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ABSTRACT 

 

Boundary element method (BEM) is an effective numerical technique to solve 

complex engineering problems. The fundamental solutions for both isotropic and 

anisotropic boundary element method are studied as the basis to develop elastostatic 

boundary integral equations.  

The numerical implementation of BEM is described in detail. Multi-zone BEM is 

introduced to calculate polycrystal grains structure. The connectivity between grains is 

modeled with a stiffness spring system. The sliding effect at grain boundaries is 

simulated by a non linear sliding model. 

After anisotropy and grain sliding are implemented with BEM, the information on 

the grain boundaries can be calculated effectively. Inside the grains, the dislocation 

theory is discussed. For multiple dislocations, two calculation methods are introduced: 

discrete dislocation method and dislocation density tensor method. For the dislocation 

density tensor method, the domain integrals are transformed into boundary integral to 

save computing time and to make the computing compatible with the BEM formulation. 

To control the total error and save time, a combination of discrete and density tensor 

methods is developed to calculate the stress field due to multiple dislocations. The new 

mixed method reduce the run time from the order O(n2) to O(n) and keep the error within 

2%. 

The dislocation dynamics is studied to explore the effect of grain size on yielding 

and the results match the Hall-Petch law. The results with grain sliding and anisotropy 

are also shown and analyzed.  
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CHAPTER ONE: INTRODUCTION 

 

Boundary element method (BEM) also known as the Boundary Integral Equation 

(BIE) method is a technique for engineering analysis. The fundamentals of BEM can be 

traced back to classical mathematical formulations by Fredholm[1] and Mikhilin[2] in 

potential theory and Betti[3], Somigliana[4] and Kupradze[5] for elasticity applications. 

Jaswon[6], Hess and Smith[7], Massonnet[8], Rizzo[9] and Cruse[10] made further 

developments in the formulation of the boundary integral equations. The early work of 

Lachat[11], Lachat and Watson[12] made BEM an effective numerical technique. They 

demonstrated that problems with complex configurations can be solved efficiently by 

using isoparametric formulation. Around the same time, the first international 

symposium[13] attracted the attentions of the engineering community and made BEM the 

official name for this numerical method. 

The advantage of BEM can be attributed to the reduction in the dimensionality of 

the problem; for two dimensional problems, only the one dimensional line-boundary of 

the domain needs to be discretized into elements and for three dimensional problems only 

the two dimensional surface of the problem need to be discretized. This reduction in 

dimensionality in modeling gives BEM a huge advantage compared to finite-element 

method (FEM) and other domain type analysis techniques. Furthermore, as the quantities 

such as displacements and tractions are determined only on the discretized boundary, a 

much smaller system of equations is obtained. Although the matrices in BEM are fully 

populated, the FEM matrices are sparse.  
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Another important feature of BEM is that it provides a continuous modeling for 

the interior calculation and lead to a high resolution of interior stress and displacements. 

The quantities at internal points are calculated as a post processing after the boundary 

unknowns are calculated. The density, distribution and location of the internal points 

have no bearing on the boundary mesh. 

The application of BEM requires the determination of the so-called “fundamental 

solutions’. A fundamental solution is the solution of the governing equations due to unit 

forces. Lauricella[14], Fredholm[15], Sokolnikoff[16], Banerjee and Butterfield[17] 

showed the determination of the fundamental solution for isotropic media. The 

anisotropic fundamental solutions are solved thru the works of Lekhnitskii[18], Tomlin 

and Butterfield[19], Snyder and Cruse[20]. The numerical implementation of the two 

dimensional BEM is described in Chapters two and three. 

The application of BEM in this thesis is mainly focused on crystal structured 

grains. Since each grain has its own elastic property, multi-zone BEM is introduced to 

analyze the multi-grain problem. Although the modeling of multi zone BME looks very 

similar to FEM, it still has its advantage by not having interior meshing of the grains.  

To simulate the interaction between grains, two dimensional springs are modeled 

on all grain interfaces. The spring stiffness on normal and shear direction can be 

prescribed independently. For continuous grain structures, normal and shear spring 

stiffnesses are assigned a relatively large magnitude compared with the elastic property. 

In that situation, the grains do not separate due to the high spring stiffness. For viscous 

grain boundaries, the grain sliding models are studied by Crossman and Ashby[21], 

Ghahremani[22, 23], Tvergaard[24, 25], Fotiu, Heuer and Ziegler[26], and Biner[27]. 
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The shear spring stiffness are set to zero in the multi zone BEM model and the relaxation 

process is modeled with a non linear relationship between the grain boundary shear 

tractions and the shear displacements.  

After anisotropy and grain sliding are modeled with BEM, the dislocation 

dynamics[28-34] is included and modeled in the BEM. Dislocation plays an important 

role in plastic deformation in crystalline solids. The generation and motion of 

dislocations and the interaction among dislocations are the key factors in dislocation 

dynamics. For the study of these factors, one needs the interior stress and dislocation 

stress field. BEM is the perfect tool for the interior stress calculation. Mura[28] gave the 

details of dislocation stress field calculations and Eshelby[35] showed how to incorporate 

that field with the elastic finite body. The core of the dislocation stress field calculation is 

a Green function that is very similar to the BEM fundamental solutions. This similarity 

makes the dislocation stress calculation highly compatible with BEM formulation.  

For multiple dislocations, the discrete method by Amodeo and Ghoneim[36, 37], 

Kubin[38], Van der Giessen and Needleman[39], Zbib[40] and Schwarz[41]  is to 

calculate the effect of each dislocation and use superposition for their combined effect. 

As there are thousands or even millions of dislocations inside crystal grains, this method 

is time-consuming. To accelerate this calculation, a new method is developed to 

homogenize the dislocations inside some specific zones. The homogenization process 

employs the dislocation density tensor method[42-47] to calculate the stress field of all 

the dislocations inside that zone. The definition of those zones is carefully designed in 

order to control the error caused by the homogenization within a tolerance level.  
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The dislocation density method required domain integration for that zone. To save 

runtime and more important, to be compatible with BEM, that domain integral can be 

transferred into boundary only integral (by Gao [48-51]) because of the special structure 

associated with the Green function. With this transformation, the dislocation calculation 

with BEM is truly a boundary only method. This newly developed method can reduce the 

runtime by the discrete dislocation method from O(n2) to O(n). 

After the stress field is calculated, dislocation dynamics[39, 47, 52-55] can be 

performed with the generation and motion of dislocations. The slip lines, periodic 

boundaries, grain sliding, and anisotropy are modeled into the dislocation dynamics. For 

different grain sizes, “Hall-Petch law”[56, 57] is compared with the isotropic non sliding 

BEM numerical results. Hall and Petch correlated the yielding strength of the grain with 

the inverse square root of the size of the grain. In this thesis, the slope between log(τ) and 

log(1/d) where τ is the yielding strength and d is the size of the grain are plotted, and the 

sloped number are calculated. The slop number for isotropic non sliding grains is very 

close to 0.5 and consistent with the Hall-Petch law. 

Next, the effect of grain sliding and anisotropy are showed on the yielding stress 

curves. The grain sliding lowers the curve with reduction in grain size. Anisotropy either 

raises the slope when the anisotropy ratio is smaller than one and lowers the slope when 

the anisotropy ratio is larger than one. The reasons behind such variation are explained in 

Chapter four. 
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CHAPTER TWO: BOUNDARY INTEGRAL EQUATION FORMULATION FOR 

2D ISOTROPIC AND ANISOTROPIC ELASTOSTATICS 

 

The boundary integral equations for plane elastostatics are derived by using a two 

step process: a) Determine the fundamental solutions for tractions and displacement and 

b) apply the Betti-Rayleigh Reciprocal Work Theorem. With the appropriate fundamental 

solutions, the derivations and the resulting equations are general enough to apply on both 

isotropic media and anisotropic media. In the following derivation, the index notion is 

used and the summation over repeated indices is implied. 

 

2.1 Betti-Rayleigh Reciprocal Work Theorem 

The Betti-Rayleigh reciprocal work theorem[1] relates two distinct and arbitrary loading 

conditions on the same elastic domain. For the domain Ω  with piecewise smooth 

boundary , the two states of equilibrium have strain, stress and displacement 

represented as 

Γ

iijij u,,σε in state (a) and  in state (b). The relationship of stress, 

strain and displacement are: 

iijij u*** ,,σε
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ijij f−=,σ  for state (a)             (2.6) 

and 

**
, ijij f−=σ for state (b)            (2.7) 

where  and are the body force components. By replacing the stress derivative terms 

with body force terms in eqs. (2.6) and (2.7), eq. (2.5) can be written as  

if
*

if

( ) iijiijiijiij ufuufu **** ),(, +=+ σσ            (2.8) 

Furthermore, the tractions at a point on Γ  are 

jiji nt σ=  for state (a)             (2.9) 

and  

jiji nt ** σ=  for state (b)            (2.10) 

where  are the components of the outward normal of boundaryjn Γ . By integrating eq. 

(2.8) over the domain  and applying the divergence theorem, the remaining stress 

terms in eq. (2.8) are replaced by tractions terms in eqs. (2.9) and (2.10), and eq. (2.8) 

becomes  

Ω

∫∫∫∫ ΩΓΩΓ
Ω+Γ=Ω+Γ dufdutdufdut iiiiiiii

****         (2.11) 

The above equation can be interpreted as the equality of the work done by the forces in 

state (a) acting through displacements in state (b), and the work done by the forces in 

state (b) acting through displacements in state (a). This is known as the Betti-Rayleigh 

reciprocal work theorem. 

The Betti-Rayleigh reciprocal work theorem can be used for the solution of the 

equilibrium equations for state (a) by choosing the variables  for state (b). The iiij fu *** ,,σ
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chosen expressions of  are called the fundamental solutions. The fundament 

solutions can be determined by implementing simple loading conditions on state (a). 

Brief derivation for both isotropic media and anisotropic media fundamental solutions is 

presented next. 

iiij fu *** ,,σ

 

2.2 Isotropic Fundamental Solution 

For isotropic material, the strain is defined as 

( ijjiji uu ,,, 2
1

+=ε )            (2.12) 

and the isotropic stress strain relationship is 

ijmmijij GG εεσ
ν
νσ 2
21

2
+

−
=           (2.13) 

where G is the shear modulus and ν  is the Poisson’s ratio. The equilibrium equation is 

expressed as 

ijij f−=,σ             (2.14) 

By combining eqs. (2.12 ), (2.13), and (2.14), the Navier’s equations for plane-

elastostatics are obtained as: 
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where and are the Cartesian co-ordinates and 1x 2x

( ) ( 21112111 ,;, xxffxxuu == )

)

         (2.17) 

( ) ( 21222122 ,;, xxffxxuu ==          (2.18) 
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while u3 = 0 for plane strain and f3 = 0 for plane stress. 

To solve Navier’s eqs. (2.15) and (2.16), two simple loading conditions are 

defined as unit point force on orthogonal directions acting at the same source point. 

 

21U

11UQ

r 2x

1 
1x

( )
( )2111

2111

,
,
xxff
xxuu

=
=

P

 

Figure 2.2 loading case one 

 

Loading case one is due to a point force of unit magnitude at the source point P in 

the direction as shown in Figure 2.2. By applying this unit force along direction at 1x 1x

P

( ) ( ) 1
1 epqf −= δ            (2.19) 

the displacement at point Q is 

( )
221111

1 eUeUu +=            (2.20) 

where 1e  and 2e  are the unit vectors in the and directions respectively. 1x 2x
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Loading case two is due to a point force of unit magnitude at the same source 

point P in the direction as shown in Figure 2.3. Again by applying this unit force along 

direction at 

2x

2x P

( ) ( ) 2
2 epqf −= δ            (2.21) 

the displacement at point Q is 

( )
222112

2 eUeUu +=            (2.22) 

In general, eqs. (2.19) – (2.22) can be expressed as 

( ) ( ) iik
k epqf −= δδ            (2.23) 

( )
iik

k eUu =             (2.24) 

where  is the displacement at ikU Q in the ith direction due to a unit load at P in the kth 

direction.



 18

21U

Q

r 

11U

2x

1 

1x

 P
 ( )

( )2122

2122

,
,
xxff
xxuu

=
=

 

Figure 2.3 loading case two 

 

For the first loading case, Navier’s eqs (2.15) and (2.16) become 
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And for the second loading case, Navier’s eqs (2.15) and (2.16) become 
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  These four partial differential equations (2.25) to (2.28) can be solved by using 

Fourier transform to yield 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−
−

=
2

log43
)1(8

1

r

jyiy
rijGijU δν

νπ
     (2.29) 

for plane stain, where  

( )
( )

( ) ( 2
22

2
11

2 pqpqmymyr

jpjqjy
ipiqiy

−+−==

−=

−=

)

 

Where  is the shear modulus, G ν  is the Poisson’s ratio. For plane stress, ν  is replaced 

by )1/( νν + in eq. (2.29). 

For a general case of unit load in the kth direction at point P, the corresponding 

displacements, stresses, strains and tractions are defined by dropping the superscript (k) 

from (2.23) and (2.24) 

iki Uu = , displacement at the point Q in the ith direction 

ijkij B=ε , strain at the point Q

ijkij T=σ , stress at the point Q

iki Tt = , traction at the point Q in the ith direction 

To obtain strains thru eq. (2.12), the derivative  is needed. Here subscript j 

denotes  which is the derivative taken at point 

jikU ,

jq∂∂ / Q along the co-ordinate direction j. 

Using the relationship ry
q
r

j
j

=
∂
∂ ,  is obtained as jikU ,

( ){ }4222
, /2///43

)1(8
1 ryyyryryry

G
U kjiikjijkjikjik +−−−

−
−

= δδδν
νπ

    (2.30) 
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By using eqs. (2.12) and (2.13), strain and stress at Q can be expressed as 

( ){ }2
2 /2)(21

)1(8
1 ryyyyyy

Gr
B kjikijijkjikijk +−+−

−
−

= δδδν
νπ

     (2.31) 

( ){ }2
2 /2)(21

)1(4
1 ryyyyyy

r
T kjikijijkjikijk +−+−

−
−

= δδδν
νπ

     (2.32) 

By using the definition of traction 

jiji nt σ=             (2.33) 

the traction at Q is obtained as 

( ) ( ) }{[ ]jjkiikikkijijkik nyryynyny
r

nTT 2
2 /221)(21

)1(4
1

+−+−−
−
−

== σνν
νπ

   (2.34) 

Thus, eq. (2.29) is the displacement fundamental solution and eq. (2.34) is the 

traction fundamental solution for isotropic media[2-4]. 

 

2.3 Boundary Integral Equation 

In the Betti-Rayleigh work theorem, state (a) corresponds to the actual 

equilibrium problem on the domain Ω  with surface Γ . Either the traction t or the 

displacement u is specified on surface Γ  as boundary condition. The body force f over 

domain Ω  should also be specified. The state (b) is that of a unit point load in an infinite 

elastic medium with the same material property as state (a) where the isotropic 

displacement fundamental solution eq. (2.29) and the traction fundamental solution eq. 

(2.34) are derived in the previous section. 

The unit components of the point force f* at the load point Q are taken as 

( )pqf iki −= δδ*        (2.35) 
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By inserting eq. (2.35) into the second integral on the left-hand-side of the Betti-Rayleigh 

work theorem eq. (2.11), one can obtain 

( ) )()()(* pupudqupqduf kiikiikii ==Ω−=Ω ∫∫ ΩΩ
δδδ       (2.36) 

By inserting ),(),,( qpTqpU ikik  as u* and t*, eq. (2.11) can be rewritten as[2, 5-7] 

[ ] )(),()()(),()(),()()( qdqpUqfqdqpTquqpUqtpu ikiikiikik ∫∫ ΩΓ
Ω+Γ−=     (2.37) 

where k=1,2. Equation (2.37) can be used to calculate the displacement at any given 

interior point with known displacements and tractions on the boundary as a post 

processing. 

By moving the interior point p to the boundary, the expression relating the 

displacements at a point on the boundary with the displacements and tractions on the rest 

of the boundary and the body force over the domain, can be obtained. This is done by 

limiting p to the boundary point p0. The singularity at the boundary point p0 is removed 

by distorting the boundary to bypass p0. The final form of the boundary integral equation 

is 

[ ] )(),()()(),()(),()()()( qdqpUqfqdqpTquqpUqtpupC ikiikiikikik ∫∫ ΩΓ
Ω+Γ−=    (2.38) 

with  p located on the boundary. 

The value of )( pCik  can be calculated indirectly by the rigid body motion 

requirement. For a traction free rigid body motion, 0)( =qti  and 0)( =qfi . Denoting the 

displacement in such a situation by the superscript R, eq.(2.38) becomes 

)(),()()()( qdqpTqupupC iki
R

k
R

ik Γ−= ∫Γ
        (2.39) 

For rigid body motion, 
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)()( qupu k
R

k
R =            (2.40) 

Since eq. (2.39) must hold for all none zero displacement, therefore, by combining eq. 

(2.40) and eq. (2.39), one can obtain  

)(),()( qdqpTpC ikik Γ−= ∫Γ
          (2.41) 

For plane elastostatics problems without body force, the boundary integral 

equations are 

[ ] )(),()(),()()()( qdqpTquqpUqtpupC ikiikikik Γ−= ∫Γ
      (2.42) 

In matrix notation, eq. (2.42) becomes 
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The above is a system of equations involving four variables (u1, u2, t1, t2). Two of them 

must be specified as prescribed boundary conditions and the other two are obtained by 

solving the system of eq. (2.43).  Since a close form solution of the BIE is generally 

impossible, except for very simple geometry and prescribed boundary conditions, a 

numerical solution is generally attempted. A detailed description of the numerical 

solution will be described in chapter 3. 

 

2.4 Calculation of the Internal Stresses 

The stresses in the interior of the domain Ω  are determined after the surface 

tractions and displacements are obtained from eq. (2.43). Appling eq. (2.38) without body 

force term and with the strain displacement relationship, the strain at any given interior 

point is obtained as 
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( ) ( ) ( ) ( )[ ] ( )qdqpCquqpDqtp ijkkijkkij Γ−= ∫Γ
,,)(ε        (2.44) 

where 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

jk

j

ik
ijk p

U
p
UqpD 21,          (2.45) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

jk

j

ik
ijk p

T
p
T

qpC 21,           (2.46) 

The internal stress are obtained by applying the stress strain relationship as 

( ) ( ) ( ) ( )[ ] ( )qdqpEquqpFqtp ijkkijkkij Γ−= ∫Γ
,,)(σ        (2.47) 

For isotropic material, 
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After simplification, 
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where 
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2.5 Anisotropic Fundamental Solution 

The anisotropic fundamental solution is derived in terms of Airy functions and 

complex variables[8-17]. The two dimensional stress-strain relationships for 

homogeneous generally anisotropic elastic body in a plane in a matrix form is[18]  
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where ijσ  and  ijε  (i,j=1,2), are the stresses and strains, and  are the elastic 

compliances of the material. In terms of engineering constants, these compliances can be 

expressed as 

mna
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==

        (2.54) 

where Ek is the young’s modulus in the xk direction, G12 is the shear modulus in the x1-x2 

plane, and ijυ  is the Poisson’s ratio. The quantities  kij ,η  and ijk ,η  are coefficients of 

mutual influence of the first and second kind. They are zero for orthotropic materials. 



 25

In the case of plane strain problems, eq. (2.54) remains applicable, provided that 

 is replaced by  where  jka jkb

2,1,;3333 =−= kjaaaab kjjkjk          (2.55) 

and 

1212,333,1263

3333333 1;
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EaEEa jjj
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==

=−=−=
         (2.56) 

where the index 3 refers to the x3 direction. 

If the Airy’s stress function,φ , is introduced as   
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the equations of equilibrium for plane problems are satisfied. Using the equations of 

compatibility of strains, 
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and the stress strain relationship eq. (2.53), the governing equation for the two 

dimensional anisotropic elasticity problems can be obtained as 
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The solution of eq. (2.59) can be defined in terms of a complex coordinate as 

21 xxz μ+=              (2.60) 

where 

βαμ i+=              (2.61) 

Substituting eq. (2.60) into eq. (2.59), the characteristic equation for μ  is obtained as 

02)2(2 2226
2

661216
4

11 =+−++− aaaaaa μμμμ          (2.62) 
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For an anisotropic material, the four roots of eq.(2.60) are distinct and must be either 

purely imaginary or complex, so they can be denoted as 

2413222;111 ;; μμμμβαμβαμ ==+=+= ii        (2.63) 

The characteristic directions may thus be denoted as 

21 xxz jj μ+=            (2.64) 

To calculate the anisotropic fundamental solutions, the Airy function is rewritten 

in term of z as 

( ) [ ])()(Re2)()()()( 2211221122112,1 zFzFzFzFzFzFzzF +=+++=      (2.65) 

The stresses are expressed as  

,Re2 2
2

2
2

2
22

1

1
2

2
111 ⎥

⎦

⎤
⎢
⎣

⎡
+=

dz
Fd

dz
Fd

μμσ          (2.66) 

,Re2 2
2

2
2

2
1

1
2

22 ⎥
⎦

⎤
⎢
⎣

⎡
+=

dz
Fd

dz
Fd

σ           (2.67) 

⎥
⎦

⎤
⎢
⎣

⎡
+−= 2

2

2
2

2
22

1

1
2

2
112 Re2

dz
Fd

dz
Fd

μμσ          (2.68) 

To get the displacement expression, the first step is to insert the Hook’s law eq. 

(2.53) into stress function eqs. (2.66) to (2.68) to replace stress with strain, then replace 

strain with displacement by eq. (2.12). The next step is to integrate both left hand side 

and right hand side of the equations by one dimension to get rid of the displacement 

derivatives. Thus one can obtain  
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where 
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and 

iii dzdF /=φ             (2.71) 

Similar to isotropic fundamental derivation, special loading cases are applied to 

eqs. (2.69). For the unit magnitude net force, Px=1 for case-one and Py=1 for case-two, 

applied at the same source point with orthogonal directions, one obtains 
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Since single value displacement is required at the same point, two more restrictions can 

be applied 
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The fundamental solution is assumed to have the form 

)log( kikik zA=φ            (2.74) 

By inserting this form into the special conditions eqs. (2.72) and (2.73), the fundamental 

solutions can be expressed in term of constants A as  
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The constants A are determined by solving eqs. (2.75) and (2.76). After the constants A 

are solved, it can be plugged into eq. (2.69) to obtain the displacement fundamental 

solution. Then from eqs. (2.12), (2.13) and (2.33), strain, stress and traction fundamental 

solutions are derived in terms of A. The final form for the anisotropic displacement and 

traction fundamental solutions are given below[19, 20] 
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[ ] [ ]2211222211112 Re2Re2 zAzAnzAzAnT jjjjj +++−= μμ      (2.79) 

In eqs. (2.77) to (2.79), nj is the unit outward normal component at Q. 
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and Ajk are complex constants which can be obtained by solving the following system of 

equations expressed in matrix form 
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where 
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}{ }{ 2,1;21 == krriB T
kkkk μ           (2.82) 

To summarize the anisotropic fundamental solution derivation, a quartic equation 

(2.62) is first solved to get the solution for two conjugate pair of μ , and then two roots of 

μ  from different conjugate pairs are inserted in system of eqs. (2.81) and (2.82) to 

determine the constants A. All the parameters in the fundamental solutions can be 

represented by A and μ . Furthermore, all those constants A, r, and μ  depends on the 

value of , the elastic compliances of the material. mna

After the fundamental solution is derived, the boundary integral formulation for 

anisotropic materials is exactly the same as isotropic materials given by eqs. (2.38) to 

(2.43). 

For the internal stress calculation without body force, the anisotropic expression 

similar to eq. (2.44) is derived as  
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are inserted in eq. (2.84) and (2.85) to obtain 

2222211111
~~,~~

jlljjljlljjl AAGAAG μμμμ +=+=        (2.87) 

Once the interior strain is obtained by using eq. (2.83), the stress at p can be calculated 

from the stress strain relationship equations which are the inverse form of eq. (2.53). 
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CHAPTER THREE: NUMERICAL IMPLEMENTATION FOR BOUNDARY 

ELEMENT METHOD AND GRAIN SLIDING 

 

3.1 Introduction 

The discretization and collocation of the boundary integral equations is a three-

step process[1-5].  

1. The boundary is broken up into elements.  

2. The variables, such as displacement and traction, are expressed in terms of 

nodal values and polynomial shape functions.  

3. The product of the shape function and the kernel functions are integrated 

over each boundary element. 

The boundary is broken up into straight elements as shown in Figure 2.1. On each 

element the variation of any quantity is assumed to be linear. Thus, all variables are 

expressed as a linear combination of two linear interpolating functions and two nodal 

values. Each element contains two nodes at the two ends of the element.  

Gauss quadrature is introduced to integrate the product of the shape functions and 

the fundamental solutions over the element. Various orders of Gauss quadrature is 

implemented depending on the accuracy requirement. 
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Figure 3.1: Elements and nodes on boundary 

 

3.2 Numerical Discretization and Isoparametric Formulation 

In the first step, boundary S is divided into Ne elements, so the boundary integral 

equation  

[ ] )(),()(),()()()( qdqpTquqpUqtpupC ikiikikik Γ−= ∫Γ
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turns into  
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 In the second step, the boundary element the global coordinates (x1 , x2), the 
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αN  are the shape functions that are polynomials of degree m-1, and have the property 

that  at node 1=αN α  and 0=αN  at all the other nodes. ,  and  are the nodal 

values of the quantities at node

α
jx α

ju α
jt

α . These shape functions are defined in term of non-

dimensional coordinatesη )11( ≤≤− η . 
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≠= −

−
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ii i
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α α

α ηη
ηη

η
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             (3.3) 

For linear elements m=2, 
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2
1

1N )       ( η+= 1
2
1

2N )                       (3.4)                    

For quadratic elements m=3. 
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When the same shape functions are used for approximation of both geometry and 

functions, the formulation is referred to as isoparametric.[6]    

A discretized boundary element formulation can be obtained by substituting eqs. 

(3.2) into integral eqs. (3.1) 

( ) ( ) ∑∑∑∑
= == =

=+
ee N

n

m
n
j

n
ij

N

n

m
n
j

n
ijjij tQuPxuxC

1 11 1

''

α

αα

α

αα  2,1, =ji                 (3.6) 
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and dSn(x) becomes   ηη dJ n )( .

In general, )(ηJ , the Jacobean of transformation, is given by  
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3.3 Gauss Quadrature Integration 

To evaluate the integral in eqs. (3.7), Gauss quadrature[7-10] is employed. For an 

integral  a variable transformation is introduced as  dxxfI
b

a∫= )(

mtcx += , where ( )abc +=
2
1  and ( abm −=

2
1 ).       (3.10) 

The integral becomes  
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where  wi  is the Gauss weight and  ti  is the Gauss point’s abscissa .  

The following table lists the abscissas and weights for Gauss quadrature of 

various orders. For Gauss order larger than 10, the FORTRAN code supplied in [11] has 

been used. 
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n t w 

2 (+/-)0.57735027 1.0 

3 0.0 
(+/-)0.77459667 

0.88888889 
0.55555555 

4 (+/-)0.33998104 
(+/-)0.86113631 

0.65214515 
0.34785485 

5 
0.0 
(+/-)0.53846931 
(+/-)0.90617985 

0.56888889 
0.47862867 
0.23692689 

6 
(+/-)0.23861919 
(+/-)0.66120939 
(+/-)0.93246951 

0.46791393 
0.36076157 
0.17132449 

7 

0.0 
(+/-)0.40584515 
(+/-)0.74153119 
(+/-)0.94910791 

0.41795918 
0.38183005 
0.27970539 
0.12948497 

8 

(+/-)0.18343464 
(+/-)0.52553241 
(+/-)0.79666648 
(+/-)0.96028986 

0.36268378 
0.31370665 
0.22238103 
0.10122854 

9 

0.0 
(+/-)0.32425342 
(+/-)0.61337143 
(+/-)0.83603111 
(+/-)0.96816024 

0.33023936 
0.31234708 
0.26061070 
0.18064816 
0.08127439 

10 

(+/-)0.14887434 
(+/-)0.43339539 
(+/-)0.67940957 
(+/-)0.86506337 
(+/-)0.97390653 

0.29552422 
0.26926672 
0.21908636 
0.14945135 
0.06667134 

      

Table 3.1 Gauss abscissas and weights  
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3.4 Collocation and Assembly of Matrix 

In the point collocation method, eqs. (3.6) is written for each node on the 

boundary {xc; c=1,M} to yield 
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where M is the total  number of nodes. 

The collocation eqs. (3.12) can be written in matrix notation as 
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The left-hand-side of eq. (3.13) is condensed to obtain 
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where 
γ

γ
γ δ

c
ijc

c
ij

c
ij HxCH += )(  and γδ c  is the Kronecker delta function. The discretized 

boundary element equations may now be rewritten in matrix forms as[12, 13] 

GtHu =             (3.15) 

where H and G are both 2M by2M matrices containing known integral of the product of 

the shape functions, the Jacobian, and the fundamental solutions of Uij and Tij. The vector 

u and t both have M components, and contains unknown and prescribed boundary 

conditions. 

The diagonal terms in H equal  and are determined by a special treatment 

without doing any Gauss quadrature integration. By using eq. (2.41), one can show 
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Also, eqs. (3.16) can be rewritten as 
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Hence, the diagonal terms in  can be evaluated without any integration as γc
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After inserting the boundary conditions and re-arranging the eq. (3.15) becomes 

[A]{X} =[B]{Y} = { F}                                        ( 3.19) 

The vector X contains all the unknown displacements and tractions; vector Y contains the 

prescribed boundary conditions. Matrices A and B are non symmetric and fully populated.  

 

3.5 Discontinuity at Corners and Boundary Conditions 

While applying the boundary conditions, special care has to be taken at points of 

discontinuities. The discontinuity can occur due to two reasons – at corner nodes where 

the normal to the boundary abruptly changes direction, and on smooth boundary where 

the boundary condition changes type. The change in boundary condition can again be of 

two kinds—displacement boundary condition changing to traction boundary condition or 

where the traction itself has a jump discontinuity. The discontinuous boundary conditions 

are schematically shown in Figure 3.2.  
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Figure 3.2: Examples of corner nodes and discontinuous boundary condition. 

 

 The discontinuity in the boundary condition causes a shortage of equations. In 

other words, there are more than one unknown at that node, but only one equation is 

available.  

The scheme to solve this problem is to generate additional equations[14, 15]. The 

additional equations can be derived from other laws[5], theorem, differentiations and 

finite differencing. There is also the method of adding collocation point outside the 

region,[16, 17] but the condition number for the coefficient matrix is always very large 

and this affects the accuracy.  

The method[18] used here derives the extra equations from within the framework 

of the collocation. Double functional nodes are introduced at the same geometric 

location. That is at the junction of the two elements where the discontinuity is present. 
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The two elements meeting at the discontinuity are denoted by ‘+’ and ‘-‘. The ‘-‘ element 

is right before the discontinuity and the ‘+’ element is right after the discontinuity.  

Among the double functional nodes, one belongs to the ‘-‘ element and the other 

belongs to the ‘+’ element. The collocation scheme employed at the ‘-‘ and the ‘+’ nodes 

depends on the nature of the boundary condition specified on the ‘-‘ and ‘+’ elements.  

Four variables, two displacements and two tractions, are associated with each 

node. Thus, eight variables are associated with the double functional node. Out of these 

eight variables, four variables are prescribed as boundary conditions. Thus, one needs 

four equations to obtain the four unknowns at the double functional node. The scheme for 

obtaining these four equations is shown in Table 3.2. 
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BC on +  
Tx,Ty Tx,Ux Tx,Uy Ty,Ux Ty,Uy Ux,Uy

Tx,Ty Fc-(x,y) 
F±(x) 
F±(y) 

Fc-(x,y) 
F+(x)  
F±(y) 

Fc-(x,y) 
F±(x)  
F+(y) 

Fc-(x,y) 
F+(x)  
F±(y) 

Fc-(x,y) 
F±(x)  
F+(y) 

Fc-(x,y) 
F+(x)  
F+(y) 

Tx,Ux Fc-(x,y) 
F-(x)  
F±(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Fc-(x,y) 
F-(x)  
F+(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Fc-(x,y) 
F-(x)  
F+(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Tx,Uy Fc-(x,y) 
F±(x)  
F-(y) 

Fc-(x,y) 
F+(x)  
F-(y) 

Fc-(x,y) 
F±(x)  
Fc+(y) 

Fc-(x,y) 
F+(x)  
F-(y) 

Fc-(x,y) 
F±(x)  
Fc+(y) 

Fc-(x,y) 
F+(x)  
Fc+(y) 

Ty,Ux Fc-(x,y) 
F-(x)  
F±(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Fc-(x,y) 
F-(x)  
F+(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Fc-(x,y) 
F-(x)  
F+(y) 

Fc-(x,y) 
Fc+(x)  
F±(y) 

Ty,Uy Fc-(x,y) 
F±(x)  
F-(y) 

Fc-(x,y) 
F+(x)  
F-(y) 

Fc-(x,y) 
F±(x)  
Fc+(y) 

Fc-(x,y) 
F+(x)  
F-(y) 

Fc-(x,y) 
F±(x)  
Fc+(y) 

Fc-(x,y) 
F+(x)  
Fc+(y) 

 
 
 
 
 
 
 
 
 
 
 
BC 
On  
_ 

Ux,Uy Fc-(x,y) 
F-(x) 
F-(y) 

Fc-(x,y) 
Fc+(x) 
F-(y) 

Fc-(x,y) 
F-(x),  
Fc+(y) 

Fc-(x,y) 
Fc+(x)  
F-(y) 

Fc-(x,y) 
F-(x)  
Fc+(y) 

Fc-(x,y) 
Fc+(x,y) 
 

 

Notes: 

Fc+(I,j):  Collocation at an off-functional node on + (the next element). 
Fc- (I,j): Collocation at the functional node on – (the previous element). 
3- ( i): Use U+=U-, where U- is known. 
F+   ( i): Use U-=U+, where U+ is known. 
F±   ( i): Use U- - U+ =0 where U- and U+ both are unknown. 
 

 

Table 3.2: Collocation scheme for discontinuity 
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3.6 Examples and BEM Results 

To test the BEM code, a pure shear anisotropy model is chosen as an example. 

The pure shear model is chosen for its importance in the study of dislocation dynamics.  

The unit square one zone model is shown in Figure 3.3. The boundary conditions 

are assigned as pure shear on all sides of the square and the point on the left bottom 

corner is pinned. Each side of the model is discretized into 4 elements with 5 nodes per 

side. At the four corners, double nodes are used at the same geometry point, but the 

double nodes are assigned to the two different sides of the corner. On each boundary 

element, eight Gauss point are taken to evaluate the boundary integrals on each element.  

For isotropic case, the Poisson’s ratio and Young’s modules are set to be .3 and 1. 

The anisotropy is defined by the ratio of E1 and E2 where E1 is the Young’s modules on 

the x direction and E2 is the Young’s modules on the y direction. For the anisotropic case, 

E1 is set to 1, and various values of E2 are chosen. The Poisson’s ratio is 0.3 for all 

anisotropic cases. Shear modulus is determined by E1, E2 and the Poisson’s ratio. The 

coefficients of mutual influence of the first and second kind are all set to zero. All the 

examples are modeled as plane strain problems. 
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t=1 

t=1 

t=
1

 

t=
1

 

 

Notes: 

5 nodes on every side and 8 Gauss points on every element 

Plane strain problem 

Boundary Conditions: 

Top side: tx=1, ty=0 

Bottom side: tx=-1, ty=0 

Left side: tx=0 ty=-1 

Right side: tx=0 ty=1 

Left bottom corner: ux and uy pinned. 

 

Figure 3.3 Unit Square one zone pure shear model 
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With different anisotropy ratios, the interior shear stress distribution is calculated 

by using the BEM code and is compared with the theoretical solution. The error in the 

BEM result is shown in percentage of the shear stress. The results of the error 

distributions are displayed in Figure 3.4 thru Figure 3.14 for different anisotropy ratios: 5, 

4, 3, 2.5, 2, 1, 0.5, 0.4, 0.33, 0.25, and 0.2. 

The figures for different anisotropy ratios show one common feature: the internal 

shear stresses calculated by BME code with five nodes pre side and eight Gauss points 

per element is only accurate when the interior position is one element length away from 

the boundary of the domain. 

The high error near the boundary can be explained by the singularity terms in the 

fundamental solutions and inaccuracies introduced through Gauss quadrature. 

  

Figure 3.4 Interior shear stress error percentage distributions for anisotropy ratio 5 



 46

 

Figure 3.5 Interior shear stress error percentage distributions for anisotropy ratio 4 

 

Figure 3.6 Interior shear stress error percentage distributions for anisotropy ratio 3 
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Figure 3.7 Interior shear stress error percentage distributions for anisotropy ratio 2.5 

 

Figure 3.8 Interior shear stress error percentage distributions for anisotropy ratio 2 
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Figure 3.9 Interior shear stress error percentage distributions for anisotropy ratio 1 

 

Figure 3.10 Interior shear stress error percentage distributions for anisotropy ratio 0.5 
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Figure 3.11 Interior shear stress error percentage distributions for anisotropy ratio 0.4 

 

Figure 3.12 Interior shear stress error percentage distributions for anisotropy ratio 0.33 
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Figure 3.13 Interior shear stress error percentage distributions for anisotropy ratio 0.25 

 

Figure 3.14 Interior shear stress error percentage distributions for anisotropy ratio 0.2 
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For the dislocation dynamics calculations, the dislocations move along slip lines 

and finally pile up on the slip line near the boundary. To simulate this effect, the 

dislocations are pinned when they are within a cutoff distance from the boundary. For a 

good simulation, this cutoff distance has to be small. Therefore, one needs accurate stress 

calculation very close to the boundary. To improve the accuracy of stress values near the 

boundary more Gauss points are. 

The effect of increasing Gauss points is shown in Figure 3.15 to Figure 3.18. 

There are five collocation nodes per side and the results are shown for an anisotropy ratio 

of 0.2. In five test cases, numbers of Gauss points per element are taken as 8, 16, 32, 48, 

and 64. The results show that the accuracy in shear stress improves with increased Gauss 

points.  

The major advantage of this approach is that no re-meshing is needed to improve 

the accuracy. Only care one has to take is – the number of Gauss points has to be 

increased when the stress values close to the boundary are needed. 
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Figure 3.15 Interior shear stress error distributions for 16 Gauss points per element 

 

Figure 3.16 Interior shear stress error distributions for 32 Gauss points per element 
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Figure 3.17 Interior shear stress error distributions for 48 Gauss points per element 

 

Figure 3.18 Interior shear stress error distributions for 64 Gauss points per element 
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The disadvantage of only increasing the number Gauss points is that the accuracy 

is limited by the information contained in the interpolating polynomials. The second 

approach is to add more collocation nodes but keep the Gauss points per element the 

same. The results are shown from Figure 3.19 to Figure 3.22. The collocation nodes are 

increased from 5 nodes per side to 10, 20, 30, and 40 nodes per side. The second 

approach not only provides an improved internal stress values, but also provides more 

accurate information on the boundary. For the multi zone grain sliding problems, the 

sliding depends on boundary tractions. Therefore, better description on the boundary will 

be essential to generate an accurate sliding model.  

The disadvantage of adding boundary nodes is that re-meshing and re-modeling 

of the domain is required and also increases the size of the system of equation and 

consequently increases the computing time. 
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Figure 3.19 Interior shear stress error distributions for 10 collocation nodes per side 

 

Figure 3.20 Interior shear stress error distributions for 20 collocation nodes per side 
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Figure 3.21 Interior shear stress error distributions for 30 collocation nodes per side 

 

Figure 3.22 Interior shear stress error distributions for 40 collocation nodes per side 
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3.7 Multi Zone Formulation and Sliding 

For multi-zone problems, the BEM model leads to block banded matrix systems 

with one block for each zone and overlaps between blocks where the zones have a 

common interface. 

  

Zone 1 Zone 2

R element interface 

V1 V2

S1 S2SI 

 

 

Figure 3.23 Multi zone assemble demonstration 

 

Consider the example in Figure 3.23 with two zones V1 and V2, and two outer 

boundaries S1 and S2, and one interface SI. On zone V1, U1 and T1 are displacements and 

tractions at the external boundary S1, U1
I and T1

I are displacements and tractions at the 

interface SI. Similarly, on V2, U2 and T2 are displacements and tractions at the external 

boundary S2, U2
I and T2

I are displacements and tractions at the interface SI. 

The system of equations for V1 and V2 can be written as 
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The compatibility and equilibrium conditions at the interface SI are 

III UUU ≡+= 21                     (3.22) 

III TTT ≡−= 21                                   (3.23) 

The complete system of equations is now assembled as[19] 
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Combining all the interface terms into UI and TI and rearranging them to the left-hand-

side, eqs. (3.25) turn to[20] 
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U1, U2, T1, T2 in eqs. (3.26) are rearranged depending on whether they are unknown or 

prescribed external boundary conditions. With the substitution of the prescribed external 

boundary conditions, the final system of equations can be written as  
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where X1,and X2 are the unknowns and Y1 and Y2 are the prescribed external boundary 

displacement and traction conditions on region 1 and 2. The coefficient matrices are 
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block-banded with one block for each region and overlaps between blocks on the 

common interface. 

 To implement sliding which will be discussed in the next section, displacement 

continuity eqs. (3.22) and (3.23) can be replaced by spring equations 
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 (3.28) 

where the equilibrium still holds and the spring stiffness K allows possible movement 

between zones. 

For a two dimensional spring, shear direction spring stiffness KS and normal 

direction spring stiffness KN are introduced in eqs. (3.28) 
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 (3.29) 

where US and TS are the tangential components and UN and TN are the normal 

components.  

According to this formulation, the opening between zones depends on the sign 

and the magnitude of the spring stiffness on that orientation. For continuous displacement 

at interface, high magnitude of spring stiffness is used for KS and KN. In that way the 

displacement discontinuity calculated from eqs. (3.29) will be very small, and those 

zones will be tightly connected. When only the KS is softened, the shear direction 

displacement discontinuity becomes bigger; while the displacement discontinuity on the 

normal direction remains small. In this way, shear direction movement can be controlled 

by the sign and magnitude of KS, and sliding effects between zones can be simulated. For 

an extreme case of free sliding, KS is zero. 
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When the spring eqs. (3.29) are combined with eqs. (3.20) and (3.21), one 

obtains[21] 
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To combine eq. (3.30) and (3.31), we multiply both sides of eqs. (3.31) by the coefficient 

matrix on the right-hand-side of eqs. (3.30)  
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By subtracting eqs. (3.32) from eqs. (3.30), we find the final assembled system as 
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The unknown TI cannot be solved from these equations, because the coefficients 

in the matrix corresponding to TI are 0. Instead, TI will be treated as a prescribed 

boundary condition with TI = 0. Any value assigned for TI does not affect the final 

solution of eqs. (3.33). The quantity UI is determined at the interface and this UI is 

inserted into the spring eqs. (3.29) to determine TI. 
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3.8 Grain Sliding with BEM Formulation 

To study grain boundary sliding, the polycrystal is modeled by hexagonal array 

(see Figure 3.24) of grains[22-28]. Due to periodic boundary condition, it suffices to 

consider only two trapezoidal fractions OABC and EBAD of the cell structures (Figure 

3.25). The grain boundary is modeled as a viscous sliding interface with zero thickness. 

This is appropriate, because grain boundaries are usually only a few lattice spacing wide 

which is negligible compared to the grain dimensions.  

 

 

 

 

Figure 3.24 Plane hexagonal grain arrangements 
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Figure 3.25 Representative cells of the periodic structure 

 

The boundary conditions for the trapezoid OABC under normal strain are 

specified as follows. The origin O is fixed in space while the rectangular faces DE and 

EC will move with the constant velocities du1=e11l1 and du2=e22l2 respectively. This 

yields the boundary conditions on the outer faces as 

OA, AD:  u2=0,   t1=0 

OC:    u1 =0,   t2 = 0 

BC, BE:  u2 = e22 l2,      t1 = 0 

ED:    u1 = e11 l1,      t2 = 0 

On interface AB, a non-linear viscous sliding relationship between shear tractions 

and shear displacements discontinuity is introduced: 
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m
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where  is the time step, VtΔ 0 is the reference velocity, S0 and 0 < m < 1 are the material 

parameters, and sgn() is the sign function,  is the shear traction along the grain 

boundary,  is the displacements discontinuity at zone interface along the shear 

st

su
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direction of the grain boundary. The subscript (.)a denotes the variable at the beginning of 

the time step t = ta. 

The value of V0 is defined as the relative velocity of a viscous grain boundary 

loaded by a shear strain of amount S0. The limit S0  0 corresponds to free sliding | |= 

0. Equation (3.34) gives time dependant implementation of grain sliding. 

st

The combination of BEM with the time dependant non-linear sliding can be 

broken into the following steps: 

1. At time t=0, the spring stiffnesses KN and KS are taken as large and tsa is 

calculated. 

2. At the interface AB, the shear spring stiffness KS is relaxed to its actual 

value and eq.(3.34) is used to initiate the sliding process. New us and ts 

are calculated for a given time step tΔ . 

3. Step 2 is repeated to update us and ts for the next time step. 

The result for the two zone model is shown in Figure 3.26. The macroscopic 

stress is the average of all the nodal values of t1 along the left side of the model. The 

result shows the change of the t1 with the time. The calculations were performed for 

various values of m. The parameters V0 and S0 are taken as one for this simulation. In this 

numerical experiment, the BEM model is for isotropic plane strain with Young modulus 

and Poisson’s ratio as 1 and 0.3, respectively.  

The curves in Figure 3.26 show the trend of relaxation during sliding. By 

controlling the value of m, various levels of relaxation can be simulated. When the 

simulation runs for a sufficiently long time, all the curves approach the same horizontal 

asymptote. This asymptote represents the fully relaxed level for the sliding model. At that 
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status, a new equilibrium established. In Figure 3.26, only the curve for m=1 reach that 

status. Larger value of m results in a faster approach to the asymptote. 
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Figure 3.26 Macroscopic stresses for 2 zone sliding with different m 

 

In the two zone model, there is only one interface. To demonstrate that the multi-

zone BEM model is implemented correctly for multiple interfaces, variuos zone models 

are now considered. 

The two zone model is only a square piece cutoff from the polycrystal hexagon 

grains in Figure 3.24. The two zone model is called the 1H model because the size of the 
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square is set to be 1H. The other multi zone models are squares with size of 2H, 4H, and 

8H. All the models with different size are shown in Figure 3.26. They are all squares 

cutoff from Figure 3.24 and have the same periodical boundary conditions. 

As all the models come from the same hexagonal arrangement of grains, the 

sliding effect should be the same for all models when all the boundary conditions and the 

values of the sliding parameters are same. The sliding problem does not have any length 

scale associated with it, therefore the 1H, 2H, 4H, and 8H models represent the same big 

model and the same grain arrangement. 

In Figure 3.27, the sliding of the 1H, 2H, 4H, and 8H models are shown for 

m=0.4. As expected, we find that the time relaxation curves for all the four models 

collapse into one curve. From this result, we are confident that the multi-zone BEM and 

the sliding model are correct. 
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Figure3.26 Different Models for the grain sliding 
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Figure 3.27 Macroscopic stress for m=0.4 with different models 
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CHAPTER FOUR: DISLOCATION STRESS FIELD CALCULATION AND 

DISLOCATION DYNAMICS 

 

4.1 Introduction 

Why metals could be plastically deformed and why the plastic deformation 

properties could be changed to a very large degree without changing the chemical 

composition, the answer to these questions lie in dislocation dynamics. Dislocations can 

be perceived easily from structural pictures on an atomic scale. They are usually 

introduced and thought of as extra lattice planes inserted into the crystal that do not 

extend through all of the crystal, but end on the dislocation line. 

 

Figure 4.1 3D view of dislocations 

 

However, crystal structure shown in Figure 4.1 does not occur in nature. All real 

lattices are much more complicated. Edge dislocations are just one extreme form of the 

possible dislocation structures. Most of the real crystals could be split into "partial" 

dislocations and become very complicated. 
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4.1.1 Single Dislocation 

The generation and movement of the dislocation can be illustrated in Figure 4.2.1 

thru Figure 4.2.3. It also shows the connection between the dislocation movement and the 

plastic deformation. After a dislocation has completely passed through a crystal, the 

lattice is completely restored, and no trace of the dislocation is left in that lattice. Parts of 

the crystal are now shifted in the plane toward the movement of the dislocation. Plastic 

deformation of metals proceeds by the generation and movement of dislocations through 

this shifting. 

A dislocation is one-dimensional defect because the lattice is only disturbed along 

the dislocation line. The dislocation line thus can be described at any point by a line 

vector t(x,y,z). Dislocations move under the influence of external forces which cause 

internal stresses in a crystal. The area swept by the movement of dislocations defines the 

glide plane, which always contains the dislocation line vectors. The movement of 

dislocations shifts the whole crystal from one side of the glide plane toward the other 

side.  
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Figure 4.2.1 Generation of an edge dislocation by a shear stress 

 

 

Figure 4.2.2 Movement of the dislocation through the crystal 

 

 

Figure 4.2.3 Shift of the upper half of the crystal after the dislocation emerged 
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Dislocations move in response to shear stress on the glide plane. When critical 

shear stress threshold is reached, a dislocation generates and moves. From that moment, 

the deformation is no longer elastic but plastic, because the dislocation will not move 

back when the stress is removed.  

The example in Figure 4.2.1 is an idealized edge dislocation in a cubic lattice 

which does not exist in nature. The grey lines show the projection of the lattice planes, 

the dislocation line in red symbols is perpendicular to the screen and bounds the extra 

lattice plane.  

The dislocation line moves on its glide plane and produces, upon leaving the 

crystal, an elementary step on the crystal surface. For macroscopic deformation in three 

dimensions, many dislocations have to move through the crystal. The elementary process 

shown above has to be repeated literally billions of times on many different planes of the 

lattice. 

 

4.1.2 Burger’s vector and Burger’s circuit 

The fundamental quantity defining an arbitrary dislocation is its Burgers vector b. 

Its atomistic definition follows from a Burgers circuit around the dislocation in the real 

crystal, which is illustrated in Figure 4.3. On the left of Figure 4.3, one can make a closed 

circuit that encloses the dislocation from lattice point to lattice point. One could obtain a 

closed chain of the base vectors which define the lattice. On the right side, one can make 

exactly the same chain of base vectors in a perfect reference lattice, but the chain can not 

be closed. The special vector needed for closing the circuit in the reference crystal is by 

definition the Burgers vector b. 
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Figure 4.3 Burger’s circuit 

 

4.1.3 Screw dislocation and Edge dislocation 

There are two basic types of simple dislocations: screw dislocation and edge 

dislocation. The edge dislocation showed in Figure 4.4 moves along the x axis which is 

perpendicular to the dislocation line along the z axis. The Burger’s vector for edge 

dislocation is also perpendicular to the dislocation line. For screw dislocation, the 

Burger’s vector is along the direction of dislocation line and the dislocation moves along 

that direction. 
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Screw Dislocation Edge Dislocation 

 

Figure 4.4 Screw dislocation and Edge dislocation 

 

The stress fields in isotropic media for screw and edge dislocation are listed in the 

following equations. 

For screw dislocation, 

σxx  =  σyy  =  σzz  =  σxy  =  σyx  =  0 
 

σxz  =  σzx = –  
G · b 

 
2π 

 · 
y  

 
x2 + y2

 =  –  
G · b

2π 
  ·  

sin θ

r 

σyz  =  σzy =   
G · b 

 
2π 

 · 
x  

 
x2 + y2

 =   
G · b

2π 
  ·  

cos θ

r 
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For edge dislocation, 

 
 

σxx   =  – D · y 
 3x2  +  y2  

  
(x2  +  y2)2

 

σyy   =  D · y 
 x2  –  y2  

 
(x2  +  y2)2

 

σxy  =  σyx =  D · x 
x2  –  y2  

 
(x2  +  y2)2  

 
σzz  =  ν · (σxx + σyy) 
 
σzz  =  σzx  =  σyz  =  σzy  =  0 

 

D = Gb /2π (1 – ν) 

where G is the shear modulus, ν is the Poisson’s ratio, b is the Burger’s vector, and (x,y) 

are the coordinates of the field point. In Figure 4.5, the stress field around a single edge 

dislocation is shown. 



 78

 

 

 

Figure 4.5 Single edge dislocation stress fields 
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For edge dislocation, the sign of the stress and strain components are reversed 

when the sign of the Burger’s vector is reversed. A singularity exist at the core of the 

dislocation, so stress fields exclude the dislocation core and the cutoff core radius can be 

taken to be about 1b to 4b. In the case of a mixed dislocation, the solutions for the edge 

and screw component of the mixed dislocation are calculated separately and 

superimposed.  

 

4.1.4 Forces on dislocations 

Since the movement of a dislocation is only on its glide plane, only the shear 

stress on that plane needs to be considered for the forces acting on dislocations. The 

normal components of the stress acting on the glide plane are perpendicular to the glide 

plane and thus will not contribute to the movement of a dislocation. All shear stress 

components in the glide plane act on the dislocation, but it is only their combined effects 

in the direction of the Burger’s vector is relevant. This is called the resolved shear stress 

τres. The resolved shear stress points along the direction of the Burger’s vector. However, 

the direction of the force component acting on the moving dislocation is always 

perpendicular to the dislocation line direction. The force component along the dislocation 

line direction does not contribute, because a dislocation cannot move along its own 

direction. As a special case in single edge dislocation, the effective force direction and 

resolved shear stress direction will be the same, because the Burger’s vector’s direction is 

perpendicular to the glide plane. All of these situations are shown in Figure 4.6. 
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Figure 4.6 Directions of Resolved shear stress and force on dislocation 

 

Under the influence of the force F the dislocation moves and work done in this 

motion is W = Force times distance. If the dislocation moves through the crystal on a 

glide plane with the total area A, the upper half of the crystal moves by b relative to the 

lower half which is the distance throug which work has been done. This only happens if a 

shear force acts on the crystal, and this force obviously does some work W. This work is 

done in increments by moving the dislocation through the crystal. The acting shear stress 

in this case is τ  = F/ A. and the force F is the component of the external force that is 

contained or "resolved" in the glide plane as discussed above.  

For the total work W done by moving half of the crystal a distance equal to the 

Burger’s vector b, W  =  A · τ · b, with A · τ = Force, b = Burger’s vector = distance. After 

dividing W into incremental steps dW, the incremental work is done on an incremental 

area that consists of an incremental piece dl of the dislocation moving for an incremental 

distance ds. The relation between the incremental work dW to the total work W then is 
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just the ratio between the incremental area to the total area, dW/ W= ds · dl/A, then dW= 

A · τ · b · dl · ds/A= τ · b  · dl · ds. 

An incremental piece of work dW can always be expressed as a force times an 

incremental distance ds; i.e. dW = F · ds. The force F acting on the incremental length dl 

of dislocation obviously is F = t · b · dl. After redefining the force on a dislocation in 

magnitude and referring it to the unit length dl, |F| = F/dl, a very simple formula for the 

magnitude of the force acting on a unit length of a dislocation can be obtained.    

|F| = τ · b 

In that expression, τ is the component of the shear strain in the glide plane in the direction 

of b. This is normally not a known quantity but must be calculated.  

 

4.1.5 Interactions between Dislocations 

By using the expressions for the stress and strain fields of edge and screw 

dislocations, one can calculate the resolved shear stress caused by one dislocation on the 

glide plane, and determine its effect on other dislocations.  

The superposition of the stress fields of two dislocations that move toward each 

other can result in two possible situations: (a) the combined stress field is larger than that 

of a single dislocation and the dislocations repulse each other. That will happen if regions 

of compressive/tensile stress from one dislocation overlap with regions of 

compressive/tensile stress from the other dislocation. (b) The combined stress field is 

smaller than that of the single dislocation and dislocations attract each other. That will 

happen if regions of compressive stress from one dislocation overlap with regions of 

tensile stress from the other dislocation. Some simple cases are shown below. 
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Figure 4.7 Dislocations with identical b on the same glide plane 

 

Dislocations with identical b on the same glide plane always repel each other.   In 

Figure 4.7, the blue arrows show the direction of the interaction force. In this diagram, 

the dot symbol stands for screw dislocations and half cross stands for edge dislocations. 

 

 

Figure 4.8 Dislocations with opposite b on the same glide plane 

 

Dislocations with opposite b vectors on the same glide plane attract and annihilate 

each other. In Figure 4.8, the blue arrows show the direction of interaction force. The dot 

symbol stands for screw dislocations and half cross stands for edge dislocations. 
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Figure 4.9 Edge dislocations with identical or opposite Burger’s vector b 
 on neighboring glide planes 

 

Edge dislocations with identical or opposite Burger’s vector b on neighboring 

glide planes may attract or repulse each other, depending on the precise geometry. The 

blue double arrows in the Figure 4.9 may signify repulsion or attraction, but the 

dislocations continues to travel along the glide planes as they can not jump from one 

glide plane to another.   

The general formula for the forces between edge dislocations in the geometry 

shown above is 

Fx  =  
Gb2

 
2π(1 –ν)   

 ·  
x · (x2 – y2) 

 
(x2 + y2)2

 

Fy  =  
Gb2

 
2π(1 –ν)   

 ·  
y · (3x2 + y2) 

 
(x2 + y2)2

 

The formula for Fy is given for the sake of completeness, because the dislocations 

can not move in y-direction to across glide planes.  In the Fx expression, when two 

dislocations are on the same glide plane (y = 0), only a 1/x term survives in the 

expression signifying a 1/r dependence of the force on the distance r between the 

dislocations. For y < 0 or y > 0, the dislocations are on different glide planes and there are 
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zones of repulsion and attraction. At some specific positions the force is zero - this would 

be the equilibrium configurations, which are shown in Figure 4.10 

 

Figure 4.10 Dislocation equilibrium configurations 

 

4.2 Dislocation stress field calculation 

To calculate the stress field of dislocations, the effect of a dislocation effect is 

treated as an eigen-strain problem in the elastic theory. A Green function method is 

introduced to solve the elastic stress, strain and dislocations field caused by the given 

eigen-strain. For a single dislocation, the effect of a dislocation is transferred into the 

eigen-strain form with Burger’s vector related to the stress field. Furthermore, the 

dislocation density tensor approach is introduced to simulate a distribution of 

dislocations. 

 

4.2.1 Eigenstrain in elastic theory 

The total strain ijε  is the sum of elastic strain  and eigen-strain  ije *
ijε

*
ijijij e εε +=               (4.1) 

The compatibility equation relates the strain with the displacement as 



 85

( )ijjiij uu ,,2
1

+=ε , where jiji xuu ∂∂=,                 (4.2) 

Also the elastic strain is related to the elastic stress by Hook’s law 

( )*
klklijklijijklij CeC εεσ −==             (4.3) 

In terms of, the stress can be expressed as 

( )*
, kllkijklij uC εσ −=              (4.4) 

where  are the elastic constants and the summation convention for the repeated 

indices is applied. 

ijklC

When eigen-stress is calculated, the material is assumed to be free from external 

forces and surface constraints. When these conditions for the free body are not satisfied, 

the stress field can be constructed from the superposition of the eigen-stress of the free 

body and the solution of a proper boundary value problem. In our scheme, the boundary 

value problem will be solved by BEM with the calculation of fundamental solutions 

which includes Green function evaluation. 

For a free body, the equilibrium equations are 

0, =jijσ     (                                             (4.5) )3,2,1=i

The free external boundary conditions satisfy the equations 

0=jij nσ               (4.6) 

where n is the exterior unit vector which is normal to the boundary. 

By substituting eq. (4.4) into eq.(4.5) and eq.(4.6), the relationship between eigen-

strain and displacement are 

*
,, jklijklljkijkl CuC ε=              (4.7) 

and 
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jklijkljlkijkl nCnuC *
, ε=              (4.8) 

The contribution of eigen-strain to the equilibrium equations is very similar to the 

body force. The equilibrium equations under body force bi are .Similarly, 

 behaves like a surface force on the boundary. Thus, it can be concluded that the 

elastic displacement field caused by  in a free body is equivalent to a body force 

 and a surface force . 

iljkijkl buC −=,

nC klijkl
*ε

*
ijε

*
, jklijklC ε nC klijkl

*ε

Next, the method to evaluate the associate elastic fields in displacements, stresses 

and strains will be developed for given distribution of eigen-strain . Particularly, the 

problem with uniform  will be discussed since it will represent dislocation effects in 

latter studies. 

*
ijε

*
ijε

 

4.2.2 Green Function Method           

The fundamental equations to be solved for given eigen-strain  similar to a 

body force are eq.(4.7). The Green function 

*
ijε

( )'xxGij −  is defined as the displacement 

component in the xi direction at point x when a unit body force in the xj direction is 

applied at point  in the infinite domain. By this definition of Green function, the 

displacement in eq.(4.7) can be considered as a displacement caused by the body force 

 applied in the x

'x

*
,lmnjlmnC ε− i direction. Since ( )'xxGij −  is the solution for the unit body 

force applied in the xj direction, the solution for the present problem is the product of 

( )'xxGij −  and the body force . Then eq.(4.7) can be expressed as *
,lmnjlmnC ε−
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( ) ( ) ( ) ''*
,

' dxxCxxGxu lmnjlmniji ε∫
∞

∞−
−−=           (4.9) 

Integrating by parts and assuming that the boundary terms vanish, eq.(4.9) becomes 

( ) ( ) ( ) ''
'
1

'* dxxxG
x

xCxu ijmnjlmni ∫
∞

∞−
−

∂
∂

= ε         (4.10) 

For an infinite body 

( ) ( )'' )/()/( xxGxxxGx ijlijl −∂∂−=−′∂∂  

 Therefore, eq. (4.10) becomes 

( ) ( ) ( ) ''
,

'* dxxxGxCxu lijmnjlmni ∫
∞

∞−
−−= ε         (4.11) 

where  

( ) ( ) ( )''''
, xxGxxxGxxxG ijlijllij −∂∂−=−∂∂=−          

The strain and stress can be obtained by combining eq.(4.11) and eqs (4.1) to (4.4) 

as 

( ) ( ) ( ){ ( )} ''
,

'
,

'*
2
1 dxxxGxxGxCx lijkljikmnklmnij −+−−= ∫

∞

∞−
εε       (4.12) 

and 

( ) ( ) ( ){ ( )}xdxxxGxCCx klqlkpmnpqmnijklij
*''

,
'* εεσ +−−= ∫

∞

∞−
      (4.13) 

To connect with the dislocation theory which will be discussed in latter sections, 

eq.(4.13) can be rewritten as 

( ) ( ) ( ) ''*'
,ln dxxxxGCCx smqlkppqmnhsthijklij εεεσ ∫

∞

∞−
−=        (4.14) 

where sthε  and hlnε are the permutation tensors. 

Since tlsntnslhsth δδδδεε −=ln , where ijδ  is the Kronecker delta, eq. (4.14) 

becomes 
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( ) ( '*
,

*
, dxGGCCx mnqlkpmlqnkppqmnijklij ∫

∞

∞−
−= εεσ )        (4.15) 

Green’s functions satisfy 

( ) ( )''
, xxxxGC mkqnpkmnpq −−=− δδ          (4.16) 

where ( )'xx −δ  is Dirac’s delta function. It has the property 

( ) ( ) ( )xdxxxx mlml
*'''* εδε =−∫

∞

∞−
         (4.17) 

Therefore, eq.(4.15) is equivalent to eq.(4.13). 

 The Green’s function for the two dimensional plane strain problem can be 

obtained by considering the elastic field due to a distributed line force along the x3 axis, 

)( '
3

''
22

'
11 , dxxxGxxxxG ijij ∫

∞

∞−
−=−− ( )         (4.18) 

For isotropic media,  

)( ( ) } ( ){ μνπδν −−−=−− 18log43,
2'

22
'
11 RRxxxxxxG ijjiij       (4.19) 

where ( ) ( 2'
22

2'
11

2
xxxxR −+−= )  

Green’s functions for the plane stress problem can be derived by replacing E with 

and v with ( ) 2)1/(21 vE ++ ν )1/( vv + in the plane strain expressions, because in both 

cases these replacements give the same form of Hook’s law. 

The Green’s function expression is identical to the fundamental solution of the 

BEM formulation of Chapter-2. For the simplicity in the programming, the fundamental 

solution subroutine and the Green function subroutine are shared. The anisotropic 

formulation for BEM is already shown in Chapter-2.  
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4.2.3 Dislocation Modeling 

Before the dislocation theory can be derived, the definition of the dislocation line 

should be clarified. The dislocation line is a part of the boundary of a slip plane (glide 

plane), but the part of the boundary which is exposed on the surface of the material is not 

called the dislocation line. In screw dislocation and edge dislocation examples mentioned 

in section 4.1.1, the dislocation line is the z axis. To define the direction of a dislocation 

line in a more precise way, consider a slip plane S as shown in Figure 4.11. The upper 

plane, which is denoted by S+, is slipped by b relative to the lower plane, which is 

denoted by S-. To specify this configuration of the slip, the definition of the direction v of 

the dislocation line L follows the right handed cork-screw rule advancing related to the 

Burger’s circuit c. For crystal, the Burger’s vector is usually a lattice vector. Such a 

dislocation is also called a perfect dislocation. 

 

 

 

 

Figure 4.11 Dislocation Line L and the Burgers circuit c 
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The displacement gradient is also called the total distortion; it consists of 

elastic distortion 

jiu ,

ijβ  and plastic distortion . *
jiβ

*
, jiijjiu ββ −=             (4.20) 

The total strain ijε , elastic strain  and eigen-strain  defined in eq.(4.1) are ije *
ijε

( )ijjiij uu ,,2
1 +=ε            (4.21) 

)(2
1

jiijije ββ +=              (4.22) 

( )**
2
1*

jiijij ββε +=                                             (4.23) 

Since  is caused by the slip b*
jiβ i of plane S+, whose normal vector toward S- is 

nj,   can be expressed as *
jiβ

( xSnbx jiji −−= δβ )(* )

)

          (4.24) 

where ( xS −δ  is the Dirac delta function in the normal direction of S.  

Substituting eq. (4.24) into (4.23) we get 

( ) ( xSnbnbx ijjiji −+−= δε 2
1* )( )                   (4.25) 

By substituting eq.(4.25) into eq.(4.11) and using the relationship  

( ) ∫∫ =−
Ω S

dSdxxS ''δ            (4.26)  

one can get  

( ) )()( ''
, xdSnxxGbCxu nS lijmjlmni ∫ −=         (4.27) 

After differentiation, eq.(4.27) becomes 

( ) )()( ''
,, xdSnxxGbCxu nS ljikmklmnji ∫ −=         (4.28) 
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The elastic distortion can be obtained by substituting eq. (4.28) into eq.(4.20) 

( ) ( )xSnbxdSnxxGbCx jinS ljikmklmnji −+−= ∫ δβ )()( ''
,       (4.29) 

By integrating eq.(4.29), we get 

( ) )()( ''
, xdlvbxxGCx hmL qippqmnjnhji ∫ −= εβ         (4.30) 

where v is the direction of the dislocation line L and dl is the dislocation line element. 

The stress components are 

lkijklij C βσ =             (4.31) 

and using eq.(4.30) 

( ) )()( ''
,ln xdlvbxxGCCx hmL qkppqmnhijklij ∫ −= εσ        (4.32)  

Consider a dislocation loop L in Figure 4.11 where L is the boundary of the slip 

plane S. The slip b on S introduces a plastic distortion . p
jiβ

jiji
p

ij dSbdSnbdx −=−=β           (4.33) 

where dx =dx1 dx2 dx3 , dS is the surface element of S, and n is the unit normal vector of 

S.  is called the dislocation loop density tensor p
jiβ hiα .  

The dislocation density tensor is defined by 

hihihi dlbdlvbdx ==α            (4.34) 

By combining integrated eq.(4.34) and differentiated eq.(4.33), the relationship between 

 and p
jiβ hiα  is 

p
ljihljhi ,βεα −=            (4.35) 

where hljε  is the permutation tensor. 



 92

The result is not only valid for single dislocation loop, but also holds for the 

continuous distributed dislocations, where  and p
jiβ hiα  are spatial functions. In that case,  

∑= dlvbdx hihiα            (4.36) 

where the summation is taken on all dislocation segments contained in the infinitesimal 

cube dx. 

The dislocation density tensor hiα  expresses the xi component of the total 

Burger’s vector of dislocations threading the unit surface perpendicular to the xh 

direction. 

The stress field due to the continuous distribution of dislocations can be obtained 

from eq.(4.36) and eq.(4.32) as 

( ) '''
,ln )()( dxxxxGCCx hmL qkppqmnhijklij αεσ ∫ −=      (4.37) 

The single dislocation line can be treated as a special case when the dislocation 

density tensor takes the form of Dirac’s delta function. As examples in Figure 4.4, for the 

single screw dislocation, the dislocation density tensor are )()( 21333 xxb δδα = , 

and . For the single edge dislocation,)()( 12323 xHxbp −= δβ )()( 21131 xxb δδα = and 

. )()( 12121 xHxbp −= δβ

For the continuous distributions of dislocations  

p
jijijiu ββ +=,            (4.38) 

where jiβ  is the elastic distortion. The total distortion is the sum of elastic and plastic 

distortion. Since the plastic distortion is caused by slip, it does not produce any distortion 

among lattice points. The elastic distortion is originated in an elastic deformation of the 

lattices. 
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4.3. Multiple Dislocations Stress Field Calculation 

The interaction between dislocations can be evaluated through stress field 

calculation. As there are thousands or even millions of dislocations exit in the grains, the 

combined stress field of dislocations can be calculated in two ways. 

The first approach is called the discrete dislocation method[1-7], in that method 

stress field of each dislocation is calculated and added together to get the total stress field. 

This method is straightforward, but very time consuming, since the total number of single 

dislocation calculation can reach millions in one time step.  

The second method is the dislocation density tensor method[8-13]. With the given 

distribution of dislocations over a region, the stress field caused by that region can be 

evaluated by integrating the dislocation stress fields over the domain. The domain 

integration can be transformed into a boundary integral because of the special form of the 

Green’s function. 

 

4.3.1. Discrete Dislocation Method 

The stress field for discrete dislocation can be calculated from eq. (4.32) which is 

rewritten below. 

)'()'()( ,ln xdlvbxxGCCx
L

hmqkppqmnhijklij ∫ −= εσ  

For edge dislocation m=1, h=3, v=1 along x3, and Burger’s vector is b along x1. 

The expression for the stress field becomes 

)'()'()( ,13ln xdlbxxGCCx
L

qkpnpqijklij ∫ −= εσ         (4.39) 
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With dislocation line as axis, dl(x’) is x3 from negative infinity to positive infinity 

and eq.(4.39) becomes 

3,13ln )'()( dxbxxGCCx qkpnpqijklij ∫
+∞

∞−

−= εσ         (4.40) 

According to eq.(4.18), the Green function in two-dimension can be expressed as 

')'()','( 32211 dxbxxGxxxxG ijij ∫
+∞

∞−

−=−−   

where G on the left-hand-side is the two-dimensional Green function, and the G on the 

right-hand-side is the general form for three-dimensions. In two-dimensional case, along 

x3 axis, x’=(0,0,x3), then eq.(4.18) becomes 

')'(),( 3321 dxxxGxxG ijij ∫
+∞

∞−

−=                 (4.41) 

and the derivative of Green function is 

')'(),( 33,21, dxxxGxxG kijkij ∫
+∞

∞−

−=          (4.42) 

By substituting eq.(4.42)  into (4.40), one obtains 

bxxGCCx kijnpqijklij ),()( 21,13lnεσ =          (4.43) 

This expression of stress filed is for the two-dimensional single edge dislocation, 

and the evaluation of stress requires is no integration. In other words, the stress field can 

be expressed as a function of geometry alone and stress can be computed by simply 

substituting the location  in eq. (4.43). 21, xx
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4.3.2. Dislocation Density Tensor Method 

The dislocation density tensor method is based on eq.(4.37) as the general 

expression. As a special case for single edge dislocation, the dislocation density tensor is 

defined as: b at the origin point, and 0 elsewhere, 

)()( 2131 xxb δδα =  

Then eq.(4.37) becomes 

')'()( 33,13ln dxbxxGCCx qkpnpqijklij ∫ −= εσ           (4.44) 

Comparing eq.(4.44) with eq.(4.39), we find that this special case of dislocation density 

tensor exactly matches the discrete dislocation result. 

For the general case, eq.(4.37) can be expressed as integration with  3 different 

dimensions as 

∫∫∫ −= ''')'()'()( 321,ln dxdxdxxxxGCCx hmqkppqmnhijklij αεσ       (4.45) 

or 

∫∫∫ −= ''')'()'()( 321,ln dxdxdxxxxGCCx hmqkppqmnhijklij αεσ       (4.46) 

 

4.3.3. Transformation from Domain Integral into Boundary Integral 

To evaluate the triple integral in eq.(4.46), some special treatment is necessary to 

simplify the volume integral into a boundary integral.[14-17] 

Since  and ')'(),( 33,21, dxxxGxxG kijkij ∫
+∞

∞−

−= b=31α  for two-dimensional edge 

dislocation  

∫∫∫ − ''')'()'( 321, dxdxdxxxxG hmkij α  = ∫∫ − '')'( 21, dxdxxxGb kij .  
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To evaluate the double integral we introduce polar coordinates as  

∫∫ − '')'( 21, dxdxxxG kij =         (4.47) ∫∫ θθ rdrdrG kij ),(,

Let , then rdrrGrF kij ),(),( , θθ ∫=

∫∫ − '')'( 21, dxdxxxG kij =          (4.48) ∫ θθ drF ),(

Since
)(

cos
Qr
nrddd iiΓ=Γ= ϕθ , 

∫∫ − '')'( 21, dxdxxxG kij = ∫
Γ

Γ )()(
)(

QdQF
Qr
nr ii        (4.49) 

where 

∫=
)(

0 , )()(
Qr

kij rdrxGQF           (4.50) 

Because of the special structure of  , can be expressed as  kijG , kijG ,

rG ijkkij /, Φ=             (4.51) 

where  is independent of r, then eq. (4.50) can be rewritten as ijkΦ

kijijk

Qr

ijk GQrQrdrQF ,
2)(

0
)()()( =Φ=Φ= ∫         (4.52) 

By substituting eq.(4.52) into (4.49), one can get 

∫∫ − '')'( 21, dxdxxxG kij = ∫
Γ

Γ )()()(
)( ,

2 QdxGQr
Qr
nr

kij
ii       (4.53) 

or 

∫∫ − '')'( 21, dxdxxxG kij =         (4.54) ∫
Γ

ΓdrGnr kijii ,

 According to this derivation, the triple integral in the expression for stress in 

eq.(4.46) can be reduced to a boundary integral for edge dislocations in two-dimension. 
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4.3.4 Error Control and Time Saving with the Mixed Method 

 The discrete dislocation method treats dislocations one by one and gives an exact 

expression for the stress field. The dislocation density tensor method takes the dislocation 

distribution as a whole. The accuracy of the density tensor method depends on the 

accuracy of the description of the dislocation distribution. 

With large number of dislocations in one zone, the stress field due to all the 

dislocations in the zone is computed by an integration of the dislocation density tensor 

along the boundary of the zone. This integration involves the Gauss points over all the  

boundary elements enclosing the zone. Hence, the computing time depends on the 

number of boundary elements and the number of Gauss points, but is independent of the 

number of dislocations within the zone.  

The running time of the discrete dislocation method is directly proportional to the 

total number of dislocations. For large number of dislocations, this calculation can be 

expensive. The dislocation density tensor method is independent of the number of 

dislocations and computationally less expensive compared to the discrete dislocation 

method. 

 The discrete dislocation method is more accurate and dislocation density tensor 

method is faster. The error in the dislocation density tensor method can be controlled by 

reducing the zone size. The error in the dislocation density tensor method is also small 

when there are a very large number of dislocations in a zone.  

In Figure 4.12, the stress field is required at the observation point. The distance 

between the observation point and a discrete dislocation is r. Also consider r to be the 
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distance between the observation point and the center of a zone with a dislocation 

distribution.  

 

Figure 4.12 Discrete dislocation and dislocation density tensor method 

 

To compare the accuracy of the discrete method and zone integration method for 

various values of r only, we keep a fixed zone size a. The observation point is moved 

from the left side of the zone, moved across the zone, and finally, moved to the right 

away from the zone.  

In discrete dislocation calculation, single edge dislocation is considered. In 

dislocation density tensor method, b=31α is applied over the zone to homogenously 

smear a single dislocation inside that zone. The result from the discrete dislocation is 

taken as the reference. The relative error in the dislocation density tensor calculation is 

computed by comparing it with the reference and the results are shown in Figure 4.13. 

When r/a > 2, the relative error is lower than 3%. Hence, for r/a > 2, one can use 

the computationally efficient, dislocation density tensor method. When r/a < 2, the 
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cheaper, density tensor method does not yield sufficient accuracy, therefore, the discrete 

dislocation method is preferable.  

The accuracy of the density tensor method depends on the number of dislocations 

within a zone. In Figure 4.14, the top row shows discrete locations and the bottom row 

shows the same number of dislocations smeared over a zone. We conduct the same 

numerical experiment by sweeping the observation point across a zone of size a. The 

results are shown in Figure 4.15. At the same r/a ratio the relative error in the stress value 

goes down when the total number of dislocations is increased. Also, for the same number 

of dislocations, the error decreases when the r/a ratio is increased. 
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Figure 4.13 Comparison between stress calculation result from discrete 
dislocation and dislocation density tensor method 
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Figure 4.14 Comparison for multiple dislocations. 
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Figure 4.15 Comparison for multiple dislocations 
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In summary, the discrete dislocation method should be used for fewer dislocations 

and when the observation point is close to the dislocations. For large number of 

dislocations and for large distance between observation point and the dislocations, the 

dislocation density method should be used for fast runtime and relatively small errors.  

 

Figurer 4.16 Combined dislocation calculation scheme 

 

To maintain good accuracy and also to reduce the computing time, a combined 

method is developed. This combined algorithm involves a three step process. First, as a 

preparation, after the position of the dislocations are known and the dimension of all the 

zones are given, a point in polygon calculation will decide which zone a dislocation 

belongs to, and how many dislocations are located inside every zone. Second, in Figure 

4.16, the observer is located inside the black zone, for all the dislocations belonging to 

that black zone and the neighboring white zones which have a r/a ratio less than the 

threshold, discrete calculation will be performed. Finally, for all the dislocations 

belonging to the blue zones which have a r/a ratio bigger than the threshold, dislocation 

density tensor method are used to calculate the stress field zone by zone. 
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In Figure 4.16, when the size of the zone is decreased, a more accurate 

distribution of the dislocations is attained. When the size of the zones is made very small, 

the dislocation density tensor method reduces to the discrete dislocation method, with one 

zone containing one dislocation. 

To further speed up the runtime, a tree like structure is generated for the zones to 

maximize the advantage of the dislocation density tensor method with the errors 

controlled within limits. 

 

Figure 4.17 Tree like zone structure 

 

In Figure 4.17, the distance of the observer (within the black zone) from the zones 

are different and the zone size changes. The zone size is controlled in such a fashion that 

the condition r/a > 2 is satisfied. In this zone structure, the number of zone integrations is 

reduced by making the zone size larger for zones that are farther away from the observer. 
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In Table 4.1, the execution times for 10,000 dislocations are given for the discrete 

dislocation method and the combined method with different zone numbers and different 

zone structures. The relative error of the combined method compared to the discrete 

method is also shown. 

 

Method and 
zone structure 

Total 
Runtime 

Discrete 
Dislocation 
time 

Density 
tensor zone 
time 

Error % 

Discrete only 101    

16 uniform 
zones 

68 67.6 0.4 0.99 

64 uniform 
zones 

28 24 3.4 0.73 

256 uniform 
zones 

24 7.2 16.2 0.51 

1024 uniform 
zones 

65 1.95 61.8 0.49 

32 tree 
structure zones 

16 13 2.5 1.45 

256 tree 
structure zones 

11 1.86 8.07 1.27 

 

Table 4.1 Runtime (in sec.) and error for different zone number and zone structure 

 

The table shows that the run time is substantially lower for the combined method. 

The maximum runtime is 101sec for the discrete method. All cases of the combined 

methods have smaller execution time and with error less than 2%. Furthermore, the tree 

structures models have smaller runtime compared to the uniform structured models.  
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Dislocation numbers 100 1000 10000 

Discrete method runtime 0.02 1.09 101 

 

Dislocation numbers 1000 10000 

Mixed method runtime 1.09 (2%) 11(1.27%) 

  Note: errors are shown in the parenthesis 

Table 4.2 Runtime for different number of dislocations 

 

In Table 4.2, the runtimes are shown for different number of dislocations. For 

discrete method, when the number of dislocations increases 10-fold, the calculation time 

increases roughly 100-fold. Therefore, the runtime is O(n2). In the combined method, all 

the errors are within the 2% limit, and the runtime is O(n).  

 

4.4 Dislocation dynamics 

 A superposition technique is used to obtain the actual solution resulting from the 

dislocation microstructures and kinematics boundary conditions[18-24]. In the 

simulations, the dynamic behavior of dislocations is described by a set of constitutive 

rules incorporating the lattice resistance to dislocation motion, dislocation nucleation, and 

annihilation. This section describes the details of these constitutive rules. 

The solution of the instantaneous state of a dislocated body can be obtained by 

decomposing the problem into two parts: 

1)  An infinite body solution for n dislocations: The stress fields can be obtained by 

summing over the infinite fields caused by individual dislocations. If the self 
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equilibrating stress field of a dislocation is denoted as σi in an infinite body, the total 

stress field caused by n dislocations can be expressed as 

∑
=

=
n

i
i

1

~ σσ             (4.55) 

The summation can be calculated by the combined method with tree like zone structure 

which is derived in the previous section. 

 (b) In finite bodies, the dislocations also create tractions T and the displacements u on 

the boundary due to their stress field. Therefore, the boundary conditions of the finite 

body should be modified. The corresponding fields in the finite body can be expressed 

with the linear elasticity equations as 

,0ˆ =⋅∇ σ   ,ˆˆ u∇=ε    ,ˆ:ˆ εσ L=        in V, 

TtTt ~ˆ
0 −==        on             on             (4.56)  ,fS UuUu ~ˆ

0 −== ,uS

where the fields with tilde are the ones associated with the dislocations in their current 

configuration and fields with hat are the corrected ones for the actual boundary 

conditions.  is the vector ‘del’ operator, L is the tensor of elastic constants of the 

material, V is the volume of the body, t

∇

0 and u0 the tractions and the displacements on the 

boundary S = Su ∪ � Sf . This standard boundary value problem can be solved by BEM.  

The complete fields in the finite body are then obtained by superposition of the 

two decomposed solutions 

  ,~ˆ uuu += ,~ˆ εεε +=  σσσ ~ˆ +=                                           (4.57) 

The resolved shear stress acting in the slip plane at the dislocation line controls 

the dislocation motion and its value for the ith dislocation can be expressed as  
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ij
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⎜
⎝

⎛
⎟⎟
⎠

⎞
+⋅= ∑

≠

σστ ˆ            (4.58) 

where mi is the unit vector in the slip direction and ni is the unit normal vector of the slip 

plane containing the ith dislocation.  

The velocity of a dislocation vi in the direction of mi can be related with the 

resolved shear stress through the linear drag relation 

iii Bvb =τ             (4.59) 

where B is the drag coefficient and bi is the magnitude of the Burger’s vector of the ith 

dislocation. The dislocation motion is limited to the slip plane; in particular, climb 

processes are not included.  

Dislocations are generated through the sources. For the nucleation of the 

dislocations, it is assumed that the sources are point sources at the slip plane, which 

generate a dislocation dipole when the magnitude of the shear stress at the source, |τ |, 

exceeds a critical nucleation stress τnuc during a time interval tnuc . The dipole comprises 

of two opposite dislocations with the Burger’s vector ±b, with the polarity being 

determined by the sign of the resolved shear stress. When a new dipole is generated, the 

total resolved shear stress τnuc balances the attractive forces that the two newly created 

dislocations exert on each other. The nucleation distance lnuc is determined from 

( ) nuc

b
vnucl

τπ
μ

−
=

12
        (4.60) 

where b is the magnitude of the Burger’s vector, μ is the shear modulus and ν is the 

Poisson’s ratio.  

Two edge dislocations with the opposite Burger’s vectors will annihilate each 

other when they come close to each other due to their self-stress field. In the simulation, 
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this event is assumed to occur when opposite signed dislocations comes within a critical 

annihilation distance la and they are removed from the model. 

To study the grain boundary strengthening behavior, a shear deformation in plane 

strain is considered. The analysis is also confined to only edge dislocations and to a 

single slip system. The simulation unit cells in Figure 4.18 are chosen to be .86×1 μm in 

dimension with periodic boundary conditions. The grain size ranges from .54 to .06 μm. 

The grain boundaries are marked with circles, and the boundary element nodes 

are marks with dots. It is interesting to notice that some boundary element nodes are not 

on the grain boundaries because of the periodic boundary conditions. The unit cells are 

cut in half at the boundary of the model, one half is in the model and the other half goes 

to the other side of the model. At these cut boundary, dislocations will go out and reenter 

from the other side, and these boundaries will not be treated as grain boundaries.  

 

Figure 4.18 Simulation unit cell model 
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Figure 4.19 Source distributions inside unit cells 

 

For each case, there are no initial dislocations at the beginning of the solution. 

The nucleation of the dislocation dipoles occurs from the randomly distributed 

dislocation sources at slip planes that are parallel to the x1 axis and 10b apart from each 

other in the x2 direction. However, the sources that are directly in contact with the 

boundary were taken out from the solution for smaller grain sizes in order to avoid the 

splitting of the dislocation dipoles into two different grains. Therefore, the absence of 

some sources in some grains may happen. The source distribution of the unit cell model 

is shown in Figure 4.19.  

A critical nucleation stress, τnuc, for each source is randomly assigned from a 

Gaussian distribution with a mean value of τnuc = 70MPa and a standard deviation of 

0.2τnuc. A constant nucleation time tnuc = 0.00125 ms is assumed for all sources. 
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For all grain sizes, homogenous hexagonal grain morphology is assumed. For the 

elastic properties, the Young’s modulus, E = 70 GPa and the Poisson ratio ν = 0.3 are 

chosen. No effort is made to simulate the grain boundaries in terms of the dislocation 

walls. The intersections of the grain boundaries with the slip planes are taken as obstacles 

to the dislocation motion; the dislocations are not allowed to cross the grain boundaries. 

When the distance between these obstacles and the approaching dislocations are less than 

10b, the approaching dislocations were pinned in their current position. This event only 

occurs for a few dislocations in the same slip plane, due to the repulsive forces generated 

between same sign dislocations. The annihilation of the opposite sign dislocations is 

assumed to occur when the distance between such dislocations is less than 6b and they 

are taken out of the simulation. Because of the assumed periodicity, dislocations leaving 

the cell reenter at the opposite side of the cell.  

The magnitude of the Burgers vector is chosen to be that of copper, b = 2.5×10−10 

m. The drag coefficient is taken as B = 10−4 Pa.sec as a representative value, though this 

parameter is difficult to determine accurately for any material. A constant time-step of 

5×10−10 sec is used in all simulations. Also a maximum cutoff velocity of vmax = 20ms−1 

is assigned to the dislocation velocities for numerical stability.  

The analyses are carried out under pure shear and in plane strain condition with 

periodic boundary conditions. To achieve that, simple shearing displacements are 

prescribed to the top and bottom edges of the simulation unit cell through the kinematics 

boundary conditions that also enforce stress-free lateral sides and give a pure shear stress 

state where σ11 = σ22 = 0 for the periodic boundary conditions in the absence of the 

dislocations. These initial kinematics boundary conditions are updated with evolving 
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dislocation microstructures as given in eq. (4.56) during each displacement increment. 

The resulting shear stress needed to sustain the deformation is computed from the shear 

component of eq. (4.57) along the edges of the simulation cell using 

∫=
W

dx
W 0 112
1 στ            (4.58) 

where W is the width of the simulation cell. The loading strain rate is 500% per second in 

all cases. 

In Figure 4.20, the dislocation structure is shown for the cell size 0.86×1μm and 

grain size 0.58*0.5 μm. The dislocation pile up can be observed from this figure. Figure 

4.21 shows the stress vs strain curve for the same model and yielding can be observed 

from this curve. Figure 4.22 shows the increase of the dislocation number and active 

sources number according to the time step. 

 

Figure 4.20 Dislocation structure at shear strain 0.3% for 0.86×1μm model 



 111

 

Figure 4.21 Strength curve for 0 .86×1μm model 

 

 

Figure 4.22 Dislocation number and active source number 
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To combine dislocation with sliding, the sliding effect is studied first without any 

dislocation to make sure that the sliding simulation works. The sliding only result is 

shown in Figure 4.23. The straight line stands for the elastic stress strain relationship; the 

lower curve is the sliding curve. After the model is totally relaxed by the sliding, the 

sliding curve turns into a straight line with a new slope. New equilibrium is formed in 

this stage. Figure 4.24 shows the convergence of the sliding model with the increasing 

number of boundary nodes. 

 

Figure 4.23 Sliding effect fro strain level up to 1.5% 
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Figure 4.24 Sliding effect with different number of boundary nodes 

 

To simulate the effect of sliding on the dislocation dynamics, different viscosities 

are chosen for the sliding simulation. The sliding parameter S0 is set equal to shear 

modulus G, and m is set to 0.2. Those parameters are fixed for all sliding models. The 

combined sliding dislocation curves are shown in Figure 4.25 for 70nm grain size. The 

dislocation only curve is also shown as a reference. The special yielding point is where 

observable deviation appeared on the stress strain curves. The yielding point is lower 

when sliding is allowed and the drop depends on the sliding viscosity and also the grain 

size.  
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Figure 4.25 Dislocation and Sliding combined effects 

 

Figure 4.26 Grain size effects for sliding on yielding stress (log) 
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Figure 4.27 Grain size effect for sliding on yielding stress 

The stress level for that yielding point has a specific relationship with the size of 

the grains. In isotropic dislocations, this relationship is the Hall-Petch Law[25, 26], which 

relates the yielding strength with the square root of the inverse grain size. In Figure 4.26 

and 4.27, this variation is shown. From the log –log plot of Figure 4.26 we find the slope 

as 0.5173. This shows that the numerical solutions are consistent with the Hall-Petch 

Law.  

The sliding effects are also shown in Figures 4.26 and 4.27. When the grain size is 

large, sliding has little influence on the yielding stress level. When the grain size is 

smaller, ((1/d)^1/2 >=100), sliding lowers the yielding level. The amount of drop in 

yielding stress depends on the value of sliding viscosity. 
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Figure 4.28 Dislocations numbers at yielding points 
 

To study the reason for this drop in yielding stress, the dislocation numbers are 

recorded when yielding happened. Figure 4.28 shows the number of dislocations for 

different grain size and for different sliding parameter v0.  Each line represents number 

of dislocations for a fixed grain size. The points on one single line shows the trend of 

number of dislocations for various sliding parameter, from no slide to v0=100, v0=500 

and v0=1000.  

When (1/d)^1/2 =100 or more sliding dragged down the dislocation strength. 

Figure 4.28 shows that at (1/d)^1/2 =100,  the number of dislocations does not change 

with the sliding parameter. For other grain sizes, like (1/d)^1/2   = 112, 120 and 134, 

when sliding parameter changes, the number of dislocations do not any obvious trend. As 
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a conclusion, Figure 4.28 suggests that number of dislocations is not responsible for the 

change in yielding strength. 

After ruling out the dislocation number as the cause for the drop in yielding 

strength, we can conclude that the sliding parameter is the root cause. At the same 

traction level, the bigger sliding parameter will introduce more displacements and more 

displacements will need less macro stresses to reach the same stress threshold at the 

source points to activate the dislocation yielding. The macro stress level is represented as 

the dislocation strength when yielding happens. As a summary, more sliding parameter 

v0 means more displacements and less macro stresses to activate yielding. When yielding 

happens, the reduced macro stress leads to the drop in yielding strength, as shown in 

Figure 4.27. 

                          

Figure 4.29 Anisotropy with dislocations 
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Next, the effect of anisotropy on dislocation dynamics is studied. For anisotropy, 

the ratio E1/E2 is the controlling parameter. Figure 4.29 shows the effect of anisotropy on 

the stress strain curve. The variation of yield stress with grain size in the anisotropic case 

is shown is Figure 4.30 and 4.31.   

 

Figure 4.30 Grain size effect for anisotropy on yielding stress 
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Figure 4.31 Grain size effect for anisotropy on yielding stress (log) 

 

In the log-log plot of Figure 4.31, the isotropic curve has a slope of 0.5. This slope 

is larger than 0.5 when the anisotropy ratio is below one and the slope is less than 0.5 

when the anisotropy ratio is above one.  
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