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ABSTRACT

Padmanabhan, Anudeep. M.S.M.E., Purdue University, August 2019. Fatigue Analy-
sis of 3D Printed 15-5 PH Stainless Steel - A Combined Numerical and Experimental
Study. Major Professor: Jing Zhang.

Additive manufacturing (AM) or 3D printing has gained significant advancement

in recent years. However the potential of 3D printed metals still has not been fully

explored. A main reason is the lack of accurate knowledge of the load capacity of 3D

printed metals, such as fatigue behavior under cyclic load conditions, which is still

poorly understood as compared with the conventional wrought counterpart.

The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5

PH stainless steel manufactured through laser powder bed fusion process. To achieve

the goal, a combined numerical and experimental study is carried out. First, using

a rotary fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel

is measured. The strain life curve shows that the numbers of the reversals to fail-

ure increase from 13,403 to 46,760 as the applied strain magnitudes decrease from

0.214% from 0.132%, respectively. The microstructure analysis shows that predomi-

nantly brittle fracture is presented on the fractured surface. Second, a finite element

model based on cyclic plasticity including the damage model is developed to predict

the fatigue life. The model is calibrated with two cases: one is the fatigue life of 3D

printed 17-4 stainless steel under constant amplitude strain load using the direct cyclic

method, and the other one is the cyclic behavior of Alloy 617 under multi-amplitude

strain loads using the static analysis method. Both validation models show a good

correlation with the literature experimental data. Finally, after the validation, the

finite element model is applied to the 15-5 PH stainless steel. Using the direct cyclic

method, the model predicts the fatigue life of 15-5 PH stainless steel under constant
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amplitude strain. The extension of the prediction curve matches well with the previ-

ously measured experimental results, following the combined Coffin-Manson Basquin

Law. Under multi-amplitude strain, the kinematic hardening evolution parameter is

incorporated into the model. The model is capable to capture the stresses at varied

strain amplitudes. Higher stresses are predicted when strain amplitudes are increased.

The model presented in the work can be used to design reliable 3D printed metals

under cyclic loading conditions.
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1. INTRODUCTION

The field of 3D printing technology is vast, but novel. The widespread acceptance to-

wards the additive manufacturing technology has pushed the pace for standardization

of the process. This is necessary to develop engineering confidence in the material

and the process. The advantages provided by 3D printing has made it possible for it

to be overarching across many fields.

3D printing technology started out as a way to prototype designs for testing. The

additive manufacturing process quickly took a more meaningful role as it’s benefits

were realized. As 3D printing methodology took a mainstream path, there generated

a need for understanding and characterizing the various material properties associated

with a engineering usage. It’s extensive usage in design of engineering components

necessitated a need to develop predictive models to determine the material behavior

of 3D printed specimen.

1.1 Motivation

Additive manufacturing (AM) or 3D printing process has made rapid strides in

recent years. However, the full potential of 3D printing technology hasn’t been rig-

orously explored. There is still a dearth of knowledge about it’s mechanical abilities,

such as the fatigue behavior under cyclic load conditions. Further still, there is a

lack of characterization for a numerical model to predict their mechanical behavior

as compared to their wrought counterparts.

There are many methods to assess the fatigue life of structures. Most commonly,

one uses the S-N curves for assessing component life. The standard fatigue prediction

methods have a linear damage approach. The research conducted in fracture mechan-

ics have established that such an approach is conservative with studies conducted for
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the establishment of Paris law [1]. Moreover, there is no information about damage or

crack behavior with these approaches. The increasing usage of 3D printed materials

in high energy applications has made it critical to have a characterized numerical

model which would incorporate non-linearity for damage or crack evolution. To un-

derstand the cyclic behavior of 3D printed parts and to characterize the parameters

associated with cyclic behavior leading to fatigue would further accelerate acceptance

of additive manufacturing process.

1.2 Objective

The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5

PH stainless steel manufactured through laser powder bed fusion process. This is

done through a combined numerical and experimental study. First, using a rotary

fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel is measured.

Second, a finite element model based on cyclic plasticity, including the damage model,

is developed to predict the fatigue life. Finally, after model validation, the finite

element model is applied to the 15-5 PH stainless steel.

1.3 Structure of the Thesis

This thesis is divided into five sections. The first is the introduction which would

cover the motivation, objective and the overall structure of thesis.

The second chapter reviews literature that is relevant to characterization of the

cyclic and fatigue properties. It contains an overview of existing works characterizing

cyclic 3D printed material properties. Then the concept of fatigue, plasticity and

damage mechanics is introduced. These directly relate to material characterization.

The third chapter deals with the experimental procedure that was carried out.

The 3D printing process to produce the test specimen and the testing methodology

for fatigue are briefly discussed.
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The fourth chapter models the cyclic behavior utilizing a finite element tool. The

modelling technique employed is discussed. Two calibration simulations are carried

out to show model viability and then the said model is applied to develop a predic-

tive model for 3D printed 15-5 PH Stainless steel. The results of the approach are

discussed.

The fifth chapter would conclude the findings of this study and the sixth chapter

would recommend future work associated with the finite element model.
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2. LITERATURE REVIEW

2.1 Additive Manufacturing

Research into the material behavior of 3D printed parts has been going on for

decades. Understanding the fatigue behavior of component is critical and to this

end, many publications have focused on determining such properties. Sehrt et al. [2]

was one of the first to investigate the dynamic properties of 3D printed parts as

they determined the fatigue strength of SLM built 17-4 PH stainless steel. They

investigated the effect of orientation on the fatigue life. Spierings et al. has conducted

numerous investigations [3] [4] [5] to assess the effect of manufacturing parameters on

mechanical property, including fatigue life.

Numerical modelling of 3D printed specimen has picked up in the last two years. A

similar experiment to the one by Sehrt [2] was conducted more recently by Yadollahi

[6] where they characterized the cyclic behavior of 17-4 PH stainless steel with a cyclic

Ramberg-Osgood model. They extended this characterization to encompass their

dependence on printing orientation. Similar characterization was done for the 3D

printed AISI 18Ni30 [7] where the low cycle fatigue characteristics were investigated

and fit to Coffin-Manson curve.

2.2 Fatigue, Plasticity and Damage

Throughout history, engineers have worked towards understanding the phenomenon

of failure of structures or mechanical parts. It began with the conceptual study of

stress and strain and how one could measure failure using these two parameters.

Many theories of failure were proposed.
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Theories on failure can be broadly classified into macroscopic failures and mi-

croscopic failures criteria. The macroscopic criteria usually takes into account the

macroscopic effects of stress and strain and include failure theories like von Mises

theory, Maximum principal stress theory among others. This approach sticks to the

elastic regime and doesn’t take into account the toughness of the material after it

yields.

The microscopic failure criteria leverages the theories of fracture mechanics and

continuum mechanics. These theories are more robust from a theoretical point of

view because the mechanism defining failure is explored in detail. They see failures,

in this case crack propagation, as irreversible thermodynamic processes and thus can

be defined using energy conservation principles.

2.2.1 Fatigue Modelling

Fig. 2.1. Pie chart representation of causes of structural failure [8]

The term ’Fatigue’ was first introduced to mean failure due to repeated cycles of

loading, in the middle of 19th century, by J.B.Poncelet [8]. It took the initial works of

Wohler, who was an engineer investigating the failure of railroad axles (particularly
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the Versailles accident [9] which gave the impetus to this research), to convince the

engineers about failures occurring below the monotonic failure limit of the material.

This gave rise to S − N curves, also called Wohler curves, that are still used today

to predict the fatigue life of material. It was soon to be understood that the primary

reason for failure of machine parts was fatigue, see figure 2.1 and table 2.1 [8]. Since

then, numerous investigations have been carried out to understand the nature and

causes of fatigue failure.

Table 2.1.
Figure 2.1 values [8]

No. Failure mode Percent

1 Delayed corrosion 5%

2 Corrosion cracking 3%

3 Static loading 13%

4 Fatigue 58%

5 Low cycle fatigue 8%

6 Other causes 13%

The stress based methods are more popularly identified as S −N curve methods.

This, as discussed earlier, was first introduced by A. Wohler. The fatigue life of a

material (cycles N) is related to the cyclic stress range (S) that loads the material.

Basquin [10] was the first to recognize the power law based association between the

applied stress amplitude and the fatigue life which he captured using the formula,

σa =
E.∆εe

2
= σ

′

f (2N)b (2.1)

where σa is the applied stress amplitude, E is the Young’s modulus, 2N is the

load reversals to failure, σ
′

f is the fatigue strength coefficient, b is the fatigue strength

exponent.
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Palmgren-Miner introduced the linear cumulative damage hypothesis which ap-

plied the S-N curve for variable amplitude loading. This is popularly called the

Miner’s rule [11] and is given by,

n∑
i=1

ni
Ni

= 1 (2.2)

where, ni is the number of cycles the material was subjected to at stress σi, Ni is the

number of reversals to failure at stress level σi.

The material is assumed to have failed when the cumulative damage at different

stress amplitude σi reaches 1. This method was further improved by Goodman,

Soderberg and Gerber who introduced the effect of stress ratio and mean stresses on

the fatigue life through their respective criteria.

For components subjected to cyclic loads that induce plasticity in the very first

cycle, the fatigue life is affected by plastic strains. In this type of loading, it makes

more sense for us to define the life of material using the strains as they can be

differentiated into plastic and elastic components. This gave rise to strain based

fatigue assessments. The relationship, similar to the Basquin relationship, is famously

given by Coffin-Manson [12] [13] [14] as,

εp
2

= ε
′

f (2N)c (2.3)

where, εp/2 is the plastic strain amplitude, ε
′

f is the fatigue ductility co-efficient and

c is the fatigue ductility exponent.

The two models shown by eq.2.1(elastic) and eq.2.3(plastic) are combined and the

consolidated total strain to life relationship [14] given as,

∆εT
2

= εa =
εe
2

+
εp
2

=
σ
′

f

E
(2N)b + ε

′

f (2N)c (2.4)

Continuum damage mechanics based approach is a relatively new methodology

that posits that strain energy release is the major contributor towards the fatigue fail-

ure of materials. This method has been heavily researched beginning with Kachanov
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then improved by Chaboche and Lemaitre. This method and fracture mechanics

based approaches to fatigue rely on power law based representation of crack propa-

gation.

The continuum mechanics based approach will be discussed in detail in the coming

sections. The crack propagation theory is mainly based on Paris law [1] which gives

the rate of crack growth as,

da

dN
= A(∆K)n where ∆K = Y∆σ

√
πa (2.5)

where, A and n are constants for materials and Y is geometry factor depending on

mode of loading. K is the stress intensity factor.

The crack propagation was better understood later as having non-linearity. Then

three regions describing crack growth was mooted which is seen in fig.2.2.

Fig. 2.2. Crack growth rate as a function of K [15]
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2.2.2 Modelling Plasticity

Before a ductile material fails, it goes through the process of yielding. This be-

havior is non-linear such that it is difficult to assign a modulus to predict the loading

path. The accurate modelling of this effect is an important tool to understand the

evolution of Continuum damage mechanics. This theory primarily relies on the accu-

mulated plastic strains and strain energy density concepts to capture fatigue damage

accumulation. A brief summary is provided here.

Elastic deformations are reversible. When a material is loaded beyond it’s elastic

limit, it undergoes irreversible deformation. On unloading we recover the elastic part

of the deformation. The behavior of the material is linear in the elastic zone and

becomes non-linear once it crosses the yield point.

As the material crosses yield point, it experiences a coalescence of defects causing

a temporary saturation. This makes the material more resistant to deformation and

thus can be said to have hardened. This is called strain hardening process.

The total strain of a material would be written as,

ε = εe + εp (2.6)

where, εe is the elastic component and εp is the plastic component of strain. The

stress strain curve is then represented using the Ramberg-Osgood [16] relationship

by,

ε = (
σ

E
) + (

σ

K
)M (2.7)

where, σ is the stress, K and M are material constants. Changes to the Ramberg-

Osgood relationship from the viewpoint of damage mechanics would be discussed in

section 2.2.3.

The behavior of a material under a single cycle of tension and compression loading

and it’s evolution through multiple cycles needs to be accurately predicted. The effects

of strain hardening on a cycle of tension - compression loading can be explained with

the help of Isotropic or Kinematic hardening rules.
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In Isotropic hardening, it is assumed that the yield surface of the material would

remain the same shape. If a function F (σij, K) describing the yield surface of a

material under hardening effect is written as [17],

F (σij, Ki) = 0 (2.8)

where, σij is the stress tensor, Ki represents strain hardening parameters, then ac-

cording to isotropic hardening rule the yield surface changes as such that [17],

F (σij, Ki) = f0(σij)−K = 0 (2.9)

which shows that the function has changed only by expansion and hasn’t changed

in shape. The figure 2.3 shows material under a tension-compression loading cycle

following the isotropic hardening rule. As seen, the new yield surface is a scaling of

the original by kinematic hardening factor. One important implication of this rule is

that the yield in tension and compression would be same. This is not true for most

materials.

Fig. 2.3. Isotropic hardening surface evolution [18]
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Kinematic hardening rule states that the yield surface of the material translates

under reversed loading regime. Taking the same yield function, 2.8, the modified

yield function for kinematic hardening rule would be [17],

F (σij, Ki) = F (σij − αij) = 0 (2.10)

where the hardening parameter, αij is called backstress. Figure 2.4 shows that the

Fig. 2.4. Kinematic hardening yield surface evolution [18]

yield surface has neither changed it’s shape or size but has shifted by the hardening

parameter(backstress),αij. The implication of this rule is that the yield point in

tension would not be the same as that in compression.

Upon unloading and subsequent compressive loading we see that the yield in

compression is less than the yield point in tension. This weakening of material is

referred to as Bauschinger effect [19].

In the figure 2.5, O represents the zero stress state, OAB is the loading path the

material takes under tension, BC is the unloading stage, CDE is the loading path

under compression and EF is the subsequent relaxation. We observe that for most

materials, it follows the kinematic hardening path because of which the yield point

in tension is less than that in compression(σyp < σ′yp).
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Fig. 2.5. Bauschinger effect [19]

When the material is subjected to cyclic loading, it experiences the hardening

effects across multiple cycles as well as within a single cycle. The material can ac-

cumulate strains over the span of cycles which essentially means that the cyclic load

creates open elasto-plastic loops. Under stress-controlled tests with unsymmetrical

loads, we observe that the strains continue to increase cycle by cycle in the direction

of unsymmetry.

Fig. 2.6. Stress-strain curve with ratcheting phenomenon [18]
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The plastic strains keep accumulating and we observe a phenomenon called ratch-

eting, otherwise known as cyclic creep. This is usually characterized by a shifting

hysteresis loop. Fig 2.6 shows the gradual accumulation of strains across multiple

loops. The hardening models proposed previously could capture the behavior of

single cycle but couldn’t predict cyclic phenomenon like cyclic hardening/softening,

shakedown or ratcheting. This phenomenon was first categorized by Bree [20] when

he tried to explain the thinning of nuclear fuel cans. These components were loaded

with pressure internally, were subjected to thermal fluctuations and experienced un-

symmetric load cycles. The Bree diagrams were a way for predicting the ratcheting

phenomenon. Ratcheting can severely affect the life of components subjected to cyclic

loading.

Fig. 2.7. Bree diagram showing stress regimes [20]
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Table 2.2.
Stress regime for Bree diagram [20]

Stress regime Can behavior

R1 and R2 Ratchetting

S1 and S2 Shakedown after first half cycle

P Plastic cycling

E Elastic

Fig. 2.8. Stress and plastic strain for half cycle of regime R1 [20] from figure 2.7

a) Stress incurred by first half of each cycle.

b) Plastic strain incurred by first half-cycle.

c) Stress incurred by second half of each cycle.

d) Plastic strain incurred by second half of each cycle.

e) Plastic strain incurred by first half of each cycle after the first.
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The methodologies mentioned above were the first attempts to characterize the

cyclic material behavior. The Bree model was considered conservative and efforts to

better the model were made. There was a need for a non-linear kinematic/isotropic

(combined) hardening (NLKH) model which would be defined as,

F (σij, Ki) = F (σij − αij)−K = 0 (2.11)

Frederick-Armstrong model [21] is one of the first to predict ratcheting by pre-

dicting backstress with,

dα =
C

σ0
dp− γ.α.dp (2.12)

where, C and γ are material constants to be calibrated and α is the backstress after

varying yield limit σ0 (see equation 2.16) for the plastic strain p. The Chaboche

model [18] improved this by generalizing the net as a summation of multiple back-

stress to capture realistic shapes of stress-strain curve, giving

dα =
n∑
i

Ci
σ0

(σ − α)dp− γi.αi.dp (2.13)

It is to be noted that Ci and γi are not be considered as material parameters but rather

as series decomposition of a simpler expression, for instance, by a power law [18]. The

integration of 2.13 would give the monotonic stress-strain curve

σ(p) = σ0 +
n∑
i

Ci
γi

(1− e−γip) (2.14)

which when further integrated for cyclic stress-strain curve from stabilized cycle gives,

∆σ(∆p)

2
= σ0 +

n∑
i

Ci
γi

tanh γi
∆p

2
(2.15)

where the ∆σ represents the cyclic stress amplitude range for plastic amplitude ∆p

With addition of isotropic hardening effect, it is understood that the yield surface

in equation 2.15 expands as plastic loading continues. Thus, σ0 varies as,
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σ0 = k +R

and R = Q(1− e−bp)
(2.16)

where k is the initial yield stress of the material during the first half of the first cycle.

Q and b are isotropic hardening constants.

The above equation captures the phenomenon of cyclic hardening/softening more

accurately. Further, the model could be made sensitive to the variation of γi to plastic

strain component and have it vary with [22],

γi = γi,ini +
k∑
i=1

Li(1− e−dip) (2.17)

where γi,ini is the γ value at first cycle. Li and di are kinematic hardening evolution

parameters.

2.2.3 Representation of Damage

Damage is a process by which the material loses it’s load carrying capacity and

ultimately results in breaking of the part. Lemaitre [23] classifies the types of damage

variables and their applicability by scale. Damage, at the microscale level, is the

concentration of microstresses around defects or interfaces, both of which results in

deterioration of material. At the mesoscale level we have to look at the concept of

’Representative Volume Element’(RVE) which is an abstract volume capturing the

effects of microscale and translating it into mesoscale without smoothing the high

gradients. At this scale, crack is initiated by the coalescing of voids or defects. At the

macroscale level, this manifests as growth of crack. The first two stages are modeled

using the theory of continua while the third stage is studied using fracture mechanics.

We now shall delve into the evolution of this concept.

The first instance of a damage parameter used was in the works of Kachanov [24] to

model effects of material deterioration under creep conditions. In his works, Kachanov

introduced the concept as the ’continuing parameter’,ψ, with
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0 ≤ ψ ≤ 1 (2.18)

such that ψ = 1 represents the condition of undamaged state or virgin material. The

material is understood to undergo deterioration as ψ decreases.

Let us consider a damaged material. An RVE is cut out of the bulk with its

normal, #»n and let δS be the cross-sectional area of the RVE and δSDs be the total

area of microvoids and cracks on δS. Also defining damage parameter D( #»n, s) with

plane s as (see Lemaitre, [23]),

D = 1− ψ (2.19)

and

D( #»n, s) =
δSDs
δS

(2.20)

To get the parameter to be continuous, we take the plane s where the damage is

maximum, such that the parameter loses it’s dependency on plane,

D( #»n ) =
δSD
δS

(2.21)

A kinetic equation for ψ was developed as,

dψ

dt
= F (ψ, σij, ..), ψ = 1 at t = 0 (2.22)

under simplified conditions, F = F (σmax

ψ
), where σmax is the maximum tensile stress

at a given point. Kachanov further suggested a power law to represent F.

dψ

dt
= −A(

σmax
ψ

)n (2.23)

Kachanov’s theory didn’t couple the phenomenon of creep and damage accumula-

tion. Thus it was modified by Rabotnov [25] by first suggesting additional parameters

to capture this effect. This was to be fit by using experimental results. But the main

contribution was to directly associate the damage parameter to stresses in material.

Let the RVE be acted upon by a force
#»

F = #»nF , inducing an uniaxial stress

σ =

#»

F

S
=

#»nF

S
(2.24)
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Assuming that no forces are effected by the microvoids and cracks, and that the

effective area has been reduced to S − SD, the effective stress, σ̃ is given as,

σ̃ =

#»

F

S − SD
(2.25)

It can also be written as,

σ̃ =

#»

F

S(1− SD

S
)
or σ̃ =

σ

1−D
(2.26)

where D = SD

S
is the damage variable. Here it is assumed that the behavior of

microvoids and/or cracks is same in tension as in compression, which is not the case

in practice. Also, material is assumed to be isotropic and the load is considered to be

uniaxial. Thus this theory is limited to cases where the compressive loads are small.

Lemaitre [23] proposed that, “The strain behavior of a damaged material is rep-

resented by constitutive equations of a virgin material(without any damage) in the

potential of which the stress is simply replaced with effective stress”. Thus,

εe =
σ̃

E
=

σ

(1−D)E
(2.27)

where, εe is the elastic strain and E is the Young’s modulus of the material. Also,

the Ramberg-Osgood relation [16] for plastic strain changes to

ε = (
σ̃

E
) + (

σ̃

K∗
)M
∗

(2.28)

where, ε is the total strain, K∗ and M∗ are material constants.

Assuming small deformation loads, the total strain can be split into two parts, a

thermo-elastic part εe and a plastic part εp, giving

εij = εeij + εpij (2.29)

The Helmholtz specific free energy is a function of parameters affecting the stress-

strain curve, including damage. Let us consider this measure with ψ(εij, D, etc., ). It

can be argued that this too would have a distinct elastic and plastic components. It

is more convenient to use the Gibb’s specific free enthalpy(ψ∗) here such that [23],
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ψ∗ = ψ∗e +
1

ρ
σijε

p
ij − ψp − ψT , (2.30)

where, the thermal component ψT is not considered further in this work, and ψp =

1
ρ
(
r∫
0

Rdr+ 1
3
Cαijαij) is the contribution from plastic hardening. Multiplied by density

ρ it is energy stored ws in the RVE. Another important point is to observe that

the term ψ∗e ensures coupling between elasticity and damage through effective stress

concept discussed earlier.

The state laws derived from this formalism are,

εij = ρ
∂ψ∗

∂σij

R = −ρ∂ψ
∗

∂r
,

Xij = −ρ ∂ψ
∗

∂αij

Y = −ρ∂ψ
∗

∂D

(2.31)

The kinetic laws for evolution of these internal variables are derived from a dissi-

pation potential (F ) which is written as [23],

F = F (σ,R,Xij, Y ;Detc., ) (2.32)

This potential can be split into components like plastic criterion (f), non-linear

kinematic hardening term (FX) and damage potential (FD). The evolution laws are

written as the contributing component derivative with a time dependent variable.

˙εpij = λ̇
∂F

∂σij

ṙ = −λ̇∂F
∂R

α̇ij = −λ̇ ∂F

∂Xij

Ḋ = λ̇
∂F

∂Y

(2.33)

The components of evolution laws are incorporated along with the principle of strain

equivalence, and the thermo-elastic law thus derived from the strain potential is,
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εeij =
1 + ν

E
σ̃ij −

ν

E
σ̃kkδij (2.34)

where the effective stress is σ̃ij = σij
1−D . The energy density release rate, associated

with damage can be written as,

Y =
˜σ2
eqRν

2E
(2.35)

and the triaxiality function,

Rν =
2

3
(1 + ν) + 3(1− 2ν)(

σH
σeq

2

) (2.36)

where σH = σkk/3 is the hydrostatic stress, σeq =
√

3
2
σDijσ

D
ij the von Mises equivalent

stress. The derivations are curtailed for the sake of brevity, a detailed discussion

could be obtained from Lemaitre’s book [23].

Damage Initiation

The materials exhibit a certain resistance for damage initiation during plastic

loading or fatigue. There is a threshold associated with stored energy (wD) required

for the defects to coalesce. From the different hardening and elasto-plasticity laws we

can define stored energy as [23],

ws =

t∫
0

(Rṙ +Xijα̇ij)dt (2.37)

Consider the associated plastic strain ps and threshold plastic strain pD. It is

shown that the isotropic hardening saturates at the value R = R∞ for large p and

we know that p = r for D = 0 and also recall the state laws from which we have

Xij = 2/3Cαij giving us,

wS ≈ R∞p+
3

4C
XijXij as long as D = 0 (2.38)

The values for parameters X and R depend heavily on the type of hardening laws

that are used. An accurate way to describe the phenomenon would be to write,
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maxws = wD at damage initiation (2.39)

Monotonic tension experiment give the corresponding plastic threshold (εpD) and

the fatigue tests would give the accumulated plastic strain (pD) for a plastic loading

range (∆εp) (see figure 2.9).

Fig. 2.9. Monotonic and cyclic plastic strain threshold [23]

Damage Evolution

Once the damage is initiated, the material softens considerably and we notice a

gradual descent in the maximum stress response. The material loses it’s ability for

plastic work and the plastic dissipation tends to zero as damage increases and finally,

asymptotically, reaches the value of 1. The yield surface of the material would have

reached the highest stress for that cycle and the material would have lost all it’s

plastic ability.
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2.2.4 Implementation of the Constitutive Model in FE Tool

There are many commercial FEA tools that enable us to model damage for mono-

tonic load cases. In the current research a commercial software that has incorporated

the damage model for cyclic loading with the help of direct cyclic algorithm (see

section 2.3), is used.

The step-wise procedure is as follows,

• Step 1: Get the cyclic stress-strain graph from stabilized cycles. Fit the curve so

that we obtain the parameters for combined hardening model.Use the parameter

for material input. These are critical to assess the hysteresis energy for damage

models.

• Step 2: Obtain cycles to damage initiation from cyclic stress-strain data and

calibrate it for the damage model.

• Step 3: Obtain fatigue life through experiment and calibrate the total life for

the damage evolution.

• Step 4: Use the model to predict fatigue life of material.

Many finite element tools support the combined hardening model and this could

be obtained under the plasticity section. To use the damage capability for fatigue,

the damage inititation and evolution critieria is defined using the hysteresis energy

option. In this existing finite element tool, this is achieved by adding the following

lines to the input file,

*Damage Initiation, criterion=HYSTERESIS ENERGY

Data1,Data2

*Damage Evolution, type=HYSTERESIS ENERGY

Data1,Data2

In the finite element tools, the damage initiation criteria is defined as the point

where the hysteresis energy reaches a certain threshold value leveraging the thermo-
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dynamic theory. It assigns a cycles to initiation value that needs to be calibrated

(see [23] section 1.3 for more detail). The equation that finite element tools solves is,

N0 = C1∆W
C2 (2.40)

where C1 and C2 are material properties that need to be calibrated. When number

of cycles N > N0, damage is initiated.

Once the damage is initiated, the material softens considerably and we notice a

gradual descent in the maximum stress response. The material loses it’s ability for

plastic work and the plastic dissipation tends to zero as damage increases and finally

asymptotically reaches it’s maximum value. The yield surface of the material would

have reached the highest stress for that cycle and the material would have lost all it’s

plastic ability.

The rate of loss of inelastic hysteresis energy is modelled to predict the fatigue

life of the material. Finite element tools have an established methodology for fatigue

where the damage would tend towards the value of 1 as the inelastic hysteresis energy

would tend towards zero and is given by,

dD

dN
=
C3

Le
∆WC4 (2.41)

where, C3 and C4 are material properties that need to be calibrated, Le is the char-

acteristic length of the element. The characteristic length and it’s effects would be

discussed in the section 2.3.3.

Once this cycle number is reached, the damage manifests as macroscopic crack

and thus we would define that as the fatigue life for the material.
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2.2.5 Procedure for Determination of Material Parameters

Cyclic Hardening Parameters

As seen in the previous section, for us to assess the fatigue life of material through

energy methods, the inelastic hysteresis energy should be accurately modelled. And

for that, the stress-strain curve should be captured in detail for cyclic loading. We are

using the combined hardening model, see eq.2.15, with four backstresses to simulate

the cyclic behavior. Now, the kinematic hardening parameters are derived from the

stress-strain data by the method of power law regression analysis [26]. Ideally, the

values of Ci and γi should be calibrated using both monotonic and cyclic data from

stabilized cycle.

The extraction of parameter is done through a optimization procedure through

MS Excel. A seed value of parameters Ci and γi is considered and then the value

of σ(p) is calculated using the equation 2.14. The difference in the calculated value

(from the seed values of Ci and γi) to the actual value through experiment (error) is

squared and added.

The objective is thus to minimize this error. Excel offers multiple tools to conduct

optimization studies. For our purposes we used the GRG non-linear solver with the

central difference method. The parameters thus calibrated are seen in Chapter 4.

Let the vector ~W be the calculated values from seed values and let ~V be the actual

value from the experiments, then objective function would be,

minimize
n∑
i=1

(Wi − Vi)(Wi − Vi) (2.42)

Damage Initiation Parameters

The cycles to damage initiation requires us to carefully plot the cyclic variation of

stress-strain hysteresis loops and observe when the angle of linear region (i.e, elastic

region) changes. We have defined damage such that Ẽ = E/(1 − D) and thus we
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see a deterioration in the value of Young’s modulus, E, when damage is non-zero.

Loading the specimen cyclically between different strain ranges would give different

stable inelastic energy values and different cycle life. A plot of different inelastic

hysteresis energy values against cycles to damage initiation is created and a power

law regression is used to fit the model to the equation N0 = C1∆W
C2 .

Fig. 2.10. Calculating damage initiation parameters C1 and C2 from
hysteresis energy [27]

Biglari et al. [27], conducted fatigue inspection for 9Cr steel at 620◦C. They

calibrated the damage initiation parameters by tabulating the variation of hysteresis

energy with cycles to damage initiation. The data is represented in figure 2.10. They

calibrated the initiation parameters to be C1 = 14.3 and C2 = −1.9.

Damage Evolution Parameters

The evolution of material degradation is calibrated by fitting the model for change

in inelastic hysteresis energy at different cycles. The experimental data is used to
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calibrate dD/dN incrementally. Biglari et al. [27] conducted this calibration for

9Cr steel at 620◦C using figure 2.11. He obtained the value of C3 = 4X10−4 and

C4 = 0.91. The value of C3 is calibrated keeping the characteristic length of mesh

used.

Fig. 2.11. Calculating damage evolution parameters C3 and C4 [27]

2.3 Direct Cyclic Method

2.3.1 Need for a Quasi-static Approach

There are various ways to calculate the fatigue life of a component. The most

popular way is to conduct a static analysis on the component and after looking up

the regions of stress and it’s distribution, compare the values to a standard Stress-life

curve. These charts provide the life of a component against a given stress value. For

low cycle fatigue, a similar strain-life curve is used to assess the life of the material

more popularly. The strain measure is accurate for low cycle fatigue regimes. Another

way is to refer the Coffin Manson laws to predict the life for both HCF and LCF. These
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too would require static analysis result and assume that the rate of crack propagation

is linear. Also, we intended to capture the effect of damage through cycles.

To achieve that would be computationally prohibitive. The fatigue analysis in-

volves repeated cycles of static loading and to run those many static cycles is ineffi-

cient. Even to predict the stable hysteresis loop for a material subjected to reversed

plastic strain cycles would require considerable computation time.

Direct methods for finding stabilized material response were explored for the very

same reason. The methodology incorporated in commercial finite element tools is

based on the seminal works of Dang and Maitournam [28] who leveraged the cyclic

behavior to find Fourier series expansion. The overall methodology is shown in figure

2.12.

Fig. 2.12. Methodology incorporated by Dang et al. [28]
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The stable cycles which are predicted by the hardening laws are reached by enforc-

ing the deformation and force ranges to acquire cyclic values consistent with values at

the stabilized cycle. This method predicts the asymptotic material response directly

without actually calculating through all cycles. The method works on large time

incrementation method and seeks the mechanical fields which have the same values

at the end of a loading cycle as the beginning of the cycle. This method can predict

elastic and plastic shakedown as well as ratchetting [28].

2.3.2 Implementation in FE Model

We can incorporate direct cyclic algorithm using user defined subroutines. Few

commercial finite element tools incorporate the direct cyclic algorithm for both ar-

riving at the aymptotic response as well as predicting the fatigue life. The program

solves the familiar equilibrium equation using Newton’s method, but the equilibrium

equations are now cyclic in nature such that,

R(t) = F (t)− I(t) = 0 (2.43)

where, F (t) is the descretized form of cyclic load such that F (t+T ) = F (t) with time

period T , I(t) is the internal force vector and R(t) is the residual vector.

As discussed earlier, we need a displacement definition that is uqual to the values

at asymptotic cycle state and thus [29],

u(t) = u0 +
n∑
k=1

[usk sin kωt+ uck cos kωt (2.44)

where n is the number of Fourier terms used, ω is the angular frequency, and u0, u
s
k, u

c
k

are unknown displacement co-efficients. The equilibrium equations representing the

process are then written as,

Kci+1
k = Ri

k (2.45)



29

where, k is the elastic stiffness matrix and i is the iteration number. The residual

vector is similarly expanded as the displacement function [29],

R̄(t) = R0

n∑
k=1

[Rs
k sin kωt+Rc

k cos kωt] (2.46)

where the R0, R
s
k, R

c
k are found by the fourier term expansion.

Fig. 2.13. Comparison of stabilized cycle obtained by direct method
with static cycling method

The difference between the input and response is fed back as corrections to find

the stabilized cycle. The figure 2.13 shows the stabilized state achieved with direct

cyclic algorithm with the material loaded cycle by cycle. The computation time saved

was significant.

2.3.3 Solution Accuracy

The implementation of fatigue analysis with direct cyclic method needs hysteresis

energy for damage calculations. But it is to be noted that the hysteresis energy is

sensitive to mesh parameter with it reaches large values as mesh size decreases [30].
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Fig. 2.14. Convergence study for damage parameter

To alleviate this issue, characteristic length is introduced in the damage evolution

equation 2.41. According to reference [31],

The characteristic length is based on the element geometry and formu-

lation: it is a typical length of a line across an element for a first-order

element; it is half of the same typical length for a second-order element.

For beams and trusses it is a characteristic length along the element axis.

For membranes and shells it is a characteristic length in the reference

surface. For axisymmetric elements it is a characteristic length in the rz

plane only. For cohesive elements it is equal to the constitutive thickness.

This definition of the characteristic length is used because the direction

in which fracture occurs is not known in advance. Therefore, elements

with large aspect ratios will have rather different behavior depending on

the direction in which the damage occurs: some mesh sensitivity remains

because of this effect, and elements that are as close to square as possible
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are recommended. However, since the damage evolution law is energy

based, mesh dependency of the results may be alleviated [31].

Therefore, a mesh convergence study targeting the characteristic length has to be

conducted as shown in figure 2.14. The characteristic lengths used in this report are

0.266 for the axisymmetric element and 1.58 for the solid brick element.



32

3. EXPERIMENTAL PROCEDURE

3.1 Preparation of Specimen

The 3D printed specimen is printed using a powder bed fusion process using EOS

270 M. The powder is obtained from EOS who specialise in manufacturing metal

powder for 3D printing application. The PH1 series of steels are pre-alloyed steels

characterized by good corrosion resistance and excellent mechanical properties [32].

The chemical composition is as shown in table 3.1,

Table 3.1.
Chemical composition of 3D printed 15-5 PH stainless steel [32].

Element % by Weight

Carbon 0.07

Manganese 1.00

Silicon 1.00

Chromium 14.00-15.50

Nickel 3.50-5.50

Copper 2.50-4.50

Molybdenum 0.50

Niobium 0.15-0.45

Iron Balance

The figure 3.1 shows the SEM image of the powder used to print the specimen for

the fatigue test. The average size of the particle can be seen as around 20 µm.

The printed specimen, see figure 3.2 is as per the specification for the the fatigue

tester by TERCO for their fatigue testing machine MT3120 [33]. Originally the
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specimen was printed with support structures which need to be machined off before

using them in the fatigue tester. This was achieved by initially using hack saw blade

to remove a considerable portion of support before using a grinding machine to give

an accurate finish.

Fig. 3.1. SEM image of 15-5 PH powder [34]

Fig. 3.2. 15-5 PH rotating bending specimen
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3.2 Fatigue Testing of Specimen

The fatigue testing machine used was MT3120 fatigue tester from TERCO sweden.

The working principle for the machine is as shown in figure 3.3. The actual tester is

shown in figure 3.4.

Fig. 3.3. Functioning of MT3120 [33]

Fig. 3.4. MT3210 Fatigue tester [33]
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The specimen showed previously is loaded at the free end in the fatigue tester.

The tester has a digital cycle counting device that keeps track of the loading cycles

and it automatically stops on specimen failure. The 3D printed specimen were loaded

for 3 different strain ranges and the cycles to failure was noted.

3.3 Results and Discussion

The results of the fatigue test is tabulated below,

Table 3.2.
Fatigue result tabulation

% strain amplitude εa No. of reversals to failure

0.132 46760

0.189 33183

0.214 13403

Fig. 3.5. Result of the fatigue test
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Fig. 3.6. The specimen after fatigue failure

The strain-life graph, shown in figure 3.5 shows that for higher strain amplitude

the specimen takes less number of reversals to failure. The overall trend is that the

fatigue life increases with decreasing strain load.

The broken samples are shown in figures 3.7(a) and 3.7(b). In these we can see

that the fracture originated at the surface of the specimen. The serrations beginning

at the surface and moving inwards are indicative of crack coalescence. This is followed

by relatively smooth transition which could be indicative of rapid growth of crack.

(a) Specimen fracture surface A (b) Specimen fracture surface B

Fig. 3.7. Complimentary specimen surfaces after fatigue failure
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4. NUMERICAL MODELLING

Two calibration tests have been simulated using finite element method to demonstrate

viability of the model. This is followed by two prediction simulations for 15-5 PH

stainless steel. In these simulations, the fatigue prediction is made utilising the direct

cyclic algorithm and the cyclic behavior during multiple amplitude strain loading

is simulated using the static analysis method. This is because, as mentioned in

the section 2.3, the direct cyclic method converges only to the asymptotic stress-

strain cycle and thus wouldn’t capture the intermediate effect of cyclic hardening or

softening. To see how the material behaves through cycles, initially static analysis

method is considered.

4.1 Model Validation

4.1.1 CASE 1: Fatigue Prediction for 3D Printed 17-4 Stainless Steel

under Constant Amplitude Strain Load: Direct Cyclic Method

The test is to accurately capture the fatigue life of 3D printed 17-4 stainless steel

as mentioned in Yadollahi et al. [6]. This specimen was vertically printed. The paper

provides the cyclic stress-strain variation and fatigue life at different strain ampli-

tudes. Using these data, the non-linear kinematic hardening parameters, damage

initiation and damage evolution parameters were independently calibrated.

Geometry, Mesh and Boundary Condition

The geometry is that of a standard tension compression fatigue test specimen.

The specimen is modelled using axisymmetric elements with 1700 elements and

1806 nodes. The associated characteristic length is 0.266. The element type is ca-
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(a) Mesh (b) Boundary condition

Fig. 4.1. FE model for axial Tension-compression fatigue test specimen

Fig. 4.2. Load function
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pable of modelling non-linear plasticity. The model was also symmetrical about the

plane perpendicular to it’s long axis as shown in figure 4.1. This was done to save

computational time and effort.

The specimen was loaded cyclically at top using a cyclic displacement function.

The tests were conducted for three strain ranges all multiplied by the amplitude of

the displacement function. The three strain ranges were 0.3%, 0.4%, and 0.5%.

Material Parameters

The Young’s modulus of the vertically printed, as-built 17-4 PH stainless steel is

187.3 GPa and it’s yield strength is given as 580 MPa. The cyclic material parameters

were curve fitted using the data given in Yadollahi et al. [6] for the vertically printed,

as built specimen. Their cyclic hardening model obtained from stabilized cycle was

modified to accommodate the combined hardening model with three backstresses

using equation 2.15.

Fig. 4.3. Material characterization for 17-4 [6]
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Fig. 4.4. Regression fit for damage evolution

Table 4.1.
Backstresses Ci and γi values for 3D printed 17-4 stainless steel

Backstresses Ci (MPa) γi

1 1.83e+5 104516

2 7.145e+4 676060.6

3 7.39e+4 142.59

Table 4.2.
Damage parameters for 3D printed 17-4 stainless steel

Damage parameters Values

C1 14.3 [27]

C2 -0.91 [27]

C3 1e-4

C4 1.024
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The damage parameters were calibrated based on the fatigue life at defined strain

amplitudes per Yadollahi [6]. The data provided cannot be used to calibrate damage

initiation parameter and thus a nominal value obtained from Bilgari et al. [27] is used

in this simulation. The damage evolution parameters are fit for three different strain

ranges giving three different hysteresis energy curves, see figure 4.4.

Since our characteristic length is 0.266, we will get the damage evolution param-

eters as shown in table 4.2.

4.1.2 CASE 2: Cyclic Behavior Simulation for Alloy 617 under Multi-

amplitude Strain Load: Static Analysis Method

Pritchard [35] conducted experiments detailing the behavior of steel Alloy 617.

The focus of his work was to establish fatigue life and fatigue-creep life of the alloy

and explored strain rate dependence of material parameters. An attempt has been

made to replicate the the multi-amplitude strain range behavior.

Fig. 4.5. Multi-amplitude strain
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Apart from the combined model used in the research, an evolutionary model for

the kinematic and isotropic parameters have been employed per equation 2.17. This

has shown better accuracy in modelling the cyclic stress-strain behavior. The varying

γi values predict higher stresses than constant γi because the back-stress addition is

due to Ci

γi
.

Existing finite element tools currently do not incorporate an evolving kinematic

hardening model and a USERMAT is required to accurately capture this evolution.

An alternative is to define the kinematic parameters using user defined fields utilizing

the equation 2.17. Usually, there is provision provided for a single user defined field

and that is leveraged here to model the evolving kinematic hardening values. This

is cycle by cycle static analysis. The analysis was conducted in three steps, with the

amplitude being increased against the cyclic displacement function as shown in figure

4.5. The strain ranges in the multiple amplitude loads were 0.3%, 0.6% and 0.8%.

Material Parameters

The material parameters are directly taken from the work of Pritchard [35]. They

are listed in the table below. The given Young’s modulus was 173 GPa and the yield

strength was at 100.4 MPa.

Table 4.3.
Kinematic hardening parameters for Alloy 617 [35]

Backstresses Ci (MPa) γi

1 1.135e+6 35288

2 1.34e+5 16348

3 1.13e+4 1859.3

4 2500 0
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Table 4.4.
Isotropic hardening parameters for Alloy 617 [35]

Q∞ MPa b

37.61 61.33

Table 4.5.
Kinematic hardening evolution parameters [35]

No. Li di

1 -12800 7.496

2 -4875.7 10.07

3 -634.4 18.57

4 0 1

4.2 Simulations of 3D Printed 15-5 PH Stainless Steel

4.2.1 CASE 3: Fatigue Prediction under Constant Amplitude Strain

Load: Direct Cyclic Method

The fatigue analysis is carried out using the direct cyclic approach. Stable cycles

are reached and, damage initiation and accumulation parameters modify the structure

response. The simulation is conducted for three different constant strain amplitude.

Geometry, Mesh and Boundary Condition

The geometry is modeled as standard test specimen for rotating bending fatigue

tests presented in Chapter 3. The simple geometry was created using a CAD modeler.

The radius of the bending specimen is 4 mm and length is 100 mm per standard

specimen. 8 noded Brick elements with reduced integration formulation (C3D8R) are

used in this simulation. There are 3792 elements and 4523 nodes. The characteristic

length of the elements is 1.58. The elements are created with a bias such that there are
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(a) Mesh (b) Boundary condition

Fig. 4.6. FE model for the rotary fatigue specimen

more elements near the fixed point of the cantilever beam as opposed to the free end.

The model is constrained at one end and is free to move at the other. A displacement

boundary condition is applied to the free end. See figure 4.6(a) and 4.6(b).

The same displacement function shown in 4.2 was used to apply strain loads. The

analysis was conducted for three total strain ranges of 1.87%, 1.58% and 1.37%.

Material Parameters

The non-linear hardening models parameters are fit for 4 backstresses from the

data of the monotonic stress-strain graph from 4.7. As mentioned before, ideally the

fit should be made using both monotonic and cyclic curves. But given the current

set of data, we can predict how the material will behave under cyclic loads.
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From the stress-strain data it was ascertained that the Young’s modulus was 78.85

GPa and yield limit of the specimen was 820 MPa and thus the plastic strain data

was captured. The entirety of the data was sampled at an interval of 100 to reduce

the data to manageable portion. The Ci and γi are listed in the table 4.6, and a curve

representing total backstress and it’s relation to it’s additive components is shown in

figure 4.9. The parameter values were obtained by the curve fit (see figure 4.8).

Fig. 4.7. Experimentally measured uniaxial tension Stress-strain
graph for 3D printed 15-5 PH stainless steel

Table 4.6.
Backstresses Ci and γi values for 3D printed 15-5 PH stainless steel

Backstresses Ci (MPa) γi

1 3.45e+05 23435.577

2 1.44e+05 108732.63

3 2.88e+04 14737.23

4 3.71e+03 37.055
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Fig. 4.8. Curve fit applied to experimental data

Fig. 4.9. Total backstress(solid line) and it’s decomposed components
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The damage parameters are calculated to accommodate the values obtained from

the experiments. The initiation parameters were taken from Biglari et al. [27] as there

is insufficient data to calibrate those parameter. The chosen initiation parameters

indicate initiation at a very low hysteresis energy threshold. The damage evolution

parameters are calibrated assuming a strain life result and taking the value of mesh

dependent characteristic length as 1.58.

Fig. 4.10. Damage evolution parameter fit

Table 4.7.
Damage parameters for 3D printed 15-5 PH stainless steel

Damage parameters Values

C1 14.3 [27]

C2 -0.91 [27]

C3 1.4e-3

C4 0.553
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4.2.2 CASE 4: Cyclic Behavior Simulation under Multi-amplitude Strain

Load: Static Analysis Method

The simulation undertaken in section 4.1.2 is repeated for the case of 15-5 PH

stainless steel. The axisymmetric geometry, mesh and boundary condition is similar

to the ones used in the mentioned section. The Young’s modulus and yield strength

for 15-5 PH stainless steel from the stress-strain data is used (see section 4.2) and

kinematic hardening material property used is the same as in table 4.6. In this case,

the kinematic hardening evolution parameters are included.

The kinematic hardening evolution parameters are take from the reference used

in section 4.1.2 in table 4.5 [6]. The procedure remains similar to section 4.1.2. Only

the displacement amplitudes are changed for this simulation as seen in figure 4.11.

The displacement amplitudes are different because, 15-5 PH stainless steel yields at

a much higher strain than Alloy 617 used in section 4.1.2.The multi-amplitude strain

range has the split 1.15%, 1.6% and 1.75%.

Fig. 4.11. Multi-amplitude strain for CASE 4
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4.3 Results and Discussion

4.3.1 CASE 1: Fatigue Prediction for 3D Printed 17-4 Stainless Steel

under Constant Amplitude Strain Load

Since, the calibration was done using the cyclic test data, the cyclic response of

the material should be compared with the literature. Cyclic stress-strain response for

several strain amplitude ranges are captured. As seen in figure 4.12, the hardening

regions of respective cycles from the results of FEA closely match the experimental

cyclic stress-strain curve [6]. The material shows cyclic hardening ability and it

is correctly predicted in the current model. The evolution of damage can be seen

Fig. 4.12. Family of cyclic stress-strain curves for different strain ranges

in the normalized damage vs Cycles graph shown in figure 4.13. As is expected, the

specimen damages quickly when loaded at a higher strain range as compared with low

strain range. For the damage initiation criteria prescribed, only specimen subjected

to 0.3% strain showed delayed initiation, at 971 cycles (seen as flat curve before

damage D > 0). The strain-life curve obtained is shown in figure 4.14. It shows
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Fig. 4.13. Normalised damage vs cycles

Fig. 4.14. Strain life curve for vertically printed as built 17-4 stainless steel

reasonable agreement with experimental results from literature [6]. The accuracy of

the prediction depends on correct fit using large number of data points. The present

model is limited as the calibration data was insufficient.



51

4.3.2 CASE 2: Cyclic Behavior Simulation for Alloy 617 under Multi-

amplitude Strain Load

The modified parameters were a reasonable approximation as it captured the

intended effect on stress evolution. As discussed earlier, the introduction of the

kinematic hardening evolution parameter ensures that higher stresses are predicted

for the same plastic strain regime since the given values of Li and di cause the γi

value to decrease, which in turn causes the backstress values to increase. Figure 4.15

shows this comparison of the results obtained using modified parameters in FEA and

the results from literature.

Fig. 4.15. Comparison of FEA result with literature [35]

The variation of the stress-strain curves are shown for different cycles in the figure

4.16. This figures captures the effect of combined hardening model used. We can see

that the hysteresis loops shift upwards for higher cycles within a strain range. The

kinematic evolution parameters indicate an increased number of cycles to a stabilized

regime. As, the load is increased, the material would resist hardening (stress response

will plateau) and damage would initiate. After this, the material would soften..
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Fig. 4.16. Variation of stress-strain loops for different strain range

4.3.3 CASE 3: Fatigue Prediction for 3D printed 15-5 PH Stainless Steel

under Constant Amplitude Strain Load

The progression of damage parameter as cycles progress for different strain ranges

are shown in figure 4.17. Since the damage initiation parameters are nominal, damage

would begin for minimal hysteresis energy, which is achieved at all strain amplitude

ranges in our simulations.

The rate of energy dissipation, and thus that of damage evolution, would be

highest for the highest strain amplitude range and this is seen in the figure. The

damage parameter has a power law relationship with cycles and thus is non-linear.

The calibration of damage evolution of damage parameters shows good agreement

with values used to calibrate (see figure 4.18). The predicted strain life from finite

element model and the calibration life values are close to each other with higher

strains resulting in shorter life. The results would be more accurate with large data

points as it would smooth-en the curve out.
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Fig. 4.17. Variation of damage parameter with cycles for different strain ranges

Fig. 4.18. Comparison of strain life curve between fit data and FEA
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The model is extended (see figure 4.19) to cover the lower strain regions that

the experiment covered. The Coffin-Manson-Basquin combined law is fit and the

predicted curve passes close to the experimental values. The Coffin-Manson-Basquin

parameters referring equation 2.4 is given in table 4.8.

Table 4.8.
Coffin-Mason-Basquin parameters for 3D printed 15-5 PH stainless steel

Parameters Values

σ
′

f GPa 70.92

b -0.7455

ε
′

f 9.884

c -0.405

Fig. 4.19. Comparison between experimental data and Coffin-
Manson-Basquin prediction for 3D printed 15-5 PH stainless steel

The variation of stress for the strain amplitude loading of 1.87% can be seen from

figure 4.20. As, in our simulation, damage starts at the first cycle, the material softens
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as it is loaded through cycles. If we compare the von-Mises stress values at the point

of maximum amplitude during each of the cycles, we see that the overall maximum

von-Mises stress values are decreasing (see figures 4.20(a), 4.20(b) and 4.20(c)) from

869 MPa at cycle 1 to 842 MPa at cycle 65 near failure.

(a) Cycle 1 (b) Cycle 35 (c) Cycle 65

Fig. 4.20. Von Mises stress plots for the model at different cycles with
damaged material at 65th cycle

(a) Cycle 1 (b) Cycle 35 (c) Cycle 65

Fig. 4.21. Damage parameter at different cycles with damaged mate-
rial at 65th cycle
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The corresponding damage parameter plot at different cycles are plotted in figure

4.21. On the first cycle we see that the damage has not initiated yet, because, as

per our criterion, damage initiation is after the first cycle. The damage progresses as

the specimen is cycled through constant amplitude strain and reaches it’s maximum

value at cycle 65 for failure. At this stage, the material has lost it’s capacity for

plastic work.

4.3.4 CASE 4: Cyclic Behavior Simulation for 3D Printed 15-5 PH Stain-

less Steel under Multi-amplitude Strain Load

Fig. 4.22. Cycle dependent stress variation

The kinematic hardening evolution parameters used in this model increased the

backstress component during stress-strain reversals. As is seen in figure 4.22 the

predicted values of stresses are higher when hardening evolution model is used. Since,

these values are borrowed from literature, the actual stress evolution behavior needs

to be tracked and then the γi evolution needs to be calibrated to new Li and di values

to accurately capture the behavior.
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Fig. 4.23. Stress-strain curve

The stress-strain graph is shown in figure 4.23 associated with the hardening

evolution model. The yield limit of 15-5 PH stainless steel is several times higher

than the values used for Alloy 617 and the hysteresis curve would be narrower. This

could indicate a more brittle interaction as compared to Alloy 617.
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5. CONCLUSION

In this thesis, a combined numerical and experimental study is presented. The major

conclusions are summarized as follows.

• The fatigue life of the 15-5 PH stainless steel is experimentally measured. The

strain life curve shows that the numbers of the reversals to failure increase from

13,403 to 46,760 as the applied strain magnitudes decrease from 0.214% from

0.132%, respectively. The microstructure analysis shows that predominantly

brittle fracture is presented on the fractured surface

• A finite element model based on cyclic plasticity including the damage model

is developed to predict the fatigue life. The model is calibrated with two cases:

one is the fatigue life of 3D printed 17-4 stainless steel under constant amplitude

strain load using the direct cyclic method, and the other one is the cyclic be-

havior of Alloy 617 under multi-amplitude strain loads using the static analysis

method. Both validation models show a good correlation with the literature

experimental data

• After the validation, the finite element model is applied to the 15-5 PH stainless

steel. Using the direct cyclic method, the model predicts the fatigue life of 15-5

PH stainless steel under constant amplitude strain. The extension of the pre-

diction curve matches well with the previously measured experimental results,

following the Coffin-Manson-Basquin Law. Under multi-amplitude strain, the

kinematic hardening evolution parameter is incorporated into the model. Higher

stresses are predicted when strain amplitudes are increased

• The model presented in the work can be used to design for the reliability of 3D

printed metals under cyclic loading conditions.
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6. RECOMMENDATIONS

The current model can be further implemented as follows,

• Conduct fatigue tests at low-cycle conditions to better compare against model-

ing data.

• The strain controlled cyclic tests need to be conducted for 15-5 PH stainless

steel to find the cycles to stabilization, cycles to damage initiation and the

rate of decrease of the materials ability to do plastic work. This would help

characterize the material behavior with greater accuracy.

• These cyclic tests should be conducted for different strain rates and an under-

standing of strain rate dependence on the fatigue life needs to be assessed.

• The cyclic tests can also incorporate temperature dependency and understand

the effects on cyclic behavior.

• For components produced by different 3D printing process, the relationship

between 3D printing parameters and the parameters in the model need to be

determined.

• This model should be used to predict the fatigue life for different design pa-

rameters under complex loading conditions. This knowledge can then guide the

design intent.

• The model can be extended to incorporate the effect of creep.
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