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ABSTRACT 

Penumaka, Rani Vijaya. M.S.M.E., Purdue University, May 2015. Synthesis of Lithium 
Manganese Phosphate by Controlled Sol-Gel Method and Design of All Solid State 
Lithium Ion Batteries. Major Professor: Likun Zhu. 
 
 
 

Due to the drastic increase in the cost of fossil fuels and other environmental issues, 

the demand for energy and its storage has risen globally. Rather than being dependent on 

intermittent energy sources like wind and solar energy, focus has been on alternative 

energy sources. To eliminate the need for fossil fuels, advances are being made to provide 

energy for hybrid electric vehicles (HEV), plug-in hybrid vehicles (PHEV) and pure 

electric vehicles (EV) thus providing scope for much greener environment. Hence, focus 

has been on development in lithium ion batteries to provide with materials that have high 

energy density and voltage. 

 

Ortho olivine lithium transitional metals are known to be abundant and inexpensive; 

these compounds are less noxious than other cathode materials. Advancement in research 

is being done in finding iron and manganese compounds as cathode materials for advanced 

technologies. However, Lithium manganese phosphates are known to suffer with poor 

electrochemical performances due the manganese dissolution in the organic liquid 

electrolyte due to Jahn-Teller Lattice distortion. This problem was tried to endorse in this 

thesis. In the second chapter by synthesizing nano sized cathode particles with good 

electronic conductivity, good performance was achieved. 



x 
 

In the third chapter additive olivine cathode was synthesized my modified sol gel 

process. A wt. % of TMSP was added as an additive in the organic liquid electrolyte. By 

comparing the properties between the two kinds of electrolytes it was observed that by the 

addition of the additive in the organic electrolyte good electrochemical properties could be 

achieved hindering the Mn dissolution in the electrolyte. 

 

In the final chapter, a composite solid electrolyte was fabricated by using NASICON-

type glass ceramic of Lithium aluminum titanium phosphate (LATP) with organic binder 

of Polyethylene oxide. The flexible solid electrolyte exhibited good ionic conductivity. An 

all solid state cell was fabricated using the composite solid electrolyte using LiMn2O4 as 

the symmetric electrodes. At different pressures, the performance of the solid state cell was 

studied. 
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1 INTRODUCTION 

1.1 Overview of Lithium Ion Batteries 

Due to the drastic increase in the cost of fossil fuels and other environmental issues, 

the demand for energy and its storage has risen globally. To eliminate the need for fossil 

fuels, advances are being made to provide energy storage systems for hybrid electric 

vehicles (HEV), plug-in hybrid vehicles (PHEV) and pure electric vehicles (EV) thus 

providing scope for much greener environment. 

 

Currently a lot of effort is put on achieving high energy density batteries, which are 

dependent on the basic cell chemistry, that are reflected by the cell’s potential and capacity. 

The cost and safety are also very important for EV applications. With intrinsic properties 

like high energy density, high efficiency, superior rate capability, and long cycling life, 

lithium ion battery (LIB) stands as a forerunner and market leader in the application of 

portable electronics. Since their commercialization in 1991, the size ranged from few 

microns to a large-scale battery that is capable of providing energy for portable electronics 

and EVs. 

 

The energy density per unit volume (Wh/1) and per unit weight (Wh/kg) of various 

secondary batteries are shown above. As seen from the Figure 1.1, nickel metal hydride 

and LIBs have higher volume energy density, but LIB has 1.5 times more energy density 

when compared to nickel hydride batteries. The nominal voltage of LIBs is higher when 

compared to the rest of the batteries.  
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Figure 1.1  Energy density of secondary batteries [1] 

 

 

1.1.1 Concept of Batteries 

A device that converts chemical energy stored in the active materials to electrical 

energy through a redox (oxidation-reduction) reaction is referred as “battery”. One 

electrode gives up the electrons and gets oxidized, while the other accepts the electrons and 

gets reduced. Electrolyte, typically an ionic conductor, acts as a medium for transfer of 

charge. Batteries are capable of delivering higher efficiency as they are not limited by 

Carnot efficiency.  

 

 

1.1.2 Operation of a Battery 

 

 

1.1.2.1 Discharge 

When an external load is applied, anode gets oxidized and electrons flow to the 

cathode where they are accepted and due to which cathode gets reduced. To counter the 

flow of electrons, ions (cations and anions) flow through the electrolyte to the anode and 

cathode as shown in Figure 1.2. 
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Figure 1.2  Charge/discharge schematic of Li ion battery 

 

 

1.1.2.2 Charge 

  During this process, the flow of current is reversed as shown in Figure 1.2. At the 

cathode, oxidation takes place and reduction takes place at the anode electrode. 

 

 

1.1.3 Free Energy 

During the conversion of the chemical energy to electrical energy, the maximum 

energy that can be delivered by the battery depends on the change in free energy ΔG of the 

electrochemical couple. Hence the change in free energy is, 

 

ΔG = -nFE˚ 

 

Where F = Faraday’s constant (~96,500 C) 

n = Number of electrons involved in the reaction 

E˚ = Standard potential 
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1.1.4 Standard Potential 

The theoretical voltage of the cell is determined by the reactants of the cell. It can 

be calculated from the standard electric potentials of the reacting species. 

 

Anode (Oxidation Potential) + Cathode (Reduction Potential) = Standard Cell Potential. 

 

Not all theoretically stored energy is converted to electrical energy because of the losses 

due to polarization occurring when a load current passes through the electrodes. These 

losses occur due to 

(1) Activation Polarization  

(2) Concentration Polarization 

(3) Ohmic Polarization 

Thus, the cell voltage E can be calculated as 

 

E = E˚ – [(ŋct)a + (ŋc)a] – [(ŋct)c +  (ŋc)c] – iRi = iR 

 

Where E˚= Open circuit voltage 

(ŋct)a, (ŋct)c = Activation Polarization 

(ŋc)a, (ŋc)a = Concentration Polarization 

 i = Load Current 

 Ri = Internal resistance of cell 

 

 

1.1.5 Capacity 

Capacity depends on the amount of the active materials in the cell. It is defined as 

the total quantity of charges involved in the electrochemical reaction and its unit is 

coulombs or ampere-hours.  

 

 



5 
 

1.2 Working Principle of Lithium Ion Batteries 

These batteries are designed in accordance with the reversible capacity of the carbon 

materials used as anode, and any metal oxide material as cathode in electrolyte wherein 

lithium does not exist in metallic state during either charge or discharge process hence are 

termed as “lithium ion batteries”. 

 

Lithium ion batteries employ lithium intercalation compounds as the cathode and 

anode materials. Lithium ion rechargeable battery is often referred as rocking chair or 

swing battery, as Lithium ions move in a two-way motion between cathode and anode for 

charge/discharge phenomenon. In this type, instead of using Lithium metal, an intercalated 

lithium compound is used as an electrode material. The cathode material is typically a metal 

oxide such as LiCoO2 or LiMn2O4 on a current collector such as Aluminum. The anode 

electrode is typically a graphitic carbon on a copper current collector. During the charge 

and discharge processes, the lithium ions get inserted and extracted between the interstitial 

space lying in the atomic layers of the cathode and anode materials. 

 

 

1.2.1 Design Criteria 

In a Lithium ion battery, the open circuit potential (VOC) is given by the difference 

of the chemical potential of the cathode (µc) and the anode (µa), given by, 

 

VOC = (µc - µa)/F 

 

Where, F = Faraday constant (96485 C/mol) 

 

The energy involved in the electron and lithium ion transfer determines the cell 

potential. In turn, the redox potential of the ion present in the cathode and anode determines 

the energy involved in electron transfer. While the coordination geometry and crystal 

structure of the active materials involved determines the energy involved in lithium transfer 

[2]. Thermodynamics requires that the redox energies of the cathode (µc) and anode (µa) 
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lie in the stability window of the electrolyte, as shown in the Figure 1.3. The stability 

window of the electrolyte depends on the energy gap (Eg) that is the difference between the 

lower unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital 

(HUMO) of the electrolyte. 

 

Hence, for the design of a battery, the anode should have its µa below the LUMO 

and the cathode should have its µc above HUMO of the electrolyte. Sometimes, a suitable 

solid electrolyte interface (SEI) is formed to prevent reduction/oxidation between the active 

materials and electrolyte. Thus, the cell voltage limitations according the electrochemical 

stability window requires, 

 

VOC = (µC - µA)/F � Eg 

 

 

 

Figure 1.3  Stability window of the electrolyte 
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1.2.2 Positive Electrode Material 

The major requirements of cathode materials are  

• Should reversibly incorporate lithium without structural changes 

• Incorporate large amounts of Lithium 

• Good free energy of reaction with lithium 

• High Lithium ion diffusivity 

• Good electronic conductivity 

• Non soluble in electrolyte 

• Ease of synthesis 

• Cheap 

 

Mostly all the cathodes currently are intercalated materials, typically lithium 

transition metal dichalcogenides. These materials contain insertion sites that are occupied 

by lithium ions. During this process, the transition metal ion reduces by accepting an 

electron. 

 

By demonstrating electrochemical activity in layered LiTiS2 in the 1970s, 

Whittingham[3] was the first to introduce commercial intercalation cathode. Later in 

1980s, layered LiCoO2 that currently dominates in today’s technology was discovered be 

Mizushima et al [4] 

 

The conventional cathodes are typically layered compounds LiMO2 (M = 

Co,Ni,Mn, etc.), spinel compounds LiM2O4 (M = Mn, Fe, etc.), and olivine compounds 

LiMPO4 (M = Fe, Co, Mn, etc.). 

 

Table 1 gives some cathode materials of rechargeable batteries and their properties 

[5] 
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Table 1.1  Cathode materials and their properties [5] 

 

  

 

 

1.2.3 Negative Electrode Material 

Early 1980s and 1970s focuses were on using Lithium metal as anode, but due to 

safety issues lithium intercalation into carbon as the negative electrode are used instead. 

Unlike lithium metal that changes its surface morphology during cycling, carbon electrodes 

offer better stability. 

 

The structure, precipitation temperature of carbon is highly significant on its 

electrochemical properties, even on the lithium intercalation capacity and potential [6]. 

Among all types of carbon, graphite has optimal properties and hence is widely used in 

commercial LIBs. The theoretical specific capacity of carbon (LiC6) is 372 mAh/g [7]. 

 

 

1.2.4 Electrolyte 

Electrolyte is a medium that provides transfer of ions between the cathode and 

anode. Together with high ionic conductivity, they should be compatible with electrodes. 
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Electrolytes are basically characterized into four types: liquid electrolytes, gel electrolytes, 

polymer electrolytes and ceramic electrolytes. 

 

Liquid electrolytes contain lithium salt in organic solvents, typically carbonates. A 

polymer electrolyte is formed by adding a salt in a high molecular weight polymer, where 

an ion conducting phase is formed. A gel electrolyte contains both salt and solvent are 

dissolved in a high molecular weight polymer. The ceramic electrolytes are inorganic, 

solid-state materials that are ion conductive. 

 

The popular lithium salts are LiPF6, LiBF4, and LiAsF6. LiPF6 is widely used among 

them as it offers high conductivity (>10-3 S/cm), high lithium transference number (~0.35) 

and acceptable safety [8]. Electrolytes are mostly formulated using carbonates such as 

ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), as they 

are aprotic, polar and  able to dissolve Lithium ions to high concentration.[9] Typically 

multiple solvents are used as they provide better performance, high conductivity and broad 

temperature range. 

  

Special focus will be given in the later sections about the solid state electrolytes 

used in lithium ion batteries. 

 

 

1.2.5 Separator 

Separator is a porous film between the two electrodes to prevent short circuit. The 

separator itself does not take part in any reaction inside the lithium ion battery but allows 

only ionic transport preventing electron transport. It should be chemically and 

mechanically stable along with good porosity to absorb the liquid electrolyte inside the 

lithium ion battery. However, the separator should be as thin as possible to avoid any space 

wastage, thereby increasing the battery energy density. Most common separators for 

secondary batteries are polyethylene (PE) and polypropylene (PP). The separators also 
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prevent the cell from overheating. However, they cannot function above their melting 

point. Melting point of PP is 170˚C [10, 11] 

 

 

1.2.6 Current Collector 

The current collectors used for electrodes in LIB also affect the anodic stability of 

the electrolyte solutions. Most of the common metals in the potential range up to 5V vs Li 

dissolve in aprotic electrolyte solutions.  Inert metals as Pt, Au cannot be considered due 

to their cost. For current LIBs, Cu is used as anode current collector and Al is used as 

cathode current collector [12]. 

 

 

1.3 Olivine Type Lithium Transition Metal Phosphates as Cathode 

 

 

1.3.1 Overview 
Advancement in research is being done in finding iron and manganese compounds 

as cathode materials. These compounds are abundant, inexpensive, and less noxious than 

other cathode materials. The significant work was done by Padhi et al [13] in 1997, with 

the discovery of the cathode materials belonging to this system. It has displayed a high 

potential for the Fe2+/Fe3+ redox couple (3.5V) vs Li with a high theoretical capacity of 

170mAh/g, since the compound is mineral triphylite it is considered as environment 

friendly. 

 

To raise the potential of LiFePO4, Fe is replaced by Co or Mn to form LiCoPO4 

4.8V [14, 15, 16] and LiMnPO4 4.1V [17, 18] respectively. The performance of LiCoPO4 

is poor, because of the poor stability of the delithiated cobalt phase (CoPO4) [19]. 

Hence, the focus was shifted towards LiMnPO4, though it suffers from very low 

electronic conductivity. It offers various advantages such as a flat voltage discharge profile 

at 4.1V vs Li/Li+ [20, 21], low cost, as well as safety features [22, 23]. More importantly 
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when compared to other polyanion type systems the electrochemical window of this 

compound falls in the stability window of conventional electrolytes [24]. Different 

approaches are studied since then to improve the performance of LiMnPO4. 

 

 

1.3.2 Electronic Structure: 

For understanding the electronic structure of LiMnPO4, the Total Density of States 

(DOS) is shown in the Figure 1.4. The localized 3d states of Mn are the narrow bands in 

the vicinity of Fermi level [25]. 

  

 

Figure 1.4  Electronic structure of LiMnPO4 [26] 

 

 

The DOS clearly confirms through the high spin configuration that LiMnPO4 is an 

insulator with ca. 2eV [26] spin exchange band gap, which explains for the low 

electrochemical activity of LiMnPO4. From the studies on several first principles electronic 

structure [27-30] of LiMnPO4 the basic reason for high electrochemical potential of 

LiMnPO4 can be attributed. 
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1.3.3 Crystal Structure 

The crystal structure of LiMnPO4 is made up of distorted MnO6 octahedra. The 

MnO6 octahedra corners are shared among themselves to form MnO4 layers parallel to the 

bc-plane (Figure 1.5)[31]. All the MnO4 layers are stacked in the a-direction such that the 

P atoms are at the tetrahedral sites in between the MnO4 layers to form PO4 units, while 

the octahedra sites are occupied by Li atoms as shown in (Figure 1.6)[31]. Layers of MnO6 

octahedra are corner-shared in the bc plane and linear chains of LiO6 octahedra are edge-

shared in a direction parallel to the b-axis. The chains are bridged by edge and corner shared 

phosphate tetrahedral sites, creating a stable 3D structure. LiMnPO4 crystallizes in space 

group Pnma.[32] 

 

 

 

Figure 1.5  Representation of LiMnPO4 along the b-axis [31] 
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Figure 1.6  Representation of LiMnPO4 along the c-axis [31] 

 

 

1.3.4 Overview of LiMnPO4 Synthesis Routes 

Researchers have focused on realizing the full capability of LiMnPO4 in its native form. 

This difficulty in utilizing the full performance of LiMnPO4 was proposed due to the 

following properties: 

(1) Low intrinsic electronic conductivity 

(2) Jahn-Teller lattice distortion of Mn3+ ions 

(3) Surface energy barrier for Li diffusion 

(4) Metastable nature of the delithiated phase 

 

As LiMnPO4 is more insulating when compared to LiFePO4, several approaches were 

proposed in the literature to improve the electrochemical kinetics of LiMnPO4. One 

approach was to combine the particle size reduction with carbon coating. Carbon coating 

is necessary for LiMnPO4. Fe present in the LiFePO4 offers good catalyst activity to ease 

the coating process. However, this is lost in the case of LiMnPO4. To be able to achieve 

the above aim, numerous soft chemical methods were investigated to prepare LiMnPO4 /C. 

It was found that the performance capability of this cathode material was dependent on 

nano particle size, which could be achieved by the synthesis route. Since then different 
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approaches in synthesizing the polyanion framework LiMnPO4 have been focused in the 

past several years. 

 

Techniques such as solid-state reaction in molten hydrocarbons, polyol route, and 

spray pyrolysis along with ball milling were studied. Among all, Choi et al. was 

successfully able to achieve theoretical capacity (~170 mAh/g) at very low C-rate (C/50). 

He prepared nano-sized rods of 50 nm along the preferred orientation [010]. However, at 

higher C-rates, the performance was poor [33]. It has been reported that the conductive 

carbon coating of 20-30 wt% on LiMnPO4 would enable to reach capacities of 130-140 

mAh/g [34]. For commercial applications, the carbon wt.% is limited due to the 

requirement of high energy density. In order to get a conductive carbon coating, calcination 

temperatures as high as 650°C need to be applied. However, as the calcination temperature 

increases higher than 650°C, the material rapidly degrades and heterogeneous carbon layer 

is formed. 

 

Further research in achieving the full potential of LiMnPO4 showed that the 

calcination temperature of 650°C can be used without degrading the LiMnPO4, only if the 

particle size was in nanometers [35]. Thus, the researchers started to synthesize the cathode 

material in nano-size to enhance its properties. Addition of carbon along with precursors 

was first introduced by Ravet et al [36]. Carbon addition in the initial stages not only 

prevents particle agglomeration but also helps in deterrence of oxidation.  

 

Li et al [36] synthesized LiMnPO4 /C using a solid state reaction by adding carbon 

black along with precursors. It was observed that the electrochemical performance was 

highly dependent on the calcination temperature. At 550°C, highest discharge capacity was 

obtained. A flat plateau at 4.1V vs Li was obtained during the reversible extraction-

insertion of lithium from LiMnPO4. The authors concluded that the limiting factor of 

LiMnPO4 was mainly due to the low ionic and/or electronic conductivity rather than the 

slow charge-transfer kinetics. 
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Using precipitation synthesis route, Delacourt et al. synthesized ~ 100 nm-sized 

particles of LiMnPO4, which resulted in a reversible capacity of 70 mAh/g at 0.05 C [37]. 

 

Kwon et al. used sol-gel technique along with dry ball milling to prepare 

LiMnPO4/C composite of 130 nm-sized particles, which delivered a reversible capacity of 

134 mAh/g at 0.1 C. It was noticed that as the calcination temperature was increased, the 

Mn2+ disorder on the Li+ sites was reduced. The authors observed that as the C- rate was 

increased, smaller sized particles were favored [38]. 

 

Wang et al. reported that a reversible capacity of 141 mAh/g at 0.1 C rate using 

trickle mode conditions could be obtained by synthesizing 30 nm thick platelet morphology 

of LiMnPO4  [39]. 

 

Regardless of the preparation approach, most authors used post-synthesis ball 

milling technique to prepare nano sized LiMnPO4 /C powders. Amongst all the synthesis 

routes, sol-gel, hydrothermal, and co-precipitation routes were successful.  

 

 

1.4 Solid State Li Ion Battery  

 

 

1.4.1 Overview 

Considerable focus was put in the research and development in finding alternatives 

to the commercial liquid electrolyte batteries, in search of stable, safe and high performing 

lithium ion batteries. To replace the conventional organic electrolyte materials, polymer 

and solid inorganic electrolytes have gained a lot of attention. Glass and ceramic 

electrolytes among this category are gaining importance. Extensive research in the 

synthesis techniques, cell design and compositions are currently being studies and reported. 
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Solid-state batteries offer the following properties:  

(1) Long shelf life 

(2) No gassing  

(3) High energy density 

(4) Broad operating conditions (-40 to 170˚C for Li anodes & >300˚C for other anodes) 

(5) High volumetric energy density 

(6) Shock and vibration-resistant 

 

However, the solid state batteries have certain disadvantages such as  

(1) Low current drains 

(2) Low power densities 

 

There are both pros and cons offered by the solid inorganic electrolytes. The main 

disadvantage of this type is the low conductivity of various inorganic solid electrolytes 

ranging between 10-4 to 10-8 S/cm at room temperatures. The electrode-electrolyte interface 

is just another important factor for consideration. Although the glass ceramic electrolytes 

have significantly high conductivity at room temperature (~10-3 S/cm), contact resistance 

with the electrode is very high. This hinders the use of the solid state battery in HEV, EV 

applications. Hence, proper adhesion between the solid electrolyte and electrode need to 

be studied to get better cycleabilty. 

 

The solid electrode volume expansion during intercalation/de-intercalation of 

lithium ions is another factor to affect the performance of solid state LIBs. Even though 

electrolytes that have high conductivity ~ 10-3 S/cm at room temperature are used, the solid 

state battery is not capable of charging and discharging after the first cycle. This can be 

attributed to the fact that significant volume expansion affects the contact between active 

material particles and solid electrolyte. 
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1.4.2 Crystalline Ceramic Electrolytes 

More than 20 different compositions of the polycrystalline lithium electrolytes with 

perovskite crystalline structure are reported in the previous years. The highest reported 

conductivity was 1.5X10-3 S/cm for La2/3-xLi3xTiO3 at x~0.11[40]. Most of the perovskite 

electrolytes are synthesized by solid state reactions and pressed and sintered to make 

pellets. This so-called Nasicon phase (Na SuperIonic Conductor) is another class of 

ceramic electrolyte that has been extensively studied. The general composition is Li1+xM2 

(PO4)3 with 0<x<3. Different compositions by varying the metal ion in the electrolyte have 

been studied. The structure consists of PO4 and MO6 polyhedra associated at corners to 

form 3D tunnels in the crystal. Originally, sodium containing Zr as metal was researched. 

Conversely using Ti seemed to be better, resulting in conductivity of 3 mS/cm. Although 

Ti4+ has limited applications because of its reducibility, other compositions such as Al, Ta, 

or Ge seemed to have high expectations. A composite electrolyte using Al and Ti was 

synthesized using LiBO2, LiF additive to block the electronic conductivity. The authors 

successfully characterized the Li4Ti5O12/LiMn2O4 battery using the composite electrolyte 

[41]. Although the battery was successfully prepared and cycled, good performance 

couldn’t be achieved. 

 

In latest publications, reports of synthesis of glass-ceramic lithium electrolytes are 

found, wherein the ceramic phase has the Nasicon-type crystal structure. Sintered ceramics 

of the compositions of Al, Ti, and Ge are already studied [42]. These solid electrolytes 

have high conductivities. The benefits of such a solid electrolyte include: 

• Ease of manufacture 

• Low grain boundary resistance 

• Thick and dense microstructure 

The sintering temperature was increased to lower the activation energy as well as 

enhanced conductivity due to grain growth. The Lisicon-type solid electrolytes are referred 

as ‘Lithium superionic conductors’. The general composition is ABO3 and the crystalline 

structure is known as ϒLi3PO4. The B tetradedra share corners with clusters of three AO4 

tetradedra. Most typically the A sites are Li and Zn, while the B sites are V and Ge, forming 
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solid solutions by mixing the A and B cations[43]. The first composition studied in this 

series is the solid electrolyte with composition of Li3.4 (V0.6Si0.4) O4. As a bulk material, 

the solid electrolyte has good ionic conductivity of 1 mS/cm and low electronic 

conductivity of te ~ 10-7. However, when used as a thin film the electronic conductivity 

increased with side self-discharge currents. This was due to the large surplus of Li2O 

deposited in the highly disordered material that conceded the electronic conductivity of the 

solid electrolyte [44].  

 

New kinds of solid electrolytes are being investigated referred to as ‘thio-lisicon 

solid electrolytes’. Solid state cell composed of In/LiCoO2 with the more resistive Ge, Ga 

electrolyte exhibits an initial discharge capacity of ~ 80mAh/g at low C-rate. Further 

research and development need to be put in analyzing this kind of solid electrolyte. Other 

kind of solid electrolyte compositions of lithium metal halides, nitrides and phosphides are 

being investigated. Even though some of the solid electrolytes seem promising in certain 

areas, none of the studies has advanced to the point of testing electrochemical cells or 

forming the electrolyte as a thin layer. 

 

 

1.4.3 Overview of Ceramic Polymer Solid Electrolytes 

Reports in the literature already prove that Ceramic solid electrolytes are known to 

have high conductivity even at room temperature. However, when used as solid electrolyte 

in the cells, they have high interfacial resistance with the other components of the battery. 

Hence as already discussed in the previous section, when the ceramic solid electrolytes are 

used in conjunction with polymers, the prepared composite could be highly promising. 

 

NASICON type, lithium super ion conducting ceramic for Li1+xAlxTi2-x(PO4)3 

(LATP) at x~0.3 exhibits maximum conductivity of ~ 10-3 S/cm at 300K . Yet, when tested 

in a symmetric cell using LiMn2O4 as the electrode, the electrochemical performance of 

the cell was poor [45]. This could be attributed to the high interfacial resistance between 
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the components of the cell. The main factor contributing the poor performance is the 

interfacial resistance between the electrode/electrolyte. 

 

 

 

Figure 1.7  Electrochemical performance of the all solid state cell at 25 µA [45] 

 

 

At a slow current rate of 0.1 mA/cm2, a smooth charge curve with an initial capacity of 

60 mAh/g was reported. However, the subsequent cycles showed negligible capacity. The 

primary problem was attributed to the high interfacial resistance and the volume change 

accompanied by the intercalation/de-intercalation of the Li ions in the LiMn2O4 electrode. 

 

Thus, compositing the ceramic solid electrolyte with a suitable polymer binder could 

help in tackling the above mentioned problem. Several ion conducting polymers have been 

the focus of much research in the past few years. To use the polymer electrolytes in the 

lithium batteries, the ideal polymer needs to exhibit the following properties: 

• Adequate conductivity 

• High cation mobility 
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• Mechanically stable 

• Good interfacial contact with electrodes 

• Wide electrochemical stability 

• Chemical & thermal stability 

• Safe 

• Ease of processing 

 

Although not all the properties could be seen in a single polymer material, different 

types are studied which possess most but not all of the desired properties. The commonest 

polymer electrolyte studied is polyethylene oxide (PEO), which is found at reasonable cost 

in pure state. Wright et al. was the first to successfully use PEO that dissolved alkali salts 

to provide ionic conductivity [46]. Fig shows mechanism of dissolution of alkali salts by 

PEO. By complexing the metal ions through binding interactions between the ether 

oxygens and the metal ions, the salts are dissolved in PEO. From the Figure 1.7, it could 

be understood that the conductivity of the material will be higher if the concentration of 

the charged species is higher. Thus the use of large anions such as 

bis(trifluoromethysulfonyly) imide ((CF3SO2)2N-), referred as TFSI or imide could reduce 

the ion-pair binding strength. This helps to delocalize the negative charge over the anion 

structure. The ionic conduction of the lithium ions occurs by the segmental motion through 

the amorphous phase of the polymer electrolyte. Since the polymers are mostly crystalline 

at room temperatures, good conductivity was observed only at elevated temperatures. 

 

Hence, a rule of thumb was utilized for the design of the polymer electrolyte, to reduce 

the Tg (Glass Transition Temperature) thus eliminating the crystallization of the polymer. 

At elevated temperatures, there is rapid segmental motion. However, regrettably, at high 

temperatures the mechanical flexibility of the polymer material is lost, which is required 

to fabricate practical materials that act as electrolytes as well as separators. 
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Figure 1.8  Mechanism of dissolution of alkali salts by PEO [46] 

 

 

Therefore, mechanically hard, single-ion electrolyte particles of ceramic 

electrolytes could be added to the polymer to form composite solid electrolytes that could 

offer the advantages of using both as an electrolyte and as separator. 

 

 

1.5 Objectives 

The objectives of the thesis are listed below.  

1. Development of synthesis methods for lithium manganese phosphate nano 

particles with carbon coating. In this study, two different synthesis techniques, 

solid-state and sol-gel technique are utilized synthesize LiMnPO4 and 

LiMn0.4Fe0.6PO4 cathode materials. 

 

2. Development of a ceramic - polymer composite solid electrolyte for all solid LIB 

applications. 
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2 IMPROVING ELECTROCHEMICAL PROPERTIES OF POROUS LiMnPO4 BY 

A MODIFIED SOL-GEL PROCESS 

2.1 Overview 

A great consideration was given in recent years to ortho lithium transition metal 

phosphates for lithium ion battery cathode materials. This is because of the various 

advantages that are offered when compared to conventional cathode materials such as low 

toxicity, chemical and thermal stability and low cost. Padhi and Goodenough did the 

groundbreaking work in 1996 [47]. LiFePO4 was the first one to be investigated. 

Exhilarated by its success, LiMnPO4 has increased attention recently. 

 

The potential of LiMnPO4 is higher than LiFePO4, about ~1.65 times. However, 

because of its intrinsic properties LMP offers high ionic and electronic resistance, making 

it unsuitable for practical use. Since then several groups have tried to achieve good 

electrochemical performance in LMP. To overcome the disadvantages presented by LMP, 

effective approaches were to reduce the particle size to enhance lithium ion diffusion [48] 

and add carbon coating to improve the electrical conductivity [49-51]. 

 

Conversely, optimization of LMP synthesis route can improve the electrochemical 

performance [52]. Hence, to encounter the problem of Mn dissolution in the electrolyte a 

modified sol-gel process is adopted. 
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2.2 Experimental 

To compare the effect of synthesis, two different techniques were implemented to 

prepare LMP cathode particles. The first one is a solid-state route and the second one is a 

modified sol-gel route. 

 

 

2.2.1 Solid State Route 

The stoichiometric weights of the starting materials Li2CO3, Mn(COOCH3)2.4H2O 

, NH4H2PO4 , ACB are taken in proper proportions are mixed using a dry ball milling 

process for 10h. The resulting powder is calcined in a flowing N2 atmosphere at 550˚C for 

10h. After the first heat treatment, sucrose is added to the powder and is ground well. Then 

the powder is subjected to a second heat treatment at 700˚C for 5h. Thus, the LMP-SS 

(LiMnPO4 by Solid State) cathode powder is prepared. 

 

 

2.2.2 Sol-Gel Route 

The stoichiometric weights of the starting materials Li2CO3, Mn(COOCH3)2.4H2O 

, NH4H2PO4 , and citric acid are dissolved in D.I(distilled) water at room temperature. After 

homogenously mixing using a magnetic stirring, sol is prepared. Then the gel state is 

prepared by simultaneously magnetically stirring and heating at 80˚C-90˚C. After all the 

water is completely removed, it is calcined at 700˚C for 10h in N2 atmosphere. Sucrose is 

added to the powder in D.I water and again sol and gel state are prepared as mentioned 

above and finally calcined in N2 atmosphere at 700˚C for 5h. Thus, the LMP-SG (LiMnPO4 

by Sol Gel) cathode powder is prepared. 

 

Two sets of cathode were prepared by grounding LMP powder, super-P carbon 

black (Alfa) and poly (vinylidene fluoride) (PVdF) binder in 80:10:10 ratio in N-

methylpyrrolidone (NMP). The resulting slurry was casted on aluminum foil and dried at 

95˚C for 12 h to remove solvent. 
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Circular discs of ~ 0.50 cm2 and mass- 3 mg were cut for electrochemical testing. 

A typical 2 – electrode coin cell was fabricated using 1M LiPF6 in EC/DMC (1:1 vol.%, 

Samsung Co.) electrolyte and Celgard®-2200 as a separator. Cell assembly was performed 

under argon atmosphere in a glove box (H2O, O2 < 0.1 ppm). 

 

 

2.3 Characterization Techniques 

To analyze the crystallographic structure of LMP, X-ray power diffraction (XRD) is 

done. This was carried out by a SIEMENS D5005 X-ray diffractometer using CuKα 

radiation (35Ma/40Kv) and a graphite monochromator. The data was collected in the 2θ 

range of 15-120˚ with 0.02 step interval and 10s step time. To minimize any preferred 

orientation and statistical errors in calculation the sample was rotated at 30 rpm.  

 

Scanning electron microscopy (SEM) imaging was carried out with FE-SEM (Philips 

XL30 S FEG). The dissolution of Mn in the electrolyte and the chemical composition of 

active materials were determined using inductively coupled plasma (ICP) analysis (Atom 

scan 25, Optima 4300DV). The carbon content in the electrode was determined from 

elemental analysis (CHNS-932, LECO). 

 

 

2.4 Results and Discussions 

Figures 2.1 & 2.2 present the XRD patterns of LiMnPO4 synthesized by two different 

techniques. The XRD crystallography of LiMnPO4 by both the solid state and sol gel 

routes, confirm the formation of LiMnPO4. From the XRD patterns, it can be known that 

the material is orthorhombic with crystalline particles. No impurities were detected, 

indicating that with the synthesis routes pure LiMnPO4 can be synthesized [53]. 
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Figure 2.1  XRD pattern of LiMnPO4 by sol-gel technique 

 

 

 

 

Figure 2.2  XRD pattern of LiMnPO4 by solid state reaction technique 
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Figure 2.3 shows the combination XRD of LiMnPO4 synthesized by two different 

routes. It is evident from the pattern the consistency obtained by the two different routes. 

In addition, the crystallographs agree well with the literature [53].  

 

 

 

Figure 2.3  Combination XRD of solid state and sol gel synthesis routes 

 

 

From the XRD patterns of the LiMnPO4 /C samples, all the samples can be indexed 

to the orthorhombic Pnma space group structure (PDF # 74-0178) based on a well-ordered 

olivine structure.  

 

No diffraction peaks of carbon in the crystalline state can be detected. This means 

that all the carbon is present in the amorphous state. 
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The carbon content in the sample of the LiMnPO4 /C was verified using elemental 

analysis. The difference in the carbon wt.% before and after burning the sample to remove 

all the carbon matched the required 10 wt. % of carbon. 

.  

 

Figure 2.4  Cyclic Voltammograms of LiMnPO4 /C samples 

 

 

The CV measurements for the prepared LiMnPO4 /C electrode were performed to 

characterize its electrochemical reactions reversibility in half Li-ion cells. Figure 2.4 shows 

the typical cyclic voltammograms of the LiMnPO4 /C electrode. The cyclic voltammetry 

was performed at the scan rate of 0.1 mV/s for 5 cycles. From the voltammograms it can 

be clearly seen that only a few of the cathodic and anodic peaks appear at 3.9 V and 4.35 

V at 0.1 mV/s scan rate. The peak positions are different for the CV curves measured at 

different cycles, also the difference of the peak separations between the anodic and 

cathodic peaks increases very much as the cycles progresses. 
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Figure 2.5  Short-term cycling of LiMnPO4/C at different C-rates (0.1 C, 0.5 C, 1 C, 2 C, 
3 C, 5 C) 

 

 

To estimate the rate-capability of the prepared LiMnPO4 /C electrodes, the cells 

were cycled between 2.7 V to 4.4 V at 0.1 C, 0.5 C, 1 C, 2 C, 3 C, 5 C rate. Figure 2.5 

shows the charge-discharge curves of the LiMnPO4 samples at different C-rates. The 

charge capacity of the sample for the first cycle at 0.1 C was 89 mAh/g, which is around 

60% of theoretical capacity. When the current density was increased, the capacity of 

LiMnPO4 /C decreased. When the current density increases to 0.5 C, 1 C, 2 C, 3 C and 5 

C, the charge capacity of the samples were 90, 74, 80, 42, 17, 14 mAh/g; while the 

discharge capacity were 81, 83, 61, 46, 26, 4, 2 mAh/g respectively. The specific capacity 

during charging is higher than that obtained for discharge, however, this difference 

gradually decrease with increasing cycle number because of the stabilization of solid 

electrolyte interface (SEI) layer on surface of anode. The active material surface area, the 
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uniform pore size distribution, as well as the nature and effectiveness of the conductive 

coating, are crucial factors that have an influence on the electrochemical performance.  

 

To evaluate the cycle performance of the LiMnPO4 samples, the cells were cycled 

for 100 cycles at 0.1 C, 1 C rate. Figure 2.6 shows the electrochemical characteristics of 

the LiMnPO4 at 0.1 C and Figure 2.7 shows the charge/discharge characteristics at 1 C rate. 

Even though the number of Li ions extracted from the cathode is not high, the capacity 

retention rate of the LiMnPO4 /C samples were stable.  

 

 

 

Figure 2.6  Cyclic Behavior of LiMnPO4  at 0.1 C by Sol-gel Technique 
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Figure 2.7  Cyclic Behavior of LiMnPO4 by Sol-gel Technique at 1 C rate. 

 

 

Even at 60˚C as shown in Figure 2.8, the samples exhibited good capacity retention 

rate. However, the number of moles extracted from the LiMnPO4 electrode was less during 

the charge process. The reduction in the capacity of the samples can be attributed to the 

presence of agglomerated primary particles and heterogeneous carbon coating. Due to this 

issue, the electrical resistance increased and the lithium insertion and extraction process 

was poor. Thierry Drezen et al. proposed that as the particle size of the active material 

increases, lithium diffusion becomes gradually difficult due to both the lithium diffusion 

of Li+ within a single large particle and the difficulty of electron transport through the bulk 

of the material [54]. 
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Figure 2.8  Short-term cycling of LiMnPO4/C at different C-rates at 60˚C 

 

 

2.5 Summaries 

A lot of focus was put in achieving optimal properties of olivine type cathode material 

LiMnPO4 in the past few years. The problems associated with this cathode material are its 

intrinsic insulating properties and Mn dissolution in the electrolyte. The synthesis 

technique was proven a vital factor in realizing optimal performance of LiMnPO4. Using a 

modified sol-gel technique, LiMnPO4 nano-particles are synthesized and the 

electrochemical characteristics were studied. 
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3 CHAPTER-THREE: IMPROVING ELECTROCHEMICAL PROPERTIES OF 

POROUS LiMnXFe1-XPO4 (X = 0.6) IN ADDITIVE ADDITION ELECTROLYTE 

3.1 Overview 

With the success of Padhi et al [55] in 1997 to show reversible electrochemical 

lithium insertion-extraction in LiFePO4, much focus was put on olivine compounds as 

LiFePO4 and LiMnPO4. Because of their suitable structure, the additive-olivines are 

extremely safe at high temperatures [56] and abusive conditions [57].  

 

The system of Mn doped with LiFePO4 looks encouraging as this system operates at 

a voltage range of 3.4-4.1 V vs Li/Li+[58].Since then different groups have studied to 

improve the performance of this system[59].  

 

By developing a porous cathode of LiMn0.4Fe0.6PO4 by a modified sol-gel process, 

the capacity and energy density were achieved, the cycle life was poor. This is due the Mn 

dissolution in the electrolyte. This problem was overcome by the addition of tris 

(trimethylsily) phosphite TMSP additive in the electrolyte. 

 

 

3.2 Experimental 

LiMn0.6Fe0.4PO4 was prepared by a modified sol-gel process, in which the starting 

materials used are Li2CO3, FeC2O4·2H2O, Mn(COOCH3)2·4H2O and NH4H2PO4 (All 99%, 

Aldrich) and citric acid (Shinyo Pure Chemicals, 99%). Li2CO3, FeC2O4·2H2O, 

Mn(COOCH3)2·4H2O and NH4H2PO4 were dissolved in triple distilled water at room 

temperature to which citric acid solution was added slowly. After the solution was mixed 

homogenously, it was dried at 80˚C for 12h. The formed wet gel was again heated at 
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70˚C for 12 h in vacuum oven. The resulting product was fired at 700˚C for 10 h to prepare 

LiMn0.6Fe0.4PO4. 

 

The cathode was prepared by grounding LiMn0.6Fe0.4PO4 powder, super-P carbon 

black (Alfa) and poly (vinylidene fluoride) (PVdF) binder in 80:10:10 ratio in N-

methylpyrrolidone (NMP). The resulting slurry was cast on aluminum foil and dried at 

95˚C for 12 h to remove any solvent. 

 

Circular discs of 0.95 cm2 and mass ~3.0 mg were cut for electrochemical testing. A 

typical 2 – electrode coin cell was fabricated using 1M LiPF6 in EC/DMC (1:1 vol. %, 

Samsung Co.) electrolyte and Celgard®-2200 as a separator. A 1 wt.% of Tris 

(trimethylsily) phosphite was used as an additive. Cell assembly was performed under 

argon atmosphere in a glove box (H2O, O2 < 0.1 ppm). 

 

 

3.3 Characterization Techniques 

To analyze the crystallographic structure of LMFP, X-ray power diffraction (XRD) 

and Rietveld refinement is done. This was carried out by a SIEMENS D5005 X-ray 

diffractometer using CuKα radiation (35Ma/40Kv) and a graphite monochromator. The 

data was collected in the 2θ range of 15-120˚ with 0.02 step interval and 10 s step time. To 

minimize any preferred orientation and statistical errors in calculation the sample was 

rotated at 30 rpm. Using the FullProf program crystal structure refinement in the space 

group Pnma was done. Scanning electron microscopy (SEM) imaging was carried out with 

FE-SEM (Philips XL30 S FEG).  Brunauer–Emmett–Teller (BET) method was utilized to 

measure the specific surface area in the N2 sorption data of ASAP 2020 Analyzer. The 

dissolution of Mn in the electrolyte and the chemical composition of active materials were 

determined using inductively coupled plasma (ICP) analysis (Atom scan 25, Optima 

4300DV). The carbon content in the electrode was determined from elemental analysis 

(CHNS-932, LECO). 
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3.4 Results and Discussions 

XRD pattern of LiMn0.6Fe0.4PO4 (LMFP) reveals a standard orthorhombic olivine 

structure that is consistent with PDF card No. 40-1499. No impurities were seen, 

suggesting that high purity LMFP could be synthesized by typical sol-gel process. 

  

 

 

Figure 3.1  X-ray diffraction pattern and Rietveld refined result 

 

 

From the XRD data as shown in Figure 3.1, the peak intensity ratios are 1.01 and 

0.97 suggesting the distortion of the crystal lattice of LiFePO4 due to Mn atoms. The LiO6 

octahedra structure in LMFP form edge-sharing chains with the b-axis, and along this axis 

Lithium ion transport is carried out in zig-zag pattern between adjacent Li sites [60]. The 

effective cross sectional area and the space of triangular LiO6 octahedra face (O2-O3-O1) 

plays an important role in Li ion diffusion and transport respectively (Figure 3.2). Table 

3.1 gives the selected interatomic distance (Å) and angle (°) of LiO6 obtained from the 

Rietveld analysis in LMFP structure. 
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Figure 3.2  Schematic configuration on the LiO6 octahedra of LiMn0.6Fe0.4PO4 

 

 

Table 3.1  Selected interatomic distance (Å) and angle (°) of LiO6 in LiMn0.6Fe0.4PO4 

 

Bond LMFP 

Li 

Distances 

( Li  )-( O1  ) x 2 2.192(5) 

( Li  )-( O2  ) x 2 2.092(3) 

( Li  )-( O3  ) x 2 2.157(4) 

Angles 

( O1  )-( Li  )-( O2  ) x 2 88.1(3) 

( O1  )-( Li  )-( O2  ) x 2 91.92(2) 

( O1  )-( Li  )-( O3  ) x 2 84.3(3) 

( O1  )-( Li  )-( O3  ) x 2 95.7(3) 

( O2  )-( Li  )-( O3  ) x 2 70.9(3) 

( O2  )-( Li  )-( O3  ) x 2 109.1(3) 

 

 

Figure 3.3 shows the SEM and TEM micrographs of LMFP. From the micrographs 

it can be concluded that the cathode structure is highly porous and the surface, pores and 
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the walls are well coated with carbon. The SEM and TEM micrographs suggest that the 

particle size range between 200 nm and 12 µm and the average particle size is 3-6 µm. The 

micron-sized particles are cheese-shaped and have a homogeneous morphology. At higher 

magnification, the SEM shows that the pores are present on the surface of the particles. 

The highly porous structure allows the pores to be filled with electrolyte improving the 

diffusion of lithium ions.  

 

   

 

Figure 3.3  (a) SEM and (b) TEM images of carbon coated porous LiMn0.6Fe0.4PO4 

particles 

 

 

A homogenous nano-web of carbon coating is observed through the TEM on the 

LMFP particles aiding in the Li ion diffusion, charge-transfer kinetics, and increased 

reversible capacity. 

 

Using BET, the LMFP surface area is estimated as 91.5 m2/g. The pore size is 

highly distributed around 64 Å, with a distribution of 10-100 nm. 
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Figure 3.4  First, second and fifth cycles charge-discharge profiles of Li/LiMn0.6Fe0.4PO4 
cell in conventional electrolyte (1 M LiPF6 in EC/DMC, 25°C) 

 

 

The charge- discharge performance at 0.1 C-rate of the LMFP cell delivers an initial 

discharge capacity of 152 mAh/g, equivalent to 89% of the theoretical capacity (Figure 

3.4). The sucrose addition in the sol-gel process during maturing helped to reach high 

electrical conductivity (1.2 X 10-1 S/cm) and hence the higher capacity when compared to 

typical sol-gel process (134 mAh/g).  

 

Two distinct plateaus in the charge curve at 3.54 and 4.12 V, correspond to the Li 

ion extraction from LMFP due to Fe3+/Fe2+ and Mn3+/Mn2+ couples, respectively. This can 

be supported by the discharge plateaus at 3.48 and 4.0 V corresponding to the former 

couples respectively. With the increase in the number of cycles, the formation of solid 

electrolyte interface (SEI) layer assists in the increase of the specific capacity of charging 

when compared to the discharge specific capacity. As the LMFP particles are highly porous 

and sub-micron sized, Mn dissolution in the electrolyte would be induced [61]. Choi et al 

explains that the decomposition of electrolyte produces HF, which attacks the formed SEI 
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layer, eventually encouraging Mn dissolution of the electrolyte [62]. Hence, the capacity 

faded with cycle life when a conventional electrolyte (1M LiPF6 in EC/DMC) is used.  

 

To endorse this problem Tris (trimethylsily) phosphite (TMSP) was added as an 

additive in the conventional electrolyte. This additive not only scavenged the HF, but also 

formed SEI on the surface of the cathode. The oxidized TMSP eliminated HF produced 

from the LiPF6 base electrolyte and formed products with P-F group (Figure 3.5) by an 

electrochemical reaction and also formed SEI with EC [63]. 

 

 

 

Figure 3.5  Schematic representation of TMSP additive effect and HF scavenging 
mechanism 

 

 

This can be proved by the evidence of just 4 ppm of Mn dissolution in the 

electrolyte with TMSP additive (86 ppm in 1M LiPF6 in EC/DMC) even after 50 cycles.
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Figure 3.6  Cycle performances of LMFP cells cycled in (1 M LiPF6 in EC/DMC) 
without and with TMSP additive (1 wt.%) 

 

 

The charge- discharge performance at 0.1 C-rate of Li/LMFP cells with two electr

olytes (with and without TMSP additive) at room temperature is shown in Figure 3.6. The 

cells with the TMSP additive in the electrolyte displayed higher capacity and stability eve

n when cycled to 100 cycles. Comparison of the two electrolytes based on the discharge c

apacity of first and 50th cycle exhibited ~ 30 % without additive and ~ 0 % for TMSP addi

tive per cycle, respectively. Short cycling performance of the porous LMFP electrode 

with TMSP additive at different current rates is shown in Figure. 3.7. When the 

current density is increased to 0.1, 0.2, 0.5 and 1 C, the discharge capacities can 

maintain at about 153, 136, 119 and 85 mA h g−1, respectively. It is found that the 

storage capacity is stable at each current rate. When the current rate reverses back 

to 0.2 C, the cell capacity can recover to the original value immediately, which 

indicates that the synthesized cathode material owns stability formation even after 

high rate cycles.  
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These results confirm that highly porous LMFP with large exposure into 

electrolyte as cathode electrode material can offer good electrochemical 

performances.  

 

 

 

Figure 3.7  Short-term cycling of porous LMFP cell with TMSP at different C-rates (10 
cycles at each C-rate, 25°C, 2.0-4.6 V) 

 

 

3.5 Summaries 

 A high porous LiMn0.6Fe0.4PO4 composite cathode material was prepared by the 

modified sol-gel process. The process resulted in the synthesis of micro-sized 

particles of high specific surface area, surrounded by a uniform and porous web of 

nanometer sized carbon. The high porosity and homogeneous carbon web provided 

high lithium ion diffusion and efficient conductivity. A Li/LMFP cell showed a high 

discharge capacity and energy density of 152 mAh g−1 and 570 Wh kg−1 at 0.1 C-

rate, respectively, as well as an excellent cycling stability with capacity retention 

ratio of 99% after 10 cycles at all C-rate, and is found promising for large-scale 

electrochemical applications.  
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4 DEVELOPMENT OF ALL-SOLID LITHIUM-ION BATTERY USING LI-ION 

CONDUCTING CERAMICS-POLYMER COMPOSITE ELECTROLYTE 

4.1 Overview 

Lithium ion batteries have already been developed and commercialized in electric 

vehicles and other portable electric devices [64]. However, a major challenge has been the 

safety factor due to the electrolyte leakage, gas formation, explosion, and narrow operating 

window of voltage and temperature. Extensive enquiry was focused on finding suitable 

alternatives to address the problems of organic liquid electrolyte. Hence, to realize safe 

batteries with high energy density an all solid state battery is the one of the suitable 

solutions.  Out of the different kind of solid electrolytes studied like V2O5, LIPON, 

polymer, polymer-gel etc., inorganic solids seemed to be better candidates owing to their 

high safety and significantly high conductivity. One such material is the fast lithium ion 

conductive ceramic of NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP). At x~0.3 LATP offers 

high conductivity of ~ 10-3  S/cm at room temperature. It is also highly stable in the 

atmosphere. 

 

Although solid state batteries offer several advantages over liquid electrolyte 

batteries they couldn’t be used for commercial purposes as the battery suffers with poor 

electrochemical performance. Most of the solid state batteries even at low current rates 

(<0.07 mA/cm2) have high capacity fade after the first charge/discharge cycle. One major 

reason was attributed to the high interfacial resistance between the solid electrolyte and the 

electrodes.  In this study, we propose to develop a ceramic-polymer composite electrolyte 

to help in resolving the former problem. 
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4.2 Experimental 

 

 

4.2.1 Polymer Electrolyte 

The polymer electrolyte films of P(EO)10-LiTFSI are fabricated by dissolving 

Polyethylene oxide (PEO) (Aldrich, M.W 6000000 g/mol) and adequate quantities of salt 

Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) in dry acetonitrile solution so that 

the mole ratio of LiTFSI is 10. P(EO)10-LiTFSI polymer electrolyte was cast in Teflon 

dishes. After vacuum drying the polymer electrolyte film was formed. The prepared film 

was about 250 µm thick. The prepared film was subjected to further tests to investigate its 

electrochemical performance. 

 

 

4.2.2 Fabrication of the Ceramic Material 

The preparation of the Li1.3Al0.7Ti1.7 (PO4)3 (LATP) was based on literature Aono 

et al [65]. Lithium carbonate (Li2CO3), Aluminum oxide (Al2O3), Titanium dioxide (TiO2), 

and Ammonium dihydrogen phosphate (NH4)2H2PO4 that were reagent grade were ground 

and heated in a platinum crucible at 1652˚F for 2 h. The resulting powder was ball milled 

for 6 h and re-heated at the same conditions.  The powder was subjected to ball milling for 

12 h to obtain the final LATP powder. The final powder was dried at 120˚C for 24 h to 

remove any attached water molecules. 

 

 

4.2.3 Fabrication of the Composite Electrolyte 

The LATP powder was mixed with an organic binder of high molecular 

wt.(~600,000 g/mol) of PEO along with Li salt of LITFSI in different ratios in Acetonitrile 

solvent to obtain electrolyte slurry. To decrease the crystallinity of PEO and increase 

lithium ion conductivity, lithium salt LITFSI was added. The slurry was casted on Teflon 

tape using doctor-blade method. After vacuum drying, solid electrolyte of good flexibility 

was obtained. 
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Ionic conductivity was measured at different temperatures for the prepared solid 

electrolytes of various compositions. After obtaining the best compromise between 

conductivity and stability, a suitable composition was selected for electrochemical 

charge/discharge tests. 

 

 

4.2.4 Fabrication of the Composite Electrode 

The positive and the negative electrode were made of the same composition. The 

electrode slurry was made using Lithium manganese oxide (LiMn2O4), Super P-carbon 

(Cnergy), PEO-10LITFSI in Acetonitrile solvent in the weight ratio of 70:10:20. The slurry 

was coated on Aluminum and Copper foil to produce cathode and anode respectively. To 

remove the solvent completely it was vacuum dried overnight. 

 

 

4.2.5 Fabrication of the Battery 

The prepared electrode sheets were sandwiched between the electrolytes to prepare 

an all solid state (A.S.S). To ensure proper contact the layers were pressed together and cut 

in circular discs. The cell was enclosed in a coin cell for further testing. 

To test an all solid state cell with pressure, the circular disc of the cell was placed inside 

two stainless steel cylinders holed inside an alumina tube. To avoid contact with 

atmosphere, the space between the stainless steel rods and alumina tube was wrapped with 

high vacuum grease (Dow Corning Corporation) together with a tape. 

 

Since, LITFSI is highly sensitive to moisture all the experimental part was done 

inside an Argon- filled glove box with water and oxygen content below 0.1 ppm. 
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4.3 Characterization Techniques 

Confirmation of the crystallographic structure of the LATP was analyzed using 

SIMENS D5005 X-ray diffractor using CuKα radiation in the 2θ range of 10-80 with 0.02 

step interval and 0.5 s step time. The surface morphology of LATP was studied using SEM.  

 

Electrochemical Impedance Spectroscopy (E.I.S) was done using electrochemical 

workstation CHI660D. The frequency parameters are from 100 kHz to 0.1 Hz at a voltage 

of 0.01 V. For ionic conductivity measurements, the composite solid electrolyte was 

enclosed in a coin cell sandwiched between stainless steel blocking electrodes in a glove 

box and taken out for further testing. To investigate the electrochemical performance of 

the prepared A.S.S cells, the cells were tested using MITS Arbin instrument. 

 

 

4.4 Results and Discussions 

The XRD patters of LATP were analyzed using SIEMENS D5005 X-ray 

diffractometer using CuKα radiation (35 Ma/40 KV) and a graphite monochromator. The 

crystallographic structure is shown in Figure 4.1. 
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Figure 4.1  XRD of LATP glass-ceramic 

 

 

The crystallographic structure of the material can be confirmed to that of LATP. A 

small peak at 26˚ was observed. This may be due to the AlPO4 impurity present, which can 

often appear at high sintering temperatures [66]. The Al3+ion was merged into the structure 

of LiTi2 (PO4)3 and formed the Li1.3Al0.3Ti1.7 (PO4)3 phase that is the NASICON structure. 

 

SEM photographs of the LATP particles are shown below in Figure 4.2. The SEM 

pictures of the LATP particles show that the particle size is around 1 µm. 
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Figure 4.2  SEM of LATP 

 

 

The most famous polymer has been polyethylene oxide (PEO) with the regular 

repeat structure –CH2CH2O-, due to its enormously high solvating properties (maximum 

concentration > 2 mol dm-3) for a wide range of salts through the interaction of the ether 

oxygen’s with cations. However, at room temperature, this polymer is crystalline, and it is 

believed that only in amorphous state ionic conductivity is feasible. Hence, focus has been 

on decreasing the crystallinity of PEO to make it suitable for Lithium ion batteries. Reports 

in the literature suggest that bulky lithium salts are highly helpful in decreasing the 

crystallinity of PEO. LiN(SO2CF3)2, also referred to as LiTFSI, has been known for the 

past years for aiding in ion dissociation to delocalize the charge making it favorable to 

improve ionic conductivity in PEO [67]. Not only does LiTFSI help in improving the 

conductivity, but also reported to improve the chemical and thermal stability along with 

providing “plasticizing” effect on the solvating polymer like PEO [68]. 
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Figure 4.3  EIS plots of polymer electrolyte PEO10-LiTFSI 

 

 

The electrochemical impedance spectroscopy of the prepared P(EO)10-LiTFSI 

polymer film can be seen in Figure 4.3. The incomplete semicircle is caused by the 

insufficient upper limit of 100 kHz for electrochemical workstation CHI660A. From the 

intercept of the inclined line, the conductivity of the polymer electrolyte was plotted at 

different temperatures as shown in Figure 4.4. 

 

30˚C 

40˚C 

50˚C 

60˚C 
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Figure 4.4  Conductivity vs Temperature for the polymer electrolyte PEO10LiTFSI 

 

 

From the EIS plot it can be seen that the conductivity of the polymer electrolyte 

matched with the data in the literature for the polymer electrolyte PEO10LiTFSI. It can be 

understood that ionic conductivity of the electrolyte is highly dependent on the 

temperature.  
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Figure 4.5  Arrhenius plot of the conductivity of polymer electrolyte PEO10LiTFSI 

 

 

The Arrhenius plot of the conductivity of polymer electrolyte PEO10LiTFSI is 

shown in Figure 4.5. At 60˚C the conductivity of the polymer electrolyte is 7.5 X 10-3  S/cm. 

 

To see the effectiveness of the glass-ceramic LATP as a suitable solid ceramic 

material, well known material Al2O3 was selected. A flexible composite solid electrolyte 

as shown in Figure 4.6, was fabricated with the optimum ratio of 75:25 of Al2O3 to organic 

binder. 

 

 

 

Figure 4.6  Flexible solid polymer electrolyte Al2O3 and organic binder in 75:25 
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The flexible composite electrolyte was prepared by mixing Al2O3 (Aldrich) with 

PEO10LiTFSI polymer solution in acetonitrile. The solution was casted on Teflon tape 

using doctor blade. After vacuum drying, the composite electrolyte was obtained. The 

obtained film was around 150 µm thick. The ionic conductivity of the film was studied by 

enclosing the film in a coin cell inside glove box. (O2 , H2O < 0.1 ppm) 

 

 

 

Figure 4.7  EIS solid electrolyte at 60˚C of Al2O3 with organic binder 

 

 

Figure 4.7 shows the EIS plots of the Al2O3 –PEO10LiTFSI composite electrolyte.  

The incomplete semicircle is caused by the insufficient upper limit of 100 kHz for 

electrochemical workstation CHI660A. From the intercept of the inclined line, the 

conductivity of the composite electrolyte was studied at different temperatures as shown 

in Figure 4.8. EIS plots reveal that LATP is better solid ceramic material when compared 

to Al2O3.  
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Figure 4.8  Conductivity of Composite Solid Electrolyte of Al2O3 and organic binder in 
75:25 in relation with temperatures 

 

 

The temperature dependence of the ionic conductivities of the solid electrolyte 

(LATP) in combination with the polymer binder PEO-10LITFSI at different compositions 

and temperatures was investigated. The Figure 4.9 shows the variation of the conductivity 

with respect to the composition ratio at various temperatures. Amongst the different ratios 

the optimum ratio of 75:25 is selected, since a stable and flexible film can be obtained with 

highest conductivity when compared to other ratios. 
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Figure 4.9  Conductivity vs Temperature of Composite Electrolyte at Different 
Compositions 

 

 

To fabricate a practical all solid state rechargeable battery, the electrolyte must have 

an appreciable conductivity of the order of ~ 10-3 - 10-4 S/cm. Several researchers focused 

to tackle this issue. Amongst them one way was to make a thin film battery. However, 

fabrication of thin film batteries for large scale is cumbersome and expensive. 

Alternatively, pressure plays a significant role in the performance of an all solid state 

battery.  

 

To investigate in this, an optimum ratio of 75:25 ratio of LATP: PEO-LITFSI was 

chosen, and the conductivity was measured at three different pressures. Figure 4.10 shows 

the variation of conductivity variation of the composite solid electrolyte with respect to 

temperature at the pressures of 1000 psi, 2000 psi, 3000 psi. From the experimental data it 

is evident that at 2000 psi the solid electrolyte has good ionic conductivity. This may be 
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because at 2000 psi the interfacial resistance between the solid electrolyte particles of 

LATP and polymer decreases, however, at much higher pressure the resistance increases.  

 

 

 

Figure 4.10  Conductivity of Composite Solid Electrolyte 75:25 in relation with pressures 
and temperatures 

 

 

To confirm the effectiveness of PEO as an organic binder, another binder PVDF 

was selected and at the same ratio of 75: 25, the composite solid electrolyte was prepared. 

The performance of the solid electrolyte at different temperatures was studied. Figure 4.11 

shows the impedance plots of the solid electrolyte of LATP with PVDF as the organic 

binder from the impedance plots. The conductivity of LATP-PVDF is much lower than the 

conductivity of LATP-PEO, which demonstrates that PEO acts as a better organic binder 

when compared to PVDF binder.  
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Figure 4.11  EIS plots of the solid electrolyte of LATP with PVDF as the organic binder 

 

 

Figure 4.12 shows the schematic of the all solid state cell with LiMn2O4 acting as 

the symmetric electrodes for the composite solid electrolyte. The schematic shows that the 

composite solid electrolyte is sandwiched between the two asymmetric electrodes of 

LiMn2O4 to form an all solid state cell. 
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Figure 4.12  Schematic of an all solid state cell using composite solid electrolyte and 
symmetric electrodes 

 

 

 

 

Figure 4.13  SEM of the cross-section of the Lithium Ion battery 
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The SEM of the cross-section of the A.S.S (Figure 4.13) lithium ion battery shows 

that the typical thickness of the cathode is 10 µm, while the thickness of the anode is 15 

µm. From the SEM it can be seen that the composite solid electrolyte was sandwiched 

between the two symmetric electrodes. 

 

Figure 4.14 shows the EIS of the A.S.S at different pressures. From the plot, it can 

be seen that only one semicircle was observed for each sample corresponding to each 

pressure. The left intercept of the semicircle with the real axis corresponds to the solid 

electrolyte resistance (RSE) while the width of the semicircle measured along the real axis 

corresponds to the interfacial resistance between the electrolyte particles and 

electrolyte/electrode particles (RIR). It can be observed that by the application of the 

pressure to the A.S.S cell, both the resistance’s decrease indicating good contact at high 

pressures 

 

 

 

Figure 4.14  EIS plots of the A.S.S cell at different pressures 

 

0 psi 

500 psi 

1000 psi 

1500 psi 



57 
 

The as-fabricated all solid state battery was kept for equilibrating at 60˚C for 3 h. 

Later the cell was tested for 7 cycles at the operating conditions of charge cut-off of 1.7 V 

to a discharge cut-off of 0.25 V at 60˚C. These operating conditions were chosen according 

to the stability window of the solid electrolyte based on the redox potentials of LiMn2O4
 

[69]. Since the conduction of Li ions occurs only in the amorphous phase of PEO, cell was 

tested at high temperature (60˚C). 

 

Electrochemical charge-discharge characteristics of the cell are shown in Figure 

4.15. Previous research shows that solid state cells are known to struggle with 

electrochemical performance. It has been a challenge to get appreciable capacity and cycle 

life even after a few cycles [70]. 

 

 

 

Figure 4.15  Charge-discharge characteristics of the all solid state cell 
LiMn2O4/S.E/LiMn2O4 

 

 

Figure 4.15 shows the performance of the cell at these conditions. Although the cell 

with LiMn2O4 as symmetric electrodes sandwiched within LATP, has a superior capacity 
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in the first cycle, the capacity faded over the progress of cycles. This can be attributed to 

the fact that higher interface resistances are present between the components of the cell. 

According to the literature, there is also a considerable volume change associated with the 

LiMn2O4, during charge and discharge, which is approximately a 16% increase in the c/a 

ratio of the electrode [71]. The presence of the PEO as the organic binder in the solid 

electrolyte could accommodate to some volume change, but the presence of pressure during 

testing and fabrication of thin film battery could lead to better performance. 

 

 

 

Figure 4.16  Cycle life of LiMn2O4/S.E/LiMn2O4 

 

 

 The same kind of solid state battery of LiMn2O4/ Solid Electrolyte/LiMn2O4 was 

tested at the same operating conditions but in the presence of different pressures. To 

achieve this, a new kind of device was utilized. Figure 4.17 shows the device wherein the 

stainless steel rods act as current collectors with Alumina tube aiding to hold the 

components together. The cell was assembled in a glove box and sealed with vacuum 

grease to prevent contact with atmosphere. 
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Figure 4.17  Schematic and picture of the device used for testing the cell under pressure 

Figure 4.18  Cyclic Performance of the A.S.S. cell at 1000psi 
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A constant pressure of 1000 psi was applied to the battery. Figure 4.18 shows the 

charge/discharge characteristics of the A.S.S battery at 1000psi. From the plot it can be 

seen that by the application of the pressure could accommodate to the interfacial resistance 

between the components of the cell and also for the volume change associated with the 

LiMn2O4 anode. Since, LiMn2O4 anode is known to exhibit a volume change of 16% in the 

c/a ratio [72].  

 

When a much higher constant pressure of 1500 psi was applied to the A.S.S cell, it 

can be seen from the Figure 4.19 that much better capacity retention rate could be achieved. 

This is mainly because of the better contact achieved amongst the components of the cell, 

thus reducing both the solid electrolyte resistance (RSE) and interfacial resistance between 

the electrolyte particles and electrolyte/electrode particles (RIR). 

 

 

 

Figure 4.19  Cyclic Performance of the A.S.S. cell at 1500 psi 
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4.5 Summaries 

An all solid state cell using LiMn2O4 as symmetric electrodes inserted between 

composite solid electrolytes was fabricated and tested for performance. The composite 

electrolyte was made with the glass-ceramic LATP in combination with an organic binder 

PEO with LITFSI salt. The performance of the solid electrolyte in variation of composition 

and temperature was analyzed. An optimum ratio of 75:25 of ceramic to binder was chosen 

and used as the solid electrolyte in an all solid state cell. When compared to using a pure 

ceramic as the solid electrolyte, addition of organic binder helped to reduce the interfacial 

resistance between the components of the cell. In addition, organic binder helped to 

accommodate partially to the volume change.
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5 CONCLUSIONS AND FUTURE WORK 

Lithium transition metal phosphates have gained a lot of focus in the past few years, 

as these materials exhibit high energy density and high voltage against Li/Li+ Additionally, 

these cathode materials are less toxic and inexpensive.  However, this system of cathode 

materials has limited applications in the commercial batteries, because of the poor 

electrochemical performance displayed by this system. This is mainly due to intrinsic 

properties such as low electronic conductivity and Mn+3 ion dissolution associated with 

Jahn-Teller distortions. This problem was addressed by adopting a modified sol-gel route 

to synthesis cathode particles with carbon coating thus reducing the electronic 

conductivity.  

 

Additive olivines of the multi-component type of LMFP is highly favored, as this 

cathode material exhibits high voltage and extremely friendly. However, Mn dissolution in 

the electrolyte enables the material to exhibit severe capacity fade. A modified sol-gel 

technique and addition of 1 wt% of TMSP helped to hinder Mn dissolution in the organic 

liquid electrolyte. A stable cycleability was exhibited by LMFP even for 100 cycles. 

 

A composite solid electrolyte was prepared with the glass-ceramic LATP in 

combination with an organic binder of PEO with LITFSI salt.  At an optimum ratio of 

75:25 the solid electrolyte was flexible and displayed good ionic conductivity. An all solid 

state cell using LiMn2O4 as symmetric electrodes inserted between composite solid 

electrolytes was fabricated and tested for electrochemical performance. When compared to 

using a pure ceramic as the solid electrolyte, addition of organic binder helped to reduce 

the interfacial resistance between the components of the cell. In addition, organic



63 
 

binder helped to accommodate partially to the volume change. Thus, by the application of 

pressure greater than 1500 psi, the cell could demonstrate stable cycle performance.
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