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PREFACE: AN INFORMAL NOTE TO THE READER

This work is intended for those with a professional or personal interest in the

topics and applications associated with the biomechanical aspects of oral implants. I,

the author, readily admit that, on the chance that any expert from some involved field

find their way to this work, at least some degree of mercy on the part of the expert

reader is probably required, since only a year ago I was entirely ignorant of what all

bone does. My own understanding of the requisite biological concepts was largely

constructed from the works of Dr. David B. Burr and Dr. R. Bruce Martin, whose

collective published works are, in my opinion, more than sufficient to appreciate any

advanced literature on skeletal mechanobiology. In all transparency, the majority of

my knowledge on these topics, which is summarized in Chapter 1 as relevant to the

succeeding work and in the fewest possible words, originates from their first edition

of Skeletal Tissue Mechanics (which was with Dr. Neil A. Sharkey).

The work here originates from the collaborative research of Drs. Andés Tovar

and Tien-Min Gabriel Chu, who through their mutual biomechanical interests have

patiently and mercifully advised me. It was through them that I was introduced to

Dr. Yung-Ting Elizabeth Hsu, and with our respective backgrounds we all set our-

selves to enhance the versatility of the clinician’s repertoire. Chapter 4 documents

my contribution to our work, which is supported by Chapters 2 and 3. Chapter 5

documents my attempt to extend the usefulness of our modeling description of bone,

based on some of the limitations that I observed during the work, which I hope, in the

least, provokes some better mind to produce something useful. Chapters 2 through 4

are written as interdependent studies, each with its own unique introduction, which

(hopefully) conveys the progression of the work in an honest form.

T.J.S.
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ABSTRACT

Sego, Timothy James. M.S.M.E., Purdue University, May 2016. Finite Element Anal-
ysis of and Multiscale Skeletal Tissue Mechanics Concerning a Single Dental Implant
Site. Major Professors: Andrés Tovar and Tien-Min Gabriel Chu.

Finite element analysis (FEA) in implantology is performed in design applications

concerning the complex topology of an implant, according to theoretical assumptions

about and clinical data concerning the biomechanical nature of skeletal tissue. Im-

plants are placed in topologically and physiologically complex sites, and major dis-

agreement exists in literature about various aspects concerning their modeling and

analysis. Current research seeks to improve the implementation of an implant by

the use of short implants, which negate the necessity of additional surgical proce-

dures in regions of limited bone height. However, short implants with large crown

heights introduce biomechanical complications associated with increased stress and

strain distributions in skeletal tissue, which may cause bone loss and implant failure.

The short implant is characterized by the geometric ratio of the crown height to the

implant length, called the crown-to-implant (C/I) ratio.

In this work nonlinear FEA was performed to investigate the effects and sig-

nificance of the C/I ratio on long-term implant stability. A finite element model

was developed according to literature, and emulation of previous research and com-

parison of reported results were performed. Comparison of results demonstrated

significant sources of error in previous research, which are argued to be caused by

mesh-dependency from common model idealizations in literature. A convergence test

was then performed, which verified the mesh-dependency of results and challenged the

reliability of some common model assumptions and methods of analysis in literature.

A 16-point design of experiments was then performed to evaluate the significance

and influence of the C/I ratio, considering a proposed novel method for evaluating
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results and predicting long-term stability. Analysis of results demonstrated that the

C/I ratio augments the inherent biomechanical effects of an implant design, particu-

larly overloading strain concentrations at implant interface features. The use of short

implants with high C/I ratios is determined to be inadvisable, considering the phys-

iological response of tissue to strain distributions and biological context. A novel,

multiscale material model is then proposed to describe the short-term accumulation

of damage and biomechanical remodeling response in orthotropic skeletal tissue, as a

potential solution to the mesh-dependency of results.
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1. INTRODUCTION

1.1 Multiscale Description of Bone

Bone is an organic, dynamic, porous structure that serves a number of functional

purposes [1]. Bone minerals contribute to approximately 7.8% of the weight of the

human body [2], and are organized into two different types of bone, called cortical and

trabecular bone. Macroscopically, each type of bone is characterized by porosity and

directionality, with corresponding mechanical descriptions. Consequentially, bone

can be mechanically described as a dynamic, anisotropic material. Cortical bone,

also known as compact bone, provides the primary structural function of bone, is

5-10% porous and is typically found as a cortex of relatively consistent directionality

and surrounding trabecular bone. Trabecular bone, also called cancellous bone, is

75-95% porous, can vary greatly in directionality and is filled with marrow, which

serves a number of biochemical functions [3]. The mechanical properties of both bone

types have been extensively studied, though much disagreement exists among results,

neglecting the significant variation between anatomical regions, species and subjects,

and the differences between in vivo and ex vivo.

In topologically simple regions (for example, a long bone) the distinct microstruc-

ture (50-1,000 μm) of each type of bone is apparent. Mineral in trabecular bone is

arranged as a complex matrix of interconnected struts, called trabeculae, of approx-

imately 200 μm thickness. The matrix of the trabecular system occupies the inner

volume of the cortical shell. Cortical bone consists of a Haversian system of partially

and fully formed fibers, called osteons, with an approximate diameter of 200 μm.

Partially formed osteons are overlapped by those of full form, which have at their

fiber axis a non-mineralized volume called a Haversian canal of approximately 50

μm diameter. The Haversian system has access features, called Volkmann’s canals,
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Figure 1.1. Sketch of some important features of a typical long bone.
Reproduced from [1] with permission from Springer.

through which blood vessels and possibly nerves penetrate the cortical shell and oc-

cupy Haversian canals. The Haversian system also includes resorption cavities, which

are non-mineralized volumes where osteons are being formed and, at their largest,

have an approximately 200 μm diameter (Figure 1.1).

1.2 Structural Adaptation and Skeletal Tissue Mechanics

Bone is known to adapt to biomechanical conditions [4]. In the biological paradigm

of evolutionary advantage, the hypothesis that organisms adapt to changes in living

conditions [5] is supported by biomechanical observations that the trajectory of tra-
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Figure 1.2. Bending is associated with stress (and strain) gradi-
ents. If the polarity of these gradients is as defined in the text, then
they would have + and - signs as shown in the longitudinal section
at left. The streaming potentials produced by these stress gradients
would have simliar polarity. If positive and negative signals produce
resoprtion and formation, respectively, the bone would straighten as
shown in the right diagram. Reproduced from [1] with permission
from Springer.

becular systems tend to align with principal stress directions [6]. The hypothesis is

further supported by observations of the effects of an osteotomy on overloading strains

and bone growth in bovine [7], bone loss in canines from prolonged disuse [8], and

many other observed phenomena [9]. These mechanophysiological phenomena, com-

bined with the consequences of evolutionary pressures associated with body weight

and skeletal strength, are collectively referred to as Wolff’s Law. In the words of

Wolff himself, the structural adaptation of skeletal tissue has to do with ”form and

function” [10]: bone restructures to better serve the functions required for a repeated

mechanical stress state, while using the least amount of material possible. The pro-

cesses of structural adaptation are observed to occur in two modes. The first mode,

called modeling, is the resorption and formation of bone tissue in macroscopically dis-

tinct regions (Figure 1.2). The second is referred to as remodeling, where resorption

and formation in the macroscale occur in the same region.
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Figure 1.3. Schematic diagram of an osteonal BMU. Larger, mult-
inucleated cells to right are osteoclasts; smaller cells shown in black
to left are osteoblasts. Cross-sectional views are shown above. Not to
scale. Reproduced from [1] with permission from Springer.

In the microscale, bone resorption is accomplished by the osteoclast, and formation

is performed by the osteoblast, which deposits osteoid that mineralizes into bone

tissue. Groups of these two cells collect together to form the basic multicellular unit

(BMU), which accomplishes remodeling processes. In the Haversian system, each

osteon is the byproduct of the remodeling processes performed by a BMU (Figure

1.3). Resorption cavities are the current work of some nearby BMU, the progressing

resorption surface of which is the cutting cone. In the trabecular system, the BMU

travels along the surface of and digs into trabeculae. The exact mechanisms by which

bone senses and responds to mechanical stress states are currently unknown.

1.3 FEA and Implantology

Finite element analysis (FEA) is the virtual modeling and analysis of a system by

means of the finite element method (FEM). In structural FEM, a geometry is parti-

tioned into discrete volumes, called elements, the solutions of which are formulated

and simultaneously solved for a given problem statement. FEA is most commonly

implemented when studying complex geometries, for which no feasible analytical so-
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lution can be formulated. FEA has been used to study various aspects of implant

design and stability since 1976 [11], and has become more advanced, to the incor-

poration of peripheral technologies like computed tomography (CT), the modeling

of microstructures [12] and the simulation of theoretical descriptions of structural

adaptation [13].

Concerning the study of implant design, a common application of FEA in implan-

tology is the continuum model [14–23]. For the purpose of computational efficiency,

the continuum model assumes the idealization that skeletal tissue can be modeled

as uniformly continuous. This idealization is also frequently extended to assuming

isotropic material properties of both types of bone, as well as linear elasticity and a

neglect of plastic deformation. Implant design analyses typically consider the long-

term scenario in which an implant has fully bonded to cortical and trabecular tissues,

a condition called osseointegration. Under these model assumptions, various loads

and physical scenarios are simulated and analyzed, for the purpose of studying vari-

ous factors associated with bone loss and implant failure. Maximum results in one or

both bone tissues are often reported, and spatial results distributions are analyzed.

Given the significant disagreement concerning the experimental mechanical properties

of bone tissue, the array of potential model assumptions and the technical details of

any given finite element (FE) model, conclusions from finite element analyses using

the continuum model may vary greatly.

1.4 Knowledge Gap

One common design parameter of current research is the crown-to-implant (C/I)

ratio [20, 22–24], which is the ratio of the exposed length of an implant assembly to

the osseointegrated implant length. The C/I ratio is of particular interest to clinicians

in application to regions of limited bone height, where smaller implant lengths for a

given crown height may be utilized to avoid more costly surgery. Clinically, implant

design recommendations state that an acceptable crown height can be no greater than
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an implant length [25], while one retrospective study suggests that, with the inclusion

of splinted implants, higher C/I ratios cause less crestal bone loss [26]. Furthermore,

some clinical data suggests that the C/I ratio has no influence on crestal bone loss [27].

Data has also suggested and been corroborated by experimental work that long-term

stability can be expected from crown heights less than 15 mm, regardless of C/I

ratio [24].

Still, given the usefulness and clinical success of the short implant [28], the con-

tinuum FE model continues to be utilized in the study of implant design. Work using

FEA [20,23] and photoelastic analysis (PEA) [24,29] have both shown a positive cor-

relation between the C/I ratio and stress distribution and maximum results, and that

stress concentrations are significantly affected by lateral force. However, previous

implant design studies using FEA demonstrated significant disagreement about the

magnitude and distribution of results [20, 23]. Disagreement about reported results

distributions was most apparent near sharp corners and the implant interface with

cortical bone, which are bonded and dissimilar in material properties. Both sharp cor-

ners and bonded, dissimilar materials are known to produce singular configurations

and significant model errors [30, 31]. These regions of disagreement about results

are of clinical interest, since they have been observed to experience significant crestal

bone loss in vivo [32]. Disagreements among FE models of the implant site include the

degree of mesh detail [33,34], the consideration of trabecular architecture [12,35–37],

material modeling of skeletal tissue [11] and analyzed maximum results [21, 23, 35].

Many studies assumed an isotropic model of skeletal tissue, which significantly affects

results distributions and maximum results [38–40]. Concerning uncertainty about the

implications of model results, implant stability has been proposed to be associated

with implant interface surface area [33] and predicted by quantifying volumetric re-

gions of overloaded tissue [18].
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1.5 Research Objectives

The work in the succeeding chapters is concerned with the aforementioned biome-

chanical aspects of a single dental implant site. The work utilizes a continuum FE

model of a soft-tissue implant in a simplified crestal ridge. The research objectives of

this work are (1) to determine the limitations of the typical implant FE model; (2) to

propose novel enhancements to implant modeling, including (i) a method of analysis

of the biomechanical functional response of skeletal tissue to loading; and (ii) a ma-

terial model to describe the accumulation of and biomechanical response to plastic

deformation from a single load case; and (3) to determine the effects and significance

of the crown-to-implant ratio on the long-term stability of a single dental implant,

considering the predicted biomechanical response to loading. The hypothesis of this

work is that, by augmenting the biomechanical effects of the strain concentrations

in skeletal tissue from an implant design, increasing C/I ratios may associate with

greater overloading in bone.
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2. A PROPOSED FE MODEL OF AN IMPLANT SITE AND ITS COMPARISON

TO PREVIOUS WORKS

2.1 Introduction

FEA has become increasingly useful for the study of implants [11]. This is largely

because of the limitations of experimental methods in vivo and biological relevance of

circumstances ex vitro, prompting researchers to explore analytical and numerical ex-

perimentation. Because of the highly complex geometry of an implant assembly (that

is, the implant, abutment and assembly components), analytical descriptions are, at

best, unmanageable, making FEA the primary resource among in silico methods.

While a great deal of clinical data in implantology is retrospective, FEA has been

utilized to model and predict phenomena that have been significantly unobservable in

situ, including loading during interface development [41], structural adaptation [42,43]

and responses to insertion torque [34].

A large amount of research has been performed using FEA to study the effects of

various factors in the design of implants [44] like implant thread features [16,18], neck

design [21] and length [15, 20, 23]. Still broader works have used FEA to better un-

derstand the interactions of neighboring implants by proximity [14] and mastication

with the position of foodstuff [40]. Many researchers have studied various aspects

of isolated implant sites under static loading [45], where in typical FE models skele-

tal tissue is modeled as continuous, linearly elastic and isotropic, and the implant

interface is modeled as bonded with bone under the assumption of perfect osseoin-

tegration. These have prompted investigations of FE models using FEA to better

understand the influence of such assumptions by comparing results using isotropic

and anisotropic material properties [39] and different frictional descriptions of the

implant interface [12].
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Still, there is a lack of consensus about certain details of the implant FE model.

One such disagreement among studies is the material description of biological tis-

sue [11]. This is likely because research is still investigating a precise mechanical

description of bone [46–50], given the potential for the consistency of bone to vary

widely by site and patient [51]. Another disagreement is the results of interest,

whether principal [12] or deviatoric [15], whether stress, micromotion [21] or dam-

age [18]. Accordingly, in this work an FE model is proposed that was developed

according to various details reported in literature. FE models from collected litera-

ture are emulated using nonlinear static structural analysis, the results of which are

then compared to those reported in literature for validation and insight into the lack

of consensus in literature.

2.2 Materials and Methods

2.2.1 Description of Model

A three-dimensional parametric CAD model of an implant assembly placed in a

crestal ridge was generated using Creo Parametric v. 2.0 (PTC, Massachusetts, USA).

The model was developed under the assumptions of continuous tissue of both bones,

perfect osseointegration of the implant and perfect implant integration. The model

of cortical bone consisted of an outer layer of uniform thickness enclosing an inner

core of trabecular bone. The crestal ridge was modeled with a horizontal, planar

superior surface (width of 6 mm). Consistently with previous studies, round and

chamfer features were not added to cortical bone along the implant interface at the

superior face of the ridge. The implant model was developed from the specifications

of a popular soft-tissue implant (Straumann Institute, Waldenburg, Switzerland) of

standard size (diameter of 4.1 mm). To avoid complications during meshing, virtual

topology was applied at erroneous edge and face artifacts that were generated from

revolved features. Within the scope of the study, the abutment and crown were

modeled as a simple, cylindrical extrusion, henceforth called the load post, which
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Figure 2.1. CAD model and virtual topology of the implant and
crestal ridge (IL = 10 mm).

was extruded from the superior face of the implant. To increase the efficiency of

simulations, simplifications were made to the implant by removing features that were

outside of the scope of the study. The neglected features consisted of all internal

connectivity to an abutment. (Figure 2.1).

The model was parameterized according to relevant dimensions during analysis

of an implant. The model parameters include: (1) the crown height CH, measured

from the superior surface of the crestal ridge to the loading surface of the load post;

(2) the implant length IL, calculated as the total implant assembly length minus

the crown height; (3) the uniform thickness of the cortical shell τ , (4) the material

properties of both skeletal tissues; and (5) both load components Px and Py applied

to the loading surface of the load post. For this study, lateral loading was appiled in
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Figure 2.2. Considered geometric parameters of the implant site.

the buccal-lingual plane, which for the model orientation was the x− y plane (Figure

2.2).

Considering these model parameters and conditions, four previous studies were

collected that studied similar implant sites and that provided sufficient (or nearly

sufficient) information for comparison and verification of the model [14, 22, 23, 39].

Each study was replicated by determining the corresponding model parameters of this

study (geometric, material and loading) and by assuming any necessary parameter

that was not explicitly reported; at least one assumption was required by every study

except one (Table 2.1). The designated model parameters of each study were applied

to the model configuration to determine which studies, if any, the model best supports.

The parameterized geometric model was then imported into the FEA software

ANSYS v.15 (ANSYS, Inc., Pennsylvania, USA). Model parameters from collected
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Table 2.1. Model parameters from collected literature.

Trial
CH IL τ Px Py

Source Source model notes
(mm) (mm) (mm) (N) (N)

1 10.0 10.0 1.0 0 -200 [22]
0◦ angulation

2 10.0 10.0 1.0 100 0 [22]

3 5.0 10.0 2.0 40 -200 [39]

4 10.0 8.5 1.0 0 -200 [23]

5 12.5 8.5 1.0 0 -200 [23]

6 15.0 8.5 1.0 0 -200 [23]

7 10.5 8.5 1.0 100 0 [23]

8 12.5 8.5 1.0 100 0 [23]

9 15.0 8.5 1.0 100 0 [23]

10 3.0 7.0 2.0 0 -70 [14]

11 3.0 7.0 2.0 30.3 -17.5 [14] 2 cm implant distance

12 3.0 7.0 2.0 14 0 [14]

literature were recorded, to emulate the various reported model configurations. Non-

linear FEA under static loading was applied to all configurations. Loading was di-

rectly applied to the superior face of the extruded load post, and fixed boundary

conditions were applied to both tissues and at the extreme vertical surfaces of the

site (that is, the mesial and distal boundaries). All contacts were modeled as bonded

to fulfill the assumption of perfect osseointegration (Figure 2.3).

2.2.2 Mesh Details

Quadratic hexahedral elements were globally assigned to cortical bone. The mesh

was mapped to the interface of cortical bone with the implant, inflated radially and

sized to divide the cortical shell thickness into three equal element layers. The perime-
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Figure 2.3. Proposed FE model setup.

ter of the interface at the superior and inferior faces of the cortical shell were then

uniformly divided. The perimeter divisions, radially inflated initial length and in-

flation growth rate of the contact elements were programmed such that all contact

elements had an aspect ratio of approximately 1 (38 divisions, 660 μm inflated length,

0.25 growth rate). The number of inflated layers was then set equal to two, for suf-

ficient clearance to generate appropriately sized elements as the mesh transitioned

into free form. Quadratic tetrahedral elements were assigned to the implant and

programmed about the interface with cortical bone, with 80 evenly spaced divisions

(Figure 2.4).

In trabecular bone, quadratic tetrahedral elements were globally assigned. The

mesh was mapped to the implant interface, at the surface of the outer diameter of

the thread feature, and sized to place two elements along the surface path (90 μm

element size). To accurately capture contact interactions at the cylindrical features of
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Figure 2.4. Detailed view of the mesh at the implant interface with cortical bone.

the implant interface, the mesh was programmed with a slow transition rate (Figure

2.5).

The mesh was designed using a test configuration of IL = 10 mm (Table 2.2).

After verifying that no observable sources of significant error were present in the test

model, project files were generated for all implant lengths from collected literature.

Figure 2.5. Detailed view of the mesh at the inferior surface of the
implant interface with trabecular bone
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Table 2.2. Mesh statistics of the FE model for a 10 mm implant length.

Part Number of Nodes Number of Elements

Implant (excluding load post) 304,499 208,224

Cortical bone 186,943 119,370

Trabecular bone 509,881 358,800

Total 1,001,323 686,394

The crown height, loading components and material properties were parameterized

per collected study of interest. To ensure that no unanticipated errors occurred dur-

ing parameterization, the project files for each implant length were manually recon-

structed and individually verified by inspection. FEA was performed on a personal

computer, Intel i7-4790k (4.00 GHz) processor, 16.0 GB RAM.

2.2.3 Material Properties

Several previous studies have shown that the assumption of isotropic material

properties in bone significantly influences resulting stress and strain values [38–40].

Despite this, all collected literature but one [39] only modeled cortical and trabecular

bone as isotropic. To remain consistent with collected literature, both skeletal tissues

were modeled as isotropic, and material properties were taken directly from literature

(Table 2.3). To fulfill the assumption of perfect implant integration, no variations in

material properties were modeled in the neighborhood of the implant. The hetero-

geneity of trabecular bone was neglected for the purpose of simplification, though the

neglect of individual trabeculae may introduce significant errors in modeling of the

implant interface [37]. The implant and load post were modeled as isotropic according

to a titanium alloy Ti6Al4V used in dental implants: Young’s Modulus of 110 GPa,

Poisson’s ratio of 0.35.
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Table 2.3. Material properties for cortical and trabecular bone in the
literature comparison.

Young’s Modulus (GPa) Poisson’s ratio Source

Cortical Trabecular Cortical Trabecular

13.70 1.370 0.30 0.30 [22]

16.50 0.482 0.34 0.26 [39]

13.70 1.370 0.30 0.30 [23]

14.80 1.850 0.30 0.30 [14]

2.3 Results

Collected literature cited various results of interest, whether a principal stresses

and/or strains in either or both tissues. For comparison, this study considered ap-

plicable results of the model per selected study. Tables 2.4 through 2.7 show the

comparison of the model results with the collected literature results according to the

maximum stress σ and microstrain με, the first (tension) and third (compression)

principal results 1 and 3, respectively, and in cortical C and trabecular T tissues.

For each result of each source, a percent error and population standard deviation of

error (SD) were calculated to better understand the agreement between the source

and the model without regard to the scale of the result. The individual results for

each source were then averaged for comparison between the sources. The percent

error was calculated according to the formula

%Error =
MR− LR

LR
· 100%

where MR and LR are the model result and literature result, respectively.

Table 2.4 shows the results of the two trials that were conducted while com-

paring the first principal stress results in cortical bone (σC
1 ) to those reported in

literature [22]. The applied load was varied from axial to lateral while holding all

other parameters constant, the results of which from both the literature and pro-
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Table 2.4. Maximum results from the literature comparison for trials 1 and 2.

Trial Literature Results Model Results % Error

σC
1 σC

1 σC
1

1 -1 17.76 -1876

2 27.02 154.42 471

% Mean Error -702

±SD ±1174

posed model demonstrated a positive correlation between the loading angle of attack

and maximum first principal stress in cortical bone. However, the results of the pro-

posed model were significantly greater than those from literature and for Trial 1 was

of opposite sign, with a mean error and standard deviation of -702±1,174%.

Table 2.5 shows the results of the trial that was conducted while comparing the

first and third principal microstrain values in cortical and trabecular bone (μεC1 ,

μεC3 , με
T
1 and μεT3 , respectively) to those reported in literature [39] for each of two

neighboring implants. The implants in literature were individually loaded and spaced

sufficiently far to demonstrate no significant interaction. The results of the proposed

model were lesser in cortical bone and greater in trabecular bone than those from

literature, and the most supportive of any collected literature, with mean errors and

standard deviations between -25±11% (for μεC1 ) and 84±15% (for μεT3 ).

Table 2.6 shows the results of the trials that were conducted while comparing

the maximum first principal stress and microstrain results in cortical bone (σC
1 and

μεC1 , respectively) to those reported in literature [23]. The crown height was varied

for purely axial and lateral load cases while holding all other parameters constant.

Results from literature and the proposed model demonstrated a positive correlation

between crown height and both results of interest under lateral loading. Contrarily,

results from literature also indicated effects of the crown height on both results of

interest under axial loading, while results from the proposed model demonstrated
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Table 2.5. Maximum results from the literature comparison for trial 3.

Trial Literature Results Model Results

μεC1 μεC3 μεT1 μεT3 μεC1 μεC3 μεT1 μεT3

3
2655 -4454 4115 -3710

1692 -3062 6448 -7374
1974 -4044 5167 -4379

% Error

3
-36 -31 57 99

-14 -24 25 68

% Mean Error -25 -28 41 84

±SD ±11 ±3 ±16 ±15

Table 2.6. Maximum results from the literature comparison for trials 4 through 9.

Trial Literature Results Model Results % Error

σC
1 μεC1 σC

1 μεC1 σC
1 μεC1

4 -0.19 116.4 16.54 1022 -8803 778

5 -0.23 131.3 16.55 1024 -7297 680

6 -0.28 147.4 16.57 1025 -6017 596

7 2.29 395.8 109.92 6778 4700 1613

8 3.25 566.9 134.84 8322 4049 1368

9 3.40 712.5 161.82 10016 4659 1306

% Mean Error -1451 1057

±SD ±5979 ±387
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Table 2.7. Maximum results from the literature comparison for trials
10 through 12.

Trial Literature Results Model Results

σC
1 σC

3 σT
1 σT

3 σC
1 σC

3 σT
1 σT

3

10 3.7 -3.6 0.76 -0.59 5.49 -9.55 1.86 -2.54

11 11.1 -19.7 2.15 -1.40 10.73 -15.54 1.46 -1.55

12 4.1 -5.0 0.25 -0.27 6.05 -6.07 0.46 -0.52

% Error

10 48 165 144 331

11 -3 -21 -32 10

12 48 21 82 94

% Mean Error 31 55 65 145

±SD ±24 ±80 ±73 ±136

no correlation whatsoever. Literature reported negative values for maximum first

principal stress under axial loading, which contributed significant variation in the

comparison of results to the proposed model. Results from the proposed model

were significantly greater in magnitude for both results of interest and least sup-

portive of any literature comparison, with a mean error and standard deviation of

-1,451±5,979% in cortical bone stress and 1,057±387% in trabecular bone.

Table 2.7 shows the results of the trials that were conducted while comparing

the maximum first and third principal stresses in cortical and trabecular bone (σC
1 ,

σC
3 , σ

T
1 and σT

3 , respectively) to literature [14]. The load was varied from axial to

lateral over three trials, with a magnitude of 70, 35 and 14 N and angle of application

with the implant axis of 0◦, 60◦ and 90◦, while holding all other parameters constant.

Literature reported positive values for extreme third principal stresses. Because of

the apparent agreement of results, those positive values were assumed to mean the

largest magnitude of compressive stress, which were then compared to results from the
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Figure 2.6. Results sample of the literature comparison for the trial
with the most disagreement with collected literature (Trial 4, 1st prin-
cipal stress)

proposed model as negative values. Results from the proposed model were mostly

greater in magnitude than those from literature, with as much of a mean error as

55±80% in cortical bone and 145±136% in trabecular bone.

Figure 2.6 shows a sample of results from the literature comparison for trial 4.

For all trials, results demonstrated significant concentrations of stress and strain in

cortical bone at the superior and inferior perimeters of the implant interface, and

in trabecular bone at the thread features of the implant interface. In both tissues,

the stress and strain distributions generally emanated in a continuous manner from

these features, as well as from the inferior face of the implant interface in trabecular

bone. Relatively higher degrees of results were also observed in trabecular bone at

the superior interface with cortical bone.
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2.4 Discussion

Of immediate interest is the excessive degree of discrepancy between results from

the proposed model and those from some literature, while other comparisons demon-

strated more acceptable disagreement. Disregarding the disagreement about the sign

of certain reported maximum results (Tables 2.4 and 2.6), the disagreement of the

magnitude of results with certain literature is of particular concern. Though the most

comparable results in cortical and trabecular bone were at best 3% and 10% (Table

2.7), the presence of significant sources of error is demonstrated by that disagreement

with multiple sources for multiple trials was in excess of 1000%.

Review of reported model details did indicate some potential explanations for what

might have contributed to such widely varying agreement between collected literature

and the proposed model. Those studies in relative agreement with the proposed model

did implement an implant with a similarly course thread pitch to the one used in the

proposed model, while those studies in major disagreement used an implant of a finer

thread. The difference in thread pitch does not, however, explain disagreement about

results in cortical bone, neither does literature support this explanation for such large

disagreement about results in trabecular bone [16]. Models in major disagreement

implemented a full prosthetic assembly including an abutment, retaining screw and

crown, while models of relative agreement implemented simplified models similarly to

the proposed model. As an explanation for disagreement about results in cortical and

trabecular bone, this difference in modeling features is inconsistent with St. Venant’s

Principle.

The remaining observed differences between collected literature and the proposed

model were the implemented mesh and consistency of results distributions. From

what information is reported in collected literature, those studies in major disagree-

ment with the proposed model implemented a notably finer mesh for cortical bone

than those studies in relative agreement. This potential correlation may explain the

agreement about results for cortical bone, though in the proposed model trabecular
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bone was also simulated with a fine mesh. Little to no information is reported in col-

lected literature about mesh details in trabecular bone. However, differences between

the proposed model and collected literature about the general consistency of results

distributions in cortical provides some insight by deduction.

Applied numerical methods to stress analysis like the traditional finite element

method are known to have limitations that arise from the approximations that are

implemented in their formulation. Specifically to the typical implant FE model, com-

plications arise when applying the traditional FEM to regions with edges and sharp

corners [30]. The details of these complications are largely outside of the scope of the

present work, but what is relevant is the potential propagation of errors throughout a

model without the mitigation of these complications. In the proposed implant model

and in those from collected literature, sharp corners exist at the implant interface with

both cortical and trabecular bone. With the presence of non-negligible model errors,

results distributions would be incomparable to solutions to similar problems, where

little to no qualitative similarity can be determined. This is further complicated by

both the material dissimilarity between the implant and both skeletal tissues, and

by the potential existence of a free-edge singularity in cortical bone [31]. While nei-

ther approximation errors nor singularities can be used to reasonably argue for the

validity of the proposed model or any of those from collected literature per se, what

can be concluded, at the very least, is that the notable qualitative and quantitative

disagreements about results warrant good reason to suspect a significant degree of

mesh-dependency in results from the typical implant FE model.
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3. ON THE EFFECTS OF MESH REFINEMENT AT THE IMPLANT

INTERFACE

3.1 Introduction

Analysis of results in Chapter 2 demonstrated the likelihood of at least some sig-

nificant degree of mesh-dependency in the results of typical implant FE models. This

was deduced from significant disagreement about various results of interest in skele-

tal tissue for similar FE models and emulated assumptions, material properties and

boundary conditions. Those differences included the magnitude of extreme principal

stresses and strains in skeletal tissue, as well as the quality of their distributions in

the neighborhood of the implant interface. While dissimilarities in geometric minutia

may explain disagreement about results to some extent, results showed quantitative

differences on the order of a thousand percent.

The limitations of FEA in orthopedic biomechanics have been explored in litera-

ture [52]. A great deal of work has been performed in the recent past to improve the

accuracy of in silico methods, which have been described as requiring rigorous valida-

tion [37]. Given the highly complex consistency of bone and the difficulty of correlat-

ing experimental work with in vivo material descriptions, research has been performed

to study the influence of anisotropy in numerical models [39,40] and anisotropic yield-

ing [53]. The modeling of the highly complex geometry of a trabecular system has

been accomplished using microscale CAD models from patient-specific μCT data of

mandibles [12,35,36,54], and its influence on results compared to continuum modeling

was investigated [37]. A major drawback to implementing most of these progresses is

the enormous addition of required resources, whether computational or technological.

This augmented barrier of entry may seriously inhibit research on implant design in

the near future. The relatively reasonable computational and technological costs of
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continuum modeling of biomaterials is exploited in FE-applied design methodologies.

To study the influence of design factors that are well beyond any feasible analytical

description, DOE methodology is often employed with statistical methods. Designs

and design features are compared by simulation in the same model setup and cir-

cumstance. Advanced design methods like topology optimization have been utilized

with FEA to reduce implant volume without significant reductions in biomechanical

performance [19], and even the implementation cellular automata algorithms as a

potential description for the structural adaptation of bone [13].

Between research in improving the accuracy of FE models and the applications of

FEA in implant design, a conundrum occurs about the compromise of effectiveness

and efficiency; that is, between the physical relevance of the continuum model and

its accessibility. In application to the study of an implant site, a convergence test

was performed on a typical continuum FE model considering isotropic, linear elastic

material properties and plastic hardening post-yield behavior in skeletal tissue, to

better understand what significant sources of error may be present, and to validate

and improve the proposed model presented in Chapter 2.

3.2 Materials and Methods

A version of the FE model described in Chapter 2 was exported and modified to

perform a convergence test of a typical implant model. The exported configuration

included the parameterized CAD model, fixed boundary conditions, loading surface

and bonded contacts. The experimental implant configuration was based on the test

configuration during development of the mesh (implant length of 10 mm, crown height

of 10 mm). A cortical shell thickness of 1.0 mm and a moderate lateral load (50 N)

at the loading surface of the load post were assigned to the model (Table 3.1).

To observe the maximum results of both principal stresses and strains, the max-

imum von-Mises stress and total equivalent strain were recorded for all trials of the

convergence test. Results were only recorded in cortical bone, since (1) results in
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Table 3.1. Model parameters from the convergence test.

Model parameter Symbol Value

Crown height CH 10 mm

Implant length IL 10 mm

Cortical thickness τ 1.0 mm

Lateral load component Px 50 N

Axial load component Py 0

Chapter 2 were more consistent in cortical bone; and (2) the implant interface with

cortical bone is more clearly similar to a singular configuration described in [55].

Aside from recording maximum results, samples of results at the implant interface

with cortical bone were taken for each trial for qualitative analysis without regard

to the scale of results, for the purpose of comparing results distributions of those

collected studies presented in Chapter 2.

Table 3.2. Element details of cortical bone at the implant interface
during the convergence test.

Nτ NS Lτ (μm) LS (μm) L̄ (μm)

2 24 500 521 519

3 34 333 337 337

4 46 250 249 249

5 58 200 197 198

8 92 125 125 125

10 114 100 100 100
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3.2.1 Mesh Details

The mesh described in Chapter 2 was modified to perform the convergence test.

Modifications were applied to the number of divisions of the cortical shell thickness

and interface perimeter, and the radially inflated element length. A set of experi-

mental divisions was designated in the cortical shell according to a minimum of two

divisions, and a maximum such that the mean edge length of the interface surface

of each contact element was nearest to 100 μm. The number of perimeter divisions

was calculated such that each element perimeter length was approximately equal to

its shell thickness length. The mean interface length L̄ was calculated for Nτ and

NS shell thickness and perimeter divisions, of shell thickness and perimeter element

lengths Lτ and LS, respectively (Table 3.2)

L̄ =
NτLτ +NSLS

Nτ +NS

Figure 3.1 shows the meshes that were used in the convergence test, according to

Table 3.2. To capture a greater amount of information at the implant interface with

cortical bone (compared to the mesh used in Chapter 2), the inflation algorithm was

programmed such that the diameter of the layer of inflated elements was slightly less

than the width of the planar surface of the crestal ridge. Some elements of notably

low quality were present in some trials at the outer diameter of the inflated element

layer, near the edge of the planar surface of the crestal ridge. The effects of these

elements were assumed to be negligible because of the low magnitude of results in

this region in the results from Chapter 2, and because of the significant distance from

the implant interface of interest.

3.2.2 Material Properties

The isotropic, linear elastic material properties used in the convergence test were

taken from those reported in [22] (Table 2.3): for cortical bone, Young’s modulus

of 13.7 GPa and Poisson’s ratio 0.3, and for trabecular bone, Young’s modulus 1.37
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Figure 3.1. Meshes used in the convergence test, from 2 shell divisions
(top left) to 10 (bottom right).

GPa and Poisson’s ratio of 0.3. An equivalent yield strain εY of 3,000 μ was used to

implement the initiation of post-yield behavior during trials that considered plastic

hardening [9]. A corresponding yield strength SY was calculated for cortical and

trabecular bone according to the Generalized Hooke’s Law and the material elastic

Young’s modulus Eel, where with a von-Mises stress yield criterion

SY = EelεY

For post-yield behavior, a plastic modulus Epl was assigned to cortical and trabec-

ular bone according to 5% bilinear hardening (that is, Epl = 0.05Eel). Considering
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Table 3.3. Elastic and post-yield material properties used during the
convergence test.

Elastic Properties Post-Yield Properties

Young’s Poisson’s Yield Tangent

Modulus (GPa) ratio Strength (MPa) Modulus (MPa)

Cortical 13.7 0.30 41.1 685

Trabecular 1.37 0.30 4.11 68.5

Ti6Al4V 110 0.35 880 0

the von-Mises stress σVM , the elastoplastic tangent modulus E = E(σVM) of skeletal

tissue during trials that considered plastic deformation was then

E =

⎧⎪⎨
⎪⎩
Eel σVM < SY

Epl = 0.05Eel σVM ≥ SY

The titanium alloy Ti6Al4V was assigned to the implant and loading post: Young’s

modulus of 110 GPa and Poisson’s ratio of 0.35. Yielding was assumed to not occur in

either part, and perfect plasticity was assigned to the implant and loading post (that

is, Epl = 0). The absence of yielding in both the implant and loading post was verified

for each trial that considered plastic deformation (Table 3.3). For brevity, trials that

did not consider plastic deformation are henceforth referred to as the elastic trials,

and trials that considered plastic deformation are henceforth referred to as the plastic

trials.

3.3 Results

Figure 3.2 shows the recorded maximum von-Mises stress and equivalent total

strain in cortical bone for the elastic and plastic trials of the convergence test. For

the elastic trials, at ten divisions of the cortical shell both the von-Mises stress and

equivalent strain continued to diverge, and at an exponential rate with respect to
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Figure 3.2. Maximum equivalent total strain and von-Mises stress
in cortical bone vs. number of cortical shell divisions during the con-
vergence test for elastic and 5% bilinear hardening (5% BH) material
properties.

shell divisions. Maximum von-Mises stress and maximum equivalent total strain both

fit an exponential curve with an R2 value of 0.9985 and 0.9987, respectively. This

implies that, for both stress and strain in cortical bone, at least one principal result

is divergent in at least the range of tested mesh resolutions for a typical implant

FE model setup. For the plastic trials, the maximum equivalent total strain was

convergent for three shell divisions, and then diverged similarly to the elastic trials.

The maximum von-Mises stress was convergent during all plastic trials.

Figure 3.3 shows the equivalent total strain distributions in the cortical shell for

the elastic trials. For all elastic trials, a strain concentration was observed in cortical

bone at the superior face of the crestal ridge, along the perimeter of the implant

interface. Maximum stress and strain results were both found at this feature for

all elastic material trials. For two and three shell divisions (Figure 3.3, top left and

top right, respectively), results demonstrated strain distributions that were consistent

with those reported in [14,39]. However, beginning at a thickness division of 4 (Figure
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Figure 3.3. Equivalent total strain results of the convergence test
neglecting plastic deformation, from 2 shell divisions (top left) to 10
(bottom right).

3.3, middle left), strain results were observed to begin to coalesce at the superior

perimeter of the implant interface. This trend continued such that, for 8 and 10 shell

divisions (Figure 3.3, bottom left and bottom right, respectively), distinct points of

concentrated strain were evident.

Figure 3.4 shows the equivalent total strain distributions in the cortical shell for

the plastic trials. Similarly to the elastic trials, a strain concentration was observed

in cortical bone at the perimeter of the implant interface. Though the von-Mises

stress results converged in the plastic trials, strain results continued to diverge with
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Figure 3.4. Equivalent total strain results of the convergence test
considering 5% bilinear plastic hardening, from 2 shell divisions (top
left) to 10 (bottom right).

increasing mesh resolution at the implant interface. For 8 and 10 shell divisions (Fig-

ure 3.4, bottom left and bottom right, respectively), distinct points of concentrated

strain were evident.

3.4 Discussion

Results demonstrated the presence of significant stress and strain concentrations

in cortical bone at the superior perimeter of the implant interface. As mesh reso-

lution increased at this feature, maximum results continued to diverge, and results
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distributions coalesced at distinct points of concentration. The coalescence of results

distributions is observable in reported results from collected literature with which

the proposed model strongly disagreed in Chapter 2 [22, 23], while reported results

from collected literature of relative agreement demonstrated a more continuous re-

sponse [14, 39]. Since no imperfections were modeled on the surface of the implant

or cortical bone, no other potential explanation for these different results distribu-

tions was conceived except for the presence of a singular configuration [55]. Even

though stress results converged in the plastic trials, the divergence of strain results

demonstrated the persistence of this singular configuration in the model during plastic

deformation with material hardening.

If indeed the typical implant FE model contains a singularity at the implant inter-

face, then the positive correlation between mesh resolution and divergence of results is

logically rational. While a stress singularity may have no physical meaning, theoreti-

cally it exists as an infinite value at a single point. In FEM, enclosing some point in a

discrete volume and formulating a solution for the volume produces an approximate

result near the point. By taking the limit of an enclosing volume about a singular

point to zero, one would then calculate an infinite result, and this is one possible expla-

nation for what occurred during the convergence test. This explanation is consistent

with reported information in collected literature concerning implemented meshes: re-

ported results distributions with the qualities of a singularity were produced from a

model that implemented a high-resolution mesh at the suspected singular configura-

tion [22,23], while reported results distributions from models with a more moderately

sized mesh were without the qualities of a singularity [14, 39].

The existence of a singularity in the typical implant FE model diminishes some

reliability of the typical implant FE model to assess implant design and predict im-

plant stability. The mesh dependency of maximum results in cortical bone at the

implant interface exposes a consequential dubiety about maximum results. Given

the highly eccentric features of the implant interface with trabecular bone, it is rea-

sonable to speculate that a singular configuration is also inherent in trabecular bone
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under typical model assumptions. The singular configuration of the type by which the

cortical-implant interface can be described requires the implementation of advanced

formulations like cohesive and adhesive laws [55]. The undertaking of accumulating

sufficient in vivo experimental data to develop such descriptions in non-negligible,

neither is the added computational cost of implementing them in numerical methods

like FEA.

An alternative solution is to utilize some other method of analysis and only con-

sider maximum results in skeletal tissue in regards to fracture. While it is (presum-

ably) insufficient to merely inspect FEA results of a simulation and disregard seem-

ingly singular results, Figure 3.2 demonstrates that maximum results from spared

results distributions can be unrepresentative of any meaningful prediction about the

response in cortical bone. One alternative method of analysis has been proposed and

utilized that calculated and statistically analyzed the volume of overloaded skeletal

tissue in results [18]. Since results near the singular configuration in cortical bone

were limited to the neighborhood of the strain concentration (Figures 3.3 and 3.4),

this method of analysis may be more reliable when implemented with a well designed

mesh. A similar method for analyzing results and predicting long-term stability is

proposed and utilized in Chapter 4.

A second potential solution is the modeling of material softening (that is, damage)

in bone. In the plastic trials, as stress in skeletal tissue entered the plastic region,

the tangent modulus was reduced from the elastic range but remained positive. If

the tangent modulus were negatively correlated with plastic strain instead, then the

effects of the singularity may at least be isolated to a few nearby elements. Clinical

observations support the implementation of material softening in skeletal tissue [49,

56]. Furthermore, the region of coalescing strain results from the convergence test

has been clinically observed to be a site of significant bone loss [27]. Clinical data in

literature supports the associations of high stresses, strains and damage accumulation

with bone loss [57–59]. Chapter 5 presents a novel material model to describe the

accumulation of damage in skeletal tissue and its effects on biomechanical events.
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4. A DESIGN OF EXPERIMENTS TO STUDY THE EFFECTS AND

SIGNIFICANCE OF THE CROWN-TO-IMPLANT RATIO ON LONG-TERM

IMPLANT STABILITY

4.1 Introduction

The utilization of short implants is of notable interest to clinicians. When con-

sidering regions of limited bone height, short implants rectify the necessity for sinus

lifting procedures, and therefore avoid additional cost and surgery. A major difficulty

when selecting short implants is the biomechanical effects of increasing stress and

strain distributions in skeletal tissue. When designing an implant superstructure for

a region of limited bone height, a short implant length can be selected for a given

crown height. An increasing crown height and decreasing implant length introduce a

major design problem by increasing the resulting bending moment from lateral load

components, and by decreasing the interface with skeletal tissue through which the

bending moment is absorbed. In implant design, this phenomenon is represented by

the C/I ratio. As the implant length decreases, an implant with an unfavorably high

C/I ratio may induce higher concentrations of stress and strain in bone, which may

cause occlusal overloading [60]. Occlusal overloading may cause significant biome-

chanical implant complications, including bone loss, loss of osseointegration and the

loosening and/or fracture of prosthetics [61–63].

Considering mechanical quantities like stress and strain, the Mechanostat hypoth-

esis proposes the relationship between skeletal structural adaptation and mechanical

loading [64] as a potential redefining of Wolff’s Law [65]. The Mechanostat suggests

that repeated strain of a particular magnitude can be related to a functional response

in skeletal tissue. Considering the effects of the C/I ratio, the hypothesis predicts

that sufficiently high strain provokes bone loss and/or fatigue fracture, while more
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moderate strain results in bone modeling or functional inactivity [57]. The relation-

ship between the C/I ratio and the presence of biomechanical implant complications

has been widely investigated in literature and, though previous clinical studies failed

to approve the influence of the C/I ratio on bone loss [27, 66], the use of FEA mod-

els [20,23] and photoelastic analyses (PEA) [24,29] have shown a positive correlation

between C/I ratio and stress and/or strain distribution.

Among experimental sets with various C/I ratios, reported results for a vary-

ing C/I ratio demonstrated similar stress and strain distributions under pure axial

loading, whereas lateral load components caused significantly concentrated results in

surrounding bone regions opposite to force application. Moreover, all results from

reviewed literature agreed that oblique loading could cause greater biomechanical ef-

fects on the implant-bone system [20, 23, 24, 29]. However, the suggestion has been

made based that the crown height may have a more significant role than the C/I ratio

on the resulting stress distribution [24].

In regards to clinical applications, several limitations have been found in previous

FEA and PEA studies: (1) C/I ratios greater than 2.0 were scarcely evaluated; (2)

orthotropic material properties and nonlinear effects were both typically neglected;

(3) most of the available models either did not consider the thread features in the

implant-bone system interface or lacked a sufficient level of detail to accurately predict

localized effects of stress and/or strain; and (4) maximum stress and/or strain results

were typically exclusively evaluated, with little to no consideration of the functional

response of the entire site.

The present study sought to evaluate the functional effects and significance of the

C/I ratio in a single implant-supported crown by laterally loading a set of implants

with various crown heights and implant lengths. The hypothesis of the study is that

the increase of the C/I ratio can be associated with greater likelihood of widespread

overloading in bone by augmenting the strain concentrations associated with an im-

plant design, and therefore diminishes the likelihood of long-term implant stability.
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4.2 Materials and Methods

To study the effects of the C/I ratio on the long-term stability of a dental implant,

the parameterized FE model described in Chapter 2 was exported and adapted. A

DOE was constructed that considered two four-level parameters (implant length and

C/I ratio) for a total of 16 experiments. Nonlinear FEA under static loading was ap-

plied to implant lengths (IL) of 6.0, 8.0, 10.0 and 12.0 mm and C/I ratios 1.0, 1.5, 2.0

and 2.5. A uniform thickness of 1 mm was assigned to cortical bone. The assumptions

of continuous tissue, perfect osseointegration and perfect implant integration were uti-

lizied. The mesh was designed per Chapter 2, and the cortical shell was divided into

three element thickness layers per results of the convergence test in Chapter 3. FEA

was performed in ANSYS v15.0 on a personal computer, Intel i7-4790k (4.00 GHz)

processor, 16.0 GB RAM. For brevity, implant configurations are denoted [implant

length in mm / crown-to-implant ratio] (for example, a configuration of an implant

length of 6.0 mm and C/I ratio of 2.5 is denoted [6.0/2.5]).

4.2.1 A Novel Method to Analyze Long-Term Stability

For each experiment, the FE model mesh connectivity and equivalent microstrain

nodal results of each tissue at the implant interface were imported in Matlab R15a

(MathWorks, Massachusetts, USA). By cross-referencing the model connectivity and

nodal results, all elements of each tissue in contact with the implant were isolated. For

each contact element, the contact surface area and its mean result were calculated,

where the mean result was calculated from the nodes that define the contact surface

area and, for the two vectors pi and qi and permutation operator εijk, the surface area

A was calculated as

A =
1

2

√
εijkεimnpjpmqkqn

For tetrahedral elements, pi and qi originate from one vertex and define two adjacent

sides of the contact surface triangle, and for hexahedral elements the vectors define the

two diagonals of the contact surface planar convex quadrilateral. The total implant
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Figure 4.1. Sample of imported equivalent strain nodal results at the
implant interface in Matlab R15 for IL = 6 mm, C/I = 2.5.

interface surface area was calculated by summing all of the contact element surface

areas of the implant interface in both bones. The contact surface area for each

elements was allocated by functional response to their mean surface results according

to Table 4.2. The percent surface area of each functional response was then calculated

by dividing the total surface area of the response by the total surface area of the

implant interface (Figure 4.1). Predictions about long-term stability of the implant

were made by comparing and extrapolating from the calculated functional responses of

the configurations [12.0/1.0] and [6.0/2.5], where the former and latter were assumed

to be the most and least stable, respectively.

4.2.2 Material Properties

Previous studies have been completed to describe local anisotropy in bone tissue

[38, 67], which in FEA demonstrates significant effects in predicted stress and strain
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Table 4.1. Orthotropic elastic material properties in the C/I Effects DOE.

Young’s Moduli Poisson’s ratio Shear Moduli

(GPa) (GPa)

Direction x y z xy yz xz xy yz xz

Cortical 10.5 14.2 22.9 0.23 0.12 0.13 3.7 6.0 4.8

Trabecular 0.32 0.39 0.96 0.25 0.12 0.10 0.13 0.17 0.09

Ti6Al4V 110 110 110 0.35 0.35 0.35 41 41 41

results [38–40]. In the proposed model, linear elastic, orthotropic properties were

assigned to cortical and trabecular bone while studying the effects of the C/I ratio.

Elastic material properties for cortical and trabecular bone were obtained [40] and

rotated into the orientation of the proposed model. The isotropic properties of the

titanium alloy Ti6Al4V were assigned to the implant and loading post (Table 4.1).

4.3 Results

Though there is no general consensus on results of interest in skeletal tissue (Chap-

ter 2), the Mechanostat hypothesis [64] has been successful at predicting the func-

tional response of skeletal tissue to mechanical strain [9]. The effects of the C/I ratio

on bone tissue health were evaluated accordingly. Through the microstrain results

distribution in cortical and trabecular bone, the corresponding biological response in

skeletal tissue was predicted according to reported functional responses to various

microstrain values [68] (Table 4.2).

4.3.1 Results of the Strain Distribution Response

For all C/I ratios of the DOE, the maximum equivalent strain in cortical bone

was observed at the perimeter of the implant interface, on the superior surface of

the crestal ridge (Figure 4.2). In trabecular bone, the maximum equivalent strain
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Table 4.2. Biomechanical funtional response categories.

Function range Range values (μ) Functional response

Disuse 0− 100 Bone resorption

Remodeling 100− 300 Bone repair

Modeling 2, 000− 4, 000 Bone growth

Overloading 4, 000− 25, 000 Irreversible creep

Fracture > 25, 000 Failure

was found at the inferior termination of the thread feature. For the configuration

[12.0/1.0], overloading strain in cortical bone occurred at the superior face of the

crestal level, at the strain concentration discussed in Chapter 3 and where crestal

bone loss has been observed in vivo [32,69,70]. In trabecular bone, overloading strain

occurred at the radially extreme thread features of the implant interface and the

superior interface with cortical bone. A significant region of overloading also occurred

in trabecular bone at the inferior interface with the implant. With increasing C/I

ratio, modeling and overloading in both tissues became more prominent at these

features, and more widespread throughout the crestal ridge.

As implant length decreased, the individual effects of each overloading feature

in trabecular bone became less apparent, and their prevalence continued to increase

with increasing C/I ratio. For an implant length of 6.0 mm, widespread overloading

in trabecular bone occurred for C/I ratios greater than 1.5, as well as for the config-

uration [8.0/2.5]. For the configurations [8.0/2.0], [10.0/2.0], [10.0/2.5] and [12/2.5],

some overloading occurred at the cylindrical feature of the implant interface. For all

implant lengths, significant overloading occurred at the inferior implant interface, and

at least to some degree at the thread features of the interface. Fracture was recorded

in trabecular bone for the configurations [6.0/2.0], [6.0/2.5], [8.0/2.5] and [10.0/2.5].

No apparent correlation between implant length and maximum equivalent strain was

demonstrated, presumably because of the changing orientation of the inferior thread
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Figure 4.2. Cross-sectional equivalent strain results sample in skeletal
tissue for all configurations of the C/I Effects DOE. Results are scaled
according to Table 4.2.
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termination with respect to the plane of loading (Figure 4.3). Interestingly, in corti-

cal bone the maximum equivalent strain was greater for larger implant lengths, and

was nearly equal for implant lengths of 6.0 and 8.0 mm. If an overloading maximum

equivalent strain can be associated with bone loss, then results from Figure 4.3 would

predict that short implant lengths cause less bone loss in cortical bone. However, the

prediction of significantly more overloading and consequential bone loss in cortical

bone for implant lengths of 10.0 and 12.0 mm compared to those of 6.0 and 8.0 mm

is inconsistent with results in Figure 4.2.

Figure 4.3. Maximum equivalent strain results in cortical and tra-
becular bone vs. C/I ratio for all configurations of the C/I Effects
DOE.

4.3.2 Results of the Implant Interface Considering Long-Term Stability

As demonstrated and discussed in Chapter 3, the maximum equivalent strain may

not be sufficiently representative of results from FEA. Since a high-fidelity mesh may

exaggerate the inherent strain concentrations of the eccentric features of the implant

interface, further evaluation of strain in skeletal tissue at the implant interface was
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performed by statistical analysis. The general consistency of the predicted functional

response in skeletal tissue at the implant interface was evaluated under the condi-

tions of preceding biomechanical inactivity without pending bone remodeling, for the

purpose of assessing the likelihood of long-term implant stability.

Figure 4.4 shows the results of two predicted functional responses from statistical

analysis of the implant interface in both tissues. The functional responses of model-

ing, inactivity (that is, a lack of functional response) and overloading were chosen for

comparative evaluation, to observe the likelihood of continued implant integration.

The functional responses of disuse, remodeling and fracture were all observed to be

negligible for this analysis (less than 0.22% contribution, at most). Results demon-

strated a negative correlation between the C/I ratio and the functional response of

inactivity, and a positive correlation with overloading in tissue. The extrema of per-

cent inactivity both occurred for an implant length of 12.0 mm, where the most

percent inactivity occurred for the configuration [12.0/1.0], and the least occurred for

[12.0/2.5]. For all C/I ratios, the most and least percent overloading occurred for an

implant length of 6.0 and 12.0 mm, respectively. The sensitivity of percent inactivity

to changing crown height was greatest for a C/I ratio of 1.0 and steadily decreased,

while the sensitivity of percent overloading to crown height was generally constant.

For C/I ratios greater than 1.0, a positive correlation was observed between per-

cent modeling and implant length. For implant lengths of 10.0 and 12.0 mm, results

predicted a seeming parabola with a maximum somewhere near a C/I ratio of 1.75,

while for implant lengths of 6.0 and 8.0 mm, percent modeling peaked at a C/I ratio of

1.5 and then steadily decreased. Modeling for an implant length of 6.0 mm marginally

increased from a C/I ratio of 1.0, and marginally decreased from the configuration

[10/1.5]. Modeling for an implant length of 12.0 mm was predicted to slightly increase

from a C/I ratio of 1.5, which may explain the unique trend of predicted inactivity

for the 12.0 mm implant length from Figure 4.4: the interface of a 12.0 mm implant

length transitions more quickly from inactivity into modeling than from modeling

into overloading.
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Figure 4.4. Percent surface area of the implant interface in tissue
with the predicted functional responses modeling (green), inactivity
(yellow) and overloading (red), according to Table 4.2.

4.4 Discussion

From the results in Figure 4.2, the configuration [12.0/1.0] demonstrated the

sources of significant strain concentrations at the implant interface. Even for this

configuration, maximum equivalent microstrain results in Figure 4.3 were within the

range of overloading for cortical and trabecular bone (4,500 μ and 8,475 μ, respec-

tively), and so for even the most conservative configuration of the study some degree

of overloading occurred. As results showed, when the C/I ratio increases, overloading

becomes more prevalent, while at lower C/I ratios and larger implant lengths the

individual strain concentrations were distinctly observable. Concerning the biome-
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chanical complications of overloading strain in skeletal tissue, the C/I ratio then

augments the the inherent risks of a particular implant design, especially concerning

interfacial features (for example, thread profile, thread pitch, etc.). Neglecting rel-

evant innovations in materials, surface finish and patient-specific design, higher C/I

ratios may then be achievable for implants with interfacial features that are less likely

to induce overloading strain concentrations in skeletal tissue.

Concerning results in Figure 4.4, the configuration [12.0/1.0] can be characterized

by a high percent of predicted inactivity and low percent overloading at the implant

interface. Contrasted with the configuration [6.0/2.5], where the interface was pre-

dicted to consist mostly of overloading and marginally of inactivity, a set of criteria

was selected to predict the likelihood of long-term implant stability. Since the former

and latter configurations are reasonably presumed to be the most and least advis-

able concerning implant stability, respectively, a configuration that induces excessive

amounts of overloading compared to inactivity is considered volatile at best, to clin-

ically inadvisable at worst. A configuration that induces marginal overloading and

mostly inactivity is considered clinically advisable. In cases between these extrema,

the predicted response of modeling, results distributions and biological factors may

provide further insight into predicting long-term stability of a configuration.

By this paradigm, an implant length of 6.0 mm is considered to be the most

inadvisable of those considered. For [6.0/1.0] a nearly equal third of the interface

surface area was predicted to undergo the three functional responses of interest, which

is considered as highly volatile. As the C/I ratio increases, the assessment further

deteriorates as percent modeling is predicted to subside while overloading increases

and inactivity decreases. More than half of the interface was predicted to experience

overloading for this implant length and all C/I ratios greater than 1.0, with a minority

of the response consisting of inactivity and modeling. Therefore, C/I ratios greater

than 1.0 for an implant length of 6.0 mm are predicted to be clinically inadvisable.

For the configuration [8.0/1.0], results at the interface predicted a significantly

larger consistency of inactivity than overloading (difference of 18%), and marginally
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more modeling than overloading (difference of 3%). For [8.0/1.5], overloading was

predicted to be greater than inactivity (difference of 17%), though this is perhaps

mitigated by the majority consistency of predicted modeling (42%). This may imply

that the configuration [8.0/1.5], though not conclusively inadvisable, is expected to

be undergo significant amounts of structural adaptation. In vivo, no biological fac-

tors that may inhibit modeling and remodeling processes could then be present to

confidently predict long-term stability. Consequentially, all C/I ratios greater than

1.5 for an implant length of 8.0 mm are predicted to be clinically inadvisable.

For [10.0/1.5] and [12.0/1.5], marginally greater amounts of inactivity were pre-

dicted than overloading (differences of 1.4% and 0.8%, respectively), and the majority

of predicted response was modeling (43% and 50%, respectively). Considering the

distributions in Figure 4.2, where the majority of overloading for these two configu-

rations occurred in trabecular bone at the inferior surface of the implant interface,

these two configurations under ideal biological conditions may become more stable.

For [10.0/2.0] and [12.0/2.0], inactivity became the minority predicted response, and

results imply the necessity of suitable biological conditions for significant structural

adaptation. This was especially the case for an implant length of 10.0 mm, where

modeling was only marginally greater than overloading (difference of 2%), while for

an implant length of 12.0 mm modeling remained significantly greater (difference of

14%). This implies that the configuration [10.0/2.0] may be considered as highly

volatile, while [12.0/2.0] may be considered moderately so. A C/I ratio of 2.5 for

both implants lengths is predicted to be clinically inadvisable.

The validity and limitations of this method of assessment are currently unknown

and should be subject of future research. The present application of the method

is likely a highly simplified version of what could be its final process, where more

advanced (and even patient-specific) FE models could be implemented to assess more

implant configurations and multiple load cases. Refinement of the method should

also be cross-referenced with literature and reconciled with clinical data on long-

term success rates. Within the scope of the present study, the assessment of all
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configurations of the DOE are summarized in Table 4.3, where percent overloading

%O is shown, with the calculated differences in the responses of inactivity (Δ%I)

and modeling (Δ%M) compared to overloading.

Table 4.3. Summary of assessments of all C/I Effects DOE implant configurations.

Implant C/I %O Δ%I Δ%M Assessment

length (mm) ratio

6.0 1.0 35 -2 -3 Volatile

6.0 1.5 50 -35 -16 Inadvisable

6.0 2.0 65 -57 -38 Inadvisable

6.0 2.5 76 -71 -57 Inadvisable

8.0 1.0 26 18 3 Advisable

8.0 1.5 38 -17 5 Volatile

8.0 2.0 50 -38 -12 Inadvisable

8.0 2.5 68 -63 -40 Inadvisable

10.0 1.0 19 39 4 Advisable

10.0 1.5 28 1 15 Advisable

10.0 2.0 41 -24 2 Volatile

10.0 2.5 56 -45 -24 Inadvisable

12.0 1.0 11 50 16 Advisable

12.0 1.5 25 1 25 Advisable

12.0 2.0 38 -28 14 Volatile

12.0 2.5 54 -51 -12 Inadvisable
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5. A MULTISCALE MATERIAL MODEL TO PREDICT THE

BIOMECHANICAL RESPONSE OF BONE TO SHORT-TERM DAMAGE

ACCUMULATION

5.1 Derivations

5.1.1 Background Theory

From the experimental correlation from [71], the Young’s modulus E is a function

of the apparent density ρ

E(ρ) = Bρβ (5.1)

where B and β are material parameters and ρ is related to the maximum density ρ̂

by the porosity n

ρ = ρ̂(1− n) (5.2)

[72] proposes a relationship between the tensorial damage dij, as proposed in [73],

and a remodeling tensor hij

dij = δij − hikhkj (5.3)

where δij is the second-order Kronecker-delta. hij is proposed in [72] to also be

related to the density of the material while considering the directionality of porosity

by a fabric tensor ĥij (
ρ

ρ̂

)β/2

ĥij = hikhkj

det(ĥij) = 1

(5.4)

In the model from [72], hij are internal state variables that relate the damage in bone

to the stimulation of a bone mass rate ρ̇ by the Cauchy stress tensor σij from loading,

such that

ρ̇ = ρ̇(hij, σij) (5.5)
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Partial motivation of the model from [72] is to relate the future state of the material

to its current material and loading states, so to predict the anisotropic evolution of

the material in response to mechanical stimulus. As an example, according to [74]

the evolution of the elasticity tensor Cijkl is directly influenced by ρ and β from (5.1)

and by the loading state of stress and strain εij tensors (see Appendix for relationship

between Cijkl and hij)

Ċijkl(ρ, ρ̇, σij) =
βρ̇

ρ

σijσkl

σpqεpq
(5.6)

where by the Generalized Hooke’s Law

σij = Cijklεkl (5.7)

So by combining (5.5) amd (5.6)

Ċijkl = Ċijkl(hij, σij) (5.8)

The state variables of the proposed model are then defined as hij, such that the

material state evolves as a function of its state variables and mechanical stimulus.

5.1.2 Motivation for a Novel Material Model

A limitation of the model proposed in [72] is that the evolution of the material

state is only influenced by the physiological response to mechanical stimulus. This

fails to account for experimental results where material softening occurred in cortical

bone specimens under compressive loading at microstrain values as low as 1,200 μ in

middle-aged adults [49]. This is particularly relevant since, according to the Mechano-

stat hypothesis [64], bone modeling occurs at microstrain values between 2,000 and

4,000 μ [68]. Given the widespread success of the Mechanostat, its unification with

the model from [72] and the reported experimental results in [49] necessitates that

the mathematical description of skeletal adaptation considers the short-term accu-

mulation of damage in response of mechanical stimulus.

Furthermore, results from Chapter 3 indicated that the assumptions of the typical

implant FE model likely produce a singular configuration [55] in cortical bone. In the
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convergence test, strain results in cortical bone from loading were shown to be mesh-

dependent under typical modeling conditions. These conditions may include linear,

perfectly elastic material modeling of bone with the neglect of material softening,

and the modeling of the implant interface as perfectly bonded. Since the post-yield

softening of cortical bone was well quantified experimentally [49] and material soft-

ening may be able to mitigate the singular configuration (Section 3.4), the present

work seeks to propose a post-yield model of bone that considers the accumulation of

microdamage from loading in terms of the state variables defined in [72].

5.1.3 General Formulation

Let the scalar damage D be defined as

D = 1−
√

E

Ê
(5.9)

where Ê is the Young’s modulus of the material in its undamaged state ρ̂

Ê = E(ρ̂) (5.10)

such that, by combining (5.1), (5.9) and (5.10), for a reduced effective virtual state

of density ρre

D = 1−
(
ρre

ρ̂

)β/2

(5.11)

(5.3) and (5.4) may then be written sequentially as

dij = δij − (1−D)ĥij = δij − hikhkj (5.12)

From [49], E is related to the (presumably) equivalent total strain ε relative to a

threshold strain εo in a material of strain sensitivity Aε and initial Young’s modulus

Eo

E(ε) = Eoe−Aε(ε−εo); 0 < εo ≤ ε (5.13)

If ρo is the initial density before loading, then according to the form of (5.11), let DL

be the accumulated damage during loading

DL = 1−
(
ρre

ρo

)β/2

(5.14)
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Similarly, writing DL in the form of (5.9) and (5.13),

DL =

√
E(ε)

Eo
= 1− e−

Aε

2
(ε−εo) (5.15)

and setting (5.14) equal to (5.15) produces an expression for ρre during loading

ρre(ε) = ρoe−
Aε

β
(ε−εo) (5.16)

that can be substituted into (5.1) to produce an expression for E as a function of ε

for the initial state before loading ρo

E(ε) = ρoe−
Aε

β
(ε−εo) (5.17)

and into (5.9) to produce an expression for D as a function of ε for ρo

D = 1−
(
ρo

ρ̂

)β/2

e−
Aε

2
(ε−εo) (5.18)

5.1.4 Reconciliation with the Mechanostat by Variable Strain Sensitivity

To reconcile the proposed material model with the Mechanostat and the observa-

tion of that the yield strain εY of cortical bone is relatively unchanged by damage [75],

a non-constant strain sensitivity is implemented to parameterize (5.18) to a novel ma-

terial parameter DU , an ultimate scalar damage at which material failure occurs for

an ultimate strain εU . Let

εo = εY < εU ;DU = D(εU) (5.19)

such that, from (5.18)

DU = 1−
(
ρo

ρ̂

)β/2

e−
Aε

2
(εU−εY ) (5.20)

which establishes the domain

0 < DU < 1 (5.21)

Rewriting (5.20) in terms of Aε

Aε = − 2

εU − εY
ln

[(
ρo

ρ̂

)−β/2

(1−DU)

]
(5.22)
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and defining an initial scalar damage Do from (5.11) as

Do = 1−
(
ρo

ρ̂

)
(5.23)

by substituting (5.22) and (5.23) into (5.18) an expression for the scalar damage is

produced that describes its evolution from the commencement of damage through to

mechanical failure

D(ε) = 1− (1−Do)

[
1−DU

1−Do

] ε−εY

εU−εY

(5.24)

5.1.5 Post-Yield Behavior

For a rate-independent plasticity model with a scalar yield criterion σY , the plastic

flow potential f(σij) is a scalar function through which σY is also defined. From the

Generalized Hooke’s Law, let

σY = EεY (5.25)

or, by rewriting (5.9)

σY (D) = (1−D)2ÊεY (5.26)

Implementing an associative flow rule, σij and the plastic strain tensor εplij are related

by a plastic multiplier λ and a change in f with respect to σij

dεplij = λ
∂f

∂σij

(5.27)

The softening law F (σij, D) then states that the yield criterion changes with the

plastic flow potential

F (σij, D) = f(σij)− σY (D) = 0 (5.28)

Since bone is observed to handle shear stress [1], let σY be equal to the von-Mises

stress

f(σij) =

√
3

2
sijsij;

sij = σij − 1

3
σkkδij

(5.29)
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Assuming that the directional effects associated with a single load case are negli-

gible compared to those from long-term, cyclical loading

˙̂
hij = 0ij (5.30)

such that, for a single load case, from (5.12)

d

dt
(hikhkj) = −Ḋĥij (5.31)

5.1.6 Damage-Induced Remodeling at the Continuum Level

A skeletal control volume V and density before loading ρo experiences a plastic

strain εplij from loading, the microdamage of which affects a partitioning of V into two

regions of volume, one of which during the remodeling process is unaffected (V UD)

and one that during the remodeling process experiences resorption and formation

processes (V D). Knowing that the volume is unchanged

V = V UD + V D + V v (5.32)

where V v is the volume of voids and is related to V through the porosity n or,

considering the volume of mass V m

n =
V v

V
= 1− V m

V
(5.33)

Let ρre = ρre(t) during remodeling, such that at time t

ρre(t) = ρ̂(1− nre(t)) = ρ̂(1−D(t))2/β (5.34)

where nre is the reduced effective porosity of V after loading. From (5.16) and (5.24),

immediately after loading (at time t = 0) and for an ultimate plastic strain εpl,U

ρre(0) = ρo
[
ρ̂

ρo
(1−DU)2/β

] εpl

εpl,U

εpl,U = εU − εY

(5.35)
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and, assuming perfect remodeling, at the end of remodeling processes (at time t =

tf+T f )

ρre(tf + T f ) = ρo (5.36)

Remodeling processes consist of a unit resorption rate v̇r that begins at time

t = tr after loading, during which bone mass is removed by osteoclasts for a period

of resorption T r

v̇r = v̇r(χr
i , t) · [u(t− tr)− u(t− [tr + T r])] (5.37)

and a unit formation rate v̇f that begins at time t = tf and lasts for a period of

formation T f , during which osteoid is deposited by osteoblasts and mineralizes into

bone tissue

v̇f = v̇f (χf
i , t) ·

[
u(t− tf )− u(t− [tf + T f ])

]
(5.38)

where u(t) is the Heaviside step function, and χr
i and χf

i are the biomechanical de-

pendents of v̇r and v̇f , respectively.

If all remodeling processes take place such that remodeling of the accumulated

microdamage in V m can be represented as the resorption of V D and formation of

V UD, then in the control volume V

V̇ = 0

V̇ D = −V v̇r

V̇ UD = V v̇f (5.39)

V̇ m = V (v̇f − v̇r)

V̇ v = V (v̇r − v̇f )

The biological factors of χr
i and χf

i may include vascularity [76] or activation

frequency, which is dependent on factors like age and hormone levels [4]. Biomechan-

ical factors may include proximity to the periosteum and/or endosteum (Figure 1.1)

and the effects of reoccurring local stress and/or strain. In this model, χr
i and χf

i

are considered such that both v̇r and v̇f are dependent upon the micromechanical

consistency of tissue and accumulated microdamage. As described in Section 1.2, a
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BMU in cortical bone tunnels into and through bone tissue and creates new osteons,

henceforth collectively called tunneling. A BMU in trabecular bone travels along

a trabecula, digs into but not through its surface and deposits osteoid, henceforth

collectively called digging.

The two bone tissues can be distinguished by the initial state ho
ij, and so it is

possible that BMU activity may be at least qualitatively predicted by ho
ij as well. For

example, a region of distinct osteons can be described by a high ρo and significantly

directional ĥo. Knowing that a BMU travels along the longitudinal direction of os-

teons in a Haversian system, if Ho
I � Ho

II , H
o
III then I is the longitudinal axis of the

Haversian system (in more familiar mechanical terms, consider an apparent composite

fiber direction of C̃ijkl in the cortex a long bone; see the Appendix). The cutting cone

of a BMU is then be expected to travel along I and radially expand in II− III. Fur-

thermore, in the timescale of cellular activity in a single resorption cavity, osteoblastic

activity is then be expected to activate along I as a Heaviside function with respect

to when osteoclastic activity previously occurred, and in II − III as a function of

the cement line radius (that is, the remodeling surface area of the cavity upon which

osteoblastic activity occurs; see Figure 1.3).

The same may be true for trabecular tissue, at least from a probabilistic paradigm.

Trabecular tissue can be described by a low ρo and less distinct directionality. Since a

BMU travels along a trabecula, and since trabecular tissue is more fibrous than cor-

tical tissue, the trajectory of a single BMU may not be predictable at the continuum

level, but the average activity of a BMU population in a trabecular system might.

For example, consider a trabecular system as a system of interconnected cylinders

that are randomly oriented but statistically oriented such that their longitudinal axes

tend to align with I. Examining any single trabecula, one may find it longitudinally

oriented along II, in which case one would eventually observe a BMU traveling along

II. But one would be more likely to find a trabecula longitudinally oriented along I,

and this is described by ĥo.
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If ĥo describes the orientation of tissue and corresponding BMU activity, then ρo

describes what cellular activity occurs. A notably high density then implies tunneling,

while a notably low density implies digging. Both activities have distinct consequences

when considering the transient effects of remodeling processes at the cellular level and

their corresponding macroscopic phenomena. For example, consider a cross-section

A with a void area Ar of a beam of stiffness E according to beam theory. For a

given load, by the parallel axis theorem the area moment of inertia I decreases with

increasing distance from the centroid of Ar to the centroid of A. So for a constant E,

the flexural rigidity EI of the beam decreases in the plane of A with a more remote

Ar, and this characterizes the individual effects of digging and tunnel: tunneling may

be described as Ar in A, whereas digging may be described as Ar protruding into A

from its boundary.

At the continuum level, let

nre(t) =

∫ t

0

(v̇r − v̇f )dτ (5.40)

If V D(0) = V D,o is considered as an addition to V v after osteoclastic activity but

before osteoblastic activity, then (5.40) is subject to the boundary conditions

nre(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− (1−DL)2/β 0 ≤ t ≤ tr

1− (1−DL)2/β + V D,o

V
tr + T r ≤ t ≤ tf

no t → tf + T f

(5.41)

During resorption and formation, v̇r and v̇f are dependent upon the resorption

surface area of the microstructural system. Since tunneling and digging occur in

different bone systems, let

v̇r =

⎧⎪⎨
⎪⎩
v̇r,H ρ ≥ ρH

v̇r,T ρ < ρH
(5.42)

and

v̇f =

⎧⎪⎨
⎪⎩
v̇f,H ρ ≥ ρH

v̇f,T ρ < ρH
(5.43)
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where ρH is a threshold density that signifies the distinction between the Haversian

and trabecular systems H and T , respectively.

5.1.7 Determination of Remodeling Rates by Micromechanical Analysis

From (5.41)
V D,o

V
= nre(tf )− nre(0) (5.44)

If the porosity of the initial state of a Haversian system can be considered as consisting

of a Haversian canal density NH of average Haversian canal volume ηH , and the

porosity of the reduced effective state nre(t) as consisting of the sum of NH of volume

ηH and the density of resorption cavities N c of average volume η(t), where considering

the average fully resorbed cavity volume ηc

η(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηH 0 ≤ t ≤ tr

ηc tr + T r ≤ t ≤ tf

ηH t ≥ tf + T f

(5.45)

then the void volume in the Haversian system V v,H is subject to the boundary con-

ditions

V v,H(t) = V

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(NH +N c)ηH 0 ≤ t ≤ tr

NHηH +N cηc tr + T r ≤ t ≤ tf

NHηH t ≥ tf + T f

(5.46)

(5.41) and (5.46) are satisfied in the form

V v,H(t)

V
= no +N c

⎧⎪⎨
⎪⎩
η(t) tr ≤ t ≤ tr + T r

ηc
(
1− ηc−η(t)

ηc−ηH

)
tf ≤ t ≤ tf + T f

(5.47)

when then initial damaged volume in the Harversian system V D,H(0) is

V D,H(0)

V
= (nre(0)− no)

(
ηc

ηH
− 1

)
(5.48)
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So from (5.39), (5.42), (5.43) and (5.47)

v̇r,H = (nre(0)− no)
η̇

ηH
; η̇ ≥ 0 (5.49)

and

v̇f,H = −(nre(0)− no)

(
ηc

ηH

)
η̇

ηc − ηH
; η̇ ≤ 0 (5.50)

Similarly, if the volume fraction of mass of the initial state of a trabecular system

can be considered as consisting of the density of trabeculae NT of average trabecula

volume ζT , and the volume fraction of mass of the reduced effective state as consisting

of the sum of NT of volume ζT and the density of remodeled trabeculae N r of average

resorbed volume ζ(t), where considering the fully resorbed volume per remodeled

trabecula ζr

ζ(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 ≤ t ≤ tr

ζr tr + T r ≤ t ≤ tf

0 t ≥ tf + T f

(5.51)

then the void volume in the trabecular system V v,T is subject to the boundary con-

ditions

V v,T = V

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− (NT ζT −N r
(
ζT − ζr)

)
0 ≤ t ≤ tr

1− (NT −N r)ζT tr + T r ≤ t ≤ tf

1−NT ζT t ≥ tf + T f

(5.52)

(5.52) and (5.41) are satisfied in the form

V v,T (t)

V
= no +N r

⎧⎪⎨
⎪⎩
ζT − ζr + ζ(t) tr ≤ t ≤ tr + T r

ζT

ζr
ζ(t) tf ≤ t ≤ tf + T f

(5.53)

when the initial damaged volume in the trabecular system V D,T (0) is

V D,T (0)

V
= (nre(0)− no)

ζr

ζT − ζr
(5.54)

So from (5.39), (5.42), (5.43) and (5.53)

v̇r,T =
nre(0)− no

ζT − ζr
ζ̇; ζ̇ ≥ 0 (5.55)
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and

v̇f,T = −
(
nre(0)− no

ζT − ζr

)(
ζT

ζr

)
ζ̇; ζ̇ ≤ 0 (5.56)

5.1.8 Multiscale Description of Mechanical Failure

Let mechanical failure be described by the scenario in which no more initial volume

of mass in V can be allocated to V D during loading (that is, V D,o = V D,U) where

from (5.33)

V D,U = V (1− no) (5.57)

Considering the ultimate scalar damage in the Haversian and trabecular systemsDU,H

and DU,T , respectively,

DU =

⎧⎪⎨
⎪⎩
DU,H ρ ≥ ρH

DU,T ρ < ρH
(5.58)

where, from (5.34), (5.48), (5.57) and (5.58),

DU,H = 1− (1−Do)

(
1− ηH

ηc − ηH

)β/2

(5.59)

and, from (5.34), (5.54), (5.57) and (5.58),

DU,T = 1− (1−Do)

(
2− ζT

ζr

)β/2

(5.60)

5.2 Materials and Methods

5.2.1 Description of Model

A 1 x 1 meter linear cube element was tested in three dimensions under displace-

ment loading. The element was fixed in the x direction at the face along the y − z

plane, in the y direction at the face along the x− z plane and in the z direction along

the x− y plane. Displacement loading was applied at the second vertical face in the

negative x direction, from no displacement to a specified ultimate strain. All results

are reported such that compressive stress and strain are positive in the x direction.
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Figure 5.1. Unit element experimental setup for verification and
testing of novel material model numerical implementation.

Material axes were such that the I, II and III material axes were aligned with the x,

y and z directions, respectively (Figure 5.1). Experiments were performed in ANSYS

v15.0 on a personal computer, Intel i7 4790K 4.00 GHz, 16.0 GB RAM. The proposed

material model was implemented in Fortran77 according to the Usermat functionality

provided by ANSYS, Inc. Numerical implentation of plastic deformation was formu-

lated using the radial return algorithm [77]. Library files were compiled and linked

in iFort 12.0 under the Intel academic software license.

Remodeling processes were then simulated for a set of final plastic strain results

in each tissue. The timescale was such that loading occurred on day 0, after which no

mechanical stimuli were applied. A ten day lag time was incorporated to account for

lag time [1]. Equivalent plastic strain was applied for five trials in each tissue at the

intervals of 500, 1,000, 2,000, 3,000 and 5,000 μ. Results of interest were recorded to
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observe the evolution of anisotropy in tissue, as well as the results of the traditional

definition of mechanical damage Dmech in the loading direction I

Dmech = 1− Et
I

Et,o
I

where Et
I and Et,o

I are the tangent modulii along I during and before loading, re-

spectively. Et
I was calculated from the axial stress σI and total strain component εI

according to the Generalized Hooke’s Law

Et
I =

σI

εI

5.2.2 Material Properties

From the description of resorption activity, all micromechanical descriptions of

resorption were modeled as linear. Formation in trabecular bone was modeled as

linear [78]. Formation in cortical bone was modeled according to [79] with respect to

the cavity radius R(t) and length lH , such that

η(t) = πlH(R(t))2; tf ≤ t ≤ tf + T f

where for the resorption cavity radius Rc and Haversian canal radius RH

R(t) = Rc

(
RH

Rc

) t−tf

Tf

The final resorption volume in trabecular bone ζr was approximated so that

DU,T → 1. ζT was approximated as a cylinder of trabecula diameter 2RT and length

lT = 20RT . For the material constants B and β in (5.1), the values of 1.76 GPa/(g/cc)

and 3.2 were used, respectively [72]. Yield and ultimate strains for bone were 3,000

μ and 25,000 μ, respectively [9], and the ultimate strain for trabecular bone was dou-

bled to model ductility. The parameter sets were such that, for (1) cortical bone:

EI = 16.6 GPa, EII = EIII = 12.5 GPa; and (2) trabecular bone: EI = 1.39 GPa,

EII = EIII = 1.20 GPa. All other micromechanical parameters were taken from [1]

(Table 5.1).
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Table 5.1. Material parameters of the novel material model experiments.

Parameter Symbol Value

Ideal bone density ρ̂ 2.1 g/cc

Haversian canal diameter 2RH 50 μm

Resorption cavity diameter 2Rc 200 μm

Haversian canal length lH 300 μm

Trabecula diameter 2RT 200 μm

Trabecula length lT 2 mm

Resorption start time tr 3 days

Formation start time tf 43 days

Period of resorption T r 30 days

Period of formation T f 90 days

Cortical bone Trabecular bone

Initial apparent density ρo 1.9 g/cc 0.9 g/cc

Yield strain εY 3,000 μ 3,000 μ

Ultimate strain εU 25,000 μ 50,000 μ

Ultimate scalar damage DU 0.237 0.960

Fabric tensor - first principal value ĥI 1.100 1.050

Fabric tensor - second principal value ĥII 0.953 0.976

Fabric tensor - third principal value ĥIII 0.953 0.976

5.3 Results and Discussion

Numerical implementation of the proposed material model was verified by record-

ing the von-Mises yield stress and ultimate scalar damage of both tissues during the

experiment. Results were compared to the material parameters from Table 5.1. For

the cortical bone experiment, all results fell within an acceptable range of the ex-

pected values, with a largest error of -2.43% for the ultimate scalar damage. For

trabecular bone, errors were significantly higher, with the largest error recorded at
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Table 5.2. Verification results of numerical implementation of the
novel material model.

Cortical Trabecular

Result Value % Error Value % Error

Yield stress 41.25 MPa 7.49 ·10−6 3.78 MPa 3.46 ·10−7

Ultimate scalar damage 0.231 -2.43 0.856 -11.0

-11.0% for the ultimate scalar damage. Greater error was partially attributed to the

larger range of loading strain that was applied to trabecular bone. It was also as-

sumed that, since trabecular bone was modeled as being more ductile, a larger degree

of anisotropic evolution contributes to more significant errors that are inherent in

nonlinear approximations (Table 5.2).

5.3.1 Macroscale Processes

Figure 5.2 shows the stress and strain results of the unit element experiment in

cortical bone in the I− II plane over the full strain range. After the elastic response,

during which the stress response was linear, material softening was demonstrated

by the negative correlation between stress and strain, which implies a decreasing

EI . The brittle nature of cortical bone was also observable by comparing the stress

values at ε = εY and ε = εU , where a 6.7% decrease in stress was recorded from

the onset of yielding to failure (ultimate von-Mises stress of 38.5 MPa). Results

demonstrated the occurrence of plastic strain in the II and III directions to such

an extent that the elastic strain in the II and III directions marginally decreased

during plastic deformation. Consistently with experimental observation [49], the I

plastic strain component was linear with respect to the total loading strain. All other

strain components were nearly linear during elastic and plastic deformation.

Figure 5.3 shows the response of the reduced effective density and scalar and

mechanical damage parameters of cortical bone as a function of the equivalent plastic
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Figure 5.2. Axial stress and strain results vs. total loading strain in
cortical bone in the novel material model unit element experiment.

strain. Both damage parameters were observed to increase with increasing plastic

strain, while the density slightly decreased. The brittle nature of cortical bone was

demonstrated by the nearly 23% scalar damage at the ultimate strain, where at

fracture a sudden change of state was predicted, from significantly load bearing to

failure. The mechanical damage curve was generally consistent with experimental
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Figure 5.3. Damage parameters and reduced effective density of
cortical bone vs. equivalent plastic strain during the novel material
model unit element experiment.

data [49], where the only observed differences were related to the selected material

parameters. This is significant because the proposed material model was used to

model the description of bone that may have come from a different anatomical region

than the region of those used in the experiments in [49]. Since the proposed material

model is parameterized according to post-yield material parameters, it may then be

useful to model not only the cortical bone used in [49], but cortical bone in various

anatomical regions that respond similarly to mechanical stimulus.

Figure 5.4 shows the calculated Young’s modulii of cortical bone in the I−II plane,

according to [72]. Both material parameters were calculated by recording the state

variables hij during loading. The final state was calculated at the ultimate loading

strain. In both states, the orthotropic nature of cortical bone was demonstrated,

where before loading tissue was stiffest along the I direction, and after loading it was

most compliant. Of interest is the effects of axial loading in the transverse plane,

where stiffness was also reduced but to a lesser degree. Since plastic deformation
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Figure 5.4. Material model Young’s modulii in the I−II plane before
loading and at failure in cortical bone during the novel material model
unit element experiment.

accompanies cracks, predictions from the proposed model may be useful for describing

the initiation and propagation of microcracks along the osteons of a Haversian system,

where microcracks tend to propagate along the lamellar interface [1]. In this case,

the experiment from the proposed model for cortical bone may describe the initiation

and propagation of microcracks at the Haversian canals and their redirection. As the

loading strain continues towards failure, the reduction of stiffness in the transverse

plane would result as a consequence of increased crack density in the interstitial bone

around intact osteons.

Figure 5.5 shows the stress and strain results of the unit element experiment in

trabecular bone in the I−II plane over the full strain range. Similarly to results from

cortical bone, results demonstrated a linear elastic response and material softening
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Figure 5.5. Axial stress and strain results vs. total loading strain in
trabecular bone during the novel material model unit element exper-
iment.

during plastic deformation, though for trabecular bone the stress-strain curve was

more apparently nonlinear. Results showed a significantly more ductile behavior

compared to cortical bone, where the von-Mises stress at failure was measured 1.18

MPa, respectively (69% decrease). Like cortical bone, the plastic strain components
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Figure 5.6. Damage parameters and reduced effective density of
trabecular bone vs. equivalent plastic strain during the novel material
model unit element experiment.

for trabecular bone were also linear responses to total loading strain, though elastic

strain responses were more nonlinear. Axial loading strain also exerted observable

effects on the plastic strain response in the transverse plane.

Figure 5.6 shows the response of the reduced effective density and scalar and

mechanical damage parameters of trabecular bone as a function of the equivalent

plastic strain. The calculated mechanical damage curve was similar to that from cor-

tical bone, but was more asymptotic and more closely approached complete damage

(Dmech → 1). Plastic strain was observed to have a more significant effect on scalar

damage and density, implying that the proposed model predicts a positive correlation

between yield stress and damage accumulation. Associating plastic strain with the

accumulation of microcracks, the proposed model then predicts a negative correlation

between yield stress and crack propagation. Results showed that the proposed model

captures the relative ductility of trabecular bone in that, at the continuum level, a

much less than drastic change of state was predicted at failure.
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Figure 5.7. Material model Young’s modulii in the I−II plane before
loading and at failure in trabecular bone during the novel material
model unit element experiment.

Figure 5.7 shows the calculated Young’s modulii of trabecular bone in the I − II

plane, according to [72]. Similarly to cortical bone, the final state was calculated at

the ultimate loading strain, and the Young’s modulii were calculated from the results

of the state variables hij. Results showed the evolution of the nearly isotropic material

state of trabecular bone to one of a clearly anisotropic nature. Compared to cortical

bone, the proposed model predicted a more significant effect of axial loading in the

transverse plane. In the microscale, the proposed model may represent the structural

degradation of trabeculae that are oriented along I, with consequential effects in the

II − III plane.
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5.3.2 Microscale Processes

Figure 5.8 shows the predicted immediate effects and resulting remodeling pro-

cesses in cortical bone for five plastic loading cases. As expected, results showed a

positive, linear correlation between the plastic strain and predicted density of resorp-

tion cavities. For the case of 500 μ plastic strain, the model predicted about two and

a half resorption cavities per cubic millimeter, while for 5,000 μ the resorption cavity

density was predicted to be approximately 24 cavities per cubic millimeter.

The effects of these during remodeling were then demonstrated by the varying

degree of the reduced effective porosity after resorption, where higher plastic defor-

mation caused greater reduction in apparent density as the cavities were resorbed

(Figure 5.9). Since the experimental correlation from [49] showed a positive correla-

tion between apparent density and stiffness, the proposed model predicts that after

resorption but before formation cortical tissue will become more compliant, and in-

creasingly so for higher plastic strains. Results then demonstrated the assumption

Figure 5.8. Predicted resorption cavity density and percent damaged
volume in cortical bone vs. equivalent plastic strain during the novel
material model micromechanics simulation.
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Figure 5.9. Reduced effective porosity in cortical bone vs. time
during remodeling processes for five plastic loading cases during the
novel material model micromechanics simulation.

of the proposed model that, for a single load case and uninterrupted remodeling

processes, skeletal tissue will return to its former state.

Figure 5.10 shows the predicted immediate effects and resulting remodeling pro-

cesses in trabecular bone for the same five plastic loading cases. Similarly to the

cortical bone experiment, a positive, linear correlation was demonstrated between

the plastic strain and predicted density of resorbed trabeculae. For the case of 500 μ

plastic strain, the model predicted about 0.2 resorbed trabeculae per cubic millimeter,

and about 2 remodeled trabeculae per cubic millimeter for 5,000 μ.

Figure 5.11 shows the predicted reduced effective porosity in trabecular bone dur-

ing remodeling processes for the five load cases, where like in cortical bone greater

reduction in apparent density was observed as a consequence of greater plastic de-

formation. Compared to cortical bone, any decrease in stiffness was predicted to be

relatively less, where for the case of 5,000 μ an increase in porosity from resorption

was measured at 193% and 12% in cortical and trabecular bone, respectively. For the

case of 500 μ, an increase in reduced effective porosity from resorption was measured

to be 22% in cortical bone and 1% in trabecular. Like in cortical bone, results demon-
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Figure 5.10. Predicted resorbed trabeculae density and percent dam-
aged volume in trabecular bone vs. equivalent plastic strain during
the novel material model micromechanics simulation.

strated the assumption of the proposed model that the state of tissue will return to

its initial state before loading.

Figure 5.11. Reduced effective porosity in trabecular bone vs. time
during remodeling processes for five plastic loading cases during the
novel material model micromechanics simulation.
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6. SUMMARY AND CONCLUSIONS

In this work, a finite element model was developed of a soft-tissue implant in a

simplified crestal ridge according to literature. Nonlinear finite element analysis was

performed to investigate the effects and significance of the crown-to-implant ratio,

after investigating and scrutinizing the reliability of typical idealizations and methods

of analysis in literature. Contributions were made in response to some determined

limitations of the model, for the purpose of enhancing the reliability of applied finite

element analysis in implant design.

In Chapter 2, significant disagreement between reported results of collected lit-

erature was investigated by adapting the finite element model to emulate reported

models. Comparisons were made between finite element models and results from

collected literature and those from the developed model, by mesh, maximum results

and results distributions. A significant source of error was argued to be present in

some literature as a result of material dissimilarity and the common idealization of

osseointegration, which was deduced by correlating disagreement about results with

reported details about mesh design. This idealization was speculated to cause mesh-

dependency of results and the potential presence of a singular configuration at the

implant interface.

In Chapter 3, the potential mesh-dependency of results in Chapter 2 was inves-

tigated by performing a convergence test at the interface of cortical bone and the

implant. Experiments were performed for two materials sets, each with linear elastic

material properties, and with the neglect and consideration of plastic deformation. 5%

bilinear plastic hardening was implemented for the modeling of plastic deformation.

In both sets, strain results diverged for all trials, confirming the mesh-dependency of

results. The presence of a singularity in the typical implant FE model was argued,

and the reliability of maximum results as a method of analysis in implant design
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was challenged. Potential enhancements to mitigate the mesh-dependency of results

were then proposed, including the statistical analysis of results distributions while

also considering the geometric aspects of the mesh, and the modeling of material

softening in skeletal tissue.

In Chapter 4, the crown-to-implant ratio of a soft-tissue implant under lateral

loading was investigated by performing a 16-point design of experiments, considering

orthotropic material properties, implant lengths of 6.0, 8.0, 10.0 and 12.0 mm and

C/I ratios of 1.0, 1.5, 2.0 and 2.5. Comparing the results distributions of all trials,

the significance of the C/I ratio was concluded to be secondary to other implant

design considerations concerning strain concentrations. This conclusion was made by

observing the occurrence of overloading strain in all trials, and the identification of

sources of overloading strain for an implant length and crown height of 12 mm. A

novel method of analysis and assessment of long-term stability was then presented

and utilized. The proposed method calculated the average strain result and surface

area of all contact element surfaces, and then allocated each contact surface area by

predicted functional response to strain according to the Mechanostat hypothesis. The

consistency of functional responses in skeletal tissue at the implant interface was then

calculated by percent surface area, where inactivity, modeling and overloading were

the primary predicted functional responses. Conclusions were made against short

implants with high C/I ratios, where the shortest implant length configuration with a

clinically advisable assessment was an implant length and crown height of 8 mm. An

implant length and crown height of 6 mm was concluded to be volatile and requiring

sufficient biological conditions for significant structural adaptation.

Chapter 5 presented a novel material model as a proposed improvement to mitigate

the mesh-dependency discussed in Chapter 3. The model seeks to mathematically de-

scribe short-term damage accumulation in skeletal tissue according to experimental

data, as well as consequential remodeling events. The model was derived from an

existing mathematical description of the structural adaptation of skeletal tissue to

repeated daily mechanical stimulus, which introduced a set of state variables that
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describe both the porosity and quantitative directionality of tissue, as well as its

biomechanical response to stress magnitude and frequency. In the proposed model,

these state variables were related to plastic deformation from a single load case by

proposing a novel material internal variable, called the scalar damage, and a vir-

tual, reduced effective state, where the events of plastic deformation are influenced

by the state of the material before loading. Information about the reduced effective

state was then extended to the microscale, and a mathematical description of mul-

tiscale remodeling events was formulated. The scalar damage was then introduced

to the microscale description to describe material failure. The model was numeri-

cally implemented, preliminary experiments of compressive loading were performed

for descriptions of cortical and trabecular bone, and multiscale biomechanical obser-

vations were made. Results from the experiments demonstrated that the proposed

model describes damage accumulation during plastic deformation consistently with

experimental data.

6.1 Limitations

Results from the finite element model and their analysis are limited to the context

of the modeling assumptions of the implant site. For the purpose of computational

efficiency, the microscale topology of both skeletal tissues was neglected, and bone

was modeled as homogeneous. Spatial variation of material properties in skeletal

tissue was neglected for simplification and consistency with literature, though tissue

is known to be more compliant in the neighborhood of an implant. Post-yield behavior

in skeletal tissue was neglected due to the lack of consensus on material properties and

modeling, even though the yield strain of bone is well within strain values observed

in results. The implant interface was modeled with the idealizations of no relative

motion between coincident parts, and no intermediary biological tissue.

As demonstrated in Chapter 3, results in cortical bone at the implant interface are

dependent upon mesh resolution; this is particularly relevant for maximum results in
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cortical bone, whether stress or strain. The mesh that was implemented in the design

of experiments of Chapter 4 was experimentally observed to be of the finest resolution

before the coalescence of results distributions became apparent, which was considered

as an indication of significant model error. Though the novel method of analysis that

was presented in Chapter 4 may mitigate the effects of divergent results to some

extent, the choice in mesh resolution can still reasonably be called arbitrary when

considering the certainty of some actual maximum result in cortical bone.

The reliability of the proposed novel method of analysis in Chapter 4 is inherently

limited by a current lack of sufficient clinical data on the effects of the crown-to-

implant ratio, with which the method should be reconciled and refined. Furthermore,

assessments that were made of implant stability using this method were based on

results from a single simulated load case, though implants experience a vast array

of different and repeated load magnitudes, angles of attack and points of application

in vivo. The proposed method of analysis generally neglects the influence of the

number of times that a load is applied, and its application in Chapter 4 neglected

the influence of axial load components according to the scope of the work. The

method was implemented considering equivalent strain results as a generalization of

all deviatoric strain components, which neglects the individual influence of tension and

compression on biological response. The method was also applied to both cortical and

trabecular bone, though cortical bone is primarily associated with implant stability.

Though the novel material model presented in Chapter 5 was generally consistent

with experimental data concerning the post-yield behavior of cortical bone, the model

contains a number of limitations due to insufficient experimental data and modeling

assumptions. Firstly, the general hypothesis of the reduced effective virtual state as-

sumes that after the initiation of softening the material continues to generally function

as an undamaged material of a reduced density, and therefore of a reduced stiffness.

This assumption neglects the consideration of the response of the material to immedi-

ate future load cases, within the time before the onset of remodeling activities. Even

in reported results from the experimental work upon which the model was based [49],
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the influence of immediate subsequent loading is apparent. Secondly, the material

model describes the accumulation of damage while considering the anisotropic nature

of bone. This description was shown to predict irreversible transverse deformation in

response to purely axial loading, about which there is no corroborative or contradic-

tory experimental data. Thirdly, the material model was based upon experimental

work concerning cortical bone, and so the numerical experiments that were performed

in Chapter 5 concerning the post-yield behavior of trabecular bone should be con-

sidered extrapolative. Fourthly, the description of remodeling events in each tissue,

while utilizing some observed phenomena, was largely based upon qualitative descrip-

tions of cellular activities that are still poorly understood. Modeling of these events

was performed by applying information from the reduced effective virtual state to a

homogenized description of cellular activities. While the validity of the proposed de-

scription of remodeling activities may be independent of the reduced effective virtual

state, the description of remodeling activities was derived from the reduced effective

virtual state, which, again, is hypothetical. Fifthly, the description of remodeling

activities was derived based on the assumption that, if undisturbed, the material

returns to its former state before the onset of loading damage, and so the model

neglects the influence of damage from a single load case on long-term changes in the

material state, as well as the influence of perturbations during and biological factors

concerning remodeling processes.

6.2 Future Work

Concerning future research that may be related to or based on the work presented

here, the most apparent final application of research is probably technologies that

provide reliable, patient-specific predictions of the long-term stability of prostheses.

This application is relevant both to dental implants and other prostheses placed else-

where in the human body where, generally speaking, biologically foreign materials are

integrated into the body and perform or provide various functions. Within the scope
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of biomechanics, reliable predictions of implant stabiilty require a precise and total

description of how tissue responds to and interacts with integrated foreign materials

on multiple timescales.

Future work must be performed to augment the reliability of the finite element

model of the implant site. Considering the continuum finite element model, some

advanced contact model is required to more precisely describe the interactions be-

tween skeletal tissue and the implant at their interface. This contact model should

then be implemented in finite element models of the implant site, where currently

perfectly bonded contacts are typically utilized and were shown in this work to pro-

duce unreliable results. To develop this description, experimental work must first

be performed to somehow isolate the interactions between skeletal tissue and various

foreign materials of interest, from which the contact model should then be derived.

This may be accomplished by press-fitting a cylindrical material of interest into a

sample of skeletal tissue and measuring frictional forces during forced relative mo-

tion, or by some other experimental method. Until some contact model is developed

and sufficiently supported, it is the author’s opinion that greater attention should

be given to the reliability of reported models, even to the reporting of some metric

concerning convergence at or near the implant interface, which may at least provide

better insight into disagreement among reported results in literature.

Regardless of the convergence of results from the continuum model, that some

clinical data have implied a minimum crown-to-implant ratio suggests the need for

a broader analysis of results from the finite element model when predicting implant

stability than merely comparing maximum results to some threshold value. The

proposed method of analysis in Chapter 4 introduces the consideration of the struc-

tural adaptation of skeletal tissue that, at least qualitatively, accounts for insufficient

mechanical stimulus, which may be reflective of higher success rates for larger crown-

to-implant ratios. With the consideration of sufficient clinical data on long-term

success rates, and perhaps also with data on significant structural adaptation in re-

sponse to implants, the proposed method should be refined to consider deformation
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in tension and compression, as well as the significance of functional response in par-

ticular neighborhoods of the implant site. In Chapter 4 the method was generally

applied to both skeletal tissues at the implant interface, without regard to the relative

significance of structural adaptation in either tissue. In reality, reliable predictions

according to the proposed method may be somewhat (even to entirely) unconcerned

with trabecular bone, or perhaps only marginally concerned with results in trabecular

bone at the thread features of the implant. An elaborate discussion of the specific

limitations of the method would probably be mostly speculative, but a general (and

perhaps excessively broad) hypothesis that seems apparent is that there is some set

of temporospatially dependent weight functions that, when applied to the resulting

strain distributions from some set of load cases, produces experimentally consistent

predictions of long-term stability when considering structural adaptation.

Concerning the modeling of skeletal tissue, the novel material model in Chapter

5 presents a number of research opportunities, both in regards to the mechanical and

biological aspects of the response of skeletal tissue to plastic deformation. While the

effects of damage on stiffness in the direction of loading have been studied in cortical

bone, its effects on the material properties of skeletal tissue in all material directions

are poorly understood. The novel material model attempts to extend these experi-

mental observations to all material directions by incorporating that bone is affected

by shearing loads, which should be evaluated against future experimental work. The

material model also describes remodeling activities with the assumption of no distur-

bances of cellular activities, and that the cellular activities of the remodeling process

are directly related to the accumulation of damage from mechanical loading. The for-

mer assumption was implemented to describe the simplest imaginable case, and the

latter was based on the elementary observations that sometimes bones are damaged,

and yet somehow they continue to function. Exactly how these cellular activities

are influenced by mechanical damage is poorly understood, particularly concerning

individual microscopic phenomena and their interruption by external factors.
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APPENDIX: ON THE REMODELING AND STIFFNESS TENSORS

According to [72], in the principal axes of the remodeling tensor, hij takes the

form h̃ij, where in three dimensions

h̃ij =

⎡
⎢⎢⎢⎣
HI 0 0

0 HII 0

0 0 HIII

⎤
⎥⎥⎥⎦ (1)

where HI , HII and HIII are the principal values of hij (HI ≥ HII ≥ HIII > 0). The

principal axes of hij are taken to be the material axes n̂i that define the material

coordinate system, where for the Kth principal value of hij

hijn̂
(K)
j = H(K)n̂

(K)
i (2)

The elasticity tensor in the principal axes of hij, C̃ijkl = C̃ijkl(hij), takes the Voigt

form

C̃ijkl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

Ê

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
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I
− ν̂

H2
IH

2
II

− ν̂
H2

IH
2
III

0 0 0

1
H4

II
− ν̂

H2
IIH

2
III

0 0 0

1
H4

III
0 0 0

1+ν̂
H2

IIH
2
III

0 0

sym 1+ν̂
H2

IH
2
III

0

1+ν̂
H2

IH
2
II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(3)

where Ê and ν̂ are experimentally determined material constants or piecewise param-

eters as functions of the apparent density ρ of a skeletal tissue of interest. If Ê = Ê(ρ)

and/or ν̂ = ν̂(ρ), then
∂Ê
∂ρ

= 0

∂ν̂
∂ρ

= 0
(4)


