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ABSTRACT

Valladares Guerra, Homero Santiago M.S.M.E., Purdue University, August 2017.
Surrogate-Based Global Optimization of Composite Material Parts under Dynamic
Loading. Major Professor: Andres Tovar.

The design optimization of laminated composite structures is of relevance in auto-

mobile, naval, aerospace, construction and energy industry. While several optimiza-

tion methods have been applied in the design of laminated composites, the majority

of those methods are only applicable to linear or simplified nonlinear models that are

unable to capture multi-body contact. Furthermore, approaches that consider com-

posite failure still remain scarce. This work presents an optimization approach based

on design and analysis of computer experiments (DACE) in which smart sampling

and continuous metamodel enhancement drive the design process towards a global op-

timum. Kriging metamodel is used in the optimization algorithm. This metamodel

enables the definition of an expected improvement function that is maximized at each

iteration in order to locate new designs to update the metamodel and find optimal

designs. This work uses explicit finite element analysis to study the crash behavior

of composite parts that is available in the commercial code LS-DYNA. The optimiza-

tion algorithm is implemented in MATLAB. Single and multi-objective optimization

problems are solved in this work. The design variables considered in the optimiza-

tion include the orientation of the plies as well as the size of zones that control the

collapse of the composite parts. For the ease of manufacturing, the fiber orientation

is defined as a discrete variable. Objective functions such as penetration, maximum

displacement and maximum acceleration are defined in the optimization problems.

Constraints are included in the optimization problem to guarantee the feasibility of

the solutions provided by the optimization algorithm. The results of this study show



xiv

that despite the brittle behavior of composite parts, they can be optimized to resist

and absorb impact. In the case of single objective problems, the algorithm is able to

find the global solution. When working with multi-objective problems, an enhanced

Pareto is provided by the algorithm.
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1. INTRODUCTION

1.1 Composite Materials

Composites material structures are widely used in Aerospace, Automobile, Con-

struction and Energy industries. They provide benefits such as weight reduction,

durability, high strength and energy absorption. According to the United States

Department of Energy, the transportation sector consumes almost 30 % of the U.S.

energy. It has been estimated that 75% of vehicles fuel consumption is related to

its weight [1]. Composite materials have made possible to achieve weight reductions

but maintaining high structural performance of mechanical parts. Composites are

anisotropic materials that combine two or more materials to obtain better properties

than the individual components that are combined in a macroscopic scale. There are

different types of composites in nature. Depending on their processing routes, they

are classified as natural composites, Bio-composites, Carbon-carbon composites, Ce-

ramic Matrix Composites (CMCs), Metal Matrix Composites (MMCs) and Polymer

Matrix Composites (PMCs). PMCs are the most used in industry. They cover 75%

of the world composite market [1]. Composites can be also classified by filler types

as particle-reinforced, fiber-reinforced and structural.

Fiber Reinforced Polymer (FRP) composites consist of fiber reinforcements and a

polymeric matrix. The type and distribution of the fiber reinforcement determine the

stiffness and strength. Fibers are commonly made of materials with high strength and

elasticity modulus, e.g., Carbon Fiber Reinforced Polymers (CFRP). The purpose of

the matrix is to hold the fibers together, to transfer the external loads to the fibers

and to protect the composite from external damage [1].

In industry, composite parts are commonly made of laminates which is conformed

by a stack of layers (plies). Each layer is composed of a light matrix and high strength
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fiber reinforcements. The performance of a composite structure depends on many fac-

tors such as matrix and fiber materials, ply thickness, fiber orientation and structural

shape.

1.2 Design Optimization

The performance of most systems in engineering depends on several parameters

(design variables). Design optimization techniques assist engineers to find the pa-

rameters that lead to the optimal system performance. The optimization process

often involves trade-off analysis due to the presence of competing objective functions,

i.e., improving one objective implies the worsening of others. In the formulation of

the optimization problem, realistic boundaries (constraints) are defined in order to

prevent impractical solutions [2]. A multi-objective optimization problem is defined

as,

find x ∈ Rndv

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , nc

xlow ≤ x ≤ xup

(1.1)

where x = [x1 , . . . , xndv
] is the design vector, ndv is the number of design vari-

ables (design space dimension), f(x) = [f1(x) , . . . , fk(x)] is the vector of objective

functions, k is the number of objective functions (response space dimension), gi(x)

are the problem constraints, nc is the number of constraints, and xlow ≤ x ≤ xup are

the lower and upper bounds of the design variables.

The following example is provided to illustrate the components of a multi-objective

optimization problem. It corresponds to the optimization of a beam in cantiliever.

The purpose of the problem is to determine the values of x1 and x2 (beam dimensions)

in order to minimize the beam deflection, f1(x1, x2), and the beam mass, f2(x1, x2).
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The stress constraint g(x1, x2) prevents material failure. For details about the problem

formulation, see [2].

find x = [x1 x2] ∈ R2

minimize

f1(x1, x2)
f2(x1, x2)


subject to g(x1, x2) = σ(x1, x2)−

sy
n
≤ 0

0.001 ≤ x1 ≤ 0.750 (m)

0.001 ≤ x2 ≤ 0.075 (m)

(1.2)

An optimization problem involves a design space and an objective space as illus-

trated in Fig. 1.1. Each member of the design space is mapped into the objective

space. The design space is limited by the lower and upper bounds of the design

variables. In the design space, there are designs that satisfy the problem constraints

(feasible designs) and designs that do not (non-feasible designs). The Pareto front is

the set of best compromised solutions, i.e., no further improvement can be achieved

in one function without affecting the others [2].

Fig. 1.2 provides a detailed explanation of the Pareto front. If designs A and

B are compared, both designs have the same mass; however, design B has a larger

deflection than A. A is a better design than B since by the same mass it presents

lower deflection. Following the same analysis, C is a better design than B since it

presents the same deflection but less mass. Finally, if designs A and C are compared,

neither is dominated by the other since each one is better in one objective function.

The Pareto front, also known as the Pareto optimal set, is the set of solutions that

are better in at least one objective function.

Solutions that are not part of the Pareto set are called dominated solutions. The

solution of a multi-objective optimization problem is not unique. The designer task

is to select designs from the Pareto optimal. The utopia or ideal point can be used

for the selection process. The utopia point has all the minimum function values,

f1 min(x1, x2) and f2 min(x1, x2), as coordinates. If possible, the utopia point repre-
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Figure 1.1. Multi-objective optimization problem. Design domain
and objective domain. Feasible designs (green dots) and non-feasible
designs (blue dots). Pareto front (black dots).

sents the best performance that the system can achieve given the problem conditions.

A practical rule is to choose the Pareto design that is closer to the utopia point [2].

1.3 Design Optimization of Composites

The purpose of applying optimization techniques in the design of composite parts

is to find the variables that lead to the best performance. Matrix and fiber materi-

als, fiber orientation, ply thickness and geometrical dimensions are common design

variables for composites [3]. Objectives for the optimization of composites are the

minimization of weight, volume, deflection and crushing forces, or the maximization

of buckling loads and specific energy absorption. Realistic constraints are included

in the optimization problem to satisfy manufacturing requirements, e.g., maximum

number of plies or a discrete range for the fiber orientations. The most common opti-
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Figure 1.2. Multi-objective optimization problem. Definition of the
Pareto front (black), dominated designs (green) and utopia point.

mization techniques that have been used to optimize composites are gradient based,

population-based and surrogate-based methods.

Gradient-based optimization algorithms: Gradient-based optimization tech-

niques provide fast convergence when reliable sensitivity coefficients are available [4].

They are not suitable when working with noisy functions and discrete variables. The

Method of Feasible Directions (MFD) and Sequential Quadratic Programming (SQP)

are examples of gradient based techniques that have been successfully implemented

in the design optimization of composites. MFD was used to determine materials and

fiber orientations of a wind turbine blade. The objective of the study was to max-

imize the compressive load that the part can support [5]. SQP was applied in the

strength maximization of a composite box-beam structure [3]. Due to the local nature

of gradient-based techniques, appropriate starting designs are needed to perform the

optimization process.

Population-based optimization algorithms: Although the use of gradient-

based techniques is attractive because of their computational convenience, they have
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limitations for the design of composite parts. Generally, the design optimization of

composites is a non-convex, multimodal optimization problem that involves continu-

ous and discrete variables [6]. In such cases, the use of population-based algorithms

is preferred since they use the responses of several designs in each iteration of the

algorithm to find the optimal solution instead of gradient information. Genetic Al-

gorithms (GA) and Particle Swarm Optimization (PSO) are examples of population-

based techniques that are used in composites optimization [7,8]. They have been able

to find global solutions even under complex loading conditions [9].

Surrogate-based optimization

It has been proved that population-based methods have high robustness and ca-

pability to find global solutions; however, they require a large number of function

evaluations to solve the optimization problem [10]. This is a huge limitation when

dealing with expensive models such as the crash simulations of composite parts. Those

simulations are expensive because of the multi-body contacts and the several failure

mechanism of the material. In crash conditions, composites undergo diverse failure

mechanisms like matrix cracking and splitting, interlaminar damage (delamination),

fiber fracture, frond formation and bending, and friction [11,12].

When dealing with expensive functions, the use of surrogate-based techniques is

preferred. A surrogate model, also known as a metamodel, is a fast mathematical

approximation to an expensive model. It is created by using the responses of some

samples of the design space. Examples of common metamodels for impact analysis

are response surface methodology (RSM), radial basis functions (RBF) and Kriging

surrogates. Crashworthiness optimization of a full-scale vehicle under frontal collision

was succesfully performed using RSM and RBF. The energy absorbed by the vehicle

was increased by 25% compared to the original design. It was also possible to reduce

the peak crushing acceleration by 21% relative to the initial design [13]. By combining

Kriging surrogates and GA, the occupant restraint system of a vehicle under frontal

impact was optmized. The passenger injury levels were reduced by 36% in comparison

with the baseline design [14].
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1.4 Motivation and Objectives

1.4.1 Motivation

Metamodels are excellent options when performing optimization with models that

require long-running times. The basic idea of surrogate-based optimization is simple.

However, it is important to have special care in details such as the selection scheme of

sample points, the approximation method creating the metamodel, and the updating

scheme for the metamodel [15].

The simplest way to perform metamodel-based optimization is to build a surrogate

model and apply an optimization algorithm to find its minimum at each iteration, then

sample the design and use it to update the metamodel iteratively until convergence

is reached. The main disadvantage of that searching procedure is that a local or false

minimum may be found instead of a global minimum as illustrated in Fig. 1.3. The

possibility of finding a local optimum arises because too much emphasis is placed on

the exploitation of the metamodel without acknowledging its uncertainties [16].

As illustrated in Fig. 1.4, the metamodel is not accurate along the whole de-

sign space. To take uncertainties into account, the metamodel can be updated with

samples in areas where large errors are expected. However, while that optimiza-

tion scheme will explore the design space, it is not truly directed to find the global

optimum. An efficient global optimization algorithm balances between metamodel

exploitation and design space exploration. [16].

Among the mathematical models available for surrogate-based optimization, Krig-

ing metamodel provides the possibility of quantifying expected prediction errors along

the whole design space as shown in Fig. 1.4. This enables the definition of a Ex-

pected Improvement (EI) function to direct the optimization process. The use of the

EI function balances metamodel exploitation and design space exploration because

the function takes contributions from the best current designs in the metamodel and

the uncertainties along the design space to suggest new searching regions.
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Figure 1.3. The solid line represents an objective function that has
been sampled at the 4 gray dots. The dashed line is a Kriging predic-
tion fit to those points. False optimum (green dot) and true optimum
(red dot).

Figure 1.4. Kriging surrogate and its standard error for a four-point data set.
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1.4.2 Objectives

Although the design optimization of composite parts using surrogate models have

been developed by several authors, most of them only use the predictions of the

surrogates to direct the search of the global optimum without acknowledging the

metamodel uncertainties. The Efficient Global Optimization (EGO) algorithm pro-

posed by Jones et al. [16] has demonstrated that high accuracy solutions and efficient

search processes can be achieved by including metamodel uncertainties in the opti-

mization process. This investigation is devoted to performing the design optimization

of fiber-reinforced polymer matrix composites under dynamic loading using the EGO

algorithm.

The optimization approach is based on design and analysis of computer exper-

iments (DACE) in which smart sampling and continuous metamodel enhancement

drive the design process towards the global optimum. The impact simulations of the

composite parts are performed in the general-purpose finite element analysis software

LS-DYNA. MATLAB is used to generate the sample designs, execute the LS-DYNA

simulations, extract results from the LS-DYNA output files and analysis of the data.

The results of this investigation are described as follows:

Chapter 2 contains the description of the composite material model used to per-

form the Finite Element Analysis (FEA) simulations in LS-DYNA. Explanations of

the keywords for composites simulations are also included.

Chapter 3 provides the principles of Kriging metamodel, EI function, Latin hy-

percube sampling and validation of surrogates. At the end of the chapter, the imple-

mentation of the EGO algorithm is included.

Chapter 4 contains numerical examples that illustrate the use of EGO in the

design optimization of composite parts.

Chapter 5 concludes this work with a summary of the investigation and final

recommendations.
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2. FINITE ELEMENT ANALYSIS OF COMPOSITES

During the last two decades, the capability of Finite Element (FE) models to simu-

late complex systems has significantly increased. Nowadays, it is possible to evaluate

dynamic models with contacts between multiple parts and nonlinearities in the ma-

terial and geometry of the parts. Explicit finite element formulations are used to

solve these models. Among the different commercial codes that have implemented

explicit finite element analysis formulation, LS-DYNA is the most popular for crash

analysis. Composite parts and be modeled using shell elements, solid elements and

layered solid elements to create detailed models and large-scale models. Detailed

models capture the failure mechanisms within the material while large-scale models

place more emphasis in the structural behavior of the composite parts [17].

2.1 Modeling Approach

2.1.1 Single-Layer Approach

In the single-layer approach, the composite laminate is modeled with one layer of

shell elements and an integration rule that is defined through the shell thickness. Each

integration point represents a ply of the laminate. The single-layer approach is pop-

ular when dealing with large-scale structural problems due to its low computational

cost. The single-layer approach is adopted in this work to perform the structural

optimization of the composite parts.

2.1.2 Multiple-Layer Approach

In the multiple-layer approach, the laminate is modeled using multiple layers of

shell elements. The layers are stacked together using contact definitions between them
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[18]. In LS-DYNA, delamination is studied using CONTACT AUTOMATIC TO

SURFACE TIEBREAK. The multiple-layer approach is more computationally ex-

pensive than the single-layer approach but less costly than three-dimensional models.

2.1.3 Solid Element Approach

In thick composite structures, plane stress condition is not applicable. The stress

distribution through the thickness of the laminate is not negligible. Each ply of the

laminate can be represented using solid elements to account for stress distribution

effects. It is a costly and cumbersome solution when dealing with large structures [19].

2.1.4 Layered Solid Element Approach

In the layered solid element approach, the composite parts are modeled using

a layer of solid elements. This approach solves the drawbacks of using fully three-

dimensional models. It is similar to the single-layer approach since an integration

rule is defined to represent the layers of the laminate [19].

2.2 Material Models

Over the years, LS-DYNA has implemented a wide variety of composite material

models. The study of Schweizerhof et al. [20] provides an explanatory overview of

some of them. There are models that degrade the mechanical properties to reproduce

the damage of the material and those that only study the elastic response of the

composite (no failure modes). A summary of the most used composite material

models is provided in Table 2.1, 2.2 and 2.3 [1].

Progressive and continuous methods are used to degrade the elastic properties

of the composite material. Progressive damage is obtained by discounting failed

plies along the laminate, and continuum damage is represented by the inclusion of
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Table 2.1.
Composite models in LS-DYNA - Progressive failure degradation law.

MAT Title Solid
Thin

shell

Thick

shell

22 MAT COMPOSITE DAMAGE o o o

54/55 MAT ENHANCED COMPOSITE DAMAGE o

59 MAT COMPOSITE FAILURE option MODEL o o

Table 2.2.
Composite models in LS-DYNA - Damage mechanics degradation law.

MAT Title Solid
Thin

shell

Thick

shell

58 MAT LAMINATED COMPOSITE FABRIC o o

158 MAT RATE SENSITIVE COMPOSITE FABRIC o o

161 MAT COMPOSITE MSC o

162 MAT COMPOSITE MSC DMG o o

Table 2.3.
Composite models in LS-DYNA - No failure models.

MAT Title Solid
Thin

shell

Thick

shell

116 MAT COMPOSITE LAYUP o

117 MAT COMPOSITE MATRIX o

118 MAT COMPOSITE DIRECT o

micro-cracks and cavities into the material. Continuum damage models represent a

smoother degradation than progressive damage models [20].
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2.2.1 MAT 054/055: Enhanced Composite Damage Model

MAT 054/055, also known as Enhanced Composite Damage Material Model, is a

progressive damage model that is widely used in the analysis of shell-like structures

made of orthotropic materials, e.g., the unidirectional plies of composite laminates

[21]. This is the material model used in this work. MAT 054/055 has been widely

applied in the study of large-scale structural problems because it is computationally

efficient. It requires few parameters for the definition of orthotropic materials. Crash

simulations using MAT 054/055 have successfully reproduced experimental results of

many studies [22], [17].

An explanatory review of MAT 054/055 is found in [23] and [24]. Those ref-

erences in combination with the LS-DYNA’s Manual of Material Models [21] are

recommended to gain more insight about MAT 054/055.

The material parameters can be classified as constitutive, ply failure (damage

onset), damage factors, ply deletion, element deletion, shear weighting and failure

criteria as shown in Fig. 2.1 [23] [24].

Constitutive parameters [23]

In MAT 054/055, the stress-strain behavior in the elastic zone along the longitudi-

nal direction (a-direction/fiber), transverse direction (b-direction/matrix) and shear

direction (ab-direction) is defined as follows,

εaa =
1

Ea

(σaa − νabσbb) (2.1)

εbb =
1

Eb

(σbb − νbaσaa) (2.2)

2εab =
1

Gab

σab − ασab3 (2.3)
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Figure 2.1. MAT 054/055 input card example

The coefficient α of Eq. 2.3 is a weighting factor for the non-linear shear stress.

The weighting factor is not determined experimentally but by calibration of the FE

model.

Ply failure (damage onset) [1, 21, 23]

The material strengths define the ply failure and the onset of the degradation of

elastic properties. The difference between Materials 54 and 55 is the failure criteria

used to limit the ply stresses that start the degradation process. Material 54 uses

Chang-Chang criteria and Material 55 implements Tsi-Wu criteria. The degradation

scheme reduces certain elastic properties to zero when a failure criterion has been

reached.

The degradation process for Material 54 (Chang-Chang failure criteria) is given

as follows,
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Tensile fiber mode:

σaa > 0→ ef
2 =

(σaa
Xt

)2
+ β

(σab
Sc

)
− 1

≥ 0 failed,

< 0 elastic

If failed: Ea = Eb = Gab = νba = νab = 0 (2.4)

Compressive fiber mode:

σaa < 0→ ec
2 =

(σaa
Xc

)2
− 1

≥ 0 failed,

< 0 elastic

If failed: Ea = νba = νab = 0 (2.5)

Tensile matrix mode:

σbb > 0→ em
2 =

(σbb
Yt

)2
+
(σab
Sc

)2
− 1

≥ 0 failed,

< 0 elastic

If failed: Eb = νab = 0→ Gab = 0 (2.6)

Compressive matrix mode:

σbb < 0→ ed
2 =

( σbb
2Sc

)2
+

[( Yc
2Sc

)2
− 1

]
σbb
Yc

+
(σab
Sc

)2
− 1

≥ 0 failed,

< 0 elastic

If failed: Eb = νba = νab = 0→ Gab = 0 (2.7)

Material 55 implements Tsi-Wu criteria. The Tsi-Wu criteria for the tensile and

compressive fiber modes are the same as the Chang-Chang criteria, but the tensile

and compressive matrix modes are different. They are given by the expression:

emd
2 =

σbb
2

YcYt
+
(σab
Sc

)2
+

(Yc − Yt)σbb
YcYt

− 1

≥ 0 failed,

< 0 elastic

If failed: Eb = νba = νab = 0→ Gab = 0 (2.8)
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Damage factors [23]

Damage factors are used to degrade the strengths of the material.

If compressive matrix failure occurs, FBRT and YCFAC reduce the tensile and

compressive strengths of the fiber, XT and XC, as follows,

XTreduced = XT · FBRT (2.9)

XCreduced = YC · YCFAC (2.10)

Where YC is the transversal compressive strength of the material.

In crash events, the material strengths are reduced by the SOFT factor as follows,

{XT,XC,YT,YC}reduced = {XT,XC,YT,YC} · SOFT (2.11)

The FBRT, YCFAC and SOFT parameters cannot be determined experimentally

but by calibration of the FE model.

Ply deletion [23]

The deletion of the plies is controlled by five strain values. Once one ply has

reached one of those values, it is deleted from the laminate. Of the five deletion

strains, four can be determined experimentally. They are the failure strains in the

positive fiber direction (tension) DFAILT, in the negative fiber direction (compres-

sion) DFAILC, in the matrix direction (transverse failure strain) DFAILM, and in

shear DFAILS. The last value corresponds to the Effective Failure Strain (EFS). It is

given by:

EFS =

√
4

3
(εaa2 + εaaεbb + εbb2 + εab2) (2.12)

Element deletion [23]

In MAT 054/055, a shell element is deleted when all its plies, represented by

integration points, have reached one of the failure strains.
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The time parameter, TFAIL, leads to the deletion of shell elements that are highly

distorted to avoid numerical instabilities. It is given by,

TFAIL ≤ 0 : No element deletion by time step

0 < TFAIL ≤ 0.1 : Element deletion when its time step is smaller than TFAIL

TFAIL > 0.1 Element is deleted when
current time step

original time step
< TFAIL

2.3 Basic LS-DYNA Keywords for Composites Analysis

Once the material model has been selected, there are other basic keywords that

must be included in the LS-DYNA input deck to perform composite analysis. The

purpose of this section is to describe some of them.

LS-DYNA provides many options to define the layup (stacking sequence) of a

laminate. Table 2.4 shows the three most common ways.

Table 2.4.
Keywords options to define a laminate in LS-DYNA.

Option Keywords

1 SECTION SHELL and INTEGRATION SHELL

2 PART COMPOSITE

3 ELEMENT SHELL COMPOSITE

In this study, the composite laminates are defined using SECTION SHELL and

INTEGRATION SHELL.

2.3.1 INTEGRATION SHELL

INTEGRATION SHELL card is used to define an integration rule through the

thickness of the shell element. The layers of the laminate are represented by each

integration point. To define laminates whose layers have the same material and
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thickness, ESOP (equal spacing of integration points option) is set to 1. ESOP is

set to 0 when working with hybrid laminates (plies with different materials) or plies

with different thicknesses. In those cases an integration point coordinate (S) and a

weighting factor must be defined [25].

2.3.2 SECTION SHELL

In SECTION SHELL card, the integration rule that represents the laminate layup

is included in the field QR/IRID (Quadrature rule or Integration rule ID). The to-

tal thickness of the laminate is written in the shell thickness box (T1). Finally,

the fiber orientation of each ply is defined by setting the ICOMP (Flag for or-

thotropic/anisotropic layered composite material model) to 1. Once ICOMP has

been set to 1, a table to define the fiber orientations is activated as shown in Fig. 2.2.

Figure 2.2. Example of SECTION SHELL keyword.

2.3.3 PART COMPOSITE

PART COMPOSITE card is a simplified option to define a composite material for

shell and thick shell elements. It couples the functionalities of the SECTION SHELL

and INTEGRATION SHELL cards. In PART COMPOSITE, the thickness, fiber

orientation and material of each layer is defined in a table (Fig. 2.3). The laminate

thickness is the sum of the thickness of each integration point [25].
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Figure 2.3. Example of PART COMPOSITE keyword.

2.3.4 ELEMENT SHELL COMPOSITE

Another option to define a composite laminate is to use the ELEMENT SHELL

COMPOSITE keyword. As in PART COMPOSITE, the thickness, fiber orientation

and material of each layer is defined in a table. ELEMENT SHELL COMPOSITE

card can be used when the composite material need to be defined in a shell-element

basis form.

2.3.5 CONTROL ACCURACY

The material coordinate system of orthotropic elements is highly sensitive to in-

plane shearing and hourglass deformations. The CONTROL ACCURACY card con-

tains the Invariant Node Numbering (INN) option. When this option is activated (2

for shell elements, 3 for solid elements, and 4 for both shell and solid elements), the

material coordinate system is automatically updated as the simulation progresses [1].

The INN effect is illustrated in Fig. 2.4.
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Figure 2.4. Effect of CONTROL ACCURACY over the material co-
ordinates of deformed shell elements.

2.3.6 CONTROL SHELL

CONTROL SHELL provide several options to modify the response of shell ele-

ments. In composites analysis, Laminated Shell Theory (LST) is activated (set to

1) to correct the assumption that shear stress is uniform and constant through the

laminate thickness. This correction is important when there are notable differences

in the elastic properties among plies [25].

2.3.7 DAMPING PART STIFFNESS

According to Andersson [26] as well as LS-DYNA developers [25], stiffness damp-

ing is an effective form of controlling nonrealistic failure in high-velocity impact sim-

ulations with composites. A Rayleigh stiffness damping between 0.01 and 0.25 is

recommended [25].
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3. SURROGATE-BASED GLOBAL OPTIMIZATION

3.1 Metamodel Generation

There are several mathematical techniques for the construction of surrogates mod-

els. In the case of impact analysis, polynomials, response surface, radial basis func-

tions, multivariate adaptive regression splines (MARS) and (Gaussian Process) Krig-

ing have been used succesfully [27, 28].

Kriging metamodel is used in this work since it provides high accuracy, facility to

perform optimization and design space exploration [15, 16,27]. Additionally, Kriging

provides estimations of the accuracy of its predictions. This feature enables the

possibility of using predictions’ uncertainties to direct the optimization towards the

global optimums while the metamodel is continuously enhanced along the searching

process.

3.1.1 Kriging

Kriging metamodel, also known as Gaussian Process interpolation, is a surrogate

model to approximate deterministic data [29]. Kriging surrogates have extensively ap-

plied in global optimization, design space exploration, variable screening, visualization

of input-output interactions and tradeoff analysis between competing functions [16].

To gain more insight about the methodology, an extensive mathematical analysis of

Kriging surrogates is developed in [15]. Due to the popularity of Kriging among

researchers, it has been extended to other applications such as stochastic problems,

and the combination of high and low fidelity information [30]. Various Matlab im-

plementations of Kriging surrogates have been developed [29, 30]. Among them, the

ooDACE Matlab toolbox is used in this work [30].
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Kriging prediction Y (x) can be studied as a two-step process: f(x) and Y (x).

In this process, f(x) is a function that represents the main trend of the data and

Z(x) is a Gaussian Process that refines the prediction by using residuals information.

Kriging prediction is defined as follow,

Y (x) = f(x) + Z(x) (3.1)

where f(x) is a regression (or trend) function and Z(x) is a Gaussian process with

mean 0, variance σ2 and correlation matrix Ψ [30].

Depending on the form of the regression function, Kriging acquires different de-

nominations. It is Simple Kriging if the regression function is assumed to be a known

constant, e.g., f(x) = 0. A more popular version is Ordinary Kriging. It assumes a

constant regression function but with unknown value f(x) = α0. If necessesary, more

complex functions can be defined like Universal Kriging that defines the regression

function as a multivariate polynomial [30] as follow,

f(x) =

p∑
i=1

αibi(x) (3.2)

where (α1, ..., αp) are the regression coefficients and (b1(x), ..., bp(x)) are the basis

functions of the polynomial.

Considering a set of n samples, X = {x1, ..., xn} in d dimensions whose func-

tion values are y = {y1, ..., yn}. The regression function and stochastic process are

mainly represented by the n× p model matrix F and the n×n correlation matrix Ψ,

respectively.

F =


b1(x

1) . . . bp(x
1)

...
...

...

b1(x
n) . . . bp(x

n)



Ψ =


ψ(x1, x1) . . . ψ(x1, xn)

...
. . .

...

ψ(xn, x1) . . . ψ(xn, xn)


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where ψ(·, ·) is the correlation function with hyperparameters θ.

Depending on the regression function f(x), the Kriging predictor takes different

forms. Its general form is,

ŷ(x) = Mα + r(x)T Ψ−1 (y− Fα) (3.3)

where M = (b1(x) b2(x) . . . bp(x)) is a 1 × p vector that contains the values

of the basis functions evaluated at predicting point x, α is the vector of regression

coefficients, α = (F TΨ−1F )−1F TΨ−1y. r(x) = (ψ(x, x1) . . . ψ(x, xn))T is a n × 1

vector that contains the correlation values between the predicting point x and the

samples X.

A popular version of the Kriging predictor is the Best Linear Unbiased Predictor

of Eq. 3.4. This form is utilized in the work of Jones et. al [16] for surrogated-based

optimization.

ŷ(x) = µ̂+ r(x)T Ψ−1 (y− 1µ̂) (3.4)

where µ̂ is the response of the regression function for x, and 1 is a n× 1 vector of

ones. The variance of the Kriging prediction is defined as,

s2(x) = σ2
(

1− r(x)TΨ−1r(x) +

(
1− 1TΨ−1r(x)

)2
1TΨ−11

)
(3.5)

The variance of the stochastic process, σ2, µ̂, and the hyperparameters θ of the

correlation function are determined by Maximum Likelihood Estimation (MLE) [16].

The variance is an estimation of the accuracy of the prediction.

It is important to say that Eq. 3.3 and 3.4 define Kriging as an interpolation

model. Therefore, if ŷ(x) is evaluated at a sample point xi, the prediction must be

equal to yi, and the prediction variance s2(xi) must be equal to zero since no error is

expected (high correlation of the evaluated point) as shown in Fig 3.1.
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Figure 3.1. Kriging predictions and uncertainties.

In order to demonstrate that Kriging is an interpolation technique, a sample point

xi is used. If x = xi is evaluated in r(x), r(x) will be equivalent to the ith column of

Ψ. Then, the result of r(x)TΨ−1 is,

r(x)TΨ−1 = (Ψ−1r(x))T = (Ψ−1Ψi)
T = eTi (3.6)

where ei is a ith unit vector.

Now, it is possible to demonstrate that Kriging is an interpolation model if Eq.

3.6 is replaced in Eq. 3.4,

ŷ(xi) = µ̂+ ei (y− 1µ̂) = yi (3.7)

The effect of the correlation in the Kriging prediction is illustrated in Fig. 3.2.

If a point x∗, close to the sample point x(2), is evaluated. It is expected that the

prediction of x∗ is going to be close to y(2) because there is high correlation between

x∗ and x(2). Additionally, the prediction of x∗ has high accuracy due to its proximity

to a sample point.

The lowest variance, occurs when x is a sample point. If x = xi, it follows that,
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Figure 3.2. Illustration of how correlation affects Kriging prediction.
The prediction of x∗, that is close to the sample point x(2), should
be adjusted from the regression line to take into account the positive
residual at x(2).

r(xi)T Ψ−1r(xi) = r(xi)
T ei = ψ(xi, xi) = 1 (3.8)

and,

1TΨ−1r(xi) = 1T ei = 1 (3.9)

If Eq. 3.8 and 3.9 are replaced into 3.5, s2(xi) = 0. This shows that accurate

predictions are obtained when the predicting point x is near to the samples X.

Correlation functions [16,30]

Although there are several options to define the correlation function ψ(x, x′),

it must be chosen adequately in order to obtain accurate Kriging surrogates. A

commonly correlation function is defined by

d(x, x′) =
d∑

i=1

θi|xi − x′i|pi (3.10)

ψ(x, x′) = exp
[
− d(x, x′)

]
(3.11)

Eq. 3.10 represents a weighted distance between the points x and x′. θi and pi

are the hyperparameters of the correlation function that are estimated by MLE.
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Eq. 3.11 reflects the dependency of the correlation with respect to the distance

d(x, x′). The function shows that there is high correlation between points when the

distance is small. Therefore, the more influence those points have in the prediction.

Conversely, when the distance increases, the correlation function drops to zero with

a rate that depends on the hyperparameters.

The parameters pi reflects the smoothness of the model. Commonly pi is set to

two (Gaussian correlation). A value of two is used under the assumption that the

data represents a smooth function. If the Kriging metamodel represents less smooth

functions, a value of one is used (Exponential correlation). Fig. 3.3 illustrates the

effect of pi (the higher the value, the smoother the correlation function).

Figure 3.3. Effect of pi in the correlation function.

The remaining set of parameters θi have values higher than zero, and measure

the activity of the ith component of x and x′. Large values of θi means that the

ith components are active since even small distance values lead to large changes in

the response. Statistically, it means that there is a low correlation between points

even with small values of |xi − x′i|. The hyperparameters θi determine how fast the

correlation function drops to zero as illustrated in Fig. 3.4.
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Figure 3.4. Effect of θi in the correlation function.

As stated before the values θi and pi are determined in the MLE. Commonly, pi

is predefined and fixed and only the parameters θi are calculated.

Maximum Likelihood Estimation [16]

Once the regression and correlation functions have been chosen, the next step is

to determine the model parameters µ, σ, θ1, . . . , θd, and p1, . . . , pd. The Concentrated

Likelihood Function can be maximized in the MLE.

L =
1

(2π)n/2(σ2)n/2|Ψ|1/2
exp
[
− (y− 1µ)TΨ−1(y− 1µ)

2σ2

]
(3.12)

Eq.3.12 is the likelihood function of the sample. Being d the dimension of the

design space, the likelihood function has 2d + d variables (µ, σ, θ1, . . . , θd, p1, . . . , pd)

that need to be determined. Ψ is the correlation matrix of the sample points, and y

is the column vector of the sample responses.

If the hyperparameters θ1, . . . , θd, and p1, . . . , pd are predefined, the likelihood

function can be maximized with respect to µ and σ leading to the expressions,
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µ̂ =
1TΨ−1y

1TΨ−11
(3.13)

and

σ̂2 =
(y− 1µ̂)TΨ−1(y− 1µ̂)

n
(3.14)

The Concentrated Likelihood Function (CLF) is obtained when Eq. 3.13 and

3.14 are replaced in Eq. 3.12. CLF is maximized to find the hyperparameters of the

correlation function Ψ. Then, the θd,and pd estimates are used to update the values

of µ̂ and σ̂2 using Eq. 3.13 and 3.14 again.

3.1.2 Latin Hypercube Sampling

Design and Analysis of Computer Experiments (DACE) arises in the scenario of

selecting the sample points to be simulated in order to increase the accuracy of the

surrogate model. In the case of expensive simulations, it is important to define a

sampling strategy with space-filling properties. Methodologies like random sampling,

stratified sampling and Latin hypercube sampling (LHS) can be used [29,31].

Among the mentioned options, it has been proved that LHS provides samples with

better space-filling properties. This design strategy ensures that all the portions of

the design space are represented in a stratified manner by a given number of sample

points P [32]. LHS is used in this work to generate the initial Kriging metamodels.

The components of the LHS matrix are defined as,

Spk =
ηpk − 0.5

P
(3.15)

where P is the number of sample points, k is the design space dimension, and

η1k, . . . , ηpk are uniform random permutations of the integers 1 through P .
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Although Eq. 3.15 defines sample points with excellent space-filling properties,

they can have undesirable correlations. There are several approaches to reduce the

correlation of the sample points, e.g., maximization of the minimum inter-site dis-

tances [15,33] and correlation minimization methods [34]. The correlation minimiza-

tion is implemented in this work to generate the LHS. Fig. 3.5 shows a high correlation

LHS and an optimized LHS with correlation minimization method.

Figure 3.5. LHS with P=5. High correlation sampling and low corre-
lation sampling due to correlation minimization method.

3.1.3 Model Validation

A common approach to estimate the accuracy of a surrogate is to select a few

additional points to compare the metamodel prediction and the simulation response.

This validation method is not viable when dealing with expensive simulations. In such

cases, cross-validation is preferred since it does not require additional simulations.

The metamodel accuracy is evaluated using the data of the already simulated samples

[33].

Cross-validation involves grouping the sample responses randomly. Then, one

design, named y(xi), is removed from the P samples. Finally, a P − 1 surrogate with

the remaining designs is created. Next, the error between the actual response and the

prediction of the P − 1 surrogate at sample xi is calculated, ep = |y(xi)− yP−1(xi)|.
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The process is repeated for all the samples to determine the PRESS vector [15, 35].

Fig. 3.6 illustrates cross-validation at the second sample.

PRESS = eTe (3.16)

The PRESS vector is the predicted residual error sum of squares (PRESS). It

contains all the cross-validated errors ep. The root-mean square error of the PRESS

vector is calculated using Eq. 3.17. A low PRESSRMSE suggests an accurate meta-

model. This is the metric used to validate the metamodels of this study and select

the initial metamodel for the optimization.

PRESSRMSE =

√
1

P
eTe (3.17)

Figure 3.6. Cross-validation at the second sampled point.
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3.2 Metamodel-Based Global Optimization

Once the Kriging metamodels have been constructed and validated, the optimiza-

tion algorithm is implemented. In this work, the Efficient Global Optimization (EGO)

algorithm proposed by Jones et al. [16] is applied. EGO provides an excellent scheme

for surrogate-based global optimization since it balances metamodel exploitation and

design space exploration. EGO continuously improves the metamodel while search-

ing for the global optimum by selecting new samples that maximize the Expected

Improvement function of the surrogate at each iteration [15,16].

3.2.1 Expected Improvement

The Expected Improvement (EI) function calculates the amount of improvement

that is expected if a design x is sampled. EI functions is defined as,

E[I(x)] = E[max(fmin − F, 0)] (3.18)

where fmin = min{y1, ..., yn} is the best current value of the sample, and F is

a normally distributed random variable with mean and variance provided by the

Kriging surrogate (ŷ and s2). The closed form of the expected improvement is found

by replacing F = Normal(ŷ, s2) in Eq. 3.18 and integrating the right side [16].

E[I(x)] = (fmin − ŷ)Φ
(fmin − ŷ

s

)
+ sφ

(fmin − ŷ
s

)
(3.19)

where ŷ = ŷ(x) is the predicted value at x, s is the root square of the variance

of the Kriging prediction. Φ(·) is the cumulative density function (CDF), and φ(·) is

the probability density distribution (PDF).

The expected improvement of a sample in any place of the design space can be

evaluated using Eq. 3.19. Fig. 3.7 illustrates the EI function of the Kriging surrogate

with nine sample points. According to the figure, the metamodel is improved if points
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x = 0.142 and x = 0.704 are sampled. By sampling in this manner, the optimizer

balances between metamodel exploitation and design space exploration.

Figure 3.7. Expected improvement function with nine samples. The
left scale is for the objective function and the right scale for the ex-
pected improvement.

Fig. 3.8 shows the progress of the optimization process using maximization of

the EI function. The global optimizer is used to find the design that maximizes the

EI function. In this manner, the search leads to designs with promising performance

(minimum responses) as well as designs that improve the accuracy of areas with few

data (high uncertainty areas). As a result, the metamodel is continuously enhanced

while the optimizer searches for the global optimum [15].

When dealing with constrained problems, the aim of balancing exploration and

exploitation remains, but it is also required to include the feasibility of the new design

points. The EI function is modified to take into account the feasibility of new samples

by defining a constrained expected improvement (CEI) function. One option for CEI

is to assign an expected improvement value of zero to the unfeasible designs if they

can be determined directly. In this way, the optimizer only searches in feasible areas.
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Figure 3.8. Progress of the optimization process when the designs
that maximize the EI are sampled.

In some cases it is not possible to determine which designs are feasible and which

are not. To deal with such scenarios, surrogates for the model responses (objective

functions) and the constraints are created. Those surrogates provide error information

that is used to define the CEI as follow [15].

E[I(x) ∩ F (x)] = E[I(x)]P [F (x)] (3.20)

Eq. 3.20 is the CEI function. E[I(x)] is the expected improvement of a design x

and P [F (x)] is the probability that the constraint is satisfied.
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3.2.2 Multi-Objective Expected Improvement [15]

Commonly, engineering design involves solving problems with multiple, conflicting

objectives and demanding constraints. In such cases, it is necessary to define a multi-

objective expected improvement (MEI) function for the optimization algorithm.

Considering a problem with two objective functions, f1(x) and f2(x), that need

to be minimized, e.g., weight and impact force. It is possible to sample a design

x to obtain the responses y1 and y2. By evaluating a sample plan X, the response

vectors y1 and y2 are formed. Then, from those values an initial Pareto front (set of

m non-dominated responses) is identified.

y∗1,2 =
{

(y
∗(1)
1 , y

∗(1)
2 ), (y

∗(2)
1 , y

∗(2)
2 ), . . . , (y

∗(m)
1 , y

∗(m)
2 )

}
(3.21)

where y
∗(i)
j = fj(x

∗(i)) and x∗(i) is a Pareto design.

The expected improvement for the multi-objective problem is defined as:

E[I(x∗(p))] = P [I(x∗(p))] min(d1, . . . , dm) (3.22)

where P [I(x∗(p))] is the probability of improving both functions f1(x) and f2(x)

with a design x∗(p). This probability is calculated by integrating over the area to the

left and below the Pareto front of the two-dimensional probability density function.

min(d1, . . . , dm) determines the minimum Euclidean distance between one Pareto de-

sign and the probability integral centroid, (F̄1, F̄2), which lies below and to the right

of the Pareto front. Designs with high expected improvement will tend to either

augment or expand the Pareto front.

The probability of improvement is defined as:

P [I(x∗(p))] = Φ(ui1) +
m−1∑
i=1

[Φ(ui+1
1 )− Φ(ui1)]Φ(ui+1

2 ) + [1− Φ(um1 )]Φ(um2 ) (3.23)
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where uij = uij(x
∗p) = (y

∗(i)
j − ŷj(x

∗(p)))/σj(x
∗(p)). The values of ŷj(x

∗(p)) and

σj(x
∗(p)) correspond to the prediction and variance calculated using the Kriging sur-

rogate.

The Euclidean distance between a member of the Pareto front, (y
∗(i)
1 , y

∗(i)
2 ), and

the centroid of the probability integral is given by,

√(
F̄1(x∗(p))− y∗(i)1

)2
+
(
F̄2(x∗(p))− y∗(i)2

)2
(3.24)

The centroid locations are defined as,

F̄1(x
∗(p)) =

1

P [I(x∗(p))]

[
z11 +

m−1∑
i=1

(zi+1
1 − zi1)Φ(ui+1

2 ) + zm1 Φ(um2 )
]

(3.25)

where zij = zij(x
∗(p)) = ŷj(x

∗(p))Φ(uij) − σj(x∗(p))φ(uij). The value of F̄2(x
∗(p)) is

defined similarly.

Fig. 3.9 is an illustration of the components involved in the MEI function.

Figure 3.9. Multi-objective expected improvement. Centroid of the
probability integral (red dot), Pareto front (blue dots) and predicted
responses of sample x (green dot).
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3.2.3 The Efficient Global Optimization Algorithm

The Global Efficient Global Optimization (EGO) algorithm proposed by Jones

et. al [16] combines the principles of Kriging metamodel, Latin hypercube sampling,

metamodel validation and expected improvement in order to perform the optimization

process. It is described as follows,

Step 1. Intitial metamodel: The design space is sampled. The initial sample

points are selected using Latin hypercube technique. In this work, the correlation

minimization option provided by Matlab (lhsdesign) was used in order to improve

the space-filling properties of the samples. A practical rule to select the number of

samples is P ' 10× k. Where P is the number of samples, and k is the dimension of

the design space [16].

After having simulated the sample designs, initial Kriging surrogates are created.

The parameters of the metamodels are obtained by maximizing the likelihood of the

sample (MLE).

Step 2. Metamodel validation: Cross-validation is used to estimate the ac-

curacy of the Kriging surrogates. Root-mean square error (RMSE) of the predicted

residual error sum of squares (PRESS) is used to estimate the accuracy of the meta-

models. The metamodels with the lowest value is selected as the initial metamodel

for the optimization.

Step 3. Metamodel-based global optimization: After the initial metamodel

has been validated, the global optimization process is performed iteratively. The

EI function is maximized at each iteration until a convergence criteria, e.g., if the

improvement is less than a predefined value (0.01%) the process is terminated. Oth-

erwise, the Kriging surrogate is updated with the response of the sample point that

maximizes the EI at each iteration. The process is repeated until convergence crite-

ria are satisfied or the maximum number of iterations is consumed [16]. Fig. 3.10

illustrates EGO algorithm.
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Figure 3.10. Efficient global optimization algorithm.

3.3 Global Optimization of Composite Materials Parts under Dynamic

Loading

Although FE codes are capable of solving complex problems, it is difficult and

often impractical to directly combine optimization algorithms and FE models since

long-running simulation times are required. Also, reliable sensitivity coefficents are

absent at the end of the simulation. To overcome those limitations, surrogate models

are implemented in the optimization process. In this work, EGO algorithm performs

the global optimization of composite parts under dynamic loading. MATLAB is used

for generation of the sample designs, LS-DYNA interfacing, extraction of results from

LS-DYNA output files and data analysis. The MATLAB - LS-DYNA implementation

of EGO is illustrated in Fig. 3.11.



38

Figure 3.11. Efficient global optimization algorithm MATLAB - LS-DYNA.

In order to perform the optimization analysis of a particular problem, a master

LS-DYNA input file is created. The master file defines the boundary conditions,

simulation parameters and the design variables for the optimization problem. The

master file is used to create input decks of the designs that are going to be sampled

through the optimization process.

At the beginning, there are P LHS samples whose designs are created and simu-

lated. At the end of each simulation, the LS-DYNA output files are post-processed

to extract the data for the initial Kriging metamodel. In the case of multi-objective
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optimization, more than one metamodel is created. The metamodel with the lower

PRESSRMSE is selected as the initial metamodel for the optimization.

The EI is maximized to provide designs for metamodel updating or convergence

evaluation. Genetic algorithms are used to perform the EI maximization since they

are effective with non-linear and non-convex function. Additionally, they are well

suited to work with mixed variable optimization problems [36].

If the maximum improvement is less than a predefined value, e.g. 0.01%, conver-

gence is achieved and the process is terminated. Otherwise, the master file is used to

create a new input deck for simulation. The new file is based on the sample at which

the EI is maximized.

The input file is simulated, the LS-DYNA output files are post-processed in order

to update the Kriging metamodel. The process is repeated iteratively until either

convergence or the maximum number of iterations are reached.
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4. NUMERICAL EXAMPLES

In this chapter four application examples are included to illustrate the use of EGO for

the global optimization of composite material parts. The first two examples are sin-

gle objective optimization problems, and the others are multi-objective optimization

problems.

LS-DYNA material model MAT 054/055, known as MAT ENHANCED COM-

POSITE DAMAGE, is used in this work. The material parameters are shown in

Table 4.1. The mechanical properties correspond to carbon fiber T700GF 12k/2510

unidirectional tape. Those values are taken from AGATE Design Allowables [37].

The addtional parameters are included in the study of Bonnie et. al [38].

The composite parts are modeled using shell formulation (ELFORM = 16). This

is a very efficient fully integrated shell formulation that does not undergo hour-glass

effects (spurious strain energy modes) because of its four in-plane integration points

scheme.

Regarding the impactors, they are modeled using MAT RIGID 020. Their prop-

erties are included in Table 4.2.

The contacts between the composite parts and the rigid bodies are modeled using

CONTACT AUTOMATIC SURFACE TO SURFACE with a friction coefficient of

0.3 to allow sliding movement. CONTACT SINGLE SURFACE with a friction co-

efficient of 0.1 is also included to account for the contact among different composite

parts.

The laminate layup is defined in the INTEGRATION SHELL card. The material

coordinate system is updated with CONTROL ACCURACY (INN=2). Laminated

shell theory is activated in CONTROL SHELL (LST=1). Finally, a coefficient of 0.05

is defined in DAMPING PART STIFFNESS.
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Table 4.1.
MAT 054/055 parameters for application examples

Variable Property Value

RO Density 1.500E-09 ton/mm3

EA Axial Young’s modulus 1.248E+05 MPa

EB Transverse Young’s modulus 8.412E+03 MPa

GAB Shear modulus 4.206E+03 MPa

PRBA Minor Poisson’s ratio 0.02

XT Axial tensile strength 2164.96 MPa

XC Axial compressive strength 1447.90 MPa

YT Transverse tensile strength 48.88 MPa

YC Transverse compressive strength 198.57 MPa

SC Shear strength 154.44 MPa

DFAILT Axial tensile failure strain 0.0174 mm/mm

DFAILC Axial compressive failure strain -0.0116 mm/mm

DFAILM Transverse failure strain 0.024 mm/mm

DFAILS Shear failure strain 0.03 mm/mm

EFS Effective failure strain 0 mm/mm

TFAIL Time step failure value 0 s

FBRT Fiber tension damage factor 0.5

YCFAC Fiber compression damage factor 1.2

SOFT Crush-front damage parameters 0

ALPH Factor for the non-linear term in shear stress 0.1

BETA Shear factor in fiber tension 0.5

In the validation step, the surrogates of Table 4.3 are constructed and the one with

the lowest PRESSRMSE value is selected to continue with the optimization process.
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Table 4.2.
MAT 020 parameters for application examples

Variable Property Value

E Young’s modulus 2.10E+05 MPa

PR Poisson’s ratio 0.30

Table 4.3.
Kriging surrogate forms

Surrogate Regression function Correlation function

1 Zero-order polynomial Gaussian

2 First-order polynomial Gaussian

3 Second-order polynomial Gaussian

4 Zero-order polynomial Exponential

5 First-order polynomial Exponential

6 Second-order polynomial Exponential

4.1 Minimum Penetration under Dynamic Load on an Armor Plate

In the following examples, a composite armor plate is impacted by a rigid sphere.

The optimization algorithm will find the fiber orientations of the laminate that

minimize the armor’s penetration. Two scenarios are studied, symmetric and non-

symmetric impact.

The dimensions of the plate are 200×200×2 mm with fixed edges. The armor

is made of a symmetric laminate (layup = [θ1/θ2]s) of four plies. Each ply has a

thickness of 0.5 mm. For the ease of manufacturing the orientations are restricted to

increments of 5 deg. between -90 and 90 deg.

The rigid sphere has a diameter of 60 mm and a mass of 0.25 kg. It has an initial

velocity of 10 m/s, perpendicular to the plate.
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For the numerical analysis, the plate has a mesh of 50×50 identical finite elements.

The convergence criteria to terminate the optimization is an expected improvement

less than 1×10−3, and the maximum number of iterations is 150.

The problem formulation is:

find θ ∈ R2

minimize d(θ)

subject to θi ∈ {−90◦,−85◦, . . . , 85◦, 90◦}

(4.1)

where θ = (θ1, θ2) are the fiber orientations, and d(θ) is the armor’s penetration.

4.1.1 Symmetric Impact

In this loading case, the sphere impacts at the armor’s center as illustrated in

Fig. 4.1. The 21 LHS samples of Table 4.4 are used to create the initial Kriging

metamodel for the armor’s penetration, d̂(θ) (Fig. 4.2).

Figure 4.1. Armor plate problem - symmetric impact

According to Table 4.5, the most appropriate surrogate for the armor’s penetration

has a second-order regression function and exponential correlation. Its PRESSRMSE

value is equal to 0.4769 (mm).
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Table 4.4.
LHS sampling - Armor problem

θ1(deg.) θ2(deg.) θ1(deg.) θ2(deg.) θ1(
◦) θ2(

◦)

70 -25 60 90 -80 70

-90 35 -25 55 55 -45

0 20 35 80 10 -80

90 45 -45 -20 20 25

-35 -55 25 -10 45 -60

-70 -35 -55 60 -60 -70

-10 10 -20 -90 80 0

Figure 4.2. Armor problem - symmetric impact. Initial Kriging surro-
gate of the armor’s penetration based on the 21 LHS sampled points
shown as dots.

Fig. 4.3 and 4.4 show the first six EGO iterations. By the end of the optimization,

the algorithm finds three optimal designs. Table 4.6 contains the number of iterations

required to find each optimal design. The results suggest that a cross-ply laminate,

[0◦/90◦]s, is the best option to minimize the armor’s penetration.
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Table 4.5.
Armor plate problem - symmetric impact. PRESSRMSE of Kriging
surrogates using different regression and correlation functions.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

0.5735 0.6584 0.4769 0.4912 0.5866 0.4793

Table 4.6.
Optimal designs armor problem, symmetric impact.

Iteration θ1(deg.) θ2(deg.) Penetration (mm)

8 0 -90 7.8206

20 90 0 7.8206

49 0 90 7.8206

Fig. 4.5 shows that the expected improvement continuously approach to zero after

each iteration. The convergence criteria is satisfied at iteration 71.

Fig. 4.6 shows the responses of the designs that are selected by EGO to update the

Kriging surrogate at each iteration. Some samples are used to exploit the surrogate

(low penetration values) while others are devoted to explore the design space (high

penetration values). The optimal solutions (lowest penetration values) are found at

iterations 8, 20 and 49.

Fig. 4.7 shows that EGO does not sample in the zones with the higher expected

improvement values in the last iterations. This behavior happens because of the

constraint on the degree-increments of the fiber orientation, {−90◦,−85◦, . . . , 90◦}.

The zones that are not sampled correspond to unfeasible orientations.
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Figure 4.3. EGO optimization progress - Armor problem, symmetric
impact. Current sample (grey), best current design (purple), last
sampled design (cyan). Iterations 1, 2 and 3.
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Figure 4.4. EGO optimization progress - Armor problem, symmetric
impact. Current sample (grey), best current design (purple), last
sampled design (cyan). Iterations 4, 5 and 6.
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Figure 4.5. Armor plate problem - symmetric impact. Expected im-
provement at each iteration.

Figure 4.6. Armor plate problem - symmetric impact. Response of
the designs sampled by EGO at each iteration. Optimal responses
(gray dots).
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Figure 4.7. EGO optimization progress - Armor problem, symmetric
impact. Current sample (grey), best current design (purple), last
sampled design (cyan). Iterations 69, 70 and 71.
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4.1.2 Non-Symmetric Impact

This example is proposed because of its difficulty to find intuitive solutions. To

obtain the non-symmetric conditions, the sphere impacts the armor with an offset of

50 mm and 70 mm from one vertex of the armor (Fig. 4.8).

Figure 4.8. Armor plate problem - non-symmetric impact

The same sample designs of Table 4.4 are used to generate the metamodels to

be validated. The best surrogate for the armor’s penetration has a second-order

regression function and an exponential correlation (Table 4.7). This surrogate has a

PRESSRMSE value of 0.5532 (mm). The initial Kriging surrogate is shown in Fig. 4.9.

Table 4.7.
Armor plate problem - non-symmetric impact. PRESSRMSE of Kriging
surrogates using different regression and correlation functions.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

0.6651 0.7294 0.5532 0.5696 0.6287 0.6208
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Figure 4.9. Armor problem, non-symmetric impact. Initial Kriging
surrogate of the armor’s penetration based on the 21 LHS sampled
points shown as dots.

Fig. 4.10 and 4.11 illustrate the first six-EGO iterations. They show that the

areas with high expected improvement values are sampled at the beginning of the

optimization process. In comparison with the symmetric impact, EGO needs more

iterations to find the optimal design under non-symmetric loading. The optimal

solution is found at iteration 67 (Fig. 4.13). The optimal layup is [−85◦/35◦]s. This

design has a maximum penetration of 6.6014 mm.

As in the symmetric loading case, the expected improvement of the surrogate ap-

proaches to zero along the optimization process. The convergence criteria is satisfied

at iteration 104 (Fig. 4.12).

Fig. 4.13 contains the responses of the samples added by EGO. Their values

reflect that the metamodel is exploited and that the design space is explored along

the optimization process. EGO selects designs that lead to EI maximization but

meeting the constraint of degree increments as shown in Fig. 4.14.
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Figure 4.10. EGO optimization progress - Armor problem, non-
symmetric impact. Current sample (grey), best current design (pur-
ple), last sampled design (cyan). Iterations 1, 2 and 3.
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Figure 4.11. EGO optimization progress - Armor problem, non-
symmetric impact. Current sample (grey), best current design (pur-
ple), last sampled design (cyan). Iterations 4, 5 and 6.
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Figure 4.12. Armor plate problem - non-symmetric impact. Expected
improvement at each iteration.

Figure 4.13. Armor plate problem - non-symmetric impact. Response
of the designs sampled by EGO at each iteration. Optimal response
(gray dot).
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Figure 4.14. EGO optimization progress - Armor problem, non-
symmetric impact. Current sample (grey), best current design (pur-
ple), last sampled design (cyan). Iterations 102, 103 and 104.
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4.2 Minimum Displacement and Acceleration under Dynamic Load on a

Composite Tube

In the following examples, the composite tube is impacted by a rigid wall. Two

loading cases are studied, axial and oblique impact. In order to control the collapse

of the tube, it is divided in four sections. The sections are made of 4, 6, 8 and 10

plies that form angle-ply laminates, [± θ]n, e.g., a [45◦/−45◦/45◦−45◦] laminate is a

possible design for the section with 4 plies. Each ply has a thickness of 0.5 mm. For the

ease of manufacturing the orientations are restricted to {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}.

The composite tube has an square section of 100×100 mm and a length of 1 m.

One end of the tube is fixed. The rigid wall has a mass of 1000 kg and an initial

velocity of 2.5 m/s.

For the numerical analysis, the composite tube has 4000 identical finite elements

of size 10×10 mm. The convergence criteria to terminate the optimization is an

expected improvement less than 1×10−3. The maximum number of iterations is 150.

The optimization algorithm finds the lengths of each section of the tube and

the fiber orientation that minimize the displacement of the rigid wall and its peak

acceleration during the impact. The formulation of the optimization problem is,

find x ∈ R4

minimize f1(x) : maximum displacement of the wall

minimize f2(x) : peak acceleration of the wall

subject to 0 ≤ xi ≤ 150

θ ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

(4.2)

where x = [x1 x2 x3 θ], xi are the lengths of the first three tube sections and θ is the

fiber orientation that define the angle-ply laminates.
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4.2.1 Axial Impact

In this example, the rigid wall impacts the composite tube axially as illustrated in

Fig. 4.15. The 43 LHS samples of Table 4.8 are used to create the initial metamodels

for the displacement and acceleration of the wall (f1(x) and f2(x)). Fig. 4.16 shows

the distribution of the samples in the design space.

Figure 4.15. Composite tube problem - axial impact.

According to Table 4.9, the best surrogate for the displacement has a first-order

regression function and exponential correlation. In the case of the acceleration, a zero-

order regression function and exponential correlation leads to the lowest PRESSRMSE

(Table 4.10).

Fig. 4.17 shows the responses of the 43 LHS samples. At each iteration, EGO

maximizes the multi-objective expected improvement function in order to find designs

that improve (expand) the current Pareto front. Fig. 4.18 contains the first four EGO

iterations. The first expansion of the Pareto front occurs at iteration 3.
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Table 4.8.
LHS sampling - Composite tube problem

x1 x2 x3 θ x1 x2 x3 θ x1 x2 x3 θ

(mm) (deg,) (mm) (deg.) (mm) (deg.)

120 90 110 60 70 50 40 60 20 120 140 30

100 30 140 75 20 140 80 30 0 10 130 0

100 40 20 15 100 40 130 90 10 50 100 75

120 100 30 45 140 140 90 90 80 110 90 60

60 70 10 75 20 60 20 75 130 120 50 75

80 50 70 90 130 60 60 15 40 20 140 15

80 90 40 45 10 20 10 30 60 30 20 60

50 120 130 0 90 10 80 0 140 100 100 45

50 80 10 45 110 40 60 60 130 70 90 0

40 80 0 0 60 110 150 75 90 90 120 30

50 80 80 15 110 130 110 90 140 30 60 15

30 60 110 45 120 100 70 30 90 20 100 60

110 10 40 90 70 0 120 45 40 130 120 15

150 110 30 60 30 130 30 0

10 150 50 30 30 140 50 90

Table 4.9.
Composite tube problem - axial impact. PRESSRMSE values of the
Kriging metamodels for the wall displacement.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

47.9857 45.5177 143.282 59.6901 64.9324 154.2355

Due to the different units of the objective functions, the multi-objective expected

improvement is normalized to have a dimensionless value from zero to one. To obtain
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Table 4.10.
Composite tube problem - axial impact. PRESSRMSE values of the
Kriging meatmodels for the peak acceleration of the wall.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

6.23E+04 1.01E+05 1.67E+05 9.23E+04 9.78E+04 1.49E+05

x2

θ

x3

x1 x2 θ

Figure 4.16. Composite tube problem. Sampling over design space
using 43 LHS designs.
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Figure 4.17. Composite tube problem - axial impact. Initial responses
for the 43 LHS samples. LHS samples (grey), Pareto front (purple).

this dimensionless value, the distance between the centroid of the probability integral

(F̄1(x), F̄2(x)) and the closest Pareto design ((y1∗, y2∗)) is scaled to a value between

0 and 1. The normalized expected improvement is defined as,

Ē[I(x∗(p))] = P [I(x∗(p))] min(d̄1, . . . , d̄m) (4.3)

Fig. 4.19 shows the responses of the samples at iteration 150. Although the

algorithm tends to obtain evenly spaced designs along the Pareto front, there is a

large number of designs that present low accelerations and large displacements. Fig.

4.20 is a comparison between the initial and final Pareto Fronts. EGO has improved

the Pareto front by replacing almost all the initial designs. Table 4.11 contains the

new optimal designs.

Regarding the algorithm convergence, Fig. 4.21 shows that the expected improve-

ment decreases along the optimization. EGO requires more iterations to satisfy the

stopping criterion.
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Figure 4.18. EGO optimization progress - Composite tube problem,
axial impact. Dominated designs (grey), Pareto front (purple), last
sampled design (cyan). Iterations 1, 2, 3 and 4.

It is observed than some designs of the final Pareto front are non-feasible. The

supports of the designs whose displacements are larger than 200 mm fail during the

impact. This failure allows large displacements and low accelerations that EGO

misinterprets as optimal solutions. The zone of non-feasible designs is shown in Fig.

4.22.

To avoid the sampling of non-feasible designs, the wall is limited to have displace-

ments less or equal to 200 mm. The new constrained optimization problem is defined

as,
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Figure 4.19. Composite tube problem - axial impact. Responses at
the last iteration. Dominated designs (grey), Pareto front (purple).

Figure 4.20. Composite tube problem - axial impact. Initial and final Pareto fronts.
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Figure 4.21. Composite tube problem - axial impact. Expected im-
provement at each iteration.

Figure 4.22. Composite tube problem - axial impact. Non-feasible
designs in the final Pareto front.
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find x ∈ R4

minimize f1(x) : maximum displacement of the wall

minimize f2(x) : peak acceleration of the wall

subject to f1(x) ≤ 200

0 ≤ xi ≤ 150

θ ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

(4.4)

The MEI function is modified to include the constraint effect in the optimiza-

tion process. A metamodel for the constraint is created when its functional form is

unknown. Then, the probability that a predicting point x satisfies the constraint is

included in the EI formulation.

E[I(x) ∩G(x)] = E[I(x)]P [G(x)]

Where E[I(x) ∩ G(x)] is the constrained expected improvement and P [G(x)] is

the probability that the constraint G(x) is satisfied at the predicting point x.

The probability of constraint satisfaction is calculated as,

P [G(x)] =
1

2

[
1 + erf

(gmax − ĝ(x)√
2ŝ(x)

)]
where gmax is the constrain limit (200 mm in this example) ĝ(x) and ŝ(x) are the

prediction and variance provided by the Kriging surrogate of the constraint.

Fig. 4.23 shows the samples responses at the last iteration using the constrained

MEI. The constraint stimulates the sampling before the limit value (200 mm). More

feasible optimal designs are present in the final Pareto front (Table 4.12).

In Fig. 4.24 the final Pareto fronts using constrained and unconstrained EI are

shown. The constrained EI provides two advantages. It generates a broader expansion

of the Pareto front and the predictions of the metamodels are more accurate in the

feasible zone than the unconstrained formulation.
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Figure 4.23. Composite tube problem - axial impact. Responses at
the last iteration using constrained improvement formulation.

Figure 4.24. Composite tube problem - axial impact. Comparison of
Pareto fronts using constrained and unconstrained expected improve-
ment.
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Table 4.11.
Composite tube problem - axial impact. Optimal designs and responses

x1

(mm)

x2

(mm)

x3

(mm)

θ

(deg.)

Maximum

displacement (mm)

Peak

acceleration (mm/s2)

0 0 0 30 13.79 6.83E+05

0 0 10 30 14.07 6.82E+05

0 0 20 30 14.08 6.81E+05

0 0 0 45 19.48 4.62E+05

0 0 10 45 19.74 4.42E+05

0 0 20 45 19.76 4.39E+05

10 20 20 30 41.09 3.74E+05

20 10 20 30 49.95 3.47E+05

30 10 60 45 80.19 2.74E+05

30 60 10 45 99.77 2.33E+05

50 80 10 45 139.03 2.15E+05

150 150 70 45 162.24 2.00E+05

80 90 40 45 168.66 1.70E+05

100 120 10 60 174.00 1.68E+05

100 150 130 60 243.96 1.41E+05

60 150 0 60 321.11 1.23E+05

110 40 60 60 374.59 8.87E+04

150 150 0 75 396.89 7.64E+04

90 60 100 75 413.27 7.61E+04

150 100 140 90 421.56 7.17E+04

110 90 0 90 428.34 6.88E+04

140 140 140 90 429.61 6.25E+04

20 60 20 75 442.90 6.02E+04

70 0 100 90 443.12 4.84E+04

70 110 20 90 451.08 4.83E+04
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Table 4.12.
Composite tube problem - axial impact. Optimal feasible designs

x1

(mm)

x2

(mm)

x3

(mm)

θ

(deg.)

Maximum

displacement (mm)

Peak

acceleration (mm/s2)

0 0 0 30 13.79 6.83E+05

0 0 10 30 14.07 6.82E+05

0 0 10 45 19.74 4.42E+05

0 0 20 45 19.76 4.39E+05

20 10 0 45 45.25 3.39E+05

20 20 30 45 54.23 3.23E+05

20 40 20 45 73.21 2.58E+05

20 60 130 45 88.62 2.34E+05

20 60 80 45 89.65 2.22E+05

10 150 120 45 98.33 2.22E+05

40 60 10 45 109.28 1.78E+05

20 130 80 45 118.66 1.67E+05

20 130 150 45 118.88 1.66E+05

50 150 120 45 128.57 1.59E+05

90 80 10 45 146.59 1.53E+05

80 80 10 45 166.09 1.32E+05
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4.2.2 Oblique Impact

The purpose of this example is to determine the optimal design of the composite

tube under non-symmetric loading. To obtain the non-symmetric impact condition,

the rigid wall is inclined 30◦ as shown in Fig. 4.25.

Figure 4.25. Composite tube problem - oblique impact.

The same 43 LHS samples of Table 4.8 are used to generate the Kriging surrogates

to be validated. According to Table 4.13, the best surrogate for the displacement has

a first-order regression function and exponential correlation ( PRESSRMSE = 17.8577

mm). Table 4.14 suggests a zero-order regression function and exponential correlation

for the acceleration metamodel (PRESSRMSE = 6.20E+03 mm/s2). The responses of

the initial samples are shown in Fig. 4.26.

Table 4.13.
Composite tube problem - oblique impact. PRESSRMSE values of the
Kriging metamodels for the wall displacement.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

22.1306 17.8577 191.5058 19.4353 20.9978 186.2365

Fig. 4.27 contains the responses of the first four EGO iterations. Although the

problem complexity, EGO expands the Pareto front in iterations two and three.
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Table 4.14.
Composite tube problem - oblique impact. PRESSRMSE values of the
Kriging metamodels for the peak acceleration of the wall.

Exponential correlation Gaussian correlation

regpoly0 regpoly1 regpoly2 regpoly0 regpoly1 regpoly2

6.20E+03 7.23E+03 1.75E+04 7.55E+03 7.18E+03 1.95E+04

Figure 4.26. Composite tube problem - oblique impact. Initial re-
sponses using the 43 LHS samples. LHS samples (grey), Pareto front
(purple).

Fig. 4.28 shows the distribution of the responses at the last iteration. As in

the axial loading case, EGO tends to sample designs with large displacements and

low accelerations. The designs whose displacements are larger than 235 (mm) are

non-feasible because their supports fail during the impact.

Constrained EI function is implemented to avoid the sampling of non-feasible

designs. The algorithm is restricted to select designs with wall displacement less than

235 mm. The constraint effect is shown in Fig. 4.29. The constrained formulation

concentrates almost all the samples in the feasible design region. At the end of
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Figure 4.27. EGO optimization progress - Composite tube problem,
oblique impact. Dominated designs (grey), Pareto front (purple), last
sampled design (cyan). Iterations 1, 2, 3 and 4.

the optimization, more feasible designs are present in the Pareto front. Table 4.15

contains the optimal designs using the constrained EI approach.
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Figure 4.28. Composite tube problem - oblique impact. Non-feasible
designs in the final Pareto front.

Figure 4.29. Composite tube problem - oblique impact. Responses at
the last iteration using constrained improvement formulation.
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Table 4.15.
Composite tube problem - oblique impact. Optimal feasible designs

x1

(mm)

x2

(mm)

x3

(mm)

θ

(deg.)

Maximum

displacement (mm)

Peak

acceleration (mm/s2)

0 0 0 30 109.76 7.30E+04

0 20 0 30 122.13 7.19E+04

10 0 0 30 122.34 6.59E+04

10 0 10 30 124.85 5.72E+04

10 20 10 30 134.88 5.30E+04

10 20 10 45 149.33 5.12E+04

0 60 150 30 163.86 5.04E+04

10 30 100 45 169.50 5.03E+04

10 0 100 0 171.09 4.67E+04

10 70 150 30 171.10 4.44E+04

10 0 110 0 173.85 4.38E+04

0 120 140 30 175.49 4.21E+04

0 0 130 0 186.66 4.12E+04

0 10 130 0 189.10 4.06E+04

10 70 150 0 218.06 3.41E+04

Fig. 4.30 compares the constrained and unconstrained approaches. Constrained

formulation leads to better results since it generates a wider expansion of the Pareto

front.

The convergence of the constrained approach is illustrated in Fig. 4.31. Although

the complexity of the problem, the constrained EI approaches to zero after each

iteration but more evaluations are needed to satisfy the stopping criteria.
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Figure 4.30. Composite tube problem - oblique impact. Compari-
son of Pareto fronts using constrained and unconstrained expected
improvement.

Figure 4.31. Composite tube problem - oblique impact. Expected
improvement at each iteration.
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5. SUMMARY AND RECOMMENDATIONS

Nowadays, composites material structures are widely used in fields such as Aerospace,

Automobile, Construction and Energy Industry. Correctly designed, composite mate-

rials provide many benefits like weight reduction, durability, high strength and energy

absorption. Their performance depends on different variables such as the matrix and

fiber materials, stacking sequence, ply thickness, and geometry. Optimization design

techniques are used to determine the optimal parameters.

The implementation of optimization methods is straightforward when dealing with

simple problems. However, complications arise in the presence of impact events such

as the examples included in this work. The use of explicit finite formulations is neces-

sary to study dynamic models due to the presence of multi-body contact, and nonlin-

earities in the material and geometry of the parts. This study has explored the options

provided by the FEA code LS-DYNA. A detailed explanation of MAT 054/055 (En-

hanced Composite Damage Model) is included in Chapter 2. MAT 054/055 is widely

used due to its ease of implementation and ability to capture the structural behavior of

composite parts. Those features were corroborated with the simulations performed in

this study. For the optimization of composite parts under dynamic loading, the imple-

mentation of gradient-based optimization techniques and population-based methods

is impractical due to the complexity and long-running time requirements of the FEA

simulations. Therefore, surrogate-based global optimization approach was applied

in this work. Latin hypercube sampling, Kriging metamodel, cross-validation and

Expected Improvement (EI) function were used to implement the Efficient Global

Optimization (EGO) algorithm.

Different application examples are included in this work. The armor plate prob-

lems illustrate how the EI function directs the optimization towards the global op-

timum while the surrogate is enhanced after each iteration. The composite tube
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problems show that the collapse of composite parts can be controlled by an optimal

distribution of the number of plies along the part and the correct fiber orientation.

Due to the brittle behavior of composite materials, non-feasible designs were encoun-

tered in the final Pareto front. A constrained formulation of the EI function was

necessary to guarantee the feasibility of the designs selected by EGO. The numeri-

cal examples show that the composite parts can be designed to resist impact and to

absorb energy during crash events.

EGO uses the uncertainties in the predictions of the metamodel to direct the

searching process but it does not include uncertainties in the design variables or in

the parameters of the model. The design of composite parts can be extended to the

reliable and robust optimization field.

Kriging surrogates present more mathematical models than interpolation. Infor-

mation from high fidelity sources can be combined with low fidelity data. In addition,

Kriging metamodels can be used as an approximation technique that is suitable when

dealing with noisy information. These are potential features for the optimization of

composite parts.

One of the limitations faced in this study is the difficulty to modify the FE mesh

in the LS-DYNA input file. Therefore, the geometry of the composite part could not

be changed. If an external mesher is interfaced with LS-DYNA, EGO can be used to

optimize the shape of composite parts.

FEA simulations of composites are highly costly. Parallel computing can reduce

the optimization time by enabling the evaluation of multiple samples at the same

time. For example, multiple processors can simulate the initial samples required by

EGO since they are independent. Additionally, EGO can be combined with another

optimization technique, e.g., Genetic Algorithms (GA). GA can propose other designs

for metamodel enhancing.
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