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ABSTRACT

Vibrothermography nondestructive evaluation (NDE) is in the early stages of research

and development, and there exists uncertainty in the fundamental mechanisms and pro-

cesses by which heat generation occurs. Holland et al. [30] have developed a set of tools

which simulate and predict the outcome of a vibrothermography inspection by breaking

the inspection into three distinct processes: vibrational excitation, heat generation, and

thermal imaging. The stage of vibrothermography which is not well understood is the

process by which vibrations are converted to heat at the crack surface. It has been shown

that crack closure and closure state impact the resulting heat generation [39; 55; 56]. De-

spite this, research into the link between partial crack closure and vibrothermography is

limited [40; 55; 56].

This work seeks to rectify this gap in knowledge by modeling the behavior of a

partially closed crack in response to static external loading and a dynamic vibration. The

residual strains left by the plastic wake during fatigue crack growth manifest themselves

as contact stresses acting at the crack surface interface. In response to an applied load

below the crack opening stress, the crack closure state will evolve, but the crack will

remain partially closed. The crack closure model developed in this work is based in

linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed

crack in response to a tensile external load and non-uniform closure stress distribution.

The model builds on work by Fleck [18] to describe the effective length, crack opening

displacement, and crack tip stress field for a partially closed crack. These quantities

are solved for by first establishing an equilibrium condition which governs the effective

or apparent length of the partially closed crack. The equilibrium condition states that,



ix

under any external or crack surface loading, the effective crack tip will be located where

the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the

effective crack tip is located where the stress singularity vanishes. If the closure stresses

are unknown, the model provides an algorithm with which to solve for the distribution,

given measurements of the effective crack length as a function of external load.

Within literature, a number of heating mechanisms have been proposed as being dom-

inant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic

flow, thermoelasticity, and sliding friction. Based on experimental observation and the-

ory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible

heating mechanisms. This leaves friction and adhesion hysteresis as the only plausi-

ble mechanisms. Frictional heating is based on the classical Coulomb friction model,

while adhesion hysteresis heating comes from irreversibility in surface adhesion. Ad-

hesion hysteresis only satisfies the experimental observation that heating vanishes for

high compressive loading if surface roughness and the instability of surface adhesion is

considered.

By understanding the fundamental behavior of a partially closed crack in response

to non-uniform loading, and the link between crack surface motion and heat genera-

tion, we are one step closer to a fully predictive vibrothermography heat generation

model. Future work is needed to extend the crack closure model to a two-dimensional

semi-elliptical surface crack and better understand the distinction between frictional and

adhesion heating.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Nondestructive evaluation (NDE) encompasses a number of measurement techniques

aimed at detecting flaws or defects in a manner which maintains the integrity and func-

tionality of the component being inspected. Within the field of NDE, there are a number

of measurement modalities including ultrasound, eddy current, radiography, thermogra-

phy, and visual inspection. Each modality uses either a passive or active form of excita-

tion, and a sensing medium (sound, infrared radiation, x-rays) with which to detect any

abnormalities. The detection of flaws requires some form of contrast when compared to

the bulk material, or defect-free component. Cracks and voids block and scatter sound

waves, alter x-ray absorption, and divert eddy currents. Thermography utilizes heat flow

to provide this contrast, whether by active or passive excitation. Passive thermography

uses ambient thermal gradients to gather information about defects, while active ther-

mography requires a heat source to provide this thermal gradient. For example, in flash

thermography a flash lamp is used to deposit heat onto a component’s surface. As heat

diffuses into the bulk, any defect that is encountered will alter the heat flow due to a

change in thermal conductivity. The impeded heat flow will show up as a bright spot on

the thermal image (or dark spot if the imaging system and heat source are on opposite

sides of the component).

The characterization of fatigue cracking in structures is a topic that has been studied

for decades. Fatigue cracks can propagate quickly due to loads below the yield strength



2

and result in mechanical failure of the component. This type of failure is especially

important in safety critical components, such as those used in aerospace structures.

The detection capabilities of most NDE techniques suffer due to the reduced contrast

with the bulk material when crack closure is present [7; 66; 65; 44; 10]; sound waves

are partially transmitted by contacting surfaces, eddy currents and heat are conducted

through asperity contact points, and x-rays will not experience any change in absorp-

tion. Vibrothermography is one inspection technique which is particularly suited for the

inspection of near-surface, partially closed fatigue cracks. Vibrothermography is a form

of active thermography which utilizes a vibration excitation to induce a cyclic stress field

at near surface defects. Cracks subjected to vibrations will generate energy in the form

of heat due to interference between the opposing surfaces. The nature of this energy

conversion is a topic that has been debated for some time [54; 46; 32], although many

suppose that heat generation is the outcome of frictional rubbing (supported by the

observation that heating occurs at locations along the crack where the surfaces are in

tenuous contact [56]).

In contrast to other techniques, research in vibrothermography is at a relatively young

stage. This means that there are opportunities to better understand, model, and predict

the outcome of an NDE inspection and the physics of heat generation. This paper

utilizes the foundation of fracture mechanics to describe the mechanics of a partially

closed fatigue crack (like those seen in a vibrothermography test). This topic is of

interest to both the NDE community, as well as the fracture mechanics community since

the study of the mechanics of a partially closed crack below the crack opening stress is

a topic which has seen little research.

Fracture mechanics and failure is a concept which underpins the entire field of NDE.

The purpose of an NDE inspection is to detect critical flaws prior to the onset of catas-

trophic failure. Of course, in order to interpret the results of an NDE inspection and
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make informed decisions regarding the continued use of a component, one must have an

understanding of the behavior of the expected defect.

The field of fracture mechanics had its start with the pioneering work of Griffith and

Irwin [26; 34] who characterized the growth of a crack by a balance between surface

energy and elastic energy. The rate at which elastic energy is released by a growing

crack, G, must be balanced by the surface energy liberated by the newly created surfaces.

The material resistance to fracture is the fracture toughness, Gc, which is independent

of the geometry or size of the component. Crack growth will occur when G = Gc. A

related fracture criteria considers the stress fields induced at a sharp crack tip in response

to external loading. With an atomically sharp crack, the stress concentration causes

the strength of the material to be reduced significantly with respect to its theoretical

strength. The stresses induced by this stress concentration can be represented by the

stress intensity factor, K. There exists a critical stress intensity factor, KIc, above which

fracture will occur. This is also a measure of fracture toughness.

This foundation, built on linear elasticity, was soon corrected to account for plastic-

ity. In LEFM, the crack tip stress field exhibits a mathematical singularity. This is not

physically meaningful, and the stresses near the tip must be bounded by the yield crite-

rion of the material. There is a finite region around the crack tip where the material has

yielded and plastically deformed in response to the high stresses. This plastic zone, or

process zone, is a contribution to the large fracture toughness of ductile materials when

compared with brittle materials. Some fraction of the energy associated with the prop-

agation of a crack goes towards plastically deforming the material, instead of fracturing

it.

These analyses were the first attempts to predict the onset of fracture in a quasi-

static scenario. The addition of time-dependent loading leads to the concept of fatigue.

Fatigue is the study of the weakening of a material in response to cyclic or repeated

loading. When a crack is loaded in fatigue, its strength is lower than that for static
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loading. The first stage of fatigue crack growth is nucleation and coalescence of voids

and lattice defects. After a defect reaches a critical size, it will begin to propagate.

The final stages of crack growth are catastrophic and unstable. Between nucleation and

unstable fracture, there is a regime of stable growth. The rate of crack growth in this

stage was first described by the Paris law [49], which defines an empirical relationship

between crack growth rate and the range of applied stress intensity factors.

By the early 1970’s, a behavior was observed in which fatigue cracks became partially

closed post-fatigue. Elber [68; 14] detected this phenomenon by a “kink” in the load-

displacement curve of a cracked body. He focused on the phenomenon termed PICC,

in which a fatigue grown crack shuts back on itself due to the residual plastic strains

surrounding the crack flanks. When a fatigue crack grows, the residual strains left behind

by the stretched material in the plastic zone build up into what is known as the ‘plastic

wake’. This is a strip of strained material surrounding the crack flanks. When the

crack undergoes tensile fatigue loading, the crack remains open over some fraction of the

loading cycle, and the crack continues to grow. Once loading is removed, the residual

strains cause the crack faces to close and induce a contact stress at the interface.

When partially closed, the tip of a fatigue crack experiences a reduced stress intensity

factor. The load required to fully open the crack, σop, is a measure of the load shielded

by the plastic wake. The driving force for fatigue utilized by Paris , ∆K = Kmax−Kmin,

must be corrected for this shielding effect. Elber defined the reduced stress intensity

factor range, ∆Keff = Kmax −Kop, which maintains that only loading above Kop con-

tributes to fatigue crack growth. Fleck [18] utilized these concepts, and the use of weight

functions, to understand how a partially closed fatigue crack opens in response to exter-

nal loading. In this work, a closure mechanics model is developed for a one-dimensional

crack based on Fleck’s work. Closure mechanics, herein, refers to the response of a crack

(in terms of forces and displacements) to an applied load.
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1.2 Thesis organization

Chapter 2 investigates the application of fracture mechanics to a partially closed,

one-dimensional fatigue crack. With the concept of fatigue crack closure, the weight

function approach to fracture mechanics, and work on partially closed cracks by Fleck

[18], a crack closure model is developed which successfully predicts the effective length

of a partially closed crack (the length over which the crack is fully open), the apparent

closure stress field acting on the contacting surfaces, and the opening displacement in

response to an externally applied load. These predictions are validated with the finite

element method (FEM).

In Ch. 3 a number of different heating mechanisms are investigated with respect to vi-

brothermography crack heating. This work is necessary in light of the range of different

mechanisms which have been proposed in recent years. Strain hysteresis, thermoelas-

ticity, plastic flow, adhesion hysteresis, and sliding friction are analyzed quantitatively

and qualitatively through theory and compared to experimental observations. Through

this analysis, it is clear that only friction and adhesion hysteresis are left as plausible

mechanisms.
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CHAPTER 2. A ONE-DIMENSIONAL FATIGUE CRACK

CLOSURE STATE MODEL

Modified from a paper to be submitted to International Journal of Fracture.

Bryan E. Schiefelbein, Tianyu Yu, Ashraf Bastawros, Stephen D. Holland

2.1 Abstract

Crack closure is a phenomenon that arises from plastic deformation during fatigue.

The phenomenon was first described by Elber [68; 14] as the partial closing of a crack

after all external loading is removed. The following model describes the evolution of

closure state in response to remote loading and local closure stresses, representing the

influence of the plastic wake left after crack propagation. The fracture mechanics ap-

proach described by Fleck [18] is used as a foundation to develop a model in which the

evolution of the crack closure state of a fatigue crack, subject to an non-uniform closure

stress distribution, is predicted. The model is successfully validated numerically using

the finite element method (FEM) for a one-dimensional through crack in a finite width

plate. Using the closure state model as a foundation, an inversion algorithm is devel-

oped which evaluates the closure stresses given a series of remote loads and corresponding

crack opening lengths. The model is also used to predict the redistribution of stresses

within the closed region of the crack.
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2.2 Introduction

Since the pioneering work of Griffith [26], the scientific community has made great

strides in understanding the mechanisms of fracture and fatigue. This great body of

work is what allows for the design, manufacture, and safe use of materials and structures

in fields with safety critical components such as aerospace, infrastructure, medical, and

energy. Fatigue effects plague many of the critical structures and components in these

fields; there is no shortage of catastrophic failures whose origin lies in the growth of

fatigue cracks.

It was Paris who proposed a law which represents the steady state growth of a fatigue

crack [49], allowing for a quantitative prediction of fatigue life, but it was not until the

work of Elber [68; 14] that the concept of fatigue crack closure was pursued. Fatigue

crack closure is a term which describes the effect in fatigue crack growth where the crack

shuts back on itself after remote loading is removed. This closure can be due to plasticity,

roughness, or crack wedging due to particles or oxide formation [36; 1; 5].

In this work, we focus on the mechanism known as plasticity induced crack closure

(PICC). When a crack is subjected to tension, large stresses are induced near the tip.

These stresses cause local yielding in a small zone around the tip, known as the plastic

zone or process zone [1]. When a crack is grown under fatigue, there is a cyclic loading

and unloading, during which plasticity builds up near the tip. As the crack propagates,

it must do so through the previously stretched material. This results in a buildup of

stretched material along the crack flanks. When external loading is removed, this residual

strain works to shut the crack and can lead to contact between the opposing faces. With

closure present, any applied external load will first have to overcome the closure effects

to continue to grow the crack [68; 14]. Figure 2.1 shows a fatigue crack exhibiting PICC.

When fully open, there is a process zone around the crack tip. When the loading is

removed, the residual plastic wake causes the crack to close back on itself.
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Figure 2.1 Fatigue crack exhibiting PICC under external loading (top) and without
external loading (bottom)

Understanding of fatigue crack closure has been used to correct the crack growth

rates described by Paris. Below a level, designated Sop or Kop, the closure effects shield

the crack tip from external loading, reducing the ∆K felt by the crack tip and retarding

growth [5; 59; 61]. The effective stress intensity range ∆Keff = Kmax−Kop is the range

of loading which acts as the driving force for crack growth.

Despite this vast body of knowledge in fracture and fatigue, little work has been done

to describe the mechanics of partially closed, non-propagating fatigue cracks. In a paper

by Budiansky and Hutchinson [8] the authors state, “... we skip over the details of the

behavior between K = 0 and Kopen, during which the edge of the contact region sweeps

in toward the crack tip,” stating that it would be “absurd” to try and corroborate the

model with experimental results in light of the approximations made by the Dugdale-

Barenblatt strip-yield model [13]. While not experimental in nature, this corroboration
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Figure 2.2 Geometry of a partially closed fatigue crack

is precisely what this work seeks to achieve. We develop an analytical model describing

the mechanics of a crack between K = 0 and K = Kop and corroborate it numerically

through FEM.

While the closure state of a crack has been historically represented by the term Kop

(a parameter which is useful in fatigue life predictions), this description is inadequate in

understanding the full closure state of the crack. The closure state refers to the set of

parameters needed to describe the state of the partially closed crack, namely the point

of closure (or effective length), the crack tip displacement, and the stress field in the

vicinity of the effective or apparent crack tip. Figure 2.2 shows a simplified schematic of

a partially closed crack. The residual plastic zone shown in Fig. 2.1 manifests itself as the

closure stresses in Fig. 2.2. For this reference state, with no external tension, the closure

point or effective length, designated ac, is located where the closure stresses begin. This

represents the location along the crack where the faces first come into contact.

When subjected to an external tensile load the closure point will shift, and the stress

field ahead of the crack tip will no longer be the original closure stress distribution; the

apparent closure stress field will be a combination of the original closure stresses and

the tensile stress field induced by the remote load. The application of a remote load will
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cause the crack faces to open some amount, referred to as the crack tip or crack flank

opening displacement.

The effective crack length, or closure point, represents the point (or contour, in the

case of a 2D crack) on the crack at which the stress intensity factor due to the remote

load and the stress intensity factor due to the closure stresses are in equilibrium [18].

If we imagine this point acts as a virtual crack tip, this can also be thought of as the

crack length for which the crack tip singularity vanishes (since the fractured surfaces can

support a limited amount of tension). Following the work of Fleck [18], we utilize weight

functions to compute the stress intensity factor and crack tip displacements due to the

local closure stresses and the remote loading. The closure point, crack displacement, and

apparent closure stress field are described in terms of integrals of the product of these

weight functions and the remote and closure stress fields.

2.3 Closure mechanics

2.3.1 Background

In LEFM, the stress field ahead of a crack tip is dictated by the stress intensity

factor, K. The stress intensity factor is a fracture parameter that depends on the crack

geometry and the loading. The general form of K for uniform loading is given by, [1],

K = Y σ∞
√
πa, (2.1)

where Y is a correction factor which depends on the crack geometry, sample dimen-

sions, and loading configuration. Expressions for Y are typically evaluated empirically

and tabulated for common crack geometries [19]. The remote load is given as σ∞ and

the half crack length as a. Once K is known, the local stresses, strains and the crack

opening displacement can be evaluated as a function of the radial position r and angular

position θ from the crack tip.
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The stress distribution σyy around the crack tip is given by,

σyy =
KI√
2πr

f(θ), (2.2)

where f(θ) is an function that describes the angular distribution of the stress around

the crack tip. Since we will be primarily interested in the stress field in the plane of the

crack, this term will go to unity.

To analyze the role of the presumably non-uniform closure stress field on the crack

surfaces, the stress intensity factor is derived from a point load solution. The solution

takes the form of a weight function, as proposed by Rice [58] and Bueckner [9]. The

weight function is unique in that it is specific to a crack geometry, and is independent

of the loading conditions. This means that, if a weight function is known for a crack

under the influence of one load, then the weight function is known for the crack under

any arbitrary load. The general form of the one-dimensional weight function [20] is given

by Eq. 2.3 for a crack of length a,

m(x, a) =
2√

2π(a− x)

[
1 +M1

(
1− x

a

)1/2
+M2

(
1− x

a

)
+M3

(
1− x

a

)3/2]
, (2.3)

where M1, M2, and M3 are geometric correction factors and x is the coordinate

position, measured from the center of the crack. If the function m(x, a) is known for a

crack, the stress intensity factor is given by,

K =

∫ a

0

σ(x)m(x, a)dx, (2.4)

where σ(x) is the stress distribution acting on the crack faces and a is the half crack

length. The weight function represents the stress intensity factor at the crack tip due to

a point load, and is directly related to the crack tip stresses induced by a point load (by

Eq. 2.2). The coefficients M1, M2, and M3 of the weight function equation are tabulated

for a variety of loading configurations and crack geometries [16; 17].
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Within the framework of LEFM is the assumption of small-scale yielding (SSY),

which implies that plastic yielding at the crack tip is small relative to the elastic stress

field and the specimen dimensions. It is advantageous to validate that SSY is indeed

valid for the range of parameters we are concerned with. According to Zehnder [69], the

SSY condition is valid as long as the plastic zone is less than about 20 % of the crack

length.

Consider a semi-circular fatigue crack in a specimen of Nickel super alloy Inconel 718,

with half length a = 2 mm and yield stress σY = 1182 MPa. With KI = 2
π
σ∞
√
πa and

subject to a remote tensile stress of σ∞ = 240 MPa, the plastic zone size is [1],

rp =
1

π

(
KI

σY

)2

≈ 33.42 µm. (2.5)

Near the surface, the stress field will behave as plane stress. In other words, rp/a ≈

1.7% which is well within the limits of small-scale yielding.

2.3.2 Effective length

Consider a one-dimensional crack of length ao (Fig. 2.3). There exists a closure stress

acting over the region ac to ao. With certain regions of the crack open (not in contact)

and other regions closed (faces in contact), we can imagine a point at which the crack

transitions from open to closed. We will refer to this point as the effective crack length,

apparent crack length, or closure point. When an external load is applied, the partially

closed crack opens by some increment δa. The stress field ahead of the new closure point

(at ac+δa) will be a combination of the original closure stresses and the stresses induced

by the remote load.

The effective crack length is the point at which the external stresses and closure

stresses are in equilibrium. To find this point, we follow a similar procedure to that of

Fleck [18]. When modeling the growth of a fatigue crack with crack closure, the closure

is represented by the parameter Kop. This parameter represents the loading that must
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x

ac δa
a

ao

uy

σ∞

σclosure

Figure 2.3 Partially closed crack geometry

be applied to overcome the closure effects and fully open the crack. The crack is thought

to be fully open when the externally applied K equals Kop. In other words, the effective

tip reaches the physical crack tip when the quantities K and Kop are in equilibrium.

Therefore, when we apply an external load and a closure load to the crack, the effective

crack tip will be the point at which K due to the remote loading and K due to closure

are in equilibrium,

Kop(a) +Kcl(a) = 0. (2.6)

This simple reasoning is extremely powerful and allows for a description of the evo-

lution of the closure state of the crack 1. The stress intensity factors are found using Eq.

2.4,

1The reasoning behind this equilibrium condition is rooted in the crack tip singularity. Imagine that
a crack of length ao is partially closed to length a. We can imagine that this really behaves as a ”virtual”
crack of length a. Since we know that in reality the surfaces cannot support tension, any tension at the
tip will cause the crack to open further. Referring to the definition of the crack tip stress field (Eq. 2.2),
the crack tip stresses will vanish when the effective stress intensity factor Keff = Kop +Kcl at the tip
is zero.



14

σ∞

∫ a

0

m(x, a)dx+

∫ a

ac

σclosure(x)m(x, a)dx = 0. (2.7)

Here, σ∞ is the external loading applied to the crack geometry (in this case we

assume uniform tension) and σclosure is the closure stress distribution induced by the

residual strains surrounding the crack flanks. The right hand term that includes σclosure

represents the shielding effect that σclosure has on a crack tip located at a, while the left

hand term represents the driving force on a crack tip located at a due to the external

load.

If the crack is loaded by the crack opening stress σop,

σop

∫ ao

0

m(x, ao)dx+

∫ ao

ac

σclosure(x)m(x, ao)dx = 0, (2.8)

such that the full crack length ao satisfies the equilibrium equation 2.7.

2.3.3 Opening displacement

The crack flank displacement due to uniform loading for a through crack in an infinite

medium is given by [62],

uy =
κ+ 1

4µ
σ∞
√
a2 − x2, (2.9)

with,

κ =


3− 4ν (plane strain)

3−ν
1+ν

(plane stress)

, (2.10)

where µ is the shear modulus and ν is the Poisson ratio. Considering displacements

very near the crack tip (x/a ≈ 1), the equation becomes,
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uy =
KI(κ+ 1)

2µ

√
r

2π
, (2.11)

where the stress intensity factor is due to mode I loading.

The crack tip stress field (Eq. 2.2) induces a displacement field behind the crack tip,

given by Eq. 2.11. This displacement represents the opening of the crack faces due to

the uniform external load. The residual strain due to PICC will work against this remote

load and reduce the displacement of the crack faces. The influence of the closure stress

(whose origin is the residual strains) is found through the point load solution. We can

imagine that the closure stress will work against the remote load to shut the crack faces.

The full displacement field is the superposition of the displacement due to the external

loading and the displacement due to the closure stresses.

The definition of the weight function is given in [58],

m(x, a) =
E ′

2KI(a)

δuy(x, a)

δa
, (2.12)

where E ′ is the effective modulus. For plane stress E ′ = E and for plane strain

E ′ = E
1−ν2 .

Solving for uy [37],

uy(x, a) =
1

E ′

∫ a

x

Keff (α)m(x, α)dα, (2.13)

where Keff = Kop + Kcl and we have neglected the factor of 2 to obtain the half

opening displacement. This equation is only valid near the tip.

2.4 Closure model applications

2.4.1 Closure stress inversion

Imagine a fatigue crack with unknown closure state. If we are able to probe the

crack in some way to evaluate the effective length as a function of external load, we
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can uniquely determine the closure stress distribution required to produce this opening

behavior. First, we use the equilibrium condition from Eq. 2.7, forward substitution,

and the assumption that the closure stress field is a series of uniform bins.

Imagine a closure stress distribution which begins at ac and ends at ao. It should

be obvious from Fig. 2.2 (along with Eq. 2.7) that the effective crack length is ac for

σ∞ = 0. Now, a tensile remote load σ1 = δσ is applied. Under the influence of this

load, the crack opens such that the effective crack length will increase from a0 = ac to

a1 = ac + δa. For simplicity, assume that the closure stress in the region between ac and

ac + δa is constant. To satisfy Eq. 2.7 we must have,

σ1

∫ a1

0

m(x, a1)dx+ σc1

∫ a1

a0

m(x, a1)dx = 0, (2.14)

or,

σc1 = −σ1
∫ a1
0
m(x, a1)dx∫ a1

a0
m(x, a1)dx

. (2.15)

An additional tensile remote load σ2 = σ1 + δσ is applied, such that the effective

crack length is measured to be a2 = a1 + δa (δσ and δa are not necessarily the same as

above). If we also assume the closure stress between a1 and a2 is a constant (let us call

it σc2), then equilibrium will be a combination of: i) the remote load σ2 = σ1 + δσ, ii)

the closure stress σc1 between a0 and a1 (solved for in Eq. 2.15), and iii) the unknown

closure stress σc2 between a1 and a2. From Eq. 2.7,

σ2

∫ a2

0

m(x, a2)dx+ σc1

∫ a1

a0

m(x, a2)dx+ σc2

∫ a2

a1

m(x, a2)dx = 0, (2.16)

or,
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Figure 2.4 Comparison of the closure stress inversion to the assumed closure stress
distribution. Predictions are made for 2, 5, 10, and 25 data points (the
number of loads at which the effective length is measured).

σc2 =
−σ2

∫ a2
0
m(x, a2)dx− σc1

∫ a1
a0
m(x, a2)dx∫ a2

a1
m(x, a2)dx

. (2.17)

We can generalize this result for a series of applied external loads σi and for a series

of constant closure stresses σcj between aj and aj−1,

σci =
−σi

∫ ai
0
m(x, ai)dx−

∑i−1
j=1 σcj

∫ aj
aj−1

m(x, ai)dx∫ ai
ai−1

m(x, ai)dx
. (2.18)

Solving Eq. 2.18 iteratively represents the inversion algorithm to determine an un-

known closure stress. It is trivial to show that the inversion algorithm converges to the

correct solution as the step size is decreased. Figure 2.4 shows this convergence for a

number of different step sizes.

To validate this prediction, the forward model described in Sect. 2.3.2 is used (with

an assumed closure stress) to find effective length as a function of remote load. The
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remote load and effective length results from the forward model are used with Eq. 2.18

to obtain the original closure stress distribution.

Another method for inverting the closure stress distribution is by noticing that Eq.

2.7 takes the form of a Volterra integral equation of the first kind,

−Kop(a) =

∫ a

ac

σclosure(x)m(x, a)dx, (2.19)

where the weight function m(x, a) is the kernel and σclosure is the unknown function.

It is important to note that this integral equation exhibits a singular kernel, specifically

one with a diagonal singularity (m(x, a)→∞ for x = a). To overcome this singularity,

we can use a subtraction technique outlined in [2; 51]. If we subtract m(x, a)σclosure(a)

from the right hand side of Eq. 2.19,

−Kop(a) =

∫ a

ac

(σclosure(x)− σclosure(a))m(x, a)dx+ σclosure(a)

∫ a

ac

m(x, a)dx, (2.20)

where the rightmost term is evaluated numerically with an adaptive Gaussian quadra-

ture which can handle endpoint singularities (such as QAGS) [50]. When x = a, the term∫ a
ac

(σclosure(x) − σclosure(a))m(x, a)dx will vanish, effectively eliminating the singularity.

This makes it possible to use the Nyström or quadrature method to solve for σclosure(x)

[12] (see Appendix A.1 for details on the solution to Volterra integral equations).

Figure 2.5 shows the convergence of both methods. The first method (uniform bin

method) is recommended as it converges more quickly than the quadrature method.

2.4.2 Apparent closure stress field

In fracture mechanics, the LEFM crack tip stress field solution exhibits a singularity

at the crack tip (Eq. 2.2). Since this is not physically possible, corrections are made to

bound the stresses. Within this plastic zone or process zone, the crack tip stresses are
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Figure 2.5 Convergence of the closure inversion algorithm for the uniform bin method
and the quadrature method.

limited by the material’s yield strength. Limiting stresses within this region also leads

to a redistribution of stresses outside of this zone [1].

One approach is given by Irwin [1]. Irwin states that the size of the plastic zone

rp (inside of which the stress field is given by the yield strength σY ) is found by the

equilibrium,

rpσY =

∫ rp

0

σyydx, (2.21)

where σyy is the crack tip stress field given in Eq. 2.2. The original crack tip stress

field is in equilibrium with the redistributed stress field inside of the region bounded by

rp.
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2.4.2.1 Approximate redistribution

We propose a similar approach to correcting the apparent closure stress field for the

partially closed fatigue crack. A correction is needed due to the fact that, while the crack

faces are held in compression, the amount of tensile stress they can support is bounded

by the closure stress field.

Consider a partially closed crack of initial length ac, with a closure stress field present

in the region ac to ao (as in Fig. 2.3). When the crack is loaded, it opens from ac to

a, relieving the stresses between ac and a. If we consider the singular stress field of Eq.

2.2, the combined stress field ahead of the effective crack tip at a is,

σeff = σclosure + σyy, (2.22)

where the crack tip stress field approaches infinity at a. Our definition of the effective

crack tip (Section 2.3.2), however, states that the singularity vanishes at this point. We

should have,

σeff (a) = 0. (2.23)

Let us define a redistributed crack tip stress field σ′yy which satisfies Eq. 2.23,

σ′yy(a) = −σclosure(a). (2.24)

Similar to the approach taken by Irwin, there will be some redistribution ahead of

the crack tip (see Fig. 2.7). We require that the stress field be redistributed such that

the crack opening stress always remains constant. The crack opening stress is the remote

tensile stress required for the crack to open fully, or equivalently for the effective length

or closure point to reach the physical crack tip ao. The crack opening stress is defined

in the context of this model (per Eq. 2.7) as,
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Figure 2.6 Partially closed crack configuration, with apparent crack tip stress field.

σop

∫ ao

0

m(x, ao)dx+

∫ ao

ac

σclosure(x)m(x, ao)dx = 0. (2.25)

If the crack is loaded by σ∞, opening it to a, there will be some redistributed field

ahead of the effective tip a. If we apply an additional load σop − σ∞, the crack will fully

open and we will find that the effective length is ao,

(σop − σ∞)

∫ ao

0

m(x, ao)dx+

∫ ao

a

σclosure(x)m(x, ao)dx+

∫ ao

a

σ′yy(x)m(x, ao)dx = 0.

(2.26)

This equation represents the equilibrium from Eq. 2.7, applied to a crack which has

already been opened by a load σ∞ (taken as the new reference state). Instead of the

original closure stress σclosure acting on the crack surfaces, there will be some apparent

closure stress field σ′yy + σclosure. Here, σ′yy is the tensile stress field induced at the

apparent crack tip due to the remote load σ∞.

Solving for σop in Eq. 2.25 and substituting it in Eq. 2.26,
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∫ ao

ac

σclosure(x)m(x, ao)dx+ σ∞

∫ ao

0

m(x, ao)dx =

∫ ao

a

σeff (x)m(x, ao)dx, (2.27)

where σeff = σ′yy + σclosure. We can rewrite Eq. 2.27 as,

∫ ao

a

σ′yy(x)m(x, ao)dx =

∫ a

ac

σclosure(x)m(x, ao)dx+ σ∞

∫ ao

0

m(x, ao)dx. (2.28)

This equation simply states that, if we apply a load of σ∞, the crack tip stresses σ′yy

must satisfy this relation if σop is to be held constant irrespective of the order in which

loading is applied.

The choice of constraint leading to Eq. 2.28, namely the requirement that σop is con-

stant, is not the only possible constraint we can choose to enforce. The first requirement,

that σeff (a) = 0, is a product of the equilibrium statement that the closure point will

be located where the stress fields vanish, but the second constraint on σop stems from

the fact that, whether loading is applied in many steps or in a single step, we must end

up at the same place. Applying a load in incremental steps requires us to solve Eq. 2.7

sequentially, using the result from the previous step. Since Eq. 2.7 is a function of the

stresses applied to the crack surfaces, this leads to an intermediate scenario where σclosure

is no longer the stress field present at the crack surface. It is σclosure combined with some

stress field induced by the loading at that particular step.

We propose the following form for this redistributed crack tip stress field,

σ′yy =
K ′I√

2π(r + ∆)
, (2.29)

where r = x − a is the distance from the effective crack tip. This stress field must

satisfy,

1. σeff (a) = σclosure(a) + σ′yy(a) = 0 (Eqs. 2.22 and 2.23)
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Figure 2.7 Partially closed crack configuration, with effective crack tip stress field.

2.
∫ ao
a
σ′yy(x)m(x, ao)dx =

∫ a
ac
σclosure(x)m(x, ao)dx+ σ∞

∫ ao
0
m(x, ao)dx (Eq. 2.28)

Using the proposed redistributed stress field in Eq. 2.29, condition (1) yields,

∆ =
1

2π

(
K ′I

σclosure(a)

)2

. (2.30)

Using the result from Eq. 2.30 and the proposed redistributed stress field (Eq. 2.29)

along with condition (2),

∫ ao

a

K ′I√
2π

(
x− a+ 1

2π

(
K′I

σclosure(a)

)2)m(x, ao)dx =

∫ a

ac

σclosure(x)m(x, ao)dx+σ∞

∫ ao

0

m(x, ao)dx,

(2.31)

where Eq. 2.31 is solved numerically. The redistributed stress field is shown qualita-

tively in Figs. 2.6 and 2.7.
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2.4.2.2 Full solution

When considering the redistribution of crack tip stresses for a partially closed crack,

we can be more rigorous by noticing that the equilibrium introduced in Sect. 2.3.2 should

hold whether the external load is applied all at once or in increments.

Consider the crack which, when subject to an external load of σ∞, opens from ac to

a. We superimpose an additional load δσ which opens the crack from a to a+ δa (as in

Fig. 2.7).

If the total load σ∞ + δσ were applied all at once, the equilibrium condition in Eq.

2.7 states that,

∫ a+δa

0

(σ∞ + δσ)m(x, a+ δa)dx+

∫ a+δa

ac

σclosure(x)m(x, a+ δa)dx = 0. (2.32)

If we instead apply σ∞ and δσ in successive steps we find that the equilibrium for

σ∞ is,

∫ a

0

σ∞m(x, a)dx+

∫ a

ac

σclosure(x)m(x, a)dx = 0. (2.33)

Next we apply the load δσ,

δσ

∫ a+δa

0

m(x, a+ δa)dx+

∫ a+δa

a

σeff (x)m(x, a+ δa)dx = 0, (2.34)

where σeff (x) is the combined stress field ahead of the crack tip. To enforce unique-

ness in the application of loading, we should find that solving Eqs. 2.32 and 2.34 both

produce the same incremental crack opening δa. Using the definition σeff = σ′yy+σclosure

and solving for δσ in Eq. 2.32, Eq. 2.34 becomes,
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∫ a+δa

a

σ′yym(x, a+ δa)dx = σ∞

∫ a+δa

0

m(x, a+ δa)dx+

∫ a

ac

σclosure(x)m(x, a+ δa)dx.

(2.35)

Since 2.35 has the form of a Volterra integral equation, we can solve for σ′yy the same

way we solved for the unknown closure stress distribution in Sect. 2.4.1. For the uniform

bin method,

σ′yy(ai) =
σ∞

∫ ai

0
m(x, ai)dx+

∫ a

ac
σclosure(x)m(x, ai)dx−

∑i−1
j=1 σ

′
yy(aj)

∫ aj

aj−1
m(x, ai)dx∫ ai

ai−1
m(x, ai)dx

, (2.36)

where a = a0 is the effective crack length and ai varies from a to ao. It may be

apparent that this full solution is in fact analogous to the approximate solution, except

it is solved in steps of length δa.

In the approximate solution, we made the observation that applying either σop, or

σ∞ and then σop − σ∞ will cause the crack to fully open from ac to ao. We know that

after applying σ∞ the stress field present on the crack surface is no longer σclosure. We

use the proposed form of σ′yy to define the new apparent closure stress field on the crack

surface.

With the more rigorous solution, we are decreasing this step size and are instead

stating that applying either σ∞ + δσ, or σ∞ and then δσ will cause the crack to open

from ac to a + δa. Since we are not assuming any global form for the apparent closure

stress field (as we did with σ′yy in the approximate solution), we instead assume that

the stress field σ′yy is constant between a and a + δa. This allows us to solve for the

apparent closure stress field incrementally, using forward substitution of the results from

the previous steps.

The full solution is identical to Eq. 2.31 if a + δa = ao and if the proposed form of

σ′yy is used (Eq. 2.29).
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2.5 Validation and discussion

The preceding fracture mechanics based model builds off of the work of N. A. Fleck

[18]. The most important aspect of Fleck’s work which we borrow is the idea that when

a partially closed crack is loaded by a remote load and closure stresses, the equilibrium

point along the crack is where the effective stress intensity factor is zero. This is not

unlike the pioneering work by Elber on crack closure during fatigue crack growth, where

the crack is considered to be fully open when the stress intensity factor due to remote

loading is equal to some threshold stress intensity factor Kop.

The model is validated in three steps: i) validation of the effective crack length, ii)

validation of the opening displacement prediction, and iii) validation of the proposed

apparent stress field. The model is validated with numerical simulation using the fi-

nite element method package Abaqus/CAE. A through crack with known geometry and

closure stress is simulated.

2.5.1 FEM model

A 2D planar, deformable body is used to simulate the cracked plate. The material

model is restricted to elastic to more closely follow the analytical model. The crack itself

is modeled as a seam with a frictionless contact condition preventing it from overlapping.

The remote load is applied as a surface traction on the outer faces, while the closure

stresses are crack surface tractions of the form,

σ(x) = σc

(
x− ac
ao − ac

)n
. (2.37)

The form of the closure stress is chosen based on work by Davidson [11] and Fleck

[18], and on predictions made by the Dugdale strip-yield model [13; 48; 47], both of which

find monotonically increasing closure stresses.
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Figure 2.8 Finite element mesh showing the focused mesh around the physical crack
tip

Figure 2.9 Stress distribution for a through crack

Near the crack tip a focused mesh is used, with a collapsed element at the tip to

simulate the 1/
√
r singularity (Fig. 2.8).

Figure 2.9 shows the crack tip stresses, σyy, for a single remote load. The closure point

has propagated towards the physical crack tip under the influence an opening load. It

appears that the stress ”singularity” (although we know it is not mathematically singular)

is located at the closure point, which corroborates the hypothesis that the closure point

acts as a virtual crack tip.

Furthermore, it appears that the singularity is located slightly behind the closure

point, which would corroborate the proposed form of the redistributed stress field in

Section 2.4.2 (the shift manifests as ∆ in Eq. 2.29).
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2.5.2 Effective crack tip

With a simple equilibrium statement and the utilization of weight functions, we are

able to describe the evolution of the effective crack length in response to a non-uniform

closure stress and remote tensile or bending load by Eq. 2.7. This is a powerful result

which is fundamental to developing the closure stress inversion algorithm (Sect. 2.4.1)

and the apparent stress field formulation (Sect. 2.4.2). For the through crack considered

here, the weight function (Eq. 2.3) coefficients are given in [19].

Using the assumed closure stress field (Eq. 2.37), Eq. 2.7 is solved for a range of

external loads σ∞. For each external load, there is a unique crack length a which satisfies

the equilibrium of Eq. 2.7. The integrals are computed numerically using an adaptive

Gaussian quadrature algorithm, such as QAGS [50]. A root finding algorithm, such as

Brent’s method or bisection [51; 4], is used to find the optimal value of a.

The externally applied load is plotted against the effective crack tip in Fig. 2.10. The

numerical results are compared to the model prediction for three different closure stress

distributions: i) uniform closure stress, ii) linear closure stress, and iii) quadratic closure

stress. The closure point is normalized by the physical crack length. A closure point of

one corresponds to a fully opened crack. In these results, the closure stress distribution

starts at ac/ao = 0.5.

From Fig. 2.10, we see that FEM and the closure model agree within the expected

error (the error bars associated with the numerical results arise from the finite resolution

mesh). In the finite element model, the closure point is chosen as the first mesh node

where the contact stress is nonzero.

This simple but effective method for determining the equilibrium between the remote

load and closure stresses makes it possible to quantitatively determine the evolution of

the partially closed crack tip. As discussed in Sect. 2.4.1, this statement of equilibrium

leads directly to an inversion algorithm which can be used solve for the closure stresses

if the effective crack length is measured as a function of the external load. This is a
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Figure 2.10 Externally applied load vs. equilibrium crack tip position for uniform,
linear, and quadratic closure stress distributions.

powerful algorithm, as no prior assumptions are required to evaluate the stresses, aside

from an estimate of the crack geometry.

2.5.3 Crack opening displacement

Since the closure stresses are non-uniform, we use the weight function approach to

represent the total crack opening displacement. The crack opening displacement is found

directly from the definition of the weight function [58], which by definition is only valid

close to the tip. For this reason, when validating the results against FEM, we only

consider the displacements close to the crack tip.

Figures 2.11, 2.12, and 2.13 show the crack opening displacement at the two evalua-

tion points as a function of the applied remote load. The displacement is evaluated at

0.8a and 0.9a, where a is the effective crack length or closure point at that particular load
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Figure 2.11 COD versus remote load (uniform closure stress)

step. These points are chosen based on the limitations of the crack opening displacement

equation, which is only valid near the crack tip.

Comparing these results to Fig. 2.10, we see that the opening displacement calcula-

tions are accurate even after the closure point has fully saturated. With these results,

we are confident that the partially closed crack can be described in terms of its effective

crack length and crack opening displacement.

2.5.4 Apparent closure stress field

After determining the effective crack length and opening displacement, we wish to

represent the apparent contact stresses which remain in the partially closed region of the

crack. We have proposed a redistributed crack tip stress field. This stress field accounts

for the fact that crack faces can only support stresses equal to that of the closure stress.
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Figure 2.12 COD versus remote load (linear ramp closure stress)

Figure 2.13 COD versus remote load (quadratic closure stress)
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Figure 2.14 Contact stress vs. location along crack (uniform closure stress). From left
to right, σ∞ = 10, 20, 30, 40, 50, 60 MPa.

We employ two methods: i) an approximate model which takes the form of the elastic

stress field and ii) a more rigorous model which considers the compatibility of loading.

For the approximate model two constraints are proposed: i) the apparent stress field

at the effective crack tip is zero and ii) the redistributed stress field produces the same

crack opening stress.

For the more rigorous treatment, the apparent stress field is chosen such that loading

a single load step versus a series of small load steps produces the same result (see Sect.

2.4.2 for more details).

The FEM results in Figs. 2.14, 2.15, and 2.16 are predicted very accurately by the full

apparent stress model. The approximate model does capture the overall characteristics

of the stress field, but is not as accurate.



33

Figure 2.15 Contact stress vs. location along crack (linear closure stress). From left to
right, σ∞ = 5, 10, 15, 20, 25, 30, 35, 40 MPa.

2.6 Conclusion

The model in this work describes the mechanics of a partially closed, non-propagating

fatigue crack. This is an area of research which has had little attention, but is crucial

in understanding the mechanics of a fatigue crack after growth. The model is based on

Fleck’s work [18] and outlines a framework for describing the evolution of the closure

state of a surface crack under external loading and non-uniform closure stresses.

The equilibrium criteria of the crack takes into account the closure and remote stress

fields. The equilibrium point under given loading corresponds to the point where there is

a transition from fully opened to fully closed, at which the stress intensity factors are in

equilibrium. The crack opening is determined by the superposition of the displacement

due to the remote load and the displacement due to the closure stress, evaluated using

the weight function point load solution. When compared with FEM, the one dimensional
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Figure 2.16 Contact stress vs. location along crack (quadratic closure stress). From
left to right, σ∞ = 5, 10, 15, 20, 25, 30 MPa.

through crack predictions are within the expected FEM error. This is true for both the

closure point and opening displacement predictions. The agreement between the model

and simulation gives us confidence that the model correctly captures the mechanisms

governing closure and its evolution.

An inversion algorithm is developed based on the equilibrium criteria to evaluate an

unknown closure stress based on measurement of the effective crack length in response

to a known remote load. Finally, a redistributed crack tip stress field is proposed which

takes into account the fact that the crack surfaces are already fractured. The tensile load

that can be supported is bounded by the closure stress holding the surfaces together.

Both an approximate model and rigorous model are introduced. The approximate model

performs well near the crack tip, while the full model agrees with FEM over the entire

crack.
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CHAPTER 3. A QUANTITATIVE AND QUALITATIVE

ANALYSIS OF VIBROTHERMOGRAPHY CRACK

HEATING MECHANISMS

Modified from a paper to be submitted to NDT&E International.

Bryan E. Schiefelbein, Tyler Lesthaeghe, Stephen D. Holland, Ashraf Bastawros

3.1 Abstract

Vibrothermography is a form of NDE that utilizes vibration induced crack heating for

defect detection. Currently, there is a lack of consensus regarding the mechanisms that

lead to crack heating [31]. In this work, experimental observations and theory are used

to evaluate a list of plausible heating mechanisms, each of which have been suggested in

literature to be the dominant cause of vibrothermography heating. This work concludes

that adhesion/friction is at the root of crack heating, although the distinction between

the two is not clear at a fundamental level. This work provides evidence against plastic

flow, thermoelasticity, and linear absorption as dominant heating mechanisms. More

work is needed to understand the role of friction and adhesion, with the goal of better

predicting heat generation in real NDE applications.

3.2 Introduction

Vibrothermography or Sonic IR is a form of NDE in which mechanical vibrations

are converted to heat at crack surfaces. Vibrothermography was first pioneered by Ed
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Henneke in the late 1970’s [28; 53], and has since gained popularity as a fast, full-field

inspection of metal or composite parts [15]. Specimens are vibrated with an ultrasonic

transducer, and any near surface cracks experience mechanical vibrations. These vi-

brations lead to crack face interference and heat generation. This heat generation is

measured by a thermal imaging system and used to quantify possible defects [28; 15; 31].

Most NDE techniques rely on material discontinuities or inhomogeneities to detect

possible defects. Vibrothermography is unique in that it works best when there is some

crack closure, a phenomenon that hinders detection in other NDE modalities. The

probability of detection and quantification of the location and size of defects in vibroth-

ermography is directly related to the magnitude and location of heating at the crack

surfaces. In order to better understand and predict this phenomenon, we take a two-

fold approach: i) understand the evolution of crack closure state in response to external

loading [40; 55; 60] and ii) understand how crack flank interference and contact is tied

into the conversion of vibrational energy to heat. The latter is investigated in this work.

Currently, the understanding of vibrothermography heating mechanisms is limited.

Many researchers simply label heating as friction induced [41; 57; 15; 70], implying

tangential sliding friction between the crack flanks. Other researchers have suggested

plastic flow or thermo-plastic heat generation at the crack flanks or near the crack tip

[42; 32; 29]. Others yet have suggested that thermoelasticity [33], viscoelasticity and

anelasticity [54; 33; 45], or a combination of mechanisms [31; 54] play a role in crack

heating. In this paper, we analyze a number of these heating mechanisms through

experimental observations and theory.

3.3 Background

To investigate the possible heating mechanisms, we take experimentally observed phe-

nomena and construct a set of criteria with which to evaluate them. These experimental
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observations are derived from work by Holland et al. [56; 31; 39]. The experimental

observations are as follows:

1. Cracks heat at the closure point, not at the crack tips.

2. Heating does not occur when there is: i) no closure and ii) too much closure.

3. Linear dependence of heat generation of excitation frequency [70].

4. Power law dependence on vibrational strain amplitude between one and two [31].

5. Little dependence on crack opening mode [70].

Expressed mathematically,

1, 2 lim
P→0

Q = 0 and lim
P→∞

Q = 0.

3 Q ∝ f.

4 Q ∝ εn 1 ≥ n ≥ 2.

5 QMode I ≈ QMode II ≈ QMode III .

where Q is the thermal power generated, f is the excitation frequency, σ∞ is the

applied load, and ε is the local strain amplitude at the crack surface. Statements 1 and

2 are important, as they illustrate the closure conditions needed for vibrothermography

heating. In reality, heat generation follows a pattern as shown in Fig. 3.1, where heating

occurs at locations of tenuous contact between the opposing crack faces.

3.4 Heating mechanisms

The heating mechanisms investigated in this work are:

• Sliding friction
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crack tipclosed region

Figure 3.1 Heating zones are located at regions of tenuous crack flank contact.

• Adhesion hysteresis

• Plastic flow

• Linear absorption

• Thermoelastic absorption

Sliding friction: Energy is dissipated as heat when two surfaces are moved tangen-

tially relative to one another. The adhesion and deformation of asperities resist motion

and dissipate energy.

Adhesion hysteresis : When two surfaces come into close contact, it is sometimes

energetically favorable for them to adhere and destroy the original surfaces. The surfaces

can be pulled apart, from which there is a net energy loss.

Plastic flow : Plasticity is an inherently irreversible process. When a material is

plastically deformed, there is heat generation [52].

Linear absorption: When a material is deformed elastically it is implied to be fully

reversible, when in reality there is hysteresis. This phenomenon is also known as anelas-

ticity, viscoelasticity, bulk hysteresis, or internal friction.

Thermoelastic absorption: The mechanical and thermal states of a material are cou-

pled through the thermoelastic effect. When a material is loaded cyclically, there is a
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thermal loading cycle as well. If there is a phase lag between the two cycles, there will

be a irreversible heat loss to the surroundings.

3.4.1 Linear absorption (strain hysteresis)

Elastic deformations are typically assumed to be entirely reversible. In reality, even

when a material is in the elastic regime, some fraction of the deformation is irreversible.

This phenomenon is referred to as strain hysteresis, bulk hysteresis, linear absorption,

viscoelasticity, or anelasticity and simply represents a deviation from Hooke’s law and

an irreversible loss of energy during elastic deformation [67; 38; 35; 23].

In dynamic loading, there is energy loss (possibly as heat) in each cycle of compression

and relaxation. The linear absorption phenomenon is analyzed using the Hertzian contact

model [35]. This model assumes two smooth, elastic spheres in contact at a point,

neglecting adhesion. As a load P is applied to the two spheres of radii R1 and R2, with

corresponding elastic modulii E1 and E2, they will experience elastic deformation,

δ =

(
9

16R∗(E∗)2

)1/3

P 2/3, (3.4.1)

where delta is measured at a remote point on the sphere, R∗ =
(

1
R1

+ 1
R2

)−1
is the

effective radius, E∗ =
(

(1−ν1)2
E1

+ (1−ν2)2
E2

)−1
is the effective modulus, and P is the load

applied to both spheres.

Strain hysteresis is the fraction of strain energy lost during elastic deformation (rep-

resented by the hysteresis loss factor). In order to quantify hysteresis in the asperity

compression cycle there must first be a description of the total energy in the cycle. The

work performed by the load on the spheres is,
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Ue =

∫
Pdδ. (3.4.2)

Using the load-displacement relation given in Eq. 3.4.1 and a change of variables

from dδ to dP , we find that,

Ue =
2

5

(
9

16R∗(E∗)2

)1/3

P 5/3. (3.4.3)

This reveals a five-thirds dependence between the strain energy and the applied load,

which is in line with observation 3. However, consider a static load P and a dynamic

load dP . The deformation is,

δ =

(
9

16R∗(E∗)2

)1/3

(P + dP )2/3. (3.4.4)

Using Eq. 3.4.2,

dUe =
2

5

(
9

16R∗(E∗)2

)1/3

P 5/3

[
(1 +

dP

P
)5/3 − 1

]
. (3.4.5)

Using L’Hospital’s rule, we find that as P goes to infinity, so does the change in strain

energy. This is in direct conflict with observation 2. We can analyze this problem in

another way by considering the macroscopic contact of the surfaces. In section 3.4.4 we

will show that for randomly rough surfaces, even when contact is dominated by elasticity,

the load-displacement relationship can be proportional δ ∝ P . With this assumption,

the strain energy from P to P + dP according to Eq. 3.4.2 is,

dUe ∝ 2PdP + dP 2. (3.4.6)

Once again, we find that an increasing preload leads to a monotonically increasing

strain energy, inconsistent with observation 2.
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3.4.2 Plastic flow

The energy loss due to plastic flow is rooted in irreversible deformations of the ma-

terial and has been suggested as a possible source of heating in vibrothermography

[42; 27; 32; 29]. The location where this plastic flow occurs will be primarily at i) the

crack flanks in tight closure and ii) the crack tips. The first case will occur when there

is sufficient crack closure where the contacting surfaces are primarily in a state of plastic

flow. Since the material is assumed to have yielded, any additional load will contribute

to the plastic deformation. This load-displacement relationship will be linear, such that

the stress supported by the surface is the yield stress. This local yielding defines the true

contact area,

Acontact =
P

cσy
, (3.4.7)

where c is a constant that ranges between 1.1 < c < 3 and σy is the material yield

stress [6]. The energy dissipated due to plasticity is found by integrating the load times

the incremental displacement (as with Eq. 3.4.2),

Up =

∫
Pdδ =

1

πRcσy

∫
PdP. (3.4.8)

The energy dissipation due to plasticity between loads P and P + dP is,

dUp =
1

πRcσy

[
(P + dP )2 − P 2

]
=

2PdP + dP 2

πRcσy
. (3.4.9)

Note that as P →∞, dUp →∞. This implies that tightly closed regions will generate

more heat (a contradiction of observation 2).

The second case will occur when the loading is large enough that there is yielding at

the crack tips. This is the precursor to crack growth and represents permanent damage

to the material. This heating mechanism is implausible for two reasons: i) heating is not
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observed at the crack tips (in conflict with observation 1) and ii) the vibration amplitude

is kept low enough that it does not induce crack growth.

3.4.3 Thermoelastic absorption

Thermoelasticity is a phenomenon that describes the coupling of the mechanical and

thermal states of a material. This phenomenon in solids is analogous to the behavior of

a gas; compress the gas and it heats up, allow it to expand and it cools down. When an

asperity is brought into contact with another asperity, or a flat surface, it is compressed.

The compression causes a localized increase in temperature, while the release of pressure

decreases the temperature. This process is mostly reversible, but there is an irreversible

component where energy is lost to the surroundings.

Goodman et al. [21] worked through a detailed analysis of energy dissipation in the

thermoelastic cycling of an elastic solid. When the internal stresses are inhomogeneous,

it leads to temperature gradients and irreversible heat flow. In a thermodynamic system,

this increases the entropy of the system and leads to irreversible energy loss. In the case

of a dynamic stress, the asperity stress state is cyclic. The same can be said of the

thermal state; the asperity heats up and cools down during each cycle, causing energy

to flow in and out of the system. The buildup of heat will be caused by the phase lag

between the cyclic stress and the cyclic heat flow in and out of the asperity volume.

The foundation of thermoelasticity is the coupled partial differential equation linking

heat flow and the strain field [21],

k∇2T = ρcp
∂T

∂t
+ (3λ+ 2µ)αT

∂ε

∂t
, (3.4.10)

where k is the thermal conductivity, α is the coefficient of thermal expansion, λ is

Lame’s constant, µ is the shear modulus, T is temperature, ρ is density, cp is the specific

heat capacity, and ε is strain. This equation can be linearized by decomposing the

temperature into the sum of the ambient temperature and the deviation from ambient,
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T = To + θ, (3.4.11)

where we assume that the deviation from ambient temperature, θ, is small. The

strain is decomposed into the dilatational strain, ε”, and thermal strain, ε′,

ε = ε′(θ) + ε′′. (3.4.12)

Plugging the decomposed temperature and strain into Eq. 3.4.10,

k∇2θ = ρcp
∂θ

∂t
+ (3λ+ 2µ)αTo

∂ε′′

∂t
. (3.4.13)

Goodman et al. show extensively that this linearization technique is a good approx-

imation to the ’exact’ solution to the nonlinear system. The only disclaimer is that, in

the case of the linearized system, the work done on the system and the heat flow out of

the system are not equivalent. In reality, they both represent the energy loss in a cycle

due to irreversible heat flow and should be identical.

To apply this analysis to the case of vibrothermographic crack heating, we investigate

the energy dissipation in a single asperity contact, subject to a cyclic load. First, we

assume some shape for the asperity. We expect the cross sectional area to be small at

the tip of the asperity, and increase with depth,

A = Aoe
z
c , (3.4.14)

where Ao is the area at the tip of the asperity (z = 0), and c is a geometric constant

controlling the rate of area increase as z increases. Imagine a normal force applied to

the tip of the asperity, with the form,
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F (t) = FAe
−iωt, (3.4.15)

where FA is the amplitude of the stress and ω is the frequency of loading. As a direct

comparison to a typical vibrothermography experiment, we use an exciting frequency of

f ≈ 20kHz, or ω ≈ 3183rad/s. At this frequency, the vibration wavelength is, to a

first approximation, λ =
√

E(1−ν)
ρ(1+ν)(1−2ν)f

−1 ≈ 32cm. The wavelength is on the order of

centimeters, while our asperity height is on the order of microns. This allows us to make

the assumption that the forces in the asperity are uniform and unchanging with depth.

The dilatational strain is given by (see Appendix A.2),

ε′′ =
∆V

V
= −2νεz. (3.4.16)

Let us assume that temperature rise at the tip of the asperity is large, and that it

decays into the bulk,

θ(z, t) = T1e
−iωte−

z
k3 , (3.4.17)

where k3 represents the thermal decay length, and again should be on the order of

nanometers or microns. The coefficient T1 represents the temperature at the tip of the

asperity at time t = 0. By specifying the form of θ with Eq. 3.4.17, we are restricting Eq.

3.4.13 to a particular solution. If we assume that k3 ≈ c 1, the thermoelastic equation

(Eq. 3.4.13) becomes,

kT1
k23

+ iωρcpT1 =
2FAν(iω)

EAo
(3λ+ 2µ)αTo, (3.4.18)

or,

1This assumes that the thermal decay length and the geometric increase factor are of the same order
of magnitude.
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T1 =
β k
k23
iω + βω2ρcp

( k
k23

)2 + (ωρcp)2
, (3.4.19)

where β = 2FAν
EAo

(3λ+ 2µ)αTo (see Appendix A.3).

In a vibrothermography inspection, the excitation frequency is relatively low. In other

words, the wavelength is large relative to the asperity size and the ratio ( k
k23

)2/(ωρcp)
2 >>

1. Using the equation for energy dissipation derived by Goodman (see Appendix A.4),

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

(
∂θ

∂z
)2dV dt =

πk33ωTo
Aok

(
2FAν

E
(3λ+ 2µ)α

)2

. (3.4.20)

Note that this solution is energy loss for a single period. The energy loss per unit

time is found by multiplying by the excitation frequency. This yields a frequency squared

dependence, which is contradictory to observation 3. Figure 3.2 shows the energy dis-

sipated over the entire crack surface for a 1 second excitation (with and without the

assumption ( k
k23

)2/(ωρcp)
2 >> 1). If we assume an excitation time of t = 1 sec and

a crack contact area of ≈ 4−6 m2, the energy dissipation is borderline insignificant for

typical vibrothermography excitation frequencies (≈ 20 kHz). So while thermoelasticity

may play some role, it is likely not a dominant mechanism.

3.4.4 Friction/Adhesion

3.4.4.1 Rough Contact Models

Let us revisit the assumption that rough surfaces in contact experience localized

yielding or complete plastic flow (used in Sect. 3.4.4.2 and 3.4.1). This assumption

leads to a load-displacement proportionality (and consequently load-area proportional-

ity), but this assumption is not universally valid. There are circumstances where the

load-displacement and load-area relationships are dominated by either elastic deforma-

tion or plastic flow. Greenwood and Williamson [25] developed a widely used contact

model, where a randomly rough surface is brought into contact with a flat surface. They



47

Figure 3.2 Energy dissipation per asperity per cycle. The reduced solution assumes
that the wavelength of vibration is large relative to the asperity geometry.

describe the transition from elastic to plastic driven contact by a quantity referred to

as the plasticity index. A low plasticity index (<< 1) represents a particularly smooth

surface, where the real contact area is a significant fraction of the apparent contact area.

In this scenario, the force holding the surfaces together is distributed over a large area,

allowing for elastic contact. The scenario seen in most real surfaces, however, is one in

which there is significant roughness and a real contact area which is a small fraction (a

few percent) of the apparent contact area. The applied load is supported by a small

fraction of the area, leading to plastic flow at relatively small loads.

While in reality the two contacting surfaces (crack flanks) are both rough, the assump-

tion of one rough surface and one smooth surface is a valid approximation. Greenwood

and Tripp [24] found that whether one or both surfaces are rough does not change the

important relationships (e.g. load-area proportionality). In fact, one can always find a

combination of a rough surface and a smooth surface that behaves the same as two rough

surfaces in contact.
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With a slightly different approach, Archard [3] was able to show that, regardless of

whether elastic or plastic deformation dominates, the load-area relationship can approach

linear. The one requirement is that the increasing load primarily results in an increase

in the number of contact points, as opposed to increasing the area of existing contacts.

This representation of rough surfaces is in contrast to the Greenwood-Williamson model,

where the asperity heights are modeled as a statistical distribution. Archard represents

the surface roughness as a distribution of hemispherical protuberances with fractal char-

acteristics.

3.4.4.2 Sliding friction

The fundamental mechanism of friction has been studied extensively over the years,

but the basic theory of dry friction (the Coulomb model) is based on experimentally

observed relationships [6]. In the Coulomb model of friction, the friction force opposes

tangential motion of two surfaces in contact,

F = µP, (3.4.21)

where F is the friction force, µ is the coefficient of friction, and P is the normal

force holding the two surfaces in contact. Based on work by Holland et al. [31], we can

approximate the frictional energy dissipation over a dynamic excitation,

Q = µ(P + dP )duf, (3.4.22)

where P is the static normal force, dP is the dynamically induced normal force, and

du is the relative motion between the surfaces induced by the dynamic loading. This

relationship satisfies the power law dependence on vibration amplitude since both dP and

du are assumed to be proportional to the vibration amplitude. It also satisfies the linear

dependence on excitation frequency. One might assume that, since frictional dissipation

only occurs for lateral motion, that an open/close mode vibration would not lead to



49

Figure 3.3 SEM image of a surface fatigue crack. Contact occurs at discrete points,
often along ledges which are at an angle with the macroscopic crack path.

significant frictional losses. In reality, the morphology of fatigue crack surfaces (namely,

the tortuosity of the crack path as shown in Fig. 3.3) is such that even an open/close

mode vibration will induce shear or relative lateral motion between the opposing crack

faces. This explains the experimental observation that heating does not depend on

vibration mode (observation 5).

Equation 3.4.22 implies that heat generation increases linearly with static load. This

equation, however, neglects the concept of a static friction force. It is expected that

above some static load, the dynamic strain will not be sufficient to overcome the static

friction force. This will result in a truncated heat generation. So while Eq. 3.4.22 does

not explicitly take into account the behavior at large static loads, the physics tells us

that frictional dissipation will indeed drop off above a certain static load, satisfying all

of the necessary experimental observations.
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3.4.4.3 The adhesion model of friction

The description of frictional dissipation in Sect. 3.4.4.2 focuses on a classical, macro-

scopic view crack surface sliding. If we instead adopt an atomistic view of surface contact,

the distinction between adhesion hysteresis and friction becomes blurred [43; 63; 64].

Both phenomena are rooted in the creation and destruction of surface area; a sliding

asperity must destroy a free surface at the front and create a free surface in it’s wake.

This process is irreversible, and could be a source of vibrothermography heat generation.

Imagine two surfaces in contact, supported at discrete asperity contact points, where

the true contact area is much less than the apparent contact area. When the surfaces

are pressed together, the discrete asperity contacts experience local yielding where the

contact area behaves according to Eq. 3.4.7. This implies that the normal force holding

the surfaces in contact is proportional to the real contact area. If the two surfaces are

moved tangentially against one another, the friction force opposes the motion. If we

assume that the friction force derives from an adhesion mechanism, friction force will

be proportional to the real contact area. Since we have shown that normal force is also

proportional to contact area, we can conclude that the normal force is proportional to

the friction force. This result is analogous to Coulomb’s law of friction, but invokes the

concept of adhesion in its derivation.

3.4.4.4 Surface energy driven friction/adhesion

While the Sections 3.4.4.2 and 3.4.4.3 imply a frictional dissipation mechanism, we

can also analyze the dissipation in terms of adhesion hysteresis. When two surfaces

are brought in close contact, there is a point at which it is energetically favorable for

the surfaces to annihilate. The free surfaces are destroyed and the free surfaces adhere.

Similarly, if a force is applied to pull the surfaces apart, there is a point at which they

will ’snap’ apart. If this is repeated, there is a net energy loss as the surfaces are brought

together and pulled apart. This energy loss is termed adhesion hysteresis. Similar to
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strain hysteresis, the energy loss in adhesion is represented as a fraction of the total

surface energy which is lost.

Therefore, if we assume that heat generation is primarily due to a change in contact

area, we can represent the energy loss as a fraction of the total change in surface energy

attributed to the change in contact area,

dUS = −2γdAc, (3.4.23)

where γ is the surface energy density. If we consider an asperity undergoing elastic

deformation (i.e. Hertzian contact), we can relate the contact area to the normal force

with Eq. 3.4.1,

dUS = −2γπ

(
3R

4E∗

)2/3

dP 2/3. (3.4.24)

Thus, there is a two-thirds dependence on vibration amplitude, which is not in agree-

ment with observation 4. If we consider the case where there is a static load,

lim
Pi→∞

dUS = −2γπ

(
3R

4E∗

)2/3

((P + Pi)
2/3 − P 2/3

i ) = 0. (3.4.25)

As expected, heat generation vanishes as the static loading tends to infinity. We

can also analyze the system under the assumption that contact area is proportional to

normal force, as discussed in Sect. 3.4.4.1 (Eq. 3.4.7). The change in surface energy is,

dUS ∝ −2γdP. (3.4.26)

Now there is a proportionality between heating and vibration amplitude. If we con-

sider static loading which tends to infinity, the proportionality will hold. Thus, while

heat generation is bounded, this analysis implies heat generation will continue even at

large static loads, which is in contradiction to observation 2. In summary, for contact
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dominated by elasticity observation, 2 holds, but observation 4 is violated. For contact

dominated by plasticity, observation 4 holds, but 2 is violated.

However, we have neglected one important aspect of adhesion, namely the distinction

between a change in contact area of an existing contact point and the creation of an

entirely new contact point. Research has shown that hysteretic losses in surface adhesion

is greater near the point of contact (or point of instability) [71]. The motivation for this

stems from the idea that adhesion is dynamic in nature. The unstable snapping of

asperities into and out of contact results in energy being carried away by high frequency

thermal vibrations, or phonons. While this same phenomenon happens when contacting

asperities are pressed more tightly in contact, it is not as significant.

Let us consider then an alternate hypothesis, that heat generation is related to the

number of asperities that just make and break contact. Consider a rough surface with

asperities with randomly distributed heights, as in the Greenwood-Williamson model

[25]. The asperity heights are normally distributed, hi ∼ N(µ, σ2). Another surface is

used to press down on the rough surface and flatten the asperities. The height of the

flat surface is z, and the interference between the flat surface and an individual asperity

is δi = hi − z ∼ N(µ− z, σ2), where δi > 0.

Assume that the asperity, when depressed, has a circular cross section and that the

radius of curvature of the asperity is a constant, R. The radius of the contact area is

given by a and is related to the interference by δ = a2

R
. The contact area for a single

asperity is given by,

Ai = πa2 = πRδ. (3.4.27)

If we assume that the asperities experience local yielding, Eq. 3.4.7 holds (recall that

contact dominated by elasticity may still have a load-area proportionality, as discussed

in Sect. 3.4.4.1). This area should be equivalent to the sum of all of the individual

asperity contact areas supporting the normal force,
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Acontact =
P

cσy
=
∑
i

πRδi. (3.4.28)

Solving for normal force we find,

P = πRcσy
∑
i

(hi − z) such that (hi − z) > 0. (3.4.29)

To convert this to an integral, we multiply the height by the probability of this as-

perity height occurring. We also scale it by multiplying by the total number of asperities

per unit area, Rα.

P = πRRαcσy

∫ ∞
z

(h− z)f(h)dh = πRRαcσy [(µ− z)(1− Φ(α)) + σφ(α)] , (3.4.30)

where α = z−µ
σ

[22] and φ and Φ are the standard normal pdf and cdf, respectively.

See Appendix A.5 for details. We can rearrange this,

P ∗ =
P

πRRαcσyσ
=

1√
2π
e−

1
2
α2 − α

2
erfc

(
α√
2

)
. (3.4.31)

We are interested in evaluating heat generation, specifically as a function of the

applied load. If heating is related to the number of asperities coming into or leaving

contact, we can evaluate the rate at which asperity contact is created,

dQ(P ∗) ∝ ∂

∂P ∗
(1− Φ) ∝ −∂Φ

∂α

∂α

∂P ∗
∝ −φ ∂α

∂P ∗
. (3.4.32)

The cdf of the standard normal, Φ, represents the total fraction of asperities in contact

at height z and below. Since positive z represents moving the surface out of contact with

the asperities, the total number of asperities in contact at a given surface height z (or

α) is Rα(1− Φ(α)).

The derivative ∂
∂P ∗ (1 − Φ) represents the change in total fraction of asperities in

contact as a function of load. If we scale by the total number of asperities, this derivative
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Figure 3.4 Rate of asperity contact creation/destruction as a function of static load.

represents the change in the total number of asperities per unit load. The only unknown

is the surface height z as a function of normal force P (equivalently, α as a function of

P ∗). It turns out that the inverse relationship can be represented well by the following

relation,

α(P ∗) ≈ 3.62− 0.72P ∗ − 3.78(P ∗)0.172, (3.4.33)

where the coefficients are fit using a least squares approach.

The rate of asperity contact creation is plotted as a function of scaled load P ∗ in Fig.

3.4. We can see that at low static loading, the rate at which asperity contacts are created

is relatively high. At elevated static loading, this rate of asperity contact creation drops

off (eventually vanishing) as the fraction of asperities in contact approaches one. If total

thermal power is related to the number of asperities in coming into and out of contact,

this is the behavior expected from observation 2. If the total heat generation for a cyclic
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Figure 3.5 Heat generation, Q, for static load P ∗ and dynamic load dP ∗.

load between P ∗1 and P ∗2 is proportional to the total number of asperities coming into

and out of contact over the loading cycle,

Q(P ∗) ∝
∫ α2

α1

dQ = [1− Φ(α2)]− [1− Φ(α1)] . (3.4.34)

Plugging in the CDF,

Q ∝ 1

2

∣∣∣∣erf (α(P ∗2 )√
2

)
− erf

(
α(P ∗1 )√

2

)∣∣∣∣ . (3.4.35)

This quantity represents the area under the rate of asperity contact creation curve.

For a given static load P ∗, heat generation Q is a function the dynamic load dP ∗ as

shown in Fig. 3.5. Since this is the energy lost in a single cycle, the energy lost per unit

time will be Qf , satisfying observation observation 3. The only requirement we haven’t

yet satisfied is observation 4. To evaluate this observation, Q is plotted against dP ∗ for

three different static load levels: i) zero static load, ii) median static load, and iii) high

static load (see Fig. 3.6).
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Figure 3.6 Heat generation (qualitative) as a function of dynamic load amplitude for
three different static load levels using Eq. 3.4.35.

As expected, at high static loading heat generation is reduced. At zero static load,

heat generation increases sharply and then levels off as the rate of asperity contact

creation drops. Finally, at a median static load heat generation starts as roughly linear

and gradually increases until it is quadratic in dP ∗. While the prediction is qualitative,

this is the exact behavior expected based on experimental observation.

3.5 Conclusion

There is a lack of agreement in the NDE community regarding the heating mecha-

nisms that dominate vibrothermography crack heating. In this work, we have given ex-

perimental and theoretical evidence to disprove a number of mechanisms, namely linear

absorption, thermoelasticity, and plasticity. Furthermore, we have introduced a frame-

work with which to predict contact area driven heating through adhesion hysteresis, and

frictional heating through relative surface motion. Both approaches satisfy the exper-
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imental criteria set forth by observation. Within the classical view of sliding friction,

heating comes from the static normal force, the dynamic normal force, and the relative

surface motion induced by the dynamic strain. It is assumed that there is a static load

level above which the dynamic strain is not sufficient to overcome the static friction force.

With adhesion hysteresis, energy loss is first attributed to a change in contact area (and

consequently surface energy). In reality, hysteresis losses are dominant at the point of

instability when the asperity is brought completely into and out of contact. This satisfies

the observation that heating vanishes at high static loads. At atomistic scales, the dis-

tinction between adhesion and friction is unclear and more work is needed to distinguish

the true source of heat generation.
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CHAPTER 4. CONCLUSION

The crack closure model developed in this work is novel in both the fields of NDE and

fracture mechanics. The one-dimensional crack closure model describes the mechanics

of a partially closed fatigue crack below the crack opening stress in terms of stresses

and displacements in response to an externally applied tensile load and a local closure

stress distribution. The fatigue process produces a wake of plastically stretched material

surrounding the crack flanks. This residual strain manifests itself as contact stresses

at the interface between the opposing crack surfaces. When an external tensile load is

applied, it is balanced by these compressive stresses, resulting in an equilibrium closure

state. For a 1D crack, this equilibrium state can be described by the effective crack

length, the apparent contact stress, and the opening displacement. These predictions

are validated numerically and shown to be within expected FEM error. An algorithm

to solve for an unknown closure stress is developed based on the foundations of the

aforementioned closure mechanics model. This algorithm estimates the closure stress

acting on a partially closed crack, provided measurements of the effective surface length

as a function of remote load.

The application of these fracture and closure mechanics concepts to vibrothermogra-

phy NDE requires an understanding of the mechanisms by which heat generation occurs.

Given the uncertainty which surrounds the topic in the scientific community, an analysis

of plausible mechanisms is carried out. We provide theoretical evidence which suggests

that linear absorption, plastic flow, and thermoelasticity are not plausible heat genera-
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tion mechanisms. The likely mechanism is a form of friction or adhesion, both of which

are influenced by the real area in contact (as opposed to the apparent contact area).

This work is the first attempt at understanding and modeling the fundamental con-

nection between crack closure and vibrothermography heat generation analytically. Past

attempts to model vibrothermography heat generation have focused on empirical or fi-

nite element models, ignoring the complexities which arise from the interplay between

fracture mechanics, contact mechanics, and heat generation. Aside from the applicability

to the field of NDE, the crack closure modeling is novel in the field of fracture mechanics

for its description of a partially closed fatigue crack below the crack opening stress.
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A.1 Solving Volterra integral equations

Volterra integral equations are a class of integral equations where the upper bound

of integration is a variable. The Volterra integral equation of the first kind has the form,

f(t) =

∫ t

a

x(s)K(t, s)ds, (A.1.1)

where x(t) is an unknown function. This class of integral equations can typically be

solved for using forward substitution. When discretized and placed in matrix form, the

equation becomes a linear algebra problem with the form,

F = Kx, (A.1.2)

where F is a vector containing values of f(ti), x is a vector with the unknown values

x(sj), and K is a lower triangular matrix filled with values K(ti, sj). Equation 2.19, used

in the closure stress inversion, has the form of a Volterra integral equation of the first

kind. To discretize the equation, we employ the trapezoidal integration rule,

∫ a

ac

σclosure(x)m(x, a)dx =
h

2

N−1∑
k=0

[σclosure(xk+1)m(xk+1, xN) + σclosure(xk)m(xk, xN)] .

(A.1.3)

Equivalently,

∫ a

ac

σclosure(x)m(x, a)dx =

h

2

[
σclosure(x0)m(x0, xN) + 2

N−1∑
j=0

σclosure(xj)m(xj, xN) + σclosure(xN)m(xN , xN)

]
,

(A.1.4)

where x0 = a0, xN = ai, and h = xN−x0
N

. It should be apparent from the form of

m(x, a) (Eq. 2.3), that evaluating m(xN , xN) → ∞, which is problematic. To account

for this singularity, one can apply a singularity subtraction method [2; 51],
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−Kop(a) =

∫ a

ac

(σclosure(x)− σclosure(a))m(x, a)dx+ σclosure(a)

∫ a

ac

m(x, a)dx. (A.1.5)

When x = a, the first integral will vanish and the second integral can be evaluated

numerically. Using the trapezoidal rule for the first integral,

∫ a

ac

σclosure(x)m(x, a)dx =

h

2

[
(σclosure(x0)− σclosure(ai))m(x0, ai) + 2

N−1∑
j=0

(σclosure(xj)− σclosure(ai))m(xj, ai)

]
,

(A.1.6)

where the last term (σclosure(ai)− σclosure(ai))m(ai, ai) vanishes. Including the other

terms in Eq. A.1.5,

−
(
Kop(ai) + σclosure(ai)

∫ ai

a0

m(x, ai)dx

)
=

h

2

[
(σclosure(x0)− σclosure(ai))m(x0, ai) + 2

N−1∑
j=0

(σclosure(xj)− σclosure(ai))m(xj, ai)

]
.

(A.1.7)

Grouping terms that include σclosure(ai),

σclosure(ai)

(
h

2
m(x0, ai) + h

N−1∑
j=0

m(xj, ai)−
∫ ai

a0

m(x, ai)dx

)
=

Kop(ai) +
h

2

[
σclosure(x0)m(x0, ai) + 2

N−1∑
j=0

σclosure(xj)m(xj, ai)

]
.

(A.1.8)

Solving for σclosure(ai),

σclosure(ai) =
Kop(ai) + h

2

[
σclosure(x0)m(x0, ai) + 2

∑N−1
j=0 σclosure(xj)m(xj, ai)

]
h
2
m(x0, ai) + h

∑N−1
j=0 m(xj, ai)−

∫ ai
a0
m(x, ai)dx

.

(A.1.9)
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A.2 Dilatational strain

The linearized thermoelastic equation (Eq. 3.4.13) has the dilatational strain ε′′ as

a forced excitation. Consider the assumed asperity cross-sectional area given by Eq.

3.4.14. For a stress applied normal to the asperity tip (along the z-axis), the strain

components are given by,

εz =
σ

E
, (A.2.1)

εx = εy = −ν σ
E
. (A.2.2)

The dilatational strain is defined as the change in volume with respect to the original

volume,

ε′′ =
∆V

V
. (A.2.3)

Using Eq. 3.4.14, the total volume is given by,

V =

∫ h

0

Aoe
z
c dz = Aoc(e

h
c − 1), (A.2.4)

where h is the asperity height. After applying a load along z, the new volume will

be given by,

Vnew =

∫ hnew

0

Anewdz =

∫ h(1+εz)

0

(1− νεz)2Adz, (A.2.5)

Vnew =

∫ h(1+εz)

0

(1− νεz)2Adz =
Ao(1− νεz)2

c
(e

h
c
(1+εz) − 1). (A.2.6)

The change in volume due to stress is given by,

∆V = Vnew − V =
Ao(1− νεz)2

c
(e

h
c
(1+εz) − 1)− Aoc(e

h
c − 1). (A.2.7)

Plugging Eqs. A.2.4 and A.2.7 into Eq. A.2.3,
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ε′′ =
∆V

V
=
Aoc(1− νεz)2(e

h
c e

h
c
εz − 1)− Aoc(e

h
c − 1)

Aoc(e
h
c − 1)

. (A.2.8)

Since c represents the characteristic length of the asperity, it should be on the order

of nanometers or microns. We are also assuming that strains are small. This means that,

in the product e
h
c e

h
c
εz , the first term will dominate. This simplifies to,

ε′′ =
Aoc(1− νεz)2(e

h
c − 1)− Aoc(e

h
c − 1)

Aoc(e
h
c − 1)

= (1− νεz)2 − 1. (A.2.9)

Expanding,

ε′′ = −2νεz + (νεz)
2. (A.2.10)

Again, with the small strain assumption, we can neglect the second term. Finally,

ε′′ = −2νεz. (A.2.11)
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A.3 Thermoelastic absorption

The time derivative of the dilatational strain (needed to solve Eq. 3.4.13) is found

by Eq. 3.4.16, where εz is defined in Eq. A.2.1. The stress applied to the asperity is

σ(t) = F (t)/A where F is defined in Eq. 3.4.15 and A in Eq. 3.4.14,

∂ε′′

∂t
=

2FAν(iω)

EAo
e−

z
c eiωt. (A.3.1)

Inserting this into the linearized thermoelastic equation (Eq. 3.4.13),

k∇2θ = ρcp
∂θ

∂t
+

2FAν(iω)

EAo
(3λ+ 2µ)αToe

− z
c eiωt. (A.3.2)

Inserting the particular form of θ given in Eq. 3.4.17 into Eq. A.3.2,

kT1
k23

e−iωte−
z
k3 = −iωρcpT1e−iωte−

z
k3 +

2FAν(iω)

EAo
(3λ+ 2µ)αToe

− z
c e−iωt. (A.3.3)

If we assume that k3 ≈ c, we can cancel the term e−iωte−
z
k3 . Solving for T1 yields,

T1 =
βiω

k
k23

+ iωρcp
. (A.3.4)

Multiplying the numerator and denominator by the complex conjugate of the denom-

inator,

T1 =
β k
k23
iω + βω2ρcp

( k
k23

)2 + (ωρcp)2
. (A.3.5)

Note that the two terms in the denominator are functions of the excitation frequency

and the scale of the system (k3). For this application, we take ω ≈ 125 × 103rad/s for

f = 20kHz and k3 ≈ 1µm. This leads to the ratio,
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(
k

k23
)2/(ωρcp)

2 ≈ 500. (A.3.6)

This shows that the geometric term is dominant for this application, although for

frequencies above 250 kHz, the terms are comparable.

For comparison, the work by Goodman et al. utilized a geometry where h = 1” and

f ≈ 3MHz. With steel we have k = .5[W/mK], cp = 500[J/kgK], and ρ = 7850[kg/m3].

For this scenario, the ratio is,

(
k

k23
)2/(ωρcp)

2 ≈ 10−22. (A.3.7)

This shows that Goodman et al. are analyzing a situation where the frequency is

so high that the geometric effects are filtered out. This is indeed evident from the final

solution for the energy dissipation,

Wo =
(3λ+ 2µ)2α2ToP

2hπ

(λ+ 2µ)2ρcp

√
c′1
2

, (A.3.8)

where c′1 ∝ h2.
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A.4 Thermoelastic energy dissipation

With the assumed asperity cross-sectional area (Eq. 3.4.14) and applied load (Eq.

3.4.15), the coefficient T1 in the assumed temperature increase (Eq. 3.4.17) can be solved

for. Goodman et al. [21] derived an equation to describe the total energy dissipation for

a loading cycle,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

(
∂θ

∂z
)2dV dt. (A.4.1)

The coefficient T1 is found to be (Eq. 3.4.19),

T1 =
β k
k23
iω + βω2ρcp

( k
k23

)2 + (ωρcp)2
. (A.4.2)

As stated in Appendix A.3, Goodman et al. consider a situation where the frequency

is very high and the geometric terms are not important. However, in vibrothermography

the frequency is relatively low, such that the vibration wavelength is large relative to the

asperity height. We will solve for the thermoelastic dissipation first without making any

approximations, and then by making a low frequency approximation.

A.4.1 Full solution

First, let us solve for the thermoelastic dissipation without simplifying the coefficient

T1. We can express T1 from Eq. 3.4.19 as,

T1 = C1 + iC2, (A.4.3)

where C1 = βω2ρcp

( k
k23

)2+(ωρcp)2
and C2 =

β k

k23
ω

( k
k23

)2+(ωρcp)2
. Plugging these coefficients into the

definition of the temperature increment (Eq. 3.4.17),

θ(z, t) = (C1 + iC2) e
−iωte−

z
k3 . (A.4.4)

Using Eq. A.4.4,
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∂θ

∂z
= − 1

k3
(C1 + iC2) e

−iωte−
z
k3 e−iωte−

z
k3 . (A.4.5)

We define C1 and C2 to absorb the factor − 1
k3
e
− z
k3 in Eq. A.4.5,

∂θ

∂z
= (C1(z) + iC2(z)) e−iωt, (A.4.6)

where C1 = − 1
k3

βω2ρcp

( k
k23

)2+(ωρcp)2
e
− z
k3 and C2 = − 1

k3

β k

k23
ω

( k
k23

)2+(ωρcp)2
e
− z
k3 .

Converting to the leading term C1(z) + iC2(z) polar form,

C1(z) + iC2(z) =
√
C21 + C22eitan

−1(
C2
C1

)
. (A.4.7)

Equation A.4.6 becomes,

∂θ

∂z
=
√
C21 + C22exp

(
itan−1(

C2
C1

)

)
e−iωt. (A.4.8)

Plugging Eq. A.4.6 into Eq. A.4.1,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

[√
C21 + C22exp

(
itan−1(

C2
C1

)

)
e−iωt

]2
dV dt, (A.4.9)

or,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

[
Ce−i(ωt−φ)

]2
dV dt, (A.4.10)

where C =
√
C21 + C22 and φ = tan−1(C2C1 ). The integration in time is taken over one

period and is analogous to finding the average power in an AC circuit. The average

power is found by integrating the instantaneous power over one cycle,

Pavg =
V I

2
cos(θ), (A.4.11)

where V and I are the amplitudes for voltage and current, respectively, and θ is the

phase angle between them. Since we are interested in the average power of a sinusoid

squared, the phase angle will be zero,
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Pavg =
C2
2
. (A.4.12)

We can reach the same result by multiplying the phasor Ce−i(ωt−φ) by its complex

conjugate. Since multiplying phasors means taking the product of the amplitudes and

the sum of the phases, we will be left with,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

C2e−i(ωt+φ)e−i(ωt−φ)dV dt. (A.4.13)

In the time domain,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

C2 [cos(ωt+ φ) + i sin(ωt+ φ)] [cos(ωt+ φ)− i sin(ωt+ φ)] dV dt.

(A.4.14)

We are just interested in the real part to find the average power,

Wo =
k

To

∫ t+ 2π
ω

t

∫
V

C2cos2(ωt+ φ)dV dt. (A.4.15)

To find the energy, we multiply by the period as well. Since the integral of cos2 over

a period is 1
2
, we are left with,

Wo =
πk

ωTo

∫
V

C2dV =
πk

ωTo

∫
V

C21 + C22dV dt. (A.4.16)

Substituting for the constants,

Wo =
πk

ωTok23

∫ h

0

A(z)
(
C2

1 + C2
2

)
e
−2 z

k3 dz, (A.4.17)

where we have converted the integral over volume to an integral over z. With A(z) =

Aoe
− z
k3 ,
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Wo =
πkAo
ωTok23

(
C2

1 + C2
2

) ∫ h

0

e
− z
k3 dz → Wo =

πkAo
ωTok3

(
C2

1 + C2
2

) [
1− e−

h
k3

]
, (A.4.18)

where β = 2FAν
EAo

(3λ+ 2µ)αTo, C1 = βω2ρcp

( k
k23

)2+(ωρcp)2
, and C2 =

β k

k23
ω

( k
k23

)2+(ωρcp)2
.

If we integrate from 0 to ∞,

Wo =
πkAo
ωTok3

(
C2

1 + C2
2

)
. (A.4.19)

A.4.2 Low frequency approximation

As discussed in Sect. 3.4.3, vibrothermography leads to a scenario where the fre-

quency is such that the geometric effects can be neglected (the vibration wavelength

is large relative to the asperity height). This results in the updated constants C1 =

βω2ρcp

( k
k23

)2
≈ 0 and C2 =

β k

k23
ω

( k
k23

)2
=

βk23ω

k
. The total energy dissipated becomes,

Wo =
πkAo
ωTok3

(
βk23ω

k

)2

=
πk33ωTo
Aok

(
2FAν

E
(3λ+ 2µ)α

)2

. (A.4.20)
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A.5 Asperity contact

The normal force supported by a distribution of asperities is given by Eq. 3.4.29,

P = πRcσy
∑
i

(hi − z) such that (hi − z) > 0. (A.5.1)

As discussed in Sect. 3.4.4.4, the summation can be converted to an integral,

P = πRRαcσy

∫ ∞
z

(h− z)f(h)dh, (A.5.2)

where,

f(h) =
1√

2σ2π
e−

(h−z)2
2σ2 , (A.5.3)

is the probability distribution for a normally distributed random variable. The pa-

rameter σ is the standard deviation and µ is the mean. We can split this into two

separate integrals,

P =
πcσyα

k

[∫ ∞
z

hf(h)dh− z
∫ ∞
z

f(h)dh

]
. (A.5.4)

Note that the first integral in the bracket of Eq. A.5.4 resembles the expected value

of h, E(h), while the second integral corresponds to the product of the height of the flat

surface and the cumulative distribution function of h, z(1− F (z)).

Note that the first integral in the bracket has a lower bound of z. The expected value

of h is,

E(h) =

∫ ∞
−∞

hf(h)dh. (A.5.5)

If the distribution is truncated at a lower bound z, the expected value changes to,

E(h;h > z) =

∫ ∞
z

hf(h;h > z)dh, (A.5.6)

where,
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f(h;h > z) =
f(h)

1− Φ(α)
, (A.5.7)

where α = z−µ
σ

[22]. This leaves,

P (z) = πRRαc [(1− Φ(α))E(h;h > z)− z(1− F (z))] . (A.5.8)

The cumulative distribution is given by,

F (z) =
1

2

[
1 + erf(

z − µ
σ
√

2
)

]
. (A.5.9)

The expected value of the truncated normal distribution is [22],

E(h;h > z) = µ+ σ
φ( z−µ

σ
)

1− Φ( z−µ
σ

)
. (A.5.10)

The normal force evaluates to,

P (z) = πRRαc

[
µ(1− Φ(α)) + σφ(

z − µ
σ

)− z1

2

(
1− erf(

z − µ
σ
√

2
)

)]
. (A.5.11)

Recall that Φ(α) = 1
2

(
1 + erf( z−µ

σ
√
2
)
)

.

P (z) = πRRαc

[
µ

1

2

(
1− erf(

z − µ
σ
√

2
)

)
+ σφ(

z − µ
σ

)− z1

2

(
1− erf(

z − µ
σ
√

2
)

)]
.

(A.5.12)

Grouping terms,

P (z) = πRRαc

[
1

2
(µ− z)

(
1− erf(

z − µ
σ
√

2
)

)
+ σφ(

z − µ
σ

)

]
. (A.5.13)

Equivalently,

P (z) = πRRαcσy [(µ− z) (1− Φ(α)) + σφ(α)] . (A.5.14)
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