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ABSTRACT

The work provides methodologies for studying, designing, and optimizing melt spin-

ning processes of fiber manufacture. Amorphous metallic materials can be created

through melt spinning processes, in which a highly spinning wheel undercools a jet

of molten metal or alloy below the equilibrium melting and the nucleation tempera-

tures. Free-jet melt spinning employs a larger nozzle-wheel gap compared to planar flow

casting. The instability of melt pool formation in a free-jet melt spinning will allow

the variability of ribbon production. In general, a stable delivery of amorphous materi-

als depends simultaneously on various control parameters, such as wheel speed, molten

flow viscosity, surface tension force, and heat transfer. To analyze dynamical and ther-

modynamical characteristics of a free-jet melt spinning, two mathematical models, free

surface and rapid solidification, have been established by means of Computational Fluid

Dynamics. Based on the nucleation theory, I have predicted the nucleation temperature

and the critical cooling rate for an alloy Fe75-Si10-B15 (at.%). The applications of these

crystalline solidification properties in the simulation and analysis help the researchers

gain insight into the processes. The research focuses on a novel simple and second-order

accurate algorithm for computing surface normal and curvature in the Volume of Fluid

method; it reconstructs the continuum surface force model to eliminate spurious cur-

rents. A computer program has been developed with the enhanced numerical schemes

and the capability of heat transfer for two-dimensional laminar Newtonian surface flows.

It conducted numerical simulations of impingement of a melt stream against a highly

rotating wheel, and explains the complicated processes with numerical results of velocity

and temperature in melt pools. The analytical estimates of ribbon thickness presented

in the thesis agree with the experimental observation of the alloy. An in-depth inves-

tigation of the melt spinning process was performed to develop benchmarks of process

variables for amorphous material production.
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CHAPTER 1 INTRODUCTION

In this work, mathematical models are established for free surface and rapid so-

lidification in accordance with the physical principles. Some numerical approaches are

developed to simulate, study, and design free-jet melt spinning for amorphous production

of an alloy Fe75-Si10-B15 (at.%).

1.1 Background

In a melt spinning process, as illustrated in Figure 1.1, a metallic melt jet under-

cools on a quench spinning wheel before crystallization is activated. As a result, a thin

amorphous ribbon with disordered microstructures rapidly solidifies, exhibiting some

mechanical, magnetic or chemical properties that the crystalline solid does not possess.

high wheel speed

melt pool

Chill Spinning Wheel

amorphous ribbon

Crucible

Melt-wheel Contact

free melt stream Nozzle

Figure 1.1 Schematic of free-jet melt spinning
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Melt spinning, also known as spin casting, has long found utility in amorphous ma-

terial manufacture. The commencement of metallic glasses (materials in an amorphous

state) by quenching of the liquid alloys dates to the 1960’s, when it originated in United

States universities[1]. Thin slabs of steel (∼ 200 mm) have been manufactured since 1989

and thin aluminum and steel ribbons (∼ 1 mm) were produced in the late 1990’s[2].

To produce desired atomic-scale structures, rapid solidification with a cooling rate

greater than 102 K/s[3] is often applied in practice by imposing (1) a high undercooling

prior to solidification, (2) a high velocity of advance during continuous solidification,

and/or (3) a high cooling rate during solidification[4]. Rapid solidification processing

can be realized utilizing spray methods, chill methods, weld methods, or consolidation

and fabrication methods[4]. Accordingly, melt spinning is a chill method and falls into

the category of imposing a high cooling rate during solidification.

There are two varieties of melt spinning, planar flow casting and free-jet; application

of which differs in the gap between nozzle and wheel surface. Free-jet (or called chill

block) melt spinning has a larger gap than planar flow casting (not shown in the figure).

In a properly operated free-jet melt spinning process (see Figure 1.1), the melt jet strikes

the moving wheel surface with a certain velocity after traveling some distance. It reduces

stability in the formation of melt pool, and results in a weak control of shape and quality

of amorphous production[5, 6].

Both planar flow casting and free-jet melt spinning proceed high momentum and

thermal transport, free surface with strong surface tension force, and phase transforma-

tion from liquid to solid. Other process parameters include:

− the ejection melt flow rate;

− the pressure stability and temperature of molten alloy in crucible;

− wheel asperities;

− chamber gas pressure and composition;

− pressure differential between the crucible and the wheel;

− melt purity.

As illustrated in Figure 1.1, the interface between the molten flow and chamber gas,

if the chamber is not vacuum, is a free surface evolving essentially under momentum and

surface tension force of the flow. In the normal direction of a free surface, it undergoes
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sharp transitions in density, viscosity, and pressure; whereas in the tangential direction,

those physical properties and flow variables remain unchanged or continuous, and the

configuration of free surface changes smoothly. Unlike pressure, surface velocity varies

continuously across the interface. It is difficult to impose the boundary conditions on a

varying free surface in a numerical simulation.

1.2 Literature Reviews and Unresolved Issues

Respectively, Kothe et al[7], Scardovelli et al[8], and Floryan et al[9] summarize the

history of numerical methods for solving interfacial flow under surface tension force.

Among those Computational Fluid Dynamics (CFD) models are Hirt and Nichols’ Vol-

ume of Fluid (VOF) method (with the H-N algorithm)[10], Osher and Sethian’s Level

Set Method (LSM)[11–13], and Brackbill’s Continuum Surface Force (CSF) model[14].

Kothe et al[15, 16] have developed the computer program RIPPLE for two-dimensional

(2D) incompressible laminar Newtonian surface flows with using VOF method, the H-

N algorithm, the CSF model, and finite difference and volume methods. Lafaurie et

al[17] introduced surfacee tension stress tensor, also called capillary pressure tensor, in

the Continuous Surface Stress (CSS) model. Finite element method is also employed

for free boundary problems like in the Stefan problem[18]. The LSM, established in

the 1980’s, tracks the motion of a free surface by embedding the interface as the zero

level set of a signed distance function, level set function, in an Eulerian frame. These

numerical models are currently implemented in engineering research and design.

Kothe[19] points out that accurate estimation of surface normal and curvature for

further computation of surface tension force still remains an unresolved issue. For the

local surface normal and curvature, Brackbill et al[14] offer two schemes, Marker and

Cell (MAC)[20] and arbitrary Lagrangian-Eulerian (ALE)[21, 22], which belong to the

Green-Gauss (GG)[7] gradient method. Various methods of surface normal estimation

have been reported in [7, 23, 24] for free surface simulation using the VOF method or

the LSM[11, 12]. Some require more computing time and give unsatisfactory results.

Spurious or parasitic currents that exist in the neighborhood of interface were first

observed in the Lattice-Boltzmann method[25], and then in other surface tension models

including the CSF model and Lafaurie’s conservative method[17]. Those undesirable

currents are created by some defects inherently hidden in the CSF model. Attempts

have been made[23, 24, 26, 27] to reduce or eliminate such man-made parasitic currents.

The researchers have employed various methods, such as reconstructing free surface, re-
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evaluating curvature, developing new approaches for surface pressure, and remodeling

surface tension force; however, none successfully eliminated the spurious currents induced

in the simulation of a circular free surface in equilibrium with zero initial velocity.

Melt spinning not only casts thin ribbons or slabs, but also elicits considerable atten-

tion from researchers. However, most of them focused on planar flow casting. Berger and

Ai[28] have developed a mathematical model for planar flow casting melt spinning based

on a 2D steady-state condition and the conservation laws. Steen and Karcher[2, 29, 30]

present a kinetic analysis of spin casting of metals. Gutierrez et al[6] found a recircu-

lating flow inside the melt puddle that relates to the regularly-spaced powder of visual-

ization near the top of the ribbons observed by Zielinski et al[31]. The ribbon thickness

has been documented to vary inversely with wheel speed by a power index from 0.5 to

1[2, 5, 32, 33]. The researchers[2, 5, 34, 35] inclined to use the boundary layer theory

in the estimation of ribbon thickness. Strictly speaking, viscous force plays such an

important role that the melt pool cannot be treated as a potential flow. The viscosity

in the ribbon as well as in the melt pool grows exponentially when it rapidly solidifies

on the quench wheel surface.

Other researchers[35–38] have investigated heat transfer and solidification of melt

spinning. By best fitting the measured temperature, Takeshita et al[37] found the heat

transfer coefficients range between 105 and 106 W/m2K and vary with the the contact

area of molten jet with wheel surface; they also found another heat transfer coefficient

is independent of the wetting condition. In their 2D numerical simulations, Bussmann

stipulated the heat transfer coefficient of the melt-wheel boundary as 106 W/m2K[39].

Clyne[40] considered the latent heat as a heat source in the energy equation growing at

a crystal front rate. Pryds et al[41] implemented the idea into a one-dimensional (1D)

heat source form. Clyne and Pryds chose a sphere with 10 micro radius as the control

volume in the nucleation temperature calculation. According to [42], this droplet sample

originated in the forced convective cooling environment of the Pratt and Whitney cen-

trifugal atomization process[43]. However, the spherical diameter used is not applicable

for any other materials because the atomic diameters differ greatly.

Two or three-dimensional (3D) numerical modeling and simulations for planar casting

flow have been reported in [35, 44–47]. Bussmann et al[39] conducted a 2D numerical

study of steady flow within a molten puddle in planar flow casting using RIPPLE.

Exponential increases in a molten metallic flow with temperature drops require that the

time step in numerical simulations be less than an unacceptable degree. The stability

restrictions to an explicit scheme often create numerical difficulties because the wheel
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speed is extremely high compared with the jet ejection velocity at the nozzle. The

momentum by the highly spinning wheel surface to the molten stream was omitted in

the previous numerical simulations of melt spinning.

Using high digital camera, Kramer et al[5] revealed amorphous alloy formation and

found a characteristic critical length scale for the ribbon thickness. Both Kramer and

Davies[48] present a critical cooling rate of 105 ∼ 106 K/s for Fe-Si-B. Kramer ob-

served that the alloy is glowing red-hot after separation from the quench wheel for lower

wheel speeds that are above 7.5 m/s. Some crystals grow from the ribbon bottom and

quenched in the half way to the top surface[37] and the crystallization occurs on the

air-side of ribbon when the wheel speed is lower than a certain value[5]. Napolitano

et al[49] found upper and lower limits for melt spinning rates for glass formation after

examining melt pool behavior in free-jet melt spinning. Wang et al[50] provide experi-

mental determination of the interfacial heat transfer between molten metal droplets and

metallic substrate.

In practice, many experimental techniques such as Laser Doppler Velocimetry (LDV)

and Particle Image Velocimetry (PIV) are unable to measure and visualize the molten

metallic flow velocity. High-speed digital imaging technique has some restrictions in

recording temperature within the molten stream, because the temperature changes up

to hundreds of degrees in milliseconds while the ribbon is spun out as thin as 10−2 mm.

Some issues discussed in the reviews will be my research emphases which follow:

� inaccurate algorithms for surface normal and curvature;

� spurious currents created by the CSF model;

� the thermodynamical properties of the alloy for numerical simulation;

� the momentum transferred by the highly spinning wheel;

� strong viscous force due to the exponential temperature-dependent viscosity;

� the capability of heat transfer.

To comprehensively analyze a typical melt spinning process for an alloy using CFD

methods, one should establish a mathematical model for melt spinning to deal with

complicated surface flows, surface tension force, heat transfer, and phase changes.
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1.3 Current Research

Through numerical and theoretical methods, some vigorous analysis of free-jet melt

spinning in dynamics and thermodynamics with the support of experimental measure-

ments is intended in the research to reveal the underlying principles of the melt spinning

process, and to help identify the key control parameters for the amorphous metallic

production.

A computer program has been developed using the improved numerical approach and

it has been verified by some famous examples in various senses. The simulations of free-

jet melt spinning have provided us visualization of velocity, pressure, and temperature

in the flow field.

A new second-order accurate algorithm for normal and curvature has been developed

from Taylor’s series expansion. Based on the mathematical equations and physical

principles, surface tension is reconstructed within an interfacial layer to reproduce the

pressure jump as in Laplace’s formula and eliminate spurious currents. I propose a

novel idea of immersed length in the estimations of density and surface tension force at

the control cell center. Incorporation of the thermal-energy equation into the system

of governing equations will exercise for further thermal analysis. I will present a new

convolution function for mollifying color function. The temperature-dependent viscosity

of molten alloy flow is applied in the simulation.

In summary, my research is mainly composed of ten parts as follows:

1. a second-order accurate algorithm for computing surface normal and curvature;

2. an introduction of immersed length and classification of cells;

3. modifications in the CSF model and the pressure approach;

4. enhancement the dynamical simulation with the thermal-energy equation;

5. scaling-up of the system of governing equations;

6. incorporation of the translation terms in the governing equations;

7. prediction of nucleation temperature and critical cooling rate for the alloy;

8. computations of ribbon thickness, cooling rate, and heat transfer coefficient on the

wheel surface;

9. simulation and analysis of the melt spinning process;
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10. investigation of the melt spinning process mechanism and the control parameters.

In addition, in the prediction of nucleation and critical cooling rate, the magnitude

of a characteristic length for control volume or area is chosen more generally so that it is

applicable to other metals or alloys in the determination of nuclei appearance per unit

volume per unit time.

1.4 Thesis Structure

The work begins with the conservation law across an interface of discontinuity. In

Chapter 2, the kinematic, dynamic, and thermal jump conditions across a free surface

are derived by virtue of the conservation law. Section 2.1 relates free surface evolutions

with the jump conditions. Section 2.2 lists the simplified boundary conditions on free

surfaces under various assumptions.

Chapter 3 contains the system of 2D governing equations, the VOF method, the

H-N algorithm, and the CSF model (Sections 3.1 through 3.4). Grid generation and

numerical stabilities are consecutively reviewed in Section 3.5 and Section 3.6 followed

by Section 3.7 for the formulation of wall adhesion.

The modeling of a free surface flow with energy, heat transfer, solidification, and

phase changes is discussed in Chapter 4. Along with the formulation of surface tem-

perature gradients in Section 4.2, the incorporation of the energy equation as given in

Section 4.1 enables us to compute temperature distribution in surface flows. The rapid

solidification and nucleation theory in Section 4.3 details the determination of nucleation

temperature and critical cooling rate.

Chapter 5 presents my contribution to the numerical algorithms for two-phase flows.

A new method for calculating mollified color function from the image processing theory

is enunciated in Section 5.1. I will derive a simple Direct Accurate (DA) algorithm to

compute surface normal and curvature in Section 5.2. Section 5.3 introduces the concept

of immersed length, the classifications of grid and control cells, and the reconstructed

CSF model. Section 5.4 explores the modified pressure approach. The translation terms

are added into the equations as referred to Section 5.5 and the system of equations is

scaled up as discussed in Section 5.6, both of which enhance the computer program to

simulate a melt pool formation on a highly moving wheel surface.

In Chapter 6, the improved numerical models are interrogated by two example cal-

culations − broken dam in Section 6.1 and undular bore in Section 6.2. An example

calculation of sluice gate flow in Section 6.3 validates the normalization of the system of
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equation. The DA algorithm provides accurate normals and curvatures for an inclined

planar and a circular free surface as shown in Section 6.4. The strategy proposed in

Section 6.5 eliminates the spurious currents found in an inclined plane and a circular

droplet; both surfaces are in equilibrium and with zero initial velocity.

Chapter 7 is dedicated to the dynamical and thermal analysis of melt spinning; it

reveals the mechanisms of melt spinning and amorphous alloy formation. In Section 7.1,

physical and thermodynamical properties of an alloy Fe75-Si10-B15 (at.%) are prepared.

In Section 7.2, I estimate the nucleation temperature and critical cooling rate in two

ways for the alloy. After a free-jet melt spinning process is introduced in Section 7.3,

some consideration of 2D simulation is made in Section 7.4 for the 3D free-jet melt

spinning process. The simulation of a jet impingement on a rotating wheel in Section 7.5

also confirms the modifications of the governing equations and offers dynamical and

thermal details of pool formation. Ribbon thickness of melt spinning is predicted in

Section 7.6; whereas Sections 7.7 through 7.10 apply a 1D heat conduction problem

to the investigation of the correlations of process parameters with amorphous alloy

formation.

Chapters 8 and 9 include some conclusion and recommendations, respectively.

Appendixes A through C offer some numerical algorithms for reference.
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CHAPTER 2 MATHEMATICS OF INTERFACIAL FLOWS

The conservation laws and the jump condition across a surface of discontinuity are

demonstrated in Section 2.1. From the jump condition, we can find some kinematic,

dynamic, and thermal boundary conditions on an interface in association with evolutions

of the free surface[8]. Section 2.2 discusses the simplified boundary conditions under

various assumptions or given conditions.

2.1 Conservation Laws and Jump Conditions

A free surface Γ as shown in Figure 2.1 is defined as a smooth interface between two

immiscible fluids with no mass across it. Using a function F (refer to Section 3.2 of

Chapter 3), it can be represented as

F (~x, t) = 0, (2.1)

where ~x is the position vector of flow field and t is time. In the tangential direction of

a free surface, the fluxes of mass, momentum, and energy are continuous[11].

In fluid mechanics, the conservation law for a physical quantity A is described in an

integral form
∂

∂t

∫
v

Adv +

∫
s

B · n̂ds =

∫
v

fdv, (2.2)

in an arbitrary but fixed control volume v with control surface s and surface unit normal

n̂, or in a differential form
∂A

∂t
+∇ ·B = f, (2.3)

where function B contains the flux of A across the surface s and other associated surface

physical quantities, and f is the source or sink rate of A. In the equations, A is a scalar,

and B is a vector as in the mass or energy equation; A is a vector, and B is a tensor of

rank two or a dyadic as in the momentum equation with no dot product ‘·’. In general,

the RHS term of the equations f vanishes in the mass equation, unless there is a mass

source/sink in the flow field. f stands for body force in the momentum equation, whereas
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it contains heat source/sink terms in the energy equation (refer to Table 2.1, Section 3.1

of Chapter 3, and Section 4.1 of Chapter 4).

A B f

Mass ρ ρ~V

Momentum ρ~V ρ~V ~V + pI− τ ρ~g + ~Fb

Energy e ~V e + ~q −p∇ · ~V + τ : ∇~V

Table 2.1 Variables in the conservation laws

According to the Reynolds transport theorem, the jump conditions[11, 51–53] for

conservation laws across a smooth surface Γ is derived in terms of unit normal n̂ to the

free surface and normal velocity vn of the interface (see Figure 2.1)

JAK2
1vn = JB · n̂K2

1, (2.4)

where J K2
1 denotes the difference of quantity A or B between side ‘2’ and side ‘1’ across

the interface Γ; for example, JAK2
1 ≡ A2 −A1.

control volume v
bounded by s

F (x, y, z, t) = 0
interface Γ fluid 2

fluid 1

A1 , B1 , f1

A2 , B2 , f2

vn

(x, y, z)

n
∧

Figure 2.1 Illustration of a control volume separated by an interface Γ

If no fluid particle crosses through the continuous free surface Γ, the normal velocity

of free surface evolution is equal to the flow velocity

vn = ~V · n̂, (2.5)
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namely, the application of Eq. (2.4) to the mass conservation. Eq. (2.5) becomes

vn = − ∂F

∂t

/
|~n| , (2.6)

where ~n is the normal vector to free surface Γ (refer to Eqs. (2.1), (3.22), (3.11),

and (3.12)). Eq. (2.4) is thus written relating with F :

JAK2
1

∂F

∂t
+ JBK2

1 · ~n = 0, (2.7)

or

JAK2
1Nt + JBK2

1 · ~Nx = 0, (2.8)

where Nt and ~Nx are temporal and spatial components of the unit normal vector ~N in

(~x, t), respectively, as follows:

Nt =

∂F

∂t√(
∂F

∂t

)2

+ |~n|2
and ~Nx =

~n√(
∂F

∂t

)2

+ |~n|2
. (2.9)

Notice that the subscripts t and x in Eq. (2.9) denote the temporal and spatial com-

ponents of ~N , respectively, other than partial derivatives. Eq. (2.8) is also referred to

as Rankine-Hugoniot jump conditions in [54]. The RHS’s of Eqs. (2.7) and (2.8) are

non-zero if there is a source or sink of f along the interface Γ.

2.2 Boundary Conditions on Free Surface

2.2.1 Kinematic Boundary Condition

From the conservation of mass, the kinematic boundary condition on free surface is

derived as
∂F

∂t
+
(

~V · ∇
)

F = 0, (2.10)

if we are given in Eq. (2.7):

A = ρ, B = ρ~V , (2.11)

where ρ is fluid density and ~V is the flow velocity vector. Eq. (2.10) describes the

evolution of free surface. It is identical to Eq. (3.22), which has been used to compute

the normal velocity vn as in Eqs. (2.5) and (2.6).

For momentum conservation, we have that

A = ρ~V , B = ρ~V ~V + pI− τ, f = ρ~g + ~Fb, (2.12)
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where p is flow pressure, τ viscous tensor, ~g gravitational acceleration, ~Fb body force,

and I unit dyad (see Eq. (3.2)). Then Eq. (2.7) becomes

∂F

∂t
+
(

~V · ∇
)

F =
|~n|

vn(ρ2 − ρ1)
{−(p2 − p1) + n̂ · [(τ2 − τ1)n̂] + σκ} , (2.13)

if it is projected along the normal direction n̂, and

∂F

∂t
+
(

~V · ∇
)

F =
|~n|

vt(ρ2 − ρ1)

{
t̂ · [(τ2 − τ1)n̂] +

(
∂σ

∂s

)}
, (2.14)

if it is projected along the tangential direction t̂, where σ is the surface tension coefficient,

κ surface curvature, s surface curve length, and vt the tangential velocity of free surface.

Surface tension force arises when the interface between two immiscible fluids has a

curved configuration as in Eq. (2.13), or the surface tension coefficient varies along the

interface as in Eq. (2.14). Throughout this work, the term ‘fluid 2’, for brevity, is

specifically referred to as a fluid, usually a liquid, having greater density and stronger

surface tension coefficient, while ‘fluid 1’ represents the other fluid, which can be a

liquid or a gas (see Figure 2.1).

Notice viscous friction force between two fluids is ignored in Eq. (2.14) so that the

tangential velocity is given by

vt = ~V · t̂. (2.15)

Eqs. (2.5) and (2.15) present that free surface evolves with flows.

For energy conservation, the variables in Eq. (2.4) are given from Eq. (4.1):

A = e, B = ~V e + ~q, f = −p∇ · ~V + τ : ∇~V , (2.16)

where e is enthalpy, thermal energy per unit mass (also referred to as sensible heat ). ~q

in Eq. (2.16) is heat flux vector,

~q = −k∇T, (2.17)

where T is temperature, and k is the heat conductivity coefficient. Eq. (2.7) is then

rewritten as
∂F

∂t
+
(

~V · ∇
)

F = −(~q2 − ~q1) · ~n
e2 − e1

. (2.18)

Notice the LHS’s of Eqs. (2.13), (2.14), and (2.18) are all in the form of the kinematic

boundary equation.

The kinematic boundary condition is expressed in the form of height function as seen

later in Eq. (3.21). It also appears in the transport equation of LSM.
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2.2.2 Dynamic Boundary Condition

Comparing Eqs. (2.13) and (2.14) with Eq. (2.10), we have the dynamic boundary

condition of free surface,

−(p2 − p1) + n̂ · [(τ2 − τ1)n̂] + σκ = 0 (2.19)

which is the pressure jump, namely Laplace’s formula in the normal direction, and

t̂ · [(τ2 − τ1)n̂] +

(
∂σ

∂s

)
= 0, (2.20)

in the tangential direction to free surface. Eq. (2.19) can be rewritten as follows:

p2 = p1 + σκ + n̂ · [(τ2 − τ1)n̂]. (2.21)

The pressure jump as in Eq. (2.21) simply comes from concavity-dependent surface

tension and viscous force on free surface.

As shown in Figure 2.2, if the viscous effect is assumed to be negligible compared

with the surface tension force, namely if the capillary number Ca, as defined later in

Eq. (3.39), is very small, Eq. (2.21) reduces to Laplace’s formula,

p2 = p1 + σκ, (2.22)

where p1 is the ambient pressure and ps = σκ is called the surface tension-induced

pressure jump across the interface.

fluid 2

fluid 1

xs

interface Γ
p1

p2

n

t

σκ

∧

∧

→

Figure 2.2 Illustration of Laplace’s formula on a free surface Γ
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If the surface tension coefficients vary along free surface, e.g., in thermocapillary

phenomena, the dynamic boundary condition in the tangential direction of free surface,

namely Eq. (2.20) in the gradient form, is taken into account,

t̂ · [(τ2 − τ1)n̂ +∇σ] = 0. (2.23)

Furthermore, if the surface tension coefficients are constant along free surface, Eq. (2.23)

reduces to

t̂ · [(τ2 − τ1)n̂] = 0 (2.24)

at any point on free surface, which means the viscous force in the tangential direction

of free surface is always in equilibrium between the two fluids no matter how small the

viscosity one fluid has. Finally, we may have

τ2 = τ1, (2.25)

if we invoke Eq. (2.24) and assume the viscous force is negligible in the normal direction

across free surface, namely n̂ · [(τ2−τ1)n̂] = 0. Eq. (2.25) demonstrates the viscous stress

tensors are continuous across free surface under the assumptions of high surface tension

and the constant surface tension coefficient in a surface flow.

2.2.3 Thermal Boundary Condition

From Eqs. (2.10) and (2.18), we conclude that

(~q2 − ~q1) · n̂ = 0. (2.26)

Eq. (2.26) shows the vector of heat flux jump on a free surface always directs along the

free surface with no heat flux across the free surface, as illustrated in Figure 2.3.

If radiation and heat convection are considered to be the major methods of heat

loss or gain for fluid 2 on free surface Γ, according to Newton’s law of cooling and the

Stefan-Boltzmann law, Eq. (2.26) becomes

−k2∇T2 · n̂ = −k1∇T1 · n̂ = −qloss = −h(T2 − T1)− εσSB(T 4
2 − T 4

1 ), (2.27)

where h is the heat transfer coefficient (kW/m2K), emissivity of fluid 2 ε 6 1, and the

Stefan-Boltzmann constant σSB = 5.67× 10−8 W/m2K4.

In addition, a given heat flux can also be imposed on free surface for qloss such that

Eq. (2.27) becomes

−k∇T2 · n̂ = qs(~x, t), or − k∇T2 = ~qs(~x, t), (2.28)
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fluid 2

fluid 1

xs

interface Γ

n

t
∧

∧

→

→
q2-q1

→

q1

→

q2

→

Figure 2.3 Illustration of heat flux directions on a free surface Γ

where ~qs(~x, t) = qs(~x, t)n̂ is the heat flux vector imposed on free surface. In particular,

if fluid 2 is a thermal insulation system, Eq. (2.28) reduces to

−k∇T2 · n̂ = 0, (2.29)

which is an adiabatic boundary condition on free surface. Eq. (2.29) shows that the

temperature gradient or the heat flux direction of fluid 2 on a free surface is tangential

to it.

A given constant temperature may be specified on free surface:

T2 = Ts, (2.30)

which is an isothermal boundary condition on free surface with qloss = 0.

The subscript 2 of thermal conductivity k is ignored for fluid 2 in Eqs. (2.28)

and (2.29). Henceforth in the work, any properties or variables without subscripts in

the governing equations are those referred to as fluid 2, unless otherwise stated.
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CHAPTER 3 FREE SURFACE MODEL AND

NUMERICAL ALGORITHMS

The numerical methodology are reviewed in the chapter. The readers may skip this

context if familiar with the numerical models.

3.1 System of Governing Equations

The numerical model for a 2D incompressible free surface flow is established in an

Eulerian frame based on a system of continuity and momentum equations, namely

∇ · ~V = 0, (3.1)

and
∂~V

∂t
+∇ ·

(
~V ~V
)

= −1

ρ
∇p +

1

ρ
∇ · τ + ~g +

1

ρ
~Fb. (3.2)

The velocity field ~V in the equations is a vector variable having two components of

u and v in two orthogonal directions of space, respectively, varying with time,

~V (~x, t) = rδu (x, y, t) ı̂ + v (x, y, t) ̂, (3.3)

where ı̂ and ̂ are two unit vectors of the orthogonal directions, and the fixed points ~x

are expressed in either Cartesian,

~x = xı̂ + ŷ, (3.4)

or cylindrical coordinates,

~x = rı̂ + ẑ. (3.5)

The operator ∇ in Eqs. (3.1) and (3.2), and throughout this work is expressed as

∇ =
1

rδ

∂

∂x
ı̂ +

∂

∂y
̂, (3.6)
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where superscript δ on the radius r (also in Eq. (3.3)) is a constant equal to 1 in

cylindrical or 0 in Cartesian geometry.

The viscous stress tensor τ in the momentum equation Eq. (3.2) is written for New-

tonian flow as follows:

τ = 2µS, S =
1

2

[(
∇~V

)
+
(
∇~V

)T
]

, (3.7)

where S is the rate-of-strain tensor, and µ is the fluid dynamic viscosity.

The surface tension coefficient σ is presumed to remain constant in the CSF model.

In addition to other body forces, a volume force ~Fsv is modeled for surface tension effect

in Eq. (3.2) (see Eq. (3.26))[16],

~Fb = ~Fsv and ~Fsv = σκ (~x)∇Fg(~x), (3.8)

where F is VOF function, and g(~x) is a weight function:

g(~x) = 1 or F/ 〈F 〉 , (3.9)

with 〈F 〉 = 1/2 being the average of the colors for two liquids (c1 + c2)/2 (as defined in

Eq. (3.23)). κ in Eq. (3.8) is the local free surface curvature computed from

κ = −∇ · n̂ =
1

|~n|

[(
~n

|~n|
· ∇
)
|~n| − (∇ · ~n)

]
, (3.10)

where the unit normal n̂ is obtained from the normal vector ~n to free surface:

n̂ =
~n

|~n|
, (3.11)

and

~n = ∇F. (3.12)

The normal defined in Eq. (3.12) customarily points from fluid 1 to fluid 2, as does the

unit normal n̂. Therefore, a negative sign in Eq. (3.10) guarantees a positive curvature

for a convex free surface with respect to fluid 2 (as shown in Figure 2.2). Notice we

assume fluid 2 has greater density.

Surface curvature is defined as the inverse radius of curvature from the mathematic

point of view,

κ(~xs) =
1

R(~xs)
, (3.13)

where the subscript s denotes free surface. In 3D problems, the curvature in Eq. (3.13)

becomes

κ(~xs) =
1

R1(~xs)
+

1

R2(~xs)
, (3.14)
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where R1(~xs) and R2(~xs) are two principal radii of curvature at point ~xs.

As discussed in Eqs. (2.19) and (2.20), the dynamic condition on a free surface is

found in the tensor form as follows[55, 56]:

(p1 − p2 + σκ) n̂i = (τ1,ik − τ2,ik) n̂k +
∂σ

∂xi

, (3.15)

where n̂i represents unit normal n̂ toward fluid 2 in Figure 2.2.

Boundary and initial conditions are specified prior to solving the governing equations

to give an enclosure to a hydrodynamics or aerodynamics problem. For any rigid walls

emerging in flow field, viscous velocity boundary conditions are either no-slip,

~V = 0 (3.16)

or free-slip (no penetration),

n̂wall · ~V = 0 (3.17)

where n̂wall is the wall unit normal.

The initial conditions of velocity ~V (~x, 0), pressure p(~x, 0), and function F (~x, 0) at

time t = 0 are stipulated to the input for the computer program:

~V (~x, 0) = ~V0

p(~x, 0) = p0

F (~x, 0) = F0.

(3.18)

At t = 0, the initial configuration of a free surface is given by specifying a number of

conic functions. The computer program initializes the free surface in a minimal energy

configuration and smooth the VOF function so that F0 in Eq. (3.18) is computed and

the surface curvature is estimated for each cell of the flow domain.

3.2 Volume of Fluid (VOF) Method

Free surface can be treated as a special case of a tangential discontinuity [55] with

continuous surface velocity in the normal and tangential directions, but discontinuous

densities in the normal direction. A numerical model for free surface used in the com-

puter program is so-called ‘Volume-of-Fluid’ (VOF) method, performing as a scheme to

locate the surface, an algorithm to track the surface as a sharp interface moving through

a computational grid, and an approach to apply boundary conditions at the surface.

In the VOF method, continuous free surfaces are tracked by means of a scalar variable

F (~x, t), where a unity value of F corresponds to a finite small area or volume occupied
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by fluid 2; otherwise, a zero value indicates a void area/volume. Thus, a fractional

value of F between zero and unity within a discrete mesh cell represents a segment of

the interfacial region of two fluids:

F (~x, t) =


1, in the fluid;

> 0, < 1, at the free surface;

0, in the void.

(3.19)

F is a scalar step function behaving like a Heaviside characteristic function in the

normal direction[11]. For an incompressible flow, F (~x, t) might be defined in the nor-

malization of density,

F (~x, t) =
ρ(~x, t)

ρf

, (3.20)

where ρf is the constant fluid density of fluid 2, and ρ is the density contained in a grid

cell if fluid 1 is assumed to have zero density. F delineates the existence of fluids in

such a way that the F = 1/2 contour is regarded as the free surface of flow.

In contrast to the VOF method, the height function method employs a height function

in the kinematic boundary condition,

∂h

∂t
+ u

∂h

∂x
− v = 0, (3.21)

where y = h(x, t) is the height function; for example, for a 2D water wave. Eq. (3.21)

has the same form as Eq. (2.1) if F = y− h(x, t). It follows that the instantaneous rate

of variation of F for a surface-particle must be zero provided that the flow is continuous

and there is no flow of fluid across the free surface. Thus, we have[51, 57]

∂F

∂t
+
(

~V · ∇
)

F = 0 (3.22)

where ~V is the velocity of fluid in the interfacial region with respect to a reference

coordinate system. The physical explanation of Eq. (3.22) is that any particle lying in

the surface only moves tangentially to the surface or remains still relative to it[58].

Like the algorithm for the momentum equation in Section 3.4, the VOF function is

solved in two steps[10]. The Hirt-Nichols (H-N) algorithm is employed for the advection

of VOF function. A donor-acceptor approximation for the fluxes in the H-N algorithm

retains VOF function’s discontinuous nature without smearing the function. The method

is applicable to both 2D and 3D free surface problems and its advantage of minimum

storage requirements is highly valuable compared with the marker particle method or

other free surface tracking methods. However, the VOF method is a piecewise linear

and stair-stepped algorithm[59].
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3.3 Continuum Surface Force (CSF) Model

Surface tension force is believed to result from molecular interactions within a very

thin transitional region between two fluids. When a water strider stands or walks on

a water surface, the water surface supports the insect by surface tension force, which

is distributed over the deformed area. The surface tension force is thus modeled as a

continuous volume force existing only over the curved area to a very thin depth.

We define a characteristic color function c(~x) to distinguish two fluids:

c(~x) =


c1, in fluid 1;

c2, in fluid 2;

> c1, < c2, at the interface.

(3.23)

A mollified color function c̃(~x) varies smoothly over a thickness h across the interface,

if it is obtained by convolving the characteristic function c(~x) with an interpolation

function ϕ:

c̃(~x) =
1

h3

∫
V

c(~x′)ϕ(~x− ~x′)dx′3, (3.24)

where ϕ is a normalized bounded and differentiable interpolation function, e.g., B -spline

function[60] according to [14]. The color functions satisfy

lim
h→0

c̃(~x) = c(~x). (3.25)

Therefore, the volumetric surface tension force ~Fsv is given:

~Fsv(~x) = σκ(~x)
∇c̃(~x)

JcK
, (3.26)

where the jump of color between two fluids JcK is equal to 1.0 if c = F [16].

Lafaurie et al[17] designed a surface tension tensor similar to the viscous tensor in

the Navier-Stokes equation.

In the CSF model, the sharp color function c is mitigated to be a smoothed function c̃

using Eq. (3.24). Then the mollified color function c̃ is optionally used in finite difference

schemes for calculating surface normal and curvature, and surface tension force. In the

computations, n̂ is calculated by setting c̃ = ρ and κ is calculated by setting either c̃ = ρ

or c̃ = ρ̃, where ρ̃ is a smoothed density convolved with quadratic B -spline ϕ(l) of degree

l. Notice c̃ = ρ is equivalent to c̃ = F from Eq. (3.20).

B -spline function with second degree ϕ(2)(|~x − ~x′|; h) is chosen in RIPPLE[16] to

estimate the smoothed density at cell (i, j) by interpolating the densities at the eight
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neighboring cell centers with the one at the grid cell center itself:

ρ̃i,j =

M,N∑
i′,j′=−M,−N

ρi′,j′ϕ(2)(|xi,j − xi′,j′|; h)ϕ(2)(|yi,j − yi′,j′|; h), (3.27)

where ϕ(2) 6= 0 for |~x − ~x′| < (l + 1)h/2 = 3h/2 and h is the thickness across the

interface as shown in Figure 5.5. The convolution kernel function in Eq. (3.27) ϕ(2)(|xi,j−
xi′,j′|; h)ϕ(2)(|yi,j − yi′,j′|; h) gives weight parameters in the density interpolation at cell

(i, j); for example, the 3 × 3 stencil matrix in Eq. (B.23). Unfortunately, the mollified

color function by Eq. (B.23) is unable to yield accurate evaluations for surface normal,

surface curvature, and integral continuous surface tension force, and so is the mollified

VOF function.

3.4 Numerical Approach

We solve the governing equations using finite difference approximations, which are

second-order accurate in space and first-order accurate in time. A two-step projection

method is adopted to solve Eqs. (3.1) and (3.2). The momentum equation, namely

Eq. (3.2), is thus split into two parts through a dump velocity ~̃V :

~̃V − ~V n

δt
= −∇ ·

(
~V ~V
)n

+
1

ρn
∇ · τn + ~gn +

1

ρn
~F n

b , (3.28)

and
~V n+1 − ~̃V

δt
= − 1

ρn
∇pn+1. (3.29)

The combination of Eq. (3.29) and the continuity equation,

∇ · ~V n+1 = 0, (3.30)

produces the pressure Poisson equation (PPE),

∇ ·
[

1

ρn
∇pn+1

]
=
∇ · ~̃V

δt
. (3.31)

The procedure to reach the solution of flow field by advancing one time step δt is shown

in Figure 3.1 and outlined briefly as follows:

1. In the first step, ~̃V is computed as a result of advection, viscous force, gravitational

acceleration, and body forces (see Eq. (3.28)) from the previous time level n or the

initial conditions.
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Normalization of the
System of Equations

Begin

Begin Cycle

Compute V

Solve for P n+1

Add CSF model
if σ ≠ 0

Advance V n+1

Update F n+1

Terminate? Stop
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Add (Vw⋅∇)V n

Update Viscosity
µ(T)

t n+1 = t n + δt n

Initialization

Update T n+1

~

→

→

→

Figure 3.1 Flow chart of the numerical approach

2. In the second step, the velocity field of ~̃V is projected onto a zero-divergence vector

field by Eq. (3.31); the pressure at the time level n+1 is thus obtained via a robust

incomplete Cholesky conjugate gradient (ICCG) technique. Then the velocity field

at the time level n+1 is updated from the previous time level by solving Eq. (3.29).

3. In the third step, if temperature is desired in the simulation, Eq. (4.2) is solved.

The viscosity is then updated for the alloy using the Vogel-Fulcher-Tammann for-

mula Eq. (4.24).

4. Meanwhile, F is updated by solving Eq. (3.22). The surface configuration is repre-

sented by the updated F ; accordingly, surface normal and curvature are computed

for the next time level from the gradients of F by Eqs. (3.12), (3.11), and (3.10).

Repetition of these steps utilizing explicit schemes will present the variation of flow

field. Prior to each time advance, a new time step is chosen to meet the requirements
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of numerical stability (discussed later in Section 3.6).

3.5 Grid Generation

A collection of discrete points in a physical field should be properly selected to allow

finite difference schemes or other numerical methods to yield convergent numerical solu-

tions to the flow. A layer of fictitious cells, namely ‘ghost’ cells, as shown in Figure 3.2,

is generated around the meshes of the computational domain, with particular velocity

and pressure distributions in accordance with the desired boundary conditions.

Ghost Cells

Computational Domain

i

j

Ghost Cells

Figure 3.2 Diagram of grids and fictitious cells

In the simulation, structured grids are generated using an algebraic method, in which

the cell spacing is quadratically incremented on both sides from a so-called convergence

point. The grid spacing for a cell directly adjacent to the convergence point is equal

to the user-specified minimum value. Other grid spacings depend on the desired cell

number. The submeshes are separately generated between two convergence points, which

are assigned by users in advance so that linking these submeshes can achieve arbitrary
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variable cell spacings. This enables us to generate finer meshes in the subregions where

flow is expected to change abruptly so that the numerical solutions may reflect the actual

flow variation with economical storage and computation. However, large disparities in

cell spacing should be avoided across submeshes and within a submesh itself. In general,

the difference of adjacent cells must be less than 10 ∼ 20% and cell aspect ratios (δx/δy)

are restricted to between 1/2 and 2. A uniformly spaced mesh can also be generated.

The grid cell size is given as

δxi = xi+1/2 − xi−1/2, δyj = yj+1/2 − yj−1/2, (3.32)

where i and j are indices along the x- and y-directions, respectively, and xi+1/2, xi−1/2,

yj+1/2, and yj−1/2 indicate the right, left, top, and bottom face of a grid cell, respectively.

+
p, F

vi,j+1/2

ui+1/2,j

i-1/2,j+1/2 i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

(i, j)

δxi

δyj

vi,j-1/2

ui-1/2,j

(a) Location of flow variables and VOF func-
tion in a grid cell (i, j)

+
p, F

vi,j+1/2

ui+1/2,j

i-1/2,j+1/2

i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

(i, j)

δxi+1/2

δyj+1/2

(b) Control volumes on a staggered grid

Figure 3.3 Illustration of a grid cell and a control cell

We adopt staggered grid for flow field, on which p and F are located at the center of

a grid cell (i, j) (also called mass control volume) and the velocities (u, v)T are located

on the face of a grid cell other than at the center as shown in Figure 3.3. The horizontal

and vertical momentum control volumes are sketched in the dashed lines, respectively,

in Figure 3.3(b). Accordingly, the momentum control volumes in the two orthogonal

directions have

δxi+1/2 =
1

2
(δxi + δxi+1/2), δyj+1/2 =

1

2
(δyj + δyj+1/2), (3.33)
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respectively, which are not identical to the grid cell size if the grid spacings are not

uniform in each direction.

Harlow and Welch[20] first implemented staggered grid; it can not only prevent a

wavy velocity field and checkerboarding[61], it also yields relatively high accuracy[62].

Sensitivity analysis of a solution to the grid is intended to seek an acceptable grid

on account of computing time, memory requirements, and numerical stability.

3.6 Numerical Stability

Only based on a stable scheme is a plausible numerical solution able to explain a

given engineering problem. Errors from truncation, round-off, or any other sources are

not allowed to grow or oscillate largely and frequently in space, time, or both in any CFD

simulation. To obtain a stable numerical solution, certain restrictions must be imposed

in choosing the mesh increments δxi and δyj, the time increment δt, and the upstream

differencing parameter α (see [16]). The time restrictions to the explicit algorithms in

the numerical approach are outlined as follows.

(1) The limitation of finite difference approximation that fluxes of momentum and F

only take place between adjacent cells finds the famous Courant-Friedrichs-Lewy

condition (CFL) in which a Courant number C must be less than unity. Time step

must satisfy the following constraint in the both directions of a cell:

δt = min

(
C

[
δxi

|uij|

]
, C

[
δyj

|vij|

])
, (3.34)

where Courant number C is defaulted to 0.3 in the computer codes or altered by

the user to any value less than 1.0. The CFL condition requires that the analytic

domain of influence lie within the numerical domain of influence[63], or that the

numerical advancing time step is small enough for a fluid and its free surface will

travel only within a mesh cell.

(2) The momentum due to viscous force diffuses no more than one cell for the same

reason implied in finite difference approximation. The explicit treatment of viscous

stress tensor evaluation subject to a linear stability analysis gives time step

δt < min

(
1

2ν

δx2
i δy

2
j

δx2
i + δy2

j

)
, (3.35)

where ν = µ/ρ is non-zero kinematic viscosity, and the fractional value 1/2 can be

set to 1 or less, e.g., 1/3, for a more conservative estimation of time increment.
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(3) In the CSF model, the surface tension at time tn as a body force is represented by

surface tension; it satisfies the following inequality for a time step marching so that

the linear stability is maintained in resolving the propagation of capillary waves:

δt < min

[
ρδx

3/2
i δy

3/2
j

4πσ

]1/2

. (3.36)

Implicit surface tension algorithms are investigated by Williams[64] and Hou[65] to

alleviate the restrictive constraint of surface tension[19].

(4) If thermal-energy within the flow field is considered, the time increments are evalu-

ated based on non-zero thermal diffusivity analogous to the restriction in (2)[39] as

follows:

δt < min

(
1

2α

δx2
i δy

2
j

δx2
i + δy2

j

)
, (3.37)

where the fractional value 1/2 can be any value less than 1.0 and α is thermal

diffusivity.

3.7 Wall Adhesion

Wall adhesion refers to surface force exertion on a fluid interface at the contact line

where two immiscible fluids and a solid meet together. Wall adhesion force is estimated

in the same manner as in Eq. (3.8) for volumetric force of surface tension. A boundary

condition is applied to the free surface with a contact angle θ:

n̂ = n̂w cos θ + t̂w sin θ, (3.38)

where θ can be a static or a dynamic contact angle, and n̂w and t̂w are wall unit normal

and tangential, respectively, as shown in Figure 3.4. The normal and curvature in

Eq. (3.8) are accordingly adjusted at a contact line.

Obviously, a moving contact angle θM is more appropriate to a moving contact line.

However, we assume in the simulations that θ remains constant, namely the moving

contact angle θM is equal to the static contact angle θS. The error of wall adhesion is

tolerable only when θS or the difference between θS and θM is small.

In reality, the contact angle θ varies with the local wall and fluid conditions, i.e.,

velocity, viscosity, and surface tensions. The moving angle is at least correlated to the

static contact angle[57, 66, 67] and capillary number

Ca ≡ Uµ

σ
, (3.39)
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Figure 3.4 Wall adhesion boundary condition

where U is the contact line velocity. Hoffman (1975)[66] gave an empirical correlation

for θM with Ca and θS. Dussan points out that Hoffman’s correlation does not agree

with the data of Blake & Haynes (1969)[68]. A more accurate moving contact angle is

desired to be well characterized in computations.
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CHAPTER 4 HEAT TRANSFER AND RAPID

SOLIDIFICATION OF ALLOY

Section 4.1 presents the thermal-energy equation and various thermal boundary con-

ditions on a solid wall. A formula is discussed in Section 4.2 for computing temperature

gradients on the faces of interfacial cells. Section 4.3 prepares the homogeneous and

heterogeneous nucleation theory for predicting the nucleation temperature and critical

cooling rate in Chapter 7.

4.1 Thermal-Energy Equation

The thermal-energy equation can be written as follows[69, 70]:

∂e

∂t
+∇ · (~V e) = −p∇ · ~V + τ : ∇~V −∇ · ~q, (4.1)

where e = ρCpT is the internal energy per unit volume, Cp is the specific heat of fluid,

and the symbol ‘:’ denotes a double inner product of tensor. For an incompressible

Newtonian flow far from free surface, Eq. (4.1) reduces to

∂T

∂t
+∇ · (~V T ) =

(
2ν

Cp

)
S : ∇~V + α∇2T (4.2)

where S is the rate-of-strain tensor (see Eq. (3.7)). The thermal diffusivity α in Eq. (4.2)

has the same unit of fluid kinematic viscosity ν and

α ≡ k

ρCp

(4.3)

where k is heat conductivity. In Eq. (4.2), the heat flux vector ~q obeys Fourier’s heat-

conduction law for an isotropic flow such that

~q = −k∇ · T. (4.4)

Notice that in Eq. (4.2) the work due to deformation of fluid −p∇ · ~V vanishes simply

because of the assumption of incompressibility (see Eq. (3.1)). A dimensionless param-

eter Prandtl number Pr describes the ratio of kinematic viscosity to thermal diffusivity:
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Pr ≡ ν

α
. (4.5)

Two explicit finite difference schemes are given in Appendix A for both conservative

and nonconservative forms of heat convection in Eq. (4.2) at a grid cell fully occupied

with fluid 2. In the numerical schemes, the temperature T is located at the center of

each grid cell as shown in Figure 4.1. Unlike in the algorithms for momentum convection,

grid cells are chosen as the control volumes to estimate heat convection.

+
p, F, T

vi, j+1/2

ui+1/2, j

i-1/2,j+1/2 i+1/2,j+

i-1/2,j-1/2 i+1/2,j-1

( i, j )

δxi

δyj

vi, j-1/2

ui-1/2, j

Figure 4.1 Temperature at center of a grid cell (i, j)

The thermal initial condition to Eq. (4.2) is

T (~x, 0) = T0(~x). (4.6)

Various thermal boundary conditions are listed in Table 4.1 according to Newton’s

law of cooling,

qwall = −k
∂T

∂n
= h (Tw − T∞) , (4.7)

where n represents the wall normal.

The velocity gradients ∂u/∂x and ∂v/∂y, for example, in the viscous dissipation

terms as in Eqs. (4.2), (5.54), (C.1), and in the rate-of-strain tensor S as in Eq. (3.7)

are estimated at the center of each grid, whereas ∂u/∂y and ∂v/∂x are computed by

averaging those at four vertices of each grid.
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KTB KTT KTL KTR Thermal Boundary Condition

1 Applied wall temperature Tw

2 Applied heat flux (may be zero)

3 Given heat transfer coefficient

4 Continuative temperature (zero heat flux) ∂T/∂n = 0

Table 4.1 Values of flags (KTB, KTT, KTL, and KTR) and the correspond-
ing types of thermal boundary condition

Some formulations of the thermal-energy equation and boundary conditions on free

surface in the Cartesian and cylindrical coordinate systems are shown in Appendix C.

4.2 Formulation of Temperature Gradients in Interfacial Cells

The thermal boundary conditions on free surface Eq. (2.27) are applied in the com-

putation of temperature gradients for the thermal-energy equation. Eq. (2.27) is written

in vector form,

−k∇T = −~qloss, (4.8)

where ~qloss is given:

~qloss = [h(T − Ta) + εσSB(T 4 − T 4
a )]n̂, (4.9)

with a known ambient temperature Ta.

Because the temperature is continuous within a flow, the temperature gradient at a

control cell center is computed using finite difference scheme between two immersed grid

cell centers. On the face of an interfacial cell as shown in Figure 5.7 in the x-direction,

for example, the temperature gradient is evaluated as follows:

∂T

∂x
=

1

k
[h(T − Ta) + εσSB(T 4 − T 4

a )]n̂x, (4.10)

where T is the temperature at the control cell center. Likewise, in the y-direction it is

estimated by
∂T

∂y
=

1

k
[h(T − Ta) + εσSB(T 4 − T 4

a )]n̂y. (4.11)

T in Eqs. (4.10) and (4.11) can approximately be equal to the temperature at the

neighboring immersed grid cell center if the grid cell center is not immersed. n̂x and n̂y

in Eqs. (4.10) and (4.11) can be computed by the DA algorithm introduced in Section 5.2

of Chapter 5.
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Then the temperature over the entire flow field is estimated by an explicit upwind

finite approximation in Appendix A. All the temperature is imposed to be Ta at those

grid cell centers having F < 0.5.

4.3 Rapid Solidification and Nucleation Theory

It is widely accepted that a phase change from liquid to solid, solidification, involves

heat (and also mass) transfer, release of latent heat, changes in thermophysical prop-

erties, and surface effects[52]. Associated with latent heat, first-order phase transitions

are characterized by specific volume and discontinuous change in specific entropy or

enthalpy at a transition point, e.g., the equilibrium melting temperature Tm in solidifi-

cation. The latent heat of fusion L is extracted in solidification or absorbed by material

while melting at Tm:

ρL = eL(Tm)− eS(Tm), (4.12)

where e is the enthalpy of a liquid or solid state. In equilibrium solidification, the latent

heat can also be derived by the jump of Gibbs free energy between two states[71],

ρL = ∆STm, (4.13)

where ∆S is the entropy of fusion.

In a crystalline solid, the atoms or other particles are arranged in a repetitive lattice

structure over a long range in the atomic scales. Unlike a crystalline solid, an amorphous

(glass) or non-crystalline solid has a disordered microstructure, upon which it exhibits

some different desirable properties, such as corrosion resistance and catalysis. Amor-

phous materials form only when crystallization is suppressed. Rapid cooling is among

those means of manufacturing an amorphous material because it reduces the mobility

of atoms or molecules before they move into the solid lattice structure.

An undercooled (also called supercooled ) liquid is found, for example, when a molten

metal or alloy remains a liquid state below Tm with no solid formation. The interfaces

between liquid and solid states in undercooling appear as transitional regions with non-

zero thickness and the microstructures range among columnar, dendritic, and amorphous

forms depending on external solidification conditions, surface tension and curvature

(Gibbs-Thomson effect ), and material properties. The morphologies of undercooling

liquid/solid interface differ from those of pure materials in equilibrium solidification.

The latter can be approximated as planar and with negligible thickness.
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The undercooled melt with an undercooling amount ∆T = Tm − T is a thermody-

namically metastable system with higher free energy than the solid state at equilibrium

temperature Tm. The difference in free energy ∆G provides a kinetic (also called driving

force) for the system to solidify:

∆G = G(L) −G(S) (4.14)

where G is Gibbs free energy and the superscripts (L) and (S) denote liquid and solid

states, respectively[71].

However, ∆G might not be expected to result in solidification unconditionally. The

melt must cool enough to overcome the nucleation barrier before it creates a stable

growth process of solidification. All crystallization processes start with a nucleation

event in liquid. A critical free energy difference ∆Gc can be derived theoretically for

homogeneous nucleation process in absence of impurities:

∆Gc =

(
16πσ3

LST 2
m

3ρ2L2

)
· 1

∆T 2
(4.15)

where σLS is the surface tension or surface energy per unit area of the melt at the

interface between liquid and solid. It can be estimated using latent heat of fusion L in

J/mol, as follows[72–74]:

σLS =
αL

N
1
3 V

2
3

a

, (4.16)

where α = 0.46 ∼ 0.64 is a dimensionless parameter for crystal/melt interfacial energy,

the Avogadro’s number N = 6.022 × 1023, and Va is the atomic volume of melt. α is

the number of monolayers/area of crystal, which would be melted by an amount of heat

equivalent to σLS in physics[74].

If the Gibbs free energy is greater than ∆Gc, a spherical nucleus forms in the under-

cooled melt with a radius greater than the corresponding critical value Rc:

Rc =
2σLSTm

ρL

1

∆T
. (4.17)

For heterogeneous nucleation as shown in Figure 4.2, the activation energy barrier

∆Gc is lowered by a shape factor f(θ):

∆Gc =

(
16πσ3

LST 2
m

3ρ2L2

)
· 1

∆T 2
· f(θ) (4.18)

where f(θ) < 1 is given in the form of a wetting angle (or called contact angle) θ with

the container wall or a substrate:

f(θ) =
1

4
(1− cos θ)2(2 + cos θ). (4.19)
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wallR ≥ Rc

θ

a nucleus formed with radius R

melt

Figure 4.2 Heterogeneous nucleation due to container wall

Eqs. (4.15), (4.17), (4.18), and (4.19) show the energy barrier ∆Gc is greatly lowered by

larger undercooling ∆T , foreign particles, or container walls.

Once the melt begins to nucleate, a nucleus grows very quick. It takes 10−4 s for alloy

Fe75-Si10-B15 (at.%) to form crystalline state of the material, for instance, as illustrated

in Figures 7.3 and 7.2.

The nucleation frequency or rate Iv (number of nuclei appearing per unit volume in

unit time) takes a Boltzmann form from the viewpoint of statistical mechanics[4, 75]:

Iv = Nvνa exp

[
−∆Gc

kBT

]
(4.20)

where Nv = N/Va is the number of atoms (or molecules) per unit volume, the Boltz-

mann constant kB = 1.3806505× 10−23 J/K, and νa atomic jump frequency. νa can be

estimated by the the Stokes-Einstein relation:

νa =
kBT

3πd3
mµ

, (4.21)

where dm is the effective molecular diameter to be approximated as a molecular jump

distance or interatomic spacing.

Eq. (4.20) takes another form as follows after the magnitude estimation of the pref-
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actor:

Iv =
Kv

µ(T )
exp

[
−∆Gc

kBT

]
(4.22)

where Kv is the kinetic parameter for nucleation (1039 N/m5[42, 73, 74]).

Also, for a heterogeneous nucleation with a surface contact area of nuclei S, the

nucleation rate becomes

Is =
Ks

µ(T )
exp

[
−∆Gc

kBT

]
(4.23)

where Ks is the kinetic parameter for nucleation (1029 N/m4[42, 73, 74]). With the prop-

erties in Section 7.1 of Chapter 7, Kv and Ks can be estimated to be of the same order

as above, respectively. The dynamic viscosity µ(T ) in Eqs. (4.21), (4.20), and (4.23) is

approximated by the Vogel-Fulcher-Tammann formula,

µ = µ0 exp

(
bTm

T − Tg

)
, (4.24)

where µ0, b, and Tg are empirical constants and Tg is the so-called glass temperature.

µ0 is the high temperature limit of viscosity given by

µ0 =
h

Va/N
(4.25)

where h is Planck’s constant (6.626068× 10−34 m2kg/s) and Va/N is the volume of an

atom of liquid[76].

According to [4] and [77], the dynamic viscosities of metallic melts experience a sub-

stantial discontinuous increase over 20 orders of magnitude on crystallization, whereas

they vary continuously from 1 ∼ 0.1 kg/ms above Tm in liquidus states to 1012 kg/ms in

glass formation when supercooling near amorphous temperature Ta or glass temperature

Tg. The solid state is defined arbitrarily to have greater than 1014 kg/ms viscosity[77].

Estimation of the critical or the minimum cooling rate and nucleation temperature

can be performed based on the nucleation frequency I associated with Eq. (4.22) or (4.23)

and the integral follows:

n =

∫ Tn

Tm

I(T )

Ṫ
dT =

∫ tn

0

Idt = 1 (4.26)

where n is the total number of nuclei formed in the undercooled volume of V during

time tn when the temperature drops to the nucleation temperature Tn, and

I = IvV or I = IsS =

(
S

V

)
IsV, (4.27)
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where V is the spherical volume of a molten drop. The nucleation temperature Tn can

be defined as the temperature at which at least one nucleation event should take place

in a unit volume of the undercooled melt. It is the onset temperature at which the melt

begins to solidify. The ratio S/V m−1 and the radius of 10 µm for the spherical volume

V have been given in [42, 43]. In this work, the characteristic volume is chosen as

V =
Va

N × 1%
= 100× 1

6
πd3

m (4.28)

which is equivalent to the volume occupied by 100 atoms or molecules of the material

(see Eq. (7.2)). Then the nucleation temperature is regarded as the temperature at

which 1% of the atom or molecule per unit volume begins to nucleate. Accordingly, the

catalyst contact area S can be computed by

S = V
2
3 = ∆x2, (4.29)

where ∆x is the characteristic length relating to the characteristic area S (see Figure 7.1).

It is found that ∆x is approximately four times the effective molecular diameter dm since

∆x = 3.741dm from Eqs. (4.28) and (4.29). The characteristic length ∆x of control area

or volume ranges between 4 ∼ 5 dm as in Table 4.2. For a circular or spherical control

area/volume, we often choose the diameter as the characteristic length ∆x. Notice ∆x

has nothing to do with the critical radius Rc.

Control area or volume ∆x

Squared or cubic 3.741dm

Circular 4.234dm

Spheric 4.642dm

Table 4.2 Characteristic lengths for various geometries of control volume

If the control area or volume is integrated by time using ∆x = Ut, Tn can also be

found as the ‘nose’ location in a curve called the Temperature Time Transformation

(TTT) diagram and plotted by the integration as

x =
1

3
πIvU

3t4, (4.30)

where x is a fraction crystallized with time to some lower limit of detectability of crys-

tallization, e.g., x = 10−6[4, 78] or 1%[79], and U is the growth rate of crystallization.

The TTT diagram can also be obtained from experiments. The critical cooling rate
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is computed from either TTT diagram or Continuous Cooling Transformation (CCT)

diagram. The power index of t in Eq. (4.30) is given 1 ∼ 4 according to [78].

The classical continuous growth U of the crystal front in Eq. (4.30) is given from the

atomistic theories[4] or experiments[80]:

U =
DL

dm

[
1− exp

(
− VaρL∆T

NkBTTm

)]
, (4.31)

where DL is the liquid self-diffusivity calculated using

DL = νad
2
m. (4.32)

The driving force in Eq. (4.31) is proportional to the undercooling ∆T and the latent

heat L. From Eqs. (4.31), (4.32), and (4.21), one may find the reason an alloy easily

forms an amorphous phase in contrast with the pure metal. An alloy has lower crystal

growth rate than the pure metal simply because it has greater viscosity and larger dm.

Accordingly, if the grain growth of an alloy from the substrate is unable to keep up with

the imposed solidification rate, namely undercooling, crystallization by the grain growth

will not occur even when the undercooling is not high[1].
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CHAPTER 5 IMPROVEMENTS IN THE NUMERICAL

APPROACH

From the image processing and Fourier transform theories, as discussed in Section 5.1,

a new interpolation function convolving with VOF or color function improves the ac-

curacy and facilitates the computation. Then a direct accurate algorithm for surface

normal and curvature of free surface is developed in Section 5.2. Grid and control cells

are classified into empty, interfacial, sublayer, and interior cells according to their dis-

tances to free surface in Section 5.3. Immersed length is introduced in the estimations of

density and volumetric surface tension force at the control cell center. The section also

discusses an estimation of viscous force on free surface. In Section 5.4, I make some cor-

rections to the approach for solving pressure on interfacial cells. Additional translation

terms that emerge in a moving Eulerian system appear in Section 5.5. These terms are

necessary in the numerical simulation of melt spinning. Finally, scalings of the equation

system and the boundary and the initial conditions are contained in Section 5.6.

5.1 Convolution in Image Processing

In the image processing theory, Whittaker Shannon sampling theorem [81–83] states

that a 2D continuous bandlimited function with frequency Bx and By, respectively, can

be fully specified by samples on a grid with spacings, if satisfying

δx 6
1

2Bx

and δy 6
1

2By

, (5.1)

where δx and δy are samples’ spacings in the two directions. Quantity 1/2δx is called

Nyquist frequency in the x-direction, and so is 1/2δy in the y-direction. Apparently, the

Nyquist frequencies increase when the grids are refined; then the edge of an image or a

free surface is enhanced.

Like a signal, a sharp image edge and a free surface are both seen to have higher

frequencies on the frequency domain by Fourier transform (see Eq.(6.20)). In fact, it

is impossible to fully reconstruct a zero-thickness free surface by a series of discrete
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samples, because the band limits Bx and By are otherwise infinite and the free surface is

no longer bandlimited. If the transitional thickness is zero, Eq. (5.1) is not satisfied and

no grid can be found for a discrete F to describe such a free surface. It demonstrates

that a discrete function of 2D fractional area, for example, F is unable to represent a

continuous line segment before this line is approximated as a very thin band of area, as

shown in Figures 5.1 and 5.5. In the CSF model, F actually describes a thin band of

area in the transitional region so that the continuum surface force per unit volume in

3D, or per unit area in 2D, can substitute a surface tension force per unit length.

Smooth by convolution

Sharpen by deconvolution

h

h h

Figure 5.1 Image processing: convolution and deconvolution

Even if a free surface is modeled as a thin transitional layer, which can be represented

by a bandlimited continuous function, e.g., F function, the grid sizes δx and δy are chosen

from CFD criteria such as the CFL condition and other restrictions as in Section 3.6

of Chapter 3, other than from Bx and By in Eq. (5.1). Therefore Eq. (5.1) may not be

satisfied and a folding back phenomenon, called aliasing in image processing, may occur

and incur spurious currents. To preclude aliasing one may either choose smaller grid

sizes or narrow frequency bandlimits.

Obviously, blocking higher frequency is an efficient way of reducing the spurious cur-

rents caused by aliasing errors. The operation of blocking higher frequency is called
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blurring or smoothing an image, which can be manipulated by a lowpass filter or aver-

aging the local grey level in image processing. Blurring or smoothing the discrete F or

c may in turn broaden the transitional layer up to a number of cell sizes; thus it may

lower the frequency bandlimits of free surface. Meanwhile, the smoothed VOF and color

functions may yield better finite difference approximations in the evaluations of surface

normal and curvature. VOF and color functions are believed to inherently produce some

noises because they are not smoothed in the normal direction. However, in the inclined

surface example, by convolution with some selected functions, the sharpness and peri-

odicity of VOF function can be alleviated. A kernel function is thus chosen to convolve

with density, color, and VOF functions as shown in Figure 5.1.

Various lowpass filters are qualified to meet the design requirements essentially from

the convolution theorem (refer to [81–83]). The 2D discrete form of convolution of two

functions is written to approximate the convolution integration as follows:

c̃i,j = ci,j ∗ ki,j =
∞∑

i′,j′=−∞

ci′,j′K(~xi,j − ~xi′,j′), (5.2)

where K(~x−~x′) is called convolution mask or stencil. Because the convolution function

vanishes beyond a finite region, various sizes with equal finite number of discrete samples

in each direction N ×N is instead selected for the convolution mask and the summation

in Eq. (5.2).

Then different types of transfer functions can create various filters[82, 84]. Fast

Fourier Transform (FFT) technique is applied in the numerical computation of c̃(x, y).

An exponential transfer function is often implemented because exponential functions

(also called Gaussian functions) remain in identical form in spatial and frequency do-

mains. However, an efficient and simple smoothing commonly used in blurring images is

neighborhood averaging, which can also be introduced in blurring free surface. If 3× 3

is given for the local average mask size, the constant 1/9 is yielded as the convolution

function K in Eq. (5.2), which follows

1

9

1 1 1

1 1 1

1 1 1

. (5.3)

Undoubtedly, the mollified color function by Eq. (5.3) is the mean value of 3× 3 cells.

The mask for lowpass filter can be extended to any size of N × N . In fact, it is

not desired to be greater than 15× 15 for the sake of computation. The convolution of

color function c(~x) with 1× 1 smooth kernel is the discretization of Heaviside function.
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The orientation and the curvature of an image or free surface are not destroyed by

convolution. Using a 3 × 3 smoothing mask, namely Eq. (5.3), the MAC and ALE

schemes yield good results, which are more accurate with a 9× 9 smoothing mask.

Conversely, deconvolution of smoothed grey level can enhance the image edge (see

Figure 5.1).

5.2 Accurate Evaluation of Surface Normal and Curvature

VOF function in the normal direction of a free surface is a step function, whose deriva-

tive is the Dirac delta function or impulse function with infinite height and infinitesimal

spatial or temporal interval[81]. The direct accurate (DA) algorithm is derived and the

gradient of VOF function in the normal direction is found a rectangular pulse function,

which is an approximate to the impulse function.

θ

L

L

-∆x ∆x-∆x∆x

free surface

(x,y)

Figure 5.2 A free surface inclined in a control cell

In Figure 5.2, we model a free surface using Piecewise Liner Interface Construction

(PLIC) method[7, 85]. Less strictly, a cell side is called ‘wet’ if it is intersected with a

free surface. In an L × L squared control cell, for example, we suppose that the free

surface is horizontally oriented, i.e., −45◦ 6 θ 6 45◦ and both left and right sides are

wet as shown in Figure 5.2. We have Taylor’s series expansion of VOF function about
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the center (x, y),

F (x + ∆x, y)− F (x−∆x, y)

2∆x
=

(
∂F

∂x

)
(x,y)

+O(∆x2), (5.4)

where ∆x is a small deviation in the x-direction off point (x, y). Meanwhile, it can be

derived from the piecewise-approximation of free surface:

F (x + ∆x, y)− F (x−∆x, y)

2∆x
=

tan θ

L
=

1

L

[
−
(

∂F

∂x

)/(
∂F

∂y

)]
(x,y)

, (5.5)

since F (x + ∆x, y)− F (x−∆x, y) = (2∆x)L tan θ/L2.

Therefore, we have a new formula to evaluate gradients of VOF function at the center

of a control cell for a horizontally-oriented free surface from Eqs. (5.4) and (5.5):(
∂F

∂x

)
(x,y)

=
F (x + δx/2, y)− F (x− δx/2, y)

δx(
∂F

∂y

)
(x,y)

= − 1

Nδy
,

(5.6)

where δx = 2∆x is the mesh size of the x-direction and N is the number of δy for one

control cell size, namely L = Nδy. It demonstrates that Eq. (5.6) is a different fashion

from those MAC and ALE-like schemes; for instance, if the free surface is horizontally-

oriented and L = δy, the gradient of F in the y-direction is equal to −1/δy.

From Eq. (5.6), the formulation for surface normal computed using N = 1 and VOF

function, namely c̃ = c = F̃ = F , is derived as follows if the grid is not uniform:(
∂F

∂x

)
i+1/2,j

=
Fi+1,j − Fi,j

1

2
(δxi + δxi+1)(

∂F

∂y

)
i+1/2,j

=

(
∂F

∂y

)
i−1/2,j

= ± 1

δyj

(5.7)

and (
∂F

∂x

)
i,j+1/2

=

(
∂F

∂x

)
i,j−1/2

=
1

2

[(
∂F

∂x

)
i+1/2,j

+

(
∂F

∂x

)
i−1/2,j

]
(

∂F

∂y

)
i,j+1/2

=

(
∂F

∂y

)
i,j−1/2

= ± 1

δyj

(5.8)

for horizontally-oriented free surface as shown in Figure 5.3. Likewise, we have a formu-

lation for vertically-oriented free surface (not shown in the figure). The negative signs

in Eqs. (5.7) to (5.8) are chosen when fluid 2 is lower than fluid 1; otherwise, they can

be replaced by the positive signs.
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All the formulations above are valid only when the corresponding sides of a cell are

wet; for example, the horizontally-oriented free surface as noted in Figure 5.3. The

wetting condition can be met by averaging color or VOF function (see Section 5.1).

The orientation of free surface at one control cell is roughly predetermined by the

ALE algorithm or by the VOF functions distributed surrounding the control cell center.

i+1/2, j
i, j i+1, j

free surface

Fi, j

Fi+1, j
(∂F/∂x, ∂F/∂y)i+1/2, j

δxi+1 /2δxi /2wet

wet

Figure 5.3 Side wetting and horizontally
inclined free surface

0

3

6

9

i, j i+1, j

i+1, j+1i, j+1

free surface

Figure 5.4 Illustration of a corner-shaped
configuration of free surface

Under some certain circumstances when a free surface is not continuous as shown

in Figure 5.4, a specific angle is simply imposed at the corner cell. In reality, these

right-angle free surfaces will evolve physically to be continuous under surface tension.

From Eq. (5.6), we can find the relationship between the gradients of F and F̃

functions,

∂F

∂x
= N

(
∂F̃

∂x

)
N×N

and
∂F

∂y
= N

(
∂F̃

∂y

)
N×N

, (5.9)

which means the accuracy of surface normal cannot be improved by the averaging mask

of Eq. (5.3).

The gradient values in ∇F at each cell center can be computed by averaging four

components at the midpoints of four faces (refer to Figure 5.3). Then from Eqs. (3.12)

and (3.11), we can have unit normals at the grid center and the midpoint of each grid

face. The unit normal at the cell center can either be computed by averaging those at
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the face midpoints, for example, at the grid cell (i, j),

n̂i,j =
1

4

(
n̂i+1/2,j + n̂i−1/2,j + n̂i,j+1/2 + n̂i,j−1/2

)
. (5.10)

The discrete form of Eq. (3.10) is presented for computing surface curvature as follows:

κi,j = −
(

n̂xi+1/2,j − n̂xi−1/2,j

δxi

+
n̂yi,j+1/2 − n̂yi,j−1/2

δyj

)
. (5.11)

Notice surface curvature is not evaluated directly from ∇F .

5.3 Estimation of Density and Reformulation of Tension Force

In the reconstructed CSF model, the surface tension force is restricted within a

narrow region of O(h) as shown in Figure 5.5, because the effect of surface tension force

diminishes to zero inside fluids in physics.

φ

Transitional Region

h

Figure 5.5 A circular droplet with a transitional region of thickness h

Apparently, an empty grid cell has zero VOF function, whereas an interfacial cell

can be defined as having non-zero VOF function and at least one empty neighboring

grid cell. Then we have three types of interfacial cell with 0 < F 6 1.0 as shown in
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Figure 5.6:

F (~x, t) =


> 0.5 and 6 1.0 with the center immersed in free surface;

0.5 with the center on free surface;

> 0 and < 0.5 with the center outside free surface.

(5.12)

If F = 0.5, the grid cell center always lies on the free surface no matter what the tilting

angle of free surface is, simply because the cell is rectangular and the free surface within

the cell is constructed by PLIC. The center is outside fluid 2 when F < 0.5 and it is

immersed in fluid 2 if F > 0.5.

F = 1

interior cell

0 < F < 0.5

F = 1

F = 1

free surface

interfacial cell

sublayer cell

F = 0.5 F > 0.5

fluid 2

F = 1

F = 1F = 1

hybrid sublayer cell

Figure 5.6 Categories of empty, interfacial, sublayer, and interior cells

Inside fluid 2, an interior grid cell is strictly defined as having unity VOF function

and distance from the center to free surface greater than one grid size h. Between an

interfacial grid cell and an interior grid cell, there may be a sublayer grid cell also having

unity VOF function but distance to free surface less than h in Figure 5.6. Nevertheless,

a sublayer cell becomes an interfacial cell if it has an empty neighboring cell (not shown).

This is why an interfacial cell may have unity VOF function.
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Hence, we have the categories of empty cell (F = 0), interfacial cell (0 < F 6 1.0),

sublayer cell (F = 1.0), and interior cell (F = 1.0) as illustrated in Figures 5.5 and 5.6.

Likewise, in order to estimate surface tension at control cell centers, we need to

classify control cells into three types: interfacial, sublayer, and interior control cells,

as shown in Figure 5.8. An interfacial control cell of one direction has distance from

the control cell center to free surface less than h/2 in the direction, whereas an interior

control cell has distance to free surface greater than 3h/2. A sublayer control cell has

distance to free surface between h/2 and 3h/2.

In Eq. (3.2), the density at the center of a control cell (i + 1/2, j), for example,

is estimated by interpolating the densities of two adjacent grid cells given in [16]. As

a matter of fact, RIPPLE[16] failed in the simulation of a stationary inclined plane

perpendicular to gravity (see Figures 6.24 through 6.26). The static pressures inside

the inclined planar surface are erroneous. The linear interpolation of density in an

interfacial cell is neither physical nor accurate. Thus it is believed to be a source of

spurious currents.

i+1/2,j

a b

δxi /2 δxi+1 /2

i,j
i+1,j

free surface

fluid 2

Figure 5.7 Estimation of density between two interfacial cells

In this work, a new way to compute the density on interfacial control cells is proposed

as follows; for example, in the x-direction for a control cell (i + 1/2, j) as bounded in
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the dashed lines in Figure 5.7:

ρi+1/2,j =
a + b

1

2
(δxi + δxi+1)

ρf , (5.13)

where a+b is the immersed portion between two grid centers also shown in the figure. If

both centers (i, j) and (i+1, j) are immersed, namely a+ b = (δxi +δxi+1)/2, Eq. (5.13)

reduces to ρi+1/2,j = ρf . The immersed length is computed in the light of the surface

normal vector and F function.

Consistent with the concept of immersed length, the volumetric tension force at the

interfacial control cell (i + 1/2, j), for example, is

Fsvxi+1/2,j =

σκi,j

(
∂F

∂x

)
i,j

a + σκi+1,j

(
∂F

∂x

)
i+1,j

b

1

2
(δxi + δxi+1)

, (5.14)

where a + b is the same as that in Eq. (5.13) shown in Figure 5.7.

c

f

δxi /2

δyj /2

i,j

i+1,j+1
interfacial control cell center

Fi,j>0.5

Fi+1,j+1<0.5

Fi+1,j=1.0

e e’

f’

d

δxi+1 /2

δyj+1 /2

i,j-1/2

i-1/2,j i+1,j

fluid 1

free surface

interior control cell center

i+3/2,ji+1/2,j

i+1,j+1/2

i,j+1/2

sublayer control cell center

fluid 2

i+1,j-1/2

Figure 5.8 Estimation of surface tension force in the x- and y-directions
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At an interior control cell center, the surface tension effect vanishes. For example,

at (i + 3/2, j) in Figure 5.7:

Fsvxi+3/2,j = 0 (5.15)

for the x-component volumetric surface tension estimation.

For control cell (i + 1/2, j) and (i + 1, j − 1/2) in Figure 5.7, which are two sublayer

control cell centers, we have, respectively, with some modifications to Eq. (5.14):

Fsvxi+1/2,j =

σκi,j

(
∂F

∂x

)
i,j

δxi

2
+ σκi+1,j

(
∂F

∂x

)
i+1,j

c

1

2
(δxi + δxi+1)

(5.16)

and

Fsvyi+1,j−1/2 =

σκi+1,j

(
∂F

∂y

)
i+1,j

d

1

2
(δyj + δyj+1)

. (5.17)

The weight parameters c and d in Eq. (5.17) are computed as

c =
δxi+1

2
− a

δxi+1

δxi

, d =
δyj

2
− b

δyj

δyj+1

, (5.18)

where 0 6 a 6 δxi/2 and 0 6 b 6 δyj+1/2, respectively, as shown in Figure 5.8. Notice

in Figure 5.8, the dashed lines are plotted parallel to the free surface one h away in the

two directions inside fluid 2.

Eq. (5.16) is also applicable to the sublayer control cell (i, j − 1/2), though in the

y-component form. Because the control cell center (i+1, j− 1/2) has a distance greater

than h to free surface in the y-direction, the contribution by grid cell (i + 1, j − 1) to

the volumetric surface tension at (i + 1, j − 1/2) vanishes in Eq. (5.17).

h is the sole length scale of the transitional region, a uniform grid with equal spacings

is accordingly preferred to generate for surface tension estimation. Hence we have δxi =

δyj = h, e′ = e, and f ′ = f in Eq. (5.18).

On the free surface where F < 1, the concept of immersed length is also applied in

the computation of the velocity gradients; for example, if the horizontal centerline of

a grid is not immersed ∂u/∂x = 0 in the computation of the viscous dissipation term.

However, the immersed length is not used as a weight parameter in the viscous force

because it appears in both viscous tensor and density estimations.

For a surface flow, if the surface tension is stronger than the viscous effect in the

normal direction and the surface tension coefficient is constant, Eq. (2.25) can be im-

plemented in the calculation of viscous force on free surface. As shown in Figure 5.9,
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the viscous contribution in ũi+1/2,j vanishes in Eq. (3.28) because of Eq. (2.25), whereas

the viscous force is estimated for ũi+3/2,j. Obviously, the viscous effect is not considered

in the computation of ũi−1/2,j because fluid 1 has negligible viscosity. Likewise, the

vertical dump velocity on free surface is estimated in the same way that the viscous

friction effect is neglected on free surface, namely Eq. (2.25).

i+1/2,j

i,j

i+1,j

free surface

fluid 2

ui-1/2,j ui+1/2,j

ui+3/2,j

Figure 5.9 Illustration of viscous force estimation on free surface

5.4 Enforcement of Pressure in Interfacial Cells

In the modified approach for pressure solution, we impose the ambient pressure as

the boundary conditions on grid cells where F = 0.5 such that

p = p1, (5.19)

as shown in Figure 5.10(a). If the center of a grid cell is not immersed, namely F < 0.5,

Eq. (5.19) is also applicable, obviously.

Only on those cells having F > 0.5 as shown in Figure 5.10(a), the pressure is sought

in solving the PPE, i.e., Eq. (3.31), simply because the pressure varies with flow and

surface tension. Notice in Figure 5.10, p2 is unknown, and p1 is a given ambient pressure.

From Figure 5.10(a), the modified boundary condition for the PPE compresses the

interfacial region of two fluids, compared with the approach in RIPPLE in Figure 5.10(b).
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p2

p2

p2p2p2p2p2

p2

p1

p1

p1 p1 p1

p1

p2

p1

p1p1p1p1

fluid 1

fluid 2

(a) Modified dynamic boundary condi-
tion

p2

p2

p2p2p2p2p2

p2

p1

p2

p2 p2 p1

p1

p2

p2

p1p1p1p1

fluid 1

fluid 2

(b) Dynamic boundary condition in RIP-
PLE

Figure 5.10 Pressure enforced on interfacial cells

The criterion of 0.5 VOF value for an immersed grid center is still valid in 3D as

long as rectangular parallelepiped grid cells are generated and free surface is piecewise

reconstructed by planes. More computation is required to determine whether a grid cell

immersed or not, depending on local curvature if the free surface is reconstructed by

quadratic or spline approximation in both 2D and 3D computations. Apparently, the

criteria are then no longer a constant. They may be less than 0.5 for a concave free

surface and greater than 0.5 for a convex free surface.

Nevertheless, there is an issue of velocity on the face between two interfacial grid

cells both having less than 0.5 F functions as shown in Figure 5.11. According to

the modified approach in this section, at these two grid cell centers the pressures are

both p1 (see cells (i, j) and (i + 1, j) in Figure 5.11). Then the velocity at the center

of control cell (i + 1/2, j) is computed to be zero because the pressures are equal, so

fluid 1 is motionless. However, we notice that velocities in both normal and tangential

directions continuously change across the free surface unlike pressure and density. Fluid

1 accelerates so quickly and moves at the same velocity with fluid 2 because the density

and viscosity of fluid 1 are both negligibly small. Thus, we simply give

ui+1/2,j = ui+1/2,j−1 (5.20)

where ui+1/2,j is the velocity between two grid cells both with VOF function less than

0.5 next to fluid 2, and the vertical velocity at the control center (i, j + 1/2) also as
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i+1/2,j-1

ui+1/2,j-1

δyj
pi,j=p1

pi,j-1

free surface

fluid 2

pi+1,j=p1

δxi

i+1/2,j Fi+1,j<0.5Fi,j<0.5

i+1,j
i,j

vi,j-1/2

pi+1,j-1

ui+3/2,j

vi,j+1/2

vi+1,j-1/2

vi+1,j+1/2

ui+1/2,j
ui-1/2,j

Figure 5.11 Velocity rectification outside free surface

shown in Figure 5.11,

vi,j+1/2 = vi,j−1/2 +
δyj

δxi

(
−ui,j+1/2 + ui,j−1/2

)
, (5.21)

to ensure mass conservation. Likewise, vi+1,j+1/2 can be computed in the same way as

Eq. (5.21).

A paradox that a non-zero velocity exists between the points both having p1 arises

in the modified approach because fluid 1 is oversimplified to be a vacuum with pressure

p1. Eqs. (5.20) and (5.21), however, rectify the simplification of fluid 1.

5.5 Translation Terms in Equations

A molten alloy is injected from the nozzle to the rotating wheel, as shown in Fig-

ure 1.1. In the simulation of melt spinning, there are two coordinate systems, which are

fixed to the nozzle and the spinning wheel, respectively (see Figure 5.12).

Although the grids generated in these two systems coincide with each other at every

time level, they have a relative motion of velocity Uw, the wheel linear speed. Thus, we
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Uw

V

spinning wheel

nozzle

x’

y’

0’

0 x

y

The two coordinate systems have a relative velocity of Uw.

Figure 5.12 Two coordinate systems in melt spinning

have velocity relation

~Vj/n = ~Vj/w + ~Vw/n and ~Vw/n = Uw ı̂, (5.22)

where the subscript j represents the jet flow and n represents the nozzle. Henceforward,

we ignore the subscript j/n for simplicity. Substitution of ~Vj/w with ~Vj/n in the governing

equations, Eqs. (3.1), (3.2), and (4.2), respectively, gives

∇ · ~V = 0, (5.23)

∂~V

∂t
+∇ ·

(
~V ~V
)

=
(

~Vw/n · ∇
)

~V − 1

ρ
∇p +

1

ρ
∇ · τ + ~g +

1

ρ
~Fb, (5.24)

∂T

∂t
+∇ · (~V T ) =

(
~Vw/n · ∇

)
T +

(
2ν

Cp

)
S : ∇~V + α∇2T. (5.25)

Eq. (5.23) remains unchanged because ~Vw/n is a constant vector. Eq. (5.24) has an extra

term on the RHS regarding the translation (convection) momentum that the spinning
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wheel exerts on the molten jet, and so does Eq. (5.25). These extra terms necessarily

appear in the equations after the jet impinges on the wheel. In updating velocity, the

extra convection term is added in Eq. (3.29) so that

~V n+1 = ~̃V − δt

ρ
∇pn+1 + δt(~Vw/n · ∇)~V n. (5.26)

A complete upwind finite difference scheme is adopted to calculate the gradient of ve-

locity in Eq. (5.26). The upwind scheme is also used in updating temperature due to

the thermal convection by the moving wheel:

T n+1 = T̃ + δt
(

~Vw/n · ∇
)

T n, (5.27)

where T̃ is contributed by thermal convection, viscous dissipation, and diffusion terms.

Notice in Eqs. (5.26) and (5.27) δt is chosen from Eqs. (3.34) to (3.37).

5.6 Normalization of Formulation

In many engineering problems such as a melt spinning, physical domains often have

large aspect ratios and the velocity in one direction is often larger than that in the other

by one or more orders of magnitude. If the governing equations are transformed into

nondimensional forms based on some deliberately selected reference quantities, it may

not only permit the flow variables to be properly scaled in computation but also yield a

group of important dimensionless parameters revealing general underlying similarities.

On the transformed computational domain, the grid can be generated with a desirable

aspect ratio, and a suitable time increment can be selected.

The advection of VOF function is invariant in the scaling because F is already

normalized:
∂F

∂t∗
+
(

~V ∗ · ∇
)

F = 0, (5.28)

where t∗ is dimensionless time defined in Eq. (5.29).

By selecting proper quantities for reference lengths Lx and Ly, velocities U and V ,

the ambient pressure pa, and the fluid density ρf , we have 2D dimensionless variables as
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follows in asterisks:
x∗ =

x

Lx

, y∗ =
y

Ly

,

u∗ =
u

U
, v∗ =

v

V
, t∗ =

t

Lx/U
,

p∗ =
p− pa

ρfU2
, ρ∗ =

ρ

ρf

,

F ∗
bx =

Fbx

ρfU2/Lx

, F ∗
by =

Fby

ρfV 2/Ly

g∗x =
gx

U2/Lx

, g∗y =
gy

V 2/Ly

,

(5.29)

where the dimensionless density ρ∗ = 1 on any interior cells and consistent with the defi-

nition of VOF function in Eq. (3.20). Eqs. (5.23) to (5.25) are normalized by introducing

the above dimensionless variables in 2D forms as follows:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (5.30)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
=U∗

w

∂u∗

∂x∗
− 1

ρ∗
∂p∗

∂x∗
+

1

Re

[
∂2u∗

∂x∗2
+

(
Lx

Ly

)2
∂2u∗

∂y∗2

]
+

1

ρ∗
F ∗

bx + g∗x,

(5.31)

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
=U∗

w

∂v∗

∂x∗
−
(

Lx

Ly

)2(
1

ρ∗
∂p∗

∂y∗

)
+

1

Re

[
∂2v∗

∂x∗2
+

(
Lx

Ly

)2
∂2v∗

∂y∗2

]
+

1

ρ∗
F ∗

by + g∗y ,

(5.32)

where ~V ∗ = u∗ı̂ + v∗̂ and the inverse of the dimensionless kinematic viscosity ν∗ is

Reynolds number Re, namely

1

ν∗
= Re ≡ LxU

ν
. (5.33)

If the characteristic velocity U is chosen as the wheel speed Uw, U∗
w = 1 in Eqs. (5.31)

and (5.32).

The continuity equation remains unchanged (compare Eq. (3.1) with (5.30)) because

the relation as follows is applied:
U

Lx

=
V

Ly

. (5.34)
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The advection terms in Eqs. (5.31) and (5.32) remain the same as their dimensional

counterparts in Eq. (3.2). The viscous stress tensor matrix in Eq. (3.7) becomes

[τ ] =
Uµ

Lx

 2
∂u∗

∂x∗

(
Lx

Ly

)
∂u∗

∂y∗
+

(
Ly

Lx

)
∂v∗

∂x∗(
Ly

Lx

)
∂v∗

∂x∗
+

(
Lx

Ly

)
∂u∗

∂y∗
2
∂v∗

∂y∗

 (5.35)

from which the viscous terms in Eqs. (5.31) and (5.32) are derived. From Eq. (3.8), we

have dimensionless volumetric surface tension forces in the x- and y-directions, respec-

tively,

F ∗
bx = F ∗

svx = σ∗κ∗
∂F

∂x∗
g(~x) (5.36)

and

F ∗
by = F ∗

svy = σ∗κ∗
(

Lx

Ly

)2
∂F

∂y∗
g(~x) (5.37)

where σ∗ is a dimensionless surface tension coefficient:

σ∗ =
σ

ρfU2Lx

(5.38)

and the inverse is Weber number,

1

σ∗
= Web ≡ ρfU

2Lx

σ
. (5.39)

From Eqs. (5.33), (5.39), and (3.39), we have

Ca =
Web

Re
. (5.40)

We define dimensionless surface normal vector as follows:

~n∗ =
∂F

∂x∗
ı̂ +

(
Lx

Ly

)
∂F

∂y∗
̂, (5.41)

such that

~n∗ = ~nLx and n̂∗ = n̂. (5.42)

The dimensionless curvature in Eqs. (5.36) and (5.37) is then given as follows:

κ∗ = κLx and κ∗ = −
[
∂n̂∗x
∂x∗

+

(
Lx

Ly

)
∂n̂∗y
∂y∗

]
. (5.43)

g(~x) in Eqs. (5.36) and (5.37) is equal to either 1 or 2F which is normalized.
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The normalized PPE is derived from Eq. (3.31):[
∂

∂x∗

(
1

ρ∗n
∂p∗n+1

∂x∗

)
+

(
Lx

Ly

)2
∂

∂y∗

(
1

ρ∗n
∂p∗n+1

∂y∗

)]
=
∇ · ~̃V ∗

δt∗
(5.44)

where the dimensionless tilde velocity ~̃V ∗ = ũ∗ı̂+ ṽ∗̂ is normalized by two characteristic

velocities U and V , respectively:

ũ∗ =
ũ

U
, ṽ∗ =

ṽ

V
. (5.45)

Substitution of the dimensionless variables gives the normalized Eq. (3.29) in scalar

forms:
u∗n+1 − ũ∗

δt∗
= U∗

w

∂u∗n

∂x∗
− 1

ρ∗n
∂p∗n+1

∂x∗
(5.46)

and
v∗n+1 − ṽ∗

δt∗
= U∗

w

∂v∗n

∂x∗
− 1

ρ∗n

(
Lx

Ly

)2
∂p∗n+1

∂y∗
. (5.47)

According to the transformations in Eq. (5.29), the normalized boundary conditions

can be simply expressed as follows:

~V ∗ = 0 or ~V ∗ = ~V ∗
wall (5.48)

for no-slip boundary conditions, and

n̂∗wall · ~V ∗ = 0 (5.49)

for slip-free (no penetration) boundary conditions at any solid wall, where n̂∗wall is the

unit normal to the wall in the transformed system (~x∗, t∗). The normalized pressure

jump across the interface between liquid and gas is

p∗s = p∗ − p∗v = σ∗κ∗. (5.50)

In the normalization of initial conditions, according to the transformation Eq. (5.29),

velocity, pressure, and VOF function can be specified as follows:

~V ∗(~x∗, 0) = ~V ∗
0

p∗(~x∗, 0) = p∗0

F (~x∗, 0) = F0

(5.51)

where F is not asterisked because it is a normalized variable.
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Scaling is also applied to the thermal-energy Eq. (4.2). In a 2D Cartesian system,

we have:

∂T ∗

∂t∗
+

∂(u∗T ∗)

∂x∗
+

∂(v∗T ∗)

∂y∗
=U∗

w

∂T ∗

∂x∗
+ 2

Ec

Re

(
S∗ : ∇∗~V ∗

)
+

1

Pe

[
∂2T ∗

∂x∗2
+

(
Lx

Ly

)2
∂2T ∗

∂y∗2

]
,

(5.52)

where Ec is called Eckert number, defined as:

Ec ≡ U2

Cp(T∞ − Tw)
(5.53)

and the viscous dissipation term is

S∗ : ∇∗~V ∗ =

(
∂u∗

∂x∗

)2

+
1

2

[(
Lx

Ly

)
∂u∗

∂y∗
+

(
Ly

Lx

)
∂v∗

∂x∗

]2

+

(
∂v∗

∂y∗

)2

, (5.54)

with the transformations in Eq. (5.29) and dimensionless temperature

T ∗ =
T − Tw

T∞ − Tw

. (5.55)

A dimensionless parameter analogous to Reynolds number Peclet number appears on

the RHS of Eq. (5.52):

Pe ≡ ULx

α
. (5.56)

We know Prandtl number is the ratio of Peclet number to Reynolds number,

Pr =
Pe

Re
. (5.57)

The normalized initial conditions for temperature are modified to be

T ∗(~x∗, 0) = T ∗
0 . (5.58)

Finally, the normalized temperature boundary conditions on free surface are

∂T ∗

∂x∗
=

Lx

k
[hT ∗ + εσSBT ∗(T + Ta)(T

2 + T 2
a )]n̂∗x, (5.59)

in the x-direction and

∂T ∗

∂y∗
=

Ly

k
[hT ∗ + εσSBT ∗(T + Ta)(T

2 + T 2
a )]n̂∗y (5.60)

in the y-direction, respectively, where (T + Ta)(T
2 + T 2

a ) is computed based on the

temperature at the previous time level.
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CHAPTER 6 NUMERICAL VERIFICATION

The broken dam problem in Section 6.1 is chosen to test the computer program in the

comprehensive sense of quantitative accuracy; whereas the numerical results of undular

bore in Section 6.2 show the gravitational force simulation. The sluice gate problem

in Section 6.3 is a trial to the scalings of the equation system, which is discussed in

Section 5.6 of Chapter 5. Section 6.4 discusses accurate calculations of surface normal

and curvature for two examples using the DA algorithm. Sections 6.4 and 6.5 show that

capillary currents occur if the surface curvatures are not equal along free surface. The

spurious currents have been thoroughly eliminated by the efforts made in the work.

For the test problems, the experimental data are quoted and the analytical solutions

have been derived to compare with the numerical simulations. Also, sensitivity assess-

ment of grid resolution helps us seek solutions independent of grid resolution in each test

problem. Using Tecplot I have created some animation to imitate these hydrodynamic

and capillary phenomena.

6.1 Broken Dam Problem

2D broken dam flow is an approximation to the motion of a rectangular column of

water onto a dry rigid horizontal ground after a sudden destruction of the confining wall,

as show in Figure 6.1. It is not only of practical interest but also a good example of

validation with relatively simple boundary and initial conditions.

Martin and Moyce[86] have performed an experimental study, examining 2D collapses

of rectangular and semicircular sections, and an axially symmetrical collapse of vertical

circular cylinders. After a sudden heavy electrical current melted the container of waxed

paper diaphragm, motions of the water surge front and residual height of the water

column were recorded by a high-speed camera at a series of selected time intervals.

Table 6.1 lists the tests, the asterisked of which have been simulated in the work (see

Table 6.2). γ in the tables is defined as aspect ratio of the initial water height h versus

the initial base of water column a, namely γ = h/a, as noted in Figure 6.1.



58

h
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Figure 6.1 Water columns before and after a sudden collapse of the dam

Stoker[87] has sought analytical solutions for both wet and dry downstream grounds.

However, the water column has an infinity extension in the other horizontal direction.

Hirt and Nichols[10] made some comparisons of their numerical simulations with Martin’s

experimental data[86] to validate the VOF method and the H-N algorithm.

Conventionally, for a hydrodynamic problem like the broken dam problem, the char-

acteristic flow velocity is usually defined as

u =
√

gh, (6.1)

where the downward gravity g = 981 cm/s2 is the only body force acting on the water

column. In Table 6.2, Reynolds number and Galileo number are computed, respectively,

as

Re =
ua

ν
and Ga =

a3g

ν2
, (6.2)

where u is the characteristic velocity of flow as given in Eq. (6.1). Ga is ratio of body

force to viscous force of fluid; Re has a relation with Ga, namely Re =
√

γGa from

Eqs. (6.2) and (6.1). The capillary number calculated based on the velocity of Eq. (6.1)

is 0.01 ∼ 0.014.
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Lateral Profile Aspect Ratio γ Base a (inch)

rectangular 1 : 1 2
1

4

∗
, 4

1

2

2 : 1 1
1

8

∗
, 2

1

4

∗

4 : 1 1
1

8

semicircular 1 : 1 2

vertical circular 1 : 1 2
1

4

cylinder 2 : 1 2
1

4

Table 6.1 Experiments for the broken dam problem

The following dimensionless quantities of length describe the water column:

Z ≡ z

a
and H ≡ η

h
(6.3)

where z is the front position and η is the residual height of fluid column (see Figure 6.1).

We often use
√

L/g as the characteristic time scale for a typical hydrodynamic

problem, where L is a characteristic length. In the computations of front motion and

discharge rate of the fluid column, we choose L = h or a, which is consistent with our

common sense that the higher the water column is, the faster the water front moves; the

Aspect Ratio γ Base a (in.) ν (cm2/s) Re Ga

1 : 1 2
1

4
9793.7× 10−6 43693 1.9091× 109

2 : 1 1
1

8
9793.7× 10−6 21847 0.2386× 109

2 : 1 2
1

4
9793.7× 10−6 61791 1.9091× 109

Table 6.2 Numerical simulations for the broken dam problem



60

larger the water base is, the slower the water volume discharges. We also find that the

front motion relates to the aspect ratio of water column γ. Accordingly, we have two

dimensionless times[86], respectively,

T ≡ tγ

√
g

h
= t

√
γ

g

a
and τ ≡ t

√
g

a
, (6.4)

for front motion and volume discharge in the problem.
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Re = 21847, g = 981 cm/s2,
a = 2.8575 cm, h=5.715 cm, T = 2

Figure 6.2 The surge front Z obtained on various mesh resolutions along
the x-direction

The sensitivity of numerical solutions to grid resolution is examined in Figures 6.2

and 6.3 at T = 2 or τ = 1.414 for the rectangle water with base a = 1
1

8
in, where

the mesh aspect ratio is defined as δx/δy. The physical domain of 16 cm × 6.4 cm is

thus divided into 160× 64 uniform meshes (δx = δy = 0.1 cm). In the rest simulations

(a = 2
1

4
in), we chose δx = δy = 0.2 cm from the independence analysis of mesh

resolution which is not shown. In the simulations, the computer program automatically

adjusted the time steps. Despite the absence of water viscosity in [86], a water viscosity

ν = 0.0097937 cm2/s at indoor temperature 20◦C and a surface tension coefficient 73.05
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dynes/cm were used. The experimental data in Figures 6.2 and 6.3 are quoted from

Martin and Moyce[86], and so are those in Figures 6.5 through 6.9.

Node number in the y-direction
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Experimental
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Mesh Cell Aspect Ratio = 1:1
Mesh Cell Aspect Ratio = 1:2

Re = 21847, g = 981 cm/s2,
a = 2.8575 cm, h=5.715 cm, τ = 1.414

Figure 6.3 The residual height H obtained on various mesh resolutions
along the y-direction

The configuration development of water column with time is shown in Figure 6.4. The

ambient pressure p1 is imposed on those not-immersed cell centers (refer to Section 5.4

of Chapter 5). The modification is thus verified by comparing the numerical data with

those from the uncorrected approach, and the experimental data as demonstrated in

Figure 6.5 through 6.9. Figures 6.5 through 6.7 present the water front positions with

time at Re = 43693, 21847, and 61791, respectively. Figures 6.8 and 6.9 show that the

program simulations agree well with the experimental measurements of residual height

of water column.
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T = 0.0

T = 1.0

T = 1.5

T = 2.0

T = 2.5

Figure 6.4 Free surface changing with time in the broken dam problem



63

T

Z

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental
Corrected with Ambient Pressure
Uncorrected

Figure 6.5 Water front moving with time, the aspect ratio of the column

γ = 1 : 1 with base a = 2
1

4
in., Re = 43693, Ga = 1.9091×109

T

Z

0 1 2 3 4
1

2

3

4

5

Experimental
Corrected with Ambient Pressure
Uncorrected

Figure 6.6 Water front moving with time, the aspect ratio of the column

γ = 2 : 1 with base a = 1
1

8
in., Re = 21847, Ga = 0.2386×109
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Figure 6.7 Water front moving with time, the aspect ratio of the column

γ = 2 : 1 with base a = 2
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in., Re = 61791, Ga = 1.9091×109
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Figure 6.8 Height of the residual square column of water, base a = 2
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in.
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Figure 6.9 Height of the residual rectangular column of water with aspect
ratio γ = 2 : 1

6.2 Undular Bore Problem

An undular bore is a well-behaved gravity wave with an advancing steep front formed

from nonlinear solitary shallow water waves. The undular bore is a simplified hydro-

dynamic problem in which a bulk of water with constant depth under gravity moves

toward a solid vertical wall at an initial constant velocity. This example imitates an

undular bore formation that often happens when incoming sea water is reflected by a

harbor wall, as shown in Figure 6.10.

Froude number is defined as follows:

Fr ≡ U√
gh

(6.5)

where h is the bore depth and U is the flow velocity relative to the bore. The character-

istic velocity
√

gh is referred to, in the shallow water theory, as the propagation speed of

small disturbances in analogy to sound speed in gas dynamics. A bore is analogous to a

shock wave of gas dynamics in terms of the discontinuity in proximity of the bore front

and wave propagation speed. Froude number is the hydrodynamics analogy of Mach
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h1 = 1 cm u1 = 1 cm/s

g = 1 cm/s 2

fully-developed
boundary condition

Figure 6.10 A bore reflected from a rigid wall

number in aerodynamics. When Fr > 1, the flow is supercritical; when Fr < 1, it is

subcritical.

If a bore has a Froude number less than 1.7, the bore front has a regular shape and

does not break. Hence it is termed undular. Lynch[88] presents a detailed description

of various Froude numbers, in which an undular bore has an extent of Fr from 1 to 1.7.

Stoker[87] provides fundamentals for bores, but no analytical solutions were derived for

this example.

Figure 6.11 shows a typical bore with constant depths h1 and h2, and velocities u1

and u2 for both sides, where a control volume framed in the dashed lines is investigated

to yield relations across the bore front. The subscripts 1 and 2 represent the front and

the back sides of bore, respectively. The discontinuity or the bore front is featured by

an elevation jump at the front position x = ξ(t) from side 1 to side 2. Applying the

conservation laws of mass and momentum on the control volume gives

ρh1v1 = ρh2v2 (6.6)
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wall
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h1
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x2(t)x1(t)

u2

u1
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Figure 6.11 Illustration of a bore front

and

ρh1v
2
1 +

ρgh2
1

2
= ρh2v

2
2 +

ρgh2
2

2
, (6.7)

where v1 and v2 are velocities of the incident and the departing flows relative to the

front traveling speed ξ̇, respectively:

v1 = u1 − ξ̇ and v2 = u2 − ξ̇. (6.8)

Eq. (6.7) is derived upon an approximation of hydrostatic pressure commonly employed

in the shallow water theory and by integrating the hydrostatic pressure along the two

vertical ends x = x1(t) and x = x2(t), at the limit when x2(t) → x1(t) in such a way

that the front stays inside the control volume. Because the fluid is incompressible and

is brought to still behind the front of the reflected bore, we have u2 = 0 and v2 = −ξ̇.

Then Eqs. (6.6) and (6.7) reduce, respectively, to

h1(u1 − ξ̇) = h2(−ξ̇) (6.9)

and

h1(u1 − ξ̇)2 +
gh2

1

2
= h2(−ξ̇)2 +

gh2
2

2
. (6.10)

Eqs. (6.9) and (6.10) can be directly obtained from Eq. (2.4).
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The solution of ξ̇ in terms of h1, h2, and u1 from Eqs. (6.9) and (6.10) is

ξ̇ = − u1

h2

h1

− 1

= ±

√
gh1

2

(
1 +

h1

h2

)
, (6.11)

where the signs on the RHS correspond to the direction in which the bore front moves.

Eq. (6.11) can also estimate bore height h2, given two incident conditions (h1 and u1),

moving velocity of bore front ξ̇, and g.
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Figure 6.12 Height ratio versus dimensionless incident velocity

If we use

U1 =
u1√
gh1

and α =
h2

h1

. (6.12)

to rewrite Eq. (6.11), we have

ξ̇√
gh1

= − U1

α− 1
= ±

√
1

2

(
1 +

1

α

)
. (6.13)

The Froude number of the incident flow, namely the LHS of Eq. (6.13), can be

expressed in terms of U1 and α:

Fr =

(
α

α− 1

)
U1 =

√
α(1 + α)

2
. (6.14)
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Accordingly, Fr > 1 when α > 1, and vice versa. Thus the incident flow is always

supercritical, since h2 > h1 in the undular bore problem. At the critical Froude number

for undular bore Fr = 1.7 , α = 1.9556 and U1 = 0.8307, upon which we can predict an

undular reflected bore in nature.

T = 0 s

T = 2 s

T = 3 s

T = 4 s

T = 5 s

Figure 6.13 A reflected bore formation

The Froude number of the departing flow is given as follows:

Fr =

√
(1 + α)

2α2
, (6.15)

which always falls between 0 and 1. Thus the departing flow is a subcritical flow.

Given h1 = 1 cm, u1 = 1 cm/s, and g = 1 cm/s2 as shown in Figure 6.10, we have

solved Eq. (6.11) for h2 or h2/h1 = 2.1701 using trial and error (see Figure 6.12). The

second solution of h2/h1 to Eq. (6.11) is for a receding bore in Eq. (6.16), and the third

is of no physical significance since it is less than zero. Consequently, the reflected bore

will advance at a speed of 0.8547 cm/s to the left as shown in Figure 6.13.
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Figure 6.14 Hydraulic height of the reflected bore

Figure 6.13 shows variations of the reflected bore from the right rigid wall with time.

Notice the bore breaks because the incident flow has Fr = 1.8547 > 1.7. From Fig-

ure 6.13, the crest of the bore advances faster than the trough after 5.0 s. Therefore

the crest is to roll down ahead of the trough and the bore begins to break. Those are

consistent with Lynch’s description[88]. The water climbs the rigid wall when the wall

reflects the incoming flow. The height of water onto the wall is named hydraulic jump

height, which is approximated to the height of the back side of bore in an analytical

solution; for instance, h2 = 2.1701 cm in the example. Figure 6.14 shows that the nu-

merical results of hydraulic height converges to the analytical prediction. The positions

of the bore front have been recorded from the numerical results as shown in Figure 6.15;

they agree with the analytical solution, which is given by Eq. (6.13).
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Figure 6.15 Traveling of the reflected bore front with time
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h1 = 1 cm u1 = 1 cm/s

g = 1 cm/s 2

fully-developed
boundary condition

Figure 6.16 A receding bore problem

In Figure 6.13, the traveling velocity of the bore front is opposite to the incident

flow, therefore the bore depth is higher than that of the incident flow. If a bore travels

in the direction of the incident flow, the result is a receding bore, as shown in Figure 6.16

with the depth ratio α < 1, namely h2 < h1. Eq. (6.11) also gives traveling velocity of

a receding bore but in a different form,

ξ̇ =
u1

1− h2

h1

= ±

√
gh1

2

(
1 +

h1

h2

)
. (6.16)

The signs on RHS of Eq. (6.16) are determined according to the direction in which the

bore travels. In Figure 6.11 for the receding bore problem, one may either change the

height on both sides of the discontinuity or switch the subscripts 1 and 2 to guarantee

α < 1.

The Froude numbers for incident and departing flows, respectively, in terms of di-

mensionless incident velocity U1 and height ratio α are given:

Fr =

(
α

1− α

)
U1 =

√
α(1 + α)

2
(6.17)
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and

Fr =

√
1 + α

2α2
. (6.18)

Contrary to the advancing bore, a receding bore has Fr < 1 for incident flow and Fr > 1

for departing flow since α < 1 from Eqs. (6.17) and (6.18).
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Figure 6.17 The ratio of flow heights as a function of the dimensionless
incident velocity

The height of water behind the receding bore can be estimated using Eq. (6.16);

for instance, α = 0.31113 as shown in Figure 6.17, if g = 1 cm/s2, h1 = 1 cm/s, and

u1 = −1 cm/s, as noted in Figure 6.16. It is validated by the numerical solution in

Figure 6.18, where the height of 0.31113 cm is denoted by the dashed lines. Consequently,

the bore traveling velocity ξ̇ = 1.452 > 1 cm/s, meaning that the bore travels faster

than the flow. Interestingly, this velocity is also greater than that of the reflected bore

front 0.8547 cm/s, obtained earlier.

In hydraulics, the supercritical region of the flow is customarily designated as the

front side of the discontinuity of height and the subcritical region as the back side.

Receding bore is thus named in terminology for the discontinuity of height that recedes

backward, as shown in Figure 6.18.

The simulations of undular and receding bores were made on a 12 cm × 4.8 cm

physical domain with a grid resolution of 50 × 24 (δx/δy = 1.2), where convergent
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solutions have been obtained.

T = 0 s

T = 1 s

T = 2 s

T = 3 s

T = 4 s

Figure 6.18 The development of a receding bore

6.3 Sluice Gate Problem

Sluice gates (Figure 6.19) are widely used to regulate and measure flow rate in open

channels or rivers for hydro power plants or irrigation systems. In this example calcu-

lation, we compare contraction coefficient, defined as follows, by simulating the down-

stream free surface of a sluice gate flow:

Cc =
h2

b
(6.19)

where h2 is the water height at vena contracta downstream and b is the sluice gate

opening height (refer to Figures 6.19 and 6.20).

The value of Cc ranges from 0.61 to 1.0, depending on the angle of the gate with

respect to the horizontal direction[89, 90]. The contraction coefficients for radial slide
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h1 = 7.5 cm
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b = 1 cm

g = 981 cm/s2

0.5 cm

Figure 6.19 Diagram of a sluice gate

gates (0.648 ∼ 0.724) are higher than those for sharp gates (0.58 ∼ 0.63). A typical

sharp-edged contraction coefficient is 0.61. Lin et al (2002) demonstrated the experimen-

tal contraction coefficients in good agreement with the theoretical or reported data[90].

Lx Ly U V

5 cm 1 cm 85.78 cm/s 17.16 cm/s

Table 6.3 Parameters in scaling of the sluice gate problem

In the simulation, the sharp edge with 0.5 cm thickness was chosen for the sluice

gate shown in Figure 6.19. Unlike in [89] and [90], water is stored in a 7.5 cm× 5.0 cm

container. The water will drop from the initial height h1 = 7.5 cm to zero after the

sluice gate is open (see Figure 6.19). We can expect an unsteady Cc because the water

volume is not semi-infinite and it escapes through the sluice gate from a state of rest.

However, some of h2 at vena contracta during the time interval of 0.125 s < t < 0.225 s

were recorded from the numerical results; they can be regarded as pseudo steady-state.

The contraction coefficient Cc of 0.635 to 0.67 were observed for both the unscaled and

scaled domains as shown in Figure 6.20.
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Appropriate parameters were selected to satisfy the continuity equation as listed in

Table 6.3, and two grid resolutions were implemented on the scaled domains as well as

an unscaled case (see Table 6.4). Notice that the characteristic speed U is computed

according to Eq. (6.1). The discrepancies in Figure 6.20 are ascribed to the different

resolutions on unscaled and scaled domains.

domain unscaled scaled scaled

resolution 450× 240 90× 240 180× 480

Table 6.4 Resolutions on the unscaled and scaled domains

Unscaled, 450×240 resolution

Scaled, 90×240 resolution

Scaled, 180×480 resolution

h2

Figure 6.20 Water height 0.225 s after the sluice gate is open

6.4 Normal and Curvature Calculations

To seek an accurate and reliable scheme for evaluating curvature, two extreme ex-

amples, planar and circular free surfaces, are analyzed as illustrated in Figure 6.21. In

Figure 6.21(a) the planar surface tilts at an inclined angle θ; undoubtedly, any planar

surface has a zero curvature. The curvature of a circular surface is the inverse of its

radius R and independent of the cylindrical coordinate φ, as depicted in Figure 6.21(b).
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(a) An inclined planar free surface with κ = 0
and tan−1 θ = 1/2
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(b) A circular free surface with κ = 1/R,
where R is the radius of the circle

Figure 6.21 Two extreme examples of free surface

Along the inclined plane, any VOF function describing the free surface varies peri-

odically. If the free surface is aligned with the diagonal direction of two horizontally

adjoining cells, as seen in Figure 6.21(a), we have

Fi,j =

{
0.25 i = 1, 3, 5, ... j = J, J + 1, J + 2, ...;

0.75 i = 2, 4, 6, ... j = J, J + 1, J + 2, ...,
(6.20)

where J is the y-direction index of the leftmost cell. Any planar free surface has pe-

riodical distribution of F unless θ = ±0◦ or ±90◦. Notice that the periodicity cannot

simply be mitigated by higher grid resolutions. Eq. (6.20) suggests that the local surface

curvature is independent of grid size.

From Eq. (3.10) or (5.11), we find the order of magnitude of curvature computed on

a grid having size h:

κ = O(1/h) or a constant. (6.21)

It demonstrates that a finite value can be sought for curvature if the algorithm imple-

mented is convergent; otherwise, the computed curvature diverges with finer grid sizes.

The diverging errors come from inaccurate estimates of gradient of n̂ in the normal

direction. Because ~n and n̂ are continuous only in the tangential direction of a free

surface, surface curvature reflects the variations of unit normal along the tangential

direction. Absolutely, the contribution of the normal direction to κ should vanish in

Eq. (3.10), namely in Eq. (5.11) n̂xi+1/2,j = n̂xi−1/2,j or n̂yi,j+1/2 = n̂yi,j−1/2, which is
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consistent with the normals in the DA algorithm formulations (see Eqs. (5.7) and (5.8)).

The convolution of Eq. (5.3) also ensures a mollified VOF or color function to yield equal

component of unit normal in the normal direction.

Grid Resolution ∂F/∂x ∂F/∂y θ

100× 100 50 −100 26.5651◦

200× 200 100 −200 26.5651◦

Table 6.5 Gradients and normal by the DA algorithm at cell of F = 0.75
on an inclined planar free surface with θ = 26.5651◦

Grid Resolution ∂F/∂x ∂F/∂y θ

100× 100 37.500 −50.000 36.8699◦

200× 200 75.000 −100.000 36.8699◦

Table 6.6 Gradients and normal by the MAC scheme at cell of F = 0.75 on
an inclined planar free surface with θ = 26.5651◦

Grid Resolution ∂F/∂x ∂F/∂y θ

100× 100 21.875 −46.875 25.0169◦

200× 200 43.750 −93.750 25.0169◦

Table 6.7 Gradients and normal by the ALE scheme at cell of F = 0.75 on
an inclined planar free surface with θ = 26.5651◦

A constant normal direction of θ and a zero curvature have been obtained using

the DA method for the inclined plane example in comparison with the MAC and ALE

schemes as shown in Tables 6.5 through 6.7. The ALE scheme yielded some non-zero

curvatures, ±11.465 on 100 × 100 grid and ±22.930 on 200 × 200 grid, respectively, as

plotted in Figure 6.22.

Both ALE[20] and MAC[21] schemes in Appendix B and textbook[71] failed for the

inclined planar free surface even with a smoothed F computed using Eq. (B.23). The

errors grow greatly with higher grid resolutions because the frequency of F may increase

on finer grids. Higher resolutions worsen the numerical results of curvature according to

Eqs. (6.20) and (6.21).
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Figure 6.22 Curvature calculation using the ALE scheme for an inclined
planar free surface with θ = 26.5661◦ on 100×100 and 200×200
grids

Table 6.8 gives results of angle φ and curvature κ computed for a circular droplet of

R = .25 (κ = 4.0, see Figure 6.21(b)) using the DA and ALE methods. The errors from

the ALE method grow fast on finer grids as expected, whereas the results of φ and κ from

the DA method converge to the exact values, respectively. Notice that Table 6.8 only

lists some results near φ = 20◦, 30◦, and 45◦. In this example some negative curvatures

are found if the ALE method is used with c̃ = F . Additional observation concludes

that some curvatures by the ALE method increase greatly with higher grid resolutions

(see Table 6.8). As a result, spurious or parasitic currents reported in [8, 17, 25] occur

within a circular water drop in equilibrium and with zero initial velocity.

6.5 Elimination of Spurious Currents

Spurious currents are found not only in the surface tension simulation for a circular

droplet but also along the inclined plane of zero curvature perpendicular to gravity, as
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Grid Angle DA ALE

Resolution φexact φ κ φ κ

30× 30 20.7722535◦ 21.5832020◦ 4.00678072 18.0678429◦ -4.03614702

40× 40 18.4349476◦ 19.0001060◦ 4.00346803 15.3145517◦ -4.66110668

80× 80 19.7988752◦ 19.7336973◦ 4.00088752 19.4134637◦ 13.5760513

100× 100 20.6235302◦ 20.4934169◦ 4.00058348 18.8418308◦ 31.0885104

Grid Angle DA ALE

Resolution φexact φ κ φ κ

30× 30 30.9637555◦ 30.1238560◦ 4.01000643 28.2994535◦ 13.2466290

40× 40 28.4956376◦ 28.4221038◦ 4.00514380 27.4053610◦ 7.96860282

80× 80 30.7189033◦ 30.8486414◦ 4.00145432 29.4021396◦ -4.73743286

100× 100 28.3792420◦ 28.0440938◦ 4.00080537 25.8834186◦ 27.2777916

Grid Angle DA ALE

Resolution φexact φ κ φ κ

30× 30 45◦ 45◦ 4.02651539 45◦ 9.65894247

40× 40 45◦ 45◦ 4.01741378 45◦ 3.21078864

80× 80 45◦ 45◦ 4.00391085 45◦ 6.19854908

100× 100 45◦ 45◦ 4.00245581 45◦ 7.54760344

Table 6.8 Surface normal directions and curvatures computed using the DA
and ALE methods for a circular droplet (κexact = 4.0)

shown in Figures 6.24 through 6.26 if using the MAC or ALE method. Both methods are

unable to yield correct curvature in the circular droplet example. The miscalculation of

density at the interfacial control cell centers is another source of the spurious currents.

Surface tension force is evaluated by linear interpolation, namely Eqs. (B.21) and (B.22),

which are physically incorrect. The numerical approach for the PPE presented in sec-

tion 3.4 of Chapter 3 may incur some spurious currents as well. Consequently, the

spurious currents grow with time and become denser on grids of higher resolution in

both examples (see Figures 6.24 to 6.26 and Figures 6.27 to 6.29). The pressures inside

the circular free surface are distorted using the CSF model. Hence, the pressure jump

of σκ in Laplace’s formula is never observed as shown in Figures 6.30 through 6.32.

Recalling Eqs. (3.28) and (3.29), we let the velocity, viscous, and gravity terms equal
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θ= tan-11/2 = 26.5651°

g

θw = 116.5651°

θw = 63.4349°

Figure 6.23 A motionless inclined planar
free surface with gravity per-
pendicular to the surface

g

Figure 6.24 Spurious currents found
along an inclined plane,
on 100 × 100 grid, when
t = 0.001 s

to zero at time level n, then we can have

∇pn+1 = ~F n
sv = σκ∇F n (6.22)

if the velocity ~V n+1 = 0. Eq. (6.22) is a sufficient-necessary condition to be satisfied

that spurious currents are not induced after time advances δtn. For a configuration of

free surface with δxi = δyj, as shown in Figure 6.33, it yields as follows from Eq. (6.22)

on control cell (i + 1/2, j) and (i + 1, j + 1/2) without losing generality:

−σκi+1,j(c1 + c2)

(
∂F

∂y

)
i+1,j

= σκi,ja

(
∂F

∂x

)
i,j

+ σκi+1,jb

(
∂F

∂x

)
i+1,j

(6.23)

where a, b, and c are immersed depth, c1 + c2 = c, pi+1,j+1 = pi,j, and the superscript of

time level n is ignored. Finally, simplification of Eq. (6.23) gives,

κi,j = κi+1,j (6.24)

for two interfacial cells, because the free surface is assumed to be horizontally oriented

as illustrated in Figure 6.33, namely

a

(
∂F

∂x

)
i,j

= c2

(
−∂F

∂y

)
i,j

, b

(
∂F

∂x

)
i+1,j

= c1

(
−∂F

∂y

)
i+1,j

, (6.25)
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g

Figure 6.25 Spurious currents found
along an inclined plane,
on 100 × 100 grid, when
t = 0.005 s

g

Figure 6.26 Spurious currents found
along an inclined plane,
on 100 × 100 grid, when
t = 0.005 s

Figure 6.27 Spurious currents on a circu-
lar droplet, on 100×100 grid,
when t = 0.001 s

Figure 6.28 Spurious currents on a circu-
lar droplet, on 100×100 grid,
when t = 0.005 s
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Figure 6.29 Spurious currents on a circu-
lar droplet, on 200×200 grid,
when t = 0.001 s
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Figure 6.30 Isobaric diagram of a droplet
with spurious currents,
on 100 × 100 grid, when
t = 0.001 s
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Figure 6.31 Isobaric diagram of a droplet
with spurious currents,
on 100 × 100 grid, when
t = 0.005 s
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i+1,j+1/2

a
b

δyj+1 /2

δxi+1 /2

pi,j

pi+1,j

free surface

fluid 2

pi+1,j+1

c2

c1 }c

fluid 1

δxi /2

δyj /2

i+1/2,j

Figure 6.33 A horizontally tilted configuration of free surface

and (
∂F

∂y

)
i,j

=

(
∂F

∂y

)
i+1,j

= − 1

δyj

. (6.26)

Eq. (6.24) can be extended to any other interfacial cells due to transitivity. The

proposition of equal curvature on a circular free surface must be satisfied in any algo-

rithms for a circular droplet simulation; otherwise, spurious currents are incurred. By

the new method given in Section 5.2 of Chapter 5, a constant local curvature 1/R is

obtained for a circular droplet with radius R.

Another corollary derived from the proceeding approach is that in a well-represented

circular droplet by the VOF method, F functions near hybrid sublayer cells (refer to

Figure 5.8) should be symmetric about the diagonal direction of φ = ±45◦ or ±135◦,

as shown in Figure 5.5. Otherwise, restoring force, namely surface tension force, is

reproduced due to the curvature difference to recover the free surface to be a symmetric

droplet.

The maximum spurious currents listed in Table 6.9 shows the magnitude of the

residual currents is found as low as 10−4 cm/s at t = 10−6 s on a unity domain with

two grid resolutions if using the modified approach and thus the truncation errors O(h2)
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up

Figure 6.34 Velocity distribution on a
circular droplet with the
improved approach, at
t = 0.001 s, on 100 × 100
grid
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Figure 6.35 Isobaric diagram of a droplet
with the improved approach,
at t = 0.001 s, on 100 × 100
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Figure 6.36 Velocity distribution on a
circular droplet with the
improved approach, at
t = 0.001 s, on 200 × 200
gird
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Figure 6.37 Isobaric diagram of droplet
with the improved approach,
at t = 0.001 s, on 200 × 200
grid
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Resolution Grid Size CSF Reconstructed CSF

100× 100 10−2 10−2 10−4

200× 200 .5× 10−2 10−1 10−4

Table 6.9 Maximum velocity (cm/s) in spurious currents at t = 10−6 s

of the second-order accurate algorithms primarily appear in the simulation (also see

Figure 6.38). From Figure 6.38, the magnitude of spurious currents is suppressed by

up to three orders. Besides, the improved pressure approach attains the pressure jump

σκ(=292 dynes/cm2) as in Laplace’s formula near the free surface and over the entire

flow field, where σ = 73 cm/s and κ = 4 cm−1 as shown in Figures 6.35 and 6.37.
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Modified CSF 100×100
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Figure 6.38 A comparison of spurious currents growth
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CHAPTER 7 ANALYSIS OF MELT SPINNING

Section 7.1 presents physical and thermodynamical properties for Fe75-Si10-B15 (at.%)

alloy, some of which are calculated using theoretical or experimental method. The

nucleation temperature and critical cooling rate for production of amorphous alloy are

estimated in Section 7.2 in two different ways. Two TTT diagrams also appear in the

section for the alloy.

Clarification of the upstream and downstream of a melt pool, as discussed in Sec-

tion 7.3, runs contrary to those in the papers[2, 34–36]. In Section 7.4, I enunciate some

transformations of a 3D free-jet melt spinning to 2D simulation and calculation. The

computer program simulates the melt jet impingement on a rotating wheel, and yields

numerical results of velocity and temperature, as shown in Section 7.5. An estimate of

ribbon thickness is derived in Section 7.6. From the thermal analysis of melt spinning

and glass formation in Section 7.7, two thermal conditions for amorphous production

emerge along with a work range of the wheel speed. Section 7.8 proves the postulation of

1D thermal diffusion in melt spinning. Heat transfer coefficients and melt cooling rates

are computed in Section 7.9, and criteria are established in Section 7.10 for amorphous

formation of Fe75-Si10-B15 (at.%).

7.1 Physical and Thermodynamical Properties of Fe-Si-B

Some physical properties of elements Fe, Si, and B are summarized in Tables 7.1.

Physical and thermodynamical properties of Fe75-Si10-B15 (at.%) alloy are calculated

or quoted, as listed in Tables 7.2 and 7.3, respectively. The density ρ in Table 7.3 is

for an amorphous state; however, it is reasonable to assume the alloy volume does not

change in phase transition. The atomic weight of Fe75-Si10-B15 (at.%) is calculated by

the molar or atomic weight and at.% of each element given in Table 7.1. The molar

volume of Fe-Si-B is calculated by

Va =
Atomic Weight

ρ
(7.1)
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and the effective molecular diameter dm is approximately estimated by

Va =
1

6
πd3

mN. (7.2)

Fe Si B

Atomic Radius (picometer) 124.1 117 83

Atomic Weight (g/mol) 55.847 28.086 10.81

Liquidus Density (g/cm3) 6.98 2.57 2.08

Melting Temperature (K) 1811 1687 2349

Latent Heat (kJ/mol) 13.81 50.21 50.2

Heat Capacity at 298K (J/molK) 25.10 19.789 11.087

Thermal Conductivity (W/mK) 80 150 27

Table 7.1 Physical properties of Fe, Si, and B

ρ (kg/m3) 7.3 ∼ 7.5× 103[91]

Atomic Weight (g/mol) 46.314

Va (m3/mol) 6.34 ∼ 6.18× 10−6

Nv (1/m3) 9.498 ∼ 9.744× 1028

dm (m) 2.720 ∼ 2.695×−10

θ, f(θ) 37◦, 0.0284

ν at Tm (m2/s) 2.8× 10−6[91], 2.35× 10−5[76]

µ at Tm (kg/ms) 0.0207[91], 0.1736[76]

Table 7.2 Physical properties of Fe75-Si10-B15 (at.%) alloy

We lack experimental data of wetting angle θ. It is assumed to be 37◦ in Table 7.2

and the reduced factor f(θ) is thus 0.0284 from Eq. (4.19). The viscosity µ is given in

the Vogel-Fulcher-Tammann form if µ0 is determined using Eq. (4.25)[76],

µ = 6.374× 10−5 exp

(
3.35× 1419

T − 818

)
kg/ms, (7.3)

where Tm = 1419 K and Tg = 818 K are chosen from [48] (see Table 7.3), and b = 3.35

in Eq. (4.24). Accordingly, the dynamic viscosity of the alloy µ reaches 1012 kg/ms at

Ta = 945.5 K by Eq. (7.3), around which the melt is in an amorphous state[4].
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Tm (K) 1419[48], 1456[91]

Tg (K) 818[48]

Ta (K) 945.5[76]

L (kJ/mol) 22.91

L (kJ/kg) 4.9467× 102

σLS (N/m) 0.3674

k (W/mK) 80

cS, cL (kJ/kgK) 0.485

Table 7.3 Thermodynamical properties of Fe75-Si10-B15 (at.%) alloy

Notice in Tables 7.2 and 7.3, those quoted from [48] are for Fe79-Si10-B11 (at.%) and

those from [91] are for Fe80-Si15-B15 (at.%). Interestingly, the viscosities at the melting

temperature from [48] are ten times greater than that from [91]. The latent heat L in

kJ/mol (see Table 7.3) is computed by the latent heat and at.% of each element from

Table 7.1. The surface tension at the solid/liquid interface is obtained using Eq. (4.16),

where α = 0.62. The specific heat of melt (liquidus) is assumed to be equal to that of

a solidus state, which is estimated by the heat capacity and at.% of each element at

298 K, also shown in Table 7.1.

7.2 Nucleation Temperature and Critical Cooling Rate

The role of the rotating wheel in melt spinning is twofold: a heat sink to undercool

the molten flow and a catalyst to crystallization. Based on the nucleation theory in

Section 4.3 of Chapter 4 and the physical and thermodynamical properties given in

Section 7.1, we can estimate the nucleation temperature and the critical cooling rate of

Fe75-Si10-B15 (at.%) alloy.

Generally, the melt begins to crystallize under some conditions through heteroge-

neous nucleation. If there is no impurity in the melt, the nuclei form first on the contact

surface of the spinning wheel, as illustrated in Figure 7.1. Following are the criteria of

the occurrence of nuclei on the quench contact surface according to Eqs. (4.23), (4.26),

and (4.27):

n =

∫ Tn

Tm

Is∆x2

Ṫ
dT = 1 (7.4)

where the characteristic length ∆x is chosen 3.741dm ≈ 10−9 m, as given in Table 4.2
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∆x

Front Growth

wall

an atom or molecue begins to form a nucleus
with radius ≥ Rc in homogeneous nucleation

an atom or molecue with dm

an atom or molecue begins to form a nucleus
with radius ≥ Rc in heterogeneus nucleation

U

U

∆x

UUUU

U

U

U

Figure 7.1 Nucleation in the melt or on the wall surface (not to scale)

for the melt. The nucleation temperature Tn is computed by numerical integration of

Eq. (7.4) at a series of cooling rates. As listed in Table 7.4, there is at least one occur-

rence of nucleation found in the control area until the cooling rate Ṫ reaches 106 K/s.

Therefore, 106 K/s can be seen as the critical cooling rate εcr, and the corresponding

lowest temperature 1069 K is the nucleation temperature Tn from the table.

Ṫ (K/s) 10−1 100 101 102 103 104 105 106

Tn (K) 1224 1214 1202 1188 1168 1140 1069 −

Table 7.4 Nucleation temperatures under given cooling rates for Fe-Si-B

The Time Temperature Transformation (TTT) diagrams are plotted in Figures 7.3

and 7.2 by setting the fraction of crystal as 1%2/3 of the contact area, namely

x =
π

3
IsU

2t3 = 1%
2
3 , (7.5)
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where U is the growth rate of crystallization on a quench wheel (refer to Eq. (4.31) and

Figure 7.1).

t (s)

T
(K

)

0.0000 0.0005 0.0010 0.0015

800

1000

1200

1400

1%

99%

Tm = 1419 K

Tg = 818 K

Tn = 1160 K

tc= 10 -4 s

εcr = 8.04 × 10 6 K/s

Amorphous

Ta = 945.5 K

Liquid

Crystal

tn = 3.22 × 10 -5 s

Figure 7.2 The TTT Diagram for Fe75-Si10-B15

The critical cooling rate εcr = (Tm − Tn)/tn = 8.04 × 106 K/s, and the nucleation

temperature Tn = 1160 K from Figure 7.2. This εcr is consistent with the one obtained

using Eq. (7.4) (see Table 7.4) in order of magnitude. Figures 7.2 and 7.3 also present

the 99% fraction of crystal. If the cooling rate in rapid solidification is lower than the

critical cooling rate, the crystallization may occur at a temperature higher than the

nucleation temperature. But below the nucleation temperature, a lower cooling rate is

allowed.

At the nucleation temperature the crystal grows very rapidly in 10−4 s to reach 99%

crystallization once the nucleation is activated. The time period between the TTT curves

is larger if temperature is below or above Tn. Henceforth, we symbolize the minimum

time period of crystallization at the nucleation temperature Tn by tc, namely the time

interval between two nose points of the C-shaped curves as shown in Figure 7.2.

The nucleation temperature Tn estimated by Eq. (7.5) is 100 K higher than the mini-
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Figure 7.3 The TTT Diagram for Fe75-Si10-B15 (Time in Log scale)

mum one obtained by Eq. (7.4). The discrepancy is ascribed to the different computation

of control volume or area chosen in the methods and the augment of magnitude being

applied for the cooling rate in the first method. The predicted critical cooling rates,

106 K/s and 8× 106 K/s, agree with Kramer’s experimental result 5× 106 K/s[5].

7.3 Melt Spinning Process

Henceforward, in our illustrations of melt spinning, the wheel rotates clockwise and

the ribbon is spun out to the right, the conventional positive direction of x-axis (see

Figure 1.1).

Unlike planar flow casting, in free-jet melt spinning a molten metallic stream under

a certain pressure travels some distance before it impinges on a highly spinning wheel

at some velocity. According to Kramer’s observation[5], a molten flow in free-jet melt

spinning experiences three distinct sections: free-stream, wheel-contact, and free-flight,

as shown in Figure 7.4. In the free-stream section, the stream shape remains unchanged;
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however, in the leading side (see DC in Figure 7.4), the spinning wheel may accelerate

the flow. In the wheel-contact section, the quench wheel undercools the melt alloy

by conduction so that the melt viscosity increases exponentially. In the third section,

the ribbon departs the wheel and amorphous alloy forms mainly due to radiation and

convection with the ambient gas.

Wheel-contact Section
Free-flight Section

Free-stream Section

A

B

C

D

F

E

H

u

Ud

V

Uw

Uw

u

Spinning Wheel

δ

G

Figure 7.4 Three sections in a steady melt spinning process

The previous researchers unanimously presumed that the molten jet upstream is the

leading convex meniscus (DC) and the downstream is located on the other side (AB),

as shown in Figure 7.4[2, 34–36]. We determine the upstream or downstream of a flow

according to the relative motion between the flow and its body of reference. If the body

of reference is faster than the flow when they both move in a direction, the upstream

is in the direction toward which they move. In the region of melt-wheel boundary, the

rotating wheel is selected to be the reference frame more precisely than the nozzle. If the

wheel speed Uw is greater than the flow speed u next to the moving wheel, the upstream

is where the ribbon is delivered, i.e., point H relative to point C. In all melt spinning

processes, we have Uw � u in the melt pool and Uw > u in the ribbon, although we may

find more scenarios where Uw < u, like ground water streams formed by falling rain.

Apparently, the nozzle where the molten jet is released is also upstream. The upstream,

midstream, and downstream are so indicated in Figure 7.5.
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Photograph courtesy of Ames Lab, US DOE

Uw

midstream
meniscus

upstream

melt pool
not potential flow

Figure 7.5 A steady-state melt spinning (not to scale)

The Eulerian methodology is commonly used in fluid mechanics and CFD. In Fig-

ure 7.5, if the Eulerian system is fixed to the wheel, the wheel remains motionless in

the system. The molten stream moves at Uw and the ribbon moves at u to the left.

The ribbon forms under surface tension, viscous force, and very fast flow motion of the

melt relative to the wheel. The molten flow is cooled by the quench wheel; the flow

temperature near point F is lower than those points near wheel surface left of F, for

instance, C and G as shown in Figure 7.5. Amorphorization (undercooling) begins at

the end of ribbon, point H in Figure 7.4, whereas melt particles initially cool near point

C and then move to the ribbon from the Lagrangian viewpoint. Accordingly, the flow

within the ribbon comes from the direction of the ribbon end H (see Figure 7.4) where

the melt has cooled earliest. The ribbon top surface is cooled through heat transfer, not

only by the chamber gas but also by the incident ‘cooler’ flow from EF if the ribbon is

still in liqidus state..
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7.4 Dynamical Similarity in Free-Jet Melt Spinning

The melt spinning is a 3D problem because the orifice is circular, whereas the ribbon

can be regarded as a 2D flow from the lateral direction. Supposing that ribbon is

steadily produced at an average delivery velocity Ud, also called casting rate, from the

mass conservation, the ribbon thickness δ is:

δ

Z
=

π

4

(
Z

w

)(
V̄

Ud

)
, (7.6)

where V̄ is the average ejection velocity at the nozzle, Z the orifice diameter, and w the

ribbon width as shown in Figure 7.6.

Ud

V

δ

Uw

w

Z wheel surface

Figure 7.6 Illustration of a ribbon formation on a spinning wheel

Uw (cm/s) 500 600 700 750 800 900 1000 2000 3000 4000

Z/w .2376 .1980 .1398 .1064 .0868 .0720 .0604 .0524 .0469 .0448

πZ/4w .1866 .1555 .1098 .0836 .0682 .0565 .0474 .0411 .0368 .0352

Table 7.5 Ratio of orifice diameter to ribbon width

Unlike ribbon thickness, the ratio Z/w exhibits less variability among multiple runs

or within one run for each wheel speed as listed in Table 7.5 and Figure 7.7 from [5].
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Z/w decreases with increasing wheel speed, but the magnitudes of decrease are lower at

wheel speeds larger than 10 m/s, a knee point as shown in Figure 7.7. It is impossible

to estimate ribbon thickness from Eq. (7.6), because Z/w and Ud are both unknown.

Uw (m/s)

Z
/w

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

Z = 0.08 cm

Figure 7.7 Ratio Z/w as a function of wheel speed

The ratio (π/4)(Z/w) can be seen as a transformation factor between the 3D free jet

and 2D ribbon formation in the study of free-jet melt spinning. If we choose a smaller

ejection velocity

V̄ ′ =
π

4

(
Z

w

)
V̄ such that

δ

Z
=

V̄ ′

Ud

, (7.7)

or a larger delivery velocity

U ′
d = Ud

/
π

4

(
Z

w

)
such that

δ

Z
=

V̄

U ′
d

, (7.8)

a 3D free-jet melt spinning seems to be successfully converted to a 2D flow problem;

however, they are not economical in simulation. Smaller V̄ ′ (see Eq. (7.7)) results in

longer computation time for the jet traveling the gap, which is not to our benefit. Larger

U ′
d (see Eq. (7.8)) as well as larger U ′

w may lead to numerical difficulty. Here we assume
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Ud is proportional or equal to Uw. The viscosity µ is thus modified with the factor

(π/4)(Z/w) to keep the U ′
w-based Reynolds number in the 2D simulation equal to the

Uw-based Reynolds number of the 3D process. The modified viscosity µ′ is given from:

Re =
U ′

wδρ

µ
=

Uwδρ

π

4

(
δ

w

)
µ

=
Uwδρ

µ′
, (7.9)

where

U ′
w = Uw

/
π

4

(
Z

w

)
and µ′ =

π

4

(
Z

w

)
µ. (7.10)

From Table 7.5 or Figure 7.7, the factor (π/4)(Z/w) is of O(10−2) in order of magnitude

when 1000 6 Uw 6 4000 cm/s. The viscosity is thus decreased by 102 as in Eq. (7.11)

from Eq. (7.3). For Uw < 1000 cm/s, the decreased viscosity of Eq. (7.11) is used in the

2D simulation for simplicity, although the factor is found O(10−1) as shown in Table 7.5.

The decreased viscosity is beneficial because the exponential increases in viscosity with

temperature drops require smaller time step in the simulation.

7.5 Simulation of Jet Impingement on Wheel

A 2D numerical simulation of melt spinning is performed on a physical domain of

2 cm× 0.4 cm as shown in Figure 7.8. The ejection velocity V , orifice diameter Z, gap

height G, and wheel speed Uw are the design parameters for a typical melt spinning.

The ejection velocity of the molten jet V instead of the initial pressure is imposed

in parabolic distribution at the nozzle. Then we have the average ejection velocity

V̄ = 2/3V . Consistent with the experiments in [49] and [5], Z and G are chosen 0.08 cm

and 0.4 cm, respectively, in the simulation. Because the radius of the wheel 12.5 cm is

larger than the gap height G, the wheel surface is assumed to be a plane.

V (cm/s) V̄ (cm/s) Re Ca Web

195 130 2.7486× 104 3.033× 10−4 8.3373

Table 7.6 Dimensionless numbers based on V̄ and Z at the nozzle

Physical properties of the alloy are given in Figure 7.8. The alloy density and surface

tension coefficient are both constant. The temperature-dependent viscosity of the jet is

calculated according to Eq. (7.3) and the dynamical similarity (refer to Section 7.4) in
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ρFe-Si-B = 7.4 g /cm3, µm = 0.28×10-2 g /cms
σ = 1.2×103 dynes /cm, Tm = 1600 K
α = 0.223 cm2/s, k = 80 W/mK, Cp = 485 J/kgK

G

Figure 7.8 Melt spinning chamber

the g-cm-s unit system as follows:

µ = 6.374× 10−6 exp

(
3.35× 1419

T − 818

)
g/cms, (7.11)

also shown in Figure 7.9 in exponential scale. For simplicity, the superscript prime

is ignored in Eq. (7.11). Accordingly, we have viscosity µm = 0.0028 g/cms at the

melting point Tm = 1600 K, and µ = 0.01736 g/cms at the lower limit of melting point

Tm = 1419 K.

The indoor temperature 293 K is chosen as the ambient temperature Ta as well as

the wheel center temperature Twheel. They all remain constant in the simulation. The

melt-wheel temperature Tw is the average value of Tm and Ta because heat transfer near

the melt-wheel boundary is mainly thermal conduction. That is discussed in Sections 7.7

and 7.8. Unlike µ, the thermal diffusivity of the molten alloy α is assumed to remain

constant in the melt pool.

According to Figure 7.9, at the nucleation temperature the viscosity is about 2500

times that at the melting temperature and it increases exponentially while the temper-
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Figure 7.9 Viscosity of Fe75-Si10-B15 in the Vogel-Fulcher-Tammann form

ature drops to Tw. The tremendous viscosity often leads to numerical failure in the

melt spinning simulation. In addition, higher wheel speed requires smaller time step.

The larger viscosity and the higher wheel speeds significantly complicate the simula-

tion (see Section 3.6 of Chapter 3), despite the scaling-up of equations as introduced

in Section 5.6 of Chapter 5. The program is modified using Eq. (7.11), namely the ex-

ponential temperature-viscosity relation for simulating the thermal transport, as shown

in Figure 7.14. But to investigate the evolution and dynamical characteristics of the

melt pool as in Figures 7.12 and 7.13, the viscosity near the wheel surface is assumed to

increase linearly to an acceptable extent with temperature decreases and Uw is chosen

200, 400, and 1000 cm/s for comparison.

Grid sensitivity analysis is made at Uw = 400 cm/s and t = 3.25 ms as seen in

Figure 7.10. Grid resolutions of 400× 80 and 500× 100 are found to yield a convergent

ribbon thickness and a convergent melt pool shape. Hence, δx and δy are both chosen

0.005 cm to generate 400× 80 meshes in the simulation.

By means of induced electrical currents, the alloy is heated to liquid by the coils
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Figure 7.10 Melt pool and ribbon evolution on various grid resolutions,
Uw = 400 cm/s and t = 3.25 ms

ouside the crucible. Once it is released from the crucible at initial ejection velocity

130 cm/s, in about 3.225× 10−3 s, the molten free jet impinges on the rotating wheel,

as shown in Figures 7.11 to 7.13. As seen in these figures, the configurations of molten

stream are not smooth because the H-N algorithm employs a stair-stepped approxima-

tion of free surface. In the simulation of the free jet traveling, Eq. (7.3) is chosen as

the viscosity at temperature 1600 K, namely 0.2782 g/cms because before impinging

on the wheel the axisymmetric molten flow has no contact with the wheel and no heat

radiation to vacuum.

From Figure 7.13, we find the flow in free stream accelerates at the leading side and

decelerates at the other side due to wheel rotation. The molten alloy flow in the pool

begins to roll counter-clockwise after the jet contacts the clockwise rotating wheel in the

simulation. A flow circulation forms within the pool because Uw � V in a typical melt

spinning (see Figure. 7.13). Stronger but smaller circulations are visible under higher

wheel speeds. The melt pool bulges along AB as a result of the circulation. Near the

nozzle, the jet also bulges because the imposed velocity V is not uniform distributed at

the nozzle. The geometry of a melt pool is larger in size under lower wheel speeds, as
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t = 0 0.5 1.5 3.15 ms

Figure 7.11 Free melt jet evolution before touchdown

shown in Figure 7.13 (also see [5, 49]). Thinner and longer ribbon is spun out under

higher wheel speeds, while those particles away from the wheel are expelled from the

ribbon. The flow velocity on the ribbon top is less than Uw; consequently, the delivery

velocity Ud is less than the Uw. In order to deliver an amorphous ribbon, the wheel

speed must be larger than a certain value to enable a circulation, under which the not-

undercooled alloy particles merge with the particles from the crucible to prevent the

crystallization from occurring within the pool.

Figure 7.14 shows temperature and velocity distribution within the melt pool un-

der wheel speeds of 400 and 800 cm/s, and subject to the melt-wheel temperature

Tw = 946.5 K. The temperature-dependent viscosity of the alloy follows Eq. (7.11)

in the simulation of Figure 7.14. In addition to thermal diffusion, thermal convection

and viscous dissipation are considered in the 2D simulation of momentum and thermal

transport.

From the figures, the isotherms are approximately parallel to the wheel surface. The

isotherm of 1600 K quickly moves up soon after the jet touches down the quench wheel.

The region of the molten alloy jet next to the wheel is thus rapidly cooled. Nucleation

layers of Tn = 1160 K develop from the melt-wheel boundary toward the melt pool with

time. Unlike the isotherms predicted using the 1D thermal diffusion model in Section 7.7,

the isotherms of melting and nucleation temperatures are away from the wheel surface,
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t = 0.02 0.05 0.10 0.20 ms

(a) Uw = 400 cm/s

t = 0.02 0.05 0.10 0.20 ms

(b) Uw = 1000 cm/s

Figure 7.12 Melt pool and ribbon evolution

not starting at point C. Notice that at t = 0.15 ms the molten flow circulates near

the pool-ribbon conjunction at Uw = 800 cm/s, as shown in Figure 7.14(d). The little

flow circulations near the pool-ribbon conjunction play an important role as a filter that

blocks not-undercooled particles from entering the ribbon.
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(b) Uw = 400 cm/s
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(c) Uw = 1000 cm/s

Figure 7.13 Flow velocity vectors within melt pool
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Figure 7.14 Isotherm and velocity in melt pool

7.6 Estimate of Jet Ribbon Thickness

For free-jet melt spinning, ribbon thickness is reported as proportional to U
−1/2
w [32]

or U−1
w [5, 33]. Kramer et al gave a best-fit ribbon thickness estimate associated with

boundary layer thickness and experiment measurements[5]. The ribbon thickness varies

within one run and across multiple runs, as reported in [49] and [5]. The scatter of

the measured ribbon thickness reflects its dependence on various physical or process

parameters.
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Figure 7.15 Melt spinning geometry estimates (not to scale)

As demonstrated in Figure 7.15, the spinning wheel casts the ribbon through friction

force. The momentum flux of molten flow at the cross-section BG is equal to the average

momentum the wheel exerts to the melt pool over the contact section CG. The ribbon

is dragged by viscous friction in the form of a momentum layer; not a boundary layer

and a displacement layer. If the molten stream has a complete contact with the wheel

with no gas entrapped between them, ribbon thickness is established from Blasius’ flat

plate friction coefficient or momentum thickness[92–94] as follows:

δ

Z
= 0.664

[(
S + F

Z

)
Re

−1/2
S+F −

(
S

Z

)
Re

−1/2
S

]
, (7.12)

where the Reynolds number is computed based on velocity Uw − u and wet distance

(S + F or S). u is the flow velocity next to the wheel (see Figure 7.15). When Uw � u,

the velocity in Reynolds number is Uw. The viscosity in Reynolds number varies with

local temperature. For simplicity, we can either choose the viscosity at point B or

the average viscosities over the wet distances S + F and S for the Reynolds numbers,

respectively. The friction is calculated from the detachment point F rather than the
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leading point C. Eq. (7.12) is valid only when the surface flow along AB is stagnant at

point B (see Section 7.5).

It is not easy to predict ribbon thickness only using Eq. (7.12) but we have two

simplified equations as follows:

δ

Z
=

0.275

(
F

Z

)
√

ReZ,Uw,µB

(
1− UB

Uw

)(
S

Z

) if S = F, (7.13)

and

δ

Z
=

0.332

(
F

Z

)
√

ReZ,Uw,µB

(
1− UB

Uw

)(
S

Z

) if S � F, (7.14)

where the Reynolds number Re is calculated on orifice diameter Z, wheel speed Uw, and

viscosity at point B. The prefactors such as in Eqs. (7.13) and (7.14) should fall between

0.274 and 0.332 for S > F . In the derivation of Eq. (7.14) from (7.12) the following

approximate algebraic identity is implemented:

√
S + F −

√
S ≈ F

2
√

S
if S � F. (7.15)

As shown in Eqs. (7.13) and (7.14), ribbon thickness is proportional to melt pool

length. Eqs. (7.12) to (7.14) show the variability of the melt ribbon in thickness. Ribbon

thickness is not a single-value function of wheel speed but depends on flow temperature

and the wheel wetting distance of the melt as well. Thinner ribbons may result if the

ribbons reside longer on the wheel. Ribbon thickness increases greatly with decreasing

wheel speed.

We have S/Z = 14.815 (S = 1.2 cm for Uw = 2000 cm/s and Z = 0.081 cm) from

[5], and assume u � Uw at point B, such that Eq. (7.14) reduces to

δ

Z
=

0.2343√
Re

and
δ

Z
=

0.2130√
Re

(7.16)

for Uw = 1500 and 2000 cm/s, with F/Z = 2.716 and 2.4691, respectively. Ribbon

thickness is plotted according to Eq. (7.16) for two wheel speeds 1500 and 2000 cm/s

with the experimental observation from [5] (also refer to Table 7.9).

Re = 10.7272 and 14.3029 in Figure 7.16 respectively correspond to the wheel speeds.

Using Eq. (7.11), the viscosity 83.815 g/cms in Reynolds number is computed at the

convergent temperature 1108 K for both wheel speeds, quoted from Kramer[5].
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Figure 7.16 Ribbon thickness as a function of Reynolds number

Apparently, from Figure 7.16, the estimates of ribbon thickness are close to the upper

limit of the measurements. The reason lies in that the viscosity at point B is higher for

the whole wetting contact.

If Karman’s integral form of boundary-layer equations[94],

δ =
1

ρU2
∞

∫ F

0

τwdx = 0.332

∫ F

0

dx

Re1/2
x

, (7.17)

is applied in the calculation, using the viscosity at the nucleation temperature 1160 K

in the Reynolds number, we have

δ

Z
=

0.332√
Re

√
F

Z

√
µ1160 K

µB

, (7.18)

where Re is consistently calculated on orifice diameter Z, wheel speed Uw, and viscosity

at point B. In Eq. (7.17) if S � F , Rex is approximated as a constant based on

F and the viscosity at the nucleation temperature 1160 K. Again, for Uw = 1500 and

2000 cm/s, with F/Z = 2.716 and 2.4691, respectively, the estimates of ribbon thickness
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are given,
δ

Z
=

0.1574√
Re

and
δ

Z
=

0.1500√
Re

. (7.19)

As shown in Figure 7.16, the thickness estimates given by Eq. (7.19) are closer to the

lower limits of the experimental results.

7.7 Thermal Analysis of the Melt Spinning Process

Near the wheel where nucleation is activated, those crystalline particles and the

molten particles with temperature higher than Tn are lifted by the flow circulation

and pushed by the midstream meniscus. Then the particles rejoin the melt flow; their

temperature rises to the melting point by momentum and thermal transport in the melt

pool. Large friction force due to high relative motion and lower temperature on the melt-

wheel contact provides enough upward momentum to form the circulation in the melt

pool, along with strong surface tension by the midstream meniscus (see Figure 7.13). The

melt pool actually acts as a heat exchanger where those not-undercooled and crystalline

particles are re-melted to liquidus state. Temperature of the molten alloy in the crucible

should be higher enough to suppress the nucleation in the circulation.

According to Figure 7.2, the cooling rate of the alloy melt needn’t be greater than

the critical cooling rate for an alloy particle having T < Tn. But in the first time period

tn = 3.22× 10−5 s after the melt touches down the wheel, the temperature should drop

440 K from the melting point Tm (1600 K) to the predicted nucleation temperature

Tn (1160 K). Only in this period, the melt cooling rate must be greater than the critical

cooling rate.

From the critical cooling rate, we have the requirement of temperature variation

along the x-direction near the melt-wheel boundary (refer to Figure 7.17):

−∂T

∂x
>

εcr

Uw

, (7.20)

where the negative sign is present since εcr is defined as a positive value (temperature

drop over time). Eq. (7.20) shows that a faster wheel speed lowers the temperature

gradient requirement.

The ribbon should be thinner than the nucleation layer δn, within which the alloy

flow is undercooled below the nucleation temperature such that

T 6 Tn at point B, (7.21)

as shown in Figure 7.17. The hollow arrows in the figure indicates the heat flow direction.
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Figure 7.17 Momentum and thermal transport in the melt pool

A stable nucleation layer δn formed from point C along the wheel surface is vital to

the amorphous alloy formation. Poor heat conduction between the chill wheel and the

molten alloy due to gas entrapment allows an unstable thinner nucleation layer δn with

many not-undercooled particles. It is supported by the experimental observation that

the entrapment of gas pockets at the wheel-side surface results in a crystalline phase

in the ribbon[49]. When the ribbon departs the wheel, the temperature should be less

than Tn. Amorphous alloy is mainly observed in the free-flight period from Kramer’s

experiments in [5], whereas some crystals grow from the ribbon bottom surface and are

quenched half way to the top surface if the roller speed is less than a certain value,

according to [37].

We can determine the wheel speed limits from the thermal analysis in Section 7.9:

Z

0.6061tn + tc
6 Uw 6

F

0.6061tn
, (7.22)

where tc = 10−4 s and tn = 3.22× 10−5 s from Figure 7.2. Eq. (7.22) requires that the

wheel speed be low enough for the midstream meniscus to wipe all the not-undercooled



110

melt particles out of the ribbon, but large enough such that the upstream jet from the

crucible is not influenced by crystallization.

The minimum wheel speed is 678 cm/s for the amorphous alloy formation if Z =

0.081 cm. Conversely, given wheel speed Uw, we can determine the orifice size Z from

Eq. (7.22). It is complicated to determine the upper wheel speed limit according to

Eq. (7.22), because F is larger at a lower wheel speed than at a higher wheel speed.

7.8 Analytical Solutions of Thermal Layers

It is reasonable to ignore the convection terms of flow and wheel rotation in the

melt-wheel contact region because the flow soon solidifies as temperature drops. If we

ignore the viscous dissipation terms in Eq. (4.2) and assume no latent heat is liberated

in the melt pool (because undercooling is a non-equilibrium solidification), we have a 1D

heat diffusion equation along the y-direction for the alloy melt flow (see Figure 7.17):

∂T

∂t
= α

∂2T

∂y2
, (7.23)

where α is thermal diffusivity of Fe75-Si10-B15 alloy, and the subscript ‘alloy’ is ignored

for simplicity. The equation is subject to constant boundary conditions

T (G, t) = Tm, and T

[
−Dw

2

(
αalloy

αcopper

)1/2

, t

]
= Ta, (7.24)

and initial conditions

T (y, 0) = Tm at y > 0 and T (y, 0) = Ta at y < 0, (7.25)

where G is distance between the downside of nozzle and the upside of wheel, Dw is

wheel diameter, and αalloy and αcopper are the thermal diffusivity of Fe75-Si10-B15 alloy

and copper, respectively, as shown in Table 7.7. Notice in Eq. (7.24) the y coordinate

in the copper wheel (y < 0) has been transformed via the thermal diffusivity ratio. The

wheel diffusivity changes to the alloy diffusivity, so that Eq. (7.23) is applicable to the

copper wheel.

If the following semi-infinite criterion is satisfied:

G

2
√

αt
> 2, (7.26)

the constant boundary condition at y = 0 is halfway between the two initial conditions,

i.e.,

T (0, t) = Tw = (Tm + Ta)/2. (7.27)
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α (cm2/s) k (W/mK) ρ (g/cm3) Cp (J/kgK)

Copper 1.148 397 8.96 386

Alloy .2229 80 7.5 485

Table 7.7 Thermal diffusivity, conductivity, density, and heat specific

The solution to Eq. (7.23) subject to the initial and boundary conditions of Eqs. (7.25)

and (7.27) is:

T ∗ =
T − Tm

Tw − Tm

= erfc

(
y

2
√

αt

)
= erfc

[√
Pe

2

( y

Z

)( x

Z

)−1/2
]

, (7.28)

where the origin point x = 0, y = 0 is located at the leading point C (see Figure 7.17),

time t = x/Uw, and the Peclet number Pe = ZUw/α as listed in Table 7.8. Temperature

profile is plotted in Figure 7.18 using Eq. (7.28).

Uw (cm/s) 500 750 850 1000 1250 1500 2000 4000

Pe 181.61 272.42 308.74 363.23 454.04 544.84 726.46 1452.91

Table 7.8 Peclet numbers based on Uw and Z

The alloy is melted up to 1600 K in the crucible and the wheel surface temperature

Tw = 946.5 K, halfway of Ta = 293 K and Tm = 1600 K. T ∗ = 1, 0.6733 and 0,

respectively, correspond to Tw = 946.5 K, Tn = 1160 K, and Tm = 1600 K. The

thickness of the thermal layer of Tn is derived from Eq. (7.28):

δn

Z
=

0.5963√
Pe

√
x

Z
(7.29)

as shown in Figure 7.18, and so is the thickness of the thermal layer of Tm = 1600 K:

δm

Z
=

4√
Pe

√
x

Z
. (7.30)

Thermal layers δn and δm are depicted in Figure 7.17.

The third thermal layer of T = 1419 K is the lower limit of the alloy melting

temperature:
δ1419 K

Z
=

1.5374√
Pe

√
x

Z
. (7.31)

The temperature profiles measured in [5, 37] exhibit a similar distribution. They are

plotted in dimensionless temperature as shown in Figure 7.18 and Table 7.9. It clearly
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Figure 7.18 Normalized temperature profile due to heat conduction

indicates that heat conduction dominates near the melt-wheel contact area (compare

with the analytical solution of Eq. (7.28)).

As demonstrated in Figure 7.19, when 850 6 Uw 6 2000 cm/s, the nucleation

thickness δn falls between the upper and lower limits of the ribbon thickness, and when

2000 6 Uw 6 4000 cm/s δn is close to the lower limit from Kramer’s experimental

data[5], where δn is calculated according to Eq. (7.29) and the dimensionless foot length

F/Z is quoted from [5]. For a stable delivery of amorphous ribbon, the lower limit of

nucleation thickness δn should be greater than the lower limit of ribbon thickness δ.

Figure 7.19 shows it is not satisfied at lower wheel speeds, namely Uw < 850 cm/s.

The theoretical temperature at the wheel surface is halfway between the melting and

the ambient temperatures. However, it is very difficult to predict the actual temperature

at the melt-wheel boundary because heat transfer across the boundary is not as perfect

as in one respective material − the molten alloy or the copper wheel. In practice,

some gas or vacuum may be entrapped by the wheel and the free stream. These gas or

vacuum pockets reduce the cooling rate greatly because they insulate the melt pool from
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Figure 7.19 Ribbon layer δ and thermal layer δn with Peclet numbers

the wheel. It has also been observed from the experiments[49] that the temperature at

the melt-wheel varies with the wetting contact condition among various runs and even

within a single run. Besides, as a result of residual heat in the copper wheel the wheel

surface temperature is higher than the ambient temperature after revolutions.

7.9 Estimates of the Cooling Rate and the Heat Transfer Co-

efficient

If the viscous dissipation is assumed to be contributed mainly by the velocity vari-

ation that follows Blasius’ similar solution along the x-direction, the cooling rate near

the wheel from viscous dissipation reduces to

∂T

∂t
=

2U3
w

Cpx

(y

x

)2

f ′′2 (7.32)

from Eq. (4.2), where f is the nondimensional stream function and f ′ is the nondimen-

sional velocity in the x-direction[92–94]. Interestingly, the cooling rate in Eq. (7.32) is
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Uw (m/s) 20 15 12.5

Pe 726.46 544.84 454.04

Surface temperature T (K) 1108 1108 1158

T ∗ .7529 .7529 .6763

µ (g/cms) 83.815 83.815 7.5236

Re 14.303 7.152 99.587

δ (cm) .00196 .00196 .00294

∼ .005 ∼ .00637 ∼ .00676

δ/Z .0242 .0242 .0363

∼ .06173 ∼ .0786 ∼ .0836

x/Z 3.8395 4.7037 4.7037

Pe1/2

2

( y

Z

)( x

Z

)−1/2

.1664 .1302 .1783

∼ .4245 ∼ .4231 ∼ .4100

Table 7.9 Measured surface temperature of pool and ribbon

independent of viscosity. According to the calculation and data in the previous sections,

we find η = 7.495 on the isotherm of 1419 K, where η is the nondimensional similarity

variable in the flat plate boundary layer solution given by

η =
y√
νt

. (7.33)

Then f ′′ = 0 at T = 1419 K from [92] because in Blasius’ solution, f ′′ = 0 at η >

4.91, where is outside the boundary layer. Hence, the temperature increase by viscous

dissipation can be ignored where T > 1419 K in the melt pool.

From Eq. (7.28) we have cooling rate for Fe75-Si10-B15 alloy on the isotherm of T =

1419 K:

−∂T

∂t

)
T=1419 K

= 156.97

(
Uw

x

)
(7.34)
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as plotted in Figure 7.20 under various wheel speeds.
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Figure 7.20 Cooling rate of the alloy at T = 1419 K

Accordingly, the critical distance from point C on the wheel surface is defined in

Figure 7.17 and as follows:

Lcr = 156.97

(
Uw

εcr

)
or 0.6061Uwtn, (7.35)

because εcr = (1419− 1160)/tn (refer to Figure 7.2). Over a distance of Lcr from point

C, the molten alloy cooling rate at the lower limit of melting temperature 1419 K must

be greater than εcr to allow stable amorphous production from Eq. (7.34). Eq. (7.35)

and Figure 7.20 demonstrate higher wheel speed creates larger Lcr. Apparently, Lcr

relies on the wetting condition on the wheel as well.

Then we have two critical points, as indicated by points R and R′ in Figure 7.17,

both having an x-distance of Lcr to point C. Point R is on the wheel surface and point

R′ is on the isotherm of 1419 K. The cooling rate at point R′ in the melt pool is equal

to εcr, as denoted by the black dots in Figure 7.20. On the isotherm of 1419 K, the
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cooling rate is greater than εcr at x < Lcr, whereas it is less than εcr and crystallization

may occur at x > Lcr.

Because we are unable to prevent nucleation occurring at x > Lcr and y > δn, we

should lift the particles between the thermal layers δn and δ1419 K away the nucleation

layer and force them to merge with the free stream of temperature higher than 1419 K.

These particles having temperature of 1160 K 6 T 6 1419 K should not influence the

molten alloy within the free stream near the wheel surface. Accordingly, it is required

that the wheel move a distance of Z − Lcr in time less than tc, namely,

Z − Lcr 6 Uwtc, (7.36)

or

Uw >
Z

0.6061tn + tc
. (7.37)

The actual flow velocity at point R′ is less than Uw, but Uw is used instead in Eq. (7.36)

for simplicity. The RHS of Eq. (7.37) underestimates the lower wheel speed limit, because

we assume nucleation begins to happen at point R′ on a perfect wetting condition. If

nucleation is activated at point C, the following modified formula

Uw >
Z

tc
(7.38)

gives another lower wheel speed limit 810 cm/s, which is closer to the value of 800 cm/s

observed in the experiments[5]. Eqs. (7.37) and (7.38) provide an estimated range of

lower wheel speed limit.

Lcr 6 F is necessary as shown in Figure 7.17; otherwise, the particles at the critical

point R having the crystallization time tc are inside the ribbon. We then reach the

upper limit of wheel speed by

Uw 6
F

0.6061tn
(7.39)

from Eq. (7.35).

Substitution of Eq. (7.28) into the 1D Newton’s cooling law at melt-wheel boundary,

k
∂T

∂y

)
y=0

= h(Tm − Tw), (7.40)

yields the heat transfer coefficient along melt-wheel boundary:

h =

√
Pe

π

(
k

Z

)( x

Z

)−1/2

= k

√
Uw

παx
. (7.41)

Notice the heat transfer coefficient on the wheel surface is independent of Z. At the

critical point R, the heat transfer coefficient h = 2.1635 × 106 W/m2K, which is a

constant, as denoted by the dashed line in Figure 7.21.
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Figure 7.21 Heat transfer coefficient along the melt-wheel contact

7.10 Criteria for Amorphous Ribbon Formation

Crystalline alloy was often found on the air-side surface of the ribbon at low wheel

speeds[5] because the alloy particles above Tn are dragged to the air-side surface. If δ is

greater than δn at the pool-ribbon conjunction, namely cross-section BG, crystallization

may be activated within the ribbon. From the temperature profile given in [5], at point B

on free-side of ribbon, the measured temperatures are below Tn when Uw > 1250 cm/s.

Better contact of melt pool with the wheel may produce larger δn and δ. Association

of Eq. (7.29) with (7.18) gives a condition

Pr ≡ Pe

Re
6 3.226

(
µB

µ1160 K

)
, (7.42)

which guarantees δn > δ for Fe75-Si10-B15 alloy with the initial melting temperature

1600 K and Tn = 1160 K. The Prandtl number at BG should be less than the RHS of

Eq. (7.42).

At Uw = 2000 cm/s, Pr is found 50.791 based on the measured temperature 1108 K
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at point B, and the RHS of Eq. (7.42) is 39.001 computed using the experimental data

(refer to Table 7.9)[5]. Eq. (7.42) is not satisfied because the ribbon thickness predicted

by Eq. (7.18) is larger than the lower limit of the experimental observation (refer to

Figure 7.16).

If the predicted ribbon thickness by Eq. (7.14) is instead used for higher wheel speeds,

the derived condition for δn > δ, namely

Pr 6 3.226

(
S

F

)
(7.43)

is still not met. But with the upper wheel speed limit as in Eq. (7.39) and T 6 Tn, we

have

4.2605 6 Pr ≡ µ

ρα
6 5.3226

(
S

Uwtn

)
. (7.44)

The temperature limits are given from Eq. (7.44) with (7.11):

1097 K 6 T 6 1160 K at point B (7.45)

when Uw = 2000 cm/s, tn = 3.22 × 10−5 s, S = 1.2 cm, ρ = 7.4 g/cm3, and α =

0.223 cm2/s. The measured temperature of 1108 K at Uw = 2000 cm/s falls within the

temperature limits of Eq. (7.45). Likewise, the conditions can be obtained through the

same method for Uw = 1500 cm/s and other wheel speeds. The lower temperature limit

exists as in Eq. (7.45) for amorphous production because lower temperature induces

stronger viscous force and accordingly, larger ribbon thickness.
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CHAPTER 8 CONCLUSION

A robust and efficient free surface flow solver has been developed and used in the

analysis and design of free-jet melt spinning. The evolutions of pool and ribbon in a

free-jet melt spinning were simulated; some important flow dynamics and heat transfer

within the pool were found from the velocity and temperature distributions.

The molten alloy jet is undercooled by the quench copper wheel by means of heat

conduction. The wheel casts a thin ribbon through viscous and adhesive forces. A flow

circulation forms within the melt pool under stronger viscous friction and molten alloy

surface tension force. The flow circulation transports the particles that are not under-

cooled away the ribbon pipe and mixes them with the melt stream so that crystallization

is prevented in the melt pool and the ribbon. A successful process must have a wheel

speed large enough to give rise to a stable circulation inside the melt pool, and viscosity

and surface tension large enough to drag a thin layer out of the pool. Meanwhile, the

wheel speed is lower than a criterion that amorphous alloy can evolve fast to be a stable

layer before it is spun out. The wetting condition at the melt-wheel boundary is crucial

because it affects the cooling rate and the viscous friction.

The VOF method is widely used as a CFD technique for interface tracking; however,

some facts about VOF function are often overlooked in the applications. VOF function

varies smoothly in the tangential direction of a free surface, whereas it exhibits sharpness

in the normal direction simply because VOF function experiences variations from zero

to unity value over no more than three grid cells in this direction. The sharpness cannot

be mitigated but intensified by higher mesh resolutions. Accordingly, the accuracy of

numerical solutions can by no means be improved if the finite difference or finite volume

scheme applied is divergent. One should ensure the convergence of numerical solutions

before he improves the accuracy of the numerical methods for the discontinuity convec-

tion. The DA algorithm developed in this work offers second-order accurate convergent

surface normal and curvature, and formulations of surface tension force for free surface

advection.

Although surface tension is constructed to be a continuous volumetric force over the
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entire flow, the CSF model fails to recover the pressure jump that appears in Laplace’s

formula. According to the physical observation, surface tension is found only within

a very thin region between two immiscible fluids. The classifications of grid cells and

control cells restrict surface tension to reside a narrow layer along the free surface, and

attain the integral effect of surface tension in flow pressure over the rest flow field.

The idea of immersed length proposed in this work comes originally from hydrostat-

ics. It is first introduced in the evaluations of density and volumetric surface tension

force. The numerical approach for pressure solution is also improved in that the pres-

sure is sought only at those immersed grid cell centers. Spurious currents have been

successfully eliminated using the modified numerical approach, the reconstructed CSF

model, and the DA algorithm.
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CHAPTER 9 RECOMMENDATIONS

The DA algorithm can be extended in 3D computations for surface normal and

curvature when a free surface is approximated by planar patches in a cubic-celled flow

field. Two surface principal curvatures are estimated with some additional calculations

for 3D free surfaces. The ‘immersed length’ concept can also be implemented in the

numerical approach for 3D surface flows. The modified pressure approach is applicable

to 3D surface flow simulations, though, after a validation of the 3D CSF model.

The H-N algorithm for free surface evolution is an explicit stair-stepped approxi-

mation. Absolutely, a linear approximation is more accurate and furthermore, I would

suggest a development of an implicit scheme for free surface evolution.

For future research on free-jet melt spinning, here are some recommendations.

− If the wheel curvature or surface roughness is considered as a factor influencing

the molten alloy flow and the wetting distance, the y-component velocity of wheel

speed should be included in the translation terms.

− In a free-jet melt spinning, the melt alloy evolves from an axisymmetric stream

to a thin ribbon flow with large width. Further investigation using 3D surface

flow models is thus needed to reveal the relationships among the wheel speed, the

ejection velocity, the Reynolds number of molten jet, surface tension force, and

the ratio of orifice diameter to ribbon width.

− A mathematical model is desired to analyze the stability of molten flow tempera-

ture at the melt-wheel boundary relating to gas pockets, and seek the dependence

of gas pocket formation on wheel speed, wheel curvature, wheel surface roughness,

molten flow pressure, and the meniscus of molten stream.

− Research into viscous friction and heat transfer (hidden heat released) in the phase

change between the solidified alloy and the molten flow is suggested.

Finally, the author would like to see any experimental measurements of velocity and

temperature of melt spinning.
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APPENDIX A A FINITE DIFFERENCE SCHEME FOR

THERMAL CONVECTION AND DIFFUSION

Finite volume method is employed to compute the conservative convection term

∇ · (~V T ) in Eq. (4.2), if the neighboring cell centers are all immersed:

∇ · (~V T )i,j =
1

rδ
i δxi

[
(rδu)i+1/2,j 〈T 〉R − (rδu)i−1/2,j 〈T 〉L

]
+

1

δyj

[
vi,j+1/2 〈T 〉T − vi,j−1/2 〈T 〉B

]
.

(A.1)

In Eq. (A.1) the temperature at the center of right face of the control volume 〈T 〉R, for

instance, shown in Figure A.1, is given by interpolation:

〈T 〉R =
δxi

δxα

(1− αsu) Ti+1,j +
δxi+1

δxα

(1 + αsu) Ti,j (A.2)

and

δxα = δxi + δxi+1 + αsu(δxi+1 − δxi), su = sign(ui+1/2,j), (A.3)

where the upstream differencing control parameter α satisfies 0 6 α 6 1 if its right

neighbor, namely cell (i + 1, j), has F > 0.5. If one of the neighboring cells has F <

0.5, the finite volume method is no longer valid because the temperature may not be

continuous across the interface. The temperature at a control cell center is approximately

equal to that at its neighboring grid cell center if both grid cell centers are not immersed.

For the approximation of the nonconservative heat convection term, it is computed

as follows:

(~V · ∇T )i,j =

〈
u
∂T

∂x

〉
i,j

+

〈
v
∂T

∂y

〉
i,j

. (A.4)

The quantities in the RHS of Eq. (A.4) are estimated by interpolation:〈
u
∂T

∂x

〉
i,j

=
1

2
(1− αsu) ui+1/2,j

(
∂T

∂x

)
i+1/2,j

+
1

2
(1 + αsu) ui−1/2,j

(
∂T

∂x

)
i−1/2,j

(A.5)
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+
Ti,j

vi, j+1/2

ui+1/2, j

i-1/2,j+1/2 i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

( i, j )

vi, j-1/2

ui-1/2, j 〈T〉R

〈T〉T

〈T〉L

〈T〉B

Figure A.1 Temperature location and heat convection terms in a cell (i, j)

and 〈
v
∂T

∂y

〉
i,j

=
1

2
(1− αsv) vi,j+1/2

(
∂T

∂y

)
i,j+1/2

+
1

2
(1 + αsv) vi,j−1/2

(
∂T

∂y

)
i,j−1/2

(A.6)

where su is given as in Eq. (A.3) and so is sv. The gradients of temperature in Eqs. (A.5)

and (A.6), for example, at points (i+1/2, j) and (i, j +1/2), respectively, are computed

by Eq. (A.9) if the both grid cell centers are immersed.

In Section 4.2 of Chapter 4, the temperature gradients on free surface are given in

Eqs. (4.10) and (4.11). Then the coefficient 1/2 in Eq. (A.5) or (A.6), for example,

should be modified as δxi/δxα; δxi and δxα are also modified according to the immersed

length (refer to Figure 5.7).

For the thermal diffusive term in Eq. (4.2), the same algorithm is adopted as in the

estimation of the viscosity term in [16].[
α

rδ

∂

∂x

(
rδ ∂T

∂x

)]
i,j

=
α

rδ
i,jδxi

[
rδ
i+1/2,j

(
∂T

∂x

)
i+1/2,j

− rδ
i−1/2,j

(
∂T

∂x

)
i−1/2,j

]
(A.7)

and [
α

∂2T

∂y2

]
i,j

=
α

δyj

[(
∂T

∂y

)
i,j+1/2

−
(

∂T

∂y

)
i,j−1/2

]
, (A.8)
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+
Ti,j ufl i, j ui+1/2, j

i-1/2,j+1/2 i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

( i, j )

vi, j-1/2

ui-1/2, j

(∂T/∂y)i, j-1/2

(∂T/∂x)i+1/2, j

(∂T/∂y)i, j+1/2

(∂T/∂x)i-1/2, j

vi, j+1/2

vfl i, j

Figure A.2 Heat convection estimated in nonconservative form

where α is the thermal diffusivity and the gradients of temperature on the right and top

faces, for example, are as follows, respectively:(
∂T

∂x

)
i+1/2,j

=
Ti+1,j − Ti,j

δxi+1/2

,

(
∂T

∂y

)
i,j+1/2

=
Ti,j+1 − Ti,j

δyj+1/2

(A.9)

for an interior cell whose four neighboring cells have F > 0.5. δxi and δyj in Eqs. (A.7)

and (A.8) should be modified according to the immersed lengths if the corresponding

neighboring cells have F < 0.5.
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APPENDIX B FORMULATION OF THE CONTINUUM

SURFACE FORCE (CSF) MODEL

In the CSF model[14], we let the color function c̃(~x) equal to the VOF function F (~x),

then
~Fsv = σκ (~x)∇F (~x)g(~x), (B.1)

where the function g(~x) is given:

g(~x) = 1 or F (~x)/ 〈F 〉 (B.2)

with 〈F 〉 = 1/2, the average of the two colors of the fluids. The first option, g(~x) = 1,

locates the force in the transition region at the point of maximum |∇F |, near the F = 1/2

contour; accordingly, Eq. (3.26) becomes (3.8). When the second option g(~x) = 2F is

chosen, the force is biased toward the fluid side of the transition region, where F is

between 1 and 1/2. The second option is recommended according to [16] since the

surface tension force is weighted on the free surface by VOF function F and it may

result in better computational data of free surface because fluid accelerations due to

surface tension are then proportional to density gradients, rather than density itself.

The volume force due to surface tension, like pressure and VOF function, is centered

at each mesh cell, as are the local curvature κ, function g(~x), and normal vector ~n as

shown in Figure B.1. Thus Eq. (3.26) becomes

~Fsvi,j = σκi,jgi,j~ni,j (B.3)

where ~ni,j (see Eq. (3.12)) can be computed as follows:

~ni,j =
1

4

(
~ni+1/2,j+1/2 + ~ni+1/2,j−1/2 + ~ni−1/2,j+1/2 + ~ni−1/2,j−1/2

)
. (B.4)

In Eq. (B.4), the normal at vertex (i + 1/2, j + 1/2), for example, is

~ni+1/2,j+1/2 =

[
(Fi+1,j+1 − Fi,j+1)δyj + (Fi+1,j − Fi,j)δyj+1

(δyj + δyj+1)δxi+1/2

]
ı̂

+

[
(Fi+1,j+1 − Fi+1,j)δxi + (Fi,j+1 − Fi,j)δxj+1

(δxi + δxi+1)δyj+1/2

]
̂.

(B.5)
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Figure B.1 Surface tension force and normals in a cell (i, j)

Then the cell-centered normals and their two components nx and ny can be obtained

by averaging four vertex normals of each cell.

The standard formula for surface curvature of free surface is given by Eq. (3.10),

κ = − (∇ · n̂) =
1

|~n|

[(
~n

|~n|
· ∇
)
|~n| − (∇ · ~n)

]
. (B.6)

The first term on the RHS of Eq. (B.6) can be computed by:(
~ni,j

|~ni,j|
· ∇
)
|~n| =

(
nx

|~n|

)
i,j

(
∂|~n|
∂x

)
i,j

+

(
ny

|~n|

)
i,j

(
∂|~n|
∂y

)
i,j

=

(
nx

|~n|

)2

i,j

(
∂nx

∂x

)
i,j

+

(
nxny

|~n|2

)
i,j

(
∂nx

∂y
+

∂ny

∂x

)
i,j

+

(
ny

|~n|

)2

i,j

(
∂ny

∂y

)
i,j

,

(B.7)

where the derivatives of ~n components are listed in the following equations:(
∂nx

∂x

)
i,j

=
1

2δxi

[
nxi+1/2,j+1/2 + nxi+1/2,j−1/2 − nxi−1/2,j+1/2 − nxi−1/2,j−1/2

]
, (B.8)

(
∂ny

∂y

)
i,j

=
1

2δyj

[
nyi+1/2,j+1/2 + nyi−1/2,j+1/2 − nyi+1/2,j−1/2 − nyi−1/2,j−1/2

]
, (B.9)
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(
∂nx

∂y

)
i,j

=
1

2δyi

[
nxi+1/2,j+1/2 + nxi−1/2,j+1/2 − nxi+1/2,j−1/2 − nxi−1/2,j−1/2

]
, (B.10)

and(
∂ny

∂x

)
i,j

=
1

2δxi

[
nyi+1/2,j+1/2 + nyi+1/2,j−1/2 − nyi−1/2,j+1/2 − nyi−1/2,j−1/2

]
. (B.11)

The computation of the second term on the RHS of Eq. (B.6) follows that

(∇ · ~n)i,j =
1

rδ
i

∂

∂x

(
rδnx

)
i,j

+

(
∂ny

∂y

)
i,j

, (B.12)

where

1

rδ
i

(
rδ ∂nx

∂x

)
i,j

=
1

2δxirδ
i

[
rδ
i+1/2

(
nxi+1/2,j+1/2 + nxi+1/2,j−1/2

)
−rδ

i−1/2

(
nxi−1/2,j+1/2 − nxi−1/2,j−1/2

)]
.

(B.13)

Eqs. (B.4) to (B.13) are called the ALE-like scheme of computing local normal and

curvature.

In the MAC scheme as given in Eqs. (B.14) to (B.20), the curvature is evaluated

by directly differentiating the unit normals at the centers of four cell sides. The cell-

centered normal vector of a cell ~ni,j is obtained by linear interpolation of its face-centered

components, namely,

~ni,j =
1

2

(
nxi+1/2,j + nxi−1/2,j

)
ı̂ +

1

2

(
nyi,j+1/2 + nyi,j−1/2

)
̂, (B.14)

and a cell-centered curvature (∇ · n̂)i,j is given from

(∇ · n̂)i,j =
1

δx

(
n̂xi+1/2,j − n̂xi−1/2,j

)
+

1

δy

(
n̂yi,j+1/2 − n̂yi,j−1/2

)
, (B.15)

where the unit normal at right face center (i + 1/2, j), for example, is

n̂i+1/2,j =
nxi+1/2,j ı̂ + nyi+1/2,j ̂

|n2
xi+1/2,j + n2

yi+1/2,j|1/2
, (B.16)

as is the unit normal at the top face center (i, j + 1/2). The x- and y-components of

normal at the right face center and top face center are computed, respectively, as follows:

nxi+1/2,j =
Fi+1,j − Fi,j

δx
(B.17)
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and

nyi,j+1/2 =
Fi,j+1 − Fi,j

δy
, (B.18)

while the y- and x-components of normal at the right face center and top face center are

evaluated by linear interpolation, respectively:

nyi+1/2,j =
1

4

(
nyi,j+1/2 + nyi+1,j+1/2 + nyi,j−1/2 + nyi+1,j−1/2

)
(B.19)

and

nxi+1/2,j =
1

4

(
nxi+1/2,j + nxi+1/2,j+1 + nxi−1/2,j + nxi−1/2,j+1

)
. (B.20)

The volume forces due to surface tension at the centers of the cell faces as shown in

Figure B.1 are computed by interpolating the values at neighboring cell centers on both

sides:

Fsvxi+1/2,j =
δxiFsvxi+1,j + δxi+1Fsvxi,j

δxi + δxi+1

(B.21)

and

Fsvyi,j+1/2 =
δyjFsvyi,j+1 + δyi+1Fsvyi,j

δyi + δyi+1

. (B.22)

RIPPLE also provides a stencil or mask matrix for the convolution kernel function

of Eq. (3.27) as follows when the color function c̃(~x) = ρ̃(~x) for a cell and its eight

neighboring cells:

1

64

1 6 1

6 36 6

1 6 1

(B.23)

which is derived from a B -spline approximation and Eq. (3.27), according to [16].
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APPENDIX C FORMULATION OF HEAT EQUATION IN

2D COORDINATES

Eq. (4.2) in two-dimensional conservative forms is presented:

∂T

∂t
+

∂

∂x
(uT ) +

∂

∂y
(vT ) =

ν

Cp

[
2

(
∂u

∂x

)2

+

(
∂u

∂y
+

∂v

∂x

)2

+ 2

(
∂v

∂y

)2
]

+α

[
∂2T

∂x2
+

∂2T

∂y2

]
,

(C.1)

for the Cartesian coordinate system, and

∂T

∂t
+

1

r

∂

∂r
(ruT ) +

∂

∂z
(vT ) =

ν

Cp

[
2

(
∂u

∂r

)2

+

(
∂u

∂z
+

∂v

∂r

)2

+ 2

(
∂v

∂z

)2
]

+α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2

]
,

(C.2)

for the cylindrical coordinate system, respectively.

The nonconservative convection terms are identical for the Cartesian and the cylin-

drical coordinate systems (see Appendix A).

The boundary conditions on free surface, namely Eq. (2.27), for heat transfer in the

cylindrical system are formulated as follows:

∂T

∂r
nr +

∂T

∂z
nz =

|~n|
k

(
h (T − Ta) + εσSB(T 4 − T 4

a )
)
, (C.3)

where (nr, nz) is two components of the normal ~n to free surface (see Eq. (3.12)):

nr =
∂F

∂r
, nz =

∂F

∂z
, |~n| =

√
n2

r + n2
z. (C.4)
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