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ABSTRACT

An intermittency model that is formulated in local variables is proposed for representing

bypass transition in Reynolds-Averaged Navier-Stokes (RANS) computations. No external

data correlation is used to fix transition. Transition is initiated by diffusion and a source term

carries it to completion. A sink term is created to predict the laminar region before transition

and vanishes in turbulent region. The present model is implemented in OpenFOAM, a platform

for computational fluid dynamics (CFD) codes with unstructured mesh. For validation of this

model, a group of test cases based on flat plate experiments have been set up for numerical

simulations in OpenFOAM. It turns out that the current model is capable to predict boundary

layer transition on a flat plate both with and without pressure gradients when decent agreement

with the available experiment data is observed.
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Nomenclature

Ui Components of mean velocity

U Magnitude of mean velocity

Ufs Local free stream velocity

ui Components of fluctuation velocity

Sij Mean stain rate tensor, 1
2(∂jUi + ∂iUj)

Ωij Mean rotation rate tensor, 1
2(∂jUi − ∂iUj)

ρ Density

µ Kinetic viscosity or molecular viscosity

ν Kinematic viscosity, µ/ρ

k Turbulence kinetic energy, 1
2uiui

ε Dissipation rate of energy per unit mass

ω Specific dissipation rate, ε/Cµk, where Cµ ≡ 0.09

νT Eddy viscosity

γ Intermittency function

Rt Turbulent Reynolds number

Rν Vorticity Reynolds number

Rex Reynolds number based on x-coordinate

Cf Skin friction coefficient

y Distance to the nearest wall

y+ Non-dimensional distance in the wall coordinate, u∗y
ν =

√
τw
ρ
y
ν

τw Wall shear stress

Subscript

i i=1,2,3 represent the three directions in Cartesian coordinates
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CHAPTER 1. OVERVIEW

An intermittency model that is formulated in local variables is developed for predicting

bypass transition in RANS simulations. No external data correlation is used to fix transition.

Transition is initiated by diffusion and a source term carries it to completion. Note that the

intermittency function is generally initialized to be unity within the whole domain, which is

already a solution to a diffusion equation. To void this trivial solution, a sink term is created to

force the intermittency to be zero in the laminar boundary layer before transition and vanishes

in turbulent region. The present model is implemented in OpenFOAM, a platform for CFD

codes with unstructured mesh, by modifying the existed module for k − ω RANS turbulent

model. For validation of this model, a group of test cases based on flat plate experiments have

been set up for numerical simulations in OpenFOAM. It turns out that the current model is

capable to predict boundary layer transition on a flat plate both with and without pressure

gradients when decent agreement with the available experiment data is observed. Separation

induced transition will be taken into consideration in appendix section, and more separation

related cases remain to be tested to improve the performance of the model.

This chapter will cover the background knowledge and motivation of the present work, and

a brief introduction on the categories of laminar-to-turbulent transition and the research in the

past of transition modeling through a literature view.

1.1 Introduction

While plenty of models for a wide range of fully turbulent flows are available in general

CFD codes, effective models for laminar-to-turbulent transition have not been developed and

applied extensively.
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One of the difficulties to develop a transition model is that transition takes place through

different mechanisms in term of various engineering flows. In aerodynamics, when free-stream

turbulence intensity (FSTI) is less than 0.5% (u
′
/U < 0.005), transition typically occurs with

intervention of viscous Tollmien-Schilichting instability waves. These waves grow linearly first

and eventually lead to a non-linear break-down to turbulence. This kind of transition is gener-

ally referred to as natural transition. Another transition mechanism is called bypass transition,

which happens when FSTI is about 0.5% or greater without the occurrence of linear instability.

Turbulent diffuses into the laminar boundary layer, generates disturbances knows as Klebanoff

modes. Figure(1.1) is a plane view of the jets, observed in contours of the u (top) and v (bot-

tom) component of perturbation velocity. These streaky features, seen at the left-hand side

of the u contours, are often called Klebanoff modes. The disturbances grow in amplitude and

the flow transits to turbulence. In addition, separated-induced transition is another important

mechanism, in which a laminar boundary layer separates under the influence of a pressure gra-

dient and transition occurs within the separated shear layer. It is difficult to develop a model

which is valid for all different mechanisms mentioned above.

Figure 1.1 Contours of u (top) and v (bottom) in a plane near the wall under conditions of
bypass transition (Durbin (2011)).

The present work is to develop a model that invokes an intermittency function to represent

bypass transition based on RANS k − ω turbulent model. In addition to the two transport
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equations of kinetic energy (k) and specific turbulence dissipation rate (ω), respectively, another

transport equation of intermittency (γ) is combined into the new model.

The fraction of time that the flow at any point is turbulent is called the intermittency. The

value of γ varies from unity within free-stream turbulent flow to zero in the laminar boundary

layer. The function γ is used to suppress production of turbulent kinetic energy. Bypass tran-

sition is initiated through the diffusion of free-stream disturbances into the laminar boundary

layer.As γ rises from zero toward unity within the boundary layer, production switches on and

the eddy viscosity rises. Meanwhile, in order to have the laminar boundary layer before tran-

sition, a certain form of sink term in γ equation may be invoked to work within the boundary

layer to drive γ towards zero.

1.2 Literature Review

1.2.1 Transition Modes

In this section, a brief review is given on previous research of various modes by which

transition is believed to occur.

1.2.1.1 Natural transition

In early research on inviscid stability theory, a famous and useful general result is that

the occurrence of an inflection point in the basic velocity profile is a necessary condition for

instability. Later on, solutions to viscous instability problem (Orr-Sommerfeld problem) were

first found numerically by Tollmien and Schlichting. When the free-stream turbulence level is

low (< 0.5%), a laminar boundary layer becomes linearly unstable at sufficient Reynolds num-

ber: the instability takes the form of two-dimensional waves, the so called Tollmien-Schlichting

waves. Since the growth rate is so slow, transition to turbulence might not complete until a

stream-wise distance is as large as 20 times farther downstream from the leading edge than the

initial starting point of linear instability. The transition occurs only after the waves become

nonlinear and three-dimensional disturbances take over. At this position turbulent spots start

to appear, which grow in the surrounding laminar layer and then grow and merge to form the
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fully turbulent boundary layer. This type of transition is referred to as natural transition.

1.2.1.2 Bypass transition

Under free-stream turbulence level of about 0.5% or more, boundary layers proceed from

laminar to fully turbulent without the occurrence of linear instability of the base state so that

turbulent spots are directly produced within the boundary layer. In other words, this kind of

transition occurs bypassing the linear instability stage such that it is called bypass transition.

It is often argued that for bypass transition, linear stability is irrelevant and to date no one

has been able to detect Tollmien-Schlichting waves when the free-stream turbulence level was

greater than 1.0%. It should be noted that bypass transition can also happen due to surface

roughness where the disturbances are activated from the perturbations at the wall instead of

from the free-stream turbulence.

1.2.1.3 Separated flow transition

When a laminar boundary layer separates, transition may occur in the shear layer of the

separated flow as a result of the inviscid instability mechanism. Due to the enhanced mixing

caused by the turbulent flow, the shear layer may reattach. This reattachment forms a laminar-

separation/turbulent-reattachment bubble on the surface. This type of transition can occur as

a result of separation due to a strong adverse pressure gradient.

1.2.2 Transition Models

Three approaches have been devised: rely on the closure model to transition from laminar to

turbulent solutions; use a data correlation to decide when to switch from laminar to turbulent

solutions; or devise additional model equations to represent transition. In the last approach,

two branches have been explored:

N the first is to develop an equation for the intermittency function, γ(x,t);

N the second is to develop an equation for the energy of fluctuations that occur in the laminar

region upstream of transition.
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1.2.2.1 Reliance on the turbulent model

Most turbulent models are developed for fully turbulent flows and calibrated with turbulent

data. However, most transport equation models do converge to a laminar solution at low

Reynolds number and to a turbulent solution at sufficiently high Reynolds number. The model

equations do evidence a transition between laminar and turbulent solution branches. Most

eddy viscosity closure models predict early transition.

It is common to encounter regions of purely laminar, or buffeted laminar, flow in applica-

tions. For instance, turbine blades often operate at low enough Reynolds numbers to come

across significant portions of laminar flow on their surface-the blades are subjected to external

turbulence, so their boundary layers are better described as buffeted laminar layers. In such

instances, the bulk of the flow may be turbulent and the overall flow calculation must be with a

turbulence model. Bypass transition which comes into play in this case is stochastic by nature.

Turbulent spots are highly localized, irregular motions inside the boundary layer. So the tur-

bulent models which describe statistical fluid dynamics are not entirely irrelevant; but neither

are they entirely rational. Very often the models are solved without revision, depending on

their capability of early transition prediction. But when accurate predictions of the laminar

and transitional regions are required, the turbulence model must be modified by a method to

predict transition.

One approach is to switch from a laminar to a turbulent computation at a prescribed tran-

sition point. For boundary layers under free-stream turbulence, the data correlation

Rθtr = 163 + e6.91−Tu (1.1)

was proposed by Abu-Gannam and Shaw (1980) for zero pressure-gradient boundary layers. Tu

is the turbulence intensity in percentage, 100
√
ū2/U , measured in the free stream. Transition

occurs where the local momentum thickness Reynolds number exceeds the above critical value.

Another approach is to modulate either the eddy viscosity or the production term in the

k equation to increase it from zero to its full value across a transition zone. The basic idea is

to introduce an intermittency function, γ, that increases from zero to unity, and to replace the
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eddy viscosity by γνT . If the transition has been predicted to occur at x tr by making use of

the transition criterion in equation (1.1), formulas like

γ = 1− e−(x−xtr)2/l2tr , x > xtr, (1.2)

have been used. γ is slowly ramped up from zero to unity until the fully turbulent boundary is

achieved. Here ltr is a transition length, which has been estimated to be about 126 times the

momentum thickness (ltr=126 θ) in zero pressure-gradient boundary layers.

1.2.2.2 Intermittency transport equation

A relatively new approach to intermittency modeling is to propose a transport equation

for the intermittency factor where the source terms are devised to mimic the behavior of some

algebraic intermittency models, such as equation (1.2). This equation can be derived into a

transport equation. Note that for x > xtr.

dγ

dx
= 2

x− xxr
l2tr

e−(x−xtr)2/l2tr = 2
1− γ
ltr

[−log(1− γ)]1/2 .

If x is regarded as the stream-wise direction, this can be generalized to

u · ∇γ = |u|2(1− γ)
ltr

[−log(1− γ)]1/2 .

If γ is small
√
−log(1− γ) ≈ √γ. Adding a diffusion term provides a transport equation

Dtγ = 2(1− γ)
√
γ
|u|
ltr

+∇ · [(ν + νT )∇γ]. (1.3)

This is a starting point for more elaborate formulations. The main advantages of this approach

is that it is possible to model the transition process not only in the flow direction but also across

the boundary layer and thus provide a more realistic prediction of the transition. The transport

equation controls the rise of γ from zero in laminar flow to unity in turbulent flow. The onset

position of transition still has to be determined by a data correlation like equation(1.1). The

correlation involves the boundary layer momentum thickness and the free-stream turbulence.

The former is an integral property and the latter a remote variable. This is unsuitable for
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unstructured-grid CFD codes. Otherwise in boundary layer codes or structured-grid CFD

codes, this approach is feasible since the grid lines are aligned normal to the wall and the

required variables can be obtained by searching in the grid j coordinate (i.e. in the wall normal

direction by assuming the grid is strictly aligned with the wall).

To implement such equation in unstructured-grid CFD codes for more general engineering

circumstances, some models which are formulated in only local variables are developed (Langtry

and Menter (2009)). In their method, the data correlation is replaced by a transport equation

for transition Reynolds number (1.4). The intermittency function solves a second transport

equation (1.5).

DtReθt = Pθt +∇ · [2.0(ν + νT )∇Reθt], (1.4)

Dtγ = Pγ − Eγ +∇ · [(ν + νT )∇γ]. (1.5)

The source term Pγ and sink term Eγ are defined as follows,

Pγ = 2.0|S|(1− γ)(γFonset)0.5Flength, (1.6)

Eγ = 0.06|Ω|γ(50γ − 1)Fturb, (1.7)

where |S| is the magnitude of mean strain rate tensor, and |Ω| is the magnitude of the mean

rotation rate tensor. Flength is an empirical correlation that controls the length of transition,

and Fonset controls the transition onset location. The form of Fonset is as follows,

Fonset1 =
Reν

2.193 ·Reθc

Fonset2 = min(max(Fonset1, F 4
onset1), 2.0)

Fonset3 = max

(
1−

(
Rt
2.5

)3

, 0

)

Fonset = max(Fonset2 − Fonset3, 0),

(1.8)

where
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Rt ≡
νT
ν

Rν ≡
d2|Ω|

2.193ν
.

(1.9)

Note that the criterion of onset is now controlled by a local parameter Rν instead of a integral

parameter Rθt in equation (1.1). So far, Reθc and Flength still need to be determined so as to

let production term (1.6) be well defined. In Langtry and Menter (2009), these two variables

are both functions of Reθt, which is the solution of equation (1.4). Data correlations are used

to construct the functions for Reθc and Flength.

The idea is similar to earlier models that specify transition location, then solve a γ-equation

to represent the transitional zone. But in Langtry and Menter (2009) the data correlation

involved in the source term Pθt in equation (1.4) invokes the mean velocity and the streamline

direction. That data correlation is not Gallilean invariant, which is problematic for multiple

moving walls in the domain.

Another key point is the sink term Eγ in equation (1.5). The effect of this is to drive γ

towards zero in laminar boundary layer so that a trivial solution γ = 1 can be avoided. This

idea is also used in the present model. More discussion will be given below.

For the purpose of explanation, the model introduced above is not exactly the same as the

one in Langtry and Menter (2009). More parameters and complicated correlations are used to

match the experimental data.

1.2.2.3 Laminar fluctuation model

As mentioned above, another approach is devised with a transport equation for the energy

of fluctuations in the laminar boundary layer-the Klebanoff modes or instability waves-and has

closer connection to the phenomenology of transition.

These fluctuations grow and produce turbulent kinetic energy. The key elements of the equa-

tion for laminar fluctuations are production and transfer to turbulence. Walters and Cokaljat

(2008) propose the form

DtkL = 2νT l|S|2 −R−DL +∇ · (ν∇kL), (1.10)
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in which 2νT l|S|2 is the rate of production of laminar fluctuations, DL is a destruction term,

and R will be described below. To accommodate both bypass and natural transition, νT l has

two components,

νT l = νBP + νNT ,

associated with large-scale eddies and with instability.

Initially, the large-scale eddies are contained in free-stream turbulence. Klebanoff modes are

spawned by these large-length-scale motions. The model is motivated by this phenomenology.

Walters and Cokaljat (2008) write

vBP = 3.4× 10−6fτl
Ωλ2

eff

ν

√
kT lλeff , (1.11)

with

λeff = min[2.495d,
√
k/ω]

providing the length scale; and

kT l = k

[
1−

(
λeff
L

)2/3
]
,

where L =
√
k/ω, representing the large-scale component of the turbulent kinetic energy. The

laminar fluctuation equation(1.10) is conjoined with the k-ω model.

In equation(1.11), Ω is the magnitude of the vorticity vector; and fτl is the damping function

fτl = 1− exp

[
−4360

kT l
2λ2

eff |S|2

]
.

The numerical coefficients were adjusted to fit data. They control the onset of transition just

like functions like fonset in intermittency models. The component νBP becomes small where d

is large and where d is small. This matches the exponential observation that Klebanoff modes

develop in the central part of the boundary layer.
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Natural transition is invoked by

νNT = 10−10βL
Ωd2

ν
Ωd2, (1.12)

with

βL =


0, RΩ > 1000,

1− e−(0.005RΩ−5), RΩ > 1000,

where RΩ = Ωd2/ν. This acts analogously to an instability criterion. In a Blasius boundary

layer, maxy RΩ = 2.193Rθ. Thus the instability criterion is Rθ > 456 (which is higher than the

value of 200 from linear stability theory).

The term R in equation(1.10) represents breakdown of laminar fluctuations into turbu-

lence. The same term, with positive sign, is added to the turbulent kinetic energy equation:

Dtk = P +R− ε . . .. Its form is

R = 0.21BL
kL
τT
,

where τT = λeff/
√
k. As the turbulent energy grows, τ decreases, transferring energy from

laminar fluctuations to turbulence. The coefficient BL controls the onset of transition,

BL =


0, Rk > 35,

1− e−(Rk−35)/8, Rk > 35,

where Rk =
√
kd/ν. The transition criterion is based on the Reynolds number Rk, which

contains wall distance and turbulent kinetic energy. Thus breakdown initiates well above the

wall, as occurs in experiments.

Walters and Cokaljat (2008) also modify R for natural transition, and introduce other

limiting and interpolation functions to improve agreement with data.
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CHAPTER 2. DEVELOPMENT OF THE MODEL

2.1 Introduction

In this chapter, the development of the present model will be described. The rationals of

different terms in the model as well as the parameter sensitivity will be given by conducting

simulations on some simple test cases.

2.2 The Form of The Model

This specific model is based on the standard k − ω RANS closure (Wilcox (1993)). It is a

two-equation turbulence model (see equation (2.1) and (2.2)). One is a transport equation for

turbulent kinetic energy, and the other is for specific dissipation rate.

Dk

Dt
= 2νT |S|2 − Cµkω + ∂j

[(
ν +

νT
σk

)
∂jk
]

(2.1)

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 + ∂j

[(
ν +

νT
σω

)
∂jω

]
(2.2)

where Cµ = 0.09, Cω1 = 5/9, Cω2 = 3/40 and σω = σk = 2.

The intermittency function (γ) is placed into the production term (2νT |S|2) of the k-

equation. This is the only appearance of γ in the turbulence model, hence equation (2.1)

becomes

Dk

Dt
= 2γνT |S|2 − Cµkω + ∂j

[(
ν +

νT
σk

)
∂jk
]
, (2.3)

and there is no change in equation (2.2). Here |S|2 = SijSji is the square of magnitude of the

mean rate of strain tensor. The eddy viscosity is defined as

νT = k/ω. (2.4)
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Theory and computer simulations of bypass transition indeed attribute its initiations to

diffusion of free-stream turbulence into the boundary layer. They also show that only low

frequencies can penetrate the boundary layer (Zaki and Durbin (2005)). Similarly, Praisner

and Clark (2007) suggest that turbulent time-scale plays a major role in transition, and its

interesting implication is that when turbulence scale is included, pressure gradients and other

parameters are secondary. All these above give the rational of the current simple model with

only one transport equation of intermittency.

In the present context, intermittency does not have a definite physical meaning. The

function γ is used to suppress production of turbulent kinetic energy. In laminar flow k = 0

and νT = 0. When γ is small, equation (2.3) will force k to be small. γ is supposed to be

zero inside the laminar boundary layer and unity in free-stream turbulent region. Non-zero γ

will diffuse into the boundary layer, enhancing the production of k, increasing eddy viscosity,

and hence initiating the transition. On other words, transition is controlled by penetration of

free-stream turbulence into the boundary layer via molecular and turbulent diffusion.

Consider an intermittency transport equation of the form

Dγ

Dt
= ∂j

[( ν
σl

+
νT
σγ

)
∂jγ
]

+ Fγ |Ω| (γmax − γ)
√
γ − C1GγFturb|Ω|γ1.5 (2.5)

with initial conditions γ = 1 in the whole domain and ∂nγ = 0 on walls. Ω is the magnitude of

the mean rotation rate tensor.

Excluding the sink term, i.e. the third term in the right-hand side, equation (2.5) would

have identical form as the γ-equation in Durbin (2012). The diffusion term initiates the tran-

sition and the source term completes it.

2.2.1 Diffusion Term

The influence of the two constants σl and σγ in the diffusion term on the transition is given

below. They are set to be 5.0 and 0.2,respectively.

From the diffusion term itself, we can predict that increasing σγ decreases turbulent diffu-

sivity and delays transition, and vice versa. In the current model, σγ is selected to be 0.2. If it

is doubled or even greater, the diffusion is suppressed and the transition delayed. An issue that
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has to be pointed out is that this parameter become less sensitive once it is less than 0.2. When

it is halved, the result changes very slightly; but it does give obvious early transition if σγ is

0.02 or even smaller. It is due to the sink term which is designed to drive γ to zero in order

to have laminar region before transition. After transition, the sink is supposed to vanish and

hence just doubling the proper value of σγ affects the result significantly. See figure (2.1). The

plots in this figure are the skin friction coefficient, Cf curve through the stream-wise direction

of a flat plate test case, T3A, one of the T3 series of flat-plate experiments conducted by the

European Research Community on Flow Turbulence and Combustion (ERCOFTAC).

Figure 2.1 Sensitivity of σγ to the transition location. The proper value of σγ is 0.2. When
it is doubled, transition delay can be recognized; but when it is halved, the effect
is very little.
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However, the effect of σl is a little bit unintelligible. When it is doubled, the Cf curve goes

up from the proper results with early transition, whereas transition occurs further downstream

if σl is halved. It turns out to be a reverse effect of σγ . See figure (2.2).

Figure 2.2 Sensitivity of σl to the transition location.

2.2.2 Source Term

Note that γmax instead of unity is placed in the source term compared with Pγ in equation

(1.6). This is in order to enhance the effect of the source term to drive γ to one. Accordingly,

γ is possible to exceed unity due to such source, which is not allowed. After each step of the

computation, γ is forced to the value of min(γ, 1) to chop off values greater than unity. This

has a small effect, but it does force a full transition to turbulence if γ is guaranteed to be unity
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after transition.

The factor Fγ switches on as transition proceeds. Once it comes into play, γ will increase

up to unity within the region Fγ affects. Therefore, turbulent kinetic energy k increases as well

as the eddy viscosity. Meanwhile, the sink term vanishes and the transition model turns into

fully turbulent model.

Fγ is a function of two parameters. In them, mean shear is represented by the magnitude

of the mean rotation rate |Ω| (i.e.
√

2 · ΩijΩji). It recalls that turbulence is caused by mean

shear. |Ω| is an invariant measure of shear, and it vanishes in the irrotational free-stream.

Three non-dimensional parameters are involved,



Rt ≡
νT
ν

Rν ≡
d2|Ω|

2.188ν

Tω ≡ Rt
|Ω|
ω

(2.6)

where d is distance to the wall. Rt is the ratio of eddy viscosity to molecular viscosity, namely

the turbulent Reynolds number. Rν is the vorticity Reynolds number, which depends only on

local variables. Note that near a wall in the constant stress layer it goes like wall distance

square, i.e. Rν → y2
+/2.188, as y+ → 0. It is defined as such that the maximum of the profile

in normal wall direction is equal to the momentum thickness Reynolds number: maxy Rν = Rθ.

When the boundary layer is applied by pressure gradients, the relationship between momentum

thickness and vorticity Reynolds number will change due to the change of the profile of Rν .

In Falkner-Skan boundary layers maxy Rν is less than Rθ for favorable pressure gradients and

greater than Rθ for adverse pressure gradients. So a fixed value of Rν will correspond to a

higher Rθ for favorable pressure gradients and a lower Rθ as the pressure gradient becomes

adverse.

The parameter Tω is Rt multiplied by |Ω|/ω to make it vanish in the free-stream. Another

view of Tω is that in parallel flow Tω = |uv|/νω. In log-layer it equals to u2
∗/νω = 1/ω+.

The function Fγ is determined by the two parameters Rν and Tω. Tω is used to form a critical

Reynolds number, Rc. It is a decreasing function of Tω. If the turbulent intensity is low, Tω will
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be low and Rc will be high. See equation (2.7). Rc has a linear ramp down between 400 and 40.

Rc = 400− 360 min
(
Tω
2
, 1
)

(2.7)

As the local Reynolds number Rν crosses Rc from below, Fγ ramps up from zero. Again a

linear ramp up is used. Meanwhile, a ramp down is included if the Reynolds number crosses

Rνbound = 100/0.7 without the flow becoming turbulent. This approach is to suppress Fγ ,

namely the source term to switch on for low free-stream turbulence. The concrete formula for

Fγ is

Fγ = 2 max [0,min (100− 0.7Rν , 1)]×min [max (Rν −Rc, 0) , 4] . (2.8)

On other words,

Fγ =


0, if Rν 6 Rc, or if Rν > 100/0.7,

8, if Rν > Rc + 4 and Rν 6 100/0.7− 1.

Effect of the upper limit 4 in the second factor of the right-hand side of equation (2.8) is

Figure 2.3 Fγ vs. Rν when Rc is set to be 100.
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Figure 2.4 Rνbound is equal to 100/0.5 (blue dash-dot); 100/0.7 (green solid); 100/0.9 (blue
dash).

inconsiderable; a greater value does not change the result pretty much. The plot of Fγ versus Rν

is given in figure (2.3), when the critical Reynolds number Rc is 100, which illustrates how Fγ

ramps up then down. The upper limit of Rν where Fγ crosses from non-zero to zero (Rνbound)

is sensitive to the location of transition. If it is set to be greater than 100/0.7, transition is

supposed to be accelerated; if it is less, transition is supposed to be delayed. However, due to

the effect of the sink term discussed above in the section on the diffusion term, if for example

Rνbound = 100/0.5 is used, the Cf curve will be barely changed rather than showing a obvious

early transition. When Rνbound = 100/0.9, it does result in a late transition. See figure (2.4).
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2.2.3 Sink Term

Without a sink term, the γ-equation (2.5) would have the solution γ ≡ 1. The numerical

elliptic solver will converge to unity within the whole domain, which will produce fully turbulent

results. See figure (2.5).

Figure 2.5 Skin friction coefficient vs. Rex in a flat plate test case (T3A); the blue solid
curve represents the result based on the model without sink term. The other three
represent the experimental data, theoretical laminar solution, and half-empirical
turbulent solution respectively.

In order to force γ close to zero within the laminar region, a sink term is added in equation

(2.5). Another feature of the sink term is that it has to vanish after transition because γ is

supposed to be unity in fully turbulent region. This feature is implemented by the multiplication
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of two functions, Gγ and Fturb. The definition of Gγ is similar to Fγ in the source term. See

equation (2.9). It is used to ensure the laminar region before transition. It ramps up from

Rν = 18 and ramps down after Rν = 100.

Figure 2.6 Rνlbound is equal to 18 (blue solid); 20 (blue dash); 22 (blue dash-dot). From 18 to
20, the difference is tiny; but from 20 to 22, Cf curve becomes fully turbulent one.

Gγ = max [0,min (100−Rν , 1)]×min [max (Rν − 18, 0) , 1] . (2.9)

On other words,

Gγ =


0, if Rν 6 18, or if Rν > 100

1, if Rν > 19 and Rν 6 99.
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The lower bound Rνlbound = 18 is critical to some extend. Basically, if it equals to 22 or higher,

the model will be invalid for high free-stream turbulence intensity cases, like T3B test case. For

these cases, the laminar region is relative thin and short. Therefore, a relative high Rνlbound

may not catch the thin laminar region near wall and hence the sink term may vanish. See

figure (2.6). Too small value for Rνlbound is not proper either because the sink term is supposed

to vanish after transition. Recall that Rν goes like y2
+ near wall and hence too small Rνlbound,

say 0, makes Gγ non-zero all the way down to the turbulent region with the sink term not

vanishing.

Fturb is a function of Rν and Rt. It will vanish outside the laminar boundary layer and the

near wall viscous sublayer. It is defined as,

Fturb = e−(RνRt)
1.2

. (2.10)

The power 1.2 is selected to match the data. Large value of it will reduce the region where

Fturb works, which in turn suppresses the sink and leads to early transition. C1 in equation

(2.5) is chosen to be 7.5, which represents the strength of the sink term. The larger it is, the

later the transition will occur.
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CHAPTER 3. COMPUTATIONS

3.1 Introduction

In this chapter, the transition model developed in CHAPTER 2 is used to simulate the

T3 series of flat-plate experiments conducted by the European Research Community on Flow

Turbulence and Combustion (ERCOFTAC). These experiments were performed at Rolls Royce

(Langtry (2006)). The T3 series of test cases (T3A, T3B, T3C1, T3C2, T3C3, T3C4, T3C5)

have often been used as a benchmark for transition simulation by bypass transition models.

Test cases T3A and T3B have a zero stream-wise pressure gradient with different turbulence

intensities. Test cases T3C series combine the influences of free-stream turbulence and favor-

able/adverse pressure gradients imposed by the converging/expanding flow channel. They are

chosen to be representative of an aft-loaded turbine. The main difference between the various

T3C test cases is the free-stream velocity, and hence the Reynolds number (T3C1 is an excep-

tion, which has high free-stream turbulence intensity and slow energy decay). The greater the

Reynolds number is, the earlier the transition occurs. They are designed for testing the ability

of transition model to predict transition under the continuous variation of pressure gradient.

All cases are computed in OpenFOAM with the current transition model implemented in

it. Since steady incompressible flow is considered, SIMPLE algorithm is employed to solve

all transport equations involved in this model. CFD codes in OpenFOAM are based on finite

volume discretization. Cell limited Gauss (second order Gaussian integration) linear scheme is

chosen for gradient terms; Gauss linearUpwind (first/second order bounded) scheme is chosen

for divergent terms; Gauss linear corrected (Unbounded second order conservative) scheme is

chosen for Laplacian terms. Gauss-Seidel solver is applied to solve the linear equation system

which is obtained by discretization.
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3.2 Geometry, Mesh and Boundary

Two different domains are used. Both are two dimensional with only one cell in span-wise

direction. One is for the zero pressure gradient test cases (T3A and T3B). It is comprised of

a flat plate wall with length of 1.5 m and a symmetric flat top surface with height of 0.8 m.

The inlet surface is at 0.04 m upstream of the plate leading edge to eliminate an ambiguous

specification of free-stream conditions. The narrow bottom surface between the inlet and the

plate leading edge is set as symmetric boundary. The inlet boundary has uniformly fixed-

value velocity, Uin, turbulent kinetic energy, kin, specific dissipation rate, ωin and zero pressure

gradient. The outlet boundary has zero-gradient U , k, and ω along with zero pressure (the

reference pressure). See figure (3.1), the mesh is generated by blockMesh in OpenFOAM.

The other is for varying pressure gradient test cases (T3C series), which consists of a flat

plate bottom wall with length of 1.65 m and a slip top wall with various height. At the entrance,

the gap between the upper and bottom walls is 0.3 m and the gap varies along the stream-

wise direction corresponding to the experimental data of the pressure gradient variation. The

length of bottom surface between the inlet and the leading edge is 0.15 m and again set as

symmetric boundary. Boundary types of inlet and outlet are the same as those of the zero

pressure gradient cases. See figure (3.2), the mesh is generated in IcemCFD.

The first neighbor node to the wall is located at 0.01 < y+ < 0.1. The mesh in figure (3.1)

and figure (3.2) has 170 and 230 grids in stream-wise direction, and 110 grids and 125 grids

in wall-normal direction, respectively. More grids in both directions, i.e. finer mesh would not

affect the results much. The wall-normal grid space expanding ratio is 1.1, and the stream-wise

grid space expanding from the leading edge is 1.05, for both meshes.

To figure out the height of each cross-section along the length of the channel that can

reproduce the required pressure gradient variation, local free-stream velocity has been used.

Suluksna et al. (2009) have offered an explicit expression for the height of the top surface by

using the approach described above with curve fitting.

h/D = min[1.231x6 − 6.705x5 + 14.061x4 − 14.113x3 + 7.109x2 − 1.900x+ 0.950; 1] (3.1)
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Figure 3.1 Mesh used to compute T3A and T3B cases.

where h is the varying height of the domain and D is the height of the entrance.

3.3 Inlet Conditions

The fluid density ρ and the molecular viscosity µ are 1.2 kg/m3 and 1.8 × 10−5 kg/m · s,

respectively. Then the kinematic viscosity ν = µ/ρ = 1.5 × 10−5 m2s−1. The Reynolds num-

ber, Rex, is based on the length from the leading edge and local free-stream velocity. The

inlet velocity, Uin, is specified to match the data of measured local free-stream velocity through

the channel. The inlet turbulent kinetic energy kin can be obtained based on the definition of

turbulent intensity. See equation (3.2),
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Figure 3.2 Mesh used to compute T3C series cases.

Tuin =

√
2/3kin
Uin

. (3.2)

The inlet viscosity ratio, Rt, is used to calculate and specify the inlet specific dissipation rate,

ωin,

ωin =
kin
Rtν

. (3.3)

Both Tuin and Rt are determined by performing simulation experiments till appropriate agree-

ment with data of the free-stream turbulence intensity decay is obtained. Figure (3.3) and (3.4)

show the free-stream velocity and turbulence intensity decay for the T3 series test cases. Good
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agreement between simulation results and the experimental data has been obtained by using

inlet conditions in table (3.1). There is experimental evidence that both turbulence time-scale

and intensity affect bypass transition, i.e. the results are sensitive to the free-stream or inlet

conditions. Computations with the current model illustrate this. The results will be shown in

the next chapter.

Details of inlet conditions of simulations for different cases are listed in table (3.1).

Table 3.1 Summary of inlet conditions of simulations for different cases

Case Uin(m/s) Tuin(%) Rt
T3A 5.2 3.5 14
T3B 9.4 6.5 100
T3C1 6.0 10.0 50
T3C2 5.0 3.7 12
T3C5 8.6 4.3 17
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(a) Free-stream velocity in T3A case. (b) Turbulence intensity decay in T3A case.

(c) Free-stream velocity in T3B case. (d) Turbulence intensity decay in T3B case.

Figure 3.3 Free-stream velocity and turbulent intensity in T3A and T3B.
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(a) Normalized free-stream velocity in T3C cases. (b) Turbulence intensity decay in T3C1 case.

(c) Turbulence intensity decay in T3C2 case. (d) Turbulence intensity decay in T3C5 case.

Figure 3.4 Free-stream velocity and turbulent intensity in T3C cases.



28

CHAPTER 4. RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the skin friction coefficient Cf in T3 series of flat plate test cases is cal-

culated from the simulation data to present the ability of the current model to predict bypass

transition. Cf curves are plotted versus x-coordinate based Reynolds number,

Rex =
Ufsx

ν
(4.1)

where Ufs is the local free stream velocity.

T3A and T3B cases have zero pressure gradient along the flow direction, while T3C cases

have varying pressure gradient. Firstly, as mentioned in previous chapter, various inlet con-

ditions (i.e. free-stream turbulent kinetic energy k and specific dissipation rate ω) can affect

the transition location. It turns out that this model is able to simulate this effect. Secondly,

after transition, the transition model is supposed to switch into fully turbulent model, which

means the intermittency function should recover to unity in turbulent region. As the results,

the agreement with the experimentally measured skin friction curve as well as the transition

location is good.

4.2 Sensitivity to Inlet Conditions

Skin friction curves computed with the same inlet dissipation rate (ωin) and with varying

turbulent intensity are shown in figure (4.1.a). Note that k ∝ Tu2, with other conditions

unchanged, the greater the intensity, the greater the kinetic energy. As we can see from the

figure, increasing Tu accelerates transition.
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(a) Cf curves for Tu=3.0 (dash-dot), Tu=3.5 (solid), Tu=4.0 (dash).

(b) Cf curves for proper ωin times 0.5 (dash-dot), proper ωin (solid), proper ωin
times 2 (dash).

Figure 4.1 Sensitivity to inlet k and ω (test case: T3A).
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Skin friction curves computed with the same Tu = 3.5% and with different ωin are displayed

in (4.1.b). Decreasing ωin makes turbulent energy decay slower and increases the eddy viscosity

in free stream. Both effects accelerate transition, and vice versa.

4.3 Results for 2D Flat Plate Cases

4.3.1 Zero Pressure Gradient Cases

The contour of intermittency function, γ on wall for zero pressure gradient cases are dis-

played in figure (4.2.b) and figure (4.3.b) for T3A and T3B cases respectively. The inlet

condition for γ is uniform with the value of unity, which is illustrated by the very narrow re-

gion with high value of γ at the leading edge in the figures. Due to the effect of the sink term,

γ rapidly decreases to zero near wall right after the leading edge. With the diffusion of γ from

high value inside the free-stream to low value within the laminar boundary layer, transition

is initiated, and hence the sink term starts to vanish with the source term switching on. At

around the transition location, γ increases to one and the boundary layer becomes turbulence.

Figure (4.2.c) and (4.3.c) present the contour of turbulent kinetic energy k. At the transition

region, k starts to grow from zero and reaches the turbulent level when transition completes.

The computed skin friction coefficient for T3A case compared with the experimental data is

displayed in figure (4.2.a). Blasius laminar boundary layer solution and half-empirical turbulent

boundary layer solution are also plotted. The simulation result is in decent agreement with

the measured data. The laminar region is slightly above the data and the transition part of

the curve is a little sharper than the data. On the words, the onset location of transition is a

bit late and the transition length is therefore short to reach the fully turbulent region on time.

This issue exists in all the following cases.

The computed skin friction coefficient for T3B case compared with the experimental data

is displayed in figure (4.3.a). Due to the high turbulence intensity, the skin friction before the

completion of transition is over-predicted. But it does make an obvious improvement compared

with results in Langtry and Menter (2009). The minimum skin friction obtained by the current

model is close to 0.004 while results of other models are just around 0.005.
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(a) Skin friction for T3A case.

(b) Contour of γ on wall, T3A.

(c) Contour of k with zoom in the boundary layer, T3A.

Figure 4.2 Simulation results for T3A.
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(a) Skin friction for T3B case.

(b) Contour of γ on wall, T3B.

(c) Contour of k with zoom in the boundary layer, T3B.

Figure 4.3 Simulation results for T3B.
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4.3.2 Varying Pressure Gradient Cases

The T3C test cases can be classified into two groups. T3C1 is a high free-stream turbulence

level case (first date point with Tu ≈ 8.0%), and the other T3C cases are moderate free-stream

turbulence level cases (first data point with Tu ≈ 2.5%).

As for the T3B case, a high turbulence intensity case as well, the results shown in figure

(4.4.a) for T3C1 are also better than those of others (Suluksna et al. (2009)). The smallest

skin friction is closer to the experimental data. The mean velocity profile at the location of the

highlight data point in figure (4.4.a) for this case is depicted in figure (4.4.b). The solid curve

has acceptable agreement with the measured data.

The results for T3C2 case are shown in figure (4.5.a). In this case, the transition occurs in

the adverse pressure gradient region because of the low Reynolds number. The onset location

of transition is a bit late. But as mentioned above, the fast transition make it up and meet

the turbulent region at almost the same Reynolds number as the measured data. But in figure

(4.5.b), the mean velocity profile is over-predicted. It is induced by the under-prediction of the

wall shear or the skin friction at that location. As the absolute value of the computed skin

friction is relative low (0.002), an error of about 0.0015 would make a big difference to the skin

velocity u∗ and hence u+.

Figure (4.6.a) presents the skin friction coefficient computed by the current model for the

T3C5 case. Transition occurs before the throat of the flow channel, i.e. within the favorable

pressure gradient region since the inlet velocity and therefore the Reynolds number is high. Be-

cause of the strong favorable pressure gradient the transition length is extended to some extent.

This model approximately predicts the behavior in broad agreement with the experiment. The

mean velocity profile in the transition region shown in figure (4.6.b) is slightly under-predicted

compared with the experimental data.

From figure (4.7) to (4.9), contours of γ on wall and k inside the domain for T3C cases

are shown to illustrate the distribution of the γ and its effect on the production of k, which is

suppressed till γ increases to full value.
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(a) Cf curve for T3C1 case.

(b) u+ vs. y+ at the location of the data point highlighted in (a) for T3C1 case.
Experimental data (square symbol), predicted result (solid), u+ = y+ (dash-dot),
u+ = ln(y+)/κ+B (dash, κ=0.41, B=5.1).

Figure 4.4 Plots of skin friction and velocity profile for T3C1.
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(a) Cf curve for T3C2 case.

(b) u+ vs. y+ at the location of the data point highlighted in (a) for T3C2 case.
Experimental data (square symbol), predicted result (solid), u+ = y+ (dash-dot),
u+ = ln(y+)/κ+B (dash, κ=0.41, B=5.1).

Figure 4.5 Plots of skin friction and velocity profile for T3C2.
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(a) Cf curve for T3C5 case.

(b) u+ vs. y+ at the location of the data point highlighted in (a) for T3C5 case.
Experimental data (square symbol), predicted result (solid), u+ = y+ (dash-dot),
u+ = ln(y+)/κ+B (dash, κ=0.41, B=5.1).

Figure 4.6 Plots of skin friction and velocity profile for T3C5.
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(a) Contour of γ on wall, T3C1.

(b) Contour of k from global view, T3C1.

(c) Contour of k, zoom in the boundary layer, T3C1.

Figure 4.7 Contours of intermittency and kinetic energy for T3C1.
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(a) Contour of γ on wall, T3C2.

(b) Contour of k from global view, T3C2.

(c) Contour of k, zoom in the boundary layer, T3C2.

Figure 4.8 Contours of intermittency and kinetic energy for T3C2.
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(a) Contour of γ on wall, T3C5.

(b) Contour of k from global view, T3C5.

(c) Contour of k, zoom in the boundary layer, T3C5.

Figure 4.9 Contours of intermittency and kinetic energy for T3C5.
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CHAPTER 5. CONCLUSION

The objective of the present work is to propose an intermittency transition model that is

simpler than those published and without data correlation. Although it remains quite empirical,

the number of parameters is fewer and the role of each is more apparent. Moreover, this model

can be compatible with general computational fluid dynamics techniques such as unstructured

grids. Such a model has been developed and implemented in OpenFOAM, an open source CFD

codes. It does not depend directly on pressure gradient (note that turbulence closures generally

do not depend on pressure gradient explicitly.)

Only bypass transition in attached flow is taken into consideration in the body of this

thesis. Langtry (2006) provides a form of modification for separated flow transition in their

model in which a criterion of separation is invoked. The further work is to find another criterion

of separation with accessible variables in the current model so that it is able to capture the

separation and promote transition over that region. See some primary work in APPENDIX.

After doing this, the model may be useful to more realistic problems in everyday industrial

CFD simulations.
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. SEPARATION INDUCED TRANSITION

As mentioned in the first chapter, when a laminar boundary layer approaches to separation,

inflection point instability becomes a cause to transition. In this mechanism, an instability wave

serves as the precursor to transition, and the phenomenology is different from bypass transition,

whose precursor is diffusion of free-stream turbulence into boundary layer.

The work for separation flow transition is still incomplete. Here is just the introduction of

the idea and very preliminary results for this part of work. More research remains to be done

on it in the future.

Modification of the Model

Langtry (2006) points out that when separated flow transition is involved, their transition

model without modification in terms of separation will predict the turbulent reattachment loca-

tion too far downstream. Experimental results show that the lower the free-stream turbulence

intensity is, the worse the agreement with the data will be. The low turbulent kinetic energy k

in the separating shear layer is attributed to the deficiency of the model because k grows too

slowly to cause the boundary layer to be turbulent and reattach on time.

The main idea which is used to modify the model for separation flow is to allow intermittency

function to exceed 1 wherever the laminar boundary layer separates. This will lead to large

production of k and hence allow k to grow rapidly to accelerate the transition or reattachment.

Learning from the idea described above, a criterion to locate the laminar separation should

be introduced. It is known that the starting point of separation is where ∂yU |y=0 (y represents

the normal coordinate to the wall). And there would be an inflection point on the velocity

profile. At this point, ∂yU is maximum and ∂2
yU is zero. Above it, ∂yU decreases and ∂2

yU
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becomes negative. Basically, once there is an inflection point on the velocity profile, ∂2
yU will

have non-negative values between the wall and the inflection point. Based on this fact, a cri-

terion is selected as follows,

√
kτ2nw �∇|S| > 0,

where the time scale τ is defined as,



τ1 =
1

Cµω

τ2 = 6.0
√

ν

Cµkω

τ3 =
(
τCτ1 τ2

) 1
1+Cτ

τ = max(τ1, τ3)

(A.1)

with Cτ = 1.625 to get T ∝ y near the wall (Arolla and Durbin (2013)). nw is the unit wall

normal vector.

The separation modification is applied via using γeff ,

γeff = max
{
γ,min

[
100 max

(
0,
√
kτ2nw �∇|S| − 0.0

)
× Freattach, 2.0

]}
(A.2)

where

Freattach = e
−

“
RνRt

20

”1.2

. (A.3)

γeff is used to replace γ in the production term of k equation while γ equation itself does

not change. After the γ equation converges to a solution, γeff will be calculated and come

into play to compute k. Freattach works like Fturb in sink term, which disables the modification

outside the boundary layer and the viscous sublayer.
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Case Test

Another flat plate test case, T3C3, in T3C series is selected. See the inlet conditions for

this case in table (A.1). They are specified as such that the free-stream velocity and turbulence

decay along flow direction would agree with the experimental data. Note that it is not really

a separation case though the Reynolds number is low and the minimum skin friction is close

to zero. However, the model without the separation modification would produce separation

region and have skin friction below zero. The reason has been explained above. Diffusion of

the low free-stream turbulence intensity cannot cancel the effect of the sink term so that the

laminar boundary layer separates along with the effect of adverse pressure gradient. After the

production of k forced to be high via the effect of γeff , the Cf curve for T3C3 case is improved

significantly. See figure (A.1).

Table A.1 Inlet condition for T3C3 case

Case Uin(m/s) Tuin(%) Rt
T3C3 3.8 3.4 8

This modification is devised as such that a negligible effect should be involved on the general

attached flow cases. The new model has been used to compute the T3C5 case and the Cf curves

for both the models before and after modification are shown in figure (A.2). As expected, the

difference can be neglected.
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Figure A.1 The effect of the separation modification for T3C3 case.

Figure A.2 The effect of the separation modification for T3C5 case.
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