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ABSTRACT

Ultrasonic nondestructive evaluation (NDE) is a critical diagnostic tool in many industries.

It is used to characterize potentially dangerous flaws in critical components for aerospace,

automotive, and energy applications. The use of phased array transducers allows for the exten-

sion of traditional techniques and the introduction of new methods for quantitative flaw char-

acterization. An equivalent flaw sizing technique for use in time-of-flight diffraction setups

is presented that provides an estimate of the size and orientation of isolated cracks, surface-

breaking cracks, and volumetric flaws such as voids and inclusions. Experimental validation

is provided for the isolated crack case. A quantitative imaging algorithm is developed that

corrects for system effects and wave propagation, making the images formed directly related

to the properties of the scatterer present. Simulated data is used to form images of cylindrical

and spherical inclusions. The contributions of different signals to the image formation process

are discussed and examples of the quantitative nature of the images are shown.



1

CHAPTER 1. GENERAL INTRODUCTION

Introduction

Background

Ultrasound is widely used as a diagnostic tool in the aerospace, automotive, nuclear, and

oil/gas industries as well as in medicine. In the medical field, it is estimated that one quarter

of all diagnostic images are made using ultrasound [1]. In industry, the use of ultrasound is

termed ultrasonic nondestructive evaluation (NDE) and is used to identify and characterize

defects in critical components.

An ultrasonic inspection is traditionally carried out with a piezoelectric transducer to trans-

mit a sound wave into the material being inspected and using either the same transducer or a

second transducer to receive some scattered or transmitted form of that sound wave. Using the

same transducer in transmission and reception is referred to as pulse-echo, while using differ-

ent transducers is called pitch-catch. The transmission process occurs by applying a voltage

across the piezoelectric element of the transducer, which creates a mechanical wave. The re-

ception process is the reverse of this; a mechanical wave impinges on the piezoelectric element

generating a voltage which can be measured and displayed as a function of time. Such dis-

plays of received voltage as a function of time are often referred to as waveforms or A-scans.

When the sound wave inside the material encounters changes in material properties, such as

wave speed and density, some of the sound energy will be scattered, reflected, or refracted.

Changes in material properties could be caused by cracks, voids, inclusions, or other flaws for

NDE applications and by changes in body tissue types – such as the presence of tumors – in
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the medical field. The ultimate goal of an ultrasonic inspection is to use the measured voltage

from the receiving transducer to infer what types of scattering features are present in the test

material.

A-scans can show the times at which certain features are detected as well as their relative

amplitudes, but generally it is difficult to get a good understanding of what is being seen just

by looking at unprocessed A-scans. Using the information contained in the A-scans, images

can be made to visualize the data in ways that better lend themselves to feature identifica-

tion. Ultrasonic imaging is an umbrella term for a wide variety of techniques that use some

form of processing to display A-scan data in ways that improve feature identification. Several

types of imaging are frequently used in both NDE and medical applications. To form images

multiple A-scans must be collected. This is usually done by performing a raster scan or by

sweeping the angle of the transducer. B-scans use multiple A-scans side-by-side to display a

two-dimensional plot of voltage amplitude as a function of scan position and time, which can

be thought of as depth. Sector scans (S-scans) are a type of B-scan where the scan dimension

is the transducer angle. C-scans are 2-D plots showing some voltage value of interest formed

by performing a 2-D scan of the transducer over an area. A common choice of voltage value is

to look for the maximum voltage within a specific time range. The resulting C-scan would then

be a 2-D plot of that maximum voltage value as a function of the two scan dimensions. Differ-

ent images may be used depending on the inspection type. In the medical field, for example,

objects being imaged often have some dependency on time which means the data acquisition

and display must be fast enough to capture this behavior. However, many NDE applications

have no time-dependence, which means that scans can take longer and the data would not need

to be viewed in real-time.

Imaging is not the only way that information about flaws and defects can be obtained in

NDE inspections. One can also use models to infer flaw characteristics from a relatively small

number of A-scans. Equivalent flaw sizing is an example of such a model-based approach

where the size and orientation of an unknown flaw are obtained in terms of a best fit simple
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shape such as an ellipse or ellipsoid [2]. This thesis will examine both imaging and model-

based approaches to flaw characterization using phased arrays.

Phased arrays

Phased array transducers differ from traditional single-element transducers in that they

have multiple piezoelectric elements that operate independently of each other. Any combi-

nation of elements can be used in either transmission or reception, and amplitude weights

and time delays can be applied to each element individually. Different sets of weights and

time delays applied to the elements of an array are called apodization laws and delay laws,

respectively. Array elements are typically small enough to be considered point sources that

propagate widely-spreading spherical waves, whereas larger single-element transducers prop-

agate a highly directional (i.e. well-collimated) beam of sound. If all the elements of an array

are used with no time delays, the spherical waves from each individual element will combine

to form a single wave front that is similar to that of a single-element transducer of size equal

to that of the overall array. However, if the appropriate time delays are chosen, those spherical

waves can combine to produce a steered beam, a focused beam, or a combination of both.

The ability of arrays to steer, focus, and otherwise tailor their sound beams allows them to

often outperform single-element transducers in the formation of images. Mechanical scanning,

for example, can be replaced with electronic steering in many cases, leading to more rapid

inspections.

In addition to having improved capabilities to form the same types of images generated with

single-element transducers, arrays allow for advanced imaging algorithms to be developed that

are physically impossible with single-element transducers. This is possible since one can send

and receive on all the potential pairs of elements present in an array and use that capability to

form up images of various combinations of responses.

The ability of arrays to steer their sound beams also makes arrays potentially valuable for

conducting model-based approaches where the waves scattered from a flaw in a number of
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directions are used to infer flaw size. Equivalent flaw sizing, as mentioned previously, is an

example of such a model-based approach. Time-of-flight diffraction (TOFD) sizing is another

[3]. For both of these methods the ability of an array to obtain flaw responses at different

“look-angles” allows them to efficiently replace multiple traditional single-element setups.

Scope of the thesis

This work will focus on the development and implementation of methods and algorithms to

detect and quantitatively characterize flaws and defects in NDE applications using the unique

properties of ultrasonic phased array transducers. There will be two parts to this thesis. First,

a flaw sizing method will be developed that will adapt an equivalent flaw sizing method origi-

nally developed for single-element transducer inspections to phased arrays, leading to a more

effective and practical inspection. This method will be demonstrated with both simulated and

experimental data. One important application of this method includes weld inspections, where

flaw size is needed to determine the fitness of the weld for service. Second, a new quantitative

phased array imaging algorithm will be presented that defines explicitly the nature of the flaw

image in terms of the physical properties of the flaw. To test this imaging method and to study

the image formation process in detail, a software-based “test bed” has been developed which

will be used to analyze images of cylindrical and spherical inclusions using simulated data.

The detection and characterization of inclusions is important in a number of industries. In the

aircraft engine industry, for example, brittle hard alpha inclusions in titanium act as starting

points for fatigue cracks and can lead to catastrophic failure, such as in the rupture of an engine

of United Airlines Flight 232 which crashed in Sioux City, IA in 1989.

Literature Review

There are a number of areas that can be considered the foundation for this work where a

review of the relevant literature is necessary. In the case of flaw sizing (the topic of Chapter 2)
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brief reviews of the history of the time-of-flight diffraction (TOFD) and equivalent flaw sizing

methods are given. For imaging (the topic of Chapter 3) a short summary is given of the current

state of phased array imaging, and the history of the physical optics far-field inverse scattering

(POFFIS) method [4], which is closely related to the new imaging approach, is discussed.

Time-of-flight diffraction sizing

It is common practice in NDE testing to size flaws by scanning a single-element transducer

over a flaw and recording the extent over which the amplitude of the flaw signal is significant.

This method is called the dB drop method. However, this method is not useful for sizing flaws

smaller than the size of the transducer and has poor reliability [5]. Time-of-flight diffraction

(TOFD) sizing was developed by Silk at the National Nondestructive Testing Center in Har-

well, England, in the 1970s to provide an alternative method for sizing flaws such as cracks.

The method identifies the waves scattered from the tips of a crack and uses the time-of-flight

between those tips to estimate the length of the crack. Today TOFD sizing is widely used

in industrial applications, and Charlesworth and Temple provide a thorough overview of the

method in their book [3].

Equivalent flaw sizing

The TOFD method provides a measure of the size of a crack in terms of a single length

parameter. In reality cracks have multiple dimensions and this information is useful in modern

reliability evaluations that use fracture mechanics. Equivalent flaw sizing is a model-based

approach that attempts to size a flaw in terms of a simple equivalent flaw shape such as an

ellipse or ellipsoid. To obtain the information needed to construct such equivalent shapes, one

needs to interrogate the flaw from multiple directions. Equivalent flaw sizing has its roots

in the work of Rose using inverse Born approximation sizing [6]. This early work used a

specially designed multi-viewing transducer system and a non-linear optimization algorithm

to estimate flaw size and orientation [7]. In 1992 Chiou and Schmerr introduced a linear least
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squares/eigenvalue method for the equivalent flaw sizing of cracks and volumetric flaws using

backscatter data from a relatively small number of incident wave directions [8]. This method

made the determination of the equivalent flaw parameters simpler and more robust but still

required precise mechanical scanning/orientation of single-element transducers, making the

method costly and often difficult to implement. It will be shown in Chapter 2 that phased

arrays give equivalent flaw sizing a new lease on life by making it much easier to acquire the

needed data.

Phased array imaging

As mentioned previously, phased array transducers allow for the formation of images that

would not be possible with single-element transducers. This is because A-scans can be ob-

tained for every possible pair of elements acting in transmission and reception. This collection

of A-scans, of which there will be N2 for an array with N elements, is referred to as the full

matrix of data for an array. Holmes et al introduced the total focusing method (TFM), which

utilizes the full matrix data, and showed that it outperforms standard imaging methods such as

planar B-scans, sector B-scans (called S-scans), and focused B-scans [9]. Many variations of

the total focusing method have been developed including, but not limited to,

• Corrected TFM, which attempts to remove the effects of beam spread, attenuation, and

directivity [10]. Similarly, Levesque et al improved the performance of the TFM by

Wiener deconvolution with a reference signal, limiting the bandwidth on which the cal-

culations are performed to that of the system, and by finding the optimal aperture [11].

• Vector TFM (VTFM), which shows an approximate orientation of the reflector being

imaged [12].

• Diffraction TFM, which is the application of TFM to TOFD-type inspections [12].

• Common source method (CSM) and the synthetic aperture focusing technique (SAFT),

which are special cases of TFM since they use subsets of the full matrix data [13].
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Velichko and Wilcox provide a theoretical comparison of the TFM to other linear full matrix

imaging methods [14], and Zhang et al compare the TFM to nonlinear full matrix methods

for the case of noisy data [15]. Wilcox provides an excellent overview of the current state of

phased array imaging [16].

Imaging methods such as TFM, CSM, and SAFT are all examples of what can be called

data-driven imaging methods since they form images directly from the measured A-scan volt-

age signals. Thus, they do not provide images that can be directly related to flaw properties. In

Chapter 3 a new imaging method will be presented that is closely related to the TFM, CSM, and

SAFT approaches but does define the image generated in terms of specific flaw characteristics.

Physical optics far-field inverse scattering

In 1967 Bojarski introduced the physical optics far-field inverse scattering (POFFIS)

method, which relates the three-dimensional characteristic function of a scatterer to the spatial

Fourier transform of its far-field normalized scattering amplitude [4]. However, in real band-

limited and aperture-limited measurements, obtaining a meaningful image of a characteristic

function is problematic. Bleistein first tried to overcome that limitation of POFFIS by calcu-

lating the derivative of the characteristic function rather than the characteristic function itself

[17], and later Cohen and Bleistein introduced the singularity function of the flaw surface,

which is the normal derivative of the characteristic function, to turn POFFIS into a practical

imaging method [18]. In Chapter 3 it will be shown that the new imaging method is a general-

ization of POFFIS that, for small flaws, provides explicit images of the surface reflectivity of

the flaw.

Thesis Organization

This thesis is written in a format where the next two chapters each contain a journal paper.

Chapter 2 will show how phased arrays can implement equivalent flaw sizing of cracks (and
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potentially other flaws) in a simple and cost-effective manner. It is a paper to be submitted to

NDT&E International. Chapter 3 will show the development of a new quantitative imaging

algorithm and demonstrate its performance with simulations. This paper will be submitted to

Ultrasonics. A set of overall conclusions and recommendations for future work is given in

Chapter 4.
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CHAPTER 2. EQUIVALENT FLAW TIME-OF-FLIGHT

DIFFRACTION SIZING WITH ULTRASONIC PHASED ARRAYS

Brady J. Engle1,2, Lester W. Schmerr, Jr.1,2, Alexander Sedov3

1Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011

2Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

3Department of Mechanical Engineering, Lakehead University, Thunder Bay, ON, Canada

A paper originally published in the proceedings of the annual Review of Progress in Quantita-

tive Nondestructive Evaluation [19].

Abstract

Ultrasonic phased array transducers can be used to extend traditional time-of-flight diffrac-

tion (TOFD) crack sizing, resulting in more quantitative information about the crack being

obtained. Traditional TOFD yields a single length parameter, while the equivalent flaw time-

of-flight diffraction crack sizing method (EFTOFD) described here uses data from multiple

look-angles to fit an equivalent degenerate ellipsoid to the crack. The size and orientation of

the equivalent flaw can be used to estimate the actual crack size. The method is presented with

experimental validation for isolated cracks, and a brief overview of extending the method to

surface-breaking cracks and volumetric flaws is given.
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Introduction

Time-of-flight diffraction sizing (TOFD) was developed in the 1970s and is widely used

to estimate crack lengths in welds. TOFD uses the time difference, ∆t, between scattered

diffraction signals from the crack tips to estimate the length of the crack. Traditionally, the

TOFD method is done in a pitch-catch arrangement using single-element transducers. No

detailed flaw geometry or orientation information is obtained through TOFD sizing, only a

single length parameter [3].

A separate time-of-flight-based crack sizing method developed in the 1980s and 1990s used

a multi-viewing transducer system, which was composed of multiple conventional transducers

arranged conically, to inspect flaws from multiple incident wave directions, or look-angles [7].

A sizing algorithm used the ∆t data from different look-angles to estimate the crack size as a

best-fit degenerate ellipsoid [8].

This work uses phased array transducers to extend traditional TOFD by incorporating the

equivalent flaw sizing algorithm developed with the multi-viewing transducer system. This

allows for a single array transducer in pulse-echo or a pair of array transducers in pitch-catch

to estimate the size and orientation of a crack in what we will call the equivalent flaw time-of-

flight diffraction sizing method, or EFTOFD. The EFTOFD method can be done in nearly the

same amount of time as traditional TOFD by making a few more measurements and processing

the data with a computationally inexpensive sizing algorithm. The algorithm will be developed

and experimentally validated for isolated cracks, then an extension of the method to surface-

breaking cracks and volumetric flaws will be presented.

Crack Sizing Algorithm

Figure 2.1 depicts an immersion, pulse-echo interrogation of a horizontal elliptical crack

with a phased array transducer. A coordinate system fixed with respect to the sample with

axes x, y, and z can be arbitrarily chosen, and the equivalent flaw size and orientation will
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Figure 2.1: Pulse-echo immersion setup for EFTOFD sizing of an isolated horizontal crack.

be expressed in this coordinate system. The angles φ and θ , shown in Fig. 2.1, define the

incident wave direction e(θ ,φ). The angle θ is a rotation in a plane containing the z-axis, and

the angle φ is a rotation about the z-axis. To obtain an angle φ , the sample can be rotated

about the z-axis, or the incident beam can be mechanically rotated or electronically steered the

same amount in the opposite direction. The angle θ can be changed either by mechanically

rotating the transducer or electronically steering the beam. Incident waves from the transducer,

with direction given by e, will result in a specularly scattered wave from the crack surface, two

diffracted signals from the crack edges, and other, usually smaller, crack responses. If the angle

θ is such that the specularly reflected wave does not return to the transducer, the diffracted

signals will be seen primarily. Figure 2.2 shows a simulated A-scan with well-separated crack

edge diffraction signals. The time difference, ∆t, is defined as the time between peaks of

these crack edge signals. Obtaining a small number of these ∆t measurements from different

Figure 2.2: Simulated crack edge diffraction signals and the associated ∆t.
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Figure 2.3: Equivalent radius re for incident wave direction e.

incident vectors e and solving a linear least squares and eigenvalue problem will allow the

determination of an equivalent ellipse [8].

Schmerr has shown [2] that the ∆t data for each look-angle, e, is related to the equivalent

radius, re, of an elliptical shaped crack in the direction of e given by

re = c∆t/4 (2.1)

where the equivalent radius is the distance between the center of the ellipse and its edge in the

e direction (see Fig. 2.3). Figure 2.3 shows the incident vector e and equivalent radius re,

along with the semi-major and -minor axes a1 and a2 of the ellipse and their directions u1 and

u2. The direction u3 corresponds to the crack surface normal. Expressing the equivalent radius

in terms of the incident wave direction e and the ellipsoid parameters a1, a2, a3 and u1, u2, u3

gives [2]

r2
e = a2

1(e ·u1)
2 +a2

2(e ·u2)
2 +a2

3(e ·u3)
2. (2.2)

Equation 2.2 can be rewritten as

r2
e(C,e) =Cxxe2

x +Cyye2
y +Czze

2
z +Cxyexey +Cxzexez +Cyzeyez (2.3)

where

Cxx = a2
1u2

1x +a2
2u2

2x +a2
3u2

3x Cxy = 2(a2
1u1xu1y +a2

2u2xu2y +a2
3u3xu3y)

Cyy = a2
1u2

1y +a2
2u2

2y +a2
3u2

3y Cxz = 2(a2
1u1xu1z +a2

2u2xu2z +a2
3u3xu3z) (2.4)

Czz = a2
1u2

1z +a2
2u2

2z +a2
3u2

3z Cyz = 2(a2
1u1yu1z +a2

2u2yu2z +a2
3u3yu3z).
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Using Eqs. 2.1 and 2.3 we can define a function, Fm, and error function for M measurements

where ∆tm and em are the mth time difference and incident wave direction, respectively.

Fm =

(
c∆tm

4

)2

− r2
e(C,em) (2.5)

E(C) =
M

∑
m=1

F2
m (2.6)

Minimizing the error function, i.e.

∂E
∂Ci j

= 0 (i, j = 1,2,3), (2.7)

yields a system of linear equations for the C parameters, which can then be used to solve the

eigenvalue problem
3

∑
j=1

(Ci j−λδi j)l j (i = 1,2,3). (2.8)

It can be shown [2] that the eigenvalues of C are just the lengths of the semi-major axes of the

equivalent ellipsoid and the eigenvectors are the corresponding directions:

λ =


a2

1

a2
2

a2
3

 l =
(

u1 u2 u3

)
. (2.9)

Model-Based Bandwidth Error Correction

The ∆t measurements are subject to errors due to the finite bandwidth of the ultrasonic

system. These errors can be corrected by using modeling to generate an error correction curve

[8], as shown in Fig. 2.4. The ideal, infinite bandwidth crack edge diffraction signals are

modeled using the scattering amplitude given by the Kirchhoff approximation [2]. The exact

∆t values, shown as ∆te in Fig. 2.4, are taken to be the time differences between these modeled

signals. Convolving the Kirchhoff scattering amplitude with a Gaussian distribution, which

represents the limited bandwidth of the system, results in a band-limited representation of the

diffraction signals. The time differences between peaks of these limited bandwidth signals are
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Figure 2.4: Model-based bandwidth error correction curve.

taken to be the band-limited ∆t values, shown as ∆tb in Fig. 2.4. For larger cracks the bandwidth

corrections are positive, but as the crack becomes smaller, the bandwidth rather than the crack

size controls the measured ∆t and the errors rapidly become negative. The transition between

these positive and negative errors defines the smallest possible ∆t values that can be used for a

given bandwidth.

Experimental Results

The experimental setup used is depicted in Fig. 2.1. Two flaws were examined: the first was

a #5 flat bottom hole (FBH) with a 1.984 mm diameter in 7075-T651 aluminum, and the second

was an elliptical shaped isolated crack-like flaw that was manufactured in a diffusion-bonded

titanium sample [20, 21]. The elliptical crack was designed to have a semi-major axis of 2.5

mm and a semi-minor axis of 0.6 mm. These flaws are suitable for simulating crack responses

because they both exhibit strong edge diffraction signals. The flaws were oriented during the

inspection such that the crack surface normal u3 was in the z-direction, and the elliptical flaw

had the semi-major and -minor axes u1 and u2 in the x- and y-directions, respectively.

A 32 element, 10 MHz linear array transducer with a 0.31 mm pitch was used to carry out

the inspection. Time delay laws were employed to change the angle θ electronically, while the

samples were rotated to change the angle φ . Note that the use of a 2-D array would allow both
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Table 2.1: Data table for 1.984 mm diameter FBH.

θ (deg) φ (deg) Meas. ∆t (µs) Meas. ∆t (µs) with
BW Corr.

Exact ∆t (µs)

75 00 0.55 0.57 0.609
75 30 0.54 0.56 0.609
75 60 0.54 0.56 0.609
70 00 0.52 0.54 0.592
70 30 0.53 0.55 0.592
70 60 0.54 0.56 0.592
65 00 0.52 0.54 0.571
65 30 0.51 0.53 0.571
65 60 0.50 0.52 0.571
60 00 0.50 0.52 0.546
60 30 0.49 0.51 0.546
60 60 0.48 0.50 0.546

angles to be changed electronically. Twelve look-angles were used for each flaw, and the ∆t

data can be seen in Table 2.1 for the FBH and Table 2.2 for the elliptical crack.

Table 2.2: Data table for 5x1.2 mm (major x minor axes) elliptical crack.

θ (deg) φ (deg) Meas. ∆t (µs) Meas. ∆t (µs) with
BW Corr.

Exact ∆t (µs)

55 90 0.33 0.35 0.318
55 60 0.69 0.71 0.718
55 45 0.93 0.95 0.964
50 90 0.33 0.35 0.298
50 60 0.65 0.67 0.671
50 45 0.85 0.87 0.901
45 90 0.31 0.33 0.275
45 60 0.56 0.58 0.620
45 45 0.78 0.80 0.832
40 90 0.26 0.28 0.250
40 60 0.53 0.55 0.563
40 45 0.69 0.71 0.756

The tables show the θ and φ values along with the measured ∆t values in µs, the bandwidth-

corrected measured ∆t values, and the exact ∆t values obtained through Eq. 2.2. Cracks with

irregular shapes may require additional look-angles over a wider range of angles to estimate

the size accurately.
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Equation 2.10 shows the exact results for the FBH, Eq. 2.11 shows the EFTOFD results

with no bandwidth correction, and Eq. 2.12 shows the EFTOFD results with the bandwidth

correction. 
a1

a2

a3

=


0.992

0.992

0




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


· · 0

· · 0

0 0 1

 (2.10)


a1

a2

a3

=


0.9

0.9

0.3i




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


0.2 −1.0 −0.2

−1.0 −0.2 0.2

0.2 −0.1 1.0

 (2.11)


a1

a2

a3

=


1.0

0.9

0.2i




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


0.2 −1.0 −0.2

−1.0 −0.2 0.2

0.2 −0.1 1.0

 (2.12)

The dots in Eq. 2.10 are present because the FBH is circular, and the major and minor axes can

be any set of perpendicular directions in the x-y plane.

Equation 2.13 shows the exact results for the elliptical crack, and Eqs. 2.14 and 2.15 show

the EFTOFD results without and with the bandwidth correction, respectively.


a1

a2

a3

=


2.5

0.6

0




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


1 0 0

0 1 0

0 0 1

 (2.13)


a1

a2

a3

=


2.5

0.7

0.7i




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


−1.0 0.0 0.1

0.0 0.9 −0.5

0.1 0.5 0.9
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a1

a2

a3
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2.5

0.7

0.7i




u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

=


−1.0 0.0 0.1

0.0 0.9 −0.5

0.1 0.5 0.9

 (2.15)
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The a3 values in Eqs. 2.11, 2.12, 2.14, and 2.15 are imaginary because the a2
3 values re-

turned by the eigenvalue problem are small, often negative numbers. Taking the square root of

a negative value of a2
3 results in an imaginary a3. The a1 and a2 values for both flaws are es-

timated to within 20% of their actual values, and the orientation results show good agreement

with the expected values. The crack surface normal u3 for both flaws is estimated as primar-

ily in the z-direction, as expected. Equations 2.14 and 2.15 show that for the elliptical crack

the semi-major and -minor axes u1 and u2 are predominately along the x- and y-directions,

respectively, which was also expected.

The sizing results for these flaws only differ slightly when the bandwidth correction is

applied. This is due to most of the ∆t values being large enough that the errors are relatively

small. Figure 2.4 shows that the errors for many of the ∆t values encountered are only a few

percent. The bandwidth correction becomes more important for smaller flaws, whose smaller

∆t values would have much larger errors. However, Table 2.1 shows that, for the FBH, the

∆t values with the bandwidth correction are all closer to the exact values than the ∆t values

without the correction, showing that the bandwidth correction is removing some systematic

error. Table 2.2 shows that 8 of the 12 ∆t measurements are closer to the exact values with

the bandwidth correction than without for the elliptical crack. It is worth noting that all four

measurements that did not get closer to the exact values were made with φ = 90◦, which

corresponds to the shortest length across the crack surface. These may be due to small errors

in the assumed orientation of the ellipse.

Extension to Other Flaws

In addition to isolated cracks, an equivalent flaw sizing approach can potentially be applied

to surface-breaking cracks and volumetric flaws such as voids and inclusions. These setups

can be seen in Figs. 2.5a and 2.5b. Unlike the isolated crack case which has two diffraction

signals, the surface-breaking crack only has one. Volumetric flaws will produce no significant
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(a) Pulse-echo immersion setup for the
EFTOFD sizing of a surface-breaking crack.

(b) Pulse-echo immersion setup for the
EFTOFD sizing of a volumetric flaw.

Figure 2.5: Pulse-echo immersion setup for the EFTOFD sizing of (a) surface-breaking crack
and (b) volumetric flaw.

edge diffraction signals, so the method technically cannot be called EFTOFD for this case but

it is included here because of the applicability of the approach to these flaws. The primary

difference in the algorithms for these cases and the isolated crack case is that the surface-

breaking and volumetric algorithms need absolute time-of-flight information in order to solve

for both the location of the flaw center and the equivalent size and orientation parameters of

the flaw [22]. To accurately estimate the size and location of volumetric flaws, at least one

look-angle should involve the far side of the flaw through a reflection off of the back surface

of the sample [22]. For surface-breaking cracks, the corner trap signal, which is the wave

specularly reflected from the back surface of the part and then from the crack surface, may be

used in a similar way.

Applying this method to the geometries in Figs. 2.5a and 2.5b can be done by defining a

function Fm as [22]

Fm = (xT m · em−H2m)
2−2(xT m · em−H2m)(xC · em)+(xC · em)

2−Ci jeime jm (2.16)

and an error function again as

E(C) =
M

∑
m=1

F2
m. (2.17)

Minimizing this error function, i.e.

∂E
∂xC j

= 0 ( j = 1,2,3), (2.18)
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∂E
∂Ci j

= 0 (i, j = 1,2,3), (2.19)

results in a nonlinear set of equations that can be solved for xC and C. The nonlinearity is

quadratic, so solving the equations is a relatively straightforward process. After solving for

xC and C, the eigenvalue problem can be solved in the same way as discussed previously.

Schmerr et al have done a preliminary numerical analysis of the surface-breaking crack case

which has shown promising results [23].

Conclusion

The equivalent flaw time-of-flight diffraction (EFTOFD) sizing method has been shown to

accurately determine the size and orientation of isolated crack-like flaws using a linear phased

array. Adaption of this method to phased arrays makes it a practical sizing tool with standard

phased array instrumentation. The use of a linear array required some mechanical motion of

the array (or the part) to acquire the data but the replacement with a 2-D array can potentially

eliminate or reduce this requirement. Using a relatively small number of measurements with

a computationally inexpensive processing algorithm allows the EFTOFD method to obtain

quantitative flaw size and orientation information in contrast to traditional TOFD sizing which

obtains only a length parameter of a crack in an a priori assumed orientation. This additional

information is important in fracture mechanics studies to determine the significance of the

crack from a safety and reliability standpoint.
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Abstract

Ultrasonic imaging is a crucial tool not only for NDE applications, but for use in the med-

ical industry as well. Having confidence in the images is essential in both fields, but often

the flaws present in NDE inspections are small enough to be near the resolution limit of the

system. This affects how reliably the image can be used to directly evaluate small flaws. Ul-

trasonic phased array transducers, which have the ability to obtain data from all combinations

of elements acting in transmission and reception, allow for the formation of advanced images

beyond what is possible with traditional single-element transducers. Often the images formed

are based on ad-hoc imaging methods which makes them largely qualitative in nature. The

goal of this work is to present a model-based imaging algorithm that results in images being

formed that are quantitatively indicative of actual flaw properties and to use this algorithm to

evaluate and understand the image formation process.
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Introduction

Phased array transducers are a valuable tool for ultrasonic imaging. However, in many

practical applications, image formation methods are used (B-scans, C-scans, S-scans, etc.)

that are similar to those developed for single-element transducers. Such methods are ad-hoc

methods that do not take advantage of the unique capabilities of arrays.

Arrays can also be used to make images in more advanced ways than possible with single-

element transducers. Techniques such as the total focusing method (TFM) [9] and the synthetic

aperture focusing technique (SAFT) [13] utilize an array’s ability to capture signals from every

combination of elements acting in transmission and reception to form images that are essen-

tially focused everywhere in a spatial grid of image points. SAFT and TFM are still, however,

ad-hoc methods where there is no meaning attached to the values in the image, which makes

flaw characterization difficult especially for small flaws. To quantitatively characterize small

flaws using imaging, the image formation process needs to be more closely examined.

The goal of this work is to develop and use a model-based approach to understand how

the received voltages are a function of both the ultrasonic system and the flaw present so

that images can be formed that are explicit functions of only the flaw properties. First, an

overview of the SAFT and TFM methods will be given with experimental examples. Then we

will develop new model-based quantitative imaging algorithms that will explicitly connect the

image being formed with the properties of the flaw. Finally, we will use these new models to

form images with simulated data and study the quantitative nature of those images.

Synthetic aperture focusing technique (SAFT)

SAFT, while commonly used today with phased arrays, was originally performed by mov-

ing a single-element transducer along a line. For phased arrays, a SAFT image can be formed

by first defining a 2-D grid of points to be imaged and calculating the travel time for a wave

propagating from the centroid of each array element to each grid point. Then, for each image
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point, the pulse-echo voltage signals from each element are advanced by twice the travel time

– the time from the element centroid to the image point and back to the centroid – and these

advanced signals are summed. The value of this sum at time t = 0 is taken to be the amplitude

of the image at that image point. For a linear array with N elements, the travel time between

the centroid of the nth element, Xcn, and the current image point Y, is denoted by T (Xcn,Y).

With the voltages given by V (Xcn, t), the image value at point Y can be calculated as

ISAFT (Y) =
N

∑
n=1

V (Xcn, t +2T (Xcn,Y))

∣∣∣∣
t=0

. (3.1)

Noting that the voltages can be written in terms of their Fourier transforms as

V (Xcn, t) =
1

2π

+∞∫
−∞

V (Xcn,ω)exp(−iωt)dω (3.2)

a Fourier transform version of SAFT can be shown to be

ISAFT (Y) =
N

∑
n=1

1
2π

+∞∫
−∞

V (Xcn,ω)exp(−iω(t +2T (Xcn,Y)))dω

∣∣∣∣
t=0

= 2 Re

 N

∑
n=1

1
2π

+∞∫
0

V (Xcn,ω)exp(−2iωT (Xcn,Y))dω

 (3.3)

which, when the frequency integration is discretized, is

ISAFT (Y) = 2 Re

(
∆ω

2π

M

∑
m=1

N

∑
n=1

V (Xcn,ωm)exp(−2iωmT (Xcn,Y))

)
. (3.4)

Total focusing method (TFM)

The main difference between SAFT and TFM is that TFM uses the voltage signals from

all element pairs instead of only the pulse-echo signals, as SAFT does. This means that the

time advance present in the TFM equation will be the sum of the travel time from the centroid

of the transmitting element to the image point, T (Xs,Y), and the travel time from the image

point to the centroid of the receiving element, T (Xr,Y). The time domain TFM for a linear

array with N elements is given by
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IT FM(Y) =
N

∑
n=1

N

∑
l=1

V (Xsn,Xrl, t +T (Xsn,Y)+T (Xrl,Y))

∣∣∣∣
t=0

(3.5)

and, similar to the SAFT case, the discretized frequency domain TFM is

IT FM(Y) = 2 Re

(
∆ω

2π

M

∑
m=1

N

∑
n=1

N

∑
l=1

V (Xsn,Xrl,ωm)exp(−iωmT (Xsn,Y)− iωmT (Xrl,Y))

)
.

(3.6)

SAFT/TFM discussion

(a) SAFT Image. (b) TFM Image.

Figure 3.1: SAFT and TFM images for a 2 inch thick aluminum sample with side-drilled holes
of 2, 3, and 4 millimeter diameters.

Figure 3.1a shows a SAFT image of a two inch thick aluminum block with side-drilled

holes of 2, 3, and 4 millimeters, and Fig. 3.1b shows a TFM image of the same sample. The

array was placed directly on the block and is centered at (x(mm),z(mm)) = (0,0). The front

surface of the block is along the line z(mm) = 0, and the back surface is along z(mm) = 50.8.

The time advances – twice the travel time from the element centroid to the image point for

SAFT and the sum of the travel time from the sending element centroid to the image point and

from the image point to the receiving element centroid for TFM – are essentially using post-

processing to focus the beam in transmission and reception at every image point. If a reflector

is present at an image point the summation of signals should result in a large value, while if no
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reflector is present, the summation should produce a small value. The responses of the three

side-drilled holes as well as the back surface of the sample can be seen in both the SAFT and

TFM images in Fig. 3.1, but little quantitative information can be obtained from these images.

Quantitative Imaging Algorithm

To develop a more quantitative imaging method, we will consider a 2-D problem where

1-D array elements are radiating directly into a fluid. This 2-D case will allow us to examine

the imaging process in detail in a computationally efficient manner while still retaining much

of the important physics of the image formation process. For small flaws the measured voltage

received at an element with centroid location Xr from a small flaw whose center is at X0 and

is being insonified by a transmitting element with centroid at Xs can be expressed in the scalar

2-D form of the Thompson-Gray measurement model [24, 2]

V (Xs,Xr,ω) =sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)A(einc;escat)

·
[

1
−ik2lA

ρc
ρ2c2

√
−8πik2

] (3.7)

where

A(einc;escat) =−
√

i
8πk2

∫
C f

[
∂ p(1)

∂n
+ ik2(escat ·n)p(1)

]
exp [−ik2escat · (X−X0)]ds(X)

(3.8)

is the far-field scattering amplitude, and

p(1) =
p(1)

P(1)(Xs,X0,ω)exp[iωT (Xs,X0)]
, (3.9)

is the normalized pressure field. The superscripts (1) and (2) correspond to two separate states.

State (1) is the actual inspection setup: transmitting element acting in transmission, receiving

element acting in reception, and the flaw is present. State (2) corresponds to the receiving

element acting in transmission, the transmitting element acting in reception, and the flaw is

absent. The quantity lA is the length of an array element. The quantities ρ1, c1, and k1 are the
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density, wavespeed, and wavenumber for the material surrounding the transmitting transducer,

ρ2, c2, and k2 correspond to those properties for the material around the flaw, and ρ , c, and k

are these same properties at the receiving transducer. ρ3, c3, and k3 correspond to the material

properties within the flaw. Note that for an array radiating into a single medium, all of these

properties are identical. In Eq. 3.7 the P̂(1)(Xs,X0,ω) and P̂(2)(Xr,X0,ω) terms are non-

dimensional pressure amplitudes of the incident waves at X0 in states (1) and (2)

P̂(1)(Xs,X0,ω) =
P(1)(Xs,X0,ω)

ρ1c1v(1)T

exp[iωT (Xs,X0)] (3.10)

P̂(2)(Xr,X0,ω) =
P(2)(Xr,X0,ω)

ρcv(2)R

exp[iωT (Xr,X0)]. (3.11)

These incident waves can be calculated with ultrasonic beam models. The sI(ω) term in Eq. 3.7

is called the system function, and it depends on the electrical and electromechanical parts of

the ultrasonic system [25].

To calculate the flaw scattering amplitude one needs to know the total wave field (inci-

dent and scattered waves) in state (1). This pressure field can be obtained explicitly with the

Kirchhoff approximation as [2]

p(1) = P(1)(Xs,X,ω)exp [iωT (Xs,X)] (1+R23)

= P(1)(Xs,X0,ω)exp [iωT (Xs,X)]exp
[
iωe(1) · (X−X0)/c2

]
(1+R23)

∂ p(1)

∂n
= ik2P(1)(Xs,X,ω)exp [iωT (Xr,X)] ((einc ·n)+R23(er ·n))

= ik2P(1)(Xs,X0,ω)exp [iωT (Xr,X0)]exp
[
iωe(1) · (X−X0)/c2

]
· ((einc ·n)+R23(er ·n))

(3.12)

which implies

p(1) = exp
[
iωe(1) · (X−X0)/c2

]
(1+R23)

∂ p(1)

∂n
= ik2 exp

[
iωe(1) · (X−X0)/c2

]
((einc ·n)+R23(er ·n)) .

(3.13)
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Here R23 is the plane wave reflection coefficient for the interface of the flaw material and the

material surrounding the flaw, given as

R23 =
Z3−Z2

Z3 +Z2
=

ρ3c3−ρ2c2

ρ3c3 +ρ2c2
(3.14)

where Z denotes the acoustic impedance for a material. Also, e(1) = er is the reflected wave

direction for a plane wave interacting with a plane surface which coincides with the tangent

plane of the surface. These fields are the values taken on the lit surface, Clit , of the flaw

where the incident waves can directly strike the surface. On the remaining part of the flaw

surface the fields are assumed to be identically zero. However, the predominate scattering

from the lit surface of a flaw comes from “specular” points where the incident and scattered

wave directions satisfy Snell’s law. Using Eq. 3.13 in Eq. 3.8 and noting that at the specular

points er =−e(2), (einc ·n) =−(er ·n), and escat = er [2], Eq. 3.7 can be rewritten as

V (Xs,Xr,ω) =sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

· 2ρc
lAρ2c2

∫
Clit

R23(er ·n)exp[ik2(e(1)+ e(2)) · (X−X0)]ds(X).
(3.15)

Eq. 3.15 will be the starting point for the development of the quantitative imaging algorithm.
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Quantitative pulse-echo imaging algorithm

Figure 3.2: Geometry for using a single element in pulse-echo.

For a pulse-echo inspection setup in a single medium whose density and wavespeed are ρ2

and c2, respectively, take ρ = ρ1 = ρ2, c= c1 = c2, Xr =Xs =Xc, P̂(1)= P̂(2)= P̂(Xc,X0,ω), er ·

n = 1, and e(1) = e(2) = e and Eq. 3.15 can be written as

V (Xc,ω) = sI(ω)[P̂(Xc,X0,ω)]2
2
lA

∫
Clit

R23 exp[2ik2e ·X′]ds(X′) (3.16)

where X′ = X−X0 is a 2-D position vector with X′ = (x′,z′) measured from the “flaw center”

X0 = (x0,z0). The pressure P̂(Xc,X0,ω) is the normalized pressure from an incident wave at

point X0 from an element whose centroid is at Xc:

P̂(Xc,X0,ω) =
P(Xc,X0,ω)

ρ1c1v(1)T

exp[iωT (Xc,X0)]. (3.17)

Setting k= 2k2e and allowing the element centroid to vary over all Xc = (xc,0) along z= 0 and

letting C be the part of the flaw surface from which elements along this line can receive all

specular responses gives

V (Xc,ω) = sI(ω)[P̂(Xc,X0,ω)]2
2
lA

∫
C

R23 exp[ik ·X′]ds(X′). (3.18)
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We can rewrite Eq. 3.18 by introducing a singularity function, γC(X′), with the property

∫
C

f (X′)ds(X′) =
∫

γC(X′) f (X′)dA(X′) (3.19)

which gives

V (Xc,ω) = sI(ω)[P̂(Xc,X0,ω)]2
2
lA

∫
R23γC(X′)exp[ik ·X′]dA(X′). (3.20)

If we define the reflectivity, R, as

R(X′)≡ R23γC(X′) (3.21)

we can write its 2-D Fourier transform as

R(k) =
∫

R23γC(X′)exp[ik ·X′]dA(X′). (3.22)

Inverting Eq. 3.22 gives

R23γC(X′) =
1

4π2

∫
R(k)exp[−ik ·X′]d2k. (3.23)

Eq. 3.22 allows Eq. 3.20 to be written as

V (Xc,ω) = sI(ω)[P̂(Xc,X0,ω)]2
2
lA

R(k) (3.24)

or, when rearranged,

R(k) =
lAV (Xc,ω)

2sI(ω)[P̂(Xc,X0,ω)]2
. (3.25)

Substituting Eq. 3.25 into Eq. 3.23 gives an equation for an image of the reflectivity as

IR(X′)≡ R23γC(X′) =
lA

8π2

∫ V (Xc,ω)

sI(ω)[P̂(Xc,X0,ω)]2
exp[−ik ·X′]d2k. (3.26)

The division present is unstable at high frequencies, so a Wiener filter can be implemented

[25] as

VW (Xc,X0,ω) =
V (Xc,ω)

(
sI(ω)[P̂(Xc,X0,ω)]2

)∗∣∣sI(ω)[P̂(Xc,X0,ω)]2
∣∣2 + ε2max

(∣∣sI(ω)[P̂(Xc,X0,ω)]2
∣∣2) (3.27)
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where the asterisk denotes the complex conjugate and ε is a noise constant. Substituting

VW (Xc,X0,ω) into Eq. 3.26 gives

IR(X′) =
lA

8π2

∫
VW (Xc,X0,ω)exp[−ik ·X′]d2k. (3.28)

Changing the integration variables gives

IR(X′) =
lA

8π2

∫
VW (Xc,X0,ω)exp[−ik ·X′]

∣∣∣∣ (∂kx,∂kz)

(∂ω,∂θc)

∣∣∣∣dωdθc (3.29)

where the Jacobian is

∣∣∣∣∂ (kx,kz)

∂ (ω,θc)

∣∣∣∣=
∣∣∣∣∣∣∣det

 ∂kx
∂ω

∂kz
∂ω

∂kx
∂θc

∂kz
∂θc


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣det

 −2sinθc/c 2cosθc/c

−2ω cosθc/c −2ω sinθc/c


∣∣∣∣∣∣∣

= 4 |ω|/c2.

(3.30)

The integration on θc can be written in terms of xc for z = 0 because

dθc = cosθc
dxc

Rc0
. (3.31)

Using Eqs. 3.30 and 3.31 in Eq. 3.29 gives

IR(X′) =
lA

2π2c2

∫ cosθc

Rc0
VW (Xc,X0,ω)exp[−ik ·X′] |ω|dωdxc, (3.32)

and using M discrete frequencies with spacing ∆ f and N discrete element locations with pitch

(spacing from one element centroid to the next) ∆xc, Eq. 3.32 can be written as

IBA
R (X′) =

2lA∆ f ∆xc

c2 2 Re

(
M

∑
m=1

N

∑
n=1

(cosθc)n

(Rc0)n
fmVW (Xcn,X0,ωm)exp[−ikmn ·X′]

)
, (3.33)

where the BA superscript denotes that this is the band- and aperture-limited form of Eq. 3.32.

Eqs. 3.32 and 3.33 are the pulse-echo versions of the continuous and discrete quantitative

imaging algorithm.
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Relation to physical optics far-field inverse scattering

Eq. 3.24 is very similar to the physical optics far-field inverse scattering (POFFIS) identity,

which relates the reflectivity of a scatterer to the scattered field [4, 17, 18]. The POFFIS iden-

tity assumes that there is infinite bandwidth and that the incident field is from a concentrated

source with no directivity. The pressure field from a concentrated line source can be written as

P̂(Xc,X0,ω) =

√
2k2

iπ
lA
2

exp(ik2Rc0)√
Rc0

D(θc,ω) (3.34)

where D(θc,ω) is the far-field directivity [26]. Placing this result in Eq. 3.24 gives

V (Xc,ω) = sI(ω)
2k2

iπ
lA
2

exp(2ik2Rc0)

Rc0
[D(θc,ω)]2R(k) (3.35)

which is the 2-D version of the POFFIS identity with the system function and far-field direc-

tivities retained. However, here the identity is relating the reflectivity to the actual measured

voltage rather than to the scattered pressure wavefield present in POFFIS. Inverting Eq. 3.35

to get

IR(X′) =
c2

4πlA

∫ Rc0V (Xc,ω)

−iωsI(ω)[D(θc,ω)]2
exp(−2ik2Rc0−2ik2e ·X′)d2k (3.36)

provides an opportunity to gain insight into what the quantitative imaging algorithm of Eq. 3.26

is correcting for. The Rc0 term in Eq. 3.36 is correcting for amplitude loss due to wave prop-

agation: from the element to the flaw there will be an amplitude decay of 1/
√

Rc0, and from

the flaw back to the element there will be another decay of 1/
√

Rc0. The [D(θc,ω)]2 term cor-

rects for the directivity in transmission and reception, and the system function, sI(ω), corrects

for the ultrasonic system effects. The POFFIS formulation includes the amplitude term but

neglects the system function and directivity effects, both of which are important in order to

model actual NDE measurement systems.



31

Quantitative full matrix imaging algorithm

Figure 3.3: Geometry for sending on one element and receiving on another.

Returning to Eq. 3.15, which can be written for a single medium as

V (Xs,Xr,ω) =sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

· 2ρc
lAρ2c2

∫
Clit

R23(er ·n)exp[ik2(e(1)+ e(2)) · (X−X0)]ds(X),
(3.37)

an equation for an image that uses all combinations of pitch-catch signals can be developed in

the same way as the pulse-echo case. Defining the reflectivity now as

R ≡ R23(er ·n)γC(X′) (3.38)

and setting

k = k2(e(1)+ e(2)) (3.39)

the Fourier transform of the reflectivity can be written as

R(k) =
∫

R23(er ·n)γC(X′)exp[ik ·X′]dA(X′). (3.40)
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Now, the measured voltage signal can be again written in terms of the Fourier transform of the

reflectivity as

V (Xs,Xr,ω) = sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)
2
lA

R(k). (3.41)

Doing an inverse Fourier transform on Eq. 3.41 gives

IR(X′)≡ R23(er ·n)γC(X′) =
lA

8π2

∫ V (Xs,Xr,ω)

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)
exp[−ik ·X′]d2k.

(3.42)

First, we will consider the case where we hold the sending element fixed but allow the receiving

element to vary. This is called the “common shot” case in seismology. For this case we can

consider k to be a function of ω and θr. With a change of variables, Eq. 3.42 can be rewritten

as

IR(X′)≡ R23(er ·n)γC(X′) =
lA

8π2

∫ V (Xs,Xr,ω)

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

·exp[−ik ·X′]
∣∣∣∣ ∂ (k)
∂ (ω,θr)

∣∣∣∣dωdθr.

(3.43)

Here the Jacobian is

∣∣∣∣ ∂ (k)
∂ (ω,θr)

∣∣∣∣=
∣∣∣∣∣∣∣
ω

c2 det

 e(1)+ e(2)

∂e(2)/∂θr


∣∣∣∣∣∣∣=
∣∣∣∣∣ωc2 j ·

[
(e(1)+ e(2))× ∂e(2)

∂θr

]∣∣∣∣∣
=

∣∣∣∣∣ωc2 (e
(1)+ e(2)) ·

[
∂e(2)

∂θr
× j

]∣∣∣∣∣
(3.44)

where the distributional property of the triple product has been used. Now, for the 2-D case

presented here, ∂e(2)
∂θr
× j =−e(2), which gives∣∣∣∣ ∂ (k)

∂ (ω,θr)

∣∣∣∣= ∣∣∣ωc2 (e
(1)+ e(2)) ·

[
−e(2)

]∣∣∣= ∣∣∣∣−ω

c2

(
e(1) · e(2)+ e(2) · e(2)

)∣∣∣∣ . (3.45)

Noting that the sign goes away because of the absolute value and taking e(1) · e(2) = cosΘ and

e(2) · e(2) = 1 gives the Jacobian as∣∣∣∣ ∂ (k)
∂ (ω,θr)

∣∣∣∣= ∣∣∣ωc2 (1+ cosΘ)
∣∣∣ . (3.46)
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Using Eq. 3.46 in Eq. 3.43 gives

IR(X′) =
lA

8π2

∫ ∣∣∣ω
c2 (1+ cosΘ)

∣∣∣ V (Xs,Xr,ω)

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

·exp[−ik ·X′]dωdθr.

(3.47)

As with the pulse-echo case, the integration on θr can be changed to an integration over xr

because dxr = Rr0dθr/cosθr, giving

IR(X′) =
lA

8π2

∫ ∣∣∣ω
c2 (1+ cosΘ)

∣∣∣ cosθr

Rr0

V (Xs,Xr,ω)

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

·exp[−ik ·X′]dωdxr.

(3.48)

Since the sending element was held fixed, Eq. 3.48 is the equation for an image formed for a

fixed angle of incidence; that is to say, IR(X′) = IR(X′,θs). If we now let the sending element

vary, we can form up an image that is the integral over these angles of incidence, i.e.

I′R(X′) =
∫

IR(X′,θs)dθs. (3.49)

The integration on θs can be written as an integration on xs because dxs = Rs0dθs/cosθs,

giving a full matrix image defined as

I′R(X′) =
∫

IRdθs =
∫ cosθs

Rs0
IRdxs. (3.50)

Placing Eq. 3.48 into Eq. 3.50 gives

I′R(X′) =
lA

8π2

∫ ∣∣∣ω
c2 (1+ cosΘ)

∣∣∣ cosθs

Rs0

cosθr

Rr0

V (Xs,Xr,ω)

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)

·exp[−ik ·X′]dωdxrdxs

(3.51)

which is our continuous full-matrix quantitative imaging equation. Using M discrete frequen-

cies, N discrete transmission elements, and N discrete receiving elements with spacings ∆ f ,

∆xs, and ∆xr, respectively, gives

I′BA
R (X′) =

lA∆ f ∆xs∆xr

4π
2 Re

M

∑
m=1

N

∑
n=1

N

∑
l=1

∣∣∣ωm

c2 (1+ cosΘnl)
∣∣∣ (cosθs)n

(Rs0)n

(cosθr)l

(Rr0)l

· V (Xsn,Xrl,ωm)

sI(ωm)P̂(1)(Xsn,X0,ωm)P̂(2)(Xrl,X0,ωm)
exp[−ikmnl ·X′].

(3.52)
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As with the pulse-echo case, the division present is unstable at high frequencies, so a Wiener

filter can be implemented as

VW (Xs,Xr,X0,ω) =

V (Xs,Xr,ω)
(

sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)
)∗

∣∣sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)
∣∣2 + ε2 max

(∣∣sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)
∣∣2) .

(3.53)

Using Eq. 3.53 in Eqs. 3.51 and 3.52 gives Eqs. 3.54 and 3.55

I′R(X′) =
lA

8π2

∫ ∣∣∣ω
c2 (1+ cosΘ)

∣∣∣ cosθs

Rs0

cosθr

Rr0
VW (Xs,Xr,X0,ω)

·exp[−ik ·X′]dωdxrdxs

(3.54)

I′BA
R (X′) =

lA∆ f ∆xs∆xr

4π
2 Re

M

∑
m=1

N

∑
n=1

N

∑
l=1

∣∣∣ωm

c2 (1+ cosΘnl)
∣∣∣ (cosθs)n

(Rs0)n

(cosθr)l

(Rr0)l

·VW (Xsn,Xrl,X0,ωm)exp[−ikmnl ·X′].

(3.55)

Eq. 3.54 and its discrete counterpart Eq. 3.55 are suitable for forming quantitative images using

measured voltage signals obtained experimentally.

Inclusion Simulations

Images can be formed using simulated data, which is useful in studying the imaging pro-

cess in detail. First we note that Eq. 3.56 below (which was shown earlier as Eq. 3.7 and is the

Thompson-Gray measurement model for 2-D scalar problems in terms of the far-field scatter-

ing amplitude) can be placed in our full matrix imaging model, Eq. 3.51, to write that model

in terms of the far-field scattering amplitude.

V (Xs,Xr,ω) =sI(ω)P̂(1)(Xs,X0,ω)P̂(2)(Xr,X0,ω)A(einc;escat)

·
[

1
−ik2lA

ρc
ρ2c2

√
−8πik2

]
.

(3.56)

We find for the continuous case

I′R(X′) =
1

8π2

∫ ∣∣∣ω
c2 (1+ cosΘ)

∣∣∣ cosθs

Rs0

cosθr

Rr0

√
8πc
−iω

·A(einc;escat ,ω)exp[−ik ·X′]dωdxrdxs

(3.57)
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and for the discrete case

I′BA
R (X′) =

∆ f ∆xr∆xs

4π
2 Re

M

∑
m=1

N

∑
n=1

N

∑
l=1

∣∣∣ωm

c2 (1+ cosΘnl)
∣∣∣ (cosθs)n

(Rs0)n

(cosθr)l

(Rr0)l

√
8πc
−iωm

·A(einc;escat ,ωm)exp[−ikmnl ·X′].

(3.58)

Similarly, the imaging equations for pulse-echo in terms of the scattering amplitude can be

written as

IR(X′) =
1

2π2c2

∫ cosθc

Rc0

√
8πc
−iω

A(einc;−einc,ω)exp[−ik ·X′] |ω|dωdxc (3.59)

and its discrete counterpart

IBA
R (X′) =

∆ f ∆xc

πc2 2 Re
M

∑
m=1

N

∑
n=1

(cosθc)n

(Rc0)n

√
8πc
−iωm

A(einc;−einc,ωm)exp[−ikmn ·X′] |ωm| .

(3.60)

These forms of our imaging models are useful since exact expressions for the far-field

scattering amplitude can be obtained using the method of separation of variables for the cases

of cylindrical and spherical inclusions [2, 26]. For example, the scattering amplitude for a

cylindrical inclusion of radius a with density ρ f law = ρ f and wavenumber k f law = k f in a host

material with density ρhost = ρh and wavenumber khost = kh is

A =−

√
2

iπkh

(
∆2(0)
∆1(0)

+2
∞

∑
n=1

∆2(n)
∆1(n)

(−1)n cos(nΘ)

)
(3.61)

where

∆2(n)
∆1(n)

=

k f
ρ f

Jn(kha)
(

Jn+1(k f a)− n
k f aJn(k f a)

)
− Jn(k f a) kh

ρh

(
Jn+1(kha)− n

khaJn(kha)
)

k f
ρ f

H(1)
n (kha)

(
Jn+1(k f a)− n

k f aJn(k f a)
)
− Jn(k f a) kh

ρh

(
H(1)

n+1(kha)− n
khaH(1)

n (kha)
)

(3.62)

and Jn is the Bessel function of the first kind and order n, H(1)
n is the Hankel function of the

first kind and order n, and Θ is the angle between the incident and scattered wave directions. In

contrast, the scattering amplitude for a spherical inclusion of radius a with density ρ f law = ρ f

and wavenumber k f law = k f in a host material with density ρhost = ρh and wavenumber khost =

kh is

A =
i

kh

(
∞

∑
n=0

(2n+1)(−1)n ∆2(n)
∆1(n)

Pn(cos(Θ))

)
(3.63)
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where

∆2(n)
∆1(n)

=

1
ρ f

jn(kha)
[
k f a jn+1(k f a)−n jn(k f a)

]
− 1

ρh
jn(k f a) [kha jn+1(kha)−n jn(kha)]

1
ρ f

h(1)n (kha)
[
k f a jn+1(k f a)−n jn(k f a)

]
− 1

ρh
jn(k f a)

[
khah(1)n+1(kha)−nh(1)n (kha)

]
(3.64)

and jn is the spherical Bessel function of the first kind and order n, h(1)n is the spherical Hankel

function of the first kind and order n, and Θ is the angle between the incident and scattered

wave directions. Pn is the nth Legendre polynomial. Since the models used here are scalar,

they correspond to the physical case of a fluid inclusion in a fluid host material. This case is

much simpler than those typically encountered in NDE inspections, but it is still valuable for

studying the image formation process.

The imaging algorithm was developed using the Kirchhoff approximation and assumes any

signals are specular reflections. However, the scattering amplitudes obtained through separa-

tion of variables are exact and therefore contain signals that are not limited to specular re-

flections. For weakly scattering inclusions, much of the sound energy will propagate through

the flaw and there will be a reflection off of the back surface of the inclusion. Creep waves,

which are waves that travel around the surface of the flaw while shedding sound energy, can

also cause prominent signals. Other signals, such as those due to multiply reflected waves, are

generally small.

To understand how signals from these different waves contribute to the images being

formed it is first necessary to identify which signals correspond to what type of wave. To

do this, simulated A-scans can be created by inverting Eqs. 3.61 and 3.63 into the time do-

main. Calculations were done over a very wide set of frequencies from 0-20 MHz with a Han-

ning (also known as cosine-squared) window taper applied from 10-20 MHz prior to inversion.

Figs. 3.4a and 3.4b show backscatter A-scans for rigid cylindrical and spherical inclusions with

1mm radii in water. It can be seen that the rigid cylinder has a significant front surface signal

and a very small creep wave signal. The rigid sphere also has a large front surface signal, and

its creep signal is more significant than that of the cylindrical inclusion.
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(a) Rigid cylindrical inclusion. (b) Rigid spherical inclusion.

Figure 3.4: Simulated backscatter A-scans for rigid 1mm radius cylindrical and spherical in-

clusions in water.

(a) Weakly scattering cylindrical inclusion. (b) Weakly scattering spherical inclusion.

Figure 3.5: Simulated backscatter A-scans for 1mm radius cylindrical and spherical inclusions

in water. Inclusion wave speed and density 10% higher than those of water.

Figs. 3.5a and 3.5b show backscatter A-scans for weakly scattering cylindrical and spheri-

cal inclusions with 1mm radii in water. These inclusions, which have a ten percent increase in

wave speed and density compared to water, have a front surface and creep wave signal along
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with a back surface signal. It is noteworthy that the back surface signal has a different struc-

ture depending on the inclusion shape. For the sphere, the back surface signal is a band-limited

delta function (just like the front surface). For the cylinder, the back surface signal is the band-

limited Hilbert transform of a delta function. When compared to the Born approximation,

which assumes flaws are weakly scattering [2, 26], these results show good agreement. The

creep wave signal for the spherical inclusion in Fig. 3.5b can be seen to be much more signifi-

cant than that of the cylindrical inclusion in Fig. 3.5a. The spherical creep signal is larger than

the back surface signal, which is not the case for the cylindrical inclusion. This is likely due

to the fact that the creep wave around a cylindrical inclusion can only travel around paths that

are about the axis of the cylinder. Creep waves around a spherical inclusion do not have this

limitation, which means much more energy can be transmitted in the form of creep waves.

Sachse [27] and Frisk and Überall [28] have examined the signals scattered from cylindrical

inclusions to determine what paths the signals traveled along. The signals from creep waves

seen for 2-D inclusions whose wavespeeds are higher than that of the surrounding host material

are consistent with a creep wave that travels around the path shown in Fig. 3.6b, which will

be called the critical angle creep wave path. The angle θ is the critical angle determined

by Snell’s law for the host and flaw material: θ = sin−1 (chost/c f law
)
. The vertical bars in

Fig. 3.6a correspond to the times for the full width of the creep wave, since it is difficult to

pick a single identifying feature, and the solid line in Fig. 3.6a is the predicted arrival time

for creep waves following the path shown in Fig. 3.6b. It can be seen that the simulated creep

wave signals follow the trend predicted for the critical angle creep wave.
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(a) Arrival times of creep wave (bars)

compared to expected critical angle creep

wave arrival time (solid line).

(b) Path of critical angle creep wave.

(c) Path of grazing creep wave.

Figure 3.6: Creep wave arrival times and paths.

When examining the A-scans for the rigid inclusions, Figs. 3.4a and 3.4b, it was found

that the creep wave, which is notably almost non-existent for the cylindrical inclusion, occurs

later in time than the critical angle creep wave. The arrival time of this creep wave is instead

consistent with the path shown in Fig. 3.6c, which will be referred to as the grazing creep

wave.

An understanding of the signals present in the simulated A-scans allows the transition to

image formation to be made. To form images from simulated data using Eqs. 3.58 and 3.60,

the locations of the array element centroids must be defined. The element centroids used

here were those of a 32 element linear array with a 1mm pitch. The array is taken to be one
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inch (25.4mm) away from the center of the inclusion, making the centroid of the entire array

located at (x(mm),z(mm)) = (0,−25.4) in the coordinate system of the images. The point

(x(mm),z(mm)) = (0,0) corresponds to the center of the flaw, with (x(mm),z(mm)) = (0,−1)

and (x(mm),z(mm)) = (0,1) being the locations of the front and back surfaces of the flaw,

respectively.

Figure 3.7 shows pulse-echo and full matrix images for a 1mm radius cylindrical inclusion

in water that has properties of c f law = 1.5chost and ρ f law = 1.5ρhost .

(a) Pulse-echo image. (b) Full matrix image.

Figure 3.7: Simulated pulse-echo and full matrix images for a 1mm radius cylindrical inclusion

in water. Flaw density and wave speed 50% higher than water.

Fig. 3.7a shows the pulse-echo image. The front surface (A), the back surface (B), and creep

wave artifacts (C) can be seen, along with other artifacts that arise due to the fact that only N

A-scans are being summed. It can be seen in Fig. 3.7b that using all combinations of pitch-

catch (N2 A-scans) to form the full matrix image does have an averaging effect as predicted

by the imaging model; only the front and back surfaces are imaged. The large number of

A-scans being summed effectively prevents the artifacts from becoming significant features in

the image.

The front surface is being imaged in the correct location, but the back surface is not. For
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flaws whose wave speed are faster than the surrounding material, the back surface will be

imaged within the flaw. This can be seen in Fig. 3.7a, where the back surface is imaged

between the center of the flaw and where the back surface is actually located. This is because

the imaging algorithm uses the wave speed of the host material in the time advances, so signals

arising from waves that travel through the flaw, or around the flaw for the case of creep waves,

will be not be imaged in the correct location. This can also be seen in Fig. 3.8.

Figure 3.8: Simulated pulse-echo image for a 1mm radius cylindrical inclusion in water. Flaw

density and wave speed twice those of water.

Figure 3.8 shows a pulse-echo image for a 1mm radius cylindrical inclusion in water that

has properties of c f law = 2chost and ρ f law = 2ρhost . Here, all of the back surface signals are

advanced to the same point at the center of the flaw. The amplitude of this point in the image

is greater than that of the front surface, even though there is no reflector there. This is an

example of why it is important to understand how each signal can contribute in the image

formation process.

To gain further insight into how the back surface and creep wave signals affect the im-

age formation process, the amplitude at the flaw center can be observed for a range of flaw

wave speeds. This is shown for the pulse-echo 1mm radius cylindrical case in Fig. 3.9a. The

amplitude of the front surface is included for comparison in Fig. 3.9b.
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(a) Flaw center. (b) Front surface.

Figure 3.9: Image amplitude at front surface and flaw center for a range of flaw wave speeds.

Flaw is 1mm radius cylindrical inclusion in water, and the flaw density is held constant at

ρ f law = 2ρhost .

The flaw center amplitude is small until the peak at c f law = 2chost , which is when the back

surface signals are being imaged at the center. There is another large peak at approximately

c f law = 2.5chost and a smaller peak shortly thereafter, which are likely due to the creep wave

signals being focused at the center. There are a few smaller peaks for higher c f law values,

which are likely caused by repeated echos of the back surface and creep wave signals.

The amplitude of the front surface, shown in Fig. 3.9b, is a measure of the reflectivity of

the flaw surface. This reflectivity, defined in Eq. 3.21, is directly proportional to the reflection

coefficient,

R =
ρ f lawc f law−ρhostchost

ρ f lawc f law +ρhostchost
, (3.65)

for the interface between the host material and the flaw material. The proportionality depends

on the band- and aperture-limiting of the system, as well as whether the pulse-echo or full

matrix algorithm is used.

It is possible for flaws to have different combinations of density and wave speed but the

same impedance, and therefore the same front surface amplitude. The wave speed of the flaw
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is responsible for the location of the back surface and creep wave artifacts, and the flaw density

affects the relative amplitude of the features in the images. This can be seen in Fig. 3.10.

(a) c f law/chost = 1.5, ρ f law/ρhost = 2. (b) c f law/chost = 2, ρ f law/ρhost = 1.5.

Figure 3.10: Simulated pulse-echo images for a 1mm radius cylindrical inclusion in water.

Flaw density and wave speed differ but flaw impedance is the same.

Figure 3.10a shows a cylindrical inclusion with c f law = 1.5chost and ρ f law = 2ρhost , while

Fig. 3.10b shows the case for c f law = 2chost and ρ f law = 1.5ρhost . These two cases have the

same impedance, and, as expected, the front surface amplitudes are equal. The back surface

and creep wave artifacts appear at different locations due to the difference in wave speed be-

tween the two flaws.

To show how changing flaw properties affects image formation, two appendices have been

included. Appendix A shows a series of pulse-echo images for 1mm radius cylindrical in-

clusions in water for a range of flaw properties. Appendix B has a similar set of pulse-echo

images for 1mm radius spherical inclusions in water.
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Conclusion

The algorithm presented here uses a model-based approach, which was shown to be a

generalization of the POFFIS imaging method, to develop images that are quantitatively related

to the properties of the scatterer present. The image formation process has corrections for the

ultrasonic system and wave propagation effects built into the algorithm, rather than applying

them in an ad-hoc fashion after the formation of the image. The different parts of the flaw

response were matched with features in the images, and simulated data was used to show the

quantitative nature of the images formed.
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CHAPTER 4. GENERAL CONLCLUSION

General Discussion

Ultrasonic phased arrays are a crucial technology for nondestructive evaluation. Their

unique properties can be used to extend and advance traditional flaw characterization tech-

niques, in addition to allowing new methods.

Building on the foundation of traditional time-of-flight diffraction sizing and equivalent

flaw sizing, Chapter 2 shows, with experimental validation, how phased arrays can be used

to estimate the size and orientation of isolated cracks. An explanation of how to extend this

method to surface-breaking cracks and volumetric flaws is also presented. The size estimates

provided by this method give much more quantitative information than other commonly used

techniques, and the small flaws that were sized experimentally were estimated to within 20%

of their actual values.

Chapter 3 advances the state of phased array imaging by first examining how the images

are functions of the ultrasonic system, wave propagation, and the flaw. Corrections for the

system and wave effects are then built into the imaging algorithm, making the images directly

related to the properties of the flaw. Computer simulations of the image formation process with

synthesized “exact” data verify the properties of this imaging method and explicitly define both

what parts of the flaw response are imaged properly and what parts generate imaging artifacts.
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Future Research

In Chapter 2 sizing algorithms were introduced for isolated cracks, surface-breaking cracks,

and volumetric flaws such as voids and inclusions. Only the isolated crack case had experi-

mental validation. In the future, all three cases should be validated experimentally. The ex-

perimental sizing in Chapter 2 was done with a linear array, which is constrained in its beam

steering capabilities. It would be useful to have a 2-D array that would allow full beam steering

in 3-D so that one could obtain data in different directions without having to physically move

the phased array.

Chapter 3 presented a quantitative model-based imaging algorithm and discussed that al-

gorithm using simulated data for volumetric flaws. Practical tests of this method, using ex-

perimental data, should be done in the future to better define its advantages and limitations,

particularly for dangerous flaws such as cracks.
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APPENDIX A. CYLINDRICAL INCLUSION IMAGES

Figure A.1: c f law
chost

=
ρ f law
ρhost

= 0.50 Figure A.2: c f law
chost

=
ρ f law
ρhost

= 0.73

Figure A.3: c f law
chost

=
ρ f law
ρhost

= 0.96 Figure A.4: c f law
chost

=
ρ f law
ρhost

= 1.20
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Figure A.5: c f law
chost

=
ρ f law
ρhost

= 1.43 Figure A.6: c f law
chost

=
ρ f law
ρhost

= 1.66

Figure A.7: c f law
chost

=
ρ f law
ρhost

= 1.89 Figure A.8: c f law
chost

=
ρ f law
ρhost

= 2.13

Figure A.9: c f law
chost

=
ρ f law
ρhost

= 2.36 Figure A.10: c f law
chost

=
ρ f law
ρhost

= 2.60
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Figure A.11: c f law
chost

=
ρ f law
ρhost

= 2.83 Figure A.12: c f law
chost

=
ρ f law
ρhost

= 3.06

Figure A.13: c f law
chost

=
ρ f law
ρhost

= 3.29 Figure A.14: c f law
chost

=
ρ f law
ρhost

= 3.53

Figure A.15: c f law
chost

=
ρ f law
ρhost

= 3.76 Figure A.16: c f law
chost

=
ρ f law
ρhost

= 4.00



50

APPENDIX B. SPHERICAL INCLUSION IMAGES

Figure B.1: c f law
chost

=
ρ f law
ρhost

= 0.50 Figure B.2: c f law
chost

=
ρ f law
ρhost

= 0.73

Figure B.3: c f law
chost

=
ρ f law
ρhost

= 0.96 Figure B.4: c f law
chost

=
ρ f law
ρhost

= 1.20
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Figure B.5: c f law
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Figure B.7: c f law
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ρ f law
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= 1.89 Figure B.8: c f law
chost

=
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= 2.13

Figure B.9: c f law
chost

=
ρ f law
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= 2.36 Figure B.10: c f law
chost

=
ρ f law
ρhost

= 2.60
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Figure B.11: c f law
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Figure B.13: c f law
chost

=
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= 3.29 Figure B.14: c f law
chost

=
ρ f law
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Figure B.15: c f law
chost

=
ρ f law
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= 3.76 Figure B.16: c f law
chost

=
ρ f law
ρhost

= 4.00
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[28] G. V. Frisk and H. Überall, “Creeping waves and lateral waves in acoustic scattering by

large elastic cylinders,” The Journal of the Acoustical Society of America, vol. 59, p. 46,

1976.


	2013
	Quantitative flaw characterization with ultrasonic phased arrays
	Brady Engle
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	Introduction
	Background
	Phased arrays
	Scope of the thesis

	Literature Review
	Time-of-flight diffraction sizing
	Equivalent flaw sizing
	Phased array imaging
	Physical optics far-field inverse scattering

	Thesis Organization

	2. EQUIVALENT FLAW TIME-OF-FLIGHT DIFFRACTION SIZING WITH ULTRASONIC PHASED ARRAYS
	Abstract
	Introduction
	Crack Sizing Algorithm
	Model-Based Bandwidth Error Correction
	Experimental Results
	Extension to Other Flaws
	Conclusion

	3. QUANTITATIVE IMAGING WITH ULTRASONIC PHASED ARRAYS
	Abstract
	Introduction
	Synthetic aperture focusing technique (SAFT)
	Total focusing method (TFM)
	SAFT/TFM discussion

	Quantitative Imaging Algorithm
	Quantitative pulse-echo imaging algorithm
	Relation to physical optics far-field inverse scattering
	Quantitative full matrix imaging algorithm

	Inclusion Simulations
	Conclusion

	4. GENERAL CONLCLUSION
	General Discussion
	Future Research

	A. CYLINDRICAL INCLUSION IMAGES
	B. SPHERICAL INCLUSION IMAGES
	BIBLIOGRAPHY

