective communication. For example,

system analysts use requirements to communicate decisions to systems designers and

system testers. System designers communicate how the system model should be tested

and what targets should be made in a design validation plan. System designers

and system testers communicate design issues, feasibility issues, and requirement

assessment issues to each other and the system analysts.

Fourth, SDPD is characterized by data and information management and reuse to

support cross-engineering domain. In fact, PLM provides a cross-domain platform to

capture and map the relationships needed to make global and cross-domain design de-

9

Figure 1.6. Requirements Drive Process

cisions required to develop multi-domain products or systems. Finally, SDPD is char-

acterized by traceability across all aspects of the multi-domain product. It provides

development team continuous insight into conformance to requirements throughout

the product lifecycle.

2. Intercax LLC is an engineering software company specializing in the integration

of complex data models for systems engineering. It is a pioneer and trusted global

innovator in the field of Model-Based Systems Engineering. Their product SLIM

(System Lifecycle Management) is envisioned to provide capabilities that combine

the strengths of model-based systems engineering and product lifecycle management

(PLM) [13]. SLIM has been designed as a MBSE workspace on a strong PLM plat-

form. It uses Sysml (Systems modelling Language) as a tool to synthesize from the

beginning of system development.

3. Another company PTC, a computer software company that provides solu-

tions which help transform how products are created and serviced, helping compa-

10

Figure 1.7. Effective Communication Cycle

Figure 1.8. Traceability

nies achieve product and service advantage has also taken significant efforts in this

area. [14] This study believes that while PLM enables organizations to manage the

11

Figure 1.9. System Lifecycle Management

Figure 1.10. Approach by PTC

entire product lifecycle, MBSE captures and communicates system requirements and

architecture using visual models and standards-based notation to describe complex

products and systems. Taking advantage of productivity data transfer between MBSE

and PLM systems can deliver numerous benefits in product and process development

activities.

Embedded Market Forecasters, a premier market intelligence and advisory firm

in the embedded technology industry had conducted a survey in 2013. This survey

was conducted to learn the effects of SE (System Engineering), MBSE (Model Based

12

System Engineering) and MBPLE (Model Based Product Line Engineering, MBSE-

PLM) on development cost per project and on time delivery. The results of this survey

Figure 1.11. Survey

clearly show when used SE 59% projects were delivered on time. 62% when MBSE

is used and 75% when MBPLE used. Also, MBSE takes 55% reduction in Total

Development Cost per project and MBPLE takes 62% reduction when compared to

SE. [15]

4. Also, according to the latest report of the International Council on systems

Engineering (INCOSE), model based systems engineering was very likely to replace

the document-centric approach practised by most systems engineers. By 2011 SysML

was used by 20% of aircraft and defence companies and 7% of automotive manufac-

tures [16]. The figure below provides an overview of the main differences between a

document-based verification and a model-based one. The documents that are pro-

duced in the traditional process, reported in (a), could be replaced by a system model

which is able to include system requirements, the specification of validation and ver-

ification, and of their activities (e.g. test or analysis), which is linked with test and

analysis models (including flight units), related results and reports, as outlined in

(b). If documents are still required, they could be generated from these models. Our

research scope drives on the same lines but our idea is to make it more approachable

and better by integrating an PLM information system tool which brings in ben-

efits such as automatic generation of system requirements documents. Therefore,

extending a traditional PLM framework through adoption of Systems Engineering

and Model-Based Systems Engineering methodologies multiplies its typical benefits.

13

Figure 1.12. Verification Process: from Document Based to Model Based

The introduction of Model-Based (MBSE) data structures opens the door for inte-

gration of a wide range of model-oriented tools, integrated by a common fabric. But,

merely using PLM information technology does not guarantee of MBSE model cov-

erage, unless managed. In this study we introduce the integration of Pattern-Based

System Engineering (PBSE) into a Product Lifecyle Management (PLM) platform.

Introduction of pattern-based data structures opens door for machine-assisted plat-

form and product line management. A common federated conceptual reference model

(S*Metamodel) further enables this vision.

14

1.3 Thesis Outline

Figure 1.13. Previous work: Research Approach

In our previous work the above research approach was used to build some of the

components of metamodel in the aim for integration of PBSE and PLM. A generic

model of S*Metamodel was created in Teamcenter. The mapping process provided

the General Production Pattern and oil filter specialization model with fundamental

capabilities. The approach defined above is to map the S*Metamodel in Teamcenter

using Business Modeler IDE and implementation is done by creating custom oriented

business objects in BMIDE and later using the generic model for specialization of

the use case, i.e.: Oil filter. This work included the mapping of specific only few

of the blocks of the Metamodel. [17] In the current work, S*Metamodel has been

fully implemented to configure a PLM platform (TEAMCENTER) which supports

automatic generation of reports and requirements tables using a generic Oil Filter

system lifecycle.

There are three tables that have been configured for automatic generation which

are Feature definitions table, Detail Requirements table and Stakeholder Feature At-

tributes table. These tables where specifically chosen as they describe all the require-

ments of the system and cover all the physical behaviours the oil filter system shall

15

Figure 1.14. Current Approach

exhibit during its physical interactions with external systems. The tables and the

diagram are core content for a typical systems engineering report. With the help of

the automatic report generation tool, it is possible to prepare the entire report within

one single system, the PLM system, to ensure a single reliable data source for an

organization. Automatic generation of these contents can save the systems engineers

time, avoid duplicated work and human errors in report preparation, and encourage

standardized documents in an organization This model is used to generate Auto-

matic System requirements documents and validate this integration by comparing

the generated documents with document created by a professional systems engineer.

16

2. METHODOLOGY AND IMPLEMENTATION

2.1 Pattern Based System Engineering

Pattern recognition and classification have a mathematical theory and engineering

practices. [18].Patterns in engineered systems were recognized in building architecture,

later inspiring software engineers, and more recently systems engineers. [19] [20] [21]

[22]. Patterns were traditionally represented by templates which then merged with

MBSE leading to Pattern based system engineering. [23] [22]

Figure 2.1. PBSE Pattern Pyramid

Pattern class hierarchy:

The pyramid consisting the meta-model represents a system or product by layers.

The pyramid start with inclusion of the entire model in the top layer described by

17

the meta-model which considers important features such as requirements and design

of all the product lines. The middle layer covers the configurations which are similar

enough to be connected to the same system and finally the bottom layer consists

of specific requirements and design models and therefore derived specifications are

followed to build the product lines or system. [24]

There are two important aspects of the pyramid which are represented on the

either sides:

Uncovering Patterns and Harvesting patterns represent the future of the systems

where the product can be recognized,developed from scratch and then can be brought

into the existing product lines or systems and thereby creating new market value and

increasing revenue.

The main advantage of patterns is that they are re-usable and reconfigurable

models. The reusability is possible because of reusable requirements for one true

family of products, and hence the products can be reconfigured accordingly. Reusable

requirements are some common needs across different applications, product lines or

subsystems. To create a perfect modelling framework parametrized requirements

statements are glued to overall requirements of the systems which inherently enables

Pattern-based System Engineering.

2.1.1 S*Metamodel

It provides an underlying framework that defies the semantic meaning of models

conforming to it. Pursued over a number of years and tests, the contempory system

models are often both semantically too big (redundant) and too small (missing im-

portant information), at the same time. [25]. This study utilizes the S* Metamodel,

a relational/object information model used in Systematica methodology to describe

requirements, designs, and other (verification, failure analysis, etc.) information.

This metamodel has been applied to systems engineering in mil/aero, transportation,

18

communication, medical and health care, consumer products, construction, manufac-

turing, and as a framework for educating new engineers. [26] [27] [23] [28] [22] [29].

Figure 2.2. S*Metamodel=Smallest Model Necessary for Purpose of
Science, Engineerig, Life Cycle Management

Each Block of the figure 2.2 is defined below and relationships as they

are connected with:

Stakeholder is an entity having a value stake in the behaviour or performance

of the system.

Feature shows the performance of a system that has stakeholder value, described

in the concepts and terminology of that stakeholder, and serving as the bases of selec-

tion of systems or system capabilities by or on behalf of the stakeholder. Features are

parameterized by Feature attributes, which have subjective stakeholder valuations.

Functional Interaction means the exchange of information between system com-

ponents, each of which plays a Functional Role in that interaction.

Functional Role means the behavioural description (and therefore a logical sys-

tem) of a part played by a system in a functional interactions relationship.

The state of a system determines what behaviour it will exhibit in future inter-

actions. The state of a system may be changes by those interactions.

19

Input/output is that information which is externally exchanged between inter-

acting systems.

Interface is the association of a system with a set of its Functional Interactions(s),

Input/output(s), Architectural Relationship(s), and System(s) of Access.

Design Component is a physical system that is within a subject systems physical

system containment hierarchy and to which is allocated functional roles.

Requirements Statements are the descriptions equivalent to the roles they

describe, and are measured by Requirements Attributes which are identical to the

related Role Attributes.

Matrix A couplings describe the quantitative value dependencies (parametric

couplings) between Stakeholder Feature Attributes and Functional Role Attributes,

quantifying fitness space or trade space.

Matrix B couplings describe the quantitative value dependencies (parametric

couplings) between Functional Role Attributes and Physical Design Component At-

tributes Logical System is a system identified solely by its externally viewable

behavior or responsibility.

System Interactions represents interactions between physical systems with views

from science.

It is important to indentify interactions while building a model, S*Metamodel is

built on the foundations of system interactions. [30]). Identifying these interactions

is not only done by modelling tools but tolerated by them. System Failures for

human engineered systems have purpose, analysis of failure modes and effects (FMEA,

FMECA, etc.) and other forms of risk analysis are central to systems engineering

and are likewise fundamental to the S*Space described by the S*Metamodel. [31].

Requirements are the most important aspect of a system engineer. Significant study is

done to covert these textual gestures to more easy to understand methodology such as

models. However, these text representations are the prose equations of the non-linear

extension of transfer functions [32], even if not recognized as such. Accordingly, the

20

related transfer function abstraction is fundamental to the S*Metamodels integration

of requirements.

Figure 2.3. S* Models which are Reusable

S*Patterns are S*Models (with all their parts) that have been constructed to

cover a system configuration space bigger than single system instances, and are suf-

ficiently parameterized and abstracted to be configurable to more specific S*Models,

and thereby reusable, as in Figure [23] [32] [27] [5]

The above figure illustrates the process by which patterns of requirements and

design for generic systems can then be configured or specialized into individual prod-

uct line families, and ultimately individual product systems. This approach has been

applied in a number of Commercial off the shelf (COTS) product line enterprises,

to enhance COTS portfolio engineering and planning. This approach also facilitates

the ongoing expression of organizational learning in the form of updates and refine-

ments to uncovered patterns. A particularly Striking benefit of this approach is that

it allows large organizational practitioners who are less skilled in clean sheet original

modelling to gain benefits of model-based engineering.

21

2.2 Teamcenter

It is a PLM solution initially developed by UGS Corporation, a company which

later became Siemens PLM Software which has made it the most widely used PLM

platform in the world.

Various modules in Teamcenter include:

Portfolio, program and project management: This module uses Microsoft

office to align with the PLM workspace thereby increasing productivity.

Compliance management: Mitigate risks of non-compliance by identifying

managerial activity.

Systems engineering and requirements management: This module is used

to alleviate new risk created while implementing a new product in the system.

Engineering process management: One single repository for design work-

force.

Bill of materials management: Deliver quality product and right time along

with product verification.

Content and document management: Improve productivity by leveraging

SGML/XML to rapidly publish multiple product variant documents.

There are many other modules which are not in the current cope of this study. We

use the systems engineering and requirements management module, Bill of materials

management module and the content and document management modules in this

study. S* Metamodel has been implemented in the systems engineering and require-

ments management module. Content and document management module is used to

organize data and then integration with MS word allows us to create requirements

document.

2.2.1 System Engineering (SE) and Product Lifecycle Management (PLM)

The common factor between SE and PLM is Product (or System).SE is focused

on the specification of the system (architecture) and its performance against the

22

stakeholders requirements. On the other hand, PLM handles the integrated and

coordinated development, maintenance and use of all product (or system) data and

relevant engineering information throughout the entire product lifecycle.

The idea is to enable Systems Engineering with the information and process man-

agement capabilities of PLM solutions. This idea when implemented will be a holistic

approach to develop, deliver and support optimum product solutions. At its core, it

defines and associates requirements to functions, functions to logical representations,

and logical representations to physical designsproviding an architectural framework

for the downstream physical implementation of all the systems associated with the

product, including manufacturing, support, and ultimately recycling.

2.2.2 Teamcenter as a System Engineering Driven PLM Tool

This module helps system engineers to make better decisions by providing contin-

uous feedback and all the while realizing the criticality of the risk involved.

Extended application and systems integration: This feature defines the in-

terconnectivity Teamcenter provides by liking different softwares with live integration

into PLM workspace.

Requirements traceability: System Engineers are always looking to integrate

requirements to lower-levels to provide enough understanding on why a requirement is

determined and how it is inclined to higher level stakeholder needs. System Engineers

can use this feature in Teamcenter for traceability to track and manage requirements.

Requirements management: This feature in Teamcenter is used to implement

all the stakeholders needs and identify requirements. Requirements here can be man-

aged, extracted and linked for extensive use.

There are many other features of Teamcenter but are out of scope for this study.

Above mentioned are the main functionalities used extensively in this study.

Current Teamcenter SE Functionality include:

• To Develop and manage requirement structures

23

• To Develop functional model structure using structure manager

• To Create and maintain logical model structures

• To Relate requirements and structure components with trace links

• To Create and maintain physical model structures

• To Manage changes, change requests, performing impact analysis

• To Perform simulation and model the behavior of model components

Teamcenter modules involved with SE include System Engineering, Requirements

Manager, Structure Manager, Multi-Structure Manager, Change Manager, Manufac-

turing Process Planner, and Workflow Manager. Teamcenter Systems Engineering

represents a highly integrated PLM-enabled solution. CIMdatas research and experi-

ence indicate that the potential payoffs for companies that utilize such an integrated

approach can be significant. This integration helps in reducing hidden risks, in the

absence of sound enterprise information asset strategies, information and valuable

insights can be lost which has a direct impact imposing huge costs on future products

because of poor decision making, repeated mistakes and lessons learned that are not

passed on.

2.2.3 BMIDE(Business Modler Integrated Developing Environment)

The Business Modeler IDE (Integrated Development Environment) is a tool for

configuring and extending the data model of your Teamcenter installation. The data

model objects define the objects and rules used in Teamcenter. BMIDE is used to

1. Create new data model elements

2. Perform C++ customizations

3. Migrate data using the mapping designer

Business objects are the fundamental objects used to model business data. Busi-

ness objects were formerly known as types in Engineering Process Management. One

24

of the most important jobs you perform in the Business Modeler IDE is to create busi-

ness objects to represent different kinds of parts, documents, change processes, and

so on. The Business Modeler IDE is a tool for adding your own data model objects

on top of the default Teamcenter data model objects. The Business Modeler IDE

accomplishes this by separating your data model into its own set of files that are kept

apart from the standard data model, known as the COTS (commercial off-the-shelf)

data model.

There are several ways to do customization some of the important are:

Data-model-based customization Allows Addition of custom C++ operations

to business objects, and the overriding of existing operations on business objects.

Teamcenter Services customization Allows custom service-oriented architec-

ture (SOA) service operations and the low level data model objects. These are less

granular services that improve the performance of client communication in a Wide-

Area-Network (WAN) environment.

Extensions customizations Allows you to write a custom function or method

for Teamcenter in C or C++ and attach the rules to predefined hook points in Team-

center (preconditions, pre-actions, and post-actions). Also, existing operations can

be extended to these hook points.

Few of the various capabilities of BMIDE are:

1. The BMIDE manages all extensions through a template.

2. Business Analysts create an Extension Environment Project in the BMIDE that

manages a customer template.

3. As Types, Classes, Attributes, LOVs, etc are created in the BMIDE that are

automatically placed into the template.

4. The template becomes the mechanism for deploying custom extensions to any

Teamcenter environment.

25

5. Customers desiring to tailor Teamcenter business behaviour can start with a

new clean template.

2.2.4 Methodology to Create Business Objects

Business objects are fundamental objects used to model business data. Business

objects are created to represent product parts, documents, change process, and so on.

Figure 2.4. How to Create Business Objects in BMIDE

The above figure depicts the user interface on BMIDE and shows the steps involved

in creating a business object. It is very important to select a parent object and it

subsequently created a business class which later can be customised with properties,

List of Values (LOVs) etc.

Implementation to Create Custom Oriented Business Objects:

We received mapping document from our stakeholders (ICTT system Sciences).

This document describes the various classes describing all the blocks of the S*Metamodel.

26

Figure 2.5. Detailed Class Type for S*Metamodel for Input in BMIDE
(credit:ICTT System Sciences)

Figure 2.6. List of all Classes Created in BMIDE for the S*METAMODEL

The figure 3.6 clearly represents all metaclasses that represent the S*Metamodel

created in BMIDE. The figure also distinguishes the Main Base Class, Sub-base Clas,

Super Class, Sub super class and Specialized Item type.

27

2.2.5 Methodology to Assign Properties to Business Objects

Figure 2.7. How to Create Properties in BMIDE

To add properties in we first select the business object and then add custom prop-

erties from property types such as persistent, Runtime, Compound and relation. The

figure uses persistent property as an example where attribute types can be Character

(Such as A, B, Z), Date (Calendar Date), Double (floating point decimal number),

Integer (1 to 999999999), String (string of characters), Typed Reference (points to

a Teamcenter class), Untyped Reference (points to any class of data), External Ref-

erence (points to data outside of Teamcenter), and Long String (String of unlimited

length).

28

Implementation to Create Custom Properties to Business Objects

By following the above methodology and the required input from 2.8 is used to

assign custom properties to business objects.

Figure 2.8. Detailed List of Custom Properties for Input in BMIDE

29

Figure 2.9. All Properties Defined for Custom Oriented Functionality

2.2.6 Methodology to Add Lists of Values (LOVs)

The LOV folder in the Extensions folder is used for working with lists of values

(LOVs). LOVs are pick lists of data entry items.

There are three main types of lists of values:

1. Batch: Store LOV values in Teamcenter database rather than storing them in

template.

2. Classic: Store the LOV values in the template.

3. Dynamic: Read the LOV values dynamically by querying the database.

After creating, it is important to attach the LOV to a property on a business

object. We use Classic LOV in this study because Classic lists of values (LOVs store

the LOV values in the template.

30

Figure 2.10. Method to Add Classic LOV to Custom Template

Implementation to Add Custom List of Values (LOVs)

The Figure 2.11 shows the information received from stakeholders in regards to

the custom abilities of the model.

Figure 2.11. Detailed Representation of the Custom LOV for Respective Classes

31

2.2.7 Methodology for Automatic Generation of Reports

To generate the reports automatically from Teamcenter the first step involved is

to create an Excel template specific to the requirement.

Figure 2.12. Method to Create an Excel Template

Figure 2.13. Figure Shows How to Customize a Excel Template

32

The above displays a window where the excel template can be customized ac-

cording to the requirement. The next step is to build a series of Items and provide

required description and custom properties. After you build a series of Items then

you can either select all or send-to structure manager where we can further customize

the product structure and add/remove content to display. Structure Manager is an

application in Teamcenter that enables creation of generic product structures that

can be configured to show the product structure that is in production, effective on a

certain date, used by a particular customer, and so forth. Structure Manager enables

creation and modification of a product structure and its associated occurrence data,

display of a product structure in a multilevel indented format, and viewing graphics

tightly coupled to the structure for easy identification of a component by location in

the structure or in the embedded viewer. Structure manager displays your product

structure in a multilevel indented list format, making it easy to browse. This list

is similar to the bill of materials (BOM) that engineering organizations use to list

manufacturing information.

Figure 2.14. Structure Manager User Interface

33

1. Structure navigation tree: Allows you to navigate the product structure,

expanding or collapsing nodes to view the appropriate data. The images in the

tree indicate the purpose of each node.

2. Data panes: Allow you to view data about the selected line. To display a

different data pane, click its tab.

3. Search area: Allows you to search for a structure and configure it with com-

monly used data.

4. Incremental change management area: Shows the current incremental

change (if one is applied) and allows you to manage the incremental change

data.

5. Status symbols: show the current status of the selected line.

The final step is to export files to excel to generate required reports.

The dialog box 2.15 gives you varied options to display output in excel.

1. Static snapshot: Generates a standard Microsoft Excel document that does not

have Teamcenter live Excel capability.

2. Live integration with Excel (Interactive): Generates an Excel document with

Teamcenter live excel capability, which means this integration is interactive

therefore changes made in excel shall reflect in Teamcenter and vice versa.

3. Live integration with Excel (Bulk Mode): Generates Excel file that is not con-

nected with Teamcenter but you can accumulate changes and later connect the

file.

4. Work Offline and Import: To export the data to excel file that also contains

import processing information on a separate sheet.

34

Figure 2.15. Export to Excel

Implementation to create custom reports:

Table 1: [Features Definitions Table] Stakeholder Features are formal statements

of stakeholder requirements in the language and concepts of those stakeholders. As

such, they are not necessarily objective or technically quantified in all cases, but

nevertheless describe what must be accomplished in the minds of those for whom it

must be accomplished. To generate this table an excel template was created as shown

in the figure below

35

Figure 2.16. Create an Custom Excel Template

Figure 2.17. Define Custom Properties in Excel

36

Figure 2.18. Create Custom Items and Enter Relevant Feature Name

Figure 2.19. Fill Relevant Description

37

Repeat the above procedure for all custom items. The Figure 2.20 represents all

the features created in Teamcenter in regards to the custom properties defined by the

stakeholder.

Figure 2.20. List of all Feature Items

38

Figure 2.21. Create a New Folder for Export

Figure 2.22. Feature Table Export to Excel

39

Figure 2.23. Export all Objects in View and Choose Custom Template

Figure 2.24. Export All Objects in View and Choose Custom Template

40

Table 2: [Stakeholder Feature Attributes] System Features and their Feature

Attributes ultimately define the trade space in which all system design trade-offs, op-

timization’s, and other decisions, comparisons, or fitness judgments are expressed and

evaluated. Feature values are further specified or quantified by Feature Attributes,

which are described in the terminology and concepts relevant to Stakeholders. These

are therefore not always technical or objective in nature. This table requires to create

folders which contain Feature, Feature Attribute and Temporary Assembly.

Figure 2.25. Create Folders and Feature Attributes

41

As all the features were already created it is easy to just copy and paste in the de-

sired folder. The above figure shows the steps involved in creating feature attributes.

Figure 2.26. Steps to Configure Feature Attributes

42

This figure shows an example of a feature attribute (Product configuration) the

related description needed and the options of properties if needed to fill according

to the requirement. Repeat the above procedure for all the feature attribute item

revisions.

Figure 2.27. List of All Features and Feature Attributes

43

Now after the list is prepared we start arranging the features and feature attributes

in structure manager.

Figure 2.28. Group Feature and Feature Attributes in Structure

44

The above figure shows the steps involved in grouping the feature and feature

attributes. Repeat these steps for the rest of the features and feature attributes.

Create an item and paste all the features then send to structure manager.

Figure 2.29. Final Assembly in Structure Assembly

45

Figure 2.30. Export to Excel, Use Export All Visible columns

46

Once the columns and the order of the items are set the assembly is ready to

export.

Figure 2.31. Final Assembly for Table 2

47

Table 3: [Detail Requirements] The requirements Statements for the Oil filter

System describe the physical behaviours it must exhibit during its physical interac-

tions with external systems.

To create this table first a default template is created along with folders contain-

ing Logical Systems block (contains all other systems), Interactions, Requirement

Statement and Final Assembly.

Figure 2.32. Create Custom Folders, Items for Logical Systems and
Functional Interactions

48

Figure 2.33. Configure Requirement Statements

49

Figure 2.34. List of All Items Created for Logical System, Interaction
and Specific Required Statements

50

Figure 2.35. Final Assembly of Table 3 in Structure Manager

Figure 2.36. Export to Excel Table 3

51

Figure 2.37. Final Assembly Generated for Table 3

52

3. SUMMARY OF RESULTS AND VALIDATION

3.1 Summary of Results

In this study we have successfully implemented the S*Metamodel in Teamcenter

and extracted the system requirements from the model.

Figure 3.1. Extraction of Requirements

The above figure 3.1 clearly suggests that once the S*Metamodel is implemented,

list of requirements can be generated from the model. Therefore to prove our integra-

tion we have extracted these tables. There are three tables that have been configured

for automatic generation which are Feature definitions table, Detail Requirements ta-

ble and Stakeholder Feature Attributes table. These tables where specifically chosen

as they describe all the requirements of the system and cover all physical behaviour’s

the oil filter system shall exhibit during its physical interactions with external sys-

tems. The requirement tables represent core content for a typical systems engineering

53

report. With the help of the automatic report generation tool, it is possible to pre-

pare the entire report within one single system, the PLM system, to ensure a single

reliable data source for an organization.

54

Figure 3.2. Feature Definitions Table

55

Figure 3.3. Stakeholders Requirement Table

56

There are three tables that have been configured for automatic generation which

majorly cover the requirements of the Oil Filter System.

Figure 3.4. Detail Requirements Table

57

3.2 Validation

We received a systems requirements document created by a professional systems

engineers to define system high level requirements for the Global Oil Filter Product

Line system family. The document communicates authoritative generic model within

which specific product configurations are defined. (Credits: - ICTT system sciences)

In this study we choose to generate 3 of the main requirement tables to generate

from our integration and then later compare to validate our integration. We vali-

date our results and validate by checking the amount of information generated from

Teamcenter is accurate or not.

Figure 3.5. Comparison of Features Definitions Table,(Orange rep-
resents Document Generated from Integration and Blue represents
Document Created by Professional System Engineer)

58

Figure 3.6. Comparison of Stakeholders Requirement Table,(Orange
represents Document Generated from Integration and Blue represents
Document Created by Professional System Engineer)

59

Figure 3.7. Comparison of Detail Requirements Table,(Orange rep-
resents Document Generated from Integration and Blue represents
Document Created by Professional System Engineer)

60

Figures 3.5 3.6 3.7 show that:

1. The automatic generated tables can provide the same amount of information

as the manually created tables. With the proper organization of data, the same

numbers of items and their correct properties were extracted automatically from the

model implemented in the PLM platform.

2. The automatic generated tables can have very similar format and structure as

the manually created tables by configuring the table templates.

These observations proved that the current implementation approach built a

model inside the PLM platform that is an accurate representation of the original

MBSE model. The implementation is validated.

61

4. CONCLUSIONS

The processes developed for implementing an MBSE model into a PLM platform

and automatic generating requirement tables have proven to be a valid and effec-

tive approach based on the findings of this project. The findings from the current

implementation are listed below.

1. The general manufacturing model can be configured for a particular product or

product line through Specialization.

2. The requirement tables can be generated automatically with proper organiza-

tion of the data and configuration of the table templates.

3. The implementation in this project can provide the same amount of information

through requirement tables as the current systems engineers manual reporting

processes.

The approach from this research project set a solid starting point for a long term

efforts of integrating MBSE with PLM and leading the industries to eventually reach

the goal of implementing SDPD in their product life cycle.

62

5. FUTURE WORK

Several critical future research issues can be addressed based on the work of this

project.

1. The current implementation is a manual implementation, i.e. all the classes,

properties and items were created by the researchers. It worked for the current

research project, since the goal was to identify the best implementation ap-

proach. However, automatic implementation needs to be considered for future

industry implementation.

2. The current implementation is build based on the System Engineering module

in Siemens Teamcenter. It is a platform specific implementation. A platform

independent implementation approach and data model will have much larger

impact to this research area and worth more time and efforts in the future. The

results from this project built a solid foundation for the future implementation

and also provide the research team a great opportunity to have a deeper and

more accurate understanding of the problem.

3. The S* model was chosen for this project, so the current implementation is a

model specific implementation. Higher level guidelines for model and platform

independent implementation approaches should be developed in the future. The

research team will look deeper into the fundamental nature of the MBSE models

and the implementation approaches to establish general processes, data models

and implementation guidelines that can benefit both industry and academia no

matter which PLM platform and MBSE model are under consideration.

REFERENCES

63

REFERENCES

[1] A. Lehtihet, D. Wilson, and G. Susman, “Future of manufacturing in the us,”
2014.

[2] M. Ettlinger and K. Gordon, “The importance and promise of american manu-
facturing,” Washington: Center for American Progress, 2011.

[3] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east,” IDC iView: IDC Analyze the
future, vol. 2007, no. 2012, pp. 1–16, 2012.

[4] B. Sniderman, M. Mahto, and M. J. Cotteleer, “Industry 4.0 and manufacturing
ecosystems: Exploring the world of connected enterprises,” Deloitte Consulting,
2016.

[5] W. Schindel and T. Peterson, “Introduction to pattern-based systems engineer-
ing (pbse): Leveraging mbse techniques,” in INCOSE International Symposium,
vol. 23, no. 1. Wiley Online Library, 2013, pp. 1639–1639.

[6] F. NDIA, “Final report of the model based engineering subcommittee of the
national defense industrial association (ndia),” 2011.

[7] W. D. Schindel, “System life cycle trajectories: Tracking innovation paths using
system dna,” in INCOSE International Symposium, vol. 25, no. 1. Wiley Online
Library, 2015, pp. 648–663.

[8] S. Friedenthal, R. Griego, and M. Sampson, “Incose model based systems engi-
neering (mbse) initiative,” in INCOSE 2007 Symposium, 2007.

[9] W. Royce, “The software lifecycle model (waterfall model),” in Proc. WEST-
CON, 1970.

[10] B. Boehm, “Software risk management,” ESEC’89, pp. 1–19, 1989.

[11] K. Forsberg and H. Mooz, “The relationship of systems engineering to the project
cycle,” Engineering Management Journal, vol. 4, no. 3, pp. 36–43, 1992.

[12] S. J. Mellor, M. Balcer, and I. Foreword By-Jacoboson, Executable UML: A
foundation for model-driven architectures. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[13] M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. Scott, and M. Wilson, “4.3. 1
satellites to supply chains, energy to financeslim for model-based systems engi-
neering,” in INCOSE international Symposium, vol. 21, no. 1. Wiley Online
Library, 2011, pp. 368–394.

64

[14] C. Tommasi and E. Vacca, “How model-based se makes product/system lifecycle
management framework more effective.” in CIISE, 2014, pp. 82–92.

[15] J. Hummell and M. Hause, “Model-based product line engineering-enabling prod-
uct families with variants,” in Aerospace Conference, 2015 IEEE. IEEE, 2015,
pp. 1–8.

[16] C. Paredis, “System analysis using sysml parametrics: Current tools and best
practices,” Presentation Slides, 2011.

[17] S. Li, H. El-Mounayri, W. Zhang, B. Schindel, and J. Sherey, “Implementation
of systems engineering model into product lifecycle management platform,” in
IFIP International Conference on Product Lifecycle Management. Springer,
2015, pp. 601–608.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley &
Sons, 2012.

[19] C. Alexander, A pattern language: towns, buildings, construction. Oxford Uni-
versity Press, 1977.

[20] W. D. Schindel, “1.4. 2 what is the smallest model of a system?” in INCOSE
International Symposium, vol. 21, no. 1. Wiley Online Library, 2011, pp. 99–113.

[21] R. J. Cloutier and D. Verma, “Applying the concept of patterns to systems
architecture,” Systems engineering, vol. 10, no. 2, pp. 138–154, 2007.

[22] W. Schindel, “Pattern-based systems engineering: An extension of model-based
se,” INCOSE IS2005 Tutorial TIES, vol. 4, 2005.

[23] W. D. Schindel and V. R. Smith, “Results of applying a families-of-systems
approach to systems engineering of product line families,” SAE Technical Paper,
Tech. Rep., 2002.

[24] J. J. Sherey, “5.2. 3 capitalizing on systems engineering,” in INCOSE Interna-
tional Symposium, vol. 16, no. 1. Wiley Online Library, 2006, pp. 762–774.

[25] W. D. Schindel, “Systems engineering for advanced manufacturing: Unit op
insights from model-based methods,” in INCOSE International Symposium,
vol. 21, no. 1. Wiley Online Library, 2011, pp. 3295–3309.

[26] R. Gunyon and W. Schindel, “Engineering global pharmaceutical manufacturing
systems in the new environment,” in Proceedings of the INCOSE 2010 Sympo-
sium, 2010.

[27] J. L. Bradley, M. T. Hughes, and W. D. Schindel, “Optimizing delivery of global
pharmaceutical packaging solutions, using systems engineering patterns,” in IN-
COSE International Symposium, vol. 20, no. 1. Wiley Online Library, 2010, pp.
2454–2460.

[28] C. E. Siemieniuch and M. A. Sinclair, “Extending systems ergonomics think-
ing to accommodate the socio-technical issues of systems of systems,” Applied
ergonomics, vol. 45, no. 1, pp. 85–98, 2014.

65

[29] J. Hanson, S. Peffers, W. Schindel, J. Ahmed, and W. Kline, “All innovation
is innovation of systems: An integrated 3-d model of innovation competencies,”
2011.

[30] W. D. Schindel, “Maps or itineraries? a systems engineering insight from ancient
navigators,” in INCOSE International Symposium, vol. 25, no. 1. Wiley Online
Library, 2015, pp. 1388–1402.

[31] W. Schindel, “Failure analysis: Insights from model-based systems engineering,”
in INCOSE International Symposium, vol. 20, no. 1. Wiley Online Library,
2010, pp. 1227–1239.

[32] W. S, “Requirements statements are transfer functions: An insight from model-
based systems engineering,” in Proceedings of INCOSE 2005 International Sym-
posium, 2005.

